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ECONOMICS 581: LECTURE NOTES 
 
CHAPTER 4: MICROECONOMIC THEORY: A DUAL APPROACH 
 
W. Erwin Diewert                                                                                         March  2011. 
  
1. Introduction 
 
In this chapter, we will show how the theory of convex sets and concave and convex 
functions can be useful in deriving some theorems in microeconomics.  Section 2 starts 
off by developing the properties of cost functions.  It is shown that without assuming any 
regularity properties on an underlying production function, the corresponding function 
satisfies a large number of regularity properties.  Section 3 shows how the cost function 
can be used to determine a production function that is consistent with a given cost 
function satisfying the appropriate regularity conditions.  Section 4 establishes the 
derivative property of the cost function: it is shown that the first order partial derivatives 
of the cost function generate the firm’s system of cost minimizing input demand 
functions.  Section 5 shows how the material in the previous sections can be used to 
derive the comparative statics properties of the producer’s system of cost minimizing 
input demand functions.  Section 6 asks under what conditions can we assume that the 
technology exhibits constant returns to scale.  Section 7 indicates that price elasticities of 
demand will tend to decrease in magnitude as a production model becomes more 
aggregated.  
 
Section 8 notes that the duality between cost and production functions is isomorphic or 
identical to the duality between utility and expenditure functions.  In this extension of the 
previous theory, the output level of the producer is replaced with the utility level of the 
consumer, the production function of the producer is replaced with the utility function of 
the consumer and the producer’s cost minimization problem is replaced by the problem 
of the consumer minimizing the expenditure required to attain a target utility level.  Thus 
the results in the first 5 sections have an immediate application to the consumer’s system 
of Hicksian demand functions. 
 
The final sections of the chapter return to producer theory but it is no longer assumed that 
only one output is produced; we extend the earlier analysis to the case of multiple output 
and multiple input technologies. 
 
2. Properties of Cost Functions 
 
The production function and the corresponding cost function play a central role in many 
economic applications.  In this section, we will show that under certain conditions, the 
cost function is a sufficient statistic for the corresponding production function; i.e., if we 
know the cost function of a producer, then this cost function can be used to generate the 
underlying production function. 
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Let the producer’s production function f(x) denote the maximum amount of output that 
can be produced in a given time period, given that the producer has access to the 
nonnegative vector of inputs, x ≡ [x1,…,xN] ≥ 0N.  If the production function satisfies 
certain regularity conditions,1 then given any positive output level y that the technology 
can produce and any strictly positive vector of input prices p ≡ [p1,…,pN] >> 0N, we can 
calculate the producer’s cost function C(y,p) as the solution value to the following 
constrained minimization problem: 
 
(1) C(y,p) ≡ minx {pTx : f(x) ≥ y ; x ≥ 0N}.  
 
It turns out that the cost function C will satisfy the following 7 properties, irrespective of 
the properties of the production function f. 
 
Theorem 1;  Diewert (1982; 537-543)2: Suppose f is continuous from above.  Then C 
defined by (1) has the following properties: 
 
Property 1: C(y,p) is a nonnegative function. 
Property 2: C(y,p) is positively linearly homogeneous in p for each fixed y; i.e.,  
 
(2) C(y,λp) = λC(y,p) for all λ > 0, p >> 0N and y∈Range f (i.e., y is an output level that  
      is producible by the production function f). 
 
Property 3: C(y,p) is nondecreasing in p for each fixed y∈Range f; i.e., 
 
(3) y∈Range f, 0N << p1 < p2 implies C(y,p1) ≤ C(y,p2). 
  
Property 4: C(y,p) is a concave function of p for each fixed y∈Range f; i.e., 
 
(4) y∈Range f, p1 >> 0N; p2 >> 0N; 0 < λ < 1 implies  
            C(y,λp1+(1−λ)p2) ≥ λC(y,p1) + (1−λ)C(y,p2). 
 
Property 5: C(y,p) is a continuous function of p for each fixed y∈Range f. 
Property 6: C(y,p) is nondecreasing in y for fixed p; i.e., 
 
(5) p >> 0N, y1∈Range f, y2∈Range f, y1 < y2 implies C(y1,p) ≤ C(y2,p). 
 
Property 7: For every p >> 0N, C(y,p) is continuous from below in y; i.e., 
 
(6) y*∈Range f , yn∈Range f for n = 1,2,…, yn ≤ yn+1, limn→∝y


n = y* implies  
            limn→∝ C(y


n,p) = C(y*,p). 


                                                 
1 We require that f be continuous from above for the minimum to the cost minimization problem to exist; 
i.e., for every output level y that can be produced by the technology (so that y∈Range f), we require that the 
set of x’s that can produce at least output level y (this is the upper level set L(y) ≡ {x : f(x) ≥ y}) is a closed 
set in RN.  
2 For the history of closely related results, see Diewert (1974a; 116-120). 
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Proof of Property 1: Let y∈Range f and p >> 0N.  Then 
 
C(y,p) ≡ minx {pTx : f(x) ≥ y ; x ≥ 0N} 
           = pTx*                                               where x* ≥ 0N and f(x*) ≥ y 
           ≥ 0                                                     since p >> 0N and x* ≥ 0N. 
 
Proof of Property 2: Let y∈Range f, p >> 0N and λ > 0.  Then 
 
C(y,λp) ≡ minx {λpTx : f(x) ≥ y ; x ≥ 0N} 
             = λ minx {pTx : f(x) ≥ y ; x ≥ 0N}    since λ > 0 
             = λC(y,p)                                         using the definition of C(y,p). 
 
Proof of Property 3: Let y∈Range f, 0N << p1 < p2.  Then 
 
C(y,p2) ≡ minx {p2Tx : f(x) ≥ y ; x ≥ 0N} 
            = p2Tx*                                              where f(x*) ≥ y and x* ≥ 0N 
            ≥ p1Tx*                                              since x* ≥ 0N and p2 > p1  
            ≥ minx {p1Tx : f(x) ≥ y ; x ≥ 0N}       since x* is feasible for this problem 
            ≡ C(y,p1).                                                       
 
Proof of Property 4: Let y∈Range f, p1 >> 0N; p2 >> 0N; 0 < λ < 1.   Then  
  
C(y,λp1+(1−λ)p2) ≡ minx {[λp1+(1−λ)p2]Tx : f(x) ≥ y ; x ≥ 0N} 
                             = [λp1 + (1−λ)p2]Tx*       where x* ≥ 0N and f(x*) ≥ y 
                             = λp1Tx* + (1−λ)p2Tx*   
                             ≥ λ minx {p1Tx : f(x) ≥ y ; x ≥ 0N} + (1−λ)p2Tx*  
                                       since x* is feasible for the cost minimization problem that uses  
                                       the price vector p1 and using also λ > 0 
                             = λC(y,p1) + (1−λ)p2Tx*    using the definition of C(y,p1) 
                              ≥ λC(y,p1) + (1−λ) minx {p2Tx : f(x) ≥ y ; x ≥ 0N} 
                                       since x* is feasible for the cost minimization problem that uses  
                                       the price vector p2 and using also 1−λ > 0 
                              = λC(y,p1) + (1−λ)C(y,p2)     using the definition of C(y,p2). 
 
Figure 1 below illustrates why this concavity property holds. 
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In Figure 1, the isocost line {x: p1Tx = C(y,p1)} is tangent to the production possibilities 
set L(y) ≡ {x: f(x) ≥ y, x ≥ 0N} at the point x1 and the isocost line {x: p2Tx = C(y,p2)} is 
tangent to the production possibilities set L(y) at the point x2.  Note that the point x** 
belongs to both of these isocost lines.  Thus x** will belong to any weighted average of 
the two isocost lines.  The λ and 1−λ weighted average isocost line is the set {x: 
[λp1+(1−λ)p2]Tx = λC(y,p1) + (1−λ)C(y,p2)} and this set is the dotted line through x** in 
Figure 1.  Note that this dotted line lies below3 the parallel dotted line that is just tangent 
to L(y), which is the isocost line {x: [λp1+(1−λ)p2]Tx = [λp1+(1−λ)p2]Tx* = 
C(y,λp1+(1−λ)p2)} and it is this fact that gives us the concavity inequality (4). 
 
Proof of Property 5: Since C(y,p) is a concave function of p defined over the open set of 
p’s, Ω ≡ {p: p >> 0N}, it follows that C(y,p) is also continuous in p over this domain of 
definition set for each fixed y∈Range f.4                                           
   
Proof of Property 6: Let p >> 0N, y1∈Range f, y2∈Range f, y1 < y2.  Then 
 
C(y2,p) ≡ minx {pTx : f(x) ≥ y2 ; x ≥ 0N} 
         ≥ minx {pTx : f(x) ≥ y1 ; x ≥ 0N} 
                  since if y1 < y2, the set {x : f(x) ≥ y2} is a subset of the set {x : f(x) ≥ y1} and 
                  the minimum of a linear function over a bigger set cannot increase 
         ≡ C(y1,p). 
 
Proof of Property 7: The proof is rather technical and may be found in Diewert (1993; 
113-114).                                                                                                                     Q.E.D. 
                                                 
3 It can happen that the two dotted lines coincide. 
4 See Fenchel (1953; 75) or Rockafellar (1970; 82). 


Figure 1: The Concavity in Prices Property of the Cost Function 
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Problems 
 
1. In industrial organization,5 it used to be fairly common to assume that a firm’s cost 
function had the following linear functional form: C(y,p) ≡ α + βTp + γy where α and γ 
are scalar parameters and β is a vector of parameters to be estimated econometrically.  
What are sufficient conditions on these N+2 parameters for this cost function to satisfy 
properties 1 to 7 above?  Is the resulting cost function very realistic? 
 
2. Suppose a producer’s production function, f(x), defined for x∈S where S ≡ {x: x ≥ 0N} 
satisfies the following conditions: 
(i) f is continuous over S; 
(ii) f(x) > 0 if x >> 0N and 
(iii) f is positively linearly homogeneous over S; i.e., for every x ≥ 0N and λ > 0, f(λx) = 
λf(x). 
Define the producer’s unit cost function c(p) for p >> 0N as follows: 
(iv) c(p) ≡ C(1,p) ≡ minx {pTx : f(x) ≥ 1 ; x ≥ 0N}; 
i.e., c(p) is the minimum cost of producing one unit of output if the producer faces the 
positive input price vector p.  For y > 0 and p >> 0N, show that 
(v) C(y,p) = c(p)y. 
Note: A production  function f that satisfies property (iii) is said to exhibit constant 
returns to scale.  The interpretation of (v) is that if a production function exhibits 
constant returns to scale, then total cost is equal to unit cost times the output level. 
 
3. Shephard (1953; 4) defined a production function F to be homothetic if it could be 
written as 
(i) F(x) = g[f(x)] ; x ≥ 0N 
where f satisfies conditions (i)-(iii) in Problem 2 above and g(z), defined for all z ≥ 0, 
satisfies the following regularity conditions: 
(ii) g(z) is positive if z > 0; 
(iii) g is a continuous function of one variable and 
(iv) g is monotonically increasing; i.e., if 0 ≤ z1 < z2, then g(z1) < g(z2). 
Let C(y,p) be the cost function that corresponds to F(x).  Show that under the above 
assumptions, for y > 0 and p >> 0N, we have 
(v) C(y,p) = g−1(y)c(p) 
where c(p) is the unit cost function that corresponds to the linearly homogeneous f and 
g−1 is the inverse function for g; i.e., g−1[g(z)] = z for all z ≥ 0.  Note that g−1(y) is a 
monotonically increasing continuous function of one variable.  
 
3. The Determination of the Production Function from the Cost Function 
 
The material in the previous section shows how the cost function can be determined from 
a knowledge of the production function.  We now ask whether a knowledge of the cost 


                                                 
5 For example, see Walters (1961). 
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function is sufficient to determine the underlying production function.  The answer to this 
question is yes, but with some qualifications. 
 
To see how we might use a given cost function (satisfying the 7 regularity conditions 
listed in the previous section) to determine the production function that generated it, pick 
an arbitrary feasible output level y > 0 and an arbitrary vector of positive prices, p1 >> 0N 
and use the given cost function C to define the following isocost surface: {x: p1Tx = 
C(y,p1)}.  This isocost surface must be tangent to the set of feasible input combinations x 
that can produce at least output level y, which is the upper level set, L(y) ≡ {x: f(x) ≥ y; x 
≥ 0N}.  It can be seen that this isocost surface and the set lying above it must contain the 
upper level set L(y); i.e., the following halfspace M(y,p1), contains L(y): 
 
(7) M(y,p1) ≡ {x: p1Tx ≥ C(y,p1)}. 
 
Pick another positive vector of prices, p2 >> 0N and it can be seen, repeating the above 
argument, that the halfspace M(y,p2) ≡ {x: p2Tx ≥ C(y,p2)} must also contain the upper 
level set L(y).  Thus L(y) must belong to the intersection of the two halfspaces M(y,p1) 
and M(y,p2).  Continuing to argue along these lines, it can be seen that L(y) must be 
contained in the following set, which is the intersection of all of the supporting halfspaces 
to L(y): 
 
(8) M(y) ≡ M(y,p). 
 
Note that M(y) is defined using just the given cost function, C(y,p).  Note also that since 
each of the sets in the intersection, M(y,p), is a convex set, then M(y) is also a convex set.  
Since L(y) is a subset of each M(y,p), it must be the case that L(y) is also a subset of 
M(y); i.e., we have 
 
(9) L(y) ⊂ M(y). 
 
Is it the case that L(y) is equal to M(y)?  In general, the answer is no; M(y) forms an 
outer approximation to the true production possibilities set L(y).  To see why this is, see 
Figure 1 above.  The boundary of the set M(y) partly coincides with the boundary of L(y) 
but it encloses a bigger set: the backward bending parts of the isoquant {x: f(x) = y} are 
replaced by the dashed lines that are parallel to the x1 axis and the x2 axis and the inward 
bending part of the true isoquant is replaced by the dashed line that is tangent to the two 
regions where the boundary of M(y) coincides with the boundary of L(y).  However, if 
the producer is a price taker in input markets, then it can be seen that we will never 
observe the producer’s nonconvex portions or backwards bending parts of the isoquant.  
Thus under the assumption of competitive behavior in input markets, there is no loss of 
generality in assuming that the producer’s production function is nondecreasing (this will 
eliminate the backward bending isoquants) or in assuming that the upper level sets of the 
production function are convex sets (this will eliminate the nonconvex portions of the 
upper level sets).  Recall that a function has convex upper level sets if and only if it is 
quasiconcave. 
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Putting the above material together, we see that conditions on the production function 
f(x) that are necessary for the sets M(y) and L(y) to coincide are: 
 
(10) f(x) is defined for x ≥ 0N and is continuous from above6 over this domain of 
        definition set; 
(11) f is nondecreasing and 
(12) f is quasiconcave.         
  
Theorem 2: Shephard Duality Theorem:7 If f satisfies (10)-(12), then the cost function C 
defined by (1) satisfies the properties listed in Theorem 1 above and the upper level sets 
M(y) defined by (8) using only the cost function coincide with the upper level sets L(y) 
defined using the production function; i.e., under these regularity conditions, the 
production function and the cost function determine each other. 
 
We now consider how an explicit formula for the production function in terms of the cost 
function can be obtained.  Suppose we have a given cost function, C(y,p), and we are 
given a strictly positive input vector, x >> 0N, and we ask what is the maximum output 
that this x can produce.  It can be seen that 
 
(13) f(x) = maxy {y: x∈M(y)} 
              = maxy {y: C(y,p) ≤ pTx for every p >> 0N}  using definitions (7) and (8). 
              = maxy {y: C(y,p) ≤ 1 for every p >> 0N such that pTx = 1} 
 
where the last equality follows using the fact that C(y,p) is linearly homogeneous in p as 
is the function pTx and hence we can normalize the prices so that pTx = 1. 
 
We now have to make a bit of a digression and consider the continuity properties of 
C(y,p) with respect to p.  We have defined C(y,p) for all strictly positive price vectors p 
and since this domain of definition set is open, we know that C(y,p) is also continuous in 
p over this set, using the concavity in prices property of C.  We now would like to extend 
the domain of definition of C(y,p) from the strictly positive orthant of prices, Ω ≡ {p: p 
>> 0N}, to the nonnegative orthant, Clo Ω ≡ {p: p ≥ 0N}, which is the closure of Ω.  It 
turns out that it is possible to do this if we make use of some theorems in convex 
analysis. 
 
Theorem 3: Continuity from above of a concave function using the Fenchel closure 
operation: Fenchel (1953; 78): Let f(x) be a concave function of N variables defined over 
                                                 
6 Since each of the sets M(y,p) in the intersection set M(y) defined by (8) are closed, it can be shown that 
M(y) is also a closed set.  Hence if M(y) is to coincide with L(y), we need the upper level sets of f to be 
closed sets and this will hold if and only if f is continuous from above.  
7 Shephard (1953) (1967) (1970) was the pioneer in establishing various duality theorems between cost and 
production functions.  See also Samuelson (1953-54), Uzawa (1964), McFadden (1966) (1978), Diewert 
(1971) (1974a; 116-118) (1982; 537-545) and Blackorby, Primont and Russell (1978) for various duality 
theorems under alternative regularity conditions.  Our exposition follows that of Diewert (1993; 123-132).  
These duality theorems are global in nature; i.e., the production and cost functions satisfy their appropriate 
regularity conditions over their entire domains of definition.  However, it is also possible to develop duality 
theorems that are local rather than global; see Blackorby and Diewert (1979). 
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the open convex subset S of RN.  Then there exists a unique extension of f to Clo S, the 
closure of S, which is concave and continuous from above. 
 
Proof: By the second characterization of concavity, the hypograph of f, H ≡ {(y,x): y ≤ 
f(x); x∈S}, is a convex set in RN+1.  Hence the closure of H, Clo H, is also a convex set.  
Hence the following function f* defined over Clo S is also a concave function: 
 
(14) f*(x) ≡ maxy {y: (y,x)∈Clo H};                                                            x∈Clo S. 
                = f(x)                                                                                             for x∈S. 
 
Since Clo H is a closed set, it turns out that f* is continuous from above.                Q.E.D. 
 
To see that the extension function f* need not be continuous, consider the following 
example, where the domain of definition set is S ≡ {(x1,x2); x2∈R1, x1 ≥ x22} in R2: 
 
(15) f(x1,x2) ≡ − x22/x1 if x2 ≠ 0, x1 ≥ x22; 
                    ≡ 0            if x1 = 0 and x2 = 0. 
 
It is possible to show that f is concave and hence continuous over the interior of S; see 
problem 5 below.  However, we show that f is not continuous at (0,0).  Let (x1,x2) 
approach (0,0) along the line x1 = x2 > 0.  Then 
 
(16)  lim → 0 f(x1,x2) =  lim → 0 [− x1


2/x1] = lim → 0 [− x1] = 0. 
 
Now let (x1,x2) approach (0,0) along the parabolic path x2 > 0 and x1 = x22.  Then 
 
(17) lim → 0;  f(x1,x2) =  lim → 0  − x2


2/x22 = −1. 
 
Thus f is not continuous at (0,0).  It can be verified that restricting f to Int S and then 
extending f to the closure of S (which is S) leads to the same f* as is defined by (15).  
Thus the Fenchel closure operation does not always result in a continuous concave 
function. 
 
Theorem 4 below states sufficient conditions for the Fenchel closure of a concave 
function defined over an open domain of definition set to be continuous over the closure 
of the original domain of definition.  Fortunately, the hypotheses of this Theorem are 
weak enough to cover most economic applications.  Before stating the theorem, we need 
an additional definition. 
 
Definition:  A set S in RN is a polyhedral set iff S is equal to the intersection of a finite 
number of halfspaces.    
 
Theorem 4: Continuity of a concave function using the Fenchel closure operation; Gale, 
Klee and Rockafellar (1968), Rockafellar (1970; 85): Let f be a concave function of N 
variables defined over an open convex polyhedral set S.  Suppose f is bounded from 
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below over every bounded subset of S.  Then the Fenchel closure extension of f to the 
closure of S results in a continuous concave function defined over Clo S. 
 
The proof of this result is a bit too involved for us to reproduce here but we can now 
apply this result. 
 
Applying Theorem 4, we can extend the domain of definition of C(y,p) from strictly 
positive price vectors p to nonnegative price vectors using the Fenchel closure operation 
and hence C(y,p) will be continuous and concave in p over the set {p: p ≥ 0N} for each y 
in the interval of feasible outputs.8    
 
Now we can return to the problem where we have a given cost function, C(y,p), we are 
given a strictly positive input vector, x >> 0N, and we ask what is the maximum output 
that this x can produce.  Repeating the analysis in (13), we have 
 
(18) f(x) = maxy {y: x∈M(y)} 
              = maxy {y: C(y,p) ≤ pTx for every p >> 0N}  using definitions (7) and (8). 
              = maxy {y: C(y,p) ≤ 1 for every p >> 0N such that pTx = 1} 
                              where we have used the linear homogeneity in prices property of C 
              = maxy {y: C(y,p) ≤ 1 for every p ≥ 0N such that pTx = 1}  
                              where we have extended the domain of definition of C(y,p) to 
                              nonnegative prices from positive prices and used the continuity 
                              of the extension function over the set of nonnegative prices 
              = maxy {y: G(y,x) ≤ 1} 
 
where the function G(y,x) is defined as follows: 
 
(19) G(y,x) ≡ maxp {C(y,p): p ≥ 0N and pTx = 1}. 
 
Note that the maximum in (19) will exist since C(y,p) is continuous in p and the feasible 
region for the maximization problem, {p: p ≥ 0N and pTx = 1}, is a closed and bounded 
set.9  Property 7 on the cost function C(y,p) will imply that the maximum in the last line 
of (18) will exist.  Property 6 on the cost function will imply that for fixed x, G(y,x) is 
nondecreasing in y.  Typically, G(y,x) will be continuous in y for a fixed x and so the 
maximum y that solves (18) will be the y* that satisfies the following equation:10 
 
(20) G(y*,x) = 1. 
 
Thus (19) and (20) implicitly define the production function y* = f(x) in terms of the cost 
function C.  
 
                                                 
8 If f(0N) = 0 and f(x) tends to plus infinity as the components of x tend to plus infinity, then the feasible y 
set will be y ≥ 0 and C(y,p) will be defined for all y ≥ 0 and p ≥ 0N. 
9 Here is where we use the assumption that x >> 0N in order to obtain the boundedness of this set. 
10 This method for constructing the production function from the cost function may be found in Diewert 
(1974a; 119). 
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Problems 
 
4. Show that the f(x1,x2) defined by (15) above is a concave function over the interior of 
the domain of definition set S.  You do not have to show that S is a convex set. 
 
5. In the case where the technology is subject to constant returns to scale, the cost 
function has the following form: C(y,p) = yc(p) where c(p) is a unit cost function.  For x 
>> 0N, define the function g(x) as follows: 
(i) g(x) ≡ maxp {c(p): pTx = 1; p ≥ 0N}. 
Show that in this constant returns to scale case, the function G(y,x) defined by (19) 
reduces to 
(ii) G(y,x) = yg(x). 
Show that in this constant returns to scale case, the production function that is dual to the 
cost function has the following explicit formula for x >> 0N: 
(iii) f(x) = 1/g(x). 
 
