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Closures of Relations 
 
  Composition of Relations Revisited 
 Recall in the text the matrix of the relation S R is written as MS R and  
MS R  = MR MS.  The purpose of the following example is to remind you of the process 
and to reaffirm why it is necessary to write the product of the matrices “backwards”. 
 
Example 1.  Assume that a University has a tutoring center and would like to determine 
which subjects are available to be tutored which days of the week. Assume that the 
courses to be tutored are: A = {Discrete(D), Precaculus(P),C++, Calculus(Cal)}.  Assume 
that there are three tutors available  
B = {John(J), Melissa(M), Al(A)}.  Also assume that the days that the tutoring center is 
open are Monday through Friday, that is C = {M, T, W, R, F}.  Assume that:  
 
John can tutor Discrete , C++ and Calculus and he is available on M,R and F. 
Melissa can tutor Precaculus and C++ and she is available on M, W and R. 
Al can tutor Discrete , Precalculus and Calculus and he is available on T, W and F. 
 
If R is the relation from A(courses) to B(tutors) and S is the relation from B to C(days). 
We want to find S R, which course are available to be tutored on which days of the 
week.  The easiest was of doing this is to use matrices. 


Let MR = .  Recall, to write this matrix prefix the first column by the elements 


of A and the first row by the elements of B.  You may want to do this.  


1 0 1
0 1 1
1 1 0
1 0 1


⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥
⎣ ⎦


⎥
⎥


⎥
⎥


⎥
⎥


Let MS = .  Recall, to write this matrix prefix the first column by the 


elements of B and the first row by the elements of C.  You may want to do this.  


1 0 0 1 1
1 0 1 1 0
0 1 1 0 1


⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦


So that MS R  = MR MS = .  The reader should prefix the first column 


by the elements of A and the first row by the elements of C to determine which courses 
are available for tutoring which days of the week.   


1 1 1 1 1
1 1 1 1 1
1 0 1 1 1
1 1 1 1 1


⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥
⎣ ⎦


Another interesting result comes from using regular arithmetic instead of Boolean 
arithmetic on the above product (MRMS).  
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MS R  = MRMS = .  This tells us, for example, that there are 2 tutors 


available to tutor Calculus on Friday.  Determine how many tutors are available to tutor 
the courses on which days. 


1 1 1 1 2
1 1 2 1 1
2 0 1 2 1
1 1 1 1 2


⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥
⎣ ⎦


⎥
⎥


  
 
Closure Operations on Relations 
 
In the text for section 8.4 read the first several pages to have an overview of closures in 
general and the concentrate transitive closure which begins on page 547.  Example 7 is a 
good example to study in detail.  The material below explains what transitive closure 
means. 
 
One important operation on relations is composition. This operation enabled us to 
generate new relations from previously known relations. We now wish to consider the 
situation of constructing a new relation R* from a previously known relation R where, 
first, R*contains R and, second, R*satisfies the transitive property. Consider a telephone 
network in which the main office a is connected to, and can communicate to, individuals 
b and c. Both b and c can communicate to another person, d; however, assume the main 
office cannot communicate with d. Assume communication is only one way, as indicated 
by the following relation. This situation can be described by the relation R = {(a, b), (a, 
c), (b, d), (c, d)}. We would like to change the system so that the main office a can 
communicate with person d and still maintain the previous system. We, of course, want 
the most economical system. This can be rephrased as follows: Find the smallest relation 
R* which contains R as a subset and which is transitive.  Since R* must contain R as a 
subset R* must include the pairs (a, b), (a, c), (b, d), (c, d) therefore so far R* looks like 
R*= {(a, b), (a, c), (b, d),(c, d), …}. Next, since both (a, b) and (b, d) are elements of R* 
and R* must be transitive R*must contain (a, d) and we have R*= {(a, b), (a, c), (b, d),(c, 
d), (a, d)}.  The reader should check to see if any other pairs have to be included to make 
it transitive.  The answer is no. 
 
