TABLE 8.15	Expected	Time and	Variance	Calculations

Activity	Optimistic Time	Most Likely Time	Pessimis- tic Time	Expected Time	Variance
A	3	3	5	3.33	0.11
В	3	4	5	4.00	0.11
С	4	5	7	5.17	0.25
D	2	2	4	2.33	0.11
Е	1	2	2	1.83	0.03
F	2	3	6	3.33	0.44
G	1	1	4	1.50	0.25

3. Using the NORMDIST function in Excel or the normal distribution table in the Appendix, we can find the probability that the project will be completed in 15 hours or less to be 0.9484.

PROBLEMS

1. Table 8.16 shows the activities, durations, and precedence relationships for a project.

	Activity Times and		
TABLE 8.16	Immediate Predecessors		

Activity	Duration (days)	Immediate Predecessor	
P	3	None	
Q	5	P	
R	4	P	
S	2	Q, R	
Т	6	S	

- a. Construct an activity on node (AON) network for this project.
- b. Calculate the length of each project path and find how long it will take to complete the project.
- c. Identify the project critical path and critical activities.

2. Table 8.17 shows the normal time, crash time, and crash costs for the project described in Table 8.16 (Problem 1).

	Activity Times and
TABLE 8.17	4.

Activity	Normal Duration (days)	Crash Duration (days)	Crash Cost (per day)	
P	3	2	\$5,000	
Q	5	3	\$2,000	
R	4	4		
S	2	2		
Т	6	4	\$1,500	

- a. Based on the information provided in Table 8.17, develop a cost and time tradeoff table.
- b. If an additional \$10,000 can be spent, what will be the new project duration?