\* 11.2 Glucose and membrane permeability

(a) Compute the time scale for molecules to empty out ofg
“spherical bacterium” of radius 1 um due to the permeability
of the membrane to various molecular species. In particular,
use the relation j = —PAc between the flux of molecules j

across the membrane and its permeability P. Make a plot of
the time scale as a function of the parameter P using the
data in Figure 11.11, and then estimate the time scale for
glucose. The permeability for phosphorylated glucose is
thought to be much lower due to its charge, which makes
traversing the membrane much less favorable. How much
longer will the glucose take to leak out if the permeability
IS 100-fold smaller in the phosphorylated than
unphosphorylated state, for example?

(b) To go beyond the simple estimate of (a), write a
differential equation for the rate of change of concentration
of molecules assuming that the initial concentration

within the cell is ¢j, and the concentration outside of the
cell is cout = 0. Solve the differential equation and find

the time scale for the molecules to exit the cell. How

does this compare with the simple estimate you made

in (a)?

/ 11.3 Mathematics of curvature

Consider the function h(x), X) = X + X1 xp — 2x5, which we

assume describes the shape of a deformed lipid bilayer

membrane. As shown in Figure 11.14, x; and x, are the
coordinates of the reference plane below the membrane.

(a) Make a plot of the height as a function of x; and X5,

(b) Compute the principal radii of curvature as functions of
X1 and X?.
(c) Compute the bending free energy for the piece of

membrane corresponding to the square 0 < x; <1 and
0 < x> < 1 in the reference plane.



{1.6 Membrane deformation and adhesion in
pipettes

The patch clamp technique is wide}y used in
Jectrophysiology to study the gating properties of jop,
channels. A g]z_ﬁs micropipette 1_w1th 4l Open tip is brought
nto contact with a cell or a vesicle containing the ion
channel of interest. As a result of the strong adhesion

petween the glass and the lipid membrane, the membrane
gels pulled into the pipette as shown in Figure 11.49

R

Figure 11.49: Membrane patch and pipette. Schematic
showing the membrane patch shape (grey) at zero applied
pressure. The pipette has a radius of Rp and as a result of
adhesion, the membrane is pulled up the pipette by a
distance Lg.

Although the glass-membrane adhesion is crucial to
avoiding spurious leakage currents not resulting from the
thannels themselves, this adhesion can also have negative
side effects. For example, as the membrane adheres to the
Pipette, it induces a tension that is different from the
resting tension in the membrane patch, and this could lead
0errors in the estimates of gating tension of
mechanosensitive channels, for example. In this problem,
We use our understanding of elasticity of membranes to
tstimate the size of this adhesion-induced tension.

(@) Consider the geometry shown in Figure 11.49_, where the
Membrane patch has a cylindrical adhered domain aqd a
Eir{ular frEE dumain- The ElﬂStic energy aSEEEiatEd with the
Patch comes from two contributions, namely, the SIrEtﬂhh
“Mergy and the glass-bilayer adhesion energy. The stretchE
*Tergy results from the fact that the membrane Is stretche
When it js pulled into the pipette. This contribution to t in
;EE tnergy has a quadratic dependence on the areal stra
=A- Ag)/Ag, and is given by

> (11.68)
Gstretch = }!."Kﬁqb Ao ~

Wh :
ah?ﬁ? A9 is the unstretched area of the membrane

A~ 50kgT/nm? is the stretch modulus.
of the

Con Etﬂdhesmn energy is proportional to the arAEE SR
'S the ;d Omain Ay, and is given by Gadnh = —y Aadh

Using | hesion energy (that is, the energy Per ! el
uhtain :IEEE facts and the geometry shg?q.rn in Flfr of the
'"Emhra € expression for the total elastic energ

Ne patch in terms of the areal strain ¢

patch

1

ﬂ:l Minimizje the elastic energy with respect to ¢ to obtain
t € €xpression for the equilibrium areal strain. Compute the
€nsion r in the membrane patch in equilibrium using the

relatinnl T = Kg:f.:. For y ~ 0.5 kgT/nm?, a typical value for
glas_s—blla'fer interaction, estimate the equilibrium areal
strain and the tension in the patch.

(€) Assuming that the unstretched area of the patch is
Ap = 2 x 7R%, what is the length of membrane tube L that

“'."ES the sides of the pipette? How does this length compare
wnh_the length computed from simple geometrical
considerations, namely, by assuming that the membrane

patch does not get stretched when it is drawn into the
pipette,

(d) Show that membrane bending does not contribute
significantly to the energy budget of the membrane patch.
Do this by computing the bending energy of cylindrical
membrane material within the pipette and compare the
resulting energy with the stretch energy and adhesion
energy you already obtained.

¢« 11.7 Bending modulus and the pipette aspiration
experiment

The pipette aspiration experiment described in the chapter
can be used to measure the bending modulus K}, as well as
the area stretch modulus. Lipid bilayer membranes are
constantly jostled about by thermal fluctuations. Even
though a flat membrane is the lowest-energy state,
fluctuations will cause the membrane to spontaneously
bend. The goal of this problem is to use equilibrium
statistical mechanics to predict the nature of bending
fluctuations and to use this understanding as the basis of
experimental measurement of the bending modulus. (Note:
This problem is challenging and the reader is asked to
consult the hints on the book’s website to learn more of our
Fourier transform conventions, how to handle the relevant
delta functions, the subtleties associated with the limits of

integration, etc.).

(a) Write the total free energy of the membrane as an
integral over the area of the membrane. Your result should
have a contribution from membra:}e henc!mg and a
contribution from membrane tension. Write your result
using the function h(r) to characterize the height of the

membrane at position r.
; ' decomposition
e free energy can be rewritten using a _
th}tEE membrane profile into Fourier modes. Our Fourier

transform convention is
) = [‘;‘E | haea¥ d?q, (11.69)
b

is the area of the patch of membrane of

I
where A=L this version of h(r) into the total energy you

interest. Plug
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Use this result to plot the total free energy as a functiqy, X

radius for several different tensions including the Critic
tension (that is, produce a figure anaIquug to Figure 1 .
How does the critical tension compare with the valye ).
obtained using the full solution of the partial differentiq
equation?

\n/l’iQ Dynamin on tubules

In the chapter, we considered an experiment in which 3
tubule was pulled from a giant unilamellar vesicle and they,
dynamin was added into the solution. The dependence of
nucleation on the radius was inferred by appealing to the

force measured in the trap as shown in Figure 11.36. Here
we rederive this force.

() Write a free energy for the tubule in terms of the bending
energy and the tension.

(b) Find the force due to the bending energy and the surface
tension by evaluating f = —3G,,py1e/dL.

(c) Now consider the effect of the optical trap with stiffness
kirap on the free energy of the tubule/bead system. Assume
that the equilibrium position of the bead corresponds to 2
tubule of length Ly and write down the expression for the
total free energy that Includes the free energy of the tubule
and the energy of the bead in the trap. Find the equilibriu™

value of the tubule length [* i o result 0
balancing the tupy] 5 , and show that it is

: e
optical trap. e force and the force applied by th
* 11.

10 Two-dlmensmnal treatment of MsclL
Consider



