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Abstract I describe a realist, ontologically objective interpretation of probability,
“far-flung frequency (FFF) mechanistic probability”. FFF mechanistic probability is
defined in terms of facts about the causal structure of devices and certain sets of
frequencies in the actual world. Though defined partly in terms of frequencies, FFF
mechanistic probability avoids many drawbacks of well-known frequency theories and
helps causally explain stable frequencies, which will usually be close to the values of
mechanistic probabilities. I also argue that it’s a virtue rather than a failing of FFF
mechanistic probability that it does not define single-case chances, and compare some
aspects of my interpretation to a recent interpretation proposed by Strevens.


Keywords Interpretation of probability · Objective probability · Frequency ·
Microconstancy · Chance


1 Introduction


While the meaning of “probability” in mathematics is provided by a few closely related
sets of axioms, uses of “probability”, “chance”, and related terms in science and every-
day life seem to require more than satisfaction of such axioms. For example, if the
surface of a table is divided into regions,1 each region’s proportion of the table top
can count as its probability from a mathematical point of view: the axioms are satis-
fied. However, most uses of “probability” outside of a purely mathematical context
would not count proportion of a table top as probability. Specifying what more than


1 Regions which are not too mathematically bizarre, i.e. which are measurable—see e.g. Friedman
(1982, Ch. 1) for an illustration.
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satisfaction of the axioms is needed is the problem of providing an “interpretation
of probability”. Well-known interpretations of probability have serious defects, and
recently proposed interpretations seem satisfactory for some purposes but not for oth-
ers.


The goal of this paper is to outline a new interpretation of probability, one which
is objective in the sense that the resulting probabilities are constituted only by facts
about states of the world, without regard to epistemic factors such as belief or justifi-
cation. Mechanistic probability—or more specifically what I call “far flung frequency
(FFF) mechanistic probability”—defines probabilities of outcomes in terms of a kind
of complex causal structure for what I call “causal map devices”, and very general
facts about actual frequencies of inputs to similar devices.2


FFF mechanistic probability is not designed to interpret all scientific and everyday
uses of “probability” and similar terms. FFF mechanistic probability exists only when
certain conditions are met. Other interpretations—some perhaps not yet devised—will
be appropriate in other contexts. Various authors have proposed that one or another
interpretation of probability could function as the appropriate interpretation of proba-
bility for most worldly uses of “probability”, or for the more limited class of objective
senses of the term. It’s not clear to me why an all-purpose interpretation of probability
is needed. Probability fills different roles in different contexts, and the material bases
of phenomena that seem to involve probabilities could vary.


I’ll begin with a quick overview of some advantages and disadvantages of other
interpretations of probability in order to motivate mechanistic probability’s special
features, concluding with a list of desiderata which I believe one or more interpreta-
tions of probability ought to satisfy (Sect. 1.1). Since some readers may feel that it
is problematic that mechanistic probabilities are never single-case, I then include a
brief discussion of the roles of single-case objective probabilities and why it might be
advantageous to avoid defining them in some interpretations (Sect. 1.2). Next, after
introducing an example and terminology which will be used in the rest of the paper
(Sect. 2), I summarize a “microconstancy inequality theorem” (proved in the appen-
dix) and its role in defining FFF mechanistic probability (Sect. 3). Section 4 addresses
the main challenge that must be dealt with by a mechanistic interpretation of probabil-
ity, namely providing a naturalistic specification of a measure over initial conditions.
Section 5 summarizes and refines the resulting interpretation of probability, clarifies
its properties, and discusses some potential difficulties. The concluding section sum-
marizes advantages and disadvantages of FFF mechanistic probability. Finally, the
appendix states and proves the microconstancy inequality theorem.


1.1 The need for new interpretations of probability


Brief descriptions of a few prominent interpretations and some apparent virtues and
drawbacks will help to clarify the context and motivation for my proposal. I make


2 Mechanistic probability is inspired by work by Poincaré (1912, §91) on the method of arbitrary functions
and is based partly on work by Strevens (2003); Strevens (2005), though the main ideas were developed
before I had read Strevens’ work (Abrams 2000).
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no pretense of providing a proper presentation and critique of these interpretations,
which has been done by others.3


First, traditional finite frequency interpretations take probabilities to be relative fre-
quencies in actual sets of occurrences; this, however, allows probabilities to deviate
from values which their conceptual role requires. For example, we might think the
probability of heads for tosses of a fair coin is 12 , but the frequency of heads in actual,
finite sets of tosses rarely takes precisely that value, and in fact varies from 0 to 1 in
different sets of tosses. Without recourse to an additional interpretation of probability
in order to justify laws of large numbers, it’s not even clear why we should expect the
frequency of heads to be close to 12 . An alternative is to claim that probabilities are
long-run hypothetical frequencies, i.e. what a frequency would settle down to in the
limit if the number of trials were extended indefinitely, but again, it’s not clear why we
should expect frequencies to take the intuitively correct values. Thus simple frequency
theories do not justify values for probabilities that are even close to the values needed
in many uses of probability in science and everyday life.4


More importantly, it seems that some scientific and practical uses of probability
require that probability cause or explain stable frequencies—the fact that certain con-
texts usually produce particular frequencies of outcomes; simple frequency theories
cannot do this. This is also a reason that I think it’s worth exploring alternatives to
Best System Analysis chances (Lewis 1980, 1994; Loewer 2001, 2004; Hoefer 2007):
Best System probabilities sometimes depend on whatever the frequencies happen to
be, without requiring that these frequencies have any causal explanation at all.5 Simi-
larly, although I believe that Bayesian interpretations (e.g. Earman 1992; Howson and
Urbach 1993; Williamson 2010) are useful in various contexts, they aren’t designed
to explain frequencies.


As suggested above, I take the view that different interpretations of probability
are appropriate for different contexts. On this view, it would be a mistake to assume
that requirements for application of an interpretation are automatically met whenever
probabilities are usefully postulated in certain scientific or practical contexts (as is
advocated by Sober (2005), and sometimes in the context of Best System approaches
(e.g. Glynn 2010)). To view objective probabilities as convenient place-holders is
to leave them mysterious, and to give up on the possibility, at least sometimes, of
explaining frequencies as general phenomena.


Propensity interpretations identify probabilities with a sort of generalized dispo-
sition to produce outcomes in varying degrees or in varying frequencies. As such,
propensities potentially provide causal explanations for frequencies. However, propen-
sities have many problems (Eagle 2004). My view is that at best, propensities provide


3 Hájek (2009) and Gillies (2000), among others, provide useful overviews of a variety of interpretations
of probability and their advantages and disadvantages.
4 See Hájek (1996, 2002) for a discussion of these and other drawbacks of frequency theories.
5 This is true, for example, of Hoefer (2007) “third way” interpretation of probability, even though it makes
probabilities depend on actual frequencies in the world in a complex way, as FFF mechanistic probability
does, and even though many third way probabilities will depend partly on “statistical nomological machines”
like the bubbly causal map devices which I describe.
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an interpretation of probabilities at the lowest physical level, i.e. for indeterminism in
quantum mechanics (see Sect. 1.2.2).


Unlike these well-known interpretations, FFF mechanistic probability shows how
it’s possible for objective probability to explain frequencies, at least in part, with-
out explaining, determining, governing, etc. outcomes on single trials (cf. Sect. 1.2,
which explains why I view this as an advantage of mechanistic probability). Mecha-
nistic probability is, in fact, consistent with both determinism and non-trivial chances6


which can be justified using another interpretation of probability. And though defined
partly in terms of actual frequencies, FFF mechanistic probability avoids the most
serious problems of simple frequency theories.


An interpretation of probability should satisfy specifiable constraints or desiderata,
but there is no agreement on which constraints are essential. However, on the view
that different interpretations of probability are suitable for different purposes, this
divergence may be healthy. As the preceding discussion suggests, I take the following
list of desiderata to be worthy of satisfaction:


Satisfaction of probability axioms


The probabilities satisfy a standard set of axioms including, at least, finite addi-
tivity.7


Ascertainability


It is in principle possible to discover what values probabilities have.


Objectivity


The probabilities are constituted only by facts about states of the world, without
regard to epistemic factors such as belief or justification. Thus, construction of an
interpretation of probability requires that we provide naturalistic, non-epistemic
definitions of all of its components.


Explanation of frequencies


That the probability of an outcome A has the value it does should help explain
why relative frequencies of A tend to have similar values.


Distinguishing nomic regularities


A closely related desideratum is that an interpretation of probability be able to
distinguish accidental from nomic regularities in frequencies (Strevens 2010).


I argue below that FFF mechanistic probability satisfies these desiderata well enough
to be valuable.


6 By “chance” I mean nothing more than “single-case objective probability”; no association with any
particular strategy or interpretation is intended.
7 Or should at least satisfy axioms that are recognizably similar to standard axioms (e.g. Fetzer 1981;
Walley 1991).
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1.2 Must an interpretation define chances?


Some readers may feel that an objective interpretation of probability must be able
to define single-case objective probabilities, or chances, so I’ll indicate here why I
disagree.


1.2.1 How many chances are there?


It appears that there are three main, overlapping roles which single-case probabilities
must play.


