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Digital Design and Computer Architecture, 2nd Edition


Chapter 8


David Money Harris and Sarah L. Harris
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Chapter 8 :: Topics


• Introduction


• Memory System Performance 
Analysis


• Caches


• Virtual Memory


• Memory-Mapped I/O


• Summary
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Processor Memory
Address


MemWrite


WriteData


ReadData


WE


CLKCLK


• Computer performance depends on:
– Processor performance


– Memory system performance


Memory Interface


Introduction
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In prior chapters, assumed access memory in 1 clock 
cycle – but hasn’t been true since the 1980’s


Processor-Memory Gap
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• Make memory system appear as fast as 
processor


• Use hierarchy of memories


• Ideal memory:
– Fast


– Cheap (inexpensive)


– Large (capacity)


But can only choose two!


Memory System Challenge
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Memory Hierarchy


Technology Price / GB
Access


Time (ns)


Bandwidth


(GB/s)


Cache


Main Memory


Virtual Memory


Capacity


S
p
e
e
d


SRAM $10,000 1


DRAM $10 10 - 50


SSD $1 100,000


25+


10


0.5


0.1HDD $0.1 10,000,000
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Exploit locality to make memory accesses fast


• Temporal Locality:
– Locality in time


– If data used recently, likely to use it again soon


– How to exploit: keep recently accessed data in higher 
levels of memory hierarchy


• Spatial Locality:
– Locality in space


– If data used recently, likely to use nearby data soon


– How to exploit: when access data, bring nearby data 
into higher levels of memory hierarchy too


Locality
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• Hit: data found in that level of memory hierarchy


• Miss: data not found (must go to next level)


Hit Rate = # hits / # memory accesses


= 1 – Miss Rate


Miss Rate = # misses / # memory accesses


= 1 – Hit Rate


• Average memory access time (AMAT): average time 
for processor to access data


AMAT = tcache + MRcache[tMM + MRMM(tVM)]


Memory Performance
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• A program has 2,000 loads and stores


• 1,250 of these data values in cache


• Rest supplied by other levels of memory 
hierarchy


• What are the hit and miss rates for the cache?


Memory Performance Example 1
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• A program has 2,000 loads and stores


• 1,250 of these data values in cache


• Rest supplied by other levels of memory 
hierarchy


• What are the hit and miss rates for the cache?


Hit Rate = 1250/2000 = 0.625


Miss Rate = 750/2000 = 0.375 = 1 – Hit Rate


Memory Performance Example 1
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• Suppose processor has 2 levels of hierarchy: 
cache and main memory


• tcache = 1 cycle, tMM = 100 cycles


• What is the AMAT of the program from 
Example 1?


Memory Performance Example 2
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• Suppose processor has 2 levels of hierarchy: 
cache and main memory


• tcache = 1 cycle, tMM = 100 cycles


• What is the AMAT of the program from 
Example 1?


AMAT = tcache + MRcache(tMM)


= [1 + 0.375(100)] cycles


= 38.5 cycles


Memory Performance Example 2
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• Amdahl’s Law: the 
effort spent increasing the 
performance of a 
subsystem is wasted 
unless the subsystem 
affects a large percentage 
of overall performance


• Co-founded 3 companies, 
including one called 
Amdahl Corporation in 
1970


Gene Amdahl, 1922-
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• Highest level in memory hierarchy


• Fast (typically ~ 1 cycle access time)


• Ideally supplies most data to processor


• Usually holds most recently accessed data


Cache
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• What data is held in the cache?


• How is data found?


• What data is replaced?


