
    [image: SweetStudy (HomeworkMarket.com)]   .cls-1{isolation:isolate;}.cls-2{fill:#001847;}                 





	[image: homework question]



[image: chat] 
     
         
            .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}
        
    
     
         
             
             
             
             
             
        
         
             
             
             
        
    



0


Home.Literature.Help.	Contact Us
	FAQ



Log in / Sign up[image: ]   .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}    


[image: ]  


	[image: ]    


Log in / Sign up

	Post a question
	Home.
	Literature.

Help.




Digital Design and Computer Architecture homework
[image: profile]
maxcaesar
[image: ] 
     
         
            .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}
        
    
     
         
         
         
         
         
         
         
         
         
    



ddca_ch8.pdf

Home>Engineering homework help>Electrical Engineering homework help>Digital Design and Computer Architecture homework





Chapter 8 <1> 


Digital Design and Computer Architecture, 2nd Edition


Chapter 8


David Money Harris and Sarah L. Harris








Chapter 8 <2> 


Chapter 8 :: Topics


• Introduction


• Memory System Performance 
Analysis


• Caches


• Virtual Memory


• Memory-Mapped I/O


• Summary








Chapter 8 <3> 


Processor Memory
Address


MemWrite


WriteData


ReadData


WE


CLKCLK


• Computer performance depends on:
– Processor performance


– Memory system performance


Memory Interface


Introduction








Chapter 8 <4> 


In prior chapters, assumed access memory in 1 clock 
cycle – but hasn’t been true since the 1980’s


Processor-Memory Gap








Chapter 8 <5> 


• Make memory system appear as fast as 
processor


• Use hierarchy of memories


• Ideal memory:
– Fast


– Cheap (inexpensive)


– Large (capacity)


But can only choose two!


Memory System Challenge








Chapter 8 <6> 


Memory Hierarchy


Technology Price / GB
Access


Time (ns)


Bandwidth


(GB/s)


Cache


Main Memory


Virtual Memory


Capacity


S
p
e
e
d


SRAM $10,000 1


DRAM $10 10 - 50


SSD $1 100,000


25+


10


0.5


0.1HDD $0.1 10,000,000








Chapter 8 <7> 


Exploit locality to make memory accesses fast


• Temporal Locality:
– Locality in time


– If data used recently, likely to use it again soon


– How to exploit: keep recently accessed data in higher 
levels of memory hierarchy


• Spatial Locality:
– Locality in space


– If data used recently, likely to use nearby data soon


– How to exploit: when access data, bring nearby data 
into higher levels of memory hierarchy too


Locality








Chapter 8 <8> 


• Hit: data found in that level of memory hierarchy


• Miss: data not found (must go to next level)


Hit Rate = # hits / # memory accesses


= 1 – Miss Rate


Miss Rate = # misses / # memory accesses


= 1 – Hit Rate


• Average memory access time (AMAT): average time 
for processor to access data


AMAT = tcache + MRcache[tMM + MRMM(tVM)]


Memory Performance








Chapter 8 <9> 


• A program has 2,000 loads and stores


• 1,250 of these data values in cache


• Rest supplied by other levels of memory 
hierarchy


• What are the hit and miss rates for the cache?


Memory Performance Example 1








Chapter 8 <10> 


• A program has 2,000 loads and stores


• 1,250 of these data values in cache


• Rest supplied by other levels of memory 
hierarchy


• What are the hit and miss rates for the cache?


Hit Rate = 1250/2000 = 0.625


Miss Rate = 750/2000 = 0.375 = 1 – Hit Rate


Memory Performance Example 1








Chapter 8 <11> 


• Suppose processor has 2 levels of hierarchy: 
cache and main memory


• tcache = 1 cycle, tMM = 100 cycles


• What is the AMAT of the program from 
Example 1?


Memory Performance Example 2








Chapter 8 <12> 


• Suppose processor has 2 levels of hierarchy: 
cache and main memory


• tcache = 1 cycle, tMM = 100 cycles


• What is the AMAT of the program from 
Example 1?