First, single-case probabilities routinely guide individual action, whether involving
games of chance or choices about where to wait for a bus. What’s needed for deci-
sions, however, are only internal probabilities such as Bayesian credences, and it’s not
clear that chances are needed to justify them. For example, Dutch book arguments that
degrees of belief concerning single cases should satisfy standard axioms can be based
on frequencies without assuming chances.8


Second, single-case probabilities are required in order to prove laws of large num-
bers, often thought to justify assumptions about frequencies. However, most laws of
large numbers cited to justify claims about frequencies only make claims about what
happens in the limit. Their proofs may have implications about probabilities of various
frequencies in finite sets, but note that FFF mechanistic probability justifies claims
about finite frequencies directly, without chances.9


Third, single-case probabilities are routinely used in science, for example in statis-
tical inference. However, consistent with remarks above, it seems problematic to infer
the existence of chances from the mere fact that single-case probabilities seem to play
certain crucial roles in successful science (e.g. Sober 2005; Hoefer 2007; Glynn 2010).
In particular, while I think there may be some chances to which some fundamental
physical theories refer, I’m sceptical of claims that propositions in special sciences
refer to chances.


Note that there are many models but few (if any) laws in the special sciences. Given
a model which has been successfully applied, questions typically remain about which
aspects of the model correspond to, or approximate aspects of the world. Like other
aspects of models, single-case probabilities assumed in models may well be mere con-
veniences which don’t correspond directly to anything in the world.10 Thus further
arguments concerning processes in the system modeled would be needed to justify
claims that model probabilities refer to chances. Even if a proposition involving sin-
gle-case probabilities were reasonably viewed as a special science law, the claim that
these represent chances can’t necessarily be inferred from the law; special science laws
don’t describe fundamental reality in the way that some laws in physics do, and what’s


8 Arguments in Howson and Urbach (1993, p. 344) and Williamson (2010, p. 41) can be adapted for this
purpose.
9 There are some theorems which specify rates of convergence of frequencies in terms of intervals which
are not qualified with probabilities, but it seems to me that they apply to narrower ranges of situations than
mechanistic probabilities does (cf. discussion in note below about Engel’s work).
10 Cf. Wimsatt (2007) on the utility of false models.
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important in the formulation of the law might not be the assumption that probabilities
are single-case. A claim that what appear to be single-case probability terms in fact
refer to chances would need to be justified by investigation into the way in which
these terms are used and/or the underlying processes which give rise to phenomena
described by the law (see also Sect. 5.6.1).


1.2.2 There are few fat chances


Let us call something a “fat chance” if it is not merely an objective single-case probabil-
ity, but one in which the probability captures a matter of degree of strength concerning
the connection between cause and effect—where this connection is understood in a
realist, non-Humean sense. (Propensities are fat chances on some interpretations, but
I don’t want to restrict the notion of a fat chance to any particular interpretation.)


A number of authors appear to claim that the chance of a particular outcome of a
given cause event can have multiple values by relativizing chance to levels or prop-
erties or descriptions (e.g. Mellor 1971; Sober 2005; Hoefer 2007; Glynn 2010). I’ll
argue that this cannot be so for fat chances. I think the argument captures a common
intuition whose rationale has not been spelled out explicitly in this way.11


Whether fat chances exist or not, causal relations come in at least two strengths. If
event c is such that it would definitely cause an instance of outcome A, let us say that
the relation has strength 1. And we can call the absence of a causal relation, occurring
when c is not such that it could cause an A, a (degenerate) causal relation of strength 0.
Note that particular event c cannot bear causal relations of both strengths to A, which
would mean that c both definitely would and definitely would not cause an A.


Suppose that there are fat chances, so that the causal relation is sometimes a matter
of degree of strength between 0 and 1. Following the occurrence of c, some member
A of a partition of outcomes will be realized as a result of c, even though c does not
cause A with strength 1.12 Then, just as c cannot cause A with strengths 0 and 1, it
cannot cause A with strengths r and s where r �= s. On a non-Humean view of causal
relations, to claim that a causal relation between an event and the realization of an out-
come is simultaneously of multiple strengths seems at the very least counterintuitive,
and in need of defense in terms of special assumptions about causal relations. (I don’t
know what those assumptions could be.) An epistemological application may help to
convey the point: If you knew that c caused A with strengths near 0 and near 1, should
you expect A to occur once c takes place?


This means, though, that fat chances of a possible outcome of a single cause cannot
be relativized to distinct levels, properties, or descriptions. For example, consider a


11 The argument is a generalization of one in (Abrams 2007), and bears analogies to Kim’s causal exclusion
argument (Kim 1998) and to some arguments in Schaffer (2007). Intuitions related to my conclusion can
be found expressed in various places, including Sklar (1970) and Lewis (1986b). Such intuitions probably
motivate the view that propensities are conditioned on the entire state of the universe or relevant light cone
(Miller 1994; Fetzer 1981). In theory, Humeans should be unaffected by my argument, since they would
not countenance fat chances.
12 If fat chances are countably additive, A may be realized even if its chance is 0.
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game in which a fair coin is flipped in order to choose which of two pairs of dice is
to be tossed next. Both pairs of dice are loaded, but in different ways. Then a partic-
ular toss of a pair of dice cannot have one fat chance of double-six as a realizer of
the property being loaded toward double-six and another fat chance of double-six as
realizing toss of a pair of dice chosen by coin flip in such and such game setup. The
toss is the same event regardless of what properties we focus on or how we describe
it. There is a physical causal relation between the circumstances of the toss and the
outcome double-six, and this causal relation cannot have multiple strengths.


This is not to say that there can’t be different objective, causal probability values for
an outcome relative to different properties; however, these cannot all be single-case
probabilities from the same cause event. (Mechanistic probabilities are not single-case,
so they don’t conflict with determinism or with fat chances.)


In sum, my interpretation of probability will not define single-case probabilities,
but there is not a compelling reason that it need do so (Sect. 1.2.1), and there is a
compelling reason that it should not do so (Sect. 1.2.2). (I don’t see a consistent way
that it could do so, without simply conjoining another interpretation.)


2 Preliminaries


I’ll assume in most of this paper that the world is deterministic, because determin-
ism is the hard case: If we can justify a useful interpretation of probability under
determinism, it is not difficult to add indeterminism to the picture (Sect. 5.6.3).


2.1 The wheel of fortune


There are some devices—including many games of chance—whose causal structure
is such that it typically matters very little what pattern of inputs the device is given in
repeated trials; the pattern of outputs is generally about the same. For example, a wheel
of fortune with red and black wedges—a simplified roulette wheel—is a determinis-
tic device: The angular velocity with which it’s spun completely determines whether
a red or black outcome will occur. Nevertheless, if the ratio of the size of each red
wedge to that of its neighboring black wedge is the same all around the wheel, then
over time such a device will generally produce about the same frequencies of red and
black outcomes, no matter whether a croupier tends to give faster or slower spins of
the wheel. Why?


The wheel of fortune divides a croupier’s spins into small regions (“bubbles” below)
within which the proportion of velocities leading to red and black are approximately
the same as in any other such region (Fig. 1). As a result, as long as the density curve
of a croupier’s spins within each bubble is never very steep, the ratio between numbers
of spins leading to red and leading to black within each bubble will be roughly the
same. The overall ratio between numbers of red and black across all spins will then
be close to the same value. In order for frequencies to depart from this value, a crou-
pier would have to consistently spin at angular velocities narrowly clustered around a
single value, or produce spins according to a precisely periodic distribution.
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Fig. 1 x velocity; y spins; gray areas red frequencies; black areas black frequencies


2.2 Concepts and terminology


We can give a more general, mathematical justification for the explanation of the
stability of frequencies produced by devices like the wheel of fortune; this will pro-
vide a basis for a mechanistic interpretation of probability. I begin by defining a number
of useful terms. I’ll use an upper bar ( A) to represent negation/complementation.


Call a device like the wheel of fortune, by which a set of possible initial conditions
(inputs) produces instances (outputs) within an algebra of outcomes a causal map
device (Fig. 2); the function from initial conditions to outcomes which it realizes is
a causal map. I’ll usually assume below that causal map devices are deterministic.
Outcomes are (perhaps empty) disjunctions of members of a finite partition of basic
outcomes. An outcome-inverse of initial conditions for a given outcome A is a set of
initial conditions all of which would produce the same outcome A; an outcome-inverse
set for A need not include all of the initial conditions which produce A, however. Let
A−1 be that outcome-inverse set for A which does include all of A’s possible causes.


For a causal map device, a bubble is a region in the input space containing points
leading to all basic outcomes, i.e. containing outcome-inverse sets for each basic
outcome (as a soap bubble reflects its surroundings). For example, the small dotted


Fig. 2 Structure of a causal
map device. Heavy arrows
summarize some causal relations
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rectangle in Fig. 2 is a bubble. A partition of the entire space of possible inputs into
bubbles is a bubble partition.13 For the time being one can also assume that each
bubble is a set of contiguous points which is not too bizarrely shaped (thus assum-
ing the input space has a metric14). In the end these additional assumptions will not
be required (Sects. 5.1, 5.2), but making them now will allow simpler illustrations of
ideas. For now, I’ll say that if there exists a bubble partition with a large number of
bubbles, the device is bubbly; this term will be refined later (Sect. 5.2). (The vague-
ness of “large number” shouldn’t be worrisome: A minimum number of bubbles can
be defined for some particular purpose if desired, but doing so doesn’t seem useful
in general. The microconstancy inequality theorem (Sect. 3.1 and Appendix) implies
that larger numbers of bubbles allow mechanistic probabilities to predict frequencies
more precisely. That is, larger numbers of bubbles are better, other things being equal,
and too few bubbles will make it difficult for other requirements of FFF mechanistic
probability to be satisfied. The implications of satisfaction of the requirements to any
particular degree is specified by the theorem.)


