
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

AND16 VHDL Logic
[image: profile]
debmouti190c
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

the_elements_of_computing_systems_nisanschochen.pdf

Home>Computer Science homework help>AND16 VHDL Logic

The Elements of Computing Systems

Noam Nisan and Shimon Schocken

The Elements of Computing Systems

Building a Modern Computer from First Principles

The MIT Press

Cambridge, Massachusetts

London, England

6 2005 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in Times New Roman on 3B2 by Asco Typesetters, Hong Kong.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Nisan, Noam.
The elements of computing systems: building a modern computer from first principles /
Noam Nisan and Shimon Schocken.

p. cm.
Includes bibliographical references and index.
ISBN 0-262-14087-X (alk. paper)
1. Electronic digital computers. I. Schocken, Shimon. II. Title.
TK7888.3.N57 2005
004.16—dc22 2005042807

10 9 8 7 6 5 4 3 2 1

Note on Software

The book’s Web site (http://www.idc.ac.il/tecs) provides the tools and materials necessary
to build all the hardware and software systems described in the book. These include a hard-
ware simulator, a CPU emulator, a VM emulator, and executable versions of the assembler,
virtual machine, compiler, and operating system described in the book. The Web site also in-
cludes all the project materials—about 200 test programs and test scripts, allowing incremental
development and unit-testing of each one of the 12 projects. All the supplied software tools
and project materials can be used as is on any computer equipped with either Windows or
Linux.

To our parents,

For teaching us that less is more.

Contents

Preface ix

Introduction: Hello, World Below 1

1 Boolean Logic 7

2 Boolean Arithmetic 29

3 Sequential Logic 41

4 Machine Language 57

5 Computer Architecture 79

6 Assembler 103

7 Virtual Machine I: Stack Arithmetic 121

8 Virtual Machine II: Program Control 153

9 High-Level Language 173

10 Compiler I: Syntax Analysis 199

11 Compiler II: Code Generation 223

12 Operating System 247

13 Postscript: More Fun to Go 277

Appendix A: Hardware Description Language (HDL) 281

Appendix B: Test Scripting Language 297

Index 315

viii Contents

Preface

What I hear, I forget; What I see, I remember; What I do, I understand.

—Confucius, 551–479 BC

Once upon a time, every computer specialist had a gestalt understanding of how

computers worked. The overall interactions among hardware, software, compilers,

and the operating system were simple and transparent enough to produce a coherent

picture of the computer’s operations. As modern computer technologies have become

increasingly more complex, this clarity is all but lost: the most fundamental ideas and

techniques in computer science—the very essence of the field—are now hidden under

many layers of obscure interfaces and proprietary implementations. An inevitable

consequence of this complexity has been specialization, leading to computer science

curricula of many courses, each covering a single aspect of the field.

We wrote this book because we felt that many computer science students are

missing the forest for the trees. The typical student is marshaled through a series of

courses in programming, theory, and engineering, without pausing to appreciate the

beauty of the picture at large. And the picture at large is such that hardware and

software systems are tightly interrelated through a hidden web of abstractions, inter-

faces, and contract-based implementations. Failure to see this intricate enterprise

in the flesh leaves many students and professionals with an uneasy feeling that, well,

they don’t fully understand what’s going on inside computers.

We believe that the best way to understand how computers work is to build one

from scratch. With that in mind, we came up with the following concept. Let’s spec-

ify a simple but sufficiently powerful computer system, and have the students build

its hardware platform and software hierarchy from the ground up, starting with

nothing more than elementary logic gates. And while we are at it, let’s do it right. We

say this because building a general-purpose computer from first principles is a huge

undertaking. Therefore, we identified a unique educational opportunity not only to

build the thing, but also to illustrate, in a hands-on fashion, how to effectively plan

and manage large-scale hardware and software development projects. In addition, we

sought to demonstrate the ability to construct, through recursive ascent and human

reasoning, fantastically complex and useful systems from nothing more than a few

primitive building blocks.

Scope

The book exposes students to a significant body of computer science knowledge,

gained through a series of hardware and software construction tasks. These tasks

demonstrate how theoretical and applied techniques taught in other computer science

courses are used in practice. In particular, the following topics are illustrated in a

hands-on fashion:

m Hardware: Logic gates, Boolean arithmetic, multiplexors, flip-flops, registers,

RAM units, counters, Hardware Description Language (HDL), chip simulation and

testing.

m Architecture: ALU/CPU design and implementation, machine code, assembly

language programming, addressing modes, memory-mapped input/output (I/O).

m Operating systems: Memory management, math library, basic I/O drivers,

screen management, file I/O, high-level language support.

m Programming languages: Object-based design and programming, abstract data

types, scoping rules, syntax and semantics, references.

m Compilers: Lexical analysis, top-down parsing, symbol tables, virtual stack-

based machine, code generation, implementation of arrays and objects.

m Data structures and algorithms: Stacks, hash tables, lists, recursion, arithmetic

algorithms, geometric algorithms, running time considerations.

m Software engineering: Modular design, the interface/implementation paradigm,

API design and documentation, proactive test planning, programming at the large,

quality assurance.

All these topics are presented with a very clear purpose: building a modern com-

puter from the ground up. In fact, this has been our topic selection rule: The book

focuses on the minimal set of topics necessary for building a fully functioning com-

puter system. As it turns out, this set includes many fundamental ideas in applied

computer science.

x Preface

Courses

The book is intended for students of computer science and other engineering dis-

ciplines in colleges and universities, at both the undergraduate and graduate levels.

A course based on this book is ‘‘perpendicular’’ to the normal computer science

curriculum and can be taken at almost any point during the program. Two natural

slots are ‘‘CS-2’’—immediately after learning programming, and ‘‘CS-199’’—a

capstone course coming at the end of the program. The former course can provide

a systems-oriented introduction to computer science, and the latter an integrative,

project-oriented systems building course. Possible names for such courses may be

Constructive Introduction to Computer Science, Elements of Computing Systems,

Digital Systems Construction, Computer Construction Workshop, Let’s Build a

Computer, and the like. The book can support both one- and two-semester courses,

depending on topic selection and pace of work.

The book is completely self-contained, requiring only programming (in any lan-

guage) as a prerequisite. Thus, it lends itself not only to computer science majors,

but also to computer-savvy students seeking to gain a hands-on view of hardware

architectures, operating systems, and modern software engineering in the framework

of one course. The book and the accompanying Web site can also be used as a self-

study learning unit, suitable to students from any technical or scientific discipline

following a programming course.

Structure

The introduction chapter presents our approach and previews the main hardware

and software abstractions discussed in the book. This sets the stage for chapters 1–

12, each dedicated to a key hardware or software abstraction, a proposed imple-

mentation, and an actual project that builds and tests it. The first five chapters focus

on constructing the hardware platform of a simple modern computer. The remaining

seven chapters describe the design and implementation of a typical multi-tier soft-

ware hierarchy, culminating in the construction of an object-based programming

language and a simple operating system. The complete game plan is depicted in

figure P.1.

The book is based on an abstraction-implementation paradigm. Each chapter starts

with a Background section, describing relevant concepts and a generic hardware

or software system. The next section is always Specification, which provides a clear

xi Preface

statement of the system’s abstraction—namely, the various services that it is

expected to deliver. Having presented the what, each chapter proceeds to discuss how

the abstraction can be implemented, leading to a (proposed) Implementation section.

The next section is always Perspective, in which we highlight noteworthy issues left

out from the chapter. Each chapter ends with a Project section that provides step-by-

step building instructions, testing materials, and software tools for actually building

and unit-testing the system described in the chapter.

Projects

The computer system described in the book is for real—it can actually be built, and

it works! A reader who takes the time and effort to gradually build this computer will

gain a level of intimate understanding unmatched by mere reading. Hence, the book

is geared toward active readers who are willing to roll up their sleeves and build a

computer from the ground up.

Each chapter includes a complete description of a stand-alone hardware or soft-

ware development project. The four projects that construct the computer platform

are built using a simple Hardware Description Language (HDL) and simulated on a

hardware simulator supplied with the book. Five of the subsequent software projects

c3

c10

c7

c9

c6

c5

c11

c1

c2

c12

c8

c4

Typical
software
hierarchy

Typical
hardware
platform

High-Level Language / Applications (∞)

Operating System

Compiler

Virtual Machine

Assembler

Computer Architecture

Machine Language

ALU Memory Elements

Boolean Arithmetic

Boolean Logic

Sequential Logic

Figure P.1 Book and proposed course map, with chapter numbers in circles.

xii Preface

(assembler, virtual machine I and II, and compiler I and II) can be written in any

modern programming language. The remaining three projects (low-level program-

ming, high-level programming, and the operating system) are written in the assembly

language and high-level language implemented in previous projects.

Project Tips There are twelve projects altogether. On average, each project entails

a weekly homework load in a typical, rigorous university-level course. The projects

are completely self-contained and can be done (or skipped) in any desired order. Of

course the ‘‘full experience’’ package requires doing all the projects in their order of

appearance, but this is just one option.

When we teach courses based on this book, we normally make two significant

concessions. First, except for obvious cases, we pay no attention to optimization,

leaving this very important subject to other, more specific courses. Second, when

developing the translators suite (assembler, VM implementation, and compiler), we

supply error-free test files (source programs), allowing the students to assume that

the inputs of these translators are error-free. This eliminates the need to write code

for handling errors and exceptions, making the software projects significantly more

manageable. Dealing with incorrect input is of course critically important, but once

again we assume that students can hone this skill elsewhere, for example, in dedi-

cated programming and software design courses.

Software

The book’s Web site (www.idc.ac.il/tecs) provides the tools and materials necessary

to build all the hardware and software systems described in the book. These include

a hardware simulator, a CPU emulator, a VM emulator, and executable versions

of the assembler, virtual machine, compiler, and operating system described in the

book. The Web site also includes all the project materials—about two hundred test

programs and test scripts, allowing incremental development and unit-testing of each

one of the twelve projects. All the supplied software tools and project materials can

be used as is on any computer equipped with either Windows or Linux.

Acknowledgments

All the software that accompanies the book was developed by our students at the

Efi Arazi School of Computer Science of the Interdisciplinary Center Herzliya, a new

xiii Preface

Israeli university. The chief software architect was Yaron Ukrainitz, and the devel-

opers included Iftach Amit, Nir Rozen, Assaf Gad, and Hadar Rosen-Sior. Working

with these student-developers has been a great pleasure, and we feel proud and for-

tunate to have had the opportunity to play a role in their education. We also wish

to thank our teaching assistants, Muawyah Akash, David Rabinowitz, Ran Navok,

and Yaron Ukrainitz, who helped us run early versions of the course that led to this

book. Thanks also to Jonathan Gross and Oren Baranes, who worked on related

projects under the excellent supervision of Dr. Danny Seidner, to Uri Zeira and Oren

Cohen, for designing an integrated development environment for the Jack language,

to Tal Achituv, for useful advice on open source issues, and to Aryeh Schnall, for

careful reading and meticulous editing suggestions.

Writing the book without taking any reduction in our regular professional duties

was not simple, and so we wish to thank esti romem, administrative director of

the EFI Arazi School of Computer Science, for holding the fort in difficult times.

Finally, we are indebted to the many students who endured early versions of this

book and helped polish it through numerous bug reports. In the process, we hope,

they have learned first-hand that insight of James Joyce, that mistakes are the portals

of discovery.

Noam Nisan

Shimon Schocken

xiv Preface

The Elements of Computing Systems

Human
Thought

Chips and
Logic Gates

Application or
System Design

Compiler

VM Translator

Computer
Architecture

Gate Logic

Electrical
Engineering

Physics

Assembler

Chapters 9,12

Software
hierarchy

Hardware
hierarchy

Chapters 10–11

Chapters 7–8

Chapter 6

Chapters 1–3

Hardware
Platform

Machine
Language

Assembly
Language

Virtual
Machine

High-Level
Language

&
Operating System

Chapters 4–5

abstract interface

abstract interface

abstract interface

abstract interface

abstract interface

abstract interface

Figure I.1 The major abstractions underlying the design of a typical computing system. The
implementation of each level is accomplished using abstract services and building blocks from
the level below.

Introduction: Hello, World Below

The true voyage of discovery consists not of going to new places, but of having a new pair of eyes.

—Marcel Proust (1871–1922)

This book is a voyage of discovery. You are about to learn three things: how com-

puters work, how to break complex problems into manageable modules, and how to

develop large-scale hardware and software systems. This will be a hands-on process

as you create a complete and working computer system from the ground up. The

lessons you will learn, which are far more important and general than the computer

itself, will be gained as side effects of this activity. According to the psychologist Carl

Rogers, ‘‘the only kind of learning which significantly influences behavior is self-

discovered or self-appropriated—truth that has been assimilated in experience.’’ This

chapter sketches some of the discoveries, truths, and experiences that lie ahead.

The World Above

If you have taken any programming course, you’ve probably encountered something

like the program below early in your education. This particular program is written in

Jack—a simple high-level language that has a conventional object-based syntax.