AMAT = tcache + MRcache(tMM)


= [1 + 0.375(100)] cycles


= 38.5 cycles


Memory Performance Example 2








Chapter 8 <13> 


• Amdahl’s Law: the 
effort spent increasing the 
performance of a 
subsystem is wasted 
unless the subsystem 
affects a large percentage 
of overall performance


• Co-founded 3 companies, 
including one called 
Amdahl Corporation in 
1970


Gene Amdahl, 1922-








Chapter 8 <14> 


• Highest level in memory hierarchy


• Fast (typically ~ 1 cycle access time)


• Ideally supplies most data to processor


• Usually holds most recently accessed data


Cache








Chapter 8 <15> 


• What data is held in the cache?


• How is data found?


• What data is replaced?


Focus on data loads, but stores follow same principles


Cache Design Questions








Chapter 8 <16> 


• Ideally, cache anticipates needed data and 
puts it in cache


• But impossible to predict future


• Use past to predict future – temporal and 
spatial locality:
– Temporal locality: copy newly accessed data 


into cache


– Spatial locality: copy neighboring data into 
cache too


What data is held in the cache?








Chapter 8 <17> 


• Capacity (C): 
– number of data bytes in cache


• Block size (b): 
– bytes of data brought into cache at once


• Number of blocks (B = C/b): 
– number of blocks in cache: B = C/b


• Degree of associativity (N): 
– number of blocks in a set


• Number of sets (S = B/N): 
– each memory address maps to exactly one cache set 


Cache Terminology








Chapter 8 <18> 


• Cache organized into S sets


• Each memory address maps to exactly one set


• Caches categorized by # of blocks in a set:


– Direct mapped: 1 block per set


– N-way set associative: N blocks per set


– Fully associative: all cache blocks in 1 set


• Examine each organization for a cache with:
– Capacity (C = 8 words)


– Block size (b = 1 word)


– So, number of blocks (B = 8)


How is data found?








Chapter 8 <19> 


• C = 8 words (capacity)


• b = 1 word (block size)


• So, B = 8 (# of blocks)


Ridiculously small, but will illustrate organizations


Example Cache Parameters








Chapter 8 <20> 


7 (111)


00...00010000


230 Word Main Memory


mem[0x00...00]


mem[0x00...04]


mem[0x00...08]


mem[0x00...0C]


mem[0x00...10]


mem[0x00...14]


mem[0x00...18]


mem[0x00..1C]


mem[0x00..20]


mem[0x00...24]


mem[0xFF...E0]


mem[0xFF...E4]


mem[0xFF...E8]


mem[0xFF...EC]


mem[0xFF...F0]


mem[0xFF...F4]


mem[0xFF...F8]


mem[0xFF...FC]


23 Word Cache


Set Number


Address


00...00000000


00...00000100


00...00001000


00...00001100


00...00010100


00...00011000


00...00011100


00...00100000


00...00100100


11...11110000


11...11100000


11...11100100


11...11101000


11...11101100


11...11110100


11...11111000


11...11111100


6 (110)


5 (101)


4 (100)


3 (011)


2 (010)


1 (001)


0 (000)


Direct Mapped Cache








Chapter 8 <21> 


DataTag


00
Tag Set


Byte


Offset
Memory


Address


DataHit


V


=


27 3


27 32


8-entry x


(1+27+32)-bit


SRAM


Direct Mapped Cache Hardware








Chapter 8 <22> 


# MIPS assembly code


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0xC($0)


lw $t3, 0x8($0)


addi $t0, $t0, -1


j    loop


done:


DataTagV


00...001 mem[0x00...04]


0


0


0


0


0


00
Tag Set


Byte


Offset
Memory


Address


V
3


00100...00


1


00...00


00...00


1


mem[0x00...0C]


mem[0x00...08]


Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)


Miss Rate = ?