In the case of the wheel of fortune, the basic outcomes are red and black, and a
partition of the input velocity space into intervals corresponding to adjacent red/black
wedges is a bubble partition. For most croupiers, the wheel of fortune is also “macro-
periodic” (Strevens 2003): A causal map device is macroperiodic relative to a bubble
partition and a specification of a density over inputs (e.g. the density curve in Fig. 1),
iff there is approximately the same proportion of inputs, within each bubble, leading
to each outcome.15 Macroperiodicity has to do with the frequencies of inputs which
a particular distribution of inputs places into outcome-inverses within each bubble.
Another property, microconstancy (Strevens 2003), has to do with the input probabil-
ity assigned to each of these outcome-inverses: A causal map device, bubble partition,
and probability measure over the input space of the device are microconstant relative
to a given outcome, iff the probability of the outcome-inverse conditional on each
bubble is the same for all bubbles. For example, if we measure probability of a region
in the input space of the wheel of fortune by normalized Lebesgue measure—roughly,
the distance between upper and lower velocities leading to a wedge divided by the
difference between the greatest and least velocity possible for a human croupier—then
the wheel of fortune is approximately microconstant relative to the bubble partition
mentioned above.16


13 In Strevens’ (2003) terms, my “causal map device” is, roughly, a “mechanism” provide with a “des-
ignated set of outcomes”; if we specify in addition a distribution over initial conditions, we get Strevens’
“probabilistic experiment”. A bubble partition is Strevens’ “constant ratio partition” if we consider only
two possible outcomes A and A, and the measure of A−1 conditional on each bubble is the same.
14 In order to define contiguity and shape we need a metric d—a generalization of distance—which is
a function from pairs 〈x , y〉 of elements of a space to nonnegative real numbers such that d(x , y) =
d(y, x ), d(x , y) = 0 iff x = y, and d(x , z) ≤ d(x , y) + d(y, z).
15 My definition of “macroperiodic” differs in minor ways from Strevens (2003).
16 Lebesgue measure is a generalization of area or volume. Ignoring mathematically important but subtle
points, if a space has two real-valued dimensions, Lebesgue measure of a set is its area, computed by multi-
plying lengths along each dimension. Extend this idea to n dimensions to get the general idea of Lebesgue
measure.
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2.3 Strategy


I’ve given no particular reason to think that Lebesgue measure has special relevance
for causal map devices, though it seems to work for wheels of fortune. Why assume
that every causal map’s input is even defined by real-valued dimensions? Consider,
for example, an ecological causal map device in which one “dimension” is defined by
plants being in seed-producing, flowering, or pre-flowering states (e.g. Caswell 2001,
Ch. 4). In general, for a causal map device and a set of basic outcomes, it’s always
possible to assign a probability measure to the device’s input space, almost arbitrarily,
and then take the probability of an outcome to be the input probability of its outcome-
inverses, i.e. the probability of inputs which lead to the outcome. For example, we
could define the probability of spin velocities leading to one particular red wedge to
be 1, giving all other spin velocities a probability of 0. This way of defining outcome
probabilities is mathematically unproblematic though without any apparent utility.


On the other hand, if an input measure could be defined so that the measure of an
outcome’s inverse tended to be close to the frequencies of inputs which led to that
outcome, then outcome probabilities and frequencies would at least be close together.
This isn’t enough, though. For any particular collection of inputs, it’s trivial to define
the probability that an input will land in a set as the relative frequency of inputs in that
set. Let such sets be outcome-inverses, and voila—probabilities equal frequencies of
outcomes. This, however, is just a slightly baroque way of defining a simple actual
frequency interpretation of probability, with all of that interpretation’s problems.


I’ll describe a general strategy for constructing input probability measures for a
special class of causal map devices in Sect. 4. The theorem stated in the next section
provides one component of the characterization of such devices. More specifically,
the theorem implies that certain conditions guarantee that frequencies of outcomes
will be near to probabilities of outcomes. Section 4 defines an input measure as one
which does a good job of satisfying of those conditions.


3 Role of the microconstancy inequality theorem


In this part of the paper I summarize the microconstancy inequality theorem, which
specifies conditions under which outcomes’ frequencies will be near to their probabil-
ities, along with some of the theorem’s implications. In particular, I’ll outline the idea
that we can define an input measure for mechanistic probability as one which makes
frequencies close to probabilities according to the theorem. Section 4 will continue
this program by specifying a possible set of collections of initial conditions relative to
which an input measure can be defined, in such a way that frequencies will usually be
constrained to be near to probabilities. I’ll use this idea to complete a definition of FFF
mechanistic probability, which applies when such collections of initial conditions exist.


3.1 The theorem


The microconstancy inequality theorem proved here (Appendix) assumes that we are
given a causal map device, a bubble partition of the input space, a microconstant input
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probability measure for the bubble partition, and a collection of initial conditions for
the device. Then the theorem says that:


Microconstancy inequality theorem
The difference between the relative frequency R( A) of an outcome A and its
probability P( A) (the probability of its outcome-inverses) is less than the prod-
uct of (a) the sum of the squares of bubbles’ input probabilities, and (b) the
maximum of the frequency bubble deviations:


∑


b


P(bubble b)2 × (max of frequency bubble-deviations) ≥ |P( A) − R( A)|.


What are frequency bubble-deviations? Bubble deviation is a measure of the degree
to which the collection of initial conditions departs from macroperiodicity. More spe-
cifically (Fig. 3a):


The (absolute) bubble-deviation for
– a collection of inputs to a causal map device,
– a bubble b, and
– an outcome A,
is the absolute value of the difference between
– Ea , the (input-probability weighted) average number of inputs in b which


lead to outcome A, and
– Eb, the overall average number of inputs in b,
divided by the input probability pb of the bubble b:


absolute bubble-deviation of A−1 in b =
∣∣∣∣


Eb − Ea
pb


∣∣∣∣ .


The frequency bubble-deviation is the absolute bubble deviation divided by the
size N of the collection of inputs:


frequency bubble-deviation of A−1 in b = 1
N


∣∣∣∣
Eb − Ea


pb


∣∣∣∣ .


This is a sort of measure-theoretic analogue of the slope of a distribution of initial
conditions, which does not require that the distribution be continuous, or even that the
input space be defined by real-valued dimensions.


The microconstancy inequality theorem implies that when bubble measures and
bubble-deviations are small, outcome frequencies must be near to outcome probabil-
ities. Note that for the sake of exposition, I use a number of vague descriptions infor-
mally in various parts of the paper (e.g. “a large number of small bubbles”). However,
much of the vagueness is made irrelevant in the end by the fact that the inequality the-
orem makes precise the degree to which bubble measure and other quantities constrain
frequencies to be near probabilities.


The microconstancy inequality theorem is similar to Strevens’ (2003, 2.3, p. 136)
central theorem on microconstancy, but has some advantages over it. Strevens’ theorem
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doesn’t support a mathematical specification of the degree to which frequencies must
be near probabilities. More importantly, unlike Strevens’ theorem, the inequality the-
orem doesn’t depend on an assumption that the input space is defined by real-valued
dimensions. This allows FFF mechanistic probability to apply when the input space
doesn’t lend itself to real-valued dimensions, and avoids any need to provide a natu-
ralistic justification of choices of units for real-valued dimensions (cf. Sects. 4.1, 5.2
below).17


The appendix presents the theorem more carefully and proves it.


3.2 Adjusting input measures


Now, some input distributions will generate small bubble-deviations relative to a given
input measure. A different set of input distributions might each generate large devi-
ations. However, the latter distributions could nevertheless generate small deviations
relative to a different input measure. For example, some distributions will have large
bubble-deviations relative to a particular input measure partly because frequencies


over a = A−1 ∩ b are usually much larger than frequencies over a = A−1 ∩ b. Such
distributions would nevertheless get small bubble-deviations if we changed the input
measure, increasing P(a|b) and reducing P(a|b) within each bubble b. In Fig. 3, each
diagram represents the same number of inputs (area) in a as the other diagram does;
likewise for a. However, each diagram represents a different input probability mea-
sure (width). Since both measures assign the same value to the bubble’s probability,
pb, the they differ in outcome-inverses’ conditional probabilities pa , pa . As a result,
the bubble-deviation in the right-hand diagram is less than that on the left.


3.3 Application to construction of an interpretation


As mentioned above (Sect. 2.3), one can arbitrarily define any number of input proba-
bility measures for a causal map device, and such input measures can induce a derived
probability measure on outcomes. However, as we’ve seen, something more is needed;
frequencies of outcomes should at the very least tend to be near probabilities of out-
comes, and for a systematic reason.