6. Let x ≥ 0 be input (a scalar number) and let y = f(x) ≥ 0 be the maximum output that 
could be produced by input x, where f is the production function.  Suppose that f is 
defined as the following step function: 
 
(i) f(x) ≡ 0 for 0 ≤ x < 1; 
            ≡ 1 for 1 ≤ x < 2; 
            ≡ 2 for 2 ≤ x < 3; 
 
and so on.  Thus the technology cannot produce fractional units of output and it takes one 
full unit of input to produce each unit of output.  It can be verified that this production 
function is continuous from above.   
(a) Calculate the cost function C(y,1) that corresponds to this production function; i.e., set 
the input price equal to one and try to determine the corresponding total cost function 
C(y,1).  (It will turn out that this cost function is continuous from below in y but it is not 
necessary to prove this). 
(b) Graph both the production function y = f(x) and the cost function c = C(y,1). 
 
7.  Suppose that a producer’s cost function is defined as follows for y ≥ 0, p1 > 0 and p2 > 
0: 
 
(i) C(y,p1,p2) ≡ [b11p1 + 2b12(p1p2)1/2 + b22p2]y 
 
where the bij parameters are all positive.   
(a) Show that this cost function is concave in the input prices p1,p2.  Note: this is the two 
input case of the Generalized Leontief cost function defined by Diewert (1971). 
(b) Calculate an explicit functional form for the corresponding production function 
f(x1,x2) where we assume that x1 > 0 and x2 > 0. 
 
4. The Derivative Property of the Cost Function 
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Up to this point, Theorem 2, the Shephard Duality Theorem, is of mainly academic 
interest: if the production function f satisfies properties (10)-(12), then the corresponding 
cost function C defined by (1) satisfies the properties listed in Theorem 1 above and 
moreover completely determines the production function.  However, it is the next 
property of the cost function that makes duality theory so useful in applied economics. 
 
Theorem 5: Shephard’s (1953; 11) Lemma: If the cost function C(y,p) satisfies the 
properties listed in Theorem 1 above and in addition is once differentiable with respect to  
the components of input prices at the point (y*,p*) where y* is in the range of the 
production function f and p* >> 0N, then     
 
(21) x* = ∇pC(y*,p*) 
 
where ∇pC(y*,p*) is the vector of first order partial derivatives of cost with respect to 
input prices, [∂C(y*,p*)/∂p1,..,∂C(y*,p*)/∂pN]T, and x* is any solution to the cost 
minimization problem  
 
(22) minx {p*Tx: f(x) ≥ y*} ≡ C(y*,p*). 
 
Under these differentiability hypotheses, it turns out that the x* solution to (22) is unique. 
 
Proof: Let x* be any solution to the cost minimization problem (22).  Since x* is feasible 
for the cost minimization problem when the input price vector is changed to an arbitrary 
p >> 0N, it follows that 
 
(23) pTx* ≥ C(y*,p)                                                                for every p >> 0N. 
 
Since x* is a solution to the cost minimization problem (22) when p = p*, we must have 
 
(24) p*Tx* = C(y*,p*). 
 
But (23) and (24) imply that the function of N variables, g(p) ≡ pTx* − C(y*,p) is 
nonnegative for all p >> 0N with g(p*) = 0.  Hence, g(p) attains a global minimum at p = 
p* and since g(p) is differentiable with respect to the input prices p at this point, the 
following first order necessary conditions for a minimum must hold at this point: 
 
(25) ∇p g(p*) = x* − ∇pC(y*,p*) = 0N. 
 
Now note that (25) is equivalent to (21).  If x** is any other solution to the cost 
minimization problem (22), then repeat the above argument to show that  
 
(26) x** = ∇pC(y*,p*) 
              = x*                                                                     
 
where the second equality follows using (25).  Hence x** = x* and the solution to (22) is 
unique.                                                                                                                       Q.E.D. 
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The above result has the following implication: postulate a differentiable functional form 
for the cost function C(y,p) that satisfies the regularity conditions listed in Theorem 1 
above.  Then differentiating C(y,p) with respect to the components of the input price 
vector p generates the firm’s system of cost minimizing input demand functions, x(y,p) ≡ 
∇pC(y,p). 
 
Shephard (1953) was the first person to establish the above result starting with just a cost 
function satisfying the appropriate regularity conditions.11  However, Hotelling (1932; 
594) stated a version of the result in the context of profit functions and Hicks (1946; 331) 
and Samuelson (1953-54; 15-16) established the result starting with a differentiable 
utility or production function. 
 
One application of the above result is its use as an aid in generating systems of cost 
minimizing input demand functions that are linear in the parameters that characterize the 
technology.  For example, suppose that the cost function had the following Generalized 
Leontief functional form:12  
 
(27) C(y,p) ≡ ∑i=1N∑j=1N bij pi1/2 pj1/2 y ;                                     bij = bji for 1 ≤ i < j ≤ N 
 
where the N(N+1)/2 independent bij parameters are all nonnegative.  With these 
nonnegativity restrictions, it can be verified that the C(y,p) defined by (27) satisfies 
properties 1 to 7 listed in Theorem 1.13  Applying Shephard’s Lemma shows that the 
system of cost minimizing input demand functions that correspond to this functional form 
are given by: 
 
(28) xi(y,p) = ∂C(y,p)/∂pi = ∑j=1N bij (pj/pi)1/2 y ;                         i = 1,2,…,N. 
 
Errors can be added to the system of equations (28) and the parameters bij can be 
estimated using linear regression techniques if we have time series or cross sectional data 
on output, inputs and input prices.14  If all of the bij equal zero for i ≠ j, then the demand 
functions become: 
 
(29) xi(y,p) = ∂C(y,p)/∂pi = bii y ;                         i = 1,2,…,N. 
 


                                                 
11 See also Fenchel (1953; 104).  We have used the technique of proof used by McKenzie (1956-57). 
12 See Diewert (1971). 
13 Using problem 7 above, it can be seen that if the bij are nonnegative and y is positive, then the functions 
bij pi


1/2 pj
1/2 y are concave in the components of p.  Hence, since a sum of concave functions is concave, it 


can be seen that the C(y,p) defined by (27) is concave in the components of p. 
14 Note that b12 will appear in the first input demand equation and in the second as well using the cross 
equation symmetry condition, b21 = b12.  There are N(N−1)/2 such cross equation symmetry conditions and 
we could test for their validity or impose them in order to save degrees of freedom.  The nonnegativity 
restrictions that ensure global concavity of C(y,p) in p can be imposed if we replace each parameter bij by a 
squared parameter, (aij)


2.  However, the resulting system of estimating equations is no longer linear in the 
unknown parameters. 
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Note that input prices do not appear in the system of input demand functions defined by 
(29) so that input quantities do not respond to changes in the relative prices of inputs.  
The corresponding production function is known as the Leontief (1941) production 
function.15  Hence, it can be seen that the production function that corresponds to (28) is a 
generalization of this production function.  The unit output isoquant for the Leontief 
production function is graphed below in Figure 2. 
 


 
 
 
5. The Comparative Statics Properties of Input Demand Functions  
 
Before we develop the main result in this section, it will be useful to establish some 
results about the derivatives of a twice continuously differentiable linearly homogeneous 
function of N variables.  We say that f(x), defined for x >> 0N is positively homogeneous 
of degree α iff f has the following property: 
 
(30) f(λx) = λαf(x)                                 for all x >> 0N and λ > 0. 
 
A special case of the above definition occurs when the number α in the above definition 
equals 1.  In this case, we say that f is (positively) linearly homogeneous16 iff 
 
(31) f(λx) = λf(x)                                 for all x >> 0N and λ > 0. 
 
                                                 
15 The Leontief production function can be defined as f(x1,…,xN) ≡ mini {xi/bii : i = 1,…,N}.  It is also 
known as the no substitution production function.  Note that this production function is not differentiable 
even though its cost function is differentiable. 
16 Usually in economics, we omit the adjective “positively” but it is understood that the λ which appears in 
definitions (30) and (31) is restricted to be positive. 


Figure 2: The Two Input Leontief Production Function 
x2 


x1 
(0,0) b11  2b11 


2b22 


b22 


{x: f(x) = 2} 


{x: f(x) =1} 
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Theorem 6: Euler’s Theorems on Differentiable Homogeneous Functions: Let f(x) be a 
(positively) linearly homogeneous function of N variables, defined for x >> 0N. Part 1: If 
the first order partial derivatives of f exist, then the first order partial derivatives of f 
satisfy the following equation: 
 
(32) f(x) = ∑n=1N xn ∂f(x1,…,xN)/∂xn = xT∇f(x)                                            for all x >> 0N. 
 
Part 2: If the second order partial derivatives of f exist, then they satisfy the following 
equations: 
 
(33) ∑j=1N [∂2f(x1,…,xN)/∂xn∂xj]xj = 0                                 for all x >> 0N and n = 1,…,N. 
 
The N equations in (33) can be written using matrix notation in a much more compact 
form as follows: 
 
(34) ∇2f(x)x = 0N                                                                  for all x >> 0N. 
 
Proof of Part 1: Let x >> 0N and λ > 0.  Differentiating both sides of (31) with respect to 
λ leads to the following equation using the composite function chain rule: 
 
(35) f(x) = ∑n=1N [∂f(λx1,…,λxN)/∂(λxn)][∂(λxn)/∂λ] 
              = ∑n=1N [∂f(λx1,…,λxN)/∂(λxn)]xn . 
 
Now evaluate (35) at λ = 1 and we obtain (32). 
  
Proof of Part 2: Let x >> 0N and λ > 0.  For n = 1,…,N, differentiate both sides of (31) 
with respect to xn and we obtain the following N equations: 
 
(36) fn(λx1,…,λxN)∂(λxn)/∂xn = λfn(x1,…,xN)                        for n = 1,…,N or 
                      fn(λx1,…,λxN)λ = λfn(x1,…,xN)                        for n = 1,…,N or 
                        fn(λx1,…,λxN) = fn(x1,…,xN)                          for n = 1,…,N 
 
where the nth first order partial derivative function is defined as fn(x1,…,xN) ≡ 
∂f(x1,…,xN)/∂xn for n = 1,…,N.17  Now differentiate both sides of the last set of equations 
in (36) with respect to λ and we obtain the following N equations: 
 
(37) 0 = ∑j=1N [∂fn(λx1,…,λxN)/∂xj][∂(λxj)/∂λ]                      for n = 1,…,N                     
           = ∑j=1N [∂fn(λx1,…,λxN)/∂xj]xj . 
 
Now evaluate (37) at λ = 1 and we obtain the N equations (33).                         Q.E.D. 
 


                                                 
17 Using definition (30) for the case where α = 0, it can be seen that the last set of equations in (36) shows 
that the first order partial derivative functions of a linearly homogenous function are homogeneous of 
degree 0.  
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The above results can be applied to the cost function, C(y,p).  From Theorem 1, C(y,p) is 
linearly homogeneous in p.  Hence by part 2 of Euler’s Theorem, if the second order 
partial derivatives of the cost function with respect to the components of the input price 
vector p exist, then these derivatives satisfy the following restrictions: 
 
(38) ∇2ppC(y,p)p = 0N. 
 
Theorem 7: Diewert (1982; 567): Suppose the cost function C(y,p) satisfies the properties 
listed in Theorem 1 and in addition is twice continuously differentiable with respect to 
the components of its input price vector at some point, (y,p).  Then the system of cost 
minimizing input demand equations, x(y,p) ≡ [x1(y,p),…,xN(y,p)]T, exists at this point 
and these input demand functions are once continuously differentiable.  Form the N by N 
matrix of input demand derivatives with respect to input prices, B ≡ [∂xi(y,p)/∂pj], which 
has ij element equal to ∂xi(y,p)/∂pj.  Then the matrix B has the following properties: 
 
(39) B = BT   so that ∂xi(y,p)/∂pj = ∂xj(y,p)/∂pi for all i ≠ j;18 
(40) B is negative semidefinite19 and  
(41) Bp = 0N.20 
 
Proof:  Shephard’s Lemma implies that the firm’s system of cost minimizing input 
demand equations, x(y,p) ≡ [x1(y,p),…,xN(y,p)]T, exists and is equal to  
 
(42) x(y,p) = ∇pC(y,p). 
 
Differentiating both sides of (42) with respect to the components of p gives us 
 
(43) B ≡ [∂xi(y,p)/∂pj] = ∇2ppC(y,p). 
 
Now property (39) follows from Young’s Theorem in calculus.  Property (40) follows 
from (43) and the fact that C(y,p) is concave in p and the fourth characterization of 
concavity.  Finally, property (41) follows from the fact that the cost function is linearly 
homogeneous in p and hence (38) holds.                                                                  Q.E.D.   
 
Note that property (40) implies the following properties on the input demand functions: 
 
(44) ∂xn(y,p)/∂pn ≤ 0                                                      for n = 1,…,N. 
 
Property (44) means that input demand curves cannot be upward sloping. 
 


                                                 
18 These are the Hicks (1946; 311) and Samuelson (1947; 69) symmetry restrictions.  Hotelling (1932; 549) 
obtained analogues to these symmetry conditions in the profit function context. 
19 Hicks (1946; 311) and Samuelson (1947; 69) also obtained versions of this result by starting with the 
production (or utility) function F(x), assuming that the first order conditions for solving the cost 
minimization problem held and that the strong second order sufficient conditions for the primal cost 
minimization problem also held.   
20 Hicks (1946; 331) and Samuelson (1947; 69) also obtained this result using their primal technique. 
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If the cost function is also differentiable with respect to the output variable y, then we can 
deduce an additional property about the first order derivatives of the input demand 
functions. The linear homogeneity property of C(y,p) in p implies that the following 
equation holds for all λ > 0: 
 
(45) C(y,λp) = λC(y,p)                                                           for all λ > 0 and p >> 0N. 
 
Partially differentiating both sides of (45) with respect to y leads to the following 
equation: 
 
(46) ∂C(y,λp)/∂y = λ∂C(y,p)/∂y                                                  for all λ > 0 and p >> 0N. 
 
But (46) implies that the function ∂C(y,p)/∂y is linearly homogeneous in p and hence part 
1 of Euler’s Theorem applied to this function gives us the following equation: 
 
(47) ∂C(y,p)/∂y = ∑n=1N pn∂2C(y,p)/∂y∂pn = pT∇2ypC(y,p). 
 
But using (42), it can be seen that (47) is equivalent to the following equation:21 
 
(48) ∂C(y,p)/∂y = ∑n=1N pn∂xn(y,p)/∂y.  
  
Problems 
 
8. For i ≠ j, the inputs i and j are said to be substitutes if ∂xi(y,p)/∂pj = ∂xj(y,p)/∂pi > 0, 
unrelated if ∂xi(y,p)/∂pj = ∂xj(y,p)/∂pi = 022, and complements if ∂xi(y,p)/∂pj = 
∂xj(y,p)/∂pi < 0. (a) If N = 2, show that the two inputs cannot be complements. (b)  If N = 
2 and ∂x1(y,p)/∂p1 = 0, then show that all of the remaining input demand price derivatives 
are equal to 0; i.e., show that ∂x1(y,p)/∂p2 = ∂x2(y,p)/∂p1 = ∂x2(y,p)/∂p2 = 0.  (c) If N = 3, 
show that at most one pair of inputs can be complements.23 
  
9. Let N ≥ 3 and suppose that ∂x1(y,p)/∂p1 = 0.  Then show that ∂x1(y,p)/∂pn = 0 as well 
for n = 2,3,…,N. Hint: You will need to use the definition of negative semidefiniteness in 
a strategic way.  This problem shows that if the own input elasticity of demand for an 
input is 0, then that input is unrelated to all other inputs. 
 
10.  Recall the definition (27) of the Generalized Leontief cost function where the 
parameters bij were all assumed to be nonnegative.  Show that under these nonnegativity 
restrictions, every input pair is either unrelated or substitutes.  Hint: Simply calculate 
∂2C(y,p)/∂pi∂pj for i ≠ j and look at the resulting formula.  Comment: This result shows 


                                                 
21 This method of deriving these restrictions is due to Diewert (1982; 568) but these restrictions were 
originally derived by Samuelson (1949; 66) using his primal cost minimization method. 
22 Pollak (1969; 67) uses the term “unrelated” in a similar context. 
23 This result is due to Hicks (1946; 311-312): “It follows at once from Rule (5) that, while it is possible for 
all other goods consumed to be substitutes for xr, it is not possible for them all to be complementary with 
it.” 
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that if we impose the nonnegativity conditions bij ≥ 0 for i ≠ j on this functional form in 
order to ensure that it is globally concave in prices, then we have a priori ruled out any 
form of complementarity between the inputs.  This means if the number of inputs N is 
greater than 2, this nonnegativity restricted functional form cannot be a flexible functional 
form24 for a cost function; i.e., it cannot attain an arbitrary pattern of demand derivatives 
that are consistent with microeconomic theory, since the nonnegativity restrictions rule 
out any form of complementarity.  
 
11. Suppose that a producer’s three input production function has the following Cobb 
Douglas (1928) functional form: 
 
(a) f(x1,x2,x3) ≡              where α1 > 0, α2 > 0, α3 > 0 and  α1 + α2 + α3 = 1. 
 
Let the positive input prices p1 > 0, p2 > 0, p3 > 0 and the positive output level y > 0 be 
given.  (i) Calculate the producer’s cost function, C(y,p1,p2,p3) along with the three input 
demand functions, x1(y,p1,p2,p3), x2(y,p1,p2,p3) and x3(y,p1,p2,p3).  Hint: Use the usual 
Lagrangian technique for solving constrained minimization problems.  You need not 
check the second order conditions for the problem.  The positive constant k ≡ 


  will appear in the cost function. 
 
(ii) Calculate the input one demand elasticity with respect to output 
[∂x1(y,p1,p2,p3)/∂y][y/x1(y,p1,p2,p3)] and the three input one demand elasticities with 
respect to input prices [∂x1(y,p1,p2,p3)/∂pn][pn/x1(y,p1,p2,p3)] for n = 1,2,3. 
 
(iii) Show that −1 < [∂x1(y,p1,p2,p3)/∂p1][p1/x1(y,p1,p2,p3)] < 0. 
(iv) Show that   0 < [∂x1(y,p1,p2,p3)/∂p2][p2/x1(y,p1,p2,p3)] < 1. 
(v)  Show that   0 < [∂x1(y,p1,p2,p3)/∂p3][p3/x1(y,p1,p2,p3)] < 1. 
 
(vi) Can any pair of inputs be complementary if the technology is a three input Cobb 
Douglas? 
 
Comment: The Cobb Douglas functional form is widely used in macroeconomics and in 
applied general equilibrium models.  However, this problem shows that it is not 
satisfactory if N ≥ 3.  Even in the N = 2 case where analogues to (iii) and (iv) above hold, 


                                                 
24 Diewert (1974; 115 and 133) introduced the term “flexible functional form” to describe a functional form 
for a cost function (or production function) that could approximate an arbitrary cost function (consistent 
with microeconomic theory) to the second order around any given point.  The Generalized Leontief cost 
function defined by (27) above is flexible for the class of cost functions that are dual to linearly 
homogeneous production functions if we do not impose any restrictions on the parameters bij; see Diewert 
(1971) and section 9 below for a proof of this fact.  However, if we do not impose the nonnegativity 
restrictions bij ≥ 0 for i ≠ j on this functional form, it will frequently turn out that when these parameters are 
econometrically estimated, the resulting cost function fails the concavity restrictions, ∇2ppC(y


t,pt) is 
negative semidefinite, at one or more points (yt,pt) in the observed data set that was used in the econometric 
estimation.  Thus finding flexible functional forms where the restrictions implied by microeconomic theory 
can be imposed on the functional form without destroying its flexibility is a nontrivial task.   
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it can be seen that this functional form is not consistent with technologies where the 
degree of substitution between inputs is very high or very low. 
 
12. Suppose that the second order partial derivatives with respect to input prices of the 
cost function C(y,p) exist so that the nth cost minimizing input demand function xn(y,p) = 
∂C(y,p)/∂pn > 0 exists for n = 1,…,N.  Define the input n elasticity of demand with 
respect to input price k as follows: 
 
(a) enk(y,p) ≡ [∂xn(y,p)/∂pk][pk/xn(y,p)]                        for n = 1,..,N and k = 1,…,N. 
 
Show that for each n, ∑k=1N enk(y,p) = 0.                       
 
13. Let the producer’s cost function be C(y,p), which satisfies the regularity conditions in 
Theorem 1 and, in addition, is once differentiable with respect to the components of the 
input price vector p.  Then the nth input demand function is xn(y,p) ≡ ∂C(y,p)/∂pn for n = 
1,…,N.  Input n is defined to be normal at the point (y,p) if ∂xn(y,p)/∂y = ∂2C(y,p)/∂pn∂y 
> 0; i.e., if the cost minimizing demand for input n increases as the target output level y 
increases.  On the other hand, input n is defined to be inferior at the point (y,p) if 
∂xn(y,p)/∂y = ∂2C(y,p)/∂pn∂y < 0.  Prove that not all N inputs can be inferior at the point 
(y,p).  Hint: Make use of (48). 
 
14. If the production function f dual to the differentiable cost function C(y,p) exhibits 
constant returns to scale so that f(λx) = λf(x) for all x ≥ 0N and all λ > 0, then show that 
for each n, the input n elasticity of demand with respect to the output level y is 1; i.e., 
show that for n = 1,…,N, [∂xn(y,p)/∂y][y/xn(y,p)] = 1. 
 
6. When is the Assumption of Constant Returns to Scale in Production Justified? 
 
In many areas of applied economics, constant returns to scale in production is frequently 
assumed.  In this section, we present a justification for making this assumption.  The 
basic ideas are due to Samuelson (1967) but some of the technical details are due to 
Diewert (1981). 
 
Assume that the technology of a single plant in an industry can be described by means of 
the production function y = F(x) where y is the maximum plant output producible by the 
input vector x ≡ [x1,…,xN].  We will eventually make three assumptions about the plant 
production function F; the first two are listed below. 
 
Assumption 1 on F: F is continuous from above over the domain x ≥ 0N. 
 
Assumption 2 on F: F is a nonnegative function with F(0N) = 0 and F(x*) > 0 for at least 
one x* > 0N. 
 
As was shown in Theorem 1 above, Assumption 1 is sufficient to imply that the cost 
function C(y,p): 
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(49) C(y,p) ≡ minx {pTx: F(x) ≥ y} 
 
is well defined for all strictly positive input price vectors p >> 0N and all output levels 
y∈Y where Y is the smallest convex set containing the range of F. 
 
Assumption 2 on F implies that total plant cost will be positive for positive output y and 
positive input price vectors p; that is: 
 
(50) C(y,p) > 0                                                    for y∈Y, y > 0 and p >> 0N. 
 
The first two assumptions on F are extremely weak.  However, our next assumption, 
while reasonably weak, does not always hold.25 
 
 Assumption 3 on F: F is such that for every p* >> 0N, a solution y* to the following 
average cost minimization problem exists: 
 
(51) miny {C(y,p*)/y: y > 0; y∈Y} ≡ c(p*). 
 
Figure 3 illustrates the geometry of the average cost minimization problem (51). 
 


 
 
The solid curve in Figure 3 is the graph of the cost C(y,p*) as a function of y.  The slope 
of the dashed line in Figure 3 is equal to C(y*,p*)/y* and note that this line is the line 
through the origin that has the lowest slope and is also tangent to the graph of C(y,p*) as 


                                                 
25 However, one could argue that it will always hold in real world situations.  Eventually, as the target 
output level y becomes very large, total costs C(y,p) will increase at ever increasing rates (due to the 
finiteness of world resources) and Assumption 3 will be satisfied. 


y* y 


C(y,p*) 


Figure 3: The Geometry of Average Cost Minimization 
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a function of y.  Thus in this case, average plant cost is uniquely minimized at the output 
level y*. 
 