// First example in Programming 101:

class Main {

function void main() {

do Output.printString("Hello World");

do Output.println(); // New line.

return;

}

}

Trivial programs like Hello World are deceptively simple. Did you ever think

about what it takes to actually run such a program on a computer? Let’s look under

the hood. For starters, note that the program is nothing more than a bunch of dead

characters stored in a text file. Thus, the first thing we must do is parse this text,

uncover its semantics, and reexpress it in some low-level language understood by our

computer. The result of this elaborate translation process, known as compilation, will

be yet another text file, containing machine-level code.

Of course machine language is also an abstraction—an agreed upon set of binary

codes. In order to make this abstract formalism concrete, it must be realized by some

hardware architecture. And this architecture, in turn, is implemented by a certain chip

set—registers, memory units, ALU, and so on. Now, every one of these hardware

devices is constructed from an integrated package of elementary logic gates. And

these gates, in turn, can be built from primitive gates like Nand and Nor. Of course

every one of these gates consists of several switching devices, typically implemented

by transistors. And each transistor is made of— Well, we won’t go further than that,

because that’s where computer science ends and physics starts.

You may be thinking: ‘‘On my computer, compiling and running a program is

much easier—all I have to do is click some icons or write some commands!’’ Indeed,

a modern computer system is like a huge iceberg, and most people get to see only

the top. Their knowledge of computing systems is sketchy and superficial. If, how-

ever, you wish to explore beneath the surface, then lucky you! There’s a fascinating

world down there, made of some of the most beautiful stuff in computer science. An

intimate understanding of this underworld is one of the things that separate naı̈ve

programmers from sophisticated developers—people who can create not only appli-

cation programs, but also complex hardware and software technologies. And the best

way to understand how these technologies work—and we mean understand them in

the marrow of your bones—is to build a complete computer system from scratch.

Abstractions

You may wonder how it is humanly possible to construct a complete computer sys-

tem from the ground up, starting with nothing more than elementary logic gates.

This must be an enormously complex enterprise! We deal with this complexity by

breaking the project into modules, and treating each module separately, in a stand-

alone chapter. You might then wonder, how is it possible to describe and construct

these modules in isolation? Obviously they are all interrelated! As we will show

2 Introduction

throughout the book, a good modular design implies just that: You can work on the

individual modules independently, while completely ignoring the rest of the system.

In fact, you can even build these modules in any desired order!

It turns out that this strategy works well thanks to a special gift unique to humans:

our ability to create and use abstractions. The notion of abstraction, central to

many arts and sciences, is normally taken to be a mental expression that seeks to

separate in thought, and capture in some concise manner, the essence of some entity.

In computer science, we take the notion of abstraction very concretely, defining it to

be a statement of ‘‘what the entity does’’ and ignoring the details of ‘‘how it does it.’’

This functional description must capture all that needs to be known in order to use

the entity’s services, and nothing more. All the work, cleverness, information, and

drama that went into the entity’s implementation are concealed from the client who

is supposed to use it, since they are simply irrelevant. The articulation, use, and im-

plementation of such abstractions are the bread and butter of our professional prac-

tice: Every hardware and software developer is routinely defining abstractions (also

called ‘‘interfaces’’) and then implementing them, or asking other people to imple-

ment them. The abstractions are often built layer upon layer, resulting in higher and

higher levels of capabilities.

Designing good abstractions is a practical art, and one that is best acquired

by seeing many examples. Therefore, this book is based on an abstraction-

implementation paradigm. Each book chapter presents a key hardware or software

abstraction, and a project designed to actually implement it. Thanks to the modular

nature of these abstractions, each chapter also entails a stand-alone intellectual unit,

inviting the reader to focus on two things only: understanding the given abstrac-

tion (a rich world of its own), and then implementing it using abstract services and

building blocks from the level below. As you push ahead in this journey, it will be

rather thrilling to look back and appreciate the computer that is gradually taking

shape in the wake of your efforts.

The World Below

The multi-tier collection of abstractions underlying the design of a computing sys-

tem can be described top-down, showing how high-level abstractions can be reduced

into, or expressed by, simpler ones. This structure can also be described bottom-up,

focusing on how lower-level abstractions can be used to construct more complex

ones. This book takes the latter approach: We begin with the most basic elements—

3 Introduction

primitive logic gates—and work our way upward, culminating in the construction

of a general-purpose computer system. And if building such a computer is like

climbing Mount Everest, then planting a flag on the mountaintop is like having the

computer run a program written in some high-level language. Since we are going

to ascend this mountain from the ground up, let us survey the book plan in the op-

posite direction—from the top down—starting in the familiar territory of high-level

programming.

Our tour consists of three main legs. We start at the top, where people write

and run high-level programs (chapters 9 and 12). We then survey the road down to

hardware land, tracking the fascinating twists and curves of translating high-level

programs into machine language (chapters 6, 7, 8, 10, 11). Finally, we reach the low

grounds of our journey, describing how a typical hardware platform is actually con-

structed (chapters 1–5).

High-Level Language Land

The topmost abstraction in our journey is the art of programming, where entrepre-

neurs and programmers dream up applications and write software that implements

them. In doing so, they blissfully take for granted the two key tools of their trade:

the high-level language in which they work, and the rich library of services that sup-

ports it. For example, consider the statement do Output.printString(‘‘Hello

World’’). This code invokes an abstract service for printing strings—a service that

must be implemented somewhere. Indeed, a bit of drilling reveals that this service

is usually supplied jointly by the host operating system and the standard language

library.

What then is a standard language library? And how does an operating system (OS)

work? These questions are taken up in chapter 12. We start by presenting key algo-

rithms relevant to OS services, and then use them to implement various mathemati-

cal functions, string operations, memory allocation tasks, and input/output (I/O)

routines. The result is a simple operating system, written in the Jack programming

language.

Jack is a simple object-based language, designed for a single purpose: to illustrate

the key software engineering principles underlying the design and implementation

of modern programming languages like Java and C#. Jack is presented in chapter 9,

which also illustrates how to build Jack-based applications, for example, computer

games. If you have any programming experience with a modern object-oriented lan-

guage, you can start writing Jack programs right away and watch them execute on

the computer platform developed in previous chapters. However, the goal of chapter

4 Introduction

9 is not to turn you into a Jack programmer, but rather to prepare you to develop the

compiler and operating system described in subsequent chapters.

The Road Down to Hardware Land

Before any program can actually run and do something for real, it must be translated

into the machine language of some target computer platform. This compilation pro-

cess is sufficiently complex to be broken into several layers of abstraction, and these

usually involve three translators: a compiler, a virtual machine implementation, and

an assembler. We devote five book chapters to this trio, as follows.

The translation task of the compiler is performed in two conceptual stages: syntax

analysis and code generation. First, the source text is analyzed and grouped into

meaningful language constructs that can be kept in a data structure called a ‘‘parse

tree.’’ These parsing tasks, collectively known as syntax analysis, are described in

chapter 10. This sets the stage for chapter 11, which shows how the parse tree can be

recursively processed to yield a program written in an intermediate language. As with

Java and C#, the intermediate code generated by the Jack compiler describes a se-

quence of generic steps operating on a stack-based virtual machine (VM). This clas-

sical model, as well as a VM implementation that realizes it on an actual computer,

are elaborated in chapters 7–8. Since the output of our VM implementation is a large

assembly program, we have to translate it further into binary code. Writing an

assembler is a relatively simple task, taken up in chapter 6.

Hardware Land

We have reached the most profound step in our journey—the descent from machine

language to the machine itself—the point where software finally meets hardware.

This is also the point where Hack enters the picture. Hack is a general-purpose

computer system, designed to strike a balance between simplicity and power. On the

one hand, the Hack architecture can be built in just a few hours of work, using the

guidelines and chip set presented in chapters 1–3. At the same time, Hack is suffi-

ciently general to illustrate the key operating principles and hardware elements un-

derlying the design of any digital computer.

The machine language of the Hack platform is specified in chapter 4, and the

computer design itself is discussed and specified in chapter 5. Readers can build this

computer as well as all the chips and gates mentioned in the book on their home

computers, using the software-based hardware simulator supplied with the book

and the Hardware Description Language (HDL) documented in appendix A. All the

5 Introduction

developed hardware modules can be tested using supplied test scripts, written in a

scripting language documented in appendix B.

The computer that emerges from this construction is based on typical components

like CPU, RAM, ROM, and simulated screen and keyboard. The computer’s regis-

ters and memory systems are built in chapter 3, following a brief discussion of

sequential logic. The computer’s combinational logic, culminating in the Arithmetic

Logic Unit (ALU) chip, is built in chapter 2, following a brief discussion of Boolean

arithmetic. All the chips presented in these chapters are based on a suite of elemen-

tary logic gates, presented and built in chapter 1.

Of course the layers of abstraction don’t stop here. Elementary logic gates are

built from transistors, using technologies based on solid-state physics and ultimately

quantum mechanics. Indeed, this is where the abstractions of the natural world, as

studied and formulated by physicists, become the building blocks of the abstractions

of the synthetic worlds built and studied by computer scientists.

This marks the end of our grand tour preview—the descent from the high-level

peaks of object-based software, all the way down to the bricks and mortar of the

hardware platform. This typical modular rendition of a multi-tier system represents

not only a powerful engineering paradigm, but also a central dogma in human rea-

soning, going back at least 2,500 years:

We deliberate not about ends, but about means. For a doctor does not deliberate whether he shall

heal, nor an orator whether he shall persuade . . . They assume the end and consider how and by

what means it is attained, and if it seems easily and best produced thereby; while if it is achieved

by other means, they consider how it will be achieved and by what means this will be achieved,
until they come to the first cause . . . and what is last in the order of analysis seems to be first in

the order of becoming. (Aristotles, Nicomachean Ethics, Book III, 3, 1112b)

So here’s the plan, in the order of becoming. Starting with the construction of ele-

mentary logic gates (chapter 1), we go bottom-up to combinational and sequential

chips (chapters 2–3), through the design of a typical computer architecture (chapters

4–5) and a typical software hierarchy (chapters 6–8), all the way to implementing

a compiler (chapters 10–11) for a modern object-based language (chapter 9), ending

with the design and implementation of a simple operating system (chapter 12). We

hope that the reader has gained a general idea of what lies ahead and is eager to push

forward on this grand tour of discovery. So, assuming that you are ready and set, let

the countdown start: 1, 0, Go!

6 Introduction

1 Boolean Logic

Such simple things, And we make of them something so complex it defeats us, Almost.

—John Ashbery (b. 1927), American poet

Every digital device—be it a personal computer, a cellular telephone, or a network

router—is based on a set of chips designed to store and process information. Al-

though these chips come in different shapes and forms, they are all made from the

same building blocks: Elementary logic gates. The gates can be physically imple-

mented in many different materials and fabrication technologies, but their logical

behavior is consistent across all computers. In this chapter we start out with one

primitive logic gate—Nand—and build all the other logic gates from it. The result is

a rather standard set of gates, which will be later used to construct our computer’s

processing and storage chips. This will be done in chapters 2 and 3, respectively.

All the hardware chapters in the book, beginning with this one, have the same

structure. Each chapter focuses on a well-defined task, designed to construct or inte-

grate a certain family of chips. The prerequisite knowledge needed to approach this

task is provided in a brief Background section. The next section provides a complete

Specification of the chips’ abstractions, namely, the various services that they should

deliver, one way or another. Having presented the what, a subsequent Implemen-

tation section proposes guidelines and hints about how the chips can be actually

implemented. A Perspective section rounds up the chapter with concluding com-

ments about important topics that were left out from the discussion. Each chapter

ends with a technical Project section. This section gives step-by-step instructions for

actually building the chips on a personal computer, using the hardware simulator

supplied with the book.

This being the first hardware chapter in the book, the Background section is

somewhat lengthy, featuring a special section on hardware description and simulation

tools.

1.1 Background

This chapter focuses on the construction of a family of simple chips called Boolean

gates. Since Boolean gates are physical implementations of Boolean functions, we

start with a brief treatment of Boolean algebra. We then show how Boolean gates

implementing simple Boolean functions can be interconnected to deliver the func-

tionality of more complex chips. We conclude the background section with a descrip-

tion of how hardware design is actually done in practice, using software simulation

tools.

1.1.1 Boolean Algebra

Boolean algebra deals with Boolean (also called binary) values that are typically

labeled true/false, 1/0, yes/no, on/off, and so forth. We will use 1 and 0. A Boolean

function is a function that operates on binary inputs and returns binary outputs.

Since computer hardware is based on the representation and manipulation of binary

values, Boolean functions play a central role in the specification, construction, and

optimization of hardware architectures. Hence, the ability to formulate and analyze

Boolean functions is the first step toward constructing computer architectures.

Truth Table Representation The simplest way to specify a Boolean function is to

enumerate all the possible values of the function’s input variables, along with the

function’s output for each set of inputs. This is called the truth table representation of

the function, illustrated in figure 1.1.

The first three columns of figure 1.1 enumerate all the possible binary values of the

function’s variables. For each one of the 2n possible tuples v1 . . . vn (here n ¼ 3), the
last column gives the value of f ðv1 . . . vnÞ.