Definition: Transitive Closure. Let A be a set and R be a relation on A. The 
transitive closure of R, denoted by R*, is the smallest relation that contains R 
as a subset and that is transitive. 
 
 
Example 2. Let A = {1, 2, 3, 4}, and let S = {(l, 2), (2, 3), (3, 4)} 
be a relation on A. This relation is called the successor relation on A since 
each element is related to its successor. How do we compute S*? 
By inspection we note that (1, 3) must be in S*.  Let's analyze why. This 
is so since (1, 2) ∈ S and (2, 3) ∈ S, and the transitive property forces  
(1,3) to be in S*.  In general, it follows that if (a, b) ∈ S and (b, c)∈ S, then 
(a, c) ∈ S*.  This condition is exactly the membership requirement for the 
pair (a, c) to be in the composition S S = S2. So every element in S2 must be 
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an element in S*.  So far, S* contains at least S ∪  S2. In particular, for this 
example, since S = {(l, 2), (2, 3), (3, 4)} and S2 = {(l, 3), (2, 4)}, we have 
S  S∪ 2 = {(l, 2), (2, 3), (3, 4), (1, 3), (2, 4)}. Is the relation S ∪  S2 transitive? Again, by 
inspection, (1, 4) is not an element of S  S∪ 2, but it must be an element of S* since (1, 3) 
and (3, 4) are in S*.  From above, (1, 3) ∈S2 and (3, 4) ∈ S, and the 
composite S2 S = S  produces (1, 4). This shows that S  S3 3 ⊆ *.  This process must be 
continued until the resulting relation is transitive. If A is finite, as is true in this example, 
the transitive closure will be obtained in a finite number of steps. Here,  
S* = S ∪ S  S 3 .   2 ∪
Note if you determined S4 or S5  or S6 etc. you would simply get S3.  
 
 
 
Theorem  If S is a relation on a set A and if #A = n, then the 
transitive closure S* = S S  S .... .  ∪ 2 ∪ 3 nS∪
 
 Note in the above example |A| = 4 but the transitive closure was obtained by computing 
S3.  So in the above theorem you need only go as far “as at most n”. 
 
Let's now consider the matrix analogue of the transitive closure through an example. This 
will give us Theorem 3 of the text. 
 
Example 3. Consider the relation R ={(l, 4), (2, 1), (2, 2), (2, 3), 
(3, 2), (4, 3), (4, 5), (5, I)} on the set A={1, 2, 3, 4, 5}, note |A| = 5. The matrix MR of 
R is 
 


MR = 


 


 


0      0     0     1      0
1      1      1     0     0
0      1      0     0     0
0      0      1     0     1
1      0      0     0     0


⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦


 
 and sine R R can be computed by the matrix MR R  = MRMR and since MRMR 
 is the product of a matrix with itself MRMR = .  2RM
  
 


2
RM  =               


0  0  1  0  1
1  1  1  1  0
1  1  1  0  0
1  1  0  0  0
0  0  0 1  0


⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦


3
RM  =


1  1  0  0  0
1  1  1  1  1
1  1  1  1  0
1  1  1  1  0
0  0  0 1  0


⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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4
RM =                


1  1  1  1  0
1  1  1  1  1
1  1  1  1  1
1  1  1  1  1
1  1  0 0  0


⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦


5
RM  =


1  1  1  1  1
1  1  1  1  1
1  1  1  1  1
1  1  1  1  1
1  1  1  1 0


⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦


 


 
 


So R* = R R∪ 2 ∪ R3 ∪ R4 R∪ 5 because |A| = 5. This equation can be expressed in 
matrix form as: 


MR* = MR ∨   2RM ∨
3
RM ∨


4
RM ∨


5
RM  =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦


. 


 
Equivalence Relations 
 
For this topic read the definition and examples 1 through 3 and then try the 
exercises. 
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