Suppose that, although actual distributions of inputs to a particular, causal map
device vary quite a bit (e.g. distributions of spins, dice tosses, etc., by different crou-
piers), there is a microconstant input probability measure that makes all or most such
distributions macroperiodic. That this can be done for some devices is not implau-
sible. For if there are many bubbles, it’s possible for the maximum bubble measure
to be small, and (as I’ll argue in Sect. 5.3), there will be a sense in which it’s easy


17 Strevens does have a strategy for applying his approach to systems which are not defined by real-valued
dimensions (Strevens 2003, §2.42 and Ch. 4), but the strategy is complex and makes additional assumptions
about the systems to which it is supposed to apply. On the other hand, the fact that Strevens’ theorem is
explicitly defined in terms of distinct real-valued dimensions rather than an abstract measure, supports a
framework which allows Strevens to derive some interesting and useful results (Strevens 2003, especially
Chs. 2, 3).
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for distributions to be macroperiodic. Then by the above theorem, frequencies would
be near to the outcome probabilities which are induced by input probabilities. Thus
we might be able to define a sense of objective probability for outcomes of a bubbly
causal map device in terms of the following conditions:


1. The fact that there’s a bubble partition and microconstant measure P on the input
space which determine a small maximum bubble size.


2. Whatever facts make it the case that input distributions will have small bubble-
deviations relative to this bubble partition and measure.


Outcome probabilities defined by that input measure will then be close to frequencies
of outcomes resulting from such distributions. This is the intuition behind what I call
mechanistic probability.18 The probability defined by conditions 1 and 2 will be a
kind of objective probability as long as condition 2 involves only objective properties.


18 In my terms, Strevens’s (2010)’s “microconstant probability” and Rosenthal’s (2010) “natural range
conception of probability” are varieties of mechanistic probability.
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Note that bubbliness is implied by condition 1, and makes it easier for condition 2 to
be satisfied (Sect. 5.3).


At this point, we need a general method for constructing an input measure that
allows the strategy to work (since we can’t, for example, simply assume that Lebes-
gue measure will do the job).19


4 Justification of an input measure


In this part of the paper I’ll present a naturalistic method for defining an input measure
in terms of what I call “far flung frequencies” (FFF), which will satisfy something
like conditions (1) and (2) above. This will allow us to define “FFF mechanistic prob-
ability” in terms of this input measure. The inequality theorem will then imply that
frequencies of an outcome will usually be near to the outcome’s FFF mechanistic
probability. I’ll argue that FFF mechanistic probability has many of the properties
that we should want in an objective interpretation of probability. (The strategy below,
which is roughly to choose an input measure that allows the inequality theorem to
have desirable implications, is analogous to defining a class of semantical models in
terms of a set of axioms which they satisfy.)


I first consider and reject a way of defining an input measure proposed by Strevens
for his microconstant probability interpretation, which is similar to FFF mechanis-
tic probability (Sect. 4.1). I then define my notion of a “natural collection of inputs”
(Sect. 4.2), and explain how an input probability measure can be defined by minimiz-
ing differences between probabilities and frequencies across all natural collections
(Sect. 4.3). The resulting probability measure must succeed in making most natural
collections macroperiodic in order for FFF mechanistic probability to exist (Sect. 4.3).
Later parts of the paper will clarify various aspects of the resulting notion of FFF mech-
anistic probability.


4.1 On Strevens’ input measure


Strevens (2010) describes an interpretation of probability—“microconstant probabil-
ity”—which is similar to FFF mechanistic probability in many respects. Strevens’
strategy is to define an input measure from the nomic character of the devices which
generate inputs to a device such as a wheel of fortune. Here I briefly present an
objection to Strevens’ way of defining an input measure. While I’m sympathetic to
his strategy, at present I don’t see a way to make it work.


Strevens defines the input measure P as one which makes the actual inputs to a
focal causal map device D macroperiodic, as long as these inputs are produced by a
generating device (or devices) G which has (have) a tendency to produce events which
would be macroperiodic for D relative to P. We can’t, of course, require that this ten-
dency be one which guarantees macroperiodic inputs; that would rule out streaks in


19 One way of justifying the input measure would be to define it by the outcome measure of a causal map
device which generates inputs to the present causal map device. But what explains that latter causal map
device’s input measure (cf. Strevens 2003, Ch. 2)?
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which frequencies depart from probabilities. So Strevens says that G has a “tendency”
to produce such events just if it would produce events which are macroperiodic for
D relative to P in “nearly all” of the closest possible worlds. However, as Strevens
recognizes, this “nearly all” (e.g. 95%) requires a probability measure over the clos-
est worlds. (We can’t just count closest worlds, since they seem to be uncountable;
Lewis 1973.) Note then, that Strevens’ characterization of the input-producing device
G, and hence of the input measure and microconstant probability overall, depends
fundamentally on providing a probability measure over certain possible worlds.


Strevens’ “nearly all” is defined by a Lebesgue measure specified by standard
physical units, which characterize differences between physical processes involved
in producing collections of inputs to D.20 But making the input measure depend
on a probability defined by standard units seems arbitrary.21 Why standard units?
Why is this the measure relevant to characterizing the proportion of closest worlds
in which inputs are macroperiodic? Even if Lebesgue measure relative to standard
units did work in some cases—for wheel of fortune croupiers, suppose—why expect
that this strategy will generalize to other seemingly reasonable applications of micro-
constant/mechanistic probability? Even for the wheel of fortune, angular velocities
produced by humans presumably depend on complex interactions between many neu-
rons and other cells, responding to each other in various nonlinear ways. What reason
is there to think that a measure defined in terms of underlying physical units for states
of neurons will give large measure to counterfactual croupier states which produce
macroperiodicity? Moreover, if we try to apply Strevens’ microconstant probability
to cases in biological or social sciences, it becomes even less clear that standard units
are relevant to defining a tendency of input-producers to give rise to macroperiodic
distributions.


Thus I’m sceptical about the possibility of defining an input measure appropriate to
mechanistic probability in terms of characteristics of input-producers. My strategy is
instead to define the input measure directly in terms of certain sets of actual inputs pro-
duced by such devices. I’ll argue later that given the relationship of these set of inputs
to bubbliness, FFF mechanistic probability will usually reflect the causal structure of
input-producing devices to a significant degree.


4.2 Natural collections of inputs


Given a set of basic outcomes for a causal map device D which is bubbly with respect
to those outcomes, we need a general way of specifying a probability measure on the
device’s input space that can potentially produce an input measure that:


1. Is microconstant: The probability of each basic outcome-inverse should have the
same value conditional on each bubble.


20 There is a perhaps minor lacuna in Strevens’ description of the measure over worlds, in that nothing
is said about upper and lower bounds for the physical quantities; bounds would be needed to make the
Lebesgue measure finite and normalized.
21 Rosenthal’s (2010) “natural range conception of probability” also defines the input space in terms of
standard units.
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2. In some sense reflects patterns of inputs in the world in such a way that relevant
collections of actual inputs to such devices tend to be macroperiodic, i.e. have
small bubble-deviations.


The idea here is that if we can define an input measure so that it reflects facts which
are not just about inputs to the particular device of interest D (e.g. a particular wheel
of fortune) but also to certain similar devices, we can capture general facts about such
patterns of inputs in our world.


I’ll define the input measure for a causal map device D in terms of patterns of
actual inputs to devices with roughly the same input space as D. These other devices
need not map inputs to outcomes in the same way as D, however. I’ll propose that
we define the input probabilities for a device D in some way which reflects pat-
terns of inputs to all actual devices with roughly the same input space as D, over
a large region of space and time surrounding the period of D’s functioning which
is of interest. For example, the input probabilities for an actual wheel of fortune W
might depend partly on inputs to other actual wheels of fortune with similar input
spaces—similar ranges of angular velocities—but with different-sized wedges, dif-
ferent numbers of wedge colors, etc.; as well as spins of roulette wheels (ignoring the
tosses of little balls); and spins of wheels inside mechanical one-armed bandit slot
machines.


I’ll define the input measure for a causal map device in terms of relative frequencies
in sets of distinct “natural collections of inputs”:


Natural collection of inputs with respect to a causal map device D:


A natural collection for D is a large set of all and only those actual inputs pro-
duced by a single source device G to a particular causal map device D∗ during
a single interval of time T ∗, where D∗ has the same input space as D.


The source device G, for example, might be a human croupier. The strategy below
will be to define an input measure for a bubbly causal map device D in terms of “far
flung frequencies”: frequencies in a large set of all and only those natural collections
of inputs to actual devices D∗ (similar to D at least in having the same input space)
within a large spatiotemporal region around D. Call this an “a set of far flung (FF) nat-
ural collections of inputs”. I’ll explain shortly why the vagueness of this specification
of relevant natural collections needn’t be problematic.


Note that the definition of “natural collection” is designed to rule out certain prob-
lematic cases. The fact that a natural collection must include all inputs during an
interval T means that a collection can’t be restricted to inputs which produce a par-
ticular outcome (e.g. red). The definition also rules out natural collections which are
the union of inputs from several input-producing devices (e.g. different croupiers).
This allows us to distinguish between the actual world, in which outcome frequen-
cies for wheels of fortune, roulette wheels, etc., are often close to probabilities, and
a “robot croupier” world in which each croupier’s spins are restricted to a narrow
velocity interval. Allowing unions of croupiers’ inputs to count as natural collections
would mean that a group of robot croupiers with different narrow velocity distributions
could define a natural collection, even though for any croupier in any period of time,
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outcomes would have more to do with the croupier than with the structure of a wheel
of fortune.22


4.3 Constructing the input measure


Given a set of FF natural collections of inputs, we can define the input space of a
bubbly causal map device D by choosing an input probability measure that minimizes
differences between frequencies and probabilities across all natural collections in the
set. More precisely, we should choose measures for bubbles and for outcome-inverses
which minimize the sum of squares of bubble-deviations for all natural collections in
the set.23 Since, according to the inequality theorem, bubble-deviations place a limit
on how far outcome probabilities can be from frequencies, adjusting input probabil-
ities to minimize bubble-deviations over the FF natural collections is a way to make
outcome probabilities close to outcome frequencies in as many natural collections as
possible.