Boolean Expressions In addition to the truth table specification, a Boolean function

can also be specified using Boolean operations over its input variables. The basic

Boolean operators that are typically used are ‘‘And’’ (x And y is 1 exactly when both

x and y are 1) ‘‘Or’’ (x Or y is 1 exactly when either x or y or both are 1), and ‘‘Not’’

(Not x is 1 exactly when x is 0). We will use a common arithmetic-like notation for

these operations: x � y (or xy) means x And y, x þ y means x Or y, and x means
Not x.

To illustrate, the function defined in figure 1.1 is equivalently given by the Boolean

expression f ðx; y; zÞ ¼ ðx þ yÞ � z. For example, let us evaluate this expression on the

8 Chapter 1

inputs x ¼ 0, y ¼ 1, z ¼ 0 (third row in the table). Since y is 1, it follows that
x þ y ¼ 1 and thus 1 � 0 ¼ 1 � 1 ¼ 1. The complete verification of the equivalence
between the expression and the truth table is achieved by evaluating the expression

on each of the eight possible input combinations, verifying that it yields the same

value listed in the table’s right column.

Canonical Representation As it turns out, every Boolean function can be expressed

using at least one Boolean expression called the canonical representation. Starting

with the function’s truth table, we focus on all the rows in which the function has

value 1. For each such row, we construct a term created by And-ing together literals

(variables or their negations) that fix the values of all the row’s inputs. For example,

let us focus on the third row in figure 1.1, where the function’s value is 1. Since the

variable values in this row are x ¼ 0, y ¼ 1, z ¼ 0, we construct the term xyz. Fol-
lowing the same procedure, we construct the terms xyz and xyz for rows 5 and 7.

Now, if we Or-together all these terms (for all the rows where the function has value

1), we get a Boolean expression that is equivalent to the given truth table. Thus the

canonical representation of the Boolean function shown in figure 1.1 is f ðx; y; zÞ ¼
xyz þ xyz þ xyz. This construction leads to an important conclusion: Every Boolean
function, no matter how complex, can be expressed using three Boolean operators

only: And, Or, and Not.

Two-Input Boolean Functions An inspection of figure 1.1 reveals that the number of

Boolean functions that can be defined over n binary variables is 22
n

. For example,

the sixteen Boolean functions spanned by two variables are listed in figure 1.2. These

functions were constructed systematically, by enumerating all the possible 4-wise com-

binations of binary values in the four right columns. Each function has a conventional

x y z f ðx; y; zÞ
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Figure 1.1 Truth table representation of a Boolean function (example).

9 Boolean Logic

name that seeks to describe its underlying operation. Here are some examples: The

name of the Nor function is shorthand for Not-Or: Take the Or of x and y, then

negate the result. The Xor function—shorthand for ‘‘exclusive or’’—returns 1 when

its two variables have opposing truth-values and 0 otherwise. Conversely, the

Equivalence function returns 1 when the two variables have identical truth-values.

The If-x-then-y function (also known as x ! y, or ‘‘x Implies y’’) returns 1 when x is
0 or when both x and y are 1. The other functions are self-explanatory.

The Nand function (as well as the Nor function) has an interesting theoretical

property: Each one of the operations And, Or, and Not can be constructed from it,

and it alone (e.g., x Or y ¼ ðx Nand xÞ Nand ðy Nand yÞ. And since every Boolean
function can be constructed from And, Or, and Not operations using the canonical

representation method, it follows that every Boolean function can be constructed

from Nand operations alone. This result has far-reaching practical implications:

Once we have in our disposal a physical device that implements Nand, we can use

many copies of this device (wired in a certain way) to implement in hardware any

Boolean function.

x 0 0 1 1
Function

y 0 1 0 1

Constant 0 0 0 0 0 0

And x � y 0 0 0 1
x And Not y x � y 0 0 1 0
x x 0 0 1 1

Not x And y x � y 0 1 0 0
y y 0 1 0 1

Xor x � y þ x � y 0 1 1 0
Or x þ y 0 1 1 1
Nor x þ y 1 0 0 0
Equivalence x � y þ x � y 1 0 0 1
Not y y 1 0 1 0

If y then x x þ y 1 0 1 1
Not x x 1 1 0 0

If x then y x þ y 1 1 0 1
Nand x � y 1 1 1 0
Constant 1 1 1 1 1 1

Figure 1.2 All the Boolean functions of two variables.

10 Chapter 1

1.1.2 Gate Logic

A gate is a physical device that implements a Boolean function. If a Boolean function

f operates on n variables and returns m binary results (in all our examples so far, m

was 1), the gate that implements f will have n input pins and m output pins. When we

put some values v1 . . . vn in the gate’s input pins, the gate’s ‘‘logic’’—its internal

structure—should compute and output f ðv1 . . . vnÞ. And just like complex Boolean
functions can be expressed in terms of simpler functions, complex gates are com-

posed from more elementary gates. The simplest gates of all are made from tiny

switching devices, called transistors, wired in a certain topology designed to effect the

overall gate functionality.

Although most digital computers today use electricity to represent and transmit

binary data from one gate to another, any alternative technology permitting switch-

ing and conducting capabilities can be employed. Indeed, during the last fifty years,

researchers have built many hardware implementations of Boolean functions, includ-

ing magnetic, optical, biological, hydraulic, and pneumatic mechanisms. Today, most

gates are implemented as transistors etched in silicon, packaged as chips. In this book

we use the words chip and gate interchangeably, tending to use the term gates for

simple chips.

The availability of alternative switching technology options, on the one hand, and

the observation that Boolean algebra can be used to abstract the behavior of any

such technology, on the other, is extremely important. Basically, it implies that

computer scientists don’t have to worry about physical things like electricity, circuits,

switches, relays, and power supply. Instead, computer scientists can be content with

the abstract notions of Boolean algebra and gate logic, trusting that someone else

(the physicists and electrical engineers—bless their souls) will figure out how to

actually realize them in hardware. Hence, a primitive gate (see figure 1.3) can be

viewed as a black box device that implements an elementary logical operation in one

way or another—we don’t care how. A hardware designer starts from such primitive

gates and designs more complicated functionality by interconnecting them, leading to

the construction of composite gates.

outAnd
b

a a

b outOr
Notin out

Figure 1.3 Standard symbolic notation of some elementary logic gates.

11 Boolean Logic

Primitive and Composite Gates Since all logic gates have the same input and out-

put semantics (0’s and 1’s), they can be chained together, creating composite gates of

arbitrary complexity. For example, suppose we are asked to implement the 3-way

Boolean function Andða; b; cÞ. Using Boolean algebra, we can begin by observing
that a � b � c ¼ ða � bÞ � c, or, using prefix notation, Andða; b; cÞ ¼ AndðAndða; bÞ; cÞ.
Next, we can use this result to construct the composite gate depicted in figure 1.4.

The construction described in figure 1.4 is a simple example of gate logic, also

called logic design. Simply put, logic design is the art of interconnecting gates in

order to implement more complex functionality, leading to the notion of composite

gates. Since composite gates are themselves realizations of (possibly complex)

Boolean functions, their ‘‘outside appearance’’ (e.g., left side of figure 1.4) looks just

like that of primitive gates. At the same time, their internal structure can be rather

complex.

We see that any given logic gate can be viewed from two different perspectives:

external and internal. The right-hand side of figure 1.4 gives the gate’s internal

architecture, or implementation, whereas the left side shows only the gate interface,

namely, the input and output pins that it exposes to the outside world. The former is

relevant only to the gate designer, whereas the latter is the right level of detail for

other designers who wish to use the gate as an abstract off-the-shelf component,

without paying attention to its internal structure.

Let us consider another logic design example—that of a Xor gate. As discussed

before, Xorða; bÞ is 1 exactly when either a is 1 and b is 0, or when a is 0 and b is
1. Said otherwise, Xorða; bÞ ¼ OrðAndða; NotðbÞÞ; AndðNotðaÞ; bÞÞ. This definition
leads to the logic design shown in figure 1.5.

Note that the gate interface is unique: There is only one way to describe it, and this

is normally done using a truth table, a Boolean expression, or some verbal specifica-

out
a
b And
c

If a=b=c=1 then out=1
else out=0

a
And

b

And
c

out

Gate implementationGate interface

Figure 1.4 Composite implementation of a three-way And gate. The rectangle on the right
defines the conceptual boundaries of the gate interface.

12 Chapter 1

tion. This interface, however, can be realized using many different implementations,

some of which will be better than others in terms of cost, speed, and simplicity. For

example, the Xor function can be implemented using four, rather than five, And, Or,

and Not gates. Thus, from a functional standpoint, the fundamental requirement of

logic design is that the gate implementation will realize its stated interface, in one way

or another. From an efficiency standpoint, the general rule is to try to do more with

less, that is, use as few gates as possible.

To sum up, the art of logic design can be described as follows: Given a gate spec-

ification (interface), find an efficient way to implement it using other gates that

were already implemented. This, in a nutshell, is what we will do in the rest of this

chapter.

1.1.3 Actual Hardware Construction

Having described the logic of composing complex gates from simpler ones, we are

now in a position to discuss how gates are actually built. Let us start with an inten-

tionally naı̈ve example.

Suppose we open a chip fabrication shop in our home garage. Our first contract is

to build a hundred Xor gates. Using the order’s downpayment, we purchase a sol-

dering gun, a roll of copper wire, and three bins labeled ‘‘And gates,’’ ‘‘Or gates,’’

and ‘‘Not gates,’’ each containing many identical copies of these elementary logic

gates. Each of these gates is sealed in a plastic casing that exposes some input and

output pins, as well as a power supply plug. To get started, we pin figure 1.5 to our

garage wall and proceed to realize it using our hardware. First, we take two And

gates, two Not gates, and one Or gate, and mount them on a board according to the

Xor
a

b
out

0 0 0
0 1 1
1 0 1
1 1 0

a b out

And

And

Or out

a

b

Figure 1.5 Xor gate, along with a possible implementation.

13 Boolean Logic

figure’s layout. Next, we connect the chips to one another by running copper wires

among them and by soldering the wire ends to the respective input/output pins.

Now, if we follow the gate diagram carefully, we will end up having three exposed

wire ends. We then solder a pin to each one of these wire ends, seal the entire device

(except for the three pins) in a plastic casing, and label it ‘‘Xor.’’ We can repeat this

assembly process many times over. At the end of the day, we can store all the

chips that we’ve built in a new bin and label it ‘‘Xor gates.’’ If we (or other people)

are asked to construct some other chips in the future, we’ll be able to use these Xor

gates as elementary building blocks, just as we used the And, Or, and Not gates

before.

As the reader has probably sensed, the garage approach to chip production leaves

much to be desired. For starters, there is no guarantee that the given chip diagram is

correct. Although we can prove correctness in simple cases like Xor, we cannot do so

in many realistically complex chips. Thus, we must settle for empirical testing: Build

the chip, connect it to a power supply, activate and deactivate the input pins in vari-

ous configurations, and hope that the chip outputs will agree with its specifications. If

the chip fails to deliver the desired outputs, we will have to tinker with its physical

structure—a rather messy affair. Further, even if we will come up with the right de-

sign, replicating the chip assembly process many times over will be a time-consuming

and error-prone affair. There must be a better way!

1.1.4 Hardware Description Language (HDL)

Today, hardware designers no longer build anything with their bare hands. Instead,

they plan and optimize the chip architecture on a computer workstation, using

structured modeling formalisms like Hardware Description Language, or HDL (also

known as VHDL, where V stands for Virtual). The designer specifies the chip struc-

ture by writing an HDL program, which is then subjected to a rigorous battery of

tests. These tests are carried out virtually, using computer simulation: A special

software tool, called a hardware simulator, takes the HDL program as input and

builds an image of the modeled chip in memory. Next, the designer can instruct the

simulator to test the virtual chip on various sets of inputs, generating simulated chip

outputs. The outputs can then be compared to the desired results, as mandated by

the client who ordered the chip built.

In addition to testing the chip’s correctness, the hardware designer will typi-

cally be interested in a variety of parameters such as speed of computation, energy

consumption, and the overall cost implied by the chip design. All these param-

14 Chapter 1

eters can be simulated and quantified by the hardware simulator, helping the de-

signer optimize the design until the simulated chip delivers desired cost/performance

levels.

Thus, using HDL, one can completely plan, debug, and optimize the entire chip

before a single penny is spent on actual production. When the HDL program is

deemed complete, that is, when the performance of the simulated chip satisfies the

client who ordered it, the HDL program can become the blueprint from which many

copies of the physical chip can be stamped in silicon. This final step in the chip

life cycle—from an optimized HDL program to mass production—is typically out-

sourced to companies that specialize in chip fabrication, using one switching tech-

nology or another.

Example: Building a Xor Gate As we have seen in figures 1.2 and 1.5, one way to

define exclusive or is Xorða; bÞ ¼ OrðAndða; NotðbÞÞ; AndðNotðaÞ; bÞÞ. This logic can
be expressed either graphically, as a gate diagram, or textually, as an HDL program.

The latter program is written in the HDL variant used throughout this book, defined

in appendix A. See figure 1.6 for the details.