However, one can construct examples of production functions F where Assumption 3 
does not hold.  For example, consider the following one output, one input production 
function F defined as follows: 
 
(52) F(x) ≡ (1/2)x2                for 0 ≤ x ≤ 1; 
               ≡ x − (1/2)              for x > 1. 
 
If we set the single input price p1 equal to 1, then the cost function C(y,1) that 
corresponds to this F is defined as follows: 
 
(53) C(y,1) ≡ [2y]1/2               for 0 ≤ y ≤ ½; 
                   ≡ y + (1/2)           for y > ½. 
 
The cost function defined by (53) is graphed in Figure 4. 
 


 
 
    
It can be seen that in this case, average cost is minimized only asymptotically at an 
infinite output level.  Hence, there is no finite y* > 0 that minimizes average cost for this 
example and Assumption 3 is not satisfied for this particular production function. 
 
Let y* solve the average cost minimization problem defined by (51) so that the 
minimized average cost is C(y*,p*)/y*.  We can regard this minimized value as a 
function of the chosen input price vector p* and in (51), we have defined this function as 


Figure 4: A Cost Function that does not Satisfy Assumption 3 on F 
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c(p*).  The following result shows that this function c has the properties of a unit cost 
function. 
 
Theorem 8: Diewert (1981; 80): If F(x) satisfies Assumptions 1-3 listed above, then the 
minimum average cost function c(p) defined by (51) is a (i) positive, (ii) linearly 
homogeneous and (iii) concave function of p for p >> 0N. 
 
Proof of (i): Let p* >> 0N and let y* > 0 be a solution to (51).  Then Assumptions 2 and 3 
imply that C(y*,p*) > 0 and y* > 0 so that c(p*) = C(y*,p*)/y* > 0. 
 
Proof of (ii): Let p* >> 0N and let λ* > 0.  Then by the definition of c(λ*p*), we have: 
 
(54) c(λ*p*) ≡ miny {C(y,λ*p*)/y: y > 0; y∈Y}  
                     = miny {λ*C(y, p*)/y: y > 0; y∈Y} 
                                                          using the linear homogeneity property of C(y,p) in p 
                     = λ*miny {C(y, p*)/y: y > 0; y∈Y}           using λ* > 0 
                     = λ* c(p*)                                                   using (51), the definition of c(p*). 
 
Proof of (iii): Let p1 >> 0N, p2 >> 0N and 0 < λ < 1.  Then using definition (51) for c, it 
can be seen that for every y > 0 such that y∈Y, we have: 
 
(55) C(y,p1)/y ≥ c(p1); C(y,p2)/y ≥ c(p2). 
 
Thus for every y > 0 such that y∈Y, we have, using the concavity in prices property of 
C(y,p): 
 
(56) C(y,λp1+(1−λ)p2)/y ≥ [λC(y,p1) + (1−λ)C(y,p2)]/y 
                                         = λ[C(y,p1)/y] + (1−λ)[C(y,p2)]/y] 
                                         ≥ λc(p1) + (1−λ)c(p2)           using (55) and λ > 0 and  (1−λ) > 0. 
 
Using the definition of c(λp1+(1−λ)p2), we have: 
 
(57) c(λp1+(1−λ)p2) ≡ miny {C(y,λp1+(1−λ)p2)/y: y > 0; y∈Y} 
                                 = C(y*,λp1+(1−λ)p2)/y*                        for some y* > 0; y*∈Y  
                                 ≥ λc(p1) + (1−λ)c(p2)                             using (56) for y = y*. Q.E.D.  
 
Since c(p) is concave over the open domain of definition set, {p: p >> 0N}, we know that 
it is also continuous over this set.26  We also know that the domain of definition of c can 
be extended to the nonnegative orthant, Ω ≡ {p: p ≥ 0N} using the Fenchel (1953; 78) 
closure operation and the resulting extension is continuous (and concave) over Ω.    
 
Now we are in a position to apply the results of problem 5 above.  We have just shown 
that the c(p) defined by (51) has all of the properties of a unit cost function and hence, 
                                                 
26We also know that the properties of concavity, linear homogeneity and positivity are sufficient to imply 
that c(p) is nondecreasing in the components of p. 
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there is a constant returns to scale production function f(x) that is dual to c(p).  Using 
problem 5, for x >> 0N, define the function g(x) as follows: 
 
(58) g(x) ≡ maxp {c(p): pTx = 1; p ≥ 0N}. 
 
The function g may be used to define the dual to c production function f as follows: 
 
(59) f(x) ≡ 1/g(x).   
 
It can be shown27 that if we define the unit cost function that corresponds to the 
production function defined by (59), c*(p) say, then this cost function coincides with the 
c(p) that was used in (58), which in turn was defined using the original cost function 
C(y,p) via definition (51); i.e., we have for each p >> 0N: 
 
(60) c*(p) ≡ minx {pTx: f(x) ≥ 1} = c(p) ≡ miny {C(y,p)/y: y > 0; y∈Y}. 
 
As the above material is a bit abstract, we will indicate how the constant returns to scale 
production function f(x) can be constructed from the initially given plant production 
function F(x).  For each positive plant output level y > 0, we can define the corresponding 
upper level set L(y) in the usual way: 
 
(61) L(y) ≡ {x : F(x) ≥ y}. 
 
Now define the family of scaled upper level sets M(y) for each y > 0 with y∈Y as 
follows: 
 
(62) M(y) ≡ {x/y : F(x) ≥ y}. 
 
Thus to determine M(y) for a given y > 0, we find all of the input vectors x that can 
produce at least the output level y using the plant production function (this is the set L(y)) 
and then we divide all of those input vectors by the positive output level y.  The 
continuity from above property of F implies that the level sets L(y) and the scaled level 
sets M(y) are all nonempty closed sets for each y such that y > 0 and y∈Y.  Now define 
the input set U as the union of all of these sets M(y): 
 
(63) U ≡ ∪y > 0; y∈Y M(y). 
 
Define the unit output upper level set of the constant returns to scale production function 
f as 
 
(64) L ≡ {x : f(x) ≥ 1}. 
 
It turns out that the set U defined by (63) is a subset of the upper level set L defined by 
(64); i.e., we have 


                                                 
27 See Diewert (1974; 110-112). 
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(65) U ⊂ L. 
 
However, it turns out that U is in fact a sufficient statistic for L; i.e., we can perform 
some simple operations on U and transform it into L.  We need to define a couple of set 
operations before we do this. 
 
Let S be an arbitrary set in RN.  Then the convex hull of S, Con S, is defined as follows: 
 
(66) Con S ≡ {x : x = λx1 + (1−λ)x2 ; x1∈S ; x2∈S and 0 < λ < 1}. 
 
Thus the convex hull of S consists of all of the points belonging to S plus all of the line 
segments joining any two points belonging to S. 
 
The free disposal hull of S, Fdh S, is defined as follows: 
 
(67) Fdh S ≡ {x : x ≥ x*; x*∈S}. 
 
Thus the free disposal hull of S consists of all of the points in S plus all points that lie 
above any point belonging to S. 
 
It turns out that the closure of the free disposal, convex hull of the set U defined by (63) is 
in fact equal to the unit output upper level set L defined by (64).  Thus define U* ≡ Con 
U, then define U** ≡ Fdh U* and finally define U*** ≡ Clo U**.  Then U*** = L.  The 
boundary of the set U can have regions of nonconvexity and backward bending regions.28  
The operation of taking the convex hull of U eliminates these regions of nonconvexity 
and the operation of taking the free disposal convex hull eliminates any backward 
bending regions.  Finally, since the union of an infinite number of closed sets is not 
necessarily closed, taking the closure of U** ensures that this transformed U set is closed.     
 
What is the significance of the unit cost function c defined by (51) or its dual constant 
returns to scale production function f defined by (58) and (59)?  Samuelson (1967; 155-
161) showed that this f represents the asymptotic technology which is available to the 
firm if firm output is large, plants can be replicated and the plant production function F 
satisfies Assumptions 1-3 listed above.  
 
The plant replication idea of Samuelson can be explained as follows.  Let p* >> 0N be 
given and let y* > 0 be a solution to the average cost minimization problem (51).  For 
each positive integer n, define the set of outputs Y(n) as follows: 
 
(68) Y(n) ≡ {y: (n−1)y* < y ≤ ny*}. 
 


                                                 
28 Recall Figure 1 above where the boundary of L(y) had regions of nonconvexity and backward bending 
regions. 
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Now consider a situation where a firm has access to the plant technology production 
function F(x) that satisfies Assumptions 1-3 above and has the dual cost function C(y,p).  
Suppose that the firm wants to produce some positive output level y where y belongs to 
the set of outputs Y(n) defined by (68) for some positive integer n.  Then in theory, the 
firm could build n plants and have each of them produce 1/n of the desired output level y.  
The firm’s average cost of production using this plant replication strategy will be equal 
to: 
 
(69) cn(y,p*) ≡ C(y/n,p*)/[y/n] ≥ c(p*)  
 
where the inequality in (69) follows from definition (51),which defined c(p*) as a 
minimum.29   
   
The following result shows that as the target output level y becomes large, the average 
cost cn(y,p*) using the plant replication strategy approaches the unit cost c(p*) where the 
unit cost function c is dual to the constant returns to scale production function f defined 
earlier by (58) and (59). 
 
Theorem 9: Samuelson (1967; 159), Diewert (1981; 82): As firm output y becomes large, 
average cost using replicable plants cn(y,p*) approaches the minimum average cost c(p*) 
defined by (51); i.e., for every p* >> 0N, 
 
(70) c(p*) = limn→∝ {c


n(y,p*): y∈Y(n)}. 
 
Proof: If y∈Y(n), then (n−1)y* < y ≤ ny* or  
 
(71) [(n−1)/n]y* < y/n ≤ y*  or 
(72)  n/y*(n−1) > n/y ≥ 1/y*. 
 
Thus for y∈Y(n), 
 
(73) cn(y,p*) = C(y/n,p*)/[y/n]                                       using definition (69) 
                      ≤ C(y*,p*)n/y    
                                       using (71) and the nondecreasing in y property of cost functions 
                      < [n/(n−1)]C(y*,p*)/y*                             using (72) 
                      = [n/(n−1)] c(p*)                      
 
since y* is a solution to the average cost minimization problem defined by (51).  The 
inequalities (69) and (73) imply that 
 
(74) c(p*) ≤ cn(y,p*) < [n/(n−1)] c(p*). 
 
Taking limits of (74) as n tends to plus infinity gives us (70). Note that as n increases in 
the limit (70), y must also increase in order to remain in the set Y(n).                     Q.E.D. 
                                                 
29 We also need y/n∈Y. 
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The significance of the above result can be explained as follows.  If firm output is large 
relative to a minimum average cost output y* when input prices p* prevail, then the 
firm’s total cost function will be approximately equal to yc(p*), where the unit cost 
function c(p) defined by (51) is dual to a well behaved constant returns to scale 
production function f(x).  Thus if the firm is behaving competitively in input markets so 
that the firm regards input prices as fixed and beyond their control, then the firm’s total 
demand for inputs can be generated (approximately) by solving the following cost 
minimization problem: 
 
(75) minx {p*Tx: f(x) ≥ y} = yc(p*) 
 
where the asymptotic (or large output) production function f is positive, linearly 
homogeneous and concave over the positive orthant,30 even though the underlying plant 
production function F satisfies only Assumptions 1-3. 
 
The geometry of Theorem 9 is illustrated in Figure 5. 
 


  
 
                                                                                                                                              
In Figure 5, the original plant cost function is C(y,p*) regarded as a function of y.  The 
straight line through the origin is tangent to this curve at the minimum average cost 
output level y*.  Note that this straight line represents the minimum average cost that is 
attainable for this particular plant technology.   The function c2(y,p*) ≡ 2C(y/2,p*) can be 


                                                 
30 Production functions that have these properties are often called neoclassical production functions.  Of 
course, the function f can be extended in a continuous manner to the nonnegative orthant using the Fenchel 
closure operation. 
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graphed using the original cost curve C(y,p*) and so can the function c3(y,p*) ≡ 
3C(y/3,p*).  The dashed line labelled as the envelope average cost is the minimum 
average cost that corresponds to the three total cost curves that appear in Figure 5.  
Obviously, if the firm can replicate plants, this dashed line will represent the minimum 
average cost of producing any output level up to 3y*.  Note that as the target output level 
y increases, this scalloped average cost line gets closer and closer to the straight line that 
is labelled as the asymptotic marginal cost line.  Thus if (a) firm output y is large relative 
to the smallest minimum average cost output level y*, (b) the firm behaves competitively 
in input markets and (c) plants can be replicated without difficulties, then we can closely 
approximate the firm’s behavior in input markets by assuming that it possesses a constant 
returns to scale production function f defined above by (58) and (59), rather than the 
nonconstant returns to scale plant production function F.             
   
7. Aggregation and the Size of Input Price Elasticities of Demand 
 
A great many problems in cost benefit analysis and applied economics in general hinge 
on the size of various elasticities of demand or supply.  In this section, we will show that 
increasing the degree of aggregation in a production model will generally lead to 
elasticities of derived demand that are smaller in magnitude than the average of the micro 
elasticities of demand in the aggregate. 
 
Consider a one output technology, y = F(z,x), that uses combinations of M + N inputs, z 
≥ 0M and x ≥ 0N, to produce output y ≥ 0.  Let the cost function that corresponds to this 
technology be the twice differentiable function, C(y,w,p), defined in the usual way as 
follows: 
 
(76) C(y,w,p) ≡ minz,x {wTz + pTx: F(z,x) ≥ y}  
 
 
where y > 0 is the target output level and w >> 0M and p >> 0N are strictly positive input 
price vectors.  This cost function will satisfy the regularity conditions in Theorem 1 
above.  The two sets of cost minimizing input demand functions, z(y,w,p) and x(y,w,p), 
can be obtained by using Shephard’s Lemma: 
 
(77) z(y,w,p) = ∇wC(y,w,p) ; 
(78) x(y,w,p) = ∇pC(y,w,p). 
 
We now introduce the assumption that the prices in the vector w move proportionally 
over time31 (or space if we are in a cross sectional context); i.e., we assume that  
 
(79) w = αp0 ;  α ≡ [α1,…,αM]T >> 0M. 
 
                                                 
31 This is the framework used by Hicks (1946; 312-313) in his Composite Commodity Aggregation 
Theorem: “Thus we have demonstrated mathematically the very important principle, used extensively in 
the text, that if the prices of a group of goods change in the same proportion, that group of goods behaves 
just as if it were a single commodity.”    
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We now construct an aggregate of the z inputs.  Usually, we set one of the components of 
α equal to unity (e.g., set α1 = 1) so that the remaining αm tell us how many units of input 
m are equivalent to one unit of input 1 in the z group of inputs.  The “quantity” of the z 
aggregate, x0, is defined in practice by deflating observed expenditure on the z inputs by 
the numeraire price p0; i.e., we have 
 
(80) x0(y,w,p) ≡ ∑m=1M wmzm(y,w,p)/p0 
                       = ∑m=1M p0αmzm(y,αp0,p)/p0                          using (79) 
                       = αTz(y,αp0,p). 
 
To see how Hicks’ Aggregation Theorem works in this context, we use the aggregation 
vector α, which appears in (79) in order to construct an aggregate input requirements 
function,32 G(y,x,α), as follows:33 
 
(81) x0 = G(y,x,α) ≡ minz {αTz: F(z,x) ≥ y}. 
 
The above aggregate input requirements function G can be used in order to define the 
following aggregate cost function, C*: 
 
(82) C*(y,p0,p) ≡ {p0x0 + pTx: x0 = G(y,x,α)} 
                         = minx {p0G(y,x,α) + pTx}                   using the constraint to eliminate x0  
                         = minx {p0[minz {αTz: F(z,x) ≥ y}] + pTx}                               using (81) 
                         = minx,z {p0αTz + pTx: F(z,x) ≥ y}                                            using p0 > 0  
                         = minx,z {wTz + pTx: F(z,x) ≥ y}                                               using (79) 
                         ≡ C(y,w,p)                                                                                  using (76). 
 
The string of equalities in (82) shows that if (z*,x*) solves the original micro cost 
minimization problem defined by (76), then x0* ≡ αTz* and x* solve the macro cost 
minimization problem defined by the first line in (82).  Thus if the z input prices vary in 
strict proportion over time, then these inputs can be aggregated using the construction in 
(80), and the resulting x0 aggregate will obey the usual properties of an input demand 
function that is consistent with cost minimizing behavior.  This is a version of Hicks’ 
(1946; 312-313) Aggregation Theorem. 
 
We now want to explore the relationship of the price elasticities of demand for the 
aggregate input compared to the underlying micro cross elasticities of demand. 
 
The microeconomic matrices of input price elasticities of demand can be defined as 
follows:34                                                      


                                                 
32 An input requirements function, x0 = g(y,x),  gives the minimum amount of an input x0 that is required to 
produce the output level y given that the vector of other inputs x is available for the production function 
constraint y = f(x0,x).  Thus g is a (conditional on x) inverse function for y regarded as a function of x0, 
holding x constant.  Input requirements functions were studied by Diewert (1974c). 
33 If there is no z ≥ 0M such that F(z,x) ≥ y, then G(x,y,α) is defined to equal plus infinity. 
34 All of these elasticities are evaluated at an initial point (y,w,p). 
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(83) Exp ≡ [enk]                                                                                 n = 1,…,N ; k = 1,…,N 
              ≡ [(pk/xn)∂xn(y,w,p)/∂pk] 
              = [(pk/xn)∂2C(y,w,p)/∂pn∂pk]                                              using (78) 
              = −1∇2ppC(y,w,p)  
 
where and denote N by N diagonal matrices with the positive elements of the x and p 
vectors running down the main diagonal respectively; 
 
(84) Ezw ≡ [emk]                                                                              m = 1,…,M ; k = 1,…,M 
              ≡ [(wk/zm)∂zm(y,w,p)/∂wk] 
              = [(wk/zm)∂2C(y,w,p)/∂wm∂wk]                                        using (77) 
              = −1∇2wwC(y,w,p)  
 
 where  and  denote M by M diagonal matrices with the positive elements of the z 
and w vectors running down the main diagonal respectively; 
 
(85) Ezp ≡ [emn]                                                                              m = 1,…,M ; n = 1,…,N 
              ≡ [(pn/zm)∂zm(y,w,p)/∂pn] 
              = [(pn/zm)∂2C(y,w,p)/∂wm∂pn]                                        using (77) 
              = −1∇2wpC(y,w,p) . 
 
Using the linear homogeneity property of the cost function C(y,w,p) in the components of 
(w,p), it can be shown that the elasticity matrices Ezw and Ezp satisfy the following 
restrictions:35 
 
(86) Ezw1M + Ezp1N = −1∇2wwC(y,w,p) 1M + −1∇2wpC(y,w,p) 1N  
                                               using (84) and (85) 
                               = −1{∇2wwC(y,w,p)w + ∇2wpC(y,w,p)p} 
                               = −1{0M}                                                  
                                               using Part 2 of Euler’s Theorem on homogeneous functions 
                               = 0M. 
 
Thus the elements in each row of the M by M+N elasticity matrix [Ezw,Ezp] sum to zero. 
 
Now we are ready to calculate the price elasticity of demand of the input aggregate x0 
with respect to its own price p0.  We first differentiate the last equation in (80) with 
respect to p0: 
 
(87) ∂x0(y,αp0,p)/∂p0 = ∑m=1M αm ∑k=1M [∂zm(y,αp0,p)/∂wk][∂(αkp0)/∂p0] 
                                   = ∑m=1M αm ∑k=1M [∂zm(y,αp0,p)/∂wk]αk 
                                   = ∑m=1M ∑k=1M αm[∂2C(y,αp0,p)/∂wm∂wk]αk            using (77) 


                                                 
35 Notation: 1M and 1N are vectors of ones of dimension M and N respectively. 
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                                   = ∑m=1M ∑k=1M αm[∂2C(y,w,p)/∂wm∂wk]αk               using (79) 
                                   = αT∇2wwC(y,w,p)α 
                                   ≤ 0 
 
where the last inequality follows from the negative semidefiniteness of ∇2wwC(y,w.p), 
which in turn follows from the fact that C(y,w,p) is concave in the components of w.  
Thus the own price elasticity of demand for the input aggregate will be negative or 0. 
 
Now calculate the price elasticity of demand of the input aggregate x0 with respect to the 
prices pn for n = 1,…,N.  We first differentiate the last equation in (80) with respect to pn: 
 
(88) ∂x0(y,αp0,p)/∂pn = ∑m=1M αm ∂zm(y,αp0,p)/∂pn                                  for n = 1,…,N 
                                   = ∑m=1M αm∂2C(y,w,p)/∂wm∂pn                               using (77) 
                                   = αT∇2wpC(y,w,p)en 
  
where en is an N dimensional unit vector; i.e., it has all elements equal to 0 except that the 
nth component is equal to 1. 
 
We are ready to convert the derivatives defined by (87) and (88) into the own and cross 
price  elasticities of demand for the aggregate, ε00 and ε0n for n = 1,…,N: 
 
(89) ε00 ≡ [p0/x0][∂x0(y,αp0,p)/∂p0] 
             = [p0/x0][αT∇2wwC(y,w,p)α]                                                          using (87) 
             = p0αT∇2wwC(y,w,p)p0α/p0x0 
             = wT∇2wwC(y,w,p)w/p0x0                                                               using (79) 
             =  wT∇2wwC(y,w,p)w/ ∑m=1M wmzm(y,w,p)                                    using (80) 
             = wT −1∇2wwC(y,w,p)w/wTz                                                      since −1 = IM 
             = wT −1∇2wwC(y,w,p) 1M/wTz                                                 since w = 1M 
             = wT Ezw1M/wTz                                                                            using (84) 
             = sT Ezw1M 
             ≤ 0 
 
where the vector of expenditure shares on the components of z is defined as sT ≡ 
[s1,…,sM] where 
 
(90) sm ≡ wmzm(y,w,p)/wTz(y,w,p)                                                               for m = 1,…,M. 
 
The inequality in (89) follows from (87), ∂x0(y,αp0,p)/∂p0 ≤ 0, and the positivity of p0 
and x0.                                                  
   
Converting the derivatives in (88) into elasticities leads to the following equations: 
 
(91) ε0n ≡ [pn/x0][∂x0(y,αp0,p)/∂pn]                                                            for n = 1,…,N 
             = [pn/x0][αT∇2wpC(y,w,p)en]                                                         using (88) 
             = p0αT∇2wpC(y,w,p)pnen/p0x0 
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             = wT∇2wpC(y,w,p)pnen/p0x0                                                            using (79) 
             =  wT∇2wpC(y,w,p)pnen/ ∑m=1M wmzm(y,w,p)                                using (80) 
             = wT −1∇2wpC(y,w,p)pnen /wTz                                                 since −1 = IM 
             = wT −1∇2wpC(y,w,p) en /wTz                                                since pnen = en 
             = wT Ezpen/wTz                                                                             using (85) 
             = sT Ezpen . 
 
Using the above formulae for the ε0n, we can compute the sum of the ε0n as follows: 
 
(92) ∑n=1N ε0n = ∑n=1N sT Ezpen 
                       = sTEzp1N . 
 