Direct Mapped Cache Performance








Chapter 8 <23> 


# MIPS assembly code


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0xC($0)


lw $t3, 0x8($0)


addi $t0, $t0, -1


j    loop


done:


DataTagV


00...001 mem[0x00...04]


0


0


0


0


0


00
Tag Set


Byte


Offset
Memory


Address


V
3


00100...00


1


00...00


00...00


1


mem[0x00...0C]


mem[0x00...08]


Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)


Miss Rate = 3/15


= 20%


Temporal Locality


Compulsory Misses


Direct Mapped Cache Performance








Chapter 8 <24> 


# MIPS assembly code


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0x24($0)


addi $t0, $t0, -1


j    loop


done:


DataTagV


00...001
mem[0x00...04]


0


0


0


0


0


00
Tag Set


Byte


Offset
Memory


Address


V
3


00100...01


0


0


Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)


mem[0x00...24]


Miss Rate = ?


Direct Mapped Cache: Conflict








Chapter 8 <25> 


# MIPS assembly code


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0x24($0)


addi $t0, $t0, -1


j    loop


done:


DataTagV


00...001
mem[0x00...04]


0


0


0


0


0


00
Tag Set


Byte


Offset
Memory


Address


V
3


00100...01


0


0


Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)


mem[0x00...24]


Miss Rate = 10/10


= 100%


Conflict Misses


Direct Mapped Cache: Conflict








Chapter 8 <26> 


DataTag


Tag Set


Byte


Offset
Memory


Address


Data


Hit
1


V


=


01


00


32 32


32


DataTagV


=


Hit
1Hit


0


Hit


28 2


28 28


Way 1 Way 0


N-Way Set Associative Cache








Chapter 8 <27> 


# MIPS assembly code


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0x24($0)


addi $t0, $t0, -1


j    loop


done:


DataTagV DataTagV


0 0


0


0


0


0


0


0


Way 1 Way 0


Set 3
Set 2
Set 1
Set 0


Miss Rate = ?


N-Way Set Associative Performance








Chapter 8 <28> 


# MIPS assembly code


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0x24($0)


addi $t0, $t0, -1


j    loop


done:


DataTagV DataTagV


00...001 mem[0x00...04]00...10 1mem[0x00...24]


0


0


0


0


0


0


Way 1 Way 0


Set 3
Set 2
Set 1
Set 0


Miss Rate = 2/10 


= 20%


Associativity reduces


conflict misses


N-Way Set Associative Performance








Chapter 8 <29> 


DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV


Reduces conflict misses


Expensive to build


Fully Associative Cache








Chapter 8 <30> 


• Increase block size:
– Block size, b = 4 words


– C = 8 words


– Direct mapped (1 block per set)


– Number of blocks, B = 2 (C/b = 8/4 = 2)


DataTag


00
Tag


Byte


Offset
Memory


Address


Data


V


0
0


0
1


1
0


1
1


Block


Offset


32 32 32 32


32


Hit


=


Set


27


27 2


Set 1
Set 0


Spatial Locality?








Chapter 8 <31> 


DataTag


00
Tag


Byte


Offset
Memory


Address


Data


V


0
0


0
1


1
0


1
1


Block


Offset


32 32 32 32


32


Hit


=


Set


27


27 2


Set 1
Set 0


Cache with Larger Block Size








Chapter 8 <32> 


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0xC($0)


lw $t3, 0x8($0)


addi $t0, $t0, -1


j    loop


done:


Miss Rate = ?


Direct Mapped Cache Performance








Chapter 8 <33> 


addi $t0, $0, 5


loop: beq $t0, $0, done


lw $t1, 0x4($0)


lw $t2, 0xC($0)


lw $t3, 0x8($0)


addi $t0, $t0, -1


j    loop


done:


00...00 0 11


DataTag


00
Tag


Byte


Offset
Memory


Address


Data


V


0
0


0
1


1
0


1
1


Block


Offset


32 32 32 32


32


Hit


=


Set


27


27 2


Set 1
Set 000...001 mem[0x00...0C]


0


mem[0x00...08] mem[0x00...04] mem[0x00...00]


Miss Rate = 1/15 


= 6.67%


Larger blocks


reduce compulsory misses


through spatial locality


Direct Mapped Cache Performance








Chapter 8 <34> 


• Capacity: C 


• Block size: b


• Number of blocks in cache: B = C/b


• Number of blocks in a set: N


• Number of sets: S = B/N


Organization


Number of Ways 


(N)


Number of Sets 


(S = B/N)