Additional notation will be useful: Let c index natural collections, b index the n
bubbles, and a index outcome-inverses for the m basic outcomes. Let pb be the input
probability of bubble b. Since the input measure that we construct should be microcon-
stant, we require that the probability qa = pa / pb of outcome-inverse a be the same
conditional on every bubble. Ecba will be the probability-weighted average number of
inputs from natural collection c within outcome-inverse a in bubble b, while Ecb will
be the corresponding average over an entire bubble. Letting Ccb represent the number
of inputs from natural collection c falling in bubble b, and Ccba , the number of inputs
also falling in outcome-inverse a, the bubble-deviation for a in bubble b with respect
to natural collection c is:


∣∣∣∣
Ecb − Ecba


pb


∣∣∣∣ =
∣∣∣∣∣


Ccb
pb


− Ccbaqa pb
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The quantity to be minimized by adjusting the pb’s and qa ’s is thus
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∑
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(
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22 It might be possible to allow combinations of inputs from different sources or different intervals when
the combinations are not too distant (e.g. all red versus all black) by specifying a metric over collections of
inputs (Christopher Hitchcock, personal communication).
23 Minimizing a sum of squares is minimizing with respect to a natural metric: Viewing bubble-deviations
as a distances along dimensions of a Euclidean space, the square root of the sum of squares is a common
generalization of the Pythagorean theorem, and varies monotonically with its square. That FFF mechanistic
probability constructs a measure by minimizing a sum of squares involving actual frequencies is reminiscent
of Gilboa et al.’s (2010) interpretation of probability. However, Gilboa et al.’s interpretation has different
goals, is defined in terms of a different set of actual frequencies, and does not make use of anything like
bubbly causal structure.
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This is a function of n variables pb and m variables qa , with
∑


pb and
∑


qa each
constrained to equal 1. The C ’s, which are numbers of inputs falling in certain regions,
are constants determined by the set of FF natural collections with respect to which
we want minimize probability/frequency differences. Bubble-deviations in larger nat-
ural collections should have a greater influence on the input probabilities than those
in smaller collections. This is captured here by the fact that bubble-deviations use
absolute rather than relative frequencies. Thus bubble-deviations in larger natural col-
lections will put more inputs into each bubble and outcome-inverse on average, with
correspondingly larger bubble-deviations. Whether some other weighting of natural
collections makes more sense is a question for future research.24


I don’t claim that it’s straightforward to minimize the above function analytically,
although numerical approximation might be practical if data on all relevant natural
collections were available. Section 5.5 discusses further issues concerning the episte-
mology of FFF mechanistic probability.


Nothing I’ve said implies that the input measure defined by the above minimiza-
tion will actually produce small bubble-deviations (i.e. macroperiodicity) for most of
the FF natural collections. If the natural collections vary too wildly, even minimum
bubble-deviations will be large. That would mean that the processes which produce
inputs to such devices are simply too varied in their effects to produce stable relative
frequencies (even for a device bubbly with respect to the constructed input measure).
In such a case we may seem to have some of the ingredients for mechanistic proba-
bility, but the best possible input measure isn’t good enough; FFF mechanistic probabil-
ity simply doesn’t exist here. (Cutoffs for the definition of FFF mechanistic probability
could be specified if desired; e.g. we could require that maximum bubble deviation be
no more than 0.05 in at least 95% of natural collections.)


5 FFF mechanistic probability


Here I’ll pull together the aspects of FFF mechanistic probability outlined above and
discuss consequences and potential problems of the resulting interpretation.


5.1 Summary of the interpretation


FFF Mechanistic probability exists for a particular actual causal map device D and a
specified partition of its output space into basic outcomes only if:


1. There is a large set of FF natural collections of inputs—i.e. a set containing all
and only those collections of inputs to actual devices D∗ such that
(a) The inputs are all and only those produced by a single physical device;
(b) D∗ has approximately the same input space as D25;


24 I don’t assume that there’s a single global minimum, but since bubble-deviations constrain outcome
frequencies to be generally close to outcome probabilities, any set of pb ’s and qa ’s which give rise to the
same global minimum will work.
25 Perhaps the D∗’s should be required to be similar to D in other respects as well; this is an issue for
future investigation (cf. Strevens 2010).
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(c) D∗ occurs within a large spatiotemporal region around the location and time
of D;


2. (a) D is bubbly: A bubble partition for D with a large number of bubbles exists,
such that:


(b) A microconstant input measure, constructed through minimization of the
sum of squares of bubble-deviations for all members of the set of FF natu-
ral collections, makes most of the collections macroperiodic relative to this
input space and the device’s bubble partition. (Or: Most collections generate
a small maximum bubble-deviation.)


The mechanistic probability of an outcome A is then the input probability of its overall
outcome-inverse A−1: the probability of all inputs which can cause A by the operation
of the causal map device. The inequality theorem specifies how close frequencies will
usually be to probabilities.


This proposal is preliminary, and has rough edges, some of which I’ll discuss below.
One apparent problem is the vagueness of “broad spatiotemporal region” around D,
which defines the set of FF natural collections. This problem can be mitigated by
adding the following requirement to those above:


2. (c) Moderately expanding or contracting the spatial or temporal range across
which natural collections are defined doesn’t affect whether condition 2b is
met, and doesn’t significantly change the probabilities of outcomes.


The idea is that if a significant change in outcome probabilities results from expand-
ing or contracting the “far flung” region over which the set of natural collections is
defined, then there’s something special about input frequencies in some regions rather
than others, and these differences are primary determinants of outcome frequencies.
In that case, it makes little sense to define an interpretation of probability in terms of
bubbly causal structure of D (relative to an underlying pattern of frequencies—see
below).


In summary, my proposal is that FFF mechanistic probability exists for the out-
comes of a causal map device D if and only if requirements (1) and (2) are satisfied.
Note that these requirements speak in vague terms of a “large number of bubbles”,
and “small maximum bubble deviation”. However, since the microconstancy inequal-
ity theorem specifies a precise relationship between bubble measure (constrained by
number of bubbles), bubble-deviation, and the difference between frequency and prob-
ability, choosing precise cutoffs for these values to define FFF mechanistic probability
isn’t essential. One could define a more precise version of FFF mechanistic probability
by specifying how close frequencies should be to probabilities, if desired.


5.2 Bubbles relative to natural collections


It might be argued that bubbliness can’t play any special role in distinguishing FFF
mechanistic probability from an actual frequency interpretation of probability which
averages over natural collections. For there’s a sense in which nearly every causal
map device is bubbly. Understanding why will help to motivate the phrasing of condi-
tion (2), clarify the character of FFF mechanistic probability, and show that it doesn’t
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require our earlier heuristic assumption that input spaces are provided with metrics
(Sect. 2.2).


Consider the big wheel, a heavy wheel of fortune of large diameter divided into
two semicircular regions, colored red and black. Assume that the mass and friction of
the wheel is such that many croupiers will primarily produce spins leading to a single
outcome, either red or black, depending on the croupier’s strength. Intuitively, the big
wheel doesn’t seem bubbly, since any given croupier’s spin distribution isn’t broken
up into many bubbles leading to both red and black outcomes.


However, if we drop the temporary assumption of Sect. 2.2 that bubbles are contig-
uous, we can construct a bubble-partition in the following way: Starting from each end
of the diameter separating the red and black regions, let the first bubble be composed of
the wedge extending one centimeter along the wheel’s edge into the black region, and
the wedge extending one centimeter from the other end into the red region (cf. Fig. 4).
The next bubble is similarly composed of wedges from the black and red regions
extending one centimeter in each direction, and so on for all bubbles. Each bubble is
composed of a slice of the black region and a slice of the red region, although slices
within each bubble are not adjacent. We have thus partitioned the input space into
many bubbles, i.e. subsets which contain points (velocities) leading to each outcome.
The big wheel is thus bubbly, despite the intuition that it only has two semicircular
“wedges”.26


Yet given what I’ve said about the wheel and its croupiers, if the wheel happened to
produce stable frequencies, this would be due to the luck of the wheel being spun by
a series of mainly strong or mainly weak croupiers. The big wheel’s causal structure
plays little if any role in producing stability. Merely requiring a causal map device to
be bubbly is to place no particular constraint on the causal structure of the device.