Now use (89) and (92) in order to compute the sum of all of the price elasticities of 
demand of the input aggregate with respect to its own price p0 as well as the other input 
prices outside of the aggregate, p1,…,pN: 
 
(93) ε00 + ∑n=1N ε0n = sTEzw1M + sTEzp1N  
                                = sT{Ezw1M + Ezp1N} 
                                = sT {0M}                                                                             using (86) 
                                = 0. 
 
Using (89), we have ε00 ≤ 0.  Hence (93) implies that 
 
(94) ∑n=1N ε0n = − ε00 ≥ 0. 
 
Consider the cross elasticity of demand of the input aggregate with the input price pn for 
some n = 1,…,N.  Using (91), we have 
 
(95) ε0n = ∑m=1M smemn ≤ ∑m=1M sm |emn|                                                        for n = 1,…,N 
 
where the inequality follows since the shares sm are always positive and the cross 
elasticity of demand for the micro input zm with respect to the price pn, emn, is always 
equal to or less than its absolute value, |emn|.  Hence if any of the inputs m in the group of 
inputs being aggregated (the zm) are complementary to the input xn, then the 
corresponding emn will be negative and the inequality (95) will be strict for that n.   
 
In general, it can be seen that the cross elasticities of aggregate input demand ε0n are 
weighted averages of the micro cross elasticities of demand emn.  If all of these micro 
cross elasticities of demand are nonnegative (so that there are no complementary input 
pairs between the z and x groups of inputs), then it can be seen that the aggregate cross 
elasticities of demand ε0n will be weighted averages of the emn and will be roughly 
comparable in magnitude to the average magnitude of the emn.  However, the greater the 
degree of complementarity between the z and x groups of inputs, the greater will be the 
reduction in the magnitudes of the ε0n compared to the magnitudes of the emn, which are 
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the absolute values |emn|.36  How likely is complementarity in empirical applications?  
Most empirical applications of production theory impose substitutability between every 
pair of inputs and so it is frequently thought that complementarity is a somewhat rare 
phenomenon.  However, if flexible functional form techniques are used, then typically, if 
the number of inputs is greater than 3, complementarity is encountered.37                                                                
      
Finally, we compare the magnitude of the own price elasticity of demand of the input 
aggregate, ε00, with the weighted average of the micro own price elasticities of demand in 
the aggregate, ∑m=1M smemm.  Using (89), we have ε00 ≤ 0 and the micro own price 
elasticities of demand, emm, are also nonpositive.38  Hence 
 
(96) 0 ≤ − ε00 
           = − ∑m=1M ∑k=1M sm emk                                                              using (89) 
           = − ∑m=1M sm emm − ∑m=1M ∑k=1M m≠k sm emk   
           < − ∑m=1M sm emm 
 
where the inequality follows provided that 
 
(97) ∑m=1M ∑k=1M m≠k sm emk  > 0. 
 
The strict inequality in (96) says that the magnitude (or absolute value) of ε00 is smaller 
than the magnitude of the weighted average of the micro own price elasticities of demand 
in the input aggregate, ∑m=1M sm emm.  However the strict inequality in (96) will hold only 
if the strict inequality in (97) holds.  We cannot guarantee that (97) will hold but it is very 
likely that it will hold.  In  particular, (97) will hold if all of the input pairs in the z group 
of inputs are substitutes or are unrelated so that in this case, emk ≥ 0 for all m ≠ k.39   
 
We can summarize the above results as follows: if we estimate price elasticities of input 
demand for an aggregated model and compare the resulting elasticities with the 
elasticities obtained from the more disaggregated model, there will be a strong tendency 
for the elasticities in the aggregated model to be smaller in magnitude than those in the 
disaggregated model.40 
                                                                                                                                   


                                                 
36 This point was made by Diewert (1974b; 16) many years ago in the elasticity of substitution context: 
“Taking a weighted average of both positive and negative micro elasticities of substitution σm


n will tend to 
give rise to aggregate elasticities of substitution which are considerably smaller in magnitude than an 
average of the absolute values of the micro elasticities of substitution.”  
37 For example, see the 4 input evidence on the incidence of complementarity tabled in Diewert and Wales 
(1987; 63). 
38 This follows from the fourth characterization of concavity and the fact that C(y,w,p) is concave in w. 
39 Strictly speaking, we need at least one input pair to be substitutes so that emk > 0 for this pair of inputs 
and the other input pairs could be unrelated. 
40 For the 4 input models estimated in Diewert and Wales (1987; 63), the input price elasticities were all 
less than 1.2 in magnitude.  For the 8 output and input model estimated by Diewert and Wales (1992; 716-
717), all of the tabled price elasticities were less than 3.43 in magnitude.  For the 12 output and input model 
estimated by Diewert and Lawrence (2002; 154), all of the tabled price elasticities (excluding inventory 
change which was very volatile) were less than 8.99 in magnitude. 
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In actual empirical examples, the strict proportionality assumptions made in (79) will not 
hold exactly and the aggregates will be constructed using an index number formula that 
will be consistent with the assumptions (79) if they happen to hold.41  However, even if 
the assumption of price proportionality (79) holds only approximately, empirical 
evidence suggests that elasticities do decline in magnitude as the degree of aggregation 
increases.  We conclude with a quotation that summarizes some early empirical evidence 
on this phenomenon:42 
 
“Conversely, as we disaggregate, we can expect to encounter increasingly large elasticities of substitution.  
Two recent papers confirm this statement.  Berndt and Christensen (1974) in their ‘two types of labour, one 
type of capital” disaggregation of US manufacturing industries found that the mean partial elasticities of 
substitution were 7.88 (between blue and white collar workers), 3.72 (between blue collar workers and 
capital) and −3.77 (between white collar workers and capital).  However, when they fitted a model which 
aggregated the two types of labour into a single labour factor, they found that the aggregate labour-capital 
elasticity of substitution was approximately 1.42, which is considerably smaller that an average of the three 
‘micro’ elasticities of substitution.  Similarly, Woodland (1972) found partial elasticities of substitution in 
Canadian manufacturing ranging from −11.16 to 2.18 in his ‘four types of capital, one type of labour’ 
disaggregated results, but he found that the aggregate capital-labour elasticity of substitution was only 
0.39.”                                                                                            W.E. Diewert (1974b; 16). 
 
Problems 
 
15. The N by M matrix of cross elasticities of demand of the x inputs with respect to the 
prices of the z inputs can be defined as follows: 
 
 
(i) Exw ≡ [enm]                                                                                 n = 1,…,N ; m = 1,…,M 
           ≡ [(wm/xn)∂xn(y,w,p)/∂wm] 
           = [(wm/xn)∂2C(y,w,p)/∂pn∂wm]                                            using (78) 
           = −1∇2pwC(y,w,p) . 
 
Show that the matrices of elasticities Exp defined by (83) and Exw defined by (i) above 
satisfy the following restriction: 
 
(ii) Exp1N + Exw1M = 0N. 
 
16. Suppose that the N+M by N+M symmetric matrix C is negative semidefinite. Write 
the matrix C in partitioned form as follows: 
 


(i)  


 
                                                 
41 In fact, it is useful to aggregate commodities whose prices move almost proportionally over time since 
the resulting aggregates will be approximately consistent with Hicks’ Aggregation Theorem. 
42 Part (b) of problem 17 below shows that elasticities of substitution are equal to price elasticities of 
demand divided by cost shares and hence will be considerably larger than price elasticities of demand so 
that the numbers in the quotation below are a bit misleading.   
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where C11 is N by N and symmetric and C22 is M by M and symmetric.  Show that C11 
and C22 are also negative semidefinite matrices.  
 
17. Let C(y,p) be a twice continuously differentiable cost function that satisfies the 
regularity conditions listed in Theorem 1 in section 2 above.  By Shephard’s Lemma, the 
input demand functions are given by 
 
(i) xn(y,p) = ∂C(y,p)/∂pn > 0;    n = 1,…,N. 
 
The Allen (1938; 504) Uzawa (1962) elasticity of substitution σnk between inputs n and k 
is defined as follows: 
 
(ii) σnk(y,p) ≡ {C(y,p)∂2C(y,p)/∂pn∂pk}/{[∂C(y,p)/∂pn][∂C(y,p)/∂pk]}       1 ≤ n,k ≤ N 
                    = {C(y,p)∂2C(y,p)/∂pn∂pk}/xn(y,p) xk(y,p)                               using (i). 
 
Define Σ ≡ [σnk(y,p)] as the N by N matrix of elasticities of substitution. 
(a) Show that Σ has the following properties: 
 
(iii) Σ = ΣT ; 
(iv) Σ is negative semidefinite and 
(v) Σs = 0N 
 
where s ≡ [s1,…,sN]T is the vector of cost shares; i.e., sn ≡ pn xn(y,p)/C(y,p) for n = 
1,…,N.  Now define the N by N matrix of cross price elasticities of demand E in a 
manner analogous to definition (83) above: 
 
(vi) E ≡ [enk]                                                                                 n = 1,…,N ; k = 1,…,N 
         ≡ [(pk/xn)∂xn(y,p)/∂pk] 
         = [(pk/xn)∂2C(y,p)/∂pn∂pk]                                              using (i) 
         = −1∇2ppC(y,p) . 
 
(b) Show that E = Σ  where  is an N by N diagonal matrix with the elements of the 
share vector s running down the main diagonal. 
     
18. Suppose a firm’s cost function has the following Constant Elasticity of Substitution 
(CES) functional form:43 
 
(i) C(y,p1,…,pN) ≡ ky[∑n=1N αnpnr]1/r;         k > 0; r ≤ 1, r ≠ 0; αn > 0 and ∑n=1N αn = 1.  
 
Thus the cost function is equal to a positive constant k times the output level y times a 
mean of order r.  From the chapter on inequalities, we know that C(y,p) is a concave 
function of p provided that r is equal to or less than one. Show that 


                                                 
43 This functional form was introduced into the production literature by Arrow, Chenery, Minhas and 
Solow ((1961). 
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(ii) σnk(y,p) = −(r−1)      for all n,k such that n ≠ k 
 
where σnk(y,p) is the elasticity of substitution between inputs n and k defined above in 
problem 17, part (ii).  Comment: This problem shows why the CES functional form is 
unsatisfactory if the number of inputs N exceeds two, since it is a priori unlikely that all 
elasticities of substitution between every pair of inputs would equal the same number.  
 
8.  The Application of Cost Functions to Consumer Theory  
 
The cost function and production function framework described in the previous sections 
can be readily adapted to the consumer context: simply replace output y by utility u, 
reinterpret the production function F  as a utility function, reinterpret the input vector x as 
a vector of commodity demands and reinterpret the vector of input prices p as a vector of 
commodity prices.  With these changes, the producer’s cost minimization problem (1) 
becomes the following problem of minimizing the cost or expenditure of attaining a given 
level of utility u: 
 
(98) C(u,p) ≡ minx {pTx : F(x) ≥ u }. 
 
If the cost function is differentiable with respect to the components of the commodity 
price vector p, then Shephard’s (1953; 11) Lemma applies and the consumer’s system of 
commodity demand functions as functions of the chosen utility level u and the 
commodity price vector p, x(u,p), is equal to the vector of first order partial derivatives of 
the cost or expenditure function C(u,p) with respect to the components of p: 
 
(99) x(u,p) = ∇pC(u,p). 
 
The demand functions xn(u,p) defined in (99) are known as Hicksian44 demand functions.  
 
Thus it seems that we can adapt the theory of cost and production functions used in 
section 2 above in a very straightforward way, replacing output y by utility u and 
reinterpreting all of our previous results.  However, there is a problem: the output level y 
is an observable variable but the corresponding utility level u is not observable! 
 
However, this problem can be solved (but as we will see, some of the details are rather 
complex).  We need only equate the cost function C(u,p) to the consumer’s observable 
expenditure in the period under consideration, Y say, and solve the resulting equation for 
u as a function of Y and p, say u = g(Y,p).  Thus u = g(Y,p) is the u solution to the 
following equation: 
 
(100) C(u,p) = Y 
 


                                                 
44 See Hicks (1946; 311-331). 
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and the resulting solution function u = g(Y,p) is the consumer’s indirect utility function.  
Now replace the u in the system of Hicksian demand functions (99) by g(Y,p) and we 
obtain the consumer’s system of (observable) market demand functions: 
 
(101) d(Y,p) = ∇pC(g(Y,p),p). 
 
We illustrate the above procedure for the generalized Leontief cost function defined by 
(27) above.  For this functional form, equation (100) becomes: 
 
(102) u ∑i=1N∑j=1N bij pi1/2 pj1/2 = Y ;                         (bij = bji for all i and j) 
 
and the u solution to this equation is: 
 
(103) u = g(Y,p) = Y/[∑i=1N∑j=1N bij pi1/2 pj1/2]. 
 
The Hicksian demand functions for the C(u,p) defined by the left hand side of (102) are: 
 
(104) xn(u,p) ≡ ∂C(u,p)/∂pn = [∑j=1N bnj (pj/pn)1/2]u ;                                 n = 1,…,N.    
 
Substituting (103) into (104) leads to the following system of market demand functions: 
 
(105) dn(Y,p) = [∑j=1N bnj (pj/pi)1/2] Y/[∑i=1N∑j=1N bij pi1/2 pj1/2] ;               n = 1,...,N. 
 
Equations (105) can be used as the basis for the econometric estimation of preferences.  
Suppose that we have collected data on the quantities xnt purchased over T time periods 
for a household as well as the corresponding commodity prices pnt.  Then we can define 
period t “income”45 or expenditure on the n commodities as Yt:  
 
(106) Yt ≡ ∑n=1N pntxnt ;                                                                              t = 1,…,T. 
 
Evaluating (105) at the period t data and adding a stochastic error term ent to equation n in 
(105) for n = 1,...,N leads to the following system of estimating equations: 
 
(107) xnt = [∑j=1N bnj (pjt/pnt)1/2] Yt/[∑i=1N∑j=1N bij (pit)1/2 (pjt)1/2]+ ent; t = 1,...,T; n = 1,...,N. 
 
Not all N equations in (107) can have independent error terms since if we multiply both 
sides of equation n in (107) by pnt and sum over n, we obtain the following equation: 
 
(108) ∑n=1N pntxnt = Yt + ∑n=1N pntent. 
 
Using (106), we find that the period t errors ent satisfy the following linear restriction 
exactly: 
 


                                                 
45 Strictly speaking, a household’s income will also include savings in addition to expenditures on current 
goods and services. 
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(109) ∑n=1N pntent = 0 ;                                                                                  t = 1,…,T. 
 
There is one other factor that must be taken into account in doing an econometric 
estimation of preferences using the system of estimation equations (107).  Note that if we 
multiply all of the bij parameters by the positive number λ, the right hand sides of each 
equation in (107) will remain unchanged; i.e., the demand functions are homogeneous of 
degree 0 in the bij parameters.  Thus these parameters will not be identified as matters 
stand.  Hence, it will be necessary to impose a normalization on these parameters.  One 
normalization that is frequently used in applied economics is to set unit cost46 equal to 1 
for some set of reference prices p0 say.47  Thus we impose the following normalization on 
the bij: 
 
(110) 1 = c(p0) = ∑i=1N∑j=1N bij (pi0)1/2 (pj0)1/2.   
 
Equation (110) can be used to solve for say b11 in terms of the other bij and then this 
equation can be used to eliminate b11 from the N−1 independent estimating equations in 
(107) and the remaining parameters can be estimated using nonlinear regression 
techniques. 
 
The technique suggested above for the econometric estimation of preferences is a special 
case of the following general strategy: (i) Assume that the consumer’s preferences can be 
represented by the cost function C(u,p) that has the following form: 
 
(111) C(u,p) = uc(p) 
 
where c(p) is a suitable differentiable unit cost function. (ii) Differentiate (111) with 
respect to the components of the commodity price vector p to form the following system 
of Hicksian demand functions: 
 
(112) x(u,p) = u ∇pc(p) . 
 
(iii) Equate cost uc(p) to expenditure or income Y and solve for u as a function of Y and 
p to get the consumer’s indirect utility function u = g(y,p): 
 
(113) u =Y/c(p). 
 
(iv) Substitute (113) into the right hand side of (112) in order to obtain the following 
system of consumer demand functions: 
 
(114) d(Y,p) = ∇pc(p)Y/c(p). 
 
(v) Finally, impose the normalization (110), c(p0) = 1, in order to identify all of the 
unknown parameters in (114). 


                                                 
46 The Generalized Leontief cost function defined by (27) has the form C(u,p) = uc(p) where c(p) ≡ C(1,p).  
47 Usually, p0 is taken to be p1, the vector of prices that prevailed in the base period. 
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Unfortunately, there is a problem with the above strategy for estimating a consumer’s 
preferences.  The problem is the same one that occurred in problem 14 above; with the 
nth consumer demand function, dn(Y,p) defined by the nth equation in (114), we find that 
all income elasticities of demand are equal to one; i.e., we have: 
 
 (115) [Y/dn(Y,p)]∂dn(Y,p)/∂Y = 1 ;                                                        n = 1,…,N.    
 
But (115) contradicts Engel’s Law, which says that the income elasticity of demand for 
food is less than one. 
 
In the following two sections, we show how this problem of unitary income elasticities 
can be solved. 
 
9. Flexible Functional Forms and Nonunitary Income Elasticities of Demand 
 
We first define what it means for a unit cost function, c(p), to be a flexible functional 
form.  Let c*(p) be an arbitrary unit cost function that satisfies the appropriate regularity 
conditions on unit cost functions and in addition, is twice continuously differentiable 
around a point p* >> 0N.  Then we say that a given unit cost function c(p) that is also 
twice continuously differentiable around the point p* is flexible  if it has enough free 
parameters so that the following 1 + N + N2 equations can be satisfied: 
 
(116)     c(p*) = c*(p*) ; 
(117)  ∇c(p*) = ∇c*(p*) ; 
(118) ∇2c(p*) = ∇2c*(p*). 
 
Thus c(p) is a flexible functional form if it has enough free parameters to provide a 
second order Taylor series approximation to an arbitrary unit cost function. 
 
At first glance, it looks like c(p) will have to have at least 1 + N + N2 independent 
parameters in order to be able to satisfy all of the equations (116)-(118).  However, since 
both c and c* are assumed to be twice continuously differentiable, Young’s Theorem in 
calculus implies that ∂2c(p*)/∂pi∂pj = ∂2c(p*)/∂pj∂pi for all i ≠ j (and of course, the same 
equations hold for the second order partial derivatives of c*(p) when evaluated at p = p*).  
Thus the N2 equations in (118) can be replaced with the following N(N+1)/2 equations: 
 
(119) ∂2c(p*)/∂pi∂pj = ∂2c*(p*)/∂pj∂pi   for 1 ≤ i ≤ j ≤ N. 
 
Another property that both unit cost functions must have is homogeneity of degree one in 
the components of p.  By part 1 of Euler’s Theorem on homogeneous functions, c and c* 
satisfy the following equations: 
 
(120) c(p*) = p*T∇c(p*)  and c*(p*) = p*T∇c*(p*). 
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Thus if c and c* satisfy equations (117), then using (120), we see that c and c* 
automatically satisfy equation (116).  By part 2 of Euler’s Theorem on homogeneous 
functions, c and c* satisfy the following equations: 
 
(121) ∇2c(p*)p* = 0N  and  ∇2c*(p*)p* = 0N. 
 
This means that if we have ∂2c(p*)/∂pi∂pj = ∂2c*(p*)/∂pi∂pj for all i ≠ j, then equations 
(121) will imply that ∂2c(p*)/∂pj∂pj = ∂2c*(p*)/∂pj∂pj as well, for j = 1,…,N. 
 
Summarizing the above material, if c(p) is linearly homogeneous, then in order for it to 
be flexible, c(p) needs to have only enough parameters so that the N equations in (117) 
can be satisfied and so that the following N(N−1)/2 equations can be satisfied: 
 
(122) ∂2c(p*)/∂pj∂pj = ∂2c*(p*)/∂pi∂pj ≡ cij*  for 1 ≤ i < j ≤ N. 
    
Thus in order to be flexible, c(p) must have at least N + N(N−1)/2 = N(N+1)/2 
independent parameters. 
 
Now consider the Generalized Leontief unit cost function defined as follows:48    
 
(123) c(p) ≡ ∑i=1N∑j=1N bij pi1/2 pj1/2 ;                         bij = bji for all i and j. 
 
Note that there are exactly N(N+1)/2 independent bij parameters in the c(p) defined by 
(123).  For this functional form, the N equations in (117) become: 
 
(124) ∂c(p*)/∂pn = ∑j=1N bnj (pj*/pn*)1/2 = ∂c*(p*)/∂pn ≡ cn* ;              n = 1,…,N. 
 
The N(N−1)/2 equations in (122) become: 
 
(125) (1/2)bij /(pi*pj*)1/2 = cij* ;                                                           1 ≤ i < j ≤ N. 
 
However, it is easy to solve equations (125) for the bij: 
 
(126) bij = 2cij*(pi*pj*)1/2 ;                                                                   1 ≤ i < j ≤ N. 
 
Once the bij for i < j have been determined using (126), we set bji = bij for i < j and finally 
the bii are determined using the N equations in (124).  
  
The above material shows how we can find a flexible functional form for a unit cost 
function49.  We now turn our attention to finding a flexible functional form for a general 
cost function C(u,p).  Let C*(u,p) be an arbitrary cost function that satisfies the 
appropriate regularity conditions on cost functions listed in Theorem 1 above and in 


                                                 
48 We no longer restrict the bij to be nonnegative. 
49 This material can be adapted to the case where we want a flexible functional form for a linearly 
homogeneous utility or production function f(x): just replace p by x and c(p) by f(x). 
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addition, is twice continuously differentiable around a point (u*,p*) where u* > 0 and p* 
>> 0N.  Then we say that a given cost function C(u,p) that is also twice continuously 
differentiable around the point (u*,p*) is flexible  if it has enough free parameters so that 
the following 1 + (N+1) + (N+1)2 equations can be satisfied: 
 
(127)       C(u*,p*) = C*(u*,p*) ;                             (1 equation) 
(128)   ∇pC(u*,p*) = ∇pC*(u*,p*) ;                         (N equations) 
(129) ∇2ppC(u*,p*) = ∇2ppC*(u*,p*) ;                      (N2 equations) 
(130)    ∇uC(u*,p*) = ∇uC*(u*,p*) ;                        (1 equation) 
(131) ∇2puC(u*,p*) = ∇2puC*(u*,p*) ;                      (N equations) 
(132) ∇2upC(u*,p*) = ∇2upC*(u*,p*) ;                      (N equations) 
(133) ∇2uuC(u*,p*) = ∇2uuC*(u*,p*)                        (1 equation). 
 
Equations (127)-(129) are the counterparts to our earlier unit cost equations (116)-(118).  
As was the case with unit cost functions, equation (127) is implied by the linear 
homogeneity in prices of the cost functions and Part 1 of Euler’s Theorem on 
homogeneous functions.  Young’s Theorem on the symmetry of cross partial derivatives 
means that the lower triangle of equations in (129) is implied by the equalities in the 
upper triangle of both matrices of partial derivatives.  Part 2 of Euler’s Theorem on 
homogeneous functions implies that if all the off diagonal elements in both matrices in 
(129) are equal, then so are the diagonal elements.  Hence, in order to satisfy all of the 
equations in (127)-(129), we need only satisfy the N equations in (128) and the N(N−1)/2 
in the upper triangle of equations (129).  Young’s Theorem implies that if equations 
(131) are satisfied, then so are equations (132).  However, Euler’s Theorem on 
homogeneous functions implies that  
 
(134) ∂C(u*,p*)/∂u = p*T∇2puC(u*,p*) = p*T∇2puC*(u*,p*) = ∂C*(u*,p*)/∂u . 
 