Explanation An HDL definition of a chip consists of a header section and a parts

section. The header section specifies the chip interface, namely the chip name and the

names of its input and output pins. The parts section describes the names and topol-

ogy of all the lower-level parts (other chips) from which this chip is constructed. Each

part is represented by a statement that specifies the part name and the way it is con-

nected to other parts in the design. Note that in order to write such statements legi-

bly, the HDL programmer must have a complete documentation of the underlying

parts’ interfaces. For example, figure 1.6 assumes that the input and output pins of

the Not gate are labeled in and out, and those of And and Or are labeled a, b and

out. This API-type information is not obvious, and one must have access to it before

one can plug the chip parts into the present code.

Inter-part connections are described by creating and connecting internal pins,

as needed. For example, consider the bottom of the gate diagram, where the output

of a Not gate is piped into the input of a subsequent And gate. The HDL code

describes this connection by the pair of statements Not(...,out=nota) and

And(a=nota,...). The first statement creates an internal pin (outbound wire)

named nota, feeding out into it. The second statement feeds the value of nota

into the a input of an And gate. Note that pins may have an unlimited fan out.

For example, in figure 1.6, each input is simultaneously fed into two gates. In gate

15 Boolean Logic

diagrams, multiple connections are described using forks. In HDL, the existence of

forks is implied by the code.

Testing Rigorous quality assurance mandates that chips be tested in a specific, rep-

licable, and well-documented fashion. With that in mind, hardware simulators are

usually designed to run test scripts, written in some scripting language. For example,

the test script in figure 1.6 is written in the scripting language understood by the

hardware simulator supplied with the book. This scripting language is described fully

in appendix B.

Let us give a brief description of the test script from figure 1.6. The first two lines

of the test script instruct the simulator to load the Xor.hdl program and get ready to

b

a

b

a

a

And

And

Or out

a

b

in

in

notb

nota

w1

w2

out

out

out

out

b
out

HDL program (Xor.hdl) Test script (Xor.tst) Output file (Xor.out)

/* Xor (exclusive or) gate:

If a<>b out=1 else out=0. */

CHIP Xor {

IN a, b;

OUT out;

PARTS:

Not(in=a, out=nota);

Not(in=b, out=notb);

And(a=a, b=notb, out=w1);

And(a=nota, b=b, out=w2);

Or(a=w1, b=w2, out=out);

}

load Xor.hdl,

output-list a, b, out;

set a 0, set b 0,

eval, output;

set a 0, set b 1,

eval, output;

set a 1, set b 0,

eval, output;

set a 1, set b 1,

eval, output;

a b out

0 0 0

0 1 1

1 0 1

1 1 0

Figure 1.6 HDL implementation of a Xor gate.

16 Chapter 1

print the values of selected variables. Next, the script lists a series of testing scenarios,

designed to simulate the various contingencies under which the Xor chip will have to

operate in ‘‘real-life’’ situations. In each scenario, the script instructs the simulator to

bind the chip inputs to certain data values, compute the resulting output, and record

the test results in a designated output file. In the case of simple gates like Xor, one

can write an exhaustive test script that enumerates all the possible input values of the

gate. The resulting output file (right side of figure 1.6) can then be viewed as a com-

plete empirical proof that the chip is well designed. The luxury of such certitude is

not feasible in more complex chips, as we will see later.

1.1.5 Hardware Simulation

Since HDL is a hardware construction language, the process of writing and debug-

ging HDL programs is quite similar to software development. The main difference is

that instead of writing code in a language like Java, we write it in HDL, and instead

of using a compiler to translate and test the code, we use a hardware simulator. The

hardware simulator is a computer program that knows how to parse and interpret

HDL code, turn it into an executable representation, and test it according to the

specifications of a given test script. There exist many commercial hardware simu-

lators on the market, and these vary greatly in terms of cost, complexity, and ease of

use. Together with this book we provide a simple (and free!) hardware simulator

that is sufficiently powerful to support sophisticated hardware design projects. In

particular, the simulator provides all the necessary tools for building, testing, and

integrating all the chips presented in the book, leading to the construction of a

general-purpose computer. Figure 1.7 illustrates a typical chip simulation session.

1.2 Specification

This section specifies a typical set of gates, each designed to carry out a common

Boolean operation. These gates will be used in the chapters that follow to construct

the full architecture of a typical modern computer. Our starting point is a single

primitive Nand gate, from which all other gates will be derived recursively. Note that

we provide only the gates’ specifications, or interfaces, delaying implementation

details until a subsequent section. Readers who wish to construct the specified gates

in HDL are encouraged to do so, referring to appendix A as needed. All the gates

can be built and simulated on a personal computer, using the hardware simulator

supplied with the book.

17 Boolean Logic

test
script

HDL
program

current pin
values

simulator
controls

output file

typical
simulation step

Figure 1.7 A screen shot of simulating an Xor chip on the hardware simulator. The simulator
state is shown just after the test script has completed running. The pin values correspond to the
last simulation step (a ¼ b ¼ 1). Note that the output file generated by the simulation is con-
sistent with the Xor truth table, indicating that the loaded HDL program delivers a correct
Xor functionality. The compare file, not shown in the figure and typically specified by the
chip’s client, has exactly the same structure and contents as that of the output file. The fact
that the two files agree with each other is evident from the status message displayed at the
bottom of the screen.

18 Chapter 1

1.2.1 The Nand Gate

The starting point of our computer architecture is the Nand gate, from which all

other gates and chips are built. The Nand gate is designed to compute the following

Boolean function:

a b Nandða; bÞ
0 0 1

0 1 1

1 0 1

1 1 0

Throughout the book, we use ‘‘chip API boxes’’ to specify chips. For each chip, the

API specifies the chip name, the names of its input and output pins, the function or

operation that the chip effects, and an optional comment.

Chip name: Nand

Inputs: a, b

Outputs: out

Function: If a=b=1 then out=0 else out=1

Comment: This gate is considered primitive and thus there is

no need to implement it.

1.2.2 Basic Logic Gates

Some of the logic gates presented here are typically referred to as ‘‘elementary’’ or

‘‘basic.’’ At the same time, every one of them can be composed from Nand gates

alone. Therefore, they need not be viewed as primitive.

Not The single-input Not gate, also known as ‘‘converter,’’ converts its input from

0 to 1 and vice versa. The gate API is as follows:

Chip name: Not

Inputs: in

Outputs: out

Function: If in=0 then out=1 else out=0.

19 Boolean Logic

And The And function returns 1 when both its inputs are 1, and 0 otherwise.

Chip name: And

Inputs: a, b

Outputs: out

Function: If a=b=1 then out=1 else out=0.

Or The Or function returns 1 when at least one of its inputs is 1, and 0 otherwise.

Chip name: Or

Inputs: a, b

Outputs: out

Function: If a=b=0 then out=0 else out=1.

Xor The Xor function, also known as ‘‘exclusive or,’’ returns 1 when its two inputs

have opposing values, and 0 otherwise.

Chip name: Xor

Inputs: a, b

Outputs: out

Function: If a=/b then out=1 else out=0.

Multiplexor A multiplexor (figure 1.8) is a three-input gate that uses one of the

inputs, called ‘‘selection bit,’’ to select and output one of the other two inputs, called

‘‘data bits.’’ Thus, a better name for this device might have been selector. The

name multiplexor was adopted from communications systems, where similar

devices are used to serialize (multiplex) several input signals over a single output

wire.

Chip name: Mux

Inputs: a, b, sel

Outputs: out

Function: If sel=0 then out=a else out=b.

20 Chapter 1

Demultiplexor A demultiplexor (figure 1.9) performs the opposite function of a

multiplexor: It takes a single input and channels it to one of two possible outputs

according to a selector bit that specifies which output to chose.

Chip name: DMux

Inputs: in, sel

Outputs: a, b

Function: If sel=0 then {a=in, b=0} else {a=0, b=in}.

1.2.3 Multi-Bit Versions of Basic Gates

Computer hardware is typically designed to operate on multi-bit arrays called

‘‘buses.’’ For example, a basic requirement of a 32-bit computer is to be able to

compute (bit-wise) an And function on two given 32-bit buses. To implement this

operation, we can build an array of 32 binary And gates, each operating separately

a b sel out sel out

0 0 0 0 0 a

0 1 0 0 1 b

1 0 0 1

1 1 0 1

0 0 1 0

0 1 1 1

1 0 1 0

1 1 1 1

a

b

sel

outMux

Figure 1.8 Multiplexor. The table at the top right is an abbreviated version of the truth table
on the left.

sel a b

0 in 0

1 0 in

a

b

sel

in DMux

Figure 1.9 Demultiplexor.

21 Boolean Logic

on a pair of bits. In order to enclose all this logic in one package, we can encapsulate

the gates array in a single chip interface consisting of two 32-bit input buses and one

32-bit output bus.

This section describes a typical set of such multi-bit logic gates, as needed for the

construction of a typical 16-bit computer. We note in passing that the architecture of

n-bit logic gates is basically the same irrespective of n’s value.

When referring to individual bits in a bus, it is common to use an array syntax.

For example, to refer to individual bits in a 16-bit bus named data, we use the no-

tation data[0], data[1],. . ., data[15].

Multi-Bit Not An n-bit Not gate applies the Boolean operation Not to every one of

the bits in its n-bit input bus:

Chip name: Not16

Inputs: in[16] // a 16-bit pin

Outputs: out[16]

Function: For i=0..15 out[i]=Not(in[i]).

Multi-Bit And An n-bit And gate applies the Boolean operation And to every one

of the n bit-pairs arrayed in its two n-bit input buses:

Chip name: And16

Inputs: a[16], b[16]

Outputs: out[16]

Function: For i=0..15 out[i]=And(a[i],b[i]).

Multi-Bit Or An n-bit Or gate applies the Boolean operation Or to every one of the

n bit-pairs arrayed in its two n-bit input buses:

Chip name: Or16

Inputs: a[16], b[16]

Outputs: out[16]

Function: For i=0..15 out[i]=Or(a[i],b[i]).

22 Chapter 1

Multi-Bit Multiplexor An n-bit multiplexor is exactly the same as the binary multi-

plexor described in figure 1.8, except that the two inputs are each n-bit wide; the

selector is a single bit.

Chip name: Mux16

Inputs: a[16], b[16], sel

Outputs: out[16]

Function: If sel=0 then for i=0..15 out[i]=a[i]

else for i=0..15 out[i]=b[i].

1.2.4 Multi-Way Versions of Basic Gates

Many 2-way logic gates that accept two inputs have natural generalization to multi-

way variants that accept an arbitrary number of inputs. This section describes a set

of multi-way gates that will be used subsequently in various chips in our computer

architecture. Similar generalizations can be developed for other architectures, as

needed.

Multi-Way Or An n-way Or gate outputs 1 when at least one of its n bit inputs is 1,

and 0 otherwise. Here is the 8-way variant of this gate:

Chip name: Or8Way

Inputs: in[8]

Outputs: out

Function: out=Or(in[0],in[1],...,in[7]).

Multi-Way/Multi-Bit Multiplexor An m-way n-bit multiplexor selects one of m n-

bit input buses and outputs it to a single n-bit output bus. The selection is speci-

fied by a set of k control bits, where k ¼ log2 m. Figure 1.10 depicts a typical
example.

The computer platform that we develop in this book requires two variations of this

chip: A 4-way 16-bit multiplexor and an 8-way 16-bit multiplexor:

23 Boolean Logic

Chip name: Mux4Way16

Inputs: a[16], b[16], c[16], d[16], sel[2]

Outputs: out[16]

Function: If sel=00 then out=a else if sel=01 then out=b

else if sel=10 then out=c else if sel=11 then out=d

Comment: The assignment operations mentioned above are all

16-bit. For example, "out=a" means "for i=0..15

out[i]=a[i]".

Chip name: Mux8Way16

Inputs: a[16],b[16],c[16],d[16],e[16],f[16],g[16],h[16],

sel[3]

Outputs: out[16]

Function: If sel=000 then out=a else if sel=001 then out=b

else if sel=010 out=c ... else if sel=111 then out=h

Comment: The assignment operations mentioned above are all

16-bit. For example, "out=a" means "for i=0..15

out[i]=a[i]".

Multi-Way/Multi-Bit Demultiplexor An m-way n-bit demultiplexor (figure 1.11)

channels a single n-bit input into one of m possible n-bit outputs. The selection is

specified by a set of k control bits, where k ¼ log2 m.
The specific computer platform that we will build requires two variations of this

chip: A 4-way 1-bit demultiplexor and an 8-way 1-bit multiplexor, as follows.

sel[1] sel[0] out

0 0 a

0 1 b

1 0 c

1 1 d

a

out
b

c
4-way
Mux

sel[0]sel[1]

d a,b,c,d and
out are each
16-bit wide

Figure 1.10 4-way multiplexor. The width of the input and output buses may vary.

24 Chapter 1

Chip name: DMux4Way

Inputs: in, sel[2]

Outputs: a, b, c, d

Function: If sel=00 then {a=in, b=c=d=0}

else if sel=01 then {b=in, a=c=d=0}

else if sel=10 then {c=in, a=b=d=0}

else if sel=11 then {d=in, a=b=c=0}.