Focus on data loads, but stores follow same principles


Cache Design Questions
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• Ideally, cache anticipates needed data and 
puts it in cache


• But impossible to predict future


• Use past to predict future – temporal and 
spatial locality:
– Temporal locality: copy newly accessed data 


into cache


– Spatial locality: copy neighboring data into 
cache too


What data is held in the cache?
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• Capacity (C): 
– number of data bytes in cache


• Block size (b): 
– bytes of data brought into cache at once


• Number of blocks (B = C/b): 
– number of blocks in cache: B = C/b


• Degree of associativity (N): 
– number of blocks in a set


• Number of sets (S = B/N): 
– each memory address maps to exactly one cache set 


Cache Terminology
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• Cache organized into S sets


• Each memory address maps to exactly one set


• Caches categorized by # of blocks in a set:


– Direct mapped: 1 block per set


– N-way set associative: N blocks per set


– Fully associative: all cache blocks in 1 set


• Examine each organization for a cache with:
– Capacity (C = 8 words)


– Block size (b = 1 word)


– So, number of blocks (B = 8)


How is data found?
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• C = 8 words (capacity)


• b = 1 word (block size)


• So, B = 8 (# of blocks)


Ridiculously small, but will illustrate organizations


Example Cache Parameters








Chapter 8 <20> 


7 (111)


00...00010000


230 Word Main Memory


mem[0x00...00]


mem[0x00...04]


mem[0x00...08]


mem[0x00...0C]


mem[0x00...10]


mem[0x00...14]


mem[0x00...18]


mem[0x00..1C]


mem[0x00..20]


mem[0x00...24]


mem[0xFF...E0]


mem[0xFF...E4]


mem[0xFF...E8]


mem[0xFF...EC]


mem[0xFF...F0]


mem[0xFF...F4]


mem[0xFF...F8]


mem[0xFF...FC]


23 Word Cache


Set Number


Address


00...00000000


00...00000100


00...00001000


00...00001100


00...00010100


00...00011000


00...00011100


00...00100000


00...00100100


11...11110000


11...11100000


11...11100100


11...11101000


11...11101100


11...11110100


11...11111000


11...11111100


6 (110)


5 (101)


4 (100)


3 (011)


2 (010)


1 (001)


0 (000)


Direct Mapped Cache
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DataTag


00
Tag Set


Byte


Offset
Memory


Address


DataHit


V


=


27 3


27 32


8-entry x


(1+27+32)-bit


SRAM


Direct Mapped Cache Hardware
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# MIPS assembly code


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0xC($0)


lw $t3, 0x8($0)


addi $t0, $t0, -1


j    loop


done:


DataTagV


00...001 mem[0x00...04]


0


0


0


0


0


00
Tag Set


Byte


Offset
Memory


Address


V
3


00100...00


1


00...00


00...00


1


mem[0x00...0C]


mem[0x00...08]


Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)


Miss Rate = ?


Direct Mapped Cache Performance
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# MIPS assembly code


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0xC($0)


lw $t3, 0x8($0)


addi $t0, $t0, -1


j    loop


done:


DataTagV


00...001 mem[0x00...04]


0


0


0


0


0


00
Tag Set


Byte


Offset
Memory


Address


V
3


00100...00


1


00...00


00...00


1


mem[0x00...0C]


mem[0x00...08]


Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)


Miss Rate = 3/15


= 20%


Temporal Locality


Compulsory Misses


Direct Mapped Cache Performance
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# MIPS assembly code


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0x24($0)


addi $t0, $t0, -1


j    loop


done:


DataTagV


00...001
mem[0x00...04]


0


0


0


0


0


00
Tag Set


Byte


Offset
Memory


Address


V
3


00100...01


0


0


Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)


mem[0x00...24]


Miss Rate = ?


Direct Mapped Cache: Conflict
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# MIPS assembly code


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0x24($0)


addi $t0, $t0, -1


j    loop


done:


DataTagV


00...001
mem[0x00...04]


0


0


0


0


0


00
Tag Set


Byte


Offset
Memory


Address


V
3


00100...01


0


0


Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)


mem[0x00...24]


Miss Rate = 10/10


= 100%


Conflict Misses


Direct Mapped Cache: Conflict
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DataTag


Tag Set


Byte


Offset
Memory


Address


Data


Hit
1


V


=


01


00


32 32


32


DataTagV


=


Hit
1Hit


0


Hit


28 2


28 28


Way 1 Way 0


N-Way Set Associative Cache
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# MIPS assembly code


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0x24($0)


addi $t0, $t0, -1


j    loop


done:


DataTagV DataTagV


0 0


0


0


0


0


0


0


Way 1 Way 0


Set 3
Set 2
Set 1
Set 0


Miss Rate = ?