Hence, if equations (131) are satisfied, then so is the single equation (130).  Putting this 
all together, we see that in order for C to be flexible, we need enough free parameters in 
C so that the following equations can be satisfied: 
 


• Equations (128); N equations; 
• The upper triangle in equations (129); N(N−1)/2 equations; 
• Equations (131); N equations; and 
• Equation (133); 1 equation. 


 
Hence, in order for C to be a flexible functional form, it will require a minimum of 2N + 
N(N−1)/2 +1 = N(N+1)/2 + N +1  parameters.  Thus a fully flexible cost function, C(u,p), 
will require N + 1 additional parameters compared to a flexible unit cost function, c(p). 
 
Suppose the unit cost function is the Generalized Leontief unit cost function c(p) defined 
by (123) above.  We now show how terms can be added to it in order to make it a fully 
flexible cost function.  Thus define C(u,p) as follows: 
 
(135) C(u,p) ≡ uc(p) + bTp + (1/2)a0αTpu2 
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where bT ≡ [b1,…,bN] is an N dimensional vector of new parameters, a0 is a new 
parameter and αT ≡ [α1,…,αN] > 0N is a vector of predetermined parameters.50  Using 
(135) as our C, equations (128), (129), (131) and (133) become: 
 
(136)   u*∇pc(p*) + b + (1/2)a0αu*2  = ∇pC*(u*,p*) ;                         
(137)                               u*∇2ppc(p*) = ∇2ppC*(u*,p*) ;                       
(138)                       ∇pc(p*) + a0αu*  = ∇2puC*(u*,p*) ;                      
(139)                                      a0αTp*  = ∇2uuC*(u*,p*) . 
 
Use equations (137) in order to determine the bij for i ≠ j.  Use (139) in order to determine 
the single parameter a0.  Use equations (138) in order to determine the bii.  Finally, use 
equations (136) in order to determine the parameters bn in the b vector.  Thus the cost 
function C(u,p) defined by (135), which uses the Generalized Leontief unit cost function 
c(p) defined by (123) as a building block, is a parsimonious flexible functional form for a 
general cost function. 
 
In fact, it is not necessary to use the Generalized Leontief unit cost function in (135) in 
order to convert a flexible functional form for a unit cost function into a flexible 
functional form for a general cost function.  Let c(p) be any flexible functional form for a 
unit cost function and define C(u,p) by (135).  Use equation (139) to determine the 
parameter a0.  Once a0 has been determined, equations (137) and (138) can be used to 
determine the parameters in the unit cost function c(p).51  Finally, equations (136) can be 
used to determine the parameters in the vector b. 
 
Obviously, the material in this section can be applied to the problems involved in 
estimating a flexible cost function in the production context: simply replace utility u by 
output y and reinterpret the commodity price vector p as an input price vector.  
Differentiating (135) leads to the following system of estimating equations, where x(y,p) 
= ∇pC(y,p) is the producer’s system of cost minimizing input demand functions: 
 
(140) x(y,p) = y∇c(p) + b + (1/2)a0αy2. 
 
In order to obtain estimating equations for the general cost function defined by (135), 
there are some normalization issues that need to be discussed.  We do this in the 
following section. 
 
10. Money Metric Utility Scaling and Other Methods of Cardinalizing Utility 
 


                                                 
50 The parameter a0 could be set equal to 1 and the vector of parameters α could be estimated 
econometrically.  We have defined the cost function C in this manner so that it has the minimal number of 
parameters required in order to be a flexible functional form.  Thus it is a parsimonious flexible functional 
form. 
51 It can be seen that equations (137) and (138) have the same structure as equations (117) and (118).  
Hence if c(p) has enough free parameters to satisfy (117) and (118), then it has enough free parameters to 
satisfy (137) and (138) once a0 has been determined.   
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Since utility is unobservable, in order to estimate econometrically a consumer’s utility 
function, it will be necessary to pick a utility scale for that consumer; i.e., it will be 
necessary to cardinalize the consumer’s utility function.52 
 
There are two commonly used methods that have been used to pick a cardinal utility scale 
for a consumer.  The first method is used when we are working with the consumer’s 
direct utility function, F(x) say.  We simply pick a strictly positive reference consumption 
vector, x* >> 0N say, set the utility of this vector equal to some positive number F(x*) 
and scale the level of utility along the ray through the point x as follows:53 
 
(141) F(λx*) = λF(x*) ;                                                                    λ ≥ 0. 
 
Thus all consumption vectors x ≥ 0N such that they yield the same utility as x* are 
assigned the utility level F(x*); this is the indifference curve or surface {x: F(x) = F(x*)}.  
Then all consumption vectors x that are on the same indifference surface as 2x* are given 
the utility level 2F(x*); this is the indifference surface  {x: F(x) = F(2x*) = 2F(x*)}, and 
so on. Thus the ray through the origin and the reference consumption vector x* is used to 
scale utility levels.  Figure 6 illustrates how this cardinalization method works.                        
 


 
 
 


                                                 
52 If preferences can be represented by the utility function u = F(x), then they can be equally well 
represented by the utility function g{F(x)} where g(u) is a monotonitically increasing function of one 
variable. 
53 This is the type of utility scaling recommended by Blackorby (1975) and other welfare economists 
because this form of scaling does not depend on prices. 


Figure 6: Scaling Utility by a Reference Ray through the Origin 
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Of course, different choices of the reference consumption vector x* will lead to different 
cardinalizations of the consumer’s utility function.  Usually, x* will be chosen to be the 
observed consumption vector of a consumer in some base period or situation. 
 
We turn now to a second method of utility scaling that was referred to as money metric 
utility scaling by Samuelson (1974; 1262).  For this method of utility scaling, we choose 
a reference set of prices, say p* >> 0N, and if these reference prices face the consumer, 
we normalize the consumer’s cost function, C(u,p), so that the following restriction 
holds: 
 
(142) C(u,p*) = u                                                                 for all u > 0. 
 
Typically, we choose p* to be the prices facing the consumer in some base period 
situation when the consumer spends the “income” Y* on the N commodities and has 
utility level u* so that equating expenditure to income in this base period, we have 
 
(143) C(u*,p*) = Y*. 
 
Combining (142) and (143), we see that for this base period situation, we have 
 
(144) u* = Y* ; 
 
i.e., utility equals expenditure in this base period.  Thus the money metric utility scaling 
convention (142) has the effect of making nominal “income” Y equal to utility u provided 
that the consumer is facing the reference prices p*.  The geometry of this scaling method 
is illustrated in Figure 7. 
 


 
 


Figure 7: Money Metric Utility Scaling 
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In Figure 7, x* solves the cost minimization problem, min x {p*Tx: F(x) = u*} ≡ 
C(u*,p*), which in turn is equal to observed expenditure, Y*.  We scale utility so that u* 
is set equal to Y* in this base period situation.  Thus all x combinations that yield the 
utility level u* = Y* are assigned this utility level Y*.  This is the set {x: F(x) = F(x*)} 
that is labelled in Figure 7.  Now double the initial utility level to 2u* = 2Y* and solve 
the cost minimization problem min x {p*Tx: F(x) = 2u*} ≡ C(2u*,p*), which in turn is 
equal to twice the initial expenditure, 2Y*.  The solution to this cost minimization 
problem is x** in Figure 7.  All points x on the corresponding indifference curve, {x: 
F(x) = F(x**) = 2u*}, are assigned the utility level 2u*, which in turn is equal to 2Y*. 
 
In general, money metric utility scaling works as follows.  For each positive “income” 
level Y > 0, define the budget set B(Y) as follows: 
 
(145) B(Y) ≡ {x: p*Tx = Y; x ≥ 0N}. 
 
For each Y greater than zero, an indifference surface will be tangent to the budget set 
B(Y).54  All points on this indifference surface are assigned the utility level Y. 
 
Money metric utility scaling suffers from the same disadvantage that ray scaling had; i.e., 
different choices of the reference vector of consumer prices p* will give rise to different 
utility scales.  However, both money metric and ray scaling are acceptable methods of 
scaling utility; neither method of scaling can be contradicted by observable data on a 
consumer.   
 
The money metric utility scaling assumption (142) implies additional restrictions on the 
derivatives of the cost function.  Differentiating both sides of (142) with respect to u 
gives us the following equation: 
 
(146) ∂C(u,p*)/∂u = 1                                                                   for all u > 0. 
 
Differentiating (146) with respect to u again leads to the following equation: 
 
(147) ∂2C(u,p*)/∂u2 = 0                                                                 for all u > 0. 
 
Euler’s Theorem on homogeneous functions and (146) imply the following additional 
restriction on the second order partial derivatives of the cost function: 
 
(148) p*T∇2puC(u,p*) = ∂C(u,p*)/∂u = 1                                       for all u > 0. 
  
We shall use money metric utility scaling quite frequently in this course. 
 
The restrictions (143) and (146)-(148) imposed by money metric utility scaling have an 
impact on our earlier discussion of flexible functional forms for the cost function, C(u,p).  
Since empirically, it is harmless to impose money metric utility scaling, we can impose 


                                                 
54 If the cost function is differentiable, the tangent indifference surface is {x: F(x) = F[∇pC(Y,p*)]}.  
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money metric scaling on both C(u,p) and C*(u,p) at the point (u*,p*) when we are 
attempting to find a flexible cost function C(u,p).  This means that equations (130) and 
(133) become:  
 
(149)    ∇uC(u*,p*) = ∇uC*(u*,p*) = 1;                          (1 equation)  
(150) ∇2uuC(u*,p*) = ∇2uuC*(u*,p*) = 0;                        (1 equation). 
  
Thus if money metric utility scaling using the reference prices p* is imposed on both C 
and C*, equations (149) and (150) will be satisfied automatically.  This reduces the 
number of free parameters that are required for C(u,p) to be a flexible functional form by 
2 compared to our earlier discussion.  The restriction (143) reduces the required number 
of parameters by 1 as well.  Hence, in order for C to be a flexible functional form under 
these money metric utility scaling assumption, C will require a minimum of  N(N+1)/2 + 
N − 2  parameters.  Recall the Generalized Leontief cost function C(u,p) defined earlier 
by (135).  Under our new money metric utility scaling assumptions, it is evident that we 
can set the parameter a0 equal to 0.  Thus define C(u,p) as follows:              
 
(151) C(u,p) ≡ uc(p) + bTp  
 
where c(p) is defined by (123).  The system of equations that we now have to satisfy in 
order for C defined by (151) to be flexible is the following one: 
 
(152)       u*∇pc(p*) + b  = ∇pC*(u*,p*) ;                         
(153)            u*∇2ppc(p*) = ∇2ppC*(u*,p*) ;                       
(154)                  ∇pc(p*)  = ∇2puC*(u*,p*) ;                      
 
Use equations (153) in order to determine the bij for i ≠ j.  Use equations (154) in order to 
determine the bii.  Finally, use equations (152) in order to determine the parameters bn in 
the b vector.  However, using equation (148) applied to both C and C* means that c(p*) 
satisfies the following restriction: 
 
(155) c(p*) = p*T∇pc(p*) = p*T∇2puC*(u*,p*) = 1.                                       
   
Thus c(p*) = 1, which means that we can impose a restriction on the bij such as: 
 
(156) b11 = {1−[∑n=2N bnnpn* + ∑i=1N∑j=1N i≠j bij (pi*pj*)


1/2]}/p1* . 
 
Recall the normalization (110) in section 8 above, which was similar to (156) except that 
the reference prices p0 were used in place of the reference prices p*.  Now premultiply 
both sides of (152) by p*T in order to obtain the following equation: 
 
(157) u*c(p*) + p*Tb  = C*(u*,p*)                                 using Euler’s Theorem 
                                    = u*                                              using (142). 
 
Using (155), namely that c(p*) = 1, we find that equation (157) becomes u* + p*Tb = u* 
or  
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(158) p*Tb = 0. 
 
Hence we can impose a restriction on the components of b such as 
 
(159) b1 = −∑n=2N pn*bn/p1* 
 
without destroying the flexibility of the functional form defined by (151).  Thus there are 
N(N+1)/2 − 1 independent bij parameters in the Generalized Leontief unit cost function 
c(p) defined by (123) and N−1 independent bn parameters in the b vector, which is just 
the right number for (151) to be a parsimonious flexible functional form for a cost 
function in the context of money metric utility scaling.   
 
In fact, it is not necessary to use the Generalized Leontief unit cost function in (151).55     
Let c(p) be any flexible functional form for a unit cost function and define C(u,p) by 
(151).  Use equations (153) and (154) to determine the parameters in the unit cost 
function c(p).  Then use equations (152) to determine b.  Finally, repeat the arguments 
around equations (155), (157) and (158) to show that c(p) and b satisfy the additional 
restrictions c(p*) = 1 and p*Tb = 0. 
 
The reader will note that our suggested flexible functional form for C(u,p) defined by 
(151) reduces to uc(p) if the parameters bn in the b vector all turn out to be zero.  If c(p) is 
a flexible functional form for a unit cost function, then when b = 0N, our general flexible 
functional form C(u,p) can model homothetic (or linearly homogeneous) preferences in a 
flexible manner.  Put another way, we found a flexible functional form for a general cost 
function, C(u,p), by simply adding an extra parameter vector b to a cost function that was 
flexible for homothetic preferences, namely uc(p).  The indirect utility function that 
corresponds to the cost function C(u,p) defined by (151) can be obtained by setting the 
right hand side of (151) to Y and then solving the resulting equation for u = g(Y,p), 
which results in the following formula for g: 
 
(160) u = g(Y,p) = [Y − bTp]/c(p). 
 
In order for utility to be positive (and meaningful in this model), we require that the 
consumer’s income Y be greater than or equal to committed expenditures, bTp.56  The 
system of Hicksian demand functions that corresponds to (151) is: 
 
(161) x(u,p) = b + ∇pc(p)u. 
 
Substituting (160) into (161) leads to the following system of market demand functions: 
 
(162) d(Y,p) ≡ x[g(Y,p),p] = b + ∇pc(p)[Y − bTp]/c(p). 
                                                 
55 This general argument is due to Diewert (1980; 597). 
56 In the case where one or more components of b are negative, we will require income to be large enough 
so that the demands dn defined by (162) are nonnegative.  Thus we require Y to be large enough so that b + 
∇pc(p)[Y − b


Tp]/c(p) ≥ 0N.  
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To see how the geometry of this method of adding the vector of committed expenditures 
b to a homothetic preferences cost function works, consider the case N = 2 and let the 
vector of reference prices [p1*,p2*] be [1,1].  In this case, the constraint (158) implies that 
 
(163) b2 = − b1. 
 
In Figure 8 below, we assumed that b1 is positive so that b2 = − b1 is negative.  We drew a 
quadrant in Figure 8 with an origin at the point b = [b1,b2] = [b1,−b1].  Now fill in this 
quadrant with the family of indifference curves that are dual to the unit cost function c(p).  
Three of these indifference curves are graphed in Figure 8 that pass through the x points, 
x0, x* (our point of approximation that has utility level u*) and x1. 
    


    
 
There are also 4 parallel budget lines that correspond to income Y = 0 (this is the line that 
passes through (0,0) and (b1,b2)), Y = Y0 (the corresponding consumer demand vector x0 
= [x10,x20] has its x2 component equal to 0, i.e., x20 = 0),57 Y = Y* ≡ p*Tx* where x* = 
∇pC(u*,p*) is the consumer demand vector at the point of approximation for the flexible 
functional form, and Y = Y1 = p*Tx1 where Y1 > Y*.  Note that the points x0, x* and x1 
lie on the dashed line that starts at the point b.  Draw a straight line starting at the origin 
(0,0) and passing through the point x*.  It can be seen that this straight line is below the 
dashed line to the right of x*; this means that the income elasticity of demand for 
commodity 1 is less than one while the income elasticity of demand for commodity 2 is 
greater than one.  Thus it can be seen how this model can be consistent with arbitrary 
income elasticities of demand around a point of approximation, x*.   
 


                                                 
57 In order to obtain nonnegative demands, we require that income Y be equal to or greater than Y0. 


Figure 8: The Addition of b to a Flexible Unit Cost Function  
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Problems 
 
19. Instead of estimating preferences using dual methods, it is possible to estimate primal 
utility functions directly.  Suppose that xt >> 0N solves the consumer’s period t utility 
maximization problem: 
 
(i) max x {F(x): ptTx = Yt; x ≥ 0N} 
 
where pt >> 0N, Yt > 0 and F(x) is the consumer’s differentiable utility function.  (a) 
Show that the consumer’s period t normalized price vector, pt/Yt, satisfies the following 
system of equations (Hotelling (1935; 71), Wold (1944; 69-71) (1953; 145)): 
 
(ii) pt/Yt = ∇F(xt)/xtT∇F(xt). 
  
Hint: Set up the Lagrangian for the constrained maximization problem and look at the 
resulting first order necessary conditions for an interior solution.  Eliminate the Lagrange 
multiplier from these N+1 equations.  The remaining N equations can be rewritten in the 
form (ii). 
 
(b) Now assume that the utility function is g{F(x)}, where g(u) is a monotonic once 
differentiable function of one variable with g′(u) > 0 for all u > 0.  Find the counterparts 
to equations (ii) above. 
 
(c) Find a flexible functional form for F(x) in the class of functions with no restrictions 
on F.  You do not have to formally prove its flexibility; just exhibit what you think might 
be a flexible functional form.  What system of equations does F have to satisfy in order to 
be flexible at a point x* >> 0N?  Thus what is the minimal number of parameters that F 
must have in order to be flexible? 
 
(d) Substitute this candidate flexible functional form into the system of econometric 
estimating equations defined above by (ii).  Can all of the parameters of F be identified? 
 
(e) The material in this section treats commodity demand vectors xt as the dependent 
variables in a system of econometric estimating equations while income Yt and the 
commodity price vector pt are regarded as independent variables.  The parameters of a 
cost function are estimated using this framework.  However, the material in this problem 
treats the commodity price vectors deflated by income or expenditure, pt/Yt, as the 
dependent variables and the commodity demand vectors xt as the independent variables.  
The parameters of a utility function are estimated in this framework.  Which framework 
is preferable in applied work?   
 
20. Assume that the twice continuously differentiable utility function F(x) satisfies the 
ray scaling assumption, (141).  (a) Show that the utility function and its derivatives must 
satisfy the following 2 restrictions: 
   
(i)       x*T∇F(x*) = F(x*); 
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(ii) x*T∇2F(x*)x* = 0. 
 
Hint: define the functions g(λ) ≡ F(λx*) and h(λ) ≡ λF(x*).  Since (141) holds, g(λ) = 
h(λ) for λ ≥ 0.  Now differentiate g and h with respect to λ once and then again and set λ 
= 1.   
 
(b) In view of part (a) of this problem, how many independent parameters must F(x) have 
in order to be a parsimonious flexible functional form at the point x* where F and F* 
both satisfy the ray scaling assumption (141)? 
 
(c) Use the flexible functional form for F that you suggested in problem 19 above and 
impose ray scaling on it.  What additional restrictions on the parameters does ray scaling 
imply on your suggested functional form?   
                                                                                                                                    
11. Variable Profit Functions 
 
Up to now, we have only considered technologies that produce one output.  In reality, 
firms (and industries) usually produce many outputs.  Hence, in this section, we consider 
technologies that produce many outputs while using many inputs. 
 
Let S denote the technology set of a firm.  We decompose the inputs and outputs of the 
firm into two sets of commodities: variable and fixed.  Let y ≡ [y1,…,yM] denote a vector 
of variable net outputs (if ym > 0, then commodity m is an output while if ym < 0, then 
commodity m is an input) and let x ≡ [x1,…,xN] denote a nonnegative vector of “fixed” 
inputs58. Thus the technology set S is a set of feasible variable net output and fixed input 
vectors, (x,y).   
 
Let p >> 0M be a strictly positive vector of variable net output prices that the firm faces 
during a production period.  Then conditional on a given vector of fixed inputs x, we 
assume that the firm attempts to solve the following variable profit maximization 
problem: 
 
(164) max y {pTy: (y,x)∈S} ≡ π(p,x). 
 
Some regularity conditions on the technology set S are required in order to ensure that the 
maximum in (164) exists.  A simple set of sufficient conditions are:59 
 
(165) S is a closed set in RM+N; 


                                                 
58 These “fixed’ inputs may only be fixed in the short run. 
59 Let x ≥ 0N.  Then by (166), there exists yx such that (yx,x)∈S.  Define the closed and bounded set B(x,p) 
≡ {y: y ≤ b(x)1M; p


Ty ≥ pTyx}.  It can be seen that the constraint (y,x)∈S in (164) can be replaced by the 
constraint (y,x)∈S∩B(x,p).  Using (165), S∩B(x,p) is a closed and bounded set so that the maximum in 
(164) will exist. 
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(166) for each x ≥ 0N, the set of y such that (y,x)∈S is not empty and is bounded from  
above; i.e., for each x ≥ 0N and y such that (y,x)∈S, there exists a number b(x) such that  
y ≤ b(x)1M. 
 
Condition (166) means that for each vector of fixed inputs, x ≥ 0N, the amount of each  
variable  net output that can be produced by the technology is bounded from above, 
which is not a restrictive condition. 
 
Note that (164) serves to define the firm’s variable profit function,60 π(p,x); i.e., π(p,x) is 
equal to the optimized objective function in (164) and is regarded as a function of the net 
output prices for variable commodities that the firm faces, p, as well as a function of the 
vector of fixed inputs, x, that the firm has at its disposal.  Just as in section 2 above where 
we showed that the cost function C(y,p) satisfied a number of regularity conditions 
without assuming much about the production function, we can now show that the profit 
function π(p,x) satisfies some regularity conditions without assuming much about the 
technology set S. 
 
Theorem 10: McFadden (1966) (1978), Gorman (1968), Diewert (1973): Suppose the 
technology set S satisfies (165) and (166).  Then the variable profit function π(p,x) 
defined by (164) has the following properties with respect to p for each x ≥ 0N: 
 
Property 1: π(p,x)  is positively linearly homogeneous in p for each fixed x ≥ 0N; i.e.,  
 
(167) π(λp,x) = λπ(p,x) for all λ > 0, p >> 0N and x ≥ 0N. 
 
Property 2: π(p,x) is a convex function of p for each x ≥ 0N; i.e., 
 
(168) x ≥ 0M, p1 >> 0M; p2 >> 0N; 0 < λ < 1 implies  
            π(λp1+(1−λ)p2,x) ≤ λπ(p1,x) + (1−λ)π(p2,x). 
 
Problem 
 
21.  Prove Theorem 10.  Hint:  Properties 1 and 2 above for π(p,x) are analogues to 
Properties 2 and 4 for the cost function C(y,p) in Theorem 1 above and can be proven in 
the same manner. 
 
We now ask whether a knowledge of the profit function π(p,x)  is sufficient to determine 
the underlying technology set S.  As was the case in section 3 above, the answer to this 
question is yes, but with some qualifications. 
 