Direct Mapped 1 B


N-Way Set Associative 1 < N < B B / N


Fully Associative B 1


Cache Organization Recap








Chapter 8 <35> 


• Cache is too small to hold all data of interest at once
• If cache full: program accesses data X & evicts data Y
• Capacity miss when access Y again
• How to choose Y to minimize chance of needing it again? 
• Least recently used (LRU) replacement: the least recently 


used block in a set evicted


Capacity Misses








Chapter 8 <36> 


• Compulsory: first time data accessed


• Capacity: cache too small to hold all data of 
interest


• Conflict: data of interest maps to same 
location in cache


Miss penalty: time it takes to retrieve a block from 
lower level of hierarchy


Types of Misses








Chapter 8 <37> 


DataTagV


0


DataTagV


0


0


0


0


0


U


0 0


0


0


0


0


Way 1 Way 0


Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)


# MIPS assembly


lw $t0, 0x04($0)


lw $t1, 0x24($0)


lw $t2, 0x54($0)


LRU Replacement








Chapter 8 <38> 


DataTagV


0


DataTagV


0


0


0


0


0


U


mem[0x00...04]1 00...000mem[0x00...24] 100...010


0


0


0


0


DataTagV


0


DataTagV


0


0


0


0


0


U


mem[0x00...54]1 00...101mem[0x00...24] 100...010


0


0


0


1


(a)


(b)


Way 1 Way 0


Way 1 Way 0


Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)


Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)


# MIPS assembly


lw $t0, 0x04($0)


lw $t1, 0x24($0)


lw $t2, 0x54($0)


LRU Replacement








Chapter 8 <39> 


• What data is held in the cache?


– Recently used data (temporal locality)


– Nearby data (spatial locality)


• How is data found?


– Set is determined by address of data


– Word within block also determined by address


– In associative caches, data could be in one of several 
ways


• What data is replaced?


– Least-recently used way in the set


Cache Summary








Chapter 8 <40> 


• Bigger caches reduce  capacity misses


• Greater associativity reduces conflict misses


Adapted from Patterson & Hennessy, Computer Architecture: A Quantitative Approach, 2011


Miss Rate Trends








Chapter 8 <41> 


• Bigger blocks reduce compulsory misses


• Bigger blocks increase conflict misses


Miss Rate Trends








Chapter 8 <42> 


• Larger caches have lower miss rates, longer 
access times


• Expand memory hierarchy to multiple levels of 
caches


• Level 1: small and fast (e.g. 16 KB, 1 cycle)


• Level 2: larger and slower (e.g. 256 KB, 2-6 
cycles)


• Most modern PCs have L1, L2, and L3 cache


Multilevel Caches








Chapter 8 <43> 


Intel Pentium III Die








Chapter 8 <44> 


• Gives the illusion of bigger memory


• Main memory (DRAM) acts as cache for hard 
disk


Virtual Memory








Chapter 8 <45> 


• Physical Memory: DRAM (Main Memory)


• Virtual Memory: Hard drive


– Slow, Large, Cheap


Memory Hierarchy


Technology Price / GB
Access


Time (ns)


Bandwidth


(GB/s)


Cache


Main Memory


Virtual Memory


Capacity


S
p
e
e
d


SRAM $10,000 1


DRAM $10 10 - 50


SSD $1 100,000


25+


10


0.5


0.1HDD $0.1 10,000,000








Chapter 8 <46> 


Read/Write


Head


Magnetic


Disks


Takes milliseconds to seek correct location on disk


Hard Disk








Chapter 8 <47> 


• Virtual addresses
– Programs use virtual addresses


– Entire virtual address space stored on a hard drive


– Subset of virtual address data in DRAM


– CPU translates virtual addresses into physical addresses 
(DRAM addresses)


– Data not in DRAM fetched from hard drive


• Memory Protection
– Each program has own virtual to physical mapping


– Two programs can use same virtual address for different data


– Programs don’t need to be aware others are running


– One program (or virus) can’t corrupt memory used by 
another 


Virtual Memory








Chapter 8 <48> 


Cache Virtual Memory


Block Page


Block Size Page Size


Block Offset Page Offset


Miss Page Fault


Tag Virtual Page Number


Physical memory acts as cache for virtual memory


Cache/Virtual Memory Analogues








Chapter 8 <49> 


• Page size: amount of memory transferred 
from hard disk to DRAM at once


• Address translation: determining physical 
address from virtual address


• Page table: lookup table used to translate 
virtual addresses to physical addresses