One solution is to place additional constraints on bubbles. Codifying the earlier
assumption that all portions of a bubble are contiguous would rule out the big wheel
as a bubbly device. For input spaces with at least two dimensions, we could also
exclude bizarrely shaped bubbles which are continuous only because a slender thread
in the input space connects otherwise discontinuous subsets. So far, though, I’ve only
provided a naturalistic construction of a measure on the input space. Constraints on
contiguity and shapes of bubbles would require, in addition, a naturalistic construc-
tion of a metric. (In a related context, Strevens (2003, Ch. 2) adopts a strategy of this
kind, requiring bubbles to be contiguous and “reasonably compact” (p. 56), and using,
for example, a Euclidean metric derived from real-valued physical quantities defining
input space of a device. However, this makes it difficult to apply FFF mechanistic
probability to systems whose input spaces aren’t defined by real dimensions—e.g. the
causal map device for flowering plants mentioned in Sect. 2.3.27)


However, condition (2) for FFF mechanistic probability avoids the need for a metric
by requiring (2a) that a relevant bubble-partition must be one (2b) that allows the FF
natural collections to determine an appropriate input measure. That is, (2) requires that
the device be bubbly relative to an input measure which satisfies the requirements of


26 See Strevens (2003, Sect. 2.5) for related problems and illustrations.
27 But cf. Strevens (2003, Sect. 2.42 and Ch. 4).
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(2b). The fact that for some causal map devices, most natural collections are macro-
periodic with respect to a single way of organizing the input space into bubbles seems
to show that the bubble-partition captures something systematic about the world—
something about the processes which generate the natural collections, perhaps.


I do think that in most obvious applications of FFF mechanistic probability, bubbles
will be contiguous and compact in an intuitive sense. At various points earlier in this
paper I partly depended on readers’ intuitions that this was so in order to simplify pre-
sentation. However, FFF mechanistic probability does not require that bubbles form
neat contiguous sets in a Euclidean space, and there is no need to justify a metric on
the input space. (References to bubbliness below should be understood as relative to
an actual set of FF natural collections.)


5.3 Consequences of bubbliness


Bubbliness provides much of the warrant for other aspects of the concept of FFF
mechanistic probability, including its dependence on natural collections of inputs.


It’s the bubbliness of a causal map device that buffers outcome frequencies from
much of the variation in frequencies within the FF natural collections: Many different
kinds of natural collections produce the same outcome frequencies, which are near to
outcome probabilities. Similarly, many counterfactually different natural collections
would produce the same outcome frequencies and probabilities as well. Nothing like
this last claim can be made about a simple finite frequency interpretation of probability:
Every counterfactual difference in frequency determines exactly the same difference
in probability. Best System chances can have the same property, since chances are
sometimes defined by precisely those values which frequencies happen to have. The
following argument should clarify the sense in which FFF mechanistic probability
buffers counterfactual frequency differences.28


Suppose that FFF mechanistic probability exists for a given causal map device D in
the actual world. Thus most natural collections for D are macroperiodic relative to the
input measure that results from minimization. Here are three classes of counterfactual
scenarios concerning natural collections.


1. In the alternative world, there is an input measure relative to which most natural
collections are macroperiodic, and the input measure gives outcomes the same
mechanistic probabilities as in the actual world.


2. In the alternative world, there is an input measure relative to which most natural
collections are macroperiodic, but it gives some outcomes different mechanistic
probabilities than in the actual world.


3. In the alternative world, there is no input measure which makes most natural col-
lections in the alternative world macroperiodic. Mechanistic probability for D
doesn’t exist in the alternative world.


28 The argument has similarities to arguments in statistical mechanics, e.g. in Boltzman’s explanation
of the behavior of gasses (Ruhla 1989; Sklar 1993), and to Strevens’ “perturbation argument” (Strevens
2003, §2.53). However, those arguments depend on physical assumptions and attempt to justify stronger
conclusions.
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Let us say that worlds in class 1 “preserve” the FFF mechanistic probability that exists
in the actual world, while worlds in classes (2) and (3) “break” it.


I claim that a consequence of the way that FFF mechanistic probability is defined
in terms of bubbliness is that there is a natural sense in which there are more ways
to preserve FFF mechanistic probability than to break it. Here I am individuating
“ways” to produce counterfactual scenarios not by any metrical difference such as a
difference in physical values between worlds, but simply by how many inputs must
be counterfactually transferred between one bubble and/or outcome-inverse to turn an
actual natural collection into a counterfactual counterpart of the same size. (Similar
reasoning can be used to define ways involving counterfactual additions or deletions
of inputs.) Note that finer-grained differences between natural collections don’t make
a difference to FFF mechanistic probability. There are other strategies for classifying
counterfactual differences between natural collections, but I’ll argue below that the
one used here is most often appropriate to understanding FFF mechanistic probability.


There are many ways to counterfactually preserve FFF mechanistic probability.
As long as natural collections are large enough, moving one, or two, or any small
number of inputs from any bubble to any other within a natural collection would not
significantly change bubble-deviations relative to the actual-world input measure. In
general, FFF mechanistic probability is preserved if inputs are moved around within
a natural collection in such a way that no bubble deviation is altered very much in any
bubble, but with many bubbles and a large natural collection, there are many ways to
do that. In fact, as long as there are many natural collections, even counterfactually
destroying the macroperiodicity of a single natural collection would not change the
input measure, either. (Only most natural collections must be macroperiodic.)


By contrast, breaking FFF mechanistic probability requires that many inputs be
moved to or from a few bubble/outcome-inverse combinations (“BO”s) (for class 3),
or that many inputs be moved to or from the same outcome-inverse in many bubbles
(class 2). But the number of ways of realizing scenarios 2 and 3 is constrained more by
the number of bubbles and outcome inverses than by the size of a natural collection;
for preservation, the reverse is true.


One can get a clearer sense of this difference in number of ways of preserving
and breaking FFF mechanistic probability by looking more closely at some extreme
cases. Suppose a bubble-partition has n bubbles, and consider one outcome and its
complement. For a single natural collection, there are 2n ways to interfere with mac-
roperiodicity by transferring of all of the inputs in the natural collection to a single
BO (there are 2n BOs). If this were to occur in many natural collections in the same
alternative world, FFF mechanistic probability would not be defined for the given
causal map device.


At the other extreme, the following procedure produces minimal bunching up of
inputs in BOs: Shift an input from a BO to one of the 2n − 1 other BOs. Then choose
a BO which has neither given nor received an input; this will the source of the next
gift of an input. There are 2n − 2 such BOs, and 2n − 3 BOs to which it can give
an input, avoiding BOs which have already given or received a donation. Continue
this procedure until all BOs have given or received a single input. There are (2n − 1)!
different ways of doing this—i.e. of pairing BOs so that each participates in exactly
one end of a transfer of an input. This is the number of ways that an actual natural
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collection can be altered to become a counterfactual natural collection along the lines
of the procedure.


Thus using these two simple but extreme ways of modifying an actual natural
collection to produce a counterfactual one, there are many more ways to preserve
macroperiodicity, i.e. (2n − 1)!, than ways to break it, i.e. 2n (assuming that n is
moderately large). Of course there are additional ways to alter a macroperiodic distri-
bution so that the new distribution remains macroperiodic, or to alter it so that it will
not be macroperiodic. These ways involve variations in exactly how many inputs are
transferred from or to particular BOs. Taking into account these ways of transferring
inputs, it remains true that there are more ways to preserve macroperiodicity: Compar-
ing ways of transferring inputs involving the same number of BO changes, those which
preserve macroperiodicity always involves distributing many inputs across many BOs,
while destroying macroperiodicity involves transfers of many inputs to or from fewer
distinct bubbles.


Thus breaking FFF mechanistic probability via transfers of inputs requires very
special combinations of such transfers, which are reasonably considered “larger mira-
cles” (cf. Lewis 1979). This is the sense in which it’s easy to manipulate inputs in such
a way that mechanistic probability is preserved, and difficult to manipulate inputs in
such a way that it breaks.29


Of course there may be some circumstances relative to which counterfactual input
differences which break FFF mechanistic probability could be viewed as smaller mir-
acles than those which preserve it. Replacing one robot croupier with another, or
replacing a skillful shooter who successfully biased the dice with one who biased in
a different direction might count as merely small miracles. However, such circum-
stances are very special, given that the world in which mechanistic probability exists
is one in which there are many natural collections which are macroperiodic.


The preceding is what I think can be said directly in favor of the claim that fre-
quencies generated by a system with FFF mechanistic probabilities are more than
merely accidental. However, though I see no viable way to define an interpretation of
probability directly in terms of underlying causal structures of input-producers, the
fact that there is a bubble-partition for a given causal map device, relative to which
most natural collections are macroperiodic, suggests that in our world there is some
loose systematic fact about producers of such inputs. (Bubbliness means that only a
loose systematicity is required.)


Note, now, that while it’s difficult to manipulate mechanistic probability and out-
come frequencies by altering sets of initial conditions, it’s often relatively easy manip-
ulate frequencies by altering the structure of a causal map device. Frequencies remain
stable—because it’s difficult to make them otherwise—but the values which they are
near are changed by the manipulation. (For example, it’s simpler to cheat at craps by
loading or repainting dice, if you can get away with it, than by tossing them in a spe-
cial way.) Even if the act of manipulating a causal map device’s structure indirectly
influenced devices that produce inputs (suppose a surprising wheel pattern alters a
croupier’s distribution), the argument above suggests that this influence usually won’t


29 This is why given the physical setup and the rules at craps tables, casinos don’t have to worry very much
that the customer who is the shooter will bias the dice with skillful tossing.
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break mechanistic probability. One might also manipulate a causal map device to take
away its bubbliness, but that is simply an easy way to make it a device to which
mechanistic probability doesn’t apply.