N-Way Set Associative Performance
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# MIPS assembly code


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0x24($0)


addi $t0, $t0, -1


j    loop


done:


DataTagV DataTagV


00...001 mem[0x00...04]00...10 1mem[0x00...24]


0


0


0


0


0


0


Way 1 Way 0


Set 3
Set 2
Set 1
Set 0


Miss Rate = 2/10 


= 20%


Associativity reduces


conflict misses


N-Way Set Associative Performance
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DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV


Reduces conflict misses


Expensive to build


Fully Associative Cache
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• Increase block size:
– Block size, b = 4 words


– C = 8 words


– Direct mapped (1 block per set)


– Number of blocks, B = 2 (C/b = 8/4 = 2)


DataTag


00
Tag


Byte


Offset
Memory


Address


Data


V


0
0


0
1


1
0


1
1


Block


Offset


32 32 32 32


32


Hit


=


Set


27


27 2


Set 1
Set 0


Spatial Locality?
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DataTag


00
Tag


Byte


Offset
Memory


Address


Data


V


0
0


0
1


1
0


1
1


Block


Offset


32 32 32 32


32


Hit


=


Set


27


27 2


Set 1
Set 0


Cache with Larger Block Size
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addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0xC($0)


lw $t3, 0x8($0)


addi $t0, $t0, -1


j    loop


done:


Miss Rate = ?


Direct Mapped Cache Performance
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addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0xC($0)


lw $t3, 0x8($0)


addi $t0, $t0, -1


j    loop


done:


00...00 0 11


DataTag


00
Tag


Byte


Offset
Memory


Address


Data


V


0
0


0
1


1
0


1
1


Block


Offset


32 32 32 32


32


Hit


=


Set


27


27 2


Set 1
Set 000...001 mem[0x00...0C]


0


mem[0x00...08] mem[0x00...04] mem[0x00...00]


Miss Rate = 1/15 


= 6.67%


Larger blocks


reduce compulsory misses


through spatial locality


Direct Mapped Cache Performance
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• Capacity: C 


• Block size: b


• Number of blocks in cache: B = C/b


• Number of blocks in a set: N


• Number of sets: S = B/N


Organization


Number of Ways 


(N)


Number of Sets 


(S = B/N)


Direct Mapped 1 B


N-Way Set Associative 1 < N < B B / N


Fully Associative B 1


Cache Organization Recap
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• Cache is too small to hold all data of interest at once
• If cache full: program accesses data X & evicts data Y
• Capacity miss when access Y again
• How to choose Y to minimize chance of needing it again? 
• Least recently used (LRU) replacement: the least recently 


used block in a set evicted


Capacity Misses
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• Compulsory: first time data accessed


• Capacity: cache too small to hold all data of 
interest


• Conflict: data of interest maps to same 
location in cache


Miss penalty: time it takes to retrieve a block from 
lower level of hierarchy


Types of Misses
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DataTagV


0


DataTagV


0


0


0


0


0


U


0 0


0


0


0


0


Way 1 Way 0


Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)


# MIPS assembly


lw $t0, 0x04($0)


lw $t1, 0x24($0)


lw $t2, 0x54($0)


LRU Replacement
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DataTagV


0


DataTagV


0


0


0


0


0


U


mem[0x00...04]1 00...000mem[0x00...24] 100...010


0


0


0


0


DataTagV


0


DataTagV


0


0


0


0


0


U


mem[0x00...54]1 00...101mem[0x00...24] 100...010


0


0


0


1


(a)


(b)


Way 1 Way 0


Way 1 Way 0


Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)


Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)


# MIPS assembly


lw $t0, 0x04($0)


lw $t1, 0x24($0)


lw $t2, 0x54($0)


LRU Replacement
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• What data is held in the cache?


– Recently used data (temporal locality)


– Nearby data (spatial locality)


• How is data found?


– Set is determined by address of data


– Word within block also determined by address


– In associative caches, data could be in one of several 
ways


• What data is replaced?