Virtual Memory Definitions








Chapter 8 <50> 


Most accesses hit in physical memory


But programs have the large capacity of virtual memory


Virtual & Physical Addresses








Chapter 8 <51> 


Address Translation








Chapter 8 <52> 


• System:


– Virtual memory size: 2 GB = 231 bytes


– Physical memory size: 128 MB = 227 bytes


– Page size: 4 KB = 212 bytes


Virtual Memory Example








Chapter 8 <53> 


• System:
– Virtual memory size: 2 GB = 231 bytes


– Physical memory size: 128 MB = 227 bytes


– Page size: 4 KB = 212 bytes


• Organization:
– Virtual address: 31 bits


– Physical address: 27 bits


– Page offset: 12 bits


– # Virtual pages = 231/212 = 219 (VPN = 19 bits)


– # Physical pages = 227/212 = 215 (PPN = 15 bits)


Virtual Memory Example








Chapter 8 <54> 


• 19-bit virtual page numbers


• 15-bit physical page numbers


Virtual Memory Example








Chapter 8 <55> 


Virtual Memory Example


What is the physical address 
of virtual address 0x247C?








Chapter 8 <56> 


Virtual Memory Example


What is the physical address 
of virtual address 0x247C?
– VPN = 0x2


– VPN 0x2 maps to PPN 0x7FFF


– 12-bit page offset: 0x47C


– Physical address = 0x7FFF47C








Chapter 8 <57> 


• Page table


– Entry for each virtual page


– Entry fields:


• Valid bit: 1 if page in physical memory


• Physical page number: where the page is located


How to perform translation?








Chapter 8 <58> 


0
0
1         0x0000
1         0x7FFE
0
0


0
0
1         0x0001
0
0
1         0x7FFF
0
0


V


Virtual


Address
0x00002       47C


Hit


Physical


Page Number


1219


15 12


Virtual


Page Number


P
a
g
e
 T


a
b
le


Page


Offset


Physical


Address
0x7FFF       47C


VPN is index 


into page table


Page Table Example








Chapter 8 <59> 


0
0
1         0x0000
1         0x7FFE
0
0


0
0
1         0x0001
0
0
1         0x7FFF
0
0


V


Physical


Page Number


P
a
g
e
 T


a
b
le


What is the physical 


address of virtual 


address 0x5F20?


Page Table Example 1








Chapter 8 <60> 


0
0
1         0x0000
1         0x7FFE
0
0


0
0
1         0x0001
0
0
1         0x7FFF
0
0


V


Virtual


Address
0x00005       F20


Hit


Physical


Page Number


1219


15 12


Virtual


Page Number


P
a
g
e
 T


a
b
le


Page


Offset


Physical


Address
0x0001       F20


What is the physical 


address of virtual 


address 0x5F20?


– VPN = 5


– Entry 5 in page table 


VPN 5 => physical 


page 1


– Physical address: 


0x1F20


Page Table Example 1








Chapter 8 <61> 


0
0
1         0x0000
1         0x7FFE
0
0


0
0
1         0x0001
0
0
1         0x7FFF
0
0


V


Virtual


Address
0x00007       3E0


Hit


Physical


Page Number


19


15


Virtual


Page Number


P
a
g
e
 T


a
b
le


Page


Offset


What is the physical 


address of virtual 


address 0x73E0?


Page Table Example 2








Chapter 8 <62> 


0
0
1         0x0000
1         0x7FFE
0
0


0
0
1         0x0001
0
0
1         0x7FFF
0
0


V


Virtual


Address
0x00007       3E0


Hit


Physical


Page Number


19


15


Virtual


Page Number


P
a
g
e
 T


a
b
le


Page


Offset


What is the physical 


address of virtual 


address 0x73E0?