Chip name: DMux8Way

Inputs: in, sel[3]

Outputs: a, b, c, d, e, f, g, h

Function: If sel=000 then {a=in, b=c=d=e=f=g=h=0}

else if sel=001 then {b=in, a=c=d=e=f=g=h=0}

else if sel=010 ...

...

else if sel=111 then {h=in, a=b=c=d=e=f=g=0}.

1.3 Implementation

Similar to the role of axioms in mathematics, primitive gates provide a set of ele-

mentary building blocks from which everything else can be built. Operationally,

primitive gates have an ‘‘off-the-shelf’’ implementation that is supplied externally.

Thus, they can be used in the construction of other gates and chips without worrying

about their internal design. In the computer architecture that we are now beginning

sel[1] sel[0] a b c d

0 0 in 0 0 0

0 1 0 in 0 0

1 0 0 0 in 0

1 1 0 0 0 in

in
4-way
DMux

sel[0]sel[1]

Figure 1.11 4-way demultiplexor.

25 Boolean Logic

to build, we have chosen to base all the hardware on one primitive gate only: Nand.

We now turn to outlining the first stage of this bottom-up hardware construction

project, one gate at a time.

Our implementation guidelines are intentionally partial, since we want you to dis-

cover the actual gate architectures yourself. We reiterate that each gate can be imple-

mented in more than one way; the simpler the implementation, the better.

Not: The implementation of a unary Not gate from a binary Nand gate is simple.

Tip: Think positive.

And: Once again, the gate implementation is simple. Tip: Think negative.

Or/Xor: These functions can be defined in terms of some of the Boolean functions

implemented previously, using some simple Boolean manipulations. Thus, the re-

spective gates can be built using previously built gates.

Multiplexor/Demultiplexor: Likewise, these gates can be built using previously built

gates.

Multi-Bit Not/And/Or Gates: Since we already know how to implement the ele-

mentary versions of these gates, the implementation of their n-ary versions is simply

a matter of constructing arrays of n elementary gates, having each gate operate sep-

arately on its bit inputs. This implementation task is rather boring, but it will carry

its weight when these multi-bit gates are used in more complex chips, as described in

subsequent chapters.

Multi-Bit Multiplexor: The implementation of an n-ary multiplexor is simply a

matter of feeding the same selection bit to every one of n binary multiplexors. Again,

a boring task resulting in a very useful chip.

Multi-Way Gates: Implementation tip: Think forks.

1.4 Perspective

This chapter described the first steps taken in an applied digital design project. In the

next chapter we will build more complicated functionality using the gates built here.

26 Chapter 1

Although we have chosen to use Nand as our basic building block, other approaches

are possible. For example, one can build a complete computer platform using Nor

gates alone, or, alternatively, a combination of And, Or, and Not gates. These con-

structive approaches to logic design are theoretically equivalent, just as all theorems

in geometry can be founded on different sets of axioms as alternative points of de-

parture. The theory and practice of such constructions are covered in standard text-

books about digital design or logic design.

Throughout the chapter, we paid no attention to efficiency considerations such as

the number of elementary gates used in constructing a composite gate or the number

of wire crossovers implied by the design. Such considerations are critically important

in practice, and a great deal of computer science and electrical engineering expertise

focuses on optimizing them. Another issue we did not address at all is the physical

implementation of gates and chips using the laws of physics, for example, the role

of transistors embedded in silicon. There are of course several such implementation

options, each having its own characteristics (speed, power requirements, production

cost, etc.). Any nontrivial coverage of these issues requires some background in

electronics and physics.

1.5 Project

Objective Implement all the logic gates presented in the chapter. The only building

blocks that you can use are primitive Nand gates and the composite gates that you

will gradually build on top of them.

Resources The only tool that you need for this project is the hardware simulator

supplied with the book. All the chips should be implemented in the HDL language

specified in appendix A. For each one of the chips mentioned in the chapter, we

provide a skeletal .hdl program (text file) with a missing implementation part. In

addition, for each chip we provide a .tst script file that tells the hardware simulator

how to test it, along with the correct output file that this script should generate,

called .cmp or ‘‘compare file.’’ Your job is to complete the missing implementation

parts of the supplied .hdl programs.

Contract When loaded into the hardware simulator, your chip design (modified

.hdl program), tested on the supplied .tst file, should produce the outputs listed in

the supplied .cmp file. If that is not the case, the simulator will let you know.

27 Boolean Logic

Tips The Nand gate is considered primitive and thus there is no need to build it:

Whenever you use Nand in one of your HDL programs, the simulator will auto-

matically invoke its built-in tools/builtIn/Nand.hdl implementation. We rec-

ommend implementing the other gates in this project in the order in which they

appear in the chapter. However, since the builtIn directory features working ver-

sions of all the chips described in the book, you can always use these chips without

defining them first: The simulator will automatically use their built-in versions.

For example, consider the skeletal Mux.hdl program supplied in this project.

Suppose that for one reason or another you did not complete this program’s im-

plementation, but you still want to use Mux gates as internal parts in other chip

designs. This is not a problem, thanks to the following convention. If our simula-

tor fails to find a Mux.hdl file in the current directory, it automatically invokes a

built-in Mux implementation, pre-supplied with the simulator’s software. This built-

in implementation—a Java class stored in the builtIn directory—has the same in-

terface and functionality as those of the Mux gate described in the book. Thus, if you

want the simulator to ignore one or more of your chip implementations, simply move

the corresponding .hdl files out of the current directory.

Steps We recommend proceeding in the following order:

0. The hardware simulator needed for this project is available in the tools direc-

tory of the book’s software suite.

1. Read appendix A, sections A1–A6 only.

2. Go through the hardware simulator tutorial, parts I, II, and III only.

3. Build and simulate all the chips specified in the projects/01 directory.

28 Chapter 1

2 Boolean Arithmetic

Counting is the religion of this generation, its hope and salvation.

—Gertrude Stein (1874–1946)

In this chapter we build gate logic designs that represent numbers and perform

arithmetic operations on them. Our starting point is the set of logic gates built in

chapter 1, and our ending point is a fully functional Arithmetic Logical Unit. The

ALU is the centerpiece chip that executes all the arithmetic and logical operations

performed by the computer. Hence, building the ALU functionality is an important

step toward understanding how the Central Processing Unit (CPU) and the overall

computer work.

As usual, we approach this task gradually. The first section gives a brief Back-

ground on how binary codes and Boolean arithmetic can be used, respectively, to

represent and add signed numbers. The Specification section describes a succession of

adder chips, designed to add two bits, three bits, and pairs of n-bit binary numbers.

This sets the stage for the ALU specification, which is based on a sophisticated yet

simple logic design. The Implementation and Project sections provide tips and

guidelines on how to build the adder chips and the ALU on a personal computer,

using the hardware simulator supplied with the book.

Binary addition is a simple operation that runs deep. Remarkably, most of the

operations performed by digital computers can be reduced to elementary additions of

binary numbers. Therefore, constructive understanding of binary addition holds the

key to the implementation of numerous computer operations that depend on it, one

way or another.

weymour

Highlight

2.1 Background

Binary Numbers Unlike the decimal system, which is founded on base 10, the bi-

nary system is founded on base 2. When we are given a certain binary pattern, say

‘‘10011,’’ and we are told that this pattern is supposed to represent an integer num-

ber, the decimal value of this number is computed by convention as follows:

ð10011Þtwo ¼ 1 � 24 þ 0 � 23 þ 0 � 22 þ 1 � 21 þ 1 � 20 ¼ 19 ð1Þ
In general, let x ¼ xnxn�1 . . . x0 be a string of digits. The value of x in base b, denoted
ðxÞb, is defined as follows:

ðxnxn�1 . . . x0Þb ¼
Xn
i¼0

xi � bi ð2Þ

The reader can verify that in the case of ð10011Þtwo, rule (2) reduces to calculation (1).
The result of calculation (1) happens to be 19. Thus, when we press the keyboard

keys labeled ‘1’, ‘9’ and ENTER while running, say, a spreadsheet program, what ends

up in some register in the computer’s memory is the binary code 10011. More pre-

cisely, if the computer happens to be a 32-bit machine, what gets stored in the regis-

ter is the bit pattern 00000000000000000000000000010011.

Binary Addition A pair of binary numbers can be added digit by digit from right to

left, according to the same elementary school method used in decimal addition. First,

we add the two right-most digits, also called the least significant bits (LSB) of the two

binary numbers. Next, we add the resulting carry bit (which is either 0 or 1) to the

sum of the next pair of bits up the significance ladder. We continue the process until

the two most significant bits (MSB) are added. If the last bit-wise addition generates a

carry of 1, we can report overflow; otherwise, the addition completes successfully:

0 0 0 1 (carry) 1 1 1 1

1 0 0 1 x 1 0 1 1

þ 0 1 0 1 y þ 0 1 1 1
0 1 1 1 0 x þ y 1 0 0 1 0
no overflow overflow

We see that computer hardware for binary addition of two n-bit numbers can be built

from logic gates designed to calculate the sum of three bits (pair of bits plus carry bit).

The transfer of the resulting carry bit forward to the addition of the next significant

pair of bits can be easily accomplished by proper wiring of the 3-bit adder gates.

30 Chapter 2

Signed Binary Numbers A binary system with n digits can generate a set of 2n dif-

ferent bit patterns. If we have to represent signed numbers in binary code, a natural

solution is to split this space into two equal subsets. One subset of codes is assigned

to represent positive numbers, and the other negative numbers. Ideally, the coding

scheme should be chosen in such a way that the introduction of signed numbers

would complicate the hardware implementation as little as possible.

This challenge has led to the development of several coding schemes for repre-

senting signed numbers in binary code. The method used today by almost all com-

puters is called the 2’s complement method, also known as radix complement. In a

binary system with n digits, the 2’s complement of the number x is defined as follows:

x ¼ 2
n � x if x 0 0

0 otherwise

�

For example, in a 5-bit binary system, the 2’s complement representation of �2
or ‘‘minusð00010Þtwo’’ is 25 � ð00010Þtwo ¼ ð32Þten � ð2Þten ¼ ð30Þten ¼ ð11110Þtwo. To
check the calculation, the reader can verify that ð00010Þtwo þ ð11110Þtwo ¼ ð00000Þtwo.
Note that in the latter computation, the sum is actually ð100000Þtwo, but since we are
dealing with a 5-bit binary system, the left-most sixth bit is simply ignored. As a rule,

when the 2’s complement method is applied to n-bit numbers, x þ ð�xÞ always sums
up to 2n (i.e., 1 followed by n 0’s)—a property that gives the method its name. Figure

2.1 illustrates a 4-bit binary system with the 2’s complement method.

An inspection of figure 2.1 suggests that an n-bit binary system with 2’s comple-

ment representation has the following properties:

Positive

numbers

Negative

numbers

0 0000

1 0001 1111 �1
2 0010 1110 �2
3 0011 1101 �3
4 0100 1100 �4
5 0101 1011 �5
6 0110 1010 �6
7 0111 1001 �7

1000 �8
Figure 2.1 2’s complement representation of signed numbers in a 4-bit binary system.

31 Boolean Arithmetic

m The system can code a total of 2n signed numbers, of which the maximal and

minimal numbers are 2n�1 � 1 and �2n�1, respectively.
m The codes of all positive numbers begin with a 0.

m The codes of all negative numbers begin with a 1.

m To obtain the code of �x from the code of x, leave all the trailing (least signifi-
cant) 0’s and the first least significant 1 intact, then flip all the remaining bits (convert

0’s to 1’s and vice versa). An equivalent shortcut, which is easier to implement in

hardware, is to flip all the bits of x and add 1 to the result.

A particularly attractive feature of this representation is that addition of any two

signed numbers in 2’s complement is exactly the same as addition of positive num-

bers. Consider, for example, the addition operation ð�2Þ þ ð�3Þ. Using 2’s comple-
ment (in a 4-bit representation), we have to add, in binary, ð1110Þtwo þ ð1101Þtwo.
Without paying any attention to which numbers (positive or negative) these codes

represent, bit-wise addition will yield 1011 (after throwing away the overflow bit). As

figure 2.1 shows, this indeed is the 2’s complement representation of �5.
In short, we see that the 2’s complement method facilitates the addition of any

two signed numbers without requiring special hardware beyond that needed for sim-

ple bit-wise addition. What about subtraction? Recall that in the 2’s complement

method, the arithmetic negation of a signed number x, that is, computing �x, is
achieved by negating all the bits of x and adding 1 to the result. Thus subtraction can

be easily handled by x � y ¼ x þ ð�yÞ. Once again, hardware complexity is kept to
a minimum.

The material implications of these theoretical results are significant. Basically, they

imply that a single chip, called Arithmetic Logical Unit, can be used to encapsulate

all the basic arithmetic and logical operators performed in hardware. We now turn to

specify one such ALU, beginning with the specification of an adder chip.

2.2 Specification

2.2.1 Adders

We present a hierarchy of three adders, leading to a multi-bit adder chip:

m Half-adder: designed to add two bits

m Full-adder: designed to add three bits

m Adder: designed to add two n-bit numbers

32 Chapter 2

We also present a special-purpose adder, called incrementer, designed to add 1 to a

given number.