                                                 
60 This concept is due to Hicks (1946; 319) and Samuelson (1954-54), who determined many of its 
properties using primal optimization techniques.  For more general approaches to this function using 
duality theory, see Gorman (1968), McFadden (1966) (1978) and Diewert (1973).  McFadden used the term 
“conditional profit function” while Diewert used the term “variable profit function”. 
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To see how to use a given profit function satisfying the 2 regularity conditions listed in 
Theorem 10 to determine the technology set that generated it, pick an arbitrary vector of 
fixed inputs x ≥ 0N and an arbitrary vector of positive prices, p1 >> 0M.  Now use the 
given profit function π to define the following isoprofit surface: {y: p1Ty = π(p1,x)}.  This 
isoprofit surface must be tangent to the set of net output combinations y that are feasible, 
given that the vector of fixed inputs x is available to the firm, which is the conditional on 
x production possibilities set, S(x) ≡ {x: (y,x)∈S}.  It can be seen that this isoprofit 
surface and the set lying below it must contain the set S(x); i.e., the following halfspace 
M(x,p1), contains S(x): 
 
(169) M(x,p1) ≡ {y: p1Ty ≤ π(p1,x)}. 
 
Pick another positive vector of prices, p2 >> 0M and it can be seen, repeating the above 
argument, that the halfspace M(x,p2) ≡ {y: p2Ty ≤ π(p2,x)} must also contain the 
conditional on x production possibilities set S(x).  Thus S(x) must belong to the 
intersection of the two halfspaces M(x,p1) and M(x,p2).  Continuing to argue along these 
lines, it can be seen that S(x) must be contained in the following set, which is the 
intersection over all p >> 0M of all of the supporting halfspaces to S(x): 
 
(170) M(x) ≡ M(x,p). 
 
Note that M(x) is defined using just the given profit function, π(p,x).  Note also that since 
each of the sets in the intersection, M(x,p), is a convex set, then M(x) is also a convex set.  
Since S(x) is a subset of each M(x,p), it must be the case that S(x) is also a subset of 
M(x); i.e., we have 
 
(171) S(x) ⊂ M(x). 
 
Is it the case that S(x) is equal to M(x)?  In general, the answer is no; M(x) forms an 
outer approximation to the true conditional production possibilities set S(x).  To see why 
this is, see Figure 9 below.  The boundary of the set M(x) partly coincides with the 
boundary of S(x) but it encloses a bigger set: the backward bending parts of the true 
production frontier are replaced by the dashed lines that are parallel to the y1 axis and the 
y2 axis and the inward bending part of the true production frontier is replaced by the 
dashed line that is tangent to the two regions where the boundary of M(x) coincides with 
the boundary of S(x).  However, if the producer is a price taker in the two output markets, 
then it can be seen that we will never observe the producer’s nonconvex or backward 
bending parts of the production frontier.   
 
Figure 9 illustrated the case where the two variable commodities were both outputs.  
Figure 10 illustrates the one variable output, one variable input geometry that 
corresponds to (171).  In Figure 10, y1 is the variable input and y2 is the variable output.  
Again, the boundary of the set M(x) partly coincides with the boundary of S(x) but it 
encloses a bigger set: the downward bending part of the true production frontier is 
replaced by the dashed line that is parallel to the y1 axis and the nonconvex part of the 
true production frontier is replaced by the dashed line that is tangent to the two regions 
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where the boundary of M(x) coincides with the boundary of S(x).  Again, if the producer 
is a price taker in the two variable markets, then it can be seen that we will never observe 
the producer’s nonconvex or downward bending parts of the production frontier.    
 


 
 
 


 
 
 
 


Figure 9: The Geometry of the Two Output Maximization Problem 
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Figure 10: The Geometry of the One Output One Input Maximization Problem 
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What are conditions on the technology set S (and hence on the conditional technology 
sets S(x)) that will ensure that the outer approximation sets M(x), constructed using the 
variable profit function π(p,x), will equal the true technology sets S(x)?  It can be seen 
that the following two conditions on S (in addition to conditions (165) and (166)) are the 
required conditions: 
 
(172) For every x ≥ 0N, the set S(x) ≡ {x: (y,x)∈S} has the following free disposal 
property: y1∈S(x), y2 ≤ y1 implies y2∈S(x); 
   
(173) For every x ≥ 0N, the set S(x) ≡ {y: (y,x)∈S} is convex.61  
 
Conditions (172) and (173) are the conditions on the technology set S that are 
counterparts to the two regularity conditions of nondecreasingness and quasiconcavity62 
that were made on the production function, F(x), in section 3 above in order to obtain a 
duality between cost and production functions.  If the firm is behaving as a price taker in 
variable commodity markets, it can be seen that it is not restrictive from an empirical 
point of view to assume that S satisfies conditions (172) and (173), just as it was not 
restrictive to assume that the production function was nondecreasing and quasiconcave in 
the context of the producer’s (competitive) cost minimization problem studied earlier.    
 
The next result provides a counterpart to Shephard’s Lemma, Theorem 5 in section 4 
above. 
 
Theorem 11: Hotelling’s (1932; 594) Lemma:63 If the profit function π(p,x)  satisfies the 
properties listed in Theorem 10 above and in addition is once differentiable with respect 
to  the components of the variable commodity prices at the point (p*,x*) where x* ≥ 0N 
and p* >> 0M, then     
 
(174) y* = ∇pπ(p*,x*)   
 
where ∇pπ(p*,x*)  is the vector of first order partial derivatives of variable profit with 
respect to variable commodity prices and y* is any solution to the profit maximization 
problem  
 
(175) max y {p*Ty: (y,x*)∈S} ≡ π(p*,x*). 
 
Under these differentiability hypotheses, it turns out that the y* solution to (175) is 
unique. 
 


                                                 
61 If N = 1 so that there is only one fixed input, then given a producible net output vector y∈RM, we can 
define the (fixed) input requirements function that corresponds to the technology set S as g(y) ≡ min x {x: 
(y,x)∈S}.  In this case, condition (172) becomes the following condition: the input requirements function 
g(y) is quasiconvex in y.  For additional material on this one fixed input model, see Diewert (1974c). 
62 Recall conditions (11) and (12) in section 3. 
63 See also Gorman (1968) and Diewert (1974a, 137). 
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Proof: Let y* be any solution to the profit maximization problem (175).  Since y* is 
feasible for the profit maximization problem when the variable commodity price vector is 
changed to an arbitrary p >> 0N, it follows that 
 
(176) pTy* ≤ π(p,x*)                                                                for every p >> 0M. 
 
Since y* is a solution to the profit maximization problem (175) when p = p*, we must 
have 
 
(177) p*Ty* = π(p*,x*). 
 
But (176) and (177) imply that the function of M variables, g(p) ≡ pTy* − π(p,x*) is 
nonpositive for all p >> 0M with g(p*) = 0.  Hence, g(p) attains a global maximum at p = 
p* and since g(p) is differentiable with respect to the variable commodity prices p at this 
point, the following first order necessary conditions for a maximum must hold at this 
point: 
 
(178) ∇p g(p*) = y* − ∇pπ(p*,x*) = 0M. 
 
Now note that (178) is equivalent to (174).  If y** is any other solution to the profit  
maximization problem (175), then repeat the above argument to show that  
 
(179) y** = ∇pπ(p*,x*) 
                 = y*                                                                     
 
where the second equality follows using (178).  Hence y** = y* and the solution to (175) 
is unique.                                                                                                                   Q.E.D. 
 
Hotelling’s Lemma may be used in order to derive systems of variable commodity output 
supply and input demand functions just as we used Shephard’s Lemma to generate 
systems of cost minimizing input demand functions; for examples of this use of 
Hotelling’s Lemma, see Diewert (1974a; 137-139). 
 
If we are willing to make additional assumptions about the underlying firm production 
possibilities set S, then we can deduce that π(p,x) satisfies some additional properties.  
One such additional property is the following one: S is subject to the free disposal of 
fixed inputs if it has the following property: 
 
(180) x2 > x1 ≥ 0N and (y,x1)∈S implies (y,x2)∈S.    
 
The above property means if the vector of fixed inputs x1 is sufficient to produce the 
vector of variable inputs and outputs y and if we have at our disposal a bigger vector of 
fixed inputs x2, then y is still producible by the technology that is represented by the set 
S. 
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Theorem 12:64 Suppose the technology set S satisfies assumptions (165) and (166) above. 
(a) If in addition, S has the following property:65 
 
(181) For every x ≥ 0N, (0M,x)∈S; 
 
then for every p >> 0M and x ≥ 0N, π(p,x) ≥ 0; i.e., the variable profit function is 
nonnegative if (181) holds. 
(b) If S is a convex set, then for each p >> 0M, then π(p,x) is a concave function of x over 
the set Ω ≡ {x: x ≥ 0N}. 
(c) If S is a cone so that the technology is subject to constant returns to scale, then π(p,x) 
is (positively) homogeneous of degree one in the components of x. 
(d) If S is subject to the free disposal of fixed inputs, then  
 
(182) p >> 0, x2 > x1 ≥ 0N implies π(p,x2) ≥ π(p,x1); 
 
i.e., π(p,x) is nondecreasing in the components of x. 
 
Proof of (a): Let p >> 0M and x ≥ 0N.  Then 
 
(183) π(p,x) ≡ max y {pTy: (y,x)∈S} 
                    ≥ pT0M           since by (181), (0M,x)∈S and hence is feasible for the problem 
                    = 0. 
 
Proof of (b): Let p >> 0M, x1 ≥ 0N, x2 ≥ 0N and 0 < λ < 1.  Then 
 
(184) π(p,x1) ≡ max y {pTy: (y,x1)∈S} 
                      = pTy1                                                          where (y1,x1)∈S; 
 
(185) π(p,x2) ≡ max y {pTy: (y,x2)∈S} 
                      = pTy2                                                          where (y2,x2)∈S. 
    
Since S is assumed to be a convex set, we have 
 
(186) λ(y1,x1) + (1−λ)(y2,x2) = [λy1 + (1−λ)y2, λx1 + (1−λ)x2]∈S. 
 
Using the definition of π, we have: 
 
(187) π(p,λx1 + (1−λ)x2) ≡ max y {pTy: (y,λx1 + (1−λ)x2)∈S}  
          ≥ pT[λy1 + (1−λ)y2]         since by (186), λy1 + (1−λ)y2 is feasible for the problem 
          = λpTy1 + (1−λ)pTy2  
          = λπ(p,x1) + (1−λ)π(p,x2)                                                        using (184) and (185). 
                                                 
64 The results in this Theorem are essentially due to Samuelson (1953-54; 20), Gorman (1968) and Diewert 
(1973) (1974a; 136) but they are packaged in a somewhat different form in this chapter. 
65 This property says that the technology can always produce no variable outputs and utilize no variable 
inputs given any vector of fixed inputs x. 
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Proof of (c): Let p >> 0M, x* ≥ 0N and λ > 0.  Then 
 
(188) π(p,x*) ≡ max y {pTy: (y,x*)∈S}  
                      = pTy*                                                                            where (y*,x*)∈S. 
 
Since S is a cone and since (y*,x*)∈S, then we have (λy*,λx*)∈S as well.  Hence, using 
a feasibility argument: 
 
(189) π(p,λx*) ≡ max y {pTy: (y,λx*)∈S}  
                         ≥ pTλy*              since (λy*,λx*)∈S and hence is feasible for the problem 
                         = λpTy*. 
 
Now suppose that the strict inequality in (189) holds so that 
 
(190) π(p,λx*) ≡ max y {pTy: (y,λx*)∈S}  
                        = pTy**                                            where (y**,λx*)∈S  
                        > λpTy*. 
 
Since S is a cone and since (y**,λx*)∈S, then we have (λ−1y**,x*)∈S as well.  Thus 
λ−1y** is feasible for the maximization problem (188) that defined π(p,x*) and so 
 
(191) pTy* = max y {pTy: (y,x*)∈S}                      using (188) 
                  ≥ pTλ−1y**                                            since λ−1y** is feasible for the problem 
                  = λ−1pTy**                                             
 
or since λ > 0, (191) is equivalent to 
 
(192) λpTy* ≥ pTy** > λpTy*                                 using (190). 
 
But (192) implies that λpTy* > λpTy*, which is impossible and hence our supposition is 
false and the desired result follows. 
 
Proof of (d): Let p >> 0, x2 > x1 ≥ 0N.  Using the definition of π(p,x1), we have 
 
(193) π(p,x1) ≡ max y {pTy: (y,x1)∈S} 
                      = pTy1                                               where (y1,x1)∈S. 
 
Using the free disposal property (180) for S, since (y1,x1)∈S and x2 > x1, we have 
 
(194) (y1,x2)∈S.   
  
Using the definition of π(p,x2), we have 
 
(195) π(p,x2) ≡ max y {pTy: (y,x2)∈S} 
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                      ≥ pTy1                                                since by (194), (y1,x2) is feasible 
                      = π(p,x1)                                            using (193). 
 
                                                                                                                                   Q.E.D. 
 
Note that if the technology set S satisfies the minimal regularity conditions (165) and 
(166) plus all of the additional conditions that are listed in Theorem 12 above (we shall 
call such a technology set a regular technology set), then the associated variable profit 
function π(p,x) will have all of the regularity conditions with respect to its fixed input 
vector x that a nonnegative, nondecreasing, concave and linearly homogeneous 
production function f(x) possesses with respect to its input vector x. 
 
Hotelling’s Lemma enabled us to interpret the vector of first order partial derivatives of 
the variable profit function with respect to the components of the variable commodity 
price vector p, ∇pπ(p,x), as the producer’s vector of variable profit maximizing output 
supply (and the negative of variable input demand) functions, y(p,x), provided that the 
derivatives existed.  If the first order partial derivatives of the variable profit function 
π(p,x) with respect to the components of the fixed input vector x exist, then this vector of 
derivatives, ∇xπ(p,x),  can also be given an economic interpretation as a vector of shadow 
prices or imputed contributions to profit of adding marginal units of fixed inputs.  The 
following result also shows that these derivatives can be interpreted as competitive input 
prices for the “fixed” factors if they are allowed to become variable. 
 
Theorem 13:66 Suppose the technology set S satisfies assumptions (165) and (166) above 
and in addition is a convex set.  Suppose in addition that p* >> 0M, x* ≥ 0N and that the 
vector of derivatives, ∇xπ(p*,x*) ≡ w*, exists.  Then x* is a solution to the following 
long run profit maximization problem that allows the “fixed” inputs x to be variable: 
 
(196) max x {π(p*,x) − w*Tx: x ≥ 0N}. 
 
Proof: Part (b) of Theorem 12 above implies that π(p*,x) is a concave function of x over 
the set Ω ≡ {x: x ≥ 0N}.  The function − w*Tx is linear in x and hence is also a concave 
function of x over Ω.  Hence f(x) defined for x ≥ 0N as 
 
(197) f(x) ≡ π(p*,x) − w*Tx 
 
is also a concave function in x over the set Ω.  Since x* ≥ 0N, x*∈Ω.  Hence using the 
third characterization of concavity and the differentiability of f(x) with respect to x at x*, 
we have: 
 
(198) f(x) ≤ f(x*) + ∇xf(x*)T(x − x*)                      for all x ≥ 0N 
                = π(p*,x*) − w*Tx* + 0NT(x − x*)           since ∇xf(x*) = ∇xπ(p*,x*) − w* = 0N 
                = π(p*,x*) − w*Tx*. 


                                                 
66 Related results can be found in Samuelson (1953-54; 10) and Diewert (1974a; 140). 
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But (197) and (198) show that x* solves the profit maximization problem (196).  Q.E.D.            
 
Corollary: If in addition to the above assumptions, π(p,x) is differentiable with respect to 
the components of p at the point (p*,x*), so that y* ≡ ∇pπ(p*,x*) exists, then (y*,x*) 
solves the following long run profit maximization problem: 
 
(199) Π(p*,w*) ≡ max y,x {p*Ty − w*Tx: (y,x)∈S}. 
 
Proof:  Using Hotelling’s Lemma, we know that y* solves the following variable profit 
maximization problem: 
 
(200) π(p*,x*) ≡ max y {p*Ty: (y,x*)∈S} = p*Ty*. 
 
Now look at the long run profit maximization problem defined by (199): 
 
(201) Π(p*,w*) ≡ max y,x {p*Ty − w*Tx: (y,x)∈S} 
                          = max x [max y {p*Ty: (y,x)∈S} − w*Tx]  where we have rewritten the  
                                              maximization problem as a two stage maximization problem  
                          = max x [π(p*,x)  − w*Tx]                          using the definition of π(p*,x) 
                          = π(p*,x*)  − w*Tx*                                   using Theorem 13. 
 
Hence with x = x* being an x solution to (201), we must have 
 
(202) Π(p*,w*) ≡ max y,x {p*Ty − w*Tx: (y,x)∈S} 
                          = [max y {p*Ty: (y,x*)∈S} − w*Tx*]       letting x = x* 
                          = p*Ty* − w*Tx*                                       using (200).               Q.E.D. 
 
Hotelling’s Lemma and Theorem 13 can be used as a convenient method for obtaining 
econometric estimating equations for determining the parameters that characterize a 
producer’s technology set S.  Assuming that S satisfies (165) and (166), we need only 
postulate a differentiable functional form for the producer’s variable profit function, 
π(p,x), that is linearly homogeneous and convex in p.  Suppose that we have collected 
data on the fixed input vectors used by the firm in period t, xt, and the net supply vectors 
for variable commodities produced in period t, yt, for t = 1,…,T time periods as well as 
the corresponding variable commodity price vectors pt.  Then the following M equations 
can be used in order to estimate the unknown parameters in π(p,x): 
 
(203) yt = ∇pπ(pt,xt) + ut ;                                                      t = 1,…,T 
 
where ut is a vector of errors.  If in addition, it can be assumed that the firm is optimizing 
with respect to its vector of fixed inputs in each period, where it faces the fixed input 
price vector wt in period t, then the following N equations can be added to (203) as 
additional estimating equations: 
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(204) wt = ∇xπ(pt,xt) + vt ;                                                      t = 1,…,T 
 
where vt is a vector of errors.67   
 
12. The Comparative Statics Properties of Net Supply and Fixed Input Demand 
Functions                  
 
From Theorem 10 above, we know that the firm’s variable profit function π(p,x) is 
convex and linearly homogeneous in the components of the vector of variable commodity 
prices p for each fixed input vector x.  Thus if π(p,x) is twice continuously differentiable 
with respect to the components of p at some point (p,x), then using Hotelling’s Lemma, 
we can prove the following counterpart to Theorem 7 for the cost function. 
 
Theorem 14: Hotelling (1932; 597), Hicks (1946; 321), Diewert (1974a; 142-146): 
Suppose the variable profit function π(p,x)  is linearly homogeneous and convex in p and 
in addition is twice continuously differentiable with respect to the components of p at 
some point, (p,x).  Then the system of variable profit maximizing net supply functions, 
y(p,x) ≡ [y1(p,x),…,yM(p,x)]T, exists at this point and these net supply functions are once 
continuously differentiable.  Form the M by M matrix of net supply derivatives with 
respect to variable commodity prices, B ≡ [∂yi(p,x)/∂pj], which has ij element equal to 
∂yi(p,x)/∂pj.  Then the matrix B has the following properties: 
 
(205) B = BT   so that ∂yi(p,x)/∂pj = ∂yj(p,x)/∂pi for all i ≠ j;68 
(206) B is positive semidefinite and  
(207) Bp = 0M. 
 
Proof:  Hotelling’s Lemma implies that the firm’s system of variable profit maximizing 
net supply functions, y(p,x) ≡ [y1(p,x),…,yM(p,x)]T, exists and is equal to  
 
(208) y(p,x) = ∇pπ(p,x) . 
 
Differentiating both sides of (208) with respect to the components of p gives us 
 
(209) B ≡ [∂yi(p,x)/∂pj] = ∇2ppπ(p,x). 
 
Now property (205) follows from Young’s Theorem in calculus.  Property (206) follows 
from (209) and the fact that π(p,x) is convex in p and the fourth characterization of 
convexity.  Finally, property (207) follows from the fact that the profit function is linearly 
homogeneous in p and hence, using Part 2 of Euler’s Theorem on homogeneous 
functions, (207) holds.                                                                                               Q.E.D.   
                                                 
67 If the technology set S is subject to constant returns to scale and the data reflect this fact by “adding up” 
(so that ptTyt = wtTxt for t = 1,…,T), then the error vectors ut and vt in (203) and (204) cannot be statistically 
independent since they will satisfy the constraint ptTut = wtTvt for t = 1,…,T.  Hence, under these 
circumstances, one of the M+N equations in (203) and (204) must be dropped in the system of estimating 
equations.   
68 These are the Hotelling (1932; 549) and Hicks (1946; 321) symmetry restrictions on supply functions. 
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Note that property (206) implies the following properties on the net supply functions: 
 
(210) ∂ym(p,x)/∂pm ≥ 0                                                      for m = 1,…,M. 
 
Property (210) means that output supply curves cannot be downward sloping.  However, 
if variable commodity m is an input, then ym(p,x) is negative.  If we define the positive 
input demand function as  
 
(211) dm(p,x) ≡ − ym(p,x) ≥ 0, 
 
then the restriction (210) translates into ∂dm(p,x)/∂pm ≤ 0, which means that variable 
input demand curves cannot be upward sloping. 
 
Obviously, if the technology set is a convex cone, then the firm’s competitive fixed input 
price functions, w(p,x) ≡ ∇xπ(p,x), will satisfy properties analogous to the properties of 
cost minimizing input demand functions in Theorem 7. 
 
Theorem 15: Samuelson (1953-54; 10), Diewert (1974a; 144-146): Suppose that the 
firm’s technology set S is regular.  Define the firm’s variable profit function π(p,x) by 
(164).  Suppose that π(p,x)    is twice continuously differentiable with respect to the 
components of x at some point  (p,x) where p >> 0M and x ≥ 0N.  Then the system of fixed 
input price functions69, w(p,x) ≡ [w1(p,x),…,wN(p,x)]T, exists at this point70 and these 
input price functions are once continuously differentiable.  Form the N by N matrix of 
fixed input price derivatives with respect to the fixed inputs, C ≡ [∂wi(p,x)/∂xj], which 
has ij element equal to ∂wi(p,x)/∂xj.  Then the matrix C has the following properties: 
 
(212) C = CT   so that ∂wi(p,x)/∂xj = ∂wj(p,x)/∂xi for all i ≠ j; 
(213) C is negative semidefinite and  
(214) Cx = 0N. 
 
Proof:  Using the results of Theorem 13, the firm’s system of fixed input price functions, 
w(p,x) ≡ [w1(p,x),…,wN(p,x)]T, exists and is equal to  
 
(215) w(p,x) = ∇xπ(p,x)  (Samuelson’s Lemma). 
 
Differentiating both sides of (215) with respect to the components of x gives us 
 
(216) C ≡ [∂wi(p,x)/∂xj] = ∇2xxπ(p,x). 
 


                                                 
69 The functions w(p,x) can also be interpreted as the producer’s system of inverse demand functions for 
fixed inputs. 
70 The assumption that S is regular implies that S has the free disposal property in fixed inputs property 
(180), which implies by part (d) of Theorem 12 that π(p,x) is nondecreasing in x and this in turn implies 
that w(p,x) ≡ ∇xπ(p,x) is nonnegative.    
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Now property (212) follows from Young’s Theorem in calculus.  Property (213) follows 
from (216) and the fact that π(p,x) is concave in x71 and the fourth characterization of 
concavity.  Finally, property (214) follows from the fact that the profit function is linearly 
homogeneous in x72 and hence, using Part 2 of Euler’s Theorem on homogeneous 
functions, (214) holds.                                                                                               Q.E.D.   
 
Note that property (213) implies the following properties on the fixed input price 
functions: 
 
(217) ∂wn(p,x)/∂xn ≤ 0                                                      for n = 1,…,N. 
 
Property (217) means that the inverse fixed input demand curves cannot be upward 
sloping. 
 