– VPN = 7


– Entry 7 is invalid


– Virtual page must be 


paged into physical 


memory from disk


Page Table Example 2








Chapter 8 <63> 


• Page table is large


– usually located in physical memory


• Load/store requires 2 main memory accesses:


– one for translation (page table read)


– one to access data (after translation)


• Cuts memory performance in half


– Unless we get clever…


Page Table Challenges








Chapter 8 <64> 


• Small cache of most recent translations


• Reduces # of memory accesses for most
loads/stores from 2 to 1


Translation Lookaside Buffer (TLB)








Chapter 8 <65> 


• Page table accesses: high temporal locality
– Large page size, so consecutive loads/stores likely to 


access same page


• TLB
– Small: accessed in < 1 cycle


– Typically 16 - 512 entries


– Fully associative


– > 99 % hit rates typical


– Reduces # of memory accesses for most loads/stores 
from 2 to 1


TLB








Chapter 8 <66> 


Hit
1


V


=


01


15 15


15


=


Hit
1Hit


0


Hit


19 19


19


Virtual


Page Number


Physical


Page Number


Entry 1


1    0x7FFFD     0x0000     1    0x00002     0x7FFF


Virtual


Address
0x00002       47C


1219


Virtual


Page Number


Page


Offset


V


Virtual


Page Number


Physical


Page Number


Entry 0


12
Physical


Address 0x7FFF       47C


TLB


Example 2-Entry TLB








Chapter 8 <67> 


• Multiple processes (programs) run at once


• Each process has its own page table


• Each process can use entire virtual address 
space


• A process can only access physical pages 
mapped in its own page table


Memory Protection








Chapter 8 <68> 


• Virtual memory increases capacity


• A subset of virtual pages in physical memory


• Page table maps virtual pages to physical 
pages – address translation


• A TLB speeds up address translation


• Different page tables for different programs 
provides memory protection


Virtual Memory Summary








Chapter 8 <69> 


• Processor accesses I/O devices just like 
memory (like keyboards, monitors, printers)


• Each I/O device assigned one or more 
address


• When that address is detected, data 
read/written to I/O device instead of 
memory


• A portion of the address space dedicated to 
I/O devices


Memory-Mapped I/O








Chapter 8 <70> 


• Address Decoder:


– Looks at address to determine which 
device/memory communicates with the 
processor


• I/O Registers:


– Hold values written to the I/O devices


• ReadData Multiplexer:


– Selects between memory and I/O devices as 
source of data sent to the processor


Memory-Mapped I/O Hardware








Chapter 8 <71> 


Processor Memory
Address


MemWrite


WriteData


ReadData


WE


CLK


The Memory Interface








Chapter 8 <72> 


Processor Memory
Address


MemWrite


WriteData


ReadDataI/O


Device 1


I/O


Device 2


CLK


EN


EN


Address Decoder


WE


W
E


M


R
D


s
e


l1
:0


W
E


2


W
E


1 CLK


00


01


10


CLK


Memory-Mapped I/O Hardware








Chapter 8 <73> 


• Suppose I/O Device 1 is assigned the address 
0xFFFFFFF4


– Write the value 42 to I/O Device 1


– Read value from I/O Device 1 and place in $t3


Memory-Mapped I/O Code








Chapter 8 <74> 


• Write the value 42 to I/O Device 1 (0xFFFFFFF4)
addi $t0, $0, 42


sw $t0, 0xFFF4($0)


Processor Memory
Address


MemWrite


WriteData


ReadDataI/O


Device 1


I/O


Device 2


CLK


EN


EN


Address Decoder


WE


W
E


M


R
D


s
e


l1
:0


W
E


2


W
E


1
 =


 1


CLK


00


01


10


CLK


Memory-Mapped I/O Code








Chapter 8 <75> 


• Read the value from I/O Device 1 and place in $t3
lw $t3, 0xFFF4($0)


Processor Memory
Address


MemWrite


WriteData


ReadDataI/O


Device 1


I/O


Device 2


CLK


EN


EN


Address Decoder


WE


W
E


M


R
D


s
e


l1
:0  =


 0
1


W
E


2


W
E


1 CLK


00


01


10


CLK


Memory-Mapped I/O Code








Chapter 8 <76> 


• Embedded I/O Systems


– Toasters, LEDs, etc.


