
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

The grAde
[image: profile]
khalid alkhalid
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

31313.pdf

Home>Computer Science homework help>The grAde

CS 111 - Homework 5 p. 1

CS 111 - Homework 5

Deadline
11:59 pm on Friday, February 24, 2017

Purpose
To practice thinking about and using lists, and to provide more practice using the design recipe to design and
write functions, including functions involving random and lists.

How to submit
Each time you would like to submit your work:

• save your current Definitions window contents in a file with the name 111hw5.rkt

• transfer/copy that file to a directory on nrs-labs.humboldt.edu (preferably in a folder/directory
named 111hw5)

• Now that your file is on nrs-labs.humboldt.edu, you need to log onto nrs-labs.humboldt.edu using ssh, so
you can submit your file to me.

• WHILE you are logged onto nrs-labs:

– IF you saved your file in a folder, use cd to change to the folder/directory where you saved it -- for
example, if you saved it in the folder 111hw5, then you would go to that directory by saying:
cd 111hw5

– use the ls command to make sure your 111hw5.rkt file is really there:

ls

– type the command:

~st10/111submit

...and when asked, enter a homework number of 5

...and when asked, enter y, you do want to submit all files with an appropriate suffix (I don't mind
getting some extra files, as long as I also get 111hw5.rkt; I'd rather receive too many files than too
few due to typos.)

...make sure to carefully check the list of files submitted, and make SURE it lists 111hw5.rkt as
having been submitted! (The most common error is to try to run ~st10/111submit while in a
different directory than where your files are...)

Important notes
• Please note that only SOME, not all, of this homework's problems involve lists.

• NOTE: it is usually fine and often encouraged if you would like to write one or more helper functions to
help you write a homework problem's required functions.

– HOWEVER -- whenever you do so, EACH function you define SHOULD follow all of the design
recipe steps: first write its signature, then its purpose statement, then its function header, then its
tests/check- expressions, then replace its ... body with an appropriate expression)

CS 111 - Homework 5 p. 2

• Remember: Signatures and purpose statements are ONLY required for function definitions -- you do NOT
write them for named constants or for non-function-definition compound expressions.

• You are expected to follow the Design Recipe for all functions that you design/define. So, each function
is expected to include:

– a signature comment, including a nicely-descriptive name of the function, the types of expressions it
expects, and the type of expression it returns. This should be written as discussed in class (and you can
find examples in the posted in-class examples). For example,
; signature: rect-area: number number -> number

– a purpose statement comment, describing what the function expects and describing what it returns.
For example,
; purpose: expects the length and width of a rectangle,
; and returns the area of that rectangle

– [following the design recipe, you will be writing the function header next; note that you don't need to
write it twice. Follow the function header with a body of ... at this stage, and replace that ... with
its body later, at the appropriate step in the design recipe.]

– tests/check- expressions expressing the specific examples that you write BEFORE writing your
function body. (These may be placed before or after your actual function, but you are expected to
create these BEFORE writing the function body. I'll have no way of knowing if you really write these
in the correct order, but note that I won't answer questions about your function body without seeing
your examples written as check- expressions first...) For example,
(check-expect (rect-area 3 4)
 12)
(check-expect (rect-area 10 5)
 50)

– How many check- expressions should you have? Remember, the basic rules of thumb are:

* you need a test/check- expression for each "case" or category of data that may occur, AS
WELL AS one for each "boundary" if intervals are involved, and you can always add more if you'd
like!

* if there is only one category of data, you should have at least two tests/check- expressions, for
more-robust error-checking of your function.

* IF you have a function involving random in such a way that one or more of the needed
check- expressions does not seem possible, you should handle this as we will demonstrate for
function draw-images-randomly in Week 6 Lecture 1 -- for each such needed test, put a string
DESCRIBING what a specific example call should do, and follow it by that example call (so its
result will appear under this string in the Interactions window when this is run).

For example:
"======================================"

"I expect to see a scene with a red circle, a green star,"

" and a purple star in random locations"

"======================================"

CS 111 - Homework 5 p. 3

(draw-images-randomly

 (cons (circle 30 "solid" "red")

 (cons (star 40 "solid" "green")

 (cons (star 50 "solid" "purple")

 empty))))

* OR, you can put the failing check- expression, especially if looking at the not-matching actual
and expected values nevertheless lets you tell if, except for the random part, your function really did
work;

– [and, of course, your function definition itself!]