Half-Adder The first step on our way to adding binary numbers is to be able to add

two bits. Let us call the least significant bit of the addition sum, and the most signif-

icant bit carry. Figure 2.2 presents a chip, called half-adder, designed to carry out

this operation.

Full-Adder Now that we know how to add two bits, figure 2.3 presents a full-adder

chip, designed to add three bits. Like the half-adder case, the full-adder chip pro-

duces two outputs: the least significant bit of the addition, and the carry bit.

Adder Memory and register chips represent integer numbers by n-bit patterns,

n being 16, 32, 64, and so forth—depending on the computer platform. The chip

whose job is to add such numbers is called a multi-bit adder, or simply adder. Figure

2.4 presents a 16-bit adder, noting that the same logic and specifications scale up as is

to any n-bit adder.

Incrementer It is convenient to have a special-purpose chip dedicated to adding the

constant 1 to a given number. Here is the specification of a 16-bit incrementer:

Inputs Outputs

a b carry sum

0 0 0 0 Half
Adder

a sum

b carry0 1 0 1
1 0 0 1

1 1 1 0

Chip name: HalfAdder

Inputs: a, b

Outputs: sum, carry

Function: sum = LSB of a + b

carry = MSB of a + b

Figure 2.2 Half-adder, designed to add 2 bits.

33 Boolean Arithmetic

a b c carry sum

0 0 0 0 0

Full
Adder

a
sum

b
carry

c

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Chip name: FullAdder

Inputs: a, b, c

Outputs: sum, carry

Function: sum = LSB of a + b + c

carry = MSB of a + b + c

Figure 2.3 Full-adder, designed to add 3 bits.

... 1 0 1 1 a

... 0 0 1 0 b
+

out
a

16

16-bit
Adder

b
16

16

... 1 1 0 1 out

Chip name: Add16

Inputs: a[16], b[16]

Outputs: out[16]

Function: out = a + b

Comment: Integer 2's complement addition.

Overflow is neither detected nor handled.

Figure 2.4 16-bit adder. Addition of two n-bit binary numbers for any n is ‘‘more of the
same.’’

34 Chapter 2

Chip name: Inc16

Inputs: in[16]

Outputs: out[16]

Function: out=in+1

Comment: Integer 2’s complement addition.

Overflow is neither detected nor handled.

2.2.2 The Arithmetic Logic Unit (ALU)

The specifications of the adder chips presented so far were generic, meaning that they

hold for any computer. In contrast, this section describes an ALU that will later be-

come the centerpiece of a specific computer platform called Hack. At the same time,

the principles underlying the design of our ALU are rather general. Further, our

ALU architecture achieves a great deal of functionality using a minimal set of inter-

nal parts. In that respect, it provides a good example of an efficient and elegant logic

design.

The Hack ALU computes a fixed set of functions out ¼ fiðx; yÞ where x and y are
the chip’s two 16-bit inputs, out is the chip’s 16-bit output, and fi is an arithmetic

or logical function selected from a fixed repertoire of eighteen possible functions. We

instruct the ALU which function to compute by setting six input bits, called control

bits, to selected binary values. The exact input-output specification is given in figure

2.5, using pseudo-code.

Note that each one of the six control bits instructs the ALU to carry out a certain

elementary operation. Taken together, the combined effects of these operations cause

the ALU to compute a variety of useful functions. Since the overall operation is

driven by six control bits, the ALU can potentially compute 26 ¼ 64 different func-
tions. Eighteen of these functions are documented in figure 2.6.

We see that programming our ALU to compute a certain function f ðx; yÞ is done
by setting the six control bits to the code of the desired function. From this point on,

the internal ALU logic specified in figure 2.5 should cause the ALU to output the

value f ðx; yÞ specified in figure 2.6. Of course, this does not happen miraculously, it’s
the result of careful design.

For example, let us consider the twelfth row of figure 2.6, where the ALU is

instructed to compute the function x-1. The zx and nx bits are 0, so the x input

is neither zeroed nor negated. The zy and ny bits are 1, so the y input is first

zeroed, and then negated bit-wise. Bit-wise negation of zero, ð000 . . . 00Þtwo, gives
ð111 . . . 11Þtwo, the 2’s complement code of �1. Thus the ALU inputs end up being x

35 Boolean Arithmetic

weymour

Highlight

zx no

zr

nx zy ny f

ALU

ng

16
bits

16
bits

x

y 16bits

out

f(x,y)

Chip name: ALU

Inputs: x[16], y[16], // Two 16-bit data inputs

zx, // Zero the x input

nx, // Negate the x input

zy, // Zero the y input

ny, // Negate the y input

f, // Function code: 1 for Add, 0 for And

no // Negate the out output

Outputs: out[16], // 16-bit output

zr, // True iff out=0

ng // True iff out<0

Function: if zx then x = 0 // 16-bit zero constant

if nx then x = !x // Bit-wise negation

if zy then y = 0 // 16-bit zero constant

if ny then y = !y // Bit-wise negation

if f then out = x + y // Integer 2's complement addition

else out = x & y // Bit-wise And

if no then out = !out // Bit-wise negation

if out=0 then zr = 1 else zr = 0 // 16-bit eq. comparison

if out<0 then ng = 1 else ng = 0 // 16-bit neg. comparison

Comment: Overflow is neither detected nor handled.

Figure 2.5 The Arithmetic Logic Unit.

36 Chapter 2

and �1. Since the f-bit is 1, the selected operation is arithmetic addition, causing the
ALU to calculate x+(-1). Finally, since the no bit is 0, the output is not negated

but rather left as is. To conclude, the ALU ends up computing x-1, which was

our goal.

Does the ALU logic described in figure 2.6 compute every one of the other seven-

teen functions listed in the figure’s right column? To verify that this is indeed the

case, the reader can pick up some other rows in the table and prove their respec-

tive ALU operation. We note that some of these computations, beginning with the

These bits instruct

how to preset

the x input

These bits instruct

how to preset

the y input

This bit selects

between

+ / And

This bit inst.

how to

postset out

Resulting

ALU

output

zx nx zy ny f no out=

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f then
out=x+y
else

out=x&y

if no
then

out=!out f(x,y)=

1 0 1 0 1 0 0
1 1 1 1 1 1 1
1 1 1 0 1 0 -1
0 0 1 1 0 0 x
1 1 0 0 0 0 y
0 0 1 1 0 1 !x
1 1 0 0 0 1 !y
0 0 1 1 1 1 -x
1 1 0 0 1 1 -y
0 1 1 1 1 1 x+1
1 1 0 1 1 1 y+1
0 0 1 1 1 0 x-1
1 1 0 0 1 0 y-1
0 0 0 0 1 0 x+y
0 1 0 0 1 1 x-y
0 0 0 1 1 1 y-x
0 0 0 0 0 0 x&y
0 1 0 1 0 1 x|y

Figure 2.6 The ALU truth table. Taken together, the binary operations coded by the first six
columns effect the function listed in the right column (we use the symbols !, &, and | to rep-
resent the operators Not, And, and Or, respectively, performed bit-wise). The complete ALU
truth table consists of sixty-four rows, of which only the eighteen presented here are of interest.

37 Boolean Arithmetic

function f ðx; yÞ ¼ 1, are not trivial. We also note that there are some other useful
functions computed by the ALU but not listed in the figure.

It may be instructive to describe the thought process that led to the design of this

particular ALU. First, we made a list of all the primitive operations that we wanted

our computer to be able to perform (right column in figure 2.6). Next, we used

backward reasoning to figure out how x, y, and out can be manipulated in binary

fashion in order to carry out the desired operations. These processing requirements,

along with our objective to keep the ALU logic as simple as possible, have led to the

design decision to use six control bits, each associated with a straightforward binary

operation. The resulting ALU is simple and elegant. And in the hardware business,

simplicity and elegance imply inexpensive and powerful computer systems.

2.3 Implementation

Our implementation guidelines are intentionally partial, since we want you to dis-

cover the actual chip architectures yourself. As usual, each chip can be implemented

in more than one way; the simpler the implementation, the better.

Half-Adder An inspection of figure 2.2 reveals that the functions sumða; bÞ and
carryða; bÞ happen to be identical to the standard Xorða; bÞ and Andða; bÞ Boolean
functions. Thus, the implementation of this adder is straightforward, using pre-

viously built gates.

Full-Adder A full adder chip can be implemented from two half adder chips and

one additional simple gate. A direct implementation is also possible, without using

half-adder chips.

Adder The addition of two signed numbers represented by the 2’s complement

method as two n-bit buses can be done bit-wise, from right to left, in n steps. In step

0, the least significant pair of bits is added, and the carry bit is fed into the addition

of the next significant pair of bits. The process continues until in step n � 1 the most
significant pair of bits is added. Note that each step involves the addition of three

bits. Hence, an n-bit adder can be implemented by creating an array of n full-adder

chips and propagating the carry bits up the significance ladder.

Incrementer An n-bit incrementer can be implemented trivially from an n-bit adder.

38 Chapter 2

ALU Note that our ALU was carefully planned to effect all the desired ALU

operations logically, using simple Boolean operations. Therefore, the physical imple-

mentation of the ALU is reduced to implementing these simple Boolean operations,

following their pseudo-code specifications. Your first step will likely be to create a

logic circuit that manipulates a 16-bit input according to the nx and zx control bits

(i.e., the circuit should conditionally zero and negate the 16-bit input). This logic can

be used to manipulate the x and y inputs, as well as the out output. Chips for bit-

wise And-ing and addition have already been built in this and in the previous chap-

ter. Thus, what remains is to build logic that chooses between them according to the

f control bit. Finally, you will need to build logic that integrates all the other chips

into the overall ALU. (When we say ‘‘build logic,’’ we mean ‘‘write HDL code’’).

2.4 Perspective

The construction of the multi-bit adder presented in this chapter was standard,

although no attention was paid to efficiency. In fact, our suggested adder implemen-

tation is rather inefficient, due to the long delays incurred while the carry bit prop-

agates from the least significant bit pair to the most significant bit pair. This problem

can be alleviated using logic circuits that effect so-called carry look-ahead techniques.

Since addition is one of the most prevalent operations in any given hardware plat-

form, any such low-level improvement can result in dramatic and global perfor-

mance gains throughout the computer.

In any given computer, the overall functionality of the hardware/software plat-

form is delivered jointly by the ALU and the operating system that runs on top of it.

Thus, when designing a new computer system, the question of how much function-

ality the ALU should deliver is essentially a cost/performance issue. The general rule

is that hardware implementations of arithmetic and logical operations are usually

more costly, but achieve better performance. The design trade-off that we have

chosen in this book is to specify an ALU hardware with a limited functionality and

then implement as many operations as possible in software. For example, our ALU

features neither multiplication nor division nor floating point arithmetic. We will

implement some of these operations (as well as more mathematical functions) at the

operating system level, described in chapter 12.

Detailed treatments of Boolean arithmetic and ALU design can be found in most

computer architecture textbooks.

39 Boolean Arithmetic

2.5 Project

Objective Implement all the chips presented in this chapter. The only building

blocks that you can use are the chips that you will gradually build and the chips

described in the previous chapter.

Tip When your HDL programs invoke chips that you may have built in the previ-

ous project, we recommend that you use the built-in versions of these chips instead.

This will ensure correctness and speed up the operation of the hardware simulator.

There is a simple way to accomplish this convention: Make sure that your project

directory includes only the .hdl files that belong to the present project.

The remaining instructions for this project are identical to those of the project

from the previous chapter, except that the last step should be replaced with ‘‘Build

and simulate all the chips specified in the projects/02 directory.’’

40 Chapter 2

3 Sequential Logic

It’s a poor sort of memory that only works backward.

—Lewis Carroll (1832–1898)

All the Boolean and arithmetic chips that we built in chapters 1 and 2 were combi-

national. Combinational chips compute functions that depend solely on combinations

of their input values. These relatively simple chips provide many important process-

ing functions (like the ALU), but they cannot maintain state. Since computers must

be able to not only compute values but also store and recall values, they must be

equipped with memory elements that can preserve data over time. These memory

elements are built from sequential chips.

The implementation of memory elements is an intricate art involving synchroni-

zation, clocking, and feedback loops. Conveniently, most of this complexity can be

embedded in the operating logic of very low-level sequential gates called flip-flops.

Using these flip-flops as elementary building blocks, we will specify and build all

the memory devices employed by typical modern computers, from binary cells to

registers to memory banks and counters. This effort will complete the construction of

the chip set needed to build an entire computer—a challenge that we take up in the

chapter 5.

Following a brief overview of clocks and flip-flops, the Background section intro-

duces all the memory chips that we will build on top of them. The next two sec-

tions describe the chips Specification and Implementation, respectively. As usual, all

the chips mentioned in the chapter can be built and tested using the hardware simu-

lator supplied with the book, following the instructions given in the final Project

section.

3.1 Background

The act of ‘‘remembering something’’ is inherently time-dependent: You remember

now what has been committed to memory before. Thus, in order to build chips that

‘‘remember’’ information, we must first develop some standard means for represent-

ing the progression of time.