• PC I/O Systems


Input/Output (I/O) Systems








Chapter 8 <77> 


• Example microcontroller: PIC32


– microcontroller


– 32-bit MIPS processor


– low-level peripherals include:


• serial ports


• timers


• A/D converters


Embedded I/O Systems








Chapter 8 <78> 


// C Code


#include <p3xxxx.h>


int main(void) {


int switches;


TRISD = 0xFF00;      // RD[7:0] outputs 


// RD[11:8] inputs


while (1) {


// read & mask switches, RD[11:8]


switches = (PORTD >> 8) & 0xF;


PORTD = switches;  // display on LEDs


}


}


Digital I/O








Chapter 8 <79> 


• Example serial protocols


– SPI: Serial Peripheral Interface


– UART: Universal Asynchronous 
Receiver/Transmitter


– Also: I2C, USB, Ethernet, etc.


Serial I/O








Chapter 8 <80> 


SPI: Serial Peripheral Interface


• Master initiates communication to slave by sending 
pulses on SCK


• Master sends SDO (Serial Data Out) to slave, msb first
• Slave may send data (SDI) to master, msb first








Chapter 8 <81> 


UART: Universal Asynchronous Rx/Tx


• Configuration:
– start bit (0), 7-8 data bits, parity bit (optional), 1+ stop bits (1)
– data rate: 300, 1200, 2400, 9600, …115200 baud


• Line idles HIGH (1)
• Common configuration: 


– 8 data bits, no parity, 1 stop bit, 9600 baud








Chapter 8 <82> 


// Create specified ms/us of delay using built-in timer


#include <P32xxxx.h>


void delaymicros(int micros) {


if (micros > 1000) {     // avoid timer overflow    


delaymicros(1000);    


delaymicros(micros-1000);


}  


else if (micros > 6){


TMR1 = 0;              // reset timer to 0    


T1CONbits.ON = 1;        // turn timer on


PR1 = (micros-6)*20;     // 20 clocks per microsecond 


// Function has overhead of ~6 us    


IFS0bits.T1IF = 0;     // clear overflow flag


while (!IFS0bits.T1IF);   // wait until overflow flag set 


}


}


void delaymillis(int millis) {


while (millis--) delaymicros(1000); // repeatedly delay 1 ms


}                                     // until done


Timers








Chapter 8 <83> 


• Needed to interface with outside world


• Analog input: Analog-to-digital (A/D) conversion 


– Often included in microcontroller


– N-bit: converts analog input from Vref--Vref+ to 0-2
N-1


• Analog output:


– Digital-to-analog (D/A) conversion


• Typically need external chip (e.g., AD558 or LTC1257)


• N-bit: converts digital signal from 0-2N-1 to Vref--Vref+


– Pulse-width modulation


Analog I/O








Chapter 8 <84> 


Pulse-Width Modulation (PWM)


• Average value proportional to duty cycle


• Add high-pass filter on output to deliver average 
value








Chapter 8 <85> 


Other Microcontroller Peripherals


• Examples
– Character LCD


– VGA monitor


– Bluetooth wireless


– Motors








Chapter 8 <86> 


Personal Computer (PC) I/O Systems


• USB: Universal Serial Bus
– USB 1.0 released in 1996


– standardized cables/software for peripherals


• PCI/PCIe: Peripheral Component 
Interconnect/PCI Express
– developed by Intel, widespread around 1994


– 32-bit parallel bus


– used for expansion cards (i.e., sound cards, video 
cards, etc.)


• DDR: double-data rate memory








Chapter 8 <87> 


Personal Computer (PC) I/O Systems


• TCP/IP: Transmission Control Protocol and 
Internet Protocol
– physical connection: Ethernet cable or Wi-Fi


• SATA: hard drive interface


• Input/Output (sensors, actuators, 
microcontrollers, etc.)
– Data Acquisition Systems (DAQs) 


– USB Links












	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University


	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter] 
     
         
    
     
         
             
        
         
    





	[image: facebook][image: facebook] 
     









Copyright © 2024 SweetStudy.com (Step To Horizon LTD)




    
    