Finally, keep in mind that all of this talk about counterfactuals is part of the ratio-
nale for requiring bubbliness for FFF mechanistic probability; mechanistic probability
is constituted by—has as truthmakers—actual facts concerning collections of occur-
rences and the causal structure of a device.


5.4 Causal aspects of FFF mechanistic probability


There are some senses in which FFF mechanistic probability plays a causal role in
producing stable frequencies, but it’s important to be clear about what those roles are
and are not.


First, how can frequencies that are far flung—involving other devices perhaps dis-
tant in time and space—play role in causing frequencies for a particular device D of
interest here and now (e.g. a roulette wheel)? Well, they can’t, of course. Initial condi-
tions to devices other than D don’t cause outcomes from D. However, as suggested by
remarks in the preceding section, the far flung frequencies do provide what evidence
there is that in general, the kinds of devices which feed inputs to devices like D have a
loose kind of systematic character. So the FFF aspect of mechanistic probability does
not cause frequencies for a particular device D, but it does show something about
the causal character of frequency-production by the kind of device of which D is an
instance.


Second, the reason that this systematic character is shared only loosely by input-
producers is that D is bubbly relative to such producers (or rather, to the natural
collections which such producers produce). This is a consequence of the main argu-
ment of the preceding section. That is, the causal structure of a bubbly device D is
part of what makes it, in a world like ours, the kind of thing which easily produces
frequencies near probabilities, producing frequencies far from probabilities only in
unusual circumstances. In this sense the bubbly causal structure of a device causes
stable frequencies.


Third, FFF mechanistic probability plays a causal role in producing frequen-
cies in the sense that the stable frequencies can be manipulated relatively easily by
manipulating the causal structure of the causal map device, without changing the fact
that it produces stable frequencies, as noted in the previous section.


5.5 Epistemological considerations


5.5.1 On evidence for mechanistic probability


It should already be clear that this is an essay on the metaphysics of one kind of prob-
ability rather than a proposal about the epistemology of probability. It’s enough for
my purposes that relevant data is available in principle. The point of the proposal is to
provide an account of what it is in the world that sometimes gives rise to phenomena
we observe (and which standard statistical methods can sometimes estimate).
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However, note that FFF mechanistic probability is actually better off, epistemi-
cally, than some popular interpretations of probability. Limiting frequency theories
and some propensity theories require knowledge of possible worlds in which a kind of
trial occurs an infinite number of times. Though one could not, in practice, verify the
values of frequencies in all far flung natural collections, in order to verify Best System
chances, information about all events, past and future, might be needed. Moreover,
determining the causal structure of a causal map device and deriving a function which
minimizes the sum of squares of bubble deviations—though far from trivial—could
be much easier than determining which set of laws best satisfies various tradeoffs for
Best System chances.


More importantly, simple induction can provide some evidence that future and dis-
tant natural collections are similar to observed natural collections. It’s relatively easy
to argue that roulette, dice, and card games produce stable frequencies because of the
combination of bubbliness with the kind of input distributions produced by croupiers
and dealers. There are as a result good, though inconclusive, reasons to think that
natural collections of inputs for these devices satisfy the requirements for mechanistic
probability. (That casinos are reliably profitable is one relevant piece of data.) Jus-
tifying application of FFF mechanistic probability in science is less straightforward.
However, Strevens (2003, Ch. 4) describes strategies that could be used as a starting
point for application of FFF mechanistic probability to statistical mechanics and to
microevolutionary processes in biology, and (Abrams M, unpublished manuscript)
explores applications in social sciences.


5.5.2 On evidence from mechanistic probability


What is it that you know when you know that the mechanistic probability of outcome
A from causal map device D is r ? You don’t know with certainty that the frequency
of A among D’s next n outputs will be near r (but you didn’t expect that). However,
you do know that this is a world, or a part of a world, in which input producers for
devices like D are such that they usually produce natural collections which produce
stable frequencies near r for outcome A. Knowing nothing more, you would be jus-
tified in believing that frequencies of A will be near r in set of outcomes produced
by an arbitrarily chosen natural collection (e.g. in a large number of spins of a wheel
of fortune by a croupier). Since you know nothing about the nature of the natural
collection which is producing the frequencies you’ll observe, you should expect them
to be near r . A simple Bayesian approach could put this by saying that given your
knowledge only that the mechanistic probability of A is r for device D, your credence
that any particular natural collection c produces frequencies close to r should be quite
high, since most natural collections will do so, and you have no reason to think that
c is atypical. (Bayesian epistemologies differ, though; I won’t, for example, attempt
to work out here what objective Bayesianism (Williamson 2010) would recommend
given only knowledge of a mechanistic probability.)


What should your credence for outcome A be on a single trial of device D be, if all
that you knew was that A had mechanistic probability r ? Well, Bayesianism generally
recommends degree of belief r for A in this situation (e.g. in virtue of a Dutch book
argument (Earman 1992; Howson and Urbach 1993; Williamson 2010)). Thus if you
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have a very high degree of belief that A has frequency r , as suggested in the preceding
paragraph, most Bayesian epistemologies should recommend believing with degree r
that A will occur on a given trial.


5.6 Other issues


5.6.1 Independence


Since mechanistic probability justifies claims about frequencies without implications
concerning individual trials, it provides no sense of independence on trials. There are of
course good reasons to want independence apart from laws of large numbers, as many
claims in statistics, population genetics, etc., depend on independence assumptions.
My view is that where independence claims for mechanistic probability are justified,
these are claims about outcomes of a causal map device whose inputs are sets of occur-
rences, each of which could also be considered an input to a simpler device. That is,
independence makes sense for mechanistic probability only for devices whose input
spaces and outcome spaces are product spaces of those of simpler devices. For exam-
ple, consider the causal map device whose input space consists of pairs of consecutive
spins of a particular wheel of fortune by the same croupier, and whose outcomes are
pairs of red/black values. Under what conditions is the set of outcomes red-on-first-
spin independent of the set red-on-second-spin? Strevens (2003, Ch. 3) has provided
a detailed analysis of conditions under which bubbly causal map devices can justify
independence of probabilities for causal map devices with joint outcomes, and it turns
out that bubbliness makes it easier for such conditions to be satisfied. (The extent to
which Strevens’ arguments apply to the full range of cases to which FFF mechanistic
probability applies is a matter for future research.)


5.6.2 Reference classes


Mechanistic probability can be subject to a kind of reference class ambiguity when
one causal map device happens to be embedded in another, with both satisfying the
requirements for mechanistic probability. For example, suppose we have two wheels
of fortune with different wedge sizes. We toss a pair of dice before each spin, using
one wheel until a double-six is thrown, at which point we switch wheels until another
double-six is thrown. Is the mechanistic probability of red determined by the wheel
currently being spun, or by both wheels along with the dice? My view is that whether
the relevant device is the simple embedded one or the complex one depends on a
choice of explanandum—in this case, whether one wants to explain frequencies over
the short-term or long-term (cf. Abrams 2009b). The wheel currently being spun is
more relevant to short-term frequencies, since the dice device gives a high mechanis-
tic probability of that wheel being the one which generates frequencies over the short
term. The entire dice-plus-two-wheels system is more relevant to the longer term.
These issues clearly require fuller treatment, however, which I defer to a later work.
(Note that this strategy is not available as a response to the argument that fat chances
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can’t provide different probabilities for the same explanandum, i.e. a single outcome
(Sect. 1.2.2).)


5.6.3 Indeterminism


In most of the paper I assume that a causal map device and the sources of frequencies
in FF natural collections are deterministic. If fundamental probabilistic indeterminism
infects the internal processes in a causal map device, the device becomes one in which
each input gives rise to a distribution over outcomes. This may make the requirement
of bubbliness easier to satisfy, since a single input might give rise to all outcomes. Fre-
quencies of outcomes produced by such causal map devices will be a function of both
the indeterministic probabilities internal to the device and the factors described above
in ways that depend on the relationship between the bubble structure of the device and
the indeterministic probabilities (cf. Strevens 2003, Ch. 2; Abrams 2007, 2009a).


5.6.4 Precision


Note that even if this were a deterministic world, there would be an inherent impreci-
sion in FFF mechanistic probabilities. After all, if details of the choice of FF natural
collections could change probabilities of outcomes even by a slight, noninfinitesimal
amount, there’s a sense in which we should not view mechanistic probabilities as
precise—though they have precise values in any given world. I accept that this conclu-
sion may seem unsatisfying from the point of view of mathematical probability theory
and statistics, or to intuitions tuned to study of formal logic or fundamental physics.
My claim is that FFF mechanistic probability captures real, systematic facts about
the world even if there is some imprecision involved, and that these facts explain
frequencies relevant to scientific claims. FFF mechanistic probability is ultimately
intended to interpret probability claims in the special sciences. It’s not clear whether
the underlying complexities which special sciences generalize over can support the
kind of mathematically elegant realism appropriate in some parts of physics. Workers
in the special sciences can nevertheless model mechanistic probabilities as precise,
and even as countably additive. (FFF mechanistic probability itself, as defined here,
supports only finite additivity.)