The Clock In most computers, the passage of time is represented by a master clock

that delivers a continuous train of alternating signals. The exact hardware imple-

mentation is usually based on an oscillator that alternates continuously between two

phases labeled 0–1, low-high, tick-tock, etc. The elapsed time between the beginning

of a ‘‘tick’’ and the end of the subsequent ‘‘tock’’ is called cycle, and each clock cycle

is taken to model one discrete time unit. The current clock phase (tick or tock) is

represented by a binary signal. Using the hardware’s circuitry, this signal is simulta-

neously broadcast to every sequential chip throughout the computer platform.

Flip-Flops The most elementary sequential element in the computer is a device

called a flip-flop, of which there are several variants. In this book we use a variant

called a data flip-flop, or DFF, whose interface consists of a single-bit data input

and a single-bit data output. In addition, the DFF has a clock input that con-

tinuously changes according to the master clock’s signal. Taken together, the data

and the clock inputs enable the DFF to implement the time-based behavior outðtÞ ¼
inðt � 1Þ, where in and out are the gate’s input and output values and t is the current
clock cycle. In other words, the DFF simply outputs the input value from the previ-

ous time unit.

As we now show, this elementary behavior can form the basis of all the hardware

devices that computers use to maintain state, from binary cells to registers to arbi-

trarily large random access memory (RAM) units.

Registers A register is a storage device that can ‘‘store,’’ or ‘‘remember,’’ a value

over time, implementing the classical storage behavior outðtÞ ¼ outðt � 1Þ. A DFF,
on the other hand, can only output its previous input, namely, outðtÞ ¼ inðt � 1Þ.
This suggests that a register can be implemented from a DFF by simply feeding the

output of the latter back into its input, creating the device shown in the middle of

figure 3.1. Presumably, the output of this device at any time t will echo its output at

time t � 1, yielding the classical function expected from a storage unit.

42 Chapter 3

Well, not so. The device shown in the middle of figure 3.1 is invalid. First, it is not

clear how we’ll ever be able to load this device with a new data value, since there are

no means to tell the DFF when to draw its input from the in wire and when from the

out wire. More generally, the rules of chip design dictate that internal pins must

have a fan-in of 1, meaning that they can be fed from a single source only.

The good thing about this thought experiment is that it leads us to the correct and

elegant solution shown in the right side of figure 3.1. In particular, a natural way to

resolve our input ambiguity is to introduce a multiplexor into the design. Further, the

‘‘select bit’’ of this multiplexor can become the ‘‘load bit’’ of the overall register chip:

If we want the register to start storing a new value, we can put this value in the in

input and set the load bit to 1; if we want the register to keep storing its internal

value until further notice, we can set the load bit to 0.

Once we have developed the basic mechanism for remembering a single bit over

time, we can easily construct arbitrarily wide registers. This can be achieved by

forming an array of as many single-bit registers as needed, creating a register that

holds multi-bit values (figure 3.2). The basic design parameter of such a register is its

width—the number of bits that it holds—e.g., 16, 32, or 64. The multi-bit contents of

such registers are typically referred to as words.

Memories Once we have the basic ability to represent words, we can proceed to

build memory banks of arbitrary length. As figure 3.3 shows, this can be done by

stacking together many registers to form a Random Access Memory RAM unit. The

term random access memory derives from the requirement that read/write operations

M
ux

load

DFF DFF DFF

out(t) = in(t–1) if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

1-bit register (Bit)Flip-flop

out(t) = out(t–1) ?
out(t) = in(t–1) ?

Invalid design

in out in out
in out

Figure 3.1 From a DFF to a single-bit register. The small triangle represents the clock input.
This icon is used to state that the marked chip, as well as the overall chip that encapsulates it,
is time-dependent.

43 Sequential Logic

Bit out

load

in

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

. . .Bit

w-bit register

out

load

Binary cell (Bit)

in
w w

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

Bit Bit

Figure 3.2 From single-bit to multi-bit registers. A multi-bit register of width w can be con-
structed from an array of w 1-bit chips. The operating functions of both chips is exactly the
same, except that the ‘‘¼’’ assignments are single-bit and multi-bit, respectively.

load

(0 to n–1)
direct access logic

Register 0

Register 1

Register n–1

RAMn

.

.

.
Register 2

in out

(word) (word)

address

Figure 3.3 RAM chip (conceptual). The width and length of the RAM can vary.

44 Chapter 3

on a RAM should be able to access randomly chosen words, with no restrictions on

the order in which they are accessed. That is to say, we require that any word in the

memory—irrespective of its physical location—be accessed directly, in equal speed.

This requirement can be satisfied as follows. First, we assign each word in the n-

register RAM a unique address (an integer between 0 to n � 1), according to which
it will be accessed. Second, in addition to building an array of n registers, we build a

gate logic design that, given an address j, is capable of selecting the individual reg-

ister whose address is j. Note however that the notion of an ‘‘address’’ is not an ex-

plicit part of the RAM design, since the registers are not ‘‘marked’’ with addresses in

any physical sense. Rather, as we will see later, the chip is equipped with direct access

logic that implements the notion of addressing using logical means.

In sum, a classical RAM device accepts three inputs: a data input, an address in-

put, and a load bit. The address specifies which RAM register should be accessed in

the current time unit. In the case of a read operation (load=0), the RAM’s output

immediately emits the value of the selected register. In the case of a write operation

(load=1), the selected memory register commits to the input value in the next time

unit, at which point the RAM’s output will start emitting it.

The basic design parameters of a RAM device are its data width—the width of

each one of its words, and its size—the number of words in the RAM. Modern

computers typically employ 32- or 64-bit-wide RAMs whose sizes are up to hundreds

of millions.

Counters A counter is a sequential chip whose state is an integer number that

increments every time unit, effecting the function outðtÞ ¼ outðt � 1Þ þ c, where c is
typically 1. Counters play an important role in digital architectures. For example, a

typical CPU includes a program counter whose output is interpreted as the address of

the instruction that should be executed next in the current program.

A counter chip can be implemented by combining the input/output logic of a

standard register with the combinatorial logic for adding a constant. Typically, the

counter will have to be equipped with some additional functionality, such as possi-

bilities for resetting the count to zero, loading a new counting base, or decrementing

instead of incrementing.

Time Matters All the chips described so far in this chapter are sequential. Simply

stated, a sequential chip is a chip that embeds one or more DFF gates, either directly

or indirectly. Functionally speaking, the DFF gates endow sequential chips with

the ability to either maintain state (as in memory units) or operate on state (as in

45 Sequential Logic

weymour

Highlight

counters). Technically speaking, this is done by forming feedback loops inside the

sequential chip (see figure 3.4). In combinational chips, where time is neither mod-

eled nor recognized, the introduction of feedback loops is problematic: The output

would depend on the input, which itself would depend on the output, and thus the

output would depend on itself. On the other hand, there is no difficulty in feeding the

output of a sequential chip back into itself, since the DFFs introduce an inherent

time delay: The output at time t does not depend on itself, but rather on the output at

time t � 1. This property guards against the uncontrolled ‘‘data races’’ that would
occur in combinational chips with feedback loops.

Recall that the outputs of combinational chips change when their inputs change,

irrespective of time. In contrast, the inclusion of the DFFs in the sequential archi-

tecture ensures that their outputs change only at the point of transition from one

clock cycle to the next, and not within the cycle itself. In fact, we allow sequential

chips to be in unstable states during clock cycles, requiring only that at the beginning

of the next cycle they output correct values.

This ‘‘discretization’’ of the sequential chips’ outputs has an important side effect:

It can be used to synchronize the overall computer architecture. To illustrate, sup-

pose we instruct the arithmetic logic unit (ALU) to compute x þ y where x is the
value of a nearby register and y is the value of a remote RAM register. Because of

various physical constraints (distance, resistance, interference, random noise, etc.) the

electric signals representing x and y will likely arrive at the ALU at different times.

However, being a combinational chip, the ALU is insensitive to the concept of time—

it continuously adds up whichever data values happen to lodge in its inputs. Thus, it

will take some time before the ALU’s output stabilizes to the correct x þ y result.
Until then, the ALU will generate garbage.

Combinational chip

comb.
logicin out

Sequential chip

comb.
logic

in outDFF
gate(s)

comb.
logic

(optional) (optional)time delay

out = some function of (in) out(t) = some function of (in(t–1), out(t–1))

Figure 3.4 Combinational versus sequential logic (in and out stand for one or more input
and output variables). Sequential chips always consist of a layer of DFFs sandwiched between
optional combinational logic layers.

46 Chapter 3

How can we overcome this difficulty? Well, since the output of the ALU is always

routed to some sort of a sequential chip (a register, a RAM location, etc.), we don’t

really care. All we have to do is ensure, when we build the computer’s clock, that

the length of the clock cycle will be slightly longer that the time it takes a bit to travel

the longest distance from one chip in the architecture to another. This way, we are

guaranteed that by the time the sequential chip updates its state (at the beginning of

the next clock cycle), the inputs that it receives from the ALU will be valid. This, in a

nutshell, is the trick that synchronizes a set of stand-alone hardware components into

a well-coordinated system, as we shall see in chapter 5.

3.2 Specification

This section specifies a hierarchy of sequential chips:

m Data-flip-flops (DFFs)

m Registers (based on DFFs)

m Memory banks (based on registers)

m Counter chips (also based on registers)

3.2.1 Data-Flip-Flop

The most elementary sequential device that we present—the basic component from

which all memory elements will be designed—is the data flip-flop gate. A DFF gate

has a single-bit input and a single-bit output, as follows:

DFF outin

Chip name: DFF

Inputs: in

Outputs: out

Function: out(t)=in(t-1)

Comment: This clocked gate has a built-in

implementation and thus there is

no need to implement it.

Like Nand gates, DFF gates enter our computer archtecture at a very low

level. Specifically, all the sequential chips in the computer (registers, memory, and

47 Sequential Logic

counters) are based on numerous DFF gates. All these DFFs are connected to the

same master clock, forming a huge distributed ‘‘chorus line.’’ At the beginning of

each clock cycle, the outputs of all the DFFs in the computer commit to their

inputs during the previous time unit. At all other times, the DFFs are ‘‘latched,’’

meaning that changes in their inputs have no immediate effect on their outputs.

This conduction operation effects any one of the millions of DFF gates that make

up the system, about a billion times per second (depending on the computer’s clock

frequency).

Hardware implementations achieve this time dependency by simultaneously feed-

ing the master clock signal to all the DFF gates in the platform. Hardware simu-

lators emulate the same effect in software. As far as the computer architect is

concerned, the end result is the same: The inclusion of a DFF gate in the design of

any chip ensures that the overall chip, as well as all the chips up the hardware hier-

archy that depend on it, will be inherently time-dependent. These chips are called

sequential, by definition.

The physical implementation of a DFF is an intricate task, and is based on

connecting several elementary logic gates using feedback loops (one classic design

is based on Nand gates alone). In this book we have chosen to abstract away this

complexity, treating DFFs as primitive building blocks. Thus, our hardware simu-

lator provides a built-in DFF implementation that can be readily used by other

chips.

3.2.2 Registers

A single-bit register, which we call Bit, or binary cell, is designed to store a single bit

of information (0 or 1). The chip interface consists of an input pin that carries a data

bit, a load pin that enables the cell for writes, and an output pin that emits the cur-

rent state of the cell. The interface diagram and API of a binary cell are as follows:

Bit outin

load
Chip name: Bit

Inputs: in, load

Outputs: out

Function: If load(t-1) then out(t)=in(t-1)

else out(t)=out(t-1)

The API of the Register chip is essentially the same, except that the input and output

pins are designed to handle multi-bit values:

48 Chapter 3

weymour

Highlight

in Register

load

w bits
out

w bits

Chip name: Register

Inputs: in[16], load

Outputs: out[16]

Function: If load(t-1) then out(t)=in(t-1)

else out(t)=out(t-1)

Comment: "=" is a 16-bit operation.

The Bit and Register chips have exactly the same read/write behavior:

Read: To read the contents of a register, we simply probe its output.

Write: To write a new data value d into a register, we put d in the in input and

assert (set to 1) the load input. In the next clock cycle, the register commits to the

new data value, and its output starts emitting d.

3.2.3 Memory

A direct-access memory unit, also called RAM, is an array of n w-bit registers,

equipped with direct access circuitry. The number of registers (n) and the width of

each register (w) are called the memory’s size and width, respectively. We will now set

out to build a hierarchy of such memory devices, all 16 bits wide, but with varying sizes:

RAM8, RAM64, RAM512, RAM4K, and RAM16K units. All these memory chips

have precisely the same API, and thus we describe them in one parametric diagram:

address

load

out

in

16 bits

log 2n
bits

RAMn
16 bits

Chip name: RAMn // n and k are listed below

Inputs: in[16], address[k], load

Outputs: out[16]

Function: out(t)=RAM[address(t)](t)

If load(t-1) then

RAM[address(t-1)](t)=in(t-1)

Comment: "=" is a 16-bit operation.

The specific RAM chips needed for the Hack platform are:

Chip name n k

RAM8 8 3

RAM64 64 6

RAM512 512 9

RAM4K 4096 12

RAM16K 16384 14

49 Sequential Logic

weymour

Highlight

Read: To read the contents of register number m, we put m in the address input.