– You may include as many additional calls or tests of your function as you would like after its definition.

• You should use blank lines to separate your answers for the different parts of the homework problems. If
you would like to add comments noting which part each answer is for, that is fine, too!

• Because the design recipe is so important, you will receive significant credit for the signature, purpose,
header, and tests/check-expects portions of your functions. Typically you'll get at least half-credit for a
correct signature, purpose, header, and examples/check-expects, even if your function body is not correct
(and, you'll typically lose at least half-credit if you omit these or do them poorly, even if your function
body is correct).

Problem 1
Start up DrRacket, (if necessary) setting the language to How To Design Programs - Beginning Student
level, and adding the HTDP/2e versions of the image and universe teachpacks by putting these lines at the
beginning of your Definitions window:
(require 2htdp/image)
(require 2htdp/universe)

Put a blank line, and then type in:

• a comment-line containing your name,

• followed by a comment-line containing CS 111 - HW 5,

• followed by a comment-line giving the date you last modified this homework,

• followed by a comment-line with no other text in it --- for example:

; type in YOUR name
; CS 111 - HW 5
; last modified: 2017-02-18
;

Below this, after a blank line, now type the comment lines:
;
; Problem 1
;

The main purpose of this problem is to provide you with more practice writing expressions involving lists.
You are NOT writing any new functions for this problem!

CS 111 - Homework 5 p. 4

1 part a
• Paste or type in the comment containing the data definition for a Racket list. (It is OK if you do not also

copy over the data definition for Anything...)

• Paste or type in the comment containing the TEMPLATE for a function that "walks through" a list

– (note that BOTH of the above are conveniently located in 111lab05-reminders.rkt, available
from the CS 111 public course web site under "In-class Examples"...)

• Decide on a theme/topic, and define a named constant, with an appropriate, descriptive name, whose value
is a list of at least FIVE things related to that theme/topic.

– For this part, list abbreviations will not be accepted.

1 part b
Now, USING your named constant list:

• Write an expression whose value is the first thing in your named constant list.

• Write an expression whose value is the list of all BUT the first thing in your named constant list.

• Write an expression whose value is JUST the SECOND thing in your named constant list.

• Write an expression whose value is the list of all BUT the first THREE things in your named constant
list.

Problem 2
Next, in your definitions window, type the comment lines:
;
; Problem 2
;
Not all functions involving lists are necessarily recursive -- (usually they are recursive if you need to "visit"
each list element or "walk through" the whole list).

Consider: what if, as part of a problem, you find yourself frequently wanting to grab JUST the fourth element
in a given list? You might decide to write a helper function get-fourth that expects a list, and returns the
fourth element in that list.

What should happen if some misinformed user calls get-fourth with a list of fewer than 4 elements? It is
decided that, for this function's particular purposes, that this function should simply return #false if called
with a list containing fewer than 4 elements. (Hint: remember that BSL Racket has a function, length, that
expects a list and returns the number of elements in that list.)

Using the design recipe, design and write this function get-fourth.

Problem 3
Next, in your definitions window, type the comment lines:
;
; Problem 3
;
This function does NOT involve lists at all. It is here to "play" with random, and to provide a function
we'll use on a later problem.

CS 111 - Homework 5 p. 5

3 part a
We will try out Racket's random function in Week 6 Lecture 1 -- it expects one number argument, an
integer, and returns a pseudo-random number (which does happen to be an integer) in [0, given integer).

One could use this to create random colors! make-color expects a red value, green value, and blue value,
each in [0, 256):
(make-color (random 256) (random 256) (random 256))

Write two expressions of type image that use the above expression for their color argument -- you should
(quite likely) see two different-colored images resulting in the Interactions window (and they'll (quite likely)
be different each time you click run.)

3 part b
NOTE: Problems 3 part b, 5 and 6 are involving star outlines. IF YOU WISH, you may instead
SUBSTITUTE another non-circle shape's outline of your choice, changing the functions' (and other
associated items') names to reflect your shape choice.
I decide that I would like a little function to simply return a random-colored star outline image of a specified
size (the distance between its points given in pixels).

Using the design recipe, design and write a function random-star that expects a desired distance between
its points given in pixels, and returns a star outline image of that size and of a random color.

Because this uses random, remember to write your tests/examples as described in the Important Notes
section above (as we will for the non-empty test for the to-be-posted Week 6 Lecture 1 example draw-
images-randomly).