– Least-recently used way in the set


Cache Summary
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• Bigger caches reduce  capacity misses


• Greater associativity reduces conflict misses


Adapted from Patterson & Hennessy, Computer Architecture: A Quantitative Approach, 2011


Miss Rate Trends
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• Bigger blocks reduce compulsory misses


• Bigger blocks increase conflict misses


Miss Rate Trends
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• Larger caches have lower miss rates, longer 
access times


• Expand memory hierarchy to multiple levels of 
caches


• Level 1: small and fast (e.g. 16 KB, 1 cycle)


• Level 2: larger and slower (e.g. 256 KB, 2-6 
cycles)


• Most modern PCs have L1, L2, and L3 cache


Multilevel Caches
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Intel Pentium III Die
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• Gives the illusion of bigger memory


• Main memory (DRAM) acts as cache for hard 
disk


Virtual Memory
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• Physical Memory: DRAM (Main Memory)


• Virtual Memory: Hard drive


– Slow, Large, Cheap


Memory Hierarchy


Technology Price / GB
Access


Time (ns)


Bandwidth


(GB/s)


Cache


Main Memory


Virtual Memory


Capacity


S
p
e
e
d


SRAM $10,000 1


DRAM $10 10 - 50


SSD $1 100,000


25+


10


0.5


0.1HDD $0.1 10,000,000
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Read/Write


Head


Magnetic


Disks


Takes milliseconds to seek correct location on disk


Hard Disk








Chapter 8 <47> 


• Virtual addresses
– Programs use virtual addresses


– Entire virtual address space stored on a hard drive


– Subset of virtual address data in DRAM


– CPU translates virtual addresses into physical addresses 
(DRAM addresses)


– Data not in DRAM fetched from hard drive


• Memory Protection
– Each program has own virtual to physical mapping


– Two programs can use same virtual address for different data


– Programs don’t need to be aware others are running


– One program (or virus) can’t corrupt memory used by 
another 


Virtual Memory
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Cache Virtual Memory


Block Page


Block Size Page Size


Block Offset Page Offset


Miss Page Fault


Tag Virtual Page Number


Physical memory acts as cache for virtual memory


Cache/Virtual Memory Analogues
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• Page size: amount of memory transferred 
from hard disk to DRAM at once


• Address translation: determining physical 
address from virtual address


• Page table: lookup table used to translate 
virtual addresses to physical addresses


Virtual Memory Definitions
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Most accesses hit in physical memory


But programs have the large capacity of virtual memory


Virtual & Physical Addresses
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Address Translation
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• System:


– Virtual memory size: 2 GB = 231 bytes


– Physical memory size: 128 MB = 227 bytes


– Page size: 4 KB = 212 bytes


Virtual Memory Example








Chapter 8 <53> 


• System:
– Virtual memory size: 2 GB = 231 bytes


– Physical memory size: 128 MB = 227 bytes


– Page size: 4 KB = 212 bytes


• Organization:
– Virtual address: 31 bits


– Physical address: 27 bits


– Page offset: 12 bits


– # Virtual pages = 231/212 = 219 (VPN = 19 bits)


– # Physical pages = 227/212 = 215 (PPN = 15 bits)


Virtual Memory Example
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• 19-bit virtual page numbers


• 15-bit physical page numbers


Virtual Memory Example
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Virtual Memory Example


What is the physical address 
of virtual address 0x247C?
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Virtual Memory Example


What is the physical address 
of virtual address 0x247C?
– VPN = 0x2


– VPN 0x2 maps to PPN 0x7FFF


– 12-bit page offset: 0x47C


– Physical address = 0x7FFF47C
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• Page table


– Entry for each virtual page


– Entry fields:


• Valid bit: 1 if page in physical memory


• Physical page number: where the page is located


How to perform translation?
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0
0
1         0x0000
1         0x7FFE
0
0


0
0
1         0x0001
0
0
1         0x7FFF
0
0


V


Virtual


Address
0x00002       47C


Hit


Physical


Page Number


1219


15 12


Virtual


Page Number


P
a
g
e
 T


a
b
le


Page


Offset


Physical


Address
0x7FFF       47C


VPN is index 


into page table


Page Table Example
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0
0
1         0x0000
1         0x7FFE
0
0


0
0
1         0x0001
0
0
1         0x7FFF
0
0


V


Physical


Page Number


P
a
g
e
 T


a
b
le


What is the physical 


address of virtual 


address 0x5F20?