If the firm’s production possibilities set S is regular and if the corresponding variable 
profit function π(p,x) is twice continuously differentiable with respect to all of its 
variables, then there will be additional restrictions on the derivatives of the variable net 
output supply functions y(p,x) = ∇pπ(p,x) and on the derivatives of the fixed input price 
functions w(p,x) = ∇xπ(p,x).  Define the M by N matrix of derivatives of the net output 
supply functions y(p,x) with respect to the components of the vector of fixed inputs x as 
follows:     
 
(218) D ≡ [∂yi(p,x)/∂xj] = ∇2pxπ(p,x) ;                                      i = 1,…,M; j = 1,…,N, 
 
where the equalities in (218) follow by differentiating both sides of the Hotelling’s 
Lemma relations, y(p,x) = ∇pπ(p,x), with respect to the components of x.  Similarly, 
define the N by M matrix of derivatives of the fixed input price functions w(p,x) with 
respect to the components of the vector of variable commodity prices p as follows:     
 
(219) E ≡ [∂wi(p,x)/∂pj] = ∇2xpπ(p,x) ;                                       i = 1,…,N; j = 1,…,M,                               
 
where the equalities in (219) follows by differentiating both sides of the Samuelson’s 
Lemma relations, w(p,x) = ∇xπ(p,x), with respect to the components of p. 
 
Theorem 16: Samuelson (1953-54; 10), Diewert (1974a; 144-146): Suppose that the 
firm’s technology set S is regular.  Define the firm’s variable profit function π(p,x) by 
(164).  Suppose that π(p,x) is twice continuously differentiable with respect to the 
components of x at some point  (p,x) where p >> 0M and x ≥ 0N and define the matrices of 
derivatives D and E by (218) and (219) respectively.  Then these matrices have the 
following properties: 
 


                                                 
71The assumption that S is regular implies that S is a convex set and this in turn implies that π(p,x) is 
concave in x. 
72 The assumption that S is regular implies that S is a cone and this in turn implies that π(p,x) is linearly 
homogeneous in x.  
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(220) D = ET   so that ∂ym(p,x)/∂xn = ∂wn(p,x)/∂xm for m = 1,…,M and n = 1,…,N; 
(221) w(p,x) = Ep ≥ 0N; 
(222) y(p,x) = Dx. 
 
Proof: The symmetry restrictions (220) follow from definitions (218) and (219) and 
Young’s Theorem in calculus. 
 
Since π(p,x) is linearly homogeneous in the components of p, we have 
 
(223) π(λp,x) = λπ(p,x)                                                          for all λ > 0. 
 
Partially differentiate both sides of (223) with respect to xn and we obtain: 
 
(224) ∂π(λp,x)/∂xn = λ∂π(p,x)/∂xn                                           for all λ > 0 and n = 1,…,N. 
 
But (224) implies that the functions wn(p,x) ≡ ∂π(p,x)/∂xn are homogeneous of degree 
one in p.  Hence, we can apply Part 1 of Euler’s Theorem on homogeneous functions to 
these functions wn(p,x) and conclude that 
 
(225) wn(p,x) = ∑m=1M [∂wn(p,x)/∂pm]pm ;                                 n = 1,…,N.                                              
    
But equations (225) are equivalent to the equations in (221).  The inequality in (221) 
follows from w(p,x) = ∇xπ(p,x) ≥ 0N, which in turn follows from the fact that regularity 
of S implies that π(p,x) is nondecreasing in the components of x. 
                                                                                                                     
Since S is regular, part (c) of Theorem 12 implies that π(p,x) is linearly homogeneous in 
x, so that    
                                                                    
(226) π(p,λx) = λπ(p,x)                                                          for all λ > 0. 
 
Partially differentiate both sides of (226) with respect to pm and we obtain: 
 
(227) ∂π(p,λx)/∂pm = λ∂π(p,x)/∂pm                                        for all λ > 0 and m = 1,…,M. 
 
But (227) implies that the functions ym(p,x) ≡ ∂π(p,x)/∂pm are homogeneous of degree 
one in x.  Hence, we can apply Part 1 of Euler’s Theorem on homogeneous functions to 
these functions ym(p,x) and conclude that 
 
(228) ym(p,x) = ∑n=1N [∂ym(p,x)/∂xn]xn ;                                 m = 1,…,M.                                              
    
But equations (228) are equivalent to equations (222).                                           Q.E.D. 
 
Problems 
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22. Under the hypotheses of Theorem 16, show that y(p,x) and w(p,x) satisfy the 
following equation: 
 
(i) pTy(p,x) = xTw(p,x). 
 
23.  Let S be a technology set that satisfies assumptions (165) and (166)  and let π(p,x) be 
the corresponding differentiable variable profit function defined by (164).  Variable 
commodities m and k (where m ≠ k) are said to be substitutes if (i) below holds, 
unrelated if (ii) below holds and complements  if (iii) below holds: 
  
(i)   ∂ym(p,x)/∂pk < 0 ; 
(ii)  ∂ym(p,x)/∂pk = 0 ; 
(iii) ∂ym(p,x)/∂pk > 0 . 
 
(a) If the number of variable commodities M = 2, then show that the two variable 
commodities cannot be complements. 
(b) If M = 2 and the two variable commodities are unrelated, then show that: 
 
(iv) ∂y1(p,x)/∂p1 = ∂y2(p,x)/∂p2 = 0.   
 
(c) If M = 3, then show that at most one pair of variable commodities can be 
complements.73   
 
24. Let S be a regular technology and let π(p,x) be the corresponding differentiable 
variable profit function.  Define the producer’s system of inverse fixed input demand 
functions as w(p,x) ≡ ∇x π(p,x).  Fixed inputs n and k (where n ≠ k) are said to be 
substitutes if (i) below holds, unrelated if (ii) below holds and complements  if (iii) below 
holds: 
  
(i)   ∂wn(p,x)/∂xk > 0 ; 
(ii)  ∂wn(p,x)/∂xk = 0 ; 
(iii) ∂wn(p,x)/∂xk < 0 . 
 
(a) If  the number of fixed inputs N = 2, then, assuming that x1 > 0 and x2 > 0, show that 
the two fixed inputs cannot be complements.   
(b) If N = 2 and the two fixed inputs are unrelated, then show that (assume x1 > 0 and x2 
> 0): 
 
(iv) ∂w1(p,x)/∂x1 = ∂w2(p,x)/∂x2 = 0.   
 
(c) If N = 3, then show that at most one pair of fixed inputs can be complements. 
 


                                                 
73 This type of argument (that substitutability tends to be more predominant than complementarity) is again 
due to Hicks (1946; 322-323) but we have not followed his terminology exactly. 
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 25. Application to International Trade Theory.  Suppose that the technology set of a 
small open economy can be represented by a regular production possibilities set, S ≡ 
{(y,x)} where y is a vector of internationally traded goods (the components of C + I + G 
+ X − M where imported commodities have negative signs) and x ≥ 0N is a nonnegative 
vector of input factors that are available for use by the aggregate production sector.  Let p 
>> 0M be a vector of international prices for traded goods that the economy faces.  Thus 
in this case, 
 
(i) π(p,x) ≡ max y {pTy: (y,x)∈S} 
 
is the economy’s GDP function,74 regarded as a function of the vector of world prices p 
that the economy faces and of the factor endowment vector or vector of primary 
resources x that the economy has available to produce goods and services.  Assume that 
π(p,x) is twice continuously differentiable with respect to its variables at an initial 
equilibrium for the economy.  
 
(a)  Show that if the amount of the first primary input, x1, increases a small amount, then 
GDP does not decrease; i.e., show that 
 
(i) ∂π(p,x)/∂x1 ≥ 0.       
 
(b) Show that as the amount of the first primary input increases a small amount, then the 
corresponding factor price does not increase and an input quantity weighted sum of the 
other factor prices does not decrease; i.e., show that 
 
(ii) ∂w1(p,x)/∂x1 ≤ 0 and  
(iii) ∑n=2N xn ∂wn(p,x)/∂x1 ≥ 0.            
 
If the inequalities (ii) and (iii) hold strictly, then they show that input 1 experiences a 
decrease in its price as the amount of input 1 increases but at least one other input must 
gain as a result of this increase in input 1. 
 
(c) Show that if the price of the first internationally traded good, p1, increases a small 
amount and the first traded good is not imported,75 then GDP increases; i.e., show that 
 
(iv) ∂π(p,x)/∂p1 > 0.       
 
(d) Continuation of (c).  Show that as the first traded commodity price increases a small 
amount, then the production of commodity 1 does not decrease and a traded commodity 
price weighted sum of the other components of GDP does not increase; i.e., show that 
 
                                                 
74 For applications of duality theory to the theory of international trade, see Samuelson (1953-54), Chipman 
(1972), Diewert (1974a; 142-146), Diewert and Woodland (1977), Kohli (1978) (1991) and Woodland 
(1982). 
75 In fact, we assume that in the initial equilibrium, a positive amount of this first traded commodity is 
produced by the aggregate production sector. 
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(v) ∂y1(p,x)/∂p1 ≥ 0 and  
(vi) ∑m=2M pm ∂ym(p,x)/∂p1 ≤ 0.            
 
If the inequalities (v) and (vi) hold strictly, then they show that output 1 experiences an 
increase in production as the price of output 1 increases but at least one other output must 
decrease (or at least one other imported commodity must increase in magnitude) as a 
result of this increase in the price of output 1. 
 
(e) Show that if the price of the first internationally traded good, p1, increases a small 
amount and the first traded good is imported, then GDP decreases; i.e., show that 
 
(vii) ∂π(p,x)/∂p1 < 0.       
 
(f) Continuation of (e).  Show that as the first traded commodity price increases a small 
amount, then the importation of commodity 1 does not increase and a traded commodity 
price weighted sum of the other components of GDP does not increase; i.e., show that76 
 
(viii) −∂y1(p,x)/∂p1 ≤ 0 and  
(ix) ∑m=2M pm ∂ym(p,x)/∂p1 ≤ 0.            
 
If the inequalities (viii) and (ix) hold strictly, then they show that imports of traded 
commodity 1 decline as the price of output 1 increases and in addition, at least one output 
must decrease (or at least one other imported commodity must increase in magnitude) as 
a result of this increase in the price of output 1. 
  
26.  Let S be a regular technology set and let π(p,x) be the corresponding twice 
continuously differentiable variable profit function defined by (164).  Variable 
commodities m and fixed input n are said to be normal if (i) below holds, unrelated if (ii) 
below holds and inferior  if (iii) below holds (we assume p >> 0M and x >> 0N): 
  
(i)   ∂ym(p,x)/∂xn = ∂wn(p,x)/∂pm > 0 ; 
(ii)  ∂ym(p,x)/∂xn = ∂wn(p,x)/∂pm = 0 ; 
(iii) ∂ym(p,x)/∂xn = ∂wn(p,x)/∂pm < 0 . 
 
(a) If wn(p,x) > 0, then there exists at least one variable commodity m such that 
commodity m and fixed input n are normal.   
(b) If wn(p,x) ≥ 0, then there exists at least one variable commodity m such that 
commodity m and fixed input n are either normal or unrelated. 
(c) If ym(p,x) > 0, then there exists at least one fixed input n such that commodity m and 
fixed input n are normal.       
(d) If ym(p,x) < 0, then there exists at least one fixed input n such that commodity m and 
fixed input n are inferior. 
 


                                                 
76 Since y1 is imported in the initial equilibrium, y1(p,x) < 0. Thus − y1(p,x) > 0 is the magnitude of imports 
in the initial equilibrium. 
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We illustrate the concepts of normality and inferiority for the case of  two variable 
outputs, y1 and y2, and a varying amount of the first fixed input  x1.77  In Figure 11 below, 
the case where variable commodities 1 and 2, y1 and y2, are both normal with respect to 
the first fixed input x1 is illustrated.  In this figure, it can be seen that as x1 increases from 
its initial level of x10 to the greater level x11, the production possibilities set {(y1,y2): 
(y1,y2,x10)∈S} shifts outwards to the production possibilities set {(y1,y2): (y1,y2,x11)∈S}.  
The initial variable profit maximizing (y1,y2) point is at point A.  After x1 increases from 
x10 to x11, the new variable profit maximizing (y1,y2) point is at point B.     
 


 
 
It can be seen as long as the point B is to the northeast of the point A, both y1 and y2 will 
be normal with the fixed input x1.78 
 
In Figure 12, as x1 increases from the initial level x10 to the higher level x11, the revenue 
maximizing (y1,y2) point moves from A to B.  It can be seen that y1 decreases as x1 
increases and thus the first variable output and the first fixed input are an inferior pair of 
commodities.  On the other hand, y2 increases as x1 increases and thus the second 
variable output and the first fixed input are a normal pair of commodities. 
 


                                                 
77 Since the amounts of the other fixed inputs, x2,…,xN remain fixed in the figures to follow, they will be 
suppressed from the notation. 
78 The similarity of this normality concept in production theory with the corresponding normality concept 
in consumer theory can be seen by looking at Figures 11 and 12; the fixed input x1 now plays the role of 
utility u and the frontiers of the production possibility sets {(y1,y2): (y1,y2,x1)∈S} indexed by x1 now 
replace the indifference curves {(x1,x2):  F(x1,x2) = u} indexed by u.  


Figure 11: Variable Commodities 1 and 2 Normal with Fixed Input 1 
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Isoprofit line {(y1,y2): p1y1+p2y2 
         = π(p1,p2,x11)} where x11 > x10 
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Problem 
 
27.  Draw counterparts to Figures 11 and 12 to illustrate the concepts of normality and 
inferiority for the case where y1 < 0 is a variable input and y2 > 0 is a variable output.    
 
13. The Gains from Trade and the Costs of Trade Restrictions 
 
In this section, we show how the material on variable profit functions developed in the 
previous sections can be used to model the costs and benefits of imposing a tariff on 
imported goods and services. 
 
We consider the simplest possible model of a small open economy where there is one 
domestic good that is produced by the private production sector, C ≥ 0 with price pC > 0, 
one export commodity, X ≥ 0 with price pX > 0, one imported commodity, M ≥ 0 with 
price pM > 0,  and one primary factor of production, L ≥ 0 with price w > 0.79  
 
The technology available to the economy is the regular production possibilities set S, 
which is a feasible set of vectors of the form (X,−M,C,L).  We assume that the price of 
exports and imports, pX and pM, are fixed on international markets.  We treat exports and 


                                                 
79 We follow the example of Kohli (1978) (1991), who assumed that all trade flowed through the private 
production sector of the economy rather than flowing directly to consumers and other final demanders of 
goods and services.  This is a fairly reasonable assumption because even if a household directly consumes 
an imported good, typically there are domestic transportation, wholesaling and retailing inputs that are 
required to deliver the good to the consumer.  


Figure 12: Variable Commodity 1 Inferior with Respect to Fixed Input 1 
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{(y1,y2): (y1,y2,x11)∈S} where x11 > x10 
Isoprofit line {(y1,y2): p1y1+p2y2 
         = π(p1,p2,x11)} where x11 > x10 


   
    B 


A 








 67 


imports as variable commodities and C and L as fixed inputs and define the economy’s 
variable profit function as follows:80 
 
(229) π(pX,pM,C,L) ≡ max X,M {pXX −pMM: (X,−M,C,L)∈S}. 
 
We assume that the government imposes an ad valorem tariff, t > 0, on imported goods 
and services.  Hotelling’s Lemma gives us the economy’s export supply and import 
demand functions as functions of the tariff t as follows: 
 
(230) X(t) ≡ ∂π(pX,(1+t)pM,C(t),L)/∂pX; 
(231) M(t) ≡ −∂π(pX,(1+t)pM,C(t),L)/∂pM.81 
 
Samuelson’s Lemma gives us the economy’s price of domestic output and wage rate 
functions as functions of the tariff t as follows:82 
 
(232) pC(t) ≡ −∂π(pX,(1+t)pM,C(t),L)/∂C; 
(233) w(t) ≡ ∂π(pX,(1+t)pM,C(t),L)/∂L. 
 
In the above equations, domestic production, C(t), is regarded as a function of the tariff t.  
This function is found by solving the following balance of trade equation for C as a 
function of t: 
 
(234) pX∂π(pX,(1+t)pM,C(t),L)/∂pX + pM∂π(pX,(1+t)pM,C(t),L)/∂pM = 0. 
 
Using (230) and (231), we see that (234) simply sets the value of exports minus the value 
of imports equal to 0 and for each given tariff rate t, we solve for the C which makes the 
balance of trade equal to 0. 
 
Equation (234) illustrates the advantages in using duality theory when building an 
economic model.  The present model boils down to solving a single equation in a single 
unknown C, which is a considerable simplification over using traditional primal 
optimization techniques to set up the model.83 


                                                 
80 C is obviously not an input but the analysis in the previous sections can be modified to deal with this 
complication.  Only two modifications to the previous analysis are required: (i) In definition (229), if C is 
large relative to L, then there may not exist any X and M such that (X,−M,C,L)∈S.  In this case, define 
π(pX,pM,C,L) ≡ − ∞.  For additional details on how to model this situation, see Diewert (1973).  (ii) 
π(pX,pM,C,L) will now be nonincreasing in C so that in the differentiable case, ∂π(pX,pM,C,L)/∂C ≡ −pC ≤ 0.     
81 There is an abuse of notation here and in subsequent equations up to equation (255): the partial derivative 
of π with respect to the price of imports, pM, ∂π(pX,(1+t)pM,C(t),L)/∂pM, should be interpreted as the partial 
derivative of π with respect to the entire import price, ,(1+t)pM; i.e., the price of imports including the tariff.  
82 Because C is a “fixed” output instead of being a fixed input, the minus sign was inserted in the right hand 
side of (232) to make the price of the consumption commodity, pC, positive. 
83 Our model implies that the tariff revenue is either transferred back to the household sector or spent on 
government goods and services, which are included in domestic final demand, C(t).  To see this, note that 
the linear homogeneity of π(pX,pM,C,L) in pX and pM implies that π(pX,(1+t)pM,C,L) = 
pX∂π(pX,(1+t)pM,C,L)/∂pX + (1+t)pM∂π(pX,(1+t)pM,C,L)/∂pM = pXX(pX,(1+t)pM,C,L) − 
(1+t)pMM(pX,(1+t)pM,C,L) ≡ pXX(t) − (1+t)pMM(t).  The linear homogeneity of π(pX,pM,C,L) in C and L 
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We are interested primarily in what happens to domestic consumption C(t) as the tariff t 
increases from an initial level of 0.  Hence, we are interested in calculating the first and 
second derivatives of C(t), evaluated at t = 0, so that we can form first and second order 
Taylor series approximations to C(t).  Differentiating both sides of (234) with respect to t 
leads to the following equation: 
 
(235) [pX ∂2π(pX,(1+t)pM,C,L)/∂pX∂C + pM ∂2π(pX,(1+t)pM,C,L)/∂pM∂C]C′(t)  
           = −{pX pM ∂2π(pX,(1+t)pM,C,L)/∂pX∂pM + pM2 ∂2π(pX,(1+t)pM,C,L)/∂pM2}. 
 
 Equations (207) in the present context are the following two equations: 
 
(236) pX ∂2π(pX,(1+t)pM,C,L)/∂pX2 + pM(1+t) ∂2π(pX,(1+t)pM,C,L)/∂pX∂pM = 0;   
(237) pX ∂2π(pX,(1+t)pM,C,L)/∂pM∂pX + pM(1+t) ∂2π(pX,(1+t)pM,C,L)/∂pM2 = 0.  
 
Equations (221) in the present context are the following two equations: 
 
(238) −pC(t) = pX ∂2π(pX,(1+t)pM,C,L)/∂C∂pX + pM(1+t) ∂2π(pX,(1+t)pM,C,L)/∂C∂pM ;   
(239)    w(t) = pX ∂2π(pX,(1+t)pM,C,L)/∂L∂pX + pM(1+t) ∂2π(pX,(1+t)pM,C,L)/∂L∂pM .  
  
The following symmetry conditions are also valid: 
 
(240) ∂2π(pX,(1+t)pM,C,L)/∂pX∂pM = ∂2π(pX,(1+t)pM,C,L)/∂pM∂pX ; 
(241) ∂2π(pX,(1+t)pM,C,L)/∂C∂pX = ∂2π(pX,(1+t)pM,C,L)/∂pX∂C ; 
(242) ∂2π(pX,(1+t)pM,C,L)/∂C∂pM = ∂2π(pX,(1+t)pM,C,L)/∂pM∂C .  
 
Now substitute (237) and (238) into (235).  Using also (240)-(242), we find that (235) 
becomes the following equation: 
 
(243) C′(t) = −tpM2 [∂2π(t)/∂pM2]/[pC(t) + tpM ∂2π(t)/∂C∂pM]  
 
where we have simplified the notation by defining 
 
(244) π(t) ≡ π(pX,(1+t)pM,C(t),L). 
 
Now evaluate (243) at t = 0 and we find that 
 


                                                                                                                                                 
implies that π(pX,(1+t)pM,C,L) = C∂π(pX,(1+t)pM,C,L)/∂C + L∂π(pX,(1+t)pM,C,L)/∂L = − 
C(t)pC(pX,(1+t)pM,C,L) + Lw(pX,(1+t)pM,C,L) ≡ − C(t)pC(t) + Lw(t).  Equating these two expressions for  
π(pX,(1+t)pM,C,L) gives us the equation pXX(t) − (1+t)pMM(t) = − C(t)pC(t) + Lw(t).  This equation can be 
rearranged to give us the following budget constraint for domestic final demanders and suppliers of primary 
inputs: pC(t)C(t) = w(t)L + tpMM(t) − [pXX(t) − pMM(t)] = w(t)L + tpMM(t) where we have used the balance 
of trade restriction, (234).  Thus the value of final domestic demand, pC(t)C(t), is equal to the value of 
domestic primary input payments, w(t)L, plus the value of tariff revenue, tpMM(t).  If the government does 
not have any expenditure programs, then the tariff revenue is simply rebated back to households in this 
very simple model.                
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(245) C′(0) = 0. 
 
Differentiate both sides of (243) with respect to t and evaluate the resulting derivatives at 
t = 0.  Using (245), we find that 
 
(246) C′′(0) = − pM2 [∂2π(0)/∂pM2]/pC(0) 
                    ≤ 0 
 
where the inequality follows from ∂2π(0)/∂pM2 ≥ 0, which in turn follows from the fact 
that ∇pp2 π(pX,pM,C(0),L) is a positive semidefinite matrix. 
 
Using (245) and (246), we obtain the following second order Taylor series approximation 
to C(t): 
 
(247) C(t) ≅ C(0) + C′(0)(t − 0) + (1/2) C′′(0)(t − 0)2 
                 = C(0) − t2pM2 [∂2π(0)/∂pM2]/2pC(0). 
 
Hence the loss of domestic output due to a tariff of size t is approximately equal to:      
 
(248) C(0) − C(t) ≅ t2pM2 [∂2π(0)/∂pM2]/2pC(0) ≥ 0. 
 
It is more convenient to express this loss in terms of shares and elasticities.  Define (the 
negative of) the elasticity of import demand at the free trade equilibrium as follows: 
 
(249) ηM ≡ − [∂M(pX,pM,C(0),L)/∂pM][pM/M(pX,pM,C(0),L)] 
                = [∂2π(pX,pM,C(0),L)/∂pM2][pM/M(pX,pM,C(0),L)]             using (231) 
                = pM [∂2π(0)/∂pM2]/M(0) 
                ≥ 0. 
 