Problem 4
Next, in your definitions window, type the comment lines:
;
; Problem 4
;

4 part a
We want to work with some lists of strings. So, develop a data definition comment for a StringList, (in
the style of NumberList), and then ALSO develop a comment containing a TEMPLATE for a function
"walking through" a StringList.

• (note that the NumberList data definition, and the template for a function "walking through" a
NumberList, are conveniently located in 111lab05-reminders.rkt, available from the CS 111
public course web site under "In-class Examples"...)

4 part b
Following the design recipe, design and write a function exclaim-list that expects a list of strings, and it
returns a new list of strings in which !?! has been added to the end of every string in the given list of
strings. That is, if this function has as its argument a list of strings containing "Hey", "Oh my!", and
"mooo", then it would return a new list of strings containing "Hey!?!", "Oh my!!?!", and
"mooo!?!". (And, if called with the empty list as its argument, this function should simply return an empty
list.)

CS 111 - Homework 5 p. 6

Problem 5
NOTE: Problems 3 part b, 5 and 6 are involving star outlines. IF YOU WISH, you may instead
SUBSTITUTE another non-circle shape's outline of your choice, changing the functions' (and other
associated items') names to reflect your shape choice.
Next, in your definitions window, type the comment lines:
;
; Problem 5
;

5 part a
We want to work with some lists of numbers. So, paste or type in the data definition comment for a
NumberList, and then paste or type in the comment containing the TEMPLATE for a function that "walks
through" a NumberList.

• (note that BOTH of the above are conveniently located in 111lab05-reminders.rkt, available from
the CS 111 public course web site under "In-class Examples"...)

5 part b
Consider a list of numbers, in which each number represents the size of a star (the distance between its points
in pixels).

Using the design recipe, develop a function many-stars, which expects a list of numbers representing star
sizes, and returns a scene containing star outlines with those sizes but of random colors, each placed in the
center of the scene.

You are expected to appropriately use Problem 3 part b's random-star function in your many-stars
function.

Because this uses random, remember to write your non-empty-list tests/examples as described in the
Important Notes section above (as we will for the non-empty test for the to-be-posted Week 6 Lecture 1
example draw-images-randomly). (You can write a proper check-expect for your empty list
example call!)

5 part c
Define a named constant EX-STAR-SIZE-LIST which is a list containing at least 6 different star sizes,
each of which is considerably smaller than whatever WIDTH and HEIGHT constants you are using for this
homework's scenes.

Also copy over the function add1-list from the Week 5 Lab posted examples (be sure to include its
signature, purpose, and tests, too).

Finally, write an expression calling add1-list with EX-STAR-SIZE-LIST as an argument.

5 part d
Write a big-bang expression whose initial world value is your EX-STAR-SIZE-LIST, whose on-tick
expression uses add1-list and whose to-draw expression uses your function many-stars.

What do you see when you run this? Describe what you see in a comment after your big-bang expression.

CS 111 - Homework 5 p. 7

Problem 6
NOTE: Problems 3 part b, 5 and 6 are involving star outlines. IF YOU WISH, you may instead
SUBSTITUTE another non-circle shape's outline of your choice, changing the functions' (and other
associated items') names to reflect your shape choice.
Next, in your definitions window, type the comment lines:
;
; Problem 6
;
Consider: I'd like to be able to push the up-arrow key to add a new star size to the beginning of my world's
list of star sizes, and I'd like to be able to push the down-arrow key to remove the first star sizes from my
worlds' list of star sizes (if the list isn't already empty, of course).

OPTIONALLY, if you'd like any other keystrokes to do something to your list of star sizes, you may add
code to do this, also.

6 part a
Using the design recipe, develop a keystroke handler update-star-size-list that expects a list of
star sizes and a string representing a keystroke, and

• if that keystroke is "up" for the up-arrow, it returns a new list of star sizes with the value 20 added as the
new first element to those star sizes already there, and

• if that keystroke is "down" for the down-arrow, IF the star sizes list is not empty, it returns a new list of
star sizes with the first radius removed (otherwise it returns the empty list)

• (if you decided to add any additional keystroke actions, you'll implement those)

• (for any other keystroke, it returns the given star sizes list, unchanged).

HINT: a cond branch's result-expression CAN itself be another cond expression...! But if you don't care for
that, you can always write a helper function to help avoid that...