Page Table Example 1
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0
0
1         0x0000
1         0x7FFE
0
0


0
0
1         0x0001
0
0
1         0x7FFF
0
0


V


Virtual


Address
0x00005       F20


Hit


Physical


Page Number


1219


15 12


Virtual


Page Number


P
a
g
e
 T


a
b
le


Page


Offset


Physical


Address
0x0001       F20


What is the physical 


address of virtual 


address 0x5F20?


– VPN = 5


– Entry 5 in page table 


VPN 5 => physical 


page 1


– Physical address: 


0x1F20


Page Table Example 1
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0
0
1         0x0000
1         0x7FFE
0
0


0
0
1         0x0001
0
0
1         0x7FFF
0
0


V


Virtual


Address
0x00007       3E0


Hit


Physical


Page Number


19


15


Virtual


Page Number


P
a
g
e
 T


a
b
le


Page


Offset


What is the physical 


address of virtual 


address 0x73E0?


Page Table Example 2
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0
0
1         0x0000
1         0x7FFE
0
0


0
0
1         0x0001
0
0
1         0x7FFF
0
0


V


Virtual


Address
0x00007       3E0


Hit


Physical


Page Number


19


15


Virtual


Page Number


P
a
g
e
 T


a
b
le


Page


Offset


What is the physical 


address of virtual 


address 0x73E0?


– VPN = 7


– Entry 7 is invalid


– Virtual page must be 


paged into physical 


memory from disk


Page Table Example 2
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• Page table is large


– usually located in physical memory


• Load/store requires 2 main memory accesses:


– one for translation (page table read)


– one to access data (after translation)


• Cuts memory performance in half


– Unless we get clever…


Page Table Challenges
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• Small cache of most recent translations


• Reduces # of memory accesses for most
loads/stores from 2 to 1


Translation Lookaside Buffer (TLB)
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• Page table accesses: high temporal locality
– Large page size, so consecutive loads/stores likely to 


access same page


• TLB
– Small: accessed in < 1 cycle


– Typically 16 - 512 entries


– Fully associative


– > 99 % hit rates typical


– Reduces # of memory accesses for most loads/stores 
from 2 to 1


TLB
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Hit
1


V


=


01


15 15


15


=


Hit
1Hit


0


Hit


19 19


19


Virtual


Page Number


Physical


Page Number


Entry 1


1    0x7FFFD     0x0000     1    0x00002     0x7FFF


Virtual


Address
0x00002       47C


1219


Virtual


Page Number


Page


Offset


V


Virtual


Page Number


Physical


Page Number


Entry 0


12
Physical


Address 0x7FFF       47C


TLB


Example 2-Entry TLB
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• Multiple processes (programs) run at once


• Each process has its own page table


• Each process can use entire virtual address 
space


• A process can only access physical pages 
mapped in its own page table


Memory Protection
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• Virtual memory increases capacity


• A subset of virtual pages in physical memory


• Page table maps virtual pages to physical 
pages – address translation


• A TLB speeds up address translation


• Different page tables for different programs 
provides memory protection


Virtual Memory Summary
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• Processor accesses I/O devices just like 
memory (like keyboards, monitors, printers)


• Each I/O device assigned one or more 
address


• When that address is detected, data 
read/written to I/O device instead of 
memory


• A portion of the address space dedicated to 
I/O devices


Memory-Mapped I/O
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• Address Decoder:


– Looks at address to determine which 
device/memory communicates with the 
processor


• I/O Registers:


– Hold values written to the I/O devices


• ReadData Multiplexer:


– Selects between memory and I/O devices as 
source of data sent to the processor


Memory-Mapped I/O Hardware
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Processor Memory
Address


MemWrite


WriteData


ReadData


WE


CLK


The Memory Interface
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Processor Memory
Address


MemWrite


WriteData


ReadDataI/O


Device 1


I/O


Device 2


CLK


EN


EN


Address Decoder


WE


W
E


M


R
D


s
e


l1
:0


W
E


2


W
E


1 CLK


00


01


10


CLK


Memory-Mapped I/O Hardware
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• Suppose I/O Device 1 is assigned the address 
0xFFFFFFF4


– Write the value 42 to I/O Device 1


– Read value from I/O Device 1 and place in $t3


Memory-Mapped I/O Code
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• Write the value 42 to I/O Device 1 (0xFFFFFFF4)
addi $t0, $0, 42


sw $t0, 0xFFF4($0)
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• Read the value from I/O Device 1 and place in $t3
lw $t3, 0xFFF4($0)
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• Embedded I/O Systems


– Toasters, LEDs, etc.