In what follows, we will assume that the import elasticity of demand is not equal to 0 and 
hence (249) holds with a strict inequality.  Now divide both sides of (248) through by 
C(0) and we obtain the following expression for the approximate percentage loss of 
domestic production due to a tariff of size t: 
 
(250) DWL(t) ≡ [C(0) − C(t)]/C(0) ≅ t2pM2 [∂2π(0)/∂pM2]/2pC(0)C(0) 
                       = t2pM M(0) ηM /2pC(0)C(0) 
                       = (1/2) t2 sM ηM 
                       > 0 
 
where sM ≡ pMM(0)/pC(0)C(0) is the share of imports in GDP at the free trade 
equilibrium.  
 
We can now use formula (250) to make some rough estimates of what the cost of a tariff 
will be as the tariff increases.  Suppose the elasticity of import demand is 1, the share of 
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imports in GDP is 2/5 and the tariff rate is one percent or .01.84  Then the approximate 
loss DWL(.01) is a miniscule .002 percentage points.  If the tariff increases to 10 per cent 
or .1, then the loss increases to .2 percentage points.  If the tariff rate increases to 50 % or 
.5, then the loss increases to .05 or 5 percentage points.85   
  
Recall equations (230)-(233), which defined the export supply, import demand, price of 
domestic output and wage rate functions, X(t), M(t), pC(t) and w(t) respectively, as 
functions of the tariff rate t.  Now that we know C′(0) = 0, we can differentiate equations 
(230)-(233) with respect to t and evaluate the resulting derivatives at t = 0 in order to see 
what happens to these variables as t increases from its initial level of 0.  We obtain the 
following results:  
 
(251) X′(0) = pM ∂2π(pX,pM,C(0),L)/∂pX∂pM + C′(0) ∂2π(pX,pM,C(0),L)/∂pX∂C 
                   = pM ∂2π(0)/∂pX∂pM                                                      using C′(0) = 0 
                   < 0                                                
 
where the inequality follows from (237) evaluated at t = 0 and ∂2π(pX,pM,C,L)/∂pM2 > 0, 
which in turn follows from our assumption that the elasticity of demand for imports, ηM, 
is strictly positive.   
    
(252) M′(0) = − pM ∂2π(pX,pM,C(0),L)/∂pM2 − C′(0) ∂2π(pX,pM,C(0),L)/∂pM∂C 
                    = − pM ∂2π(0)/∂pM2                                                      using C′(0) = 0 
                    < 0                                                
 
where the inequality follows from ∂2π(pX,pM,C,L)/∂pM2 > 0, which in turn follows from 
our assumption that the elasticity of demand for imports, ηM, is strictly positive. 
 
The inequalities (251) and (252) are intuitively plausible: the effect of increasing the 
tariff rate is to restrict both exports and imports.  If the tariff is pushed high enough, 
eventually international trade will cease.86   
 
We turn now to the effects on domestic prices of increasing the tariff rate.   
 
(253) pC′(0) = − pM ∂2π(pX,pM,C(0),L)/∂C∂pM − C′(0) ∂2π(pX,pM,C(0),L)/∂C2 


                    = − pM ∂2π(0)/∂C∂pM                                                     using C′(0) = 0. 
 
(254) w′(0) = pM ∂2π(pX,pM,C(0),L)/∂L∂pM + C′(0) ∂2π(pX,pM,C(0),L)/∂L∂C 


                   =  pM ∂2π(0)/∂L∂pM                                                          using C′(0) = 0. 
  
                                                 
84 Most OECD countries have tariff rates around one per cent. 
85 Most countries in the early stages of development have relatively high tariff levels of this order of 
magnitude because they cannot easily raise revenue by taxing components of final demand or by taxing 
primary inputs. 
86 This result can be turned around to show the benefits of a country opening up its borders to international 
trade so that as t decreases from an initial prohibitive tariff (where no trade takes place), there are gains 
from opening up the economy to international trade.  
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Equations (222) imply that the cross partial derivatives in (253) and (254) satisfy the 
following equation: 
 
(255) C(0) ∂2π(0)/∂C∂pM + L ∂2π(0)/∂L∂pM = ∂π(pX,pM,C,L)/∂pM = − M(0) < 0. 
 
Hence at least one of these two cross partial derivatives must be negative.  If they are 
both negative (which is quite likely in practice), then pC′(0) > 0 and w′(0) < 0; i.e., 
increasing the tariff increases the price of domestic consumption and decreases the return 
to primary inputs. 
 
It seems to be extraordinarily difficult for the general public and politicians to understand 
the case for free trade.  Thus every applied economist at least should be aware of the 
above argument for free trade. 
 
The geometry of the above model is illustrated in Figure 13. 
 


                                                                                                                         
 
The free trade equilibrium is at the point A where exports are equal to X(0), imports are 
equal to M(0) and domestic consumption is equal to C(0).  When the tariff is increased 
from its initial level of 0 to some positive level t, exports and imports contract along the 
international trading line AO to the point B.  Domestic production contracts as well to 
C(t) < C(0).  As the tariff increases even more, trade continues to contract until the 
prohibitive tariff level t* is reached. 
 
There are a number of limitations of the above model: 
 


• We have assumed only a single finally demanded commodity.  If there are many 
finally demanded commodities, then changing the tariff will in general change the 


Figure 13: The Benefits of Free Trade and the Costs of a Tariff 
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relative prices of finally demanded goods and services and it becomes necessary 
to bring household preferences into the model. 


• We have assumed only a single aggregate primary input for the economy.  If there 
is more than one primary input, then it is quite possible that some factors will gain 
as the tariff increases and some will lose.  Overall, losses in factor incomes will 
be bigger than the gains but if the losses are small and spread over many inputs 
while the gains due to increased tariffs are concentrated among only one or a few 
primary inputs, then these gainers will often successfully lobby governments for 
increased protection while the losers remain unorganized and powerless. 


• We have not modelled the government sector adequately.  In particular, it will 
always be necessary for governments to use some sort of distortionary taxes in 
order to raise revenue and it may be that taxing imports is the most effective way 
of raising revenue.87  Also, the tariff distortions may offset other tax distortions in 
the economy and thus may not be as harmful as our model paints them. 


• We have assumed competitive or price taking behavior in our model.  
Monopolistic behavior also introduces distortions into the economy and in some 
cases, increasing tariffs may offset these distortions to some extent. 


 
Problems 
 
28.  Obtain counterparts to (245), (246), (251) and (252) if t < 0 so that imports are 
subsidized instead of taxed.  As the subsidy level is increased in magnitude from 0 to −t > 
0, what happens to the level of exports and imports?  Illustrate your results in a 
counterpart to Figure 13. 
 
29. Suppose that exports are taxed at the rate t > 0 instead of imports.  The new 
equilibrium equation that is the counterpart to (234) is: 
 
(i) pX∂π((1−t)pX,pM,C(t),L)/∂pX + pM∂π((1−t)pX,pM,C(t),L)/∂pM = 0. 
    
(a) Calculate C′(0) and C′′(0) for this new model. 
(b) Calculate a counterpart to the deadweight loss formula (250), DWL(t) ≡ [C(0) − 
C(t)]/C(0), for this new model. 
(c) Calculate counterparts to (251) and (252); i.e., calculate the derivatives X′(0) and 
M′(0) and see if you can sign these derivatives.  
   
14. Samuelson’s Le Chatelier Principle and Profit Functions 
 
As can be seen from the results in the previous section, the magnitude of various 
elasticities plays a key role in many economic models.  In this section, we will show that 


                                                 
87 This is particularly true for relatively poor countries where it may be extremely difficult to impose 
effective income taxes or commodity taxes. 
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elasticities tend to become larger in magnitude in long run models where “fixed” factors 
can adjust compared to short run models where many inputs are temporarily fixed.88 
 
Suppose that the firm’s technology set S satisfies assumptions (165) and (166) above.  
Then for variable net output price vector p >> 0M and fixed input vector x ≥ 0N, the firm’s 
short run profit function π(p,x) is defined as follows: 
 
(256) π(p,x) ≡ max y {pTy: (y,x)∈S}. 
 
Given a strictly positive vector of input prices w >> 0N for the “fixed” inputs, the firm’s 
long run profit function Π(p,w) is defined as follows:89 
 
(257) Π(p,w) ≡ max y,x {pTy − wTx: (y,x)∈S}. 
 
Thus the short run profit maximization problem holds the vector of inputs x fixed 
whereas the long run profit maximization problem allows x to be variable but holds the 
corresponding “fixed” input prices constant. 
 
Let p* >> 0M and w* >> 0N and suppose that (y*,x*) solves the following long run profit 
maximization problem: 
 
(258) Π(p*,w*) ≡ max y,x {p*Ty − w*Tx: (y,x)∈S} 
                          = p*Ty* − w*Tx*                                               where (y*,x*)∈S. 
 
Using (258), it is easy to show that y* solves the following maximization problem: 
 
(259) Π(p*,w*) = max y {p*Ty − w*Tx*: (y,x*)∈S}  where we have fixed x = x* in (258) 
                          = max y {p*Ty: (y,x*)∈S} − w*Tx*   rearranging terms 
                          = π(p*,x*) − w*Tx*                            using definition (256). 
 
Assume that Π(p,w*) and π(p,x*) are twice continuously differentiable with respect to 
the components of p at p = p*.  Now let p >> 0M and consider the following long run 
profit maximization problem: 
 
(260) Π(p,w*) ≡ max y,x {pTy − w*Tx: (y,x)∈S} 
                        ≥ max y {pTy − w*Tx*: (y,x*)∈S}  
                        = π(p,x*) − w*Tx*                                using definition (256) 
 


                                                 
88 The original results along these lines were established by Samuelson (1947; 3-38) using primal 
optimization techniques.  Pollak (1969; 75-77) and Diewert (1974a; 146-150) adapted Samuelson’s results 
to the consumer and producer contexts using duality theory. 
89 In order to ensure that this maximum exists, some additional assumptions will generally be required; i.e., 
we need to assume that there are some fixed factors lurking in the background that prevent long run profits 
from becoming infinite. 
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where the inequality in (260) follows from the fact that the feasible set is larger in the 
first maximization problem than in the second problem and both problems have the same 
objective function. 
 
Define the function of p for p >> 0M as follows: 
 
(261) f(p) ≡ Π(p,w*) − [π(p,x*) − w*Tx*] ≥ 0 
 
where the inequality follows using (260).  Using (259), we have 
 
(262) f(p*) = 0. 
 
But (261) and (262) show that f(p) attains a global minimum at p = p*.  Since Π(p,w*) 
and π(p,x*) are assumed to be twice continuously differentiable with respect to the 
components of p at p = p*, the following first and second order necessary conditions for 
minimizing a differentiable function f(p) at p = p* hold: 
 
(263) ∇pf(p*) = ∇pΠ(p*,w*) − ∇pπ(p*,x*) = 0M ; 
(264) ∇pp2f(p*) = ∇pp2Π(p*,w*) − ∇pp2π(p*,x*) is a positive semidefinite matrix. 
 
The producer’s system of short run variable commodity net supply functions, y(p,x), can 
be defined using Hotelling’s Lemma: 
 
(265) y(p,x) ≡ ∇pπ(p,x). 
 
Similarly, the producer’s system of long run variable commodity net supply functions, 
Y(p,x), can be defined using Hotelling’s Lemma: 
 
(266) Y(p,w) ≡ ∇pΠ(p,w). 
 
Equations (263) show that at the initial equilibrium, which is both a short and long run 
equilibrium of the firm, long and short run net supplies are equal; i.e., we have 
 
(267) y* ≡ y(p*,x*) = Y(p*,w*). 
 
Differentiating (265) with respect to the components of p gives us the M by M matrix of 
short run net supply derivatives with respect to variable prices: 
 
(268) ∇py(p,x) ≡ ∇pp2π(p,x).  
 
Differentiating (266) with respect to the components of p gives us the M by M matrix of 
long run net supply derivatives with respect to variable prices: 
 
(269) ∇pY(p,w) ≡ ∇pp2Π(p,w). 
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 (264), (268) and (269) imply that the long run supply derivatives ∇pY(p*,w*) are related 
to the corresponding short run supply derivatives ∇py(p,x) as follows: 
 
(270) zT∇pY(p,w)z ≥ zT∇py(p,x)z                                                     for all z ≠ 0M. 
 
In (270), letting z = em, the mth unit vector, implies the following inequalities: 
 
(271) ∂Ym(p*,w*)/∂pm ≥ ∂ym(p*,x*)/∂pm ≥ 090 ;                                             m = 1,…,M.       


                                            
 If variable commodity m is an output, then ym*, the mth component of y* defined by 
(267), is positive and we can convert the mth inequality in (271) into the following 
elasticity inequality: 
 
(272) [pm*/ym*][∂Y(p*,w*)/∂pm] ≥ [pm*/ym*][∂y(p*,x*)/∂pm] ≥ 0.                
 
Thus the long run own price output supply elasticity for commodity m is equal to or 
greater than the corresponding short run own price output supply elasticity. 
 
If variable commodity m is an input, then ym*, the mth component of y* defined by 
(267), is negative and dividing through inequality m in (271) by the negative ym* will 
reverse the inequality.  In this case, we obtain the following elasticity inequality: 
 
(273) [pm*/ym*][∂Y(p*,w*)/∂pm] ≤ [pm*/ym*][∂y(p*,x*)/∂pm] ≤ 0.                
  
Since the two input demand elasticities in (273) are negative (or zero), it can be seen that 
the long run own price input demand elasticity for commodity m is equal to or greater in 
magnitude than the corresponding short run own price input demand elasticity. 
 
Thus no matter whether variable commodity m is an output or an input, own price 
elasticities of supply or demand will tend to increase in magnitude as additional inputs 
become variable in the long run.  This is an important observation that should be kept in 
mind by the applied economist.  The long run effects of policy changes can often be 
much larger than the short run effects.91 
 
Samuelson explains the significance of his Le Chatelier principle as follows: 
 
                                                 
90 This second set of inequalities follows from the fact that ∇py(p,x) ≡ ∇pp


2π(p,x) is a positive semidefinite 
matrix and hence the diagonal elements of this matrix are nonnegative.  
91 Hicks (1946; 206) hinted at this observation: “The additional output which can be produced in the current 
week, or planned for weeks in the near future, will usually be quite small.  The initial equipment, which the 
entrepreneur possesses at the planning date, will generally contain, in a nearly finished form, most of the 
output which can be produced in the present and near future; since there can only exist a limited amount of 
these nearly finished goods, the flexibility of output in response to any change in price will necessarily be 
small.  But there is no such check on the expansion of distant future outputs; or rather the check gets less 
and less strong as the output recedes into the future.”  Diewert (1985) adapts the Le Chatelier principle to 
the study of deadweight loss and concludes that dynamic deadweight losses can be considerably larger than 
discounted static losses since the distortions induce inappropriate investments. 
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“This explains why economically long run demands are more elastic than those in the short run.  A 
lengthening of the time period so as to permit new factors to be varied will result in greater changes in the 
factor whose price has changed, regardless of whether the factors permitted to vary are complementary or 
competitive with the one whose price has changed.”  Paul A. Samuelson (1947; 38-39). 
 
References 
 
Allen, R.G.C. (1938), Mathematical Analysis for Economists, London: Macmillan. 
 
Arrow, K.J., H.B. Chenery, B.S. Minhas and R.M. Solow (1961), “Capital-Labor 


Substitution and Economic Efficiency”, Review of Economic Statistics 63, 225-
250. 


  
Berndt, E.R. and L.R, Christensen (1974), “Testing for the Existence of a Consistent 


Aggregate Index of Labor Inputs”, American Economic Review 64, 391-404. 
 
Blackorby, C. (1975), “Degrees of Cardinality and Aggregate Partial Orderings”, 


Econometrica 43, 845-852. 
 
Blackorby, C. and W.E. Diewert (1979), “Expenditure Functions, Local Duality and 


Second Order Approximations”, Econometrica 47, 579-601. 
 
Blackorby, C., D. Primont and R.R. Russell (1978), Duality, Separability and Functional 


Structure: Theory and Economic Applications, New York: North-Holland. 
 
Chipman, J.S. (1966), “A Survey of the Theory of International Trade: Part 3: The 


Modern Theory”, Econometrica 34, 18-76.  
 
Cobb, C. and P.H. Douglas (1928), “A Theory of Production”,  


American Economic Review, Supplement, 18, 139-165. 
 
Diewert, W.E. (1971), “An Application of the Shephard Duality Theorem: A Generalized 


Leontief Production Function”, Journal of Political Economy 79, 481-507. 
 
Diewert, W.E. (1973), “Functional Forms for Profit and Transformation Functions”, 


Journal of Economic Theory 6, 284-316. 
 
Diewert, W.E. (1974a), “Applications of Duality Theory”, pp. 106-171 in Frontiers of 


Quantitative Economics, Volume 2, M.D. Intriligator and D.A. Kendrick (eds.), 
Amsterdam: North-Holland. 


 
Diewert, W.E. (1974b), “A Note on Aggregation and Elasticities of Substitution”, 


Canadian Journal of Economics 7, 12-20. 
 
Diewert, W.E. (1974c), “Functional Forms for Revenue and Factor Requirements 


Functions”, International Economic Review 15, 119-130. 
 








 77 


Diewert, W.E. (1978), “Hicks' Aggregation Theorem and the Existence of a Real Value 
Added Function”, pp. 17-51, Vol. 2, in Production Economics:  A Dual Approach 
to Theory and Applications, M. Fuss and D. McFadden, editors, North-Holland, 
Amsterdam. 


 
Diewert, W.E. (1980), “Symmetry Conditions for Market Demand Functions”, Review of 


Economic Studies 47, 595-601. 
 
Diewert, W.E. (1981), “The Comparative Statics of Industry Long Run Equilibrium”, 


Canadian Journal of Economics 14, 78-92. 
 
Diewert, W.E. (1982), “Duality Approaches to Microeconomic Theory”, pp. 535-599 in 


Handbook of Mathematical Economics, Volume 2, K.J. Arrow and M.D. 
Intriligator (eds.), Amsterdam: North-Holland. 


 
Diewert, W.E. (1985), “A Dynamic Approach to the Measurement of Waste in an Open 


Economy”, Journal of International Economics 19, 213-240. 
 
Diewert, W.E. (1993), “Duality Approaches to Microeconomic Theory”, pp. 105-175 in 


Essays in Index Number Theory, Volume 1, W.E. Diewert and A.O. Nakamura 
(eds.), Amsterdam: North-Holland.  This paper is a rewrite of Diewert (1982) but 
it also includes proofs.  


 
Diewert, W.E. and D. Lawrence (2002), “The Deadweight Costs of Capital Taxation in 


Australia”, pp. 103-167 in Efficiency in the Public Sector, K.J. Fox (ed.), Boston: 
Kluwer Academic Publishers. 


 
Diewert, W.E. and T.J. Wales (1987), “Flexible Functional Forms and Global Curvature 


Conditions”, Econometrica 55, 43-68. 
 
Diewert, W.E. and T.J. Wales (1992), “Quadratic Spline Models for Producer’s Supply 


and Demand Functions”, International Economic Review 33, 705-722. 
 
Diewert, W.E. and A.D. Woodland (1977), “Frank Knight’s Theorem in Linear 


Programming Revisited”, Econometrica 45, 375-398.  
 
Fenchel, W. (1953), “Convex Cones, Sets and Functions”, Lecture Notes at Princeton 


University, Department of Mathematics, Princeton, N.J. 
 
Gale, D, V.L. Klee and R.T. Rockafellar (1968), “Convex Functions on Convex 


Polytopes”, Proceedings of the American Mathematical Society 19, 867-873. 
 
Gorman, W.M. (1968), “Measuring the Quantities of Fixed Factors”, pp. 141-172 in 


Value, Capital and Growth: Papers in Honour of Sir John Hicks, J.N. Wolfe 
(ed.), Chicago: Aldine. 


 








 78 


Hicks, J.R. (1946), Value and Capital, Second Edition, Oxford: Clarendon Press. 
 
Hotelling, H. (1932), “Edgeworth’s Taxation Paradox and the Nature of Demand and 


Supply Functions”, Journal of Political Economy 40, 577-616. 
 
Hotelling, H. (1935), “Demand Functions with Limited Budgets”, Econometrica 3, 66-


78. 
 
Kohli, U.R.J. (1978), “A Gross National Product Function and the Derived Demand for 


Imports and Supply of Exports”, Canadian Journal of Economics 11, 167-182. 
 
Kohli, U. (1991), Technology, Duality and Foreign Trade: The GNP Function Approach 


to Modelling Imports and Exports, Ann Arbor, MI: University of Michigan Press. 
 
Leontief, W.W. (1941), The Structure of the American Economy 1919-1929, Cambridge, 


MA: Harvard University Press. 
 
McFadden, D. (1966), “Cost, Revenue and Profit Functions: A Cursory Review”, IBER 


Working Paper No. 86, University of California, Berkeley. 
 
McFadden, D. (1978), “Cost, Revenue and Profit Functions”, pp. 3-109 in Production 


Economics: A Dual Approach, Volume 1, M. Fuss and D. McFadden (eds.), 
Amsterdam: North-Holland. 


 
Pollak, R.A. (1969), “Conditional Demand Functions and Consumption Theory”, 


Quarterly Journal of Economics 83, 60-78. 
 
Rockafellar, R.T. (1970), Convex Analysis, Princeton, N.J.: Princeton University Press. 
 
Samuelson, P.A. (1947), Foundations of Economic Analysis, Cambridge, MA: Harvard 


University Press. 
 
Samuelson, P.A. (1953-54), “Prices of Factors and Goods in General Equilibrium”, 


Review of Economic Studies 21, 1-20. 
 
Samuelson, P.A. (1967), “The Monopolistic Competition Revolution”, pp. 105-138 in 


Monopolistic Competition Theory: Studies in Impact, R.E. Kuenne (ed.), New 
York: John Wiley. 


 
Samuelson, P.A. (1974), “Complementarity—An Essay on the 40th Anniversary of the 


Hicks-Allen Revolution in Demand Theory”, The Journal of Economic Literature 
12, 1255-1289. 


 
Shephard, R.W. (1953), Cost and Production Functions, Princeton N.J.: Princeton 


University Press. 
 








 79 


Shephard, R.W. (1967), “The Notion of a Production Function”, Unternehmenforschung 
11, 209-232. 


 
Shephard, R.W. (1970), Theory of Cost and Production Functions, Princeton N.J.: 


Princeton University Press. 
 
Uzawa, H. (1962), “Production Functions with Constant Elasticities of Substitution”, 


Review of Economic Studies 29, 291-299. 
 
Uzawa, H. (1964), “Duality Principles in the Theory of Cost and Production”, 


International Economic Review 5, 291-299.  
 
Walters, A.A. (1961), “Production and Cost Functions: An Econometric Survey”, 


Econometrica 31, 1-66. 
 
Wold, H. (1944), “A Synthesis of Pure Demand Analysis; Part 3”, Skandinanvisk 


Aktuarietidskrift 27, 69-120.  
 
Woodland, A.D. (1972), “Factor Demand Functions for Canadian Industries, 1946-


1969”, Department of Manpower and Immigration, Strategic Planning and 
Research, Ottawa. 


 
Woodland, A.D. (1982), International Trade and Resource Allocation. Amsterdam: 


North Holland.  
 
 
  
  
 
 
 
 
 
 
 
 
  
  
 
                     
 
 
 
 
     












	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University


	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter] 
     
         
    
     
         
             
        
         
    





	[image: facebook][image: facebook] 
     









Copyright © 2024 SweetStudy.com (Step To Horizon LTD)




    
    