6 part b
Write a big-bang expression whose initial world value is your EX-STAR-SIZE-LIST, whose on-tick
expression uses add1-list, whose to-draw expression uses your function many-stars, and whose
on-key expression uses your function update-star-size-list.

BONUS PROBLEM 1 (up to 10 points)
If you choose to try this bonus problem, in your definitions window, type the comment lines:
;
; Bonus Problem 1
;
Consider the concept of a dot product of two vectors:

Vector-a = (a1 a2 ... aN)

Vector-b = (b1 b2 ... bN)

The dot-product of Vector-a and Vector-b is, then,

(a1 * b1) + (a2 * b2) + ... + (aN * bN)

CS 111 - Homework 5 p. 8

And what, really, is a vector but a list of numbers?

Using the design recipe, design a function dot-product that expects two vectors of the same size,
expressed as two lists of numbers of the same length, and returns the dot product of those two vectors.

NOTE #1: assume that the dot product of two empty vectors is 0.

NOTE #2: for our purposes in this bonus problem, you may ASSUME the two argument lists indeed are the
same length.

BONUS PROBLEM 2 (up to 20 points)
If you choose to try this bonus problem, in your definitions window, type the comment lines:
;
; Bonus Problem 2
;

Bonus 2 part a
Decide on a list of some type that you'd like to use as a world. It can be as simple as a list of numbers
(representing anything BUT star sizes -- measures for other non-circle shapes are fair game!), or a list of
colors, or a list of images, or a list of strings, etc.

EITHER:

• IF you are not using a list of numbers or strings, write a data definition comment for a list containing just
the type you have chosen, and then also a comment containing a TEMPLATE for a function doing
something with a whole instance of such a list.

• IF you are using a list of numbers or strings, write a comment saying, in this world, what the numbers or
strings in those lists will be representing.

THEN, define a named constant whose value is an example of a list of the type you have chosen.

Bonus 2 part b
What will happen to your world list as the clock ticks? Will nothing happen, or will something get bigger
(like the star sizes in the list of star sizes in preceding problems), or will something get smaller, or will
something be added to the list, or will something be removed from the list, or will something random
happen? It is up to you, and you may choose.

Use the design recipe to design the function whose name you will use in big-bang's on-tick expression
to have the chosen effect on your world on each clock tick. (Remember, it must expect a list of whatever type
you decided in Bonus 2 part a, and return a list of whatever type you decided in Bonus 2 part a.)

Bonus 2 part c
How should your world be shown in a scene at each clock tick? Anything but a list of images being put in
random locations or a list of star sizes being used to draw concentric star outlines is fair game, although
variations on either of those is acceptable. (A list of images could be placed in some way other than randomly
-- they could be placed across the bottom of a scene, for example. Or, a list of star sizes could be used to
create stars that aren't all in the center of a scene.) You could place different shapes based on numeric
measures, or place shapes or text-images whose colors are those from a list of colors, or text-strings based on
a list of strings, etc.

Use the design recipe to design the function whose name you will use in big-bang's to-draw expression
to draw a scene based on your world on each clock tick. (Remember, it must expect a list of whatever type

CS 111 - Homework 5 p. 9

you decided in Bonus 2 part a, and return a scene.)

Bonus 2 part d
What keystrokes may be used to modify your world? Decide on at least 3 keys that can be typed to modify
your world, and any 3 keys are fair game (yes, even "up" and "down" along with at least one other key). And,
for each of those keys, decide on how your world should be changed as a result. Will you add something to
the beginning of the world-list when a certain key is typed? Will you remove the first element from the
world-list? Will you change each element in the world-list in some way? As long as your at-least-3 keys each
do something at least a little different, and each do something noticeable to your world, that is acceptable.
(Any other key should leave the world-list unchanged.)

Then, use the design recipe to design the function whose name you will use in big-bang's on-key
expression to change your world when one of your specified keys is typed. (Remember, it must expect a list
of whatever type you decided in Bonus 2 part a and a string representing a keystroke, and it must return a list
of whatever type your decided in Bonus 2 part a.)

Bonus 2 part e
Write a big-bang expression whose initial world value is your constant from Bonus 2 part a, whose on-
tick expression uses your function from Bonus 2 part b, whose to-draw expression uses your function
from Bonus 2 part c, and whose on-key expression uses your function from Bonus 2 part d.

(Do you want to include additional big-bang clauses? If so, feel free to do so!)

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