• PC I/O Systems


Input/Output (I/O) Systems








Chapter 8 <77> 


• Example microcontroller: PIC32


– microcontroller


– 32-bit MIPS processor


– low-level peripherals include:


• serial ports


• timers


• A/D converters


Embedded I/O Systems








Chapter 8 <78> 


// C Code


#include <p3xxxx.h>


int main(void) {


int switches;


TRISD = 0xFF00;      // RD[7:0] outputs 


// RD[11:8] inputs


while (1) {


// read & mask switches, RD[11:8]


switches = (PORTD >> 8) & 0xF;


PORTD = switches;  // display on LEDs


}


}


Digital I/O
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• Example serial protocols


– SPI: Serial Peripheral Interface


– UART: Universal Asynchronous 
Receiver/Transmitter


– Also: I2C, USB, Ethernet, etc.


Serial I/O
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SPI: Serial Peripheral Interface


• Master initiates communication to slave by sending 
pulses on SCK


• Master sends SDO (Serial Data Out) to slave, msb first
• Slave may send data (SDI) to master, msb first
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UART: Universal Asynchronous Rx/Tx


• Configuration:
– start bit (0), 7-8 data bits, parity bit (optional), 1+ stop bits (1)
– data rate: 300, 1200, 2400, 9600, …115200 baud


• Line idles HIGH (1)
• Common configuration: 


– 8 data bits, no parity, 1 stop bit, 9600 baud
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// Create specified ms/us of delay using built-in timer


#include <P32xxxx.h>


void delaymicros(int micros) {


if (micros > 1000) {     // avoid timer overflow    


delaymicros(1000);    


delaymicros(micros-1000);


}  


else if (micros > 6){


TMR1 = 0;              // reset timer to 0    


T1CONbits.ON = 1;        // turn timer on


PR1 = (micros-6)*20;     // 20 clocks per microsecond 


// Function has overhead of ~6 us    


IFS0bits.T1IF = 0;     // clear overflow flag


while (!IFS0bits.T1IF);   // wait until overflow flag set 


}


}


void delaymillis(int millis) {


while (millis--) delaymicros(1000); // repeatedly delay 1 ms


}                                     // until done


Timers
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• Needed to interface with outside world


• Analog input: Analog-to-digital (A/D) conversion 


– Often included in microcontroller


– N-bit: converts analog input from Vref--Vref+ to 0-2
N-1


• Analog output:


– Digital-to-analog (D/A) conversion


• Typically need external chip (e.g., AD558 or LTC1257)


• N-bit: converts digital signal from 0-2N-1 to Vref--Vref+


– Pulse-width modulation


Analog I/O
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Pulse-Width Modulation (PWM)


• Average value proportional to duty cycle


• Add high-pass filter on output to deliver average 
value
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Other Microcontroller Peripherals


• Examples
– Character LCD


– VGA monitor


– Bluetooth wireless


– Motors
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Personal Computer (PC) I/O Systems


• USB: Universal Serial Bus
– USB 1.0 released in 1996


– standardized cables/software for peripherals


• PCI/PCIe: Peripheral Component 
Interconnect/PCI Express
– developed by Intel, widespread around 1994


– 32-bit parallel bus


– used for expansion cards (i.e., sound cards, video 
cards, etc.)


• DDR: double-data rate memory
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Personal Computer (PC) I/O Systems


• TCP/IP: Transmission Control Protocol and 
Internet Protocol
– physical connection: Ethernet cable or Wi-Fi


• SATA: hard drive interface


• Input/Output (sensors, actuators, 
microcontrollers, etc.)
– Data Acquisition Systems (DAQs) 


– USB Links
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