6 Conclusion


In this paper I sketched a new interpretation of probability, “FFF mechanistic proba-
bility”. More generally, I call an interpretation of probability which is based on bubbly
causal structure a “mechanistic probability” interpretation. FFF Mechanistic proba-
bility exists for a particular causal map device and a particular partition of the output
space into basic outcomes iff:


There is a bubble partition of the device’s input space, such that many “far flung”
large natural collections of inputs together determine an input measure which
makes most of the collections macroperiodic (and such that moderately signif-
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icant changes in the spatiotemporal range across which natural collections are
defined don’t significantly affect outcome probabilities).


FFF mechanistic probability applies most clearly to common games of chance such
as roulette, dice games, card games, and older, mechanical one-armed bandits.30


I believe that it will apply in statistical mechanics, and in some contexts in the social
sciences and biological sciences (cf. Strevens 2003; Strevens 2005; Abrams M, unpub-
lished manuscript).


One can’t assume that the requirements for FFF mechanistic probability are auto-
matically met whenever probabilities are usefully postulated in certain scientific or
other contexts, as in some interpretations of probability (Sober 2005; Hoefer 2007;
Glynn 2010). Instead, it must be argued that conditions for application of FFF mech-
anistic probability are satisfied.


FFF mechanistic probability is a kind of actual frequency theory in that it depends
on actual frequencies in many natural collections. However, it avoids the worst draw-
backs of simple actual frequency theories (Hájek 1996): FFF mechanistic probabilities
need not equal outcome frequencies and needn’t be restricted to rational values. While
counterfactual frequency differences can generate counterfactual differences in FFF
mechanistic probabilities, this is not the significant problem which besets simple fre-
quency theories and some Best System theories: As I’ve argued, variation in FFF
mechanistic probability generated by variation in frequencies will usually be small.


Moreover, FFF mechanistic probabilities are robust in the sense that it’s difficult to
alter frequencies in such a way as to alter mechanistic probabilities to any significant
degree. This is the first, and central sense in which FFF mechanistic probability plays
a causal role in producing stable outcome frequencies: It buffers against variation in
input frequencies, as it were compressing that variation into lesser variation in outcome
frequencies. The second, related sense is that it can be relatively easy to manipulate FFF
mechanistic probabilities by manipulating the causal structure of a causal map device.


Though FFF mechanistic probability is objective (since it’s constituted by objec-
tive facts) and plays a causal role in producing frequencies, there is no sense in which
mechanistic probabilities should be seen as probabilities of outcomes of single trials.
Any objective probability of an outcome of a single trial is presumably the result of
other factors, such as the particular initial conditions fed into the causal map device
on that trial.


Now, after close to a century of work on interpretations of probability with lim-
ited success, despite important developments along the way, one might ask whether
an interpretation of probability suitable to special sciences might need to capture, in
a systematic way, some of the messiness of the world which special sciences can
approximate with models. FFF mechanistic probability is an attempt to do so.


30 See Keller (1986), Diaconis (1998), Strevens (2003), Poincaré (1903, 1908, 1912), Hopf (1934), and
references to work on the method of arbitrary functions in von Plato (1994).
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Appendix


A. Microconstancy inequality theorem


The microconstancy inequality theorem proved below plays a significant role in the
rest of the paper, in that (a) the theorem makes precise the degree to which frequencies
are constrained to be near probabilities, and (b) does so without assuming the existence
of a metric on the input space. If an individual wants to specify particular boundaries
for a particular purpose—e.g. one which requires that frequencies be very close to
probabilities, the theorem makes it clear what the effect of choosing those boundaries
will be.31


A.1 Theorem


The theorem described below shows that the maximum of bubble-deviations (over all
bubbles) for a distribution of inputs constrains the difference between the probabil-
ity and the frequency of an outcome (e.g. for a set of spins by one croupier over a
particular interval of time). See Sect. 3.1 for notation not defined below.


The expectations Ea , Eb , etc. are (conditional) expectations of absolute frequen-
cies. In the end what will matter are relative frequencies, obtainable from absolute
frequencies by dividing by N , the total number in a distribution of inputs. Thus let
S be the maximum of bubble-deviations in units of relative frequency, so S N is the
maximum for bubble-deviations in units of absolute frequencies. That is, let


S ≥ 1
N


∣∣∣∣
Eb − Ea


pb


∣∣∣∣ , (1)


for a given outcome A and for all bubbles b in a bubble partition of the input space of
a causal map device. (To say that S is small will then be to say that the distribution is
macroperiodic.)


The following theorem, proved below, says that if an input probability measure
is microconstant, then the difference between the relative frequency of an outcome
and its assigned input probability will be less than the product of S and a sum of the
squares of each bubble’s probability.


Theorem 1 (inequality theorem) Given a causal map device, a bubble-partition, and
a probability measure which is microconstant for A−1:
Let S be the maximum of bubble-deviations in units of relative frequency for A−1. Let
π be the maximum of measures pb for all n bubbles b. Then the relative frequency


31 Engel (1992) proves theorems which can be interpreted as providing constraints on frequencies by proper-
ties of partitions of an input space. An interesting question for future research is whether the microconstancy
inequality theorem can be derived from Engels’ theorems, at least in certain cases. Even if the inequality
theorem can be derived from more general theorems, its proof here uses only simple algebra and probability
theory, and so is accessible to a broad audience. Note also that Engel’s focus is on physical systems, in
which the real-valued dimensions and measures defined with respect to Lebesgue measure are natural. The
inequality theorem by contrast is applicable to any input space for which a finite measure is appropriate.
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Fig. 5 Initial condition
distribution within a bubble. See
text for explanation
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R( A) of A differs from the probability P( A) of A by less than n Sπ 2, and more pre-
cisely by less than S


∑
b p


2
b , where


∑
b is the sum over all bubbles in the partition.


That is,


n Sπ 2 ≥ S
∑


b


p2b ≥ |P( A) − R( A)|. (2)


A.2 Proof


Figure 5 is an enhanced version of Fig. 3a. The areas Ca and Ca of the two boxes
with solid borders in Fig. 5 represent the absolute frequencies of inputs in each of the


regions A−1 ∩ b and A−1 ∩ b respectively. Note that Ca = pa Ea , i.e. Ea = Ca / pa ;
Ca and Ea are similarly related.


32 Cb, the total number of inputs to b, is represented
by the area under the dashed line and is equal to pb Eb. (C


=
a and C


+
a will be defined


below.)
By the definition of S, i.e. (1), we have S N pb ≥ |Eb − Ea |, and


S N p2b ≥ pa |Eb − Ea |, (3)


since pb ≥ pa .
Frequency and measure would be equal if the distribution were constant over each


bubble, as Strevens (2003, 2.3, p. 136) shows. However, whether or not the distribu-
tion is constant over a given bubble b, we can compare the actual number of inputs
in a with the number of inputs that would have to obtain in a if relative frequencies
within b did equal relative measures of pa and pa . That is, we compare the number
Ca of actual inputs to a with those that would occur if the conditional expectation
over both a and a were equal to the actual conditional expectation Eb for the entire
bubble. Thus we define the quantities C =a = pa Eb and C +a = C =a − Ca . (In Fig. 5, C +a
is negative, indicated by shading; the corresponding value for Ca would be positive.)


32 If this characterization of the conditional expectations Ea (Ea , etc.) seems odd at all, think of Ea as a
sum of numbers of inputs at each value within a, all divided by pa = P( A−1 ∩ b) since this is a conditional
expectation. Or think of Ea as the sum of the product of number of inputs in small regions with the regions’
measures, all divided by pa .
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Thus C +a = pa Eb − pa Ea , so from (3) we have


S N p2b ≥ |C =a − Ca | =
∣∣∣∣Cb


C =a
Cb


− Ca
∣∣∣∣ .


However, as Fig. 5 illustrates, C =a /Cb is equal to pa / pb since C =a = pa Eb and
Cb = pb Eb. Note that pa / pb = P( A−1|b) since pa = P( A−1 ∩ b), so


S N p2b ≥
∣∣∣CbP( A−1|b) − Ca


∣∣∣ .


If we now sum over all bubbles b, we have


S N
∑


b


p2b ≥
∑


b


|CbP( A−1|b) − Ca | ≥
∣∣∣∣∣
∑


b


CbP( A
−1|b) −


∑


b


Ca


∣∣∣∣∣
.


On the assumption that the bubble partition is microconstant with respect to the input
measure, the probability of A−1 conditional on every bubble is the same, and is equal
to P( A−1). Thus since Ca = C A−1∩b,


S N
∑


b


p2b ≥
∣∣∣∣∣
P( A−1)


∑


b


Cb −
∑


b


C A−1∩b


∣∣∣∣∣
.


But
∑


b Cb is just the sum of numbers of inputs to all bubbles, i.e. the total number of
inputs of any kind, N ; and


∑
b C A−1∩b is the total number of inputs in A


−1 across the
entire input space. Dividing by N , we get


S
∑


b


p2b ≥ |P( A−1) − R( A−1)| = |P( A) − R( A)|,


where R( A−1) is the relative frequency of inputs leading to A, and the probabil-
ity P( A) and relative frequency R( A) of A are simply the probability and relative
frequency of inputs which cause instances of A. Finally, if π is the maximum of bub-
bles’ measures (cf. Strevens (2003) “constant ratio index”) and n is the number of
bubbles,


n Sπ 2 = S
∑


b


π
2 ≥ S


∑


b


p2b ≥ |P( A) − R( A)|,


which is what the theorem states as (2).
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