The RAM’s direct-access logic will select register number m, which will then emit its

output value to the RAM’s output pin. This is a combinational operation, indepen-

dent of the clock.

Write: To write a new data value d into register number m, we put m in the

address input, d in the in input, and assert the load input bit. This causes the

RAM’s direct-access logic to select register number m, and the load bit to enable it.

In the next clock cycle, the selected register will commit to the new value (d), and the

RAM’s output will start emitting it.

3.2.4 Counter

Although a counter is a stand-alone abstraction in its own right, it is convenient

to motivate its specification by saying a few words about the context in which it is

normally used. For example, consider a counter chip designed to contain the address

of the instruction that the computer should fetch and execute next. In most cases,

the counter has to simply increment itself by 1 in each clock cycle, thus causing the

computer to fetch the next instruction in the program. In other cases, for example, in

‘‘jump to execute instruction number n,’’ we want to be able to set the counter to n,

then have it continue its default counting behavior with n þ 1, n þ 2, and so forth.
Finally, the program’s execution can be restarted anytime by resetting the counter to

0, assuming that that’s the address of the program’s first instruction. In short, we

need a loadable and resettable counter.

With that in mind, the interface of our Counter chip is similar to that of a register,

except that it has two additional control bits labeled reset and inc. When inc=1,

the counter increments its state in every clock cycle, emitting the value out(t)=

out(t-1)+1. If we want to reset the counter to 0, we assert the reset bit; if we want

to initialize it to some other counting base d, we put d in the in input and assert the

load bit. The details are given in the counter API, and an example of its operation is

depicted in figure 3.5.

3.3 Implementation

Flip-Flop DFF gates can be implemented from lower-level logic gates like those

built in chapter 1. However, in this book we treat DFFs as primitive gates, and thus

they can be used in hardware construction projects without worrying about their

internal implementation.

50 Chapter 3

PC (counter)
w bits

outin
w bits

inc load reset

Chip name: PC // 16-bit counter

Inputs: in[16], inc, load, reset

Outputs: out[16]

Function: If reset(t-1) then out(t)=0

else if load(t-1) then out(t)=in(t-1)

else if inc(t-1) then out(t)=out(t-1)+1

else out(t)=out(t-1)

Comment: "=" is 16-bit assignment.

"+" is 16-bit arithmetic addition.

47 47 0 0 1 2 3 4 527 528 529 530 530

527 527 527 527 527 527 527 527 527 527 527 527 527

reset

load

22 23 24 25 26 27 28 29 30 31 32 33 34

inc

clock

in

cycle

out

We assume that we start tracking the counter in time unit 22, when its input
and output happen to be 527 and 47, respectively. We also assume that the
counter’s control bits (reset, load, inc) start at 0 ---- all arbitrary assumptions.

Figure 3.5 Counter simulation. At time 23 a reset signal is issued, causing the counter to emit
0 in the following time unit. The 0 persists until an inc signal is issued at time 25, causing the
counter to start incrementing, one time unit later. The counting continues until, at time 29, the
load bit is asserted. Since the counter’s input holds the number 527, the counter is reset to that
value in the next time unit. Since inc is still asserted, the counter continues incrementing until
time 33, when inc is de-asserted.

51 Sequential Logic

1-Bit Register (Bit) The implementation of this chip was given in figure 3.1.

Register The construction of a w-bit Register chip from 1-bit registers is straight-

forward. All we have to do is construct an array of w Bit gates and feed the register’s

load input to every one of them.

8-Register Memory (RAM8) An inspection of figure 3.3 may be useful here. To

implement a RAM8 chip, we line up an array of eight registers. Next, we have to

build combinational logic that, given a certain address value, takes the RAM8’s

in input and loads it into the selected register. In a similar fashion, we have to build

combinational logic that, given a certain address value, selects the right register and

pipes its out value to the RAM8’s out output. Tip: This combinational logic was

already implemented in chapter 1.

n-Register Memory A memory bank of arbitrary length (a power of 2) can be built

recursively from smaller memory units, all the way down to the single register level.

This view is depicted in figure 3.6. Focusing on the right-hand side of the figure, we

note that a 64-register RAM can be built from an array of eight 8-register RAM

chips. To select a particular register from the RAM64 memory, we use a 6-bit

address, say xxxyyy. The MSB xxx bits select one of the RAM8 chips, and the

LSB yyy bits select one of the registers within the selected RAM8. The RAM64

chip should be equipped with logic circuits that effect this hierarchical addressing

scheme.

Counter A w-bit counter consists of two main elements: a regular w-bit register, and

combinational logic. The combinational logic is designed to (a) compute the count-

ing function, and (b) put the counter in the right operating mode, as mandated by

the values of its three control bits. Tip: Most of this logic was already built in chap-

ter 2.

3.4 Perspective

The cornerstone of all the memory systems described in this chapter is the flip-flop—

a gate that we treated here as an atomic, or primitive, building block. The usual

approach in hardware textbooks is to construct flip-flops from elementary combina-

torial gates (e.g., Nand gates) using appropriate feedback loops. The standard con-

52 Chapter 3

struction begins by building a simple (non-clocked) flip-flop that is bi-stable, namely,

that can be set to be in one of two states. Then a clocked flip-flop is obtained by

cascading two such simple flip-flops, the first being set when the clock ticks and the

second when the clock tocks. This ‘‘master-slave’’ design endows the overall flip-flop

with the desired clocked synchronization functionality.

These constructions are rather elaborate, requiring an understating of delicate

issues like the effect of feedback loops on combinatorial circuits, as well as the im-

plementation of clock cycles using a two-phase binary clock signal. In this book we

have chosen to abstract away these low-level considerations by treating the flip-flop

as an atomic gate. Readers who wish to explore the internal structure of flip-flop

gates can find detailed descriptions in most logic design and computer architecture

textbooks.

In closing, we should mention that memory devices of modern computers are

not always constructed from standard flip-flops. Instead, modern memory chips

are usually very carefully optimized, exploiting the unique physical properties of the

underlying storage technology. Many such alternative technologies are available

Bit Bit Register

RAM8
Register

RAM 8

RAM 64

8

8

Register
..
.

Register

..

.

RAM8

. . .Bit . . .
Figure 3.6 Gradual construction of memory banks by recursive ascent. A w-bit register is
an array of w binary cells, an 8-register RAM is an array of eight w-bit registers, a 64-register
RAM is an array of eight RAM8 chips, and so on. Only three more similar construction steps
are necessary to build a 16K RAM chip.

53 Sequential Logic

today to computer designers; as usual, which technology to use is a cost-performance

issue.

Aside from these low-level considerations, all the other chip constructions in

this chapter—the registers and memory chips that were built on top of the flip-flop

gates—were standard.

3.5 Project

Objective Build all the chips described in the chapter. The only building blocks that

you can use are primitive DFF gates, chips that you will build on top of them, and

chips described in previous chapters.

Resources The only tool that you need for this project is the hardware simulator

supplied with the book. All the chips should be implemented in the HDL language

specified in appendix A. As usual, for each chip we supply a skeletal .hdl program

with a missing implementation part, a .tst script file that tells the hardware simu-

lator how to test it, and a .cmp compare file. Your job is to complete the missing

implementation parts of the supplied .hdl programs.

Contract When loaded into the hardware simulator, your chip design (modi-

fied .hdl program), tested on the supplied .tst file, should produce the out-

puts listed in the supplied .cmp file. If that is not the case, the simulator will let you

know.

Tip The Data Flip-Flop (DFF) gate is considered primitive and thus there is no

need to build it: When the simulator encounters a DFF gate in an HDL program, it

automatically invokes the built-in tools/builtIn/DFF.hdl implementation.

The Directory Structure of This Project When constructing RAM chips from

smaller ones, we recommend using built-in versions of the latter. Otherwise, the

simulator may run very slowly or even out of (real) memory space, since large RAM

chips contain tens of thousands of lower-level chips, and all these chips are kept in

memory (as software objects) by the simulator. For this reason, we have placed the

RAM512.hdl, RAM4K.hdl, and RAM16K.hdl programs in a separate directory. This

way, the recursive descent construction of the RAM4K and RAM16K chips stops

with the RAM512 chip, whereas the lower-level chips from which the latter chip

54 Chapter 3

is made are bound to be built-in (since the simulator does not find them in this

directory).

Steps We recommend proceeding in the following order:

0. The hardware simulator needed for this project is available in the tools direc-

tory of the book’s software suite.

1. Read appendix A, focusing on sections A.6 and A.7.

2. Go through the hardware simulator tutorial, focusing on parts IV and V.

3. Build and simulate all the chips specified in the projects/03 directory.

55 Sequential Logic

4 Machine Language

Make everything as simple as possible, but not simpler.

—Albert Einstein (1879–1955)

A computer can be described constructively, by laying out its hardware platform

and explaining how it is built from low-level chips. A computer can also be described

abstractly, by specifying and demonstrating its machine language capabilities. And

indeed, it is convenient to get acquainted with a new computer system by first seeing

some low-level programs written in its machine language. This helps us understand

not only how to program the computer to do useful things, but also why its hard-

ware was designed in a certain way. With that in mind, this chapter focuses on low-

level programming in machine language. This sets the stage for chapter 5, where we

complete the construction of a general-purpose computer designed to run machine

language programs. This computer will be constructed from the chip set built in

chapters 1–3.

A machine language is an agreed-upon formalism, designed to code low-level

programs as series of machine instructions. Using these instructions, the programmer

can command the processor to perform arithmetic and logic operations, fetch and

store values from and to the memory, move values from one register to another, test

Boolean conditions, and so on. As opposed to high-level languages, whose basic

design goals are generality and power of expression, the goal of machine language’s

design is direct execution in, and total control of, a given hardware platform. Of

course, generality, power, and elegance are still desired, but only to the extent that

they support the basic requirement of direct execution in hardware.

Machine language is the most profound interface in the overall computer

enterprise—the fine line where hardware and software meet. This is the point where

the abstract thoughts of the programmer, as manifested in symbolic instructions, are

turned into physical operations performed in silicon. Thus, machine language can

be construed as both a programming tool and an integral part of the hardware plat-

form. In fact, just as we say that the machine language is designed to exploit a given

hardware platform, we can say that the hardware platform is designed to fetch, in-

terpret, and execute instructions written in the given machine language.

The chapter begins with a general introduction to machine language program-

ming. Next, we give a detailed specification of the Hack machine language, covering

both its binary and its symbolic assembly versions. The project that ends the chapter

engages you in writing a couple of machine language programs. This project offers

a hands-on appreciation of low-level programming and prepares you for building the

computer itself in the next chapter.

Although most people will never write programs directly in machine language,

the study of low-level programming is a prerequisite to a complete understanding of

computer architectures. Also, it is rather fascinating to realize how the most sophis-

ticated software systems are, at bottom, long series of elementary instructions, each

specifying a very simple and primitive operation on the underlying hardware. As

usual, this understanding is best achieved constructively, by writing some low-level

code and running it directly on the hardware platform.

4.1 Background

This chapter is language-oriented. Therefore, we can abstract away most of the

details of the underlying hardware platform, deferring its description to the next

chapter. Indeed, to give a general description of machine languages, it is sufficient

to focus on three main abstractions only: a processor, a memory, and a set of

registers.

4.1.1 Machines

A machine language can be viewed as an agreed-upon formalism, designed to ma-

nipulate a memory using a processor and a set of registers.

Memory The term memory refers loosely to the collection of hardware devices that

store data and instructions in a computer. From the programmer’s standpoint, all

memories have the same structure: A continuous array of cells of some fixed width,

also called words or locations, each having a unique address. Hence, an individual

word (representing either a data item or an instruction) is specified by supplying its

58 Chapter 4

address. In what follows we will refer to such individual words using the equivalent

notation Memory[address], RAM[address], or M[address] for brevity.

Processor The processor, normally called Central Processing Unit or CPU, is a

device capable of performing a fixed set of elementary operations. These typically

include arithmetic and logic operations, memory access operations, and control (also

called branching) operations. The operands of these operations are binary values

that come from registers and selected memory locations. Likewise, the results of the

operations (the processor’s output) can be stored either in registers or in selected

memory locations.

Registers Memory access is a relatively slow operation, requiring long instruc-

tion formats (an address may require 32 bits). For this reason, most processors are

equipped with several registers, each capable of holding a single value. Located in the

processor’s immediate proximity, the registers serve as a high-speed local memory,

allowing the processor to manipulate data and instructions quickly. This setting

enables the programmer to minimize the use of memory access commands, thus

speeding up the program’s execution.

4.1.2 Languages

A machine language program is a series of coded instructions. For example, a typical

instruction in a 16-bit computer may be 1010001100011001. In order to figure out

what this instruction means, we have to know the rules of the game, namely, the in-

struction set of the underlying hardware platform. For example, the language may be

such that each instruction consists of four 4-bit fields: The left-most field codes a

CPU operation, and the remaining three fields represent the operation’s operands.

Thus the previous command may code the operation set R3 to R1 þ R9, depending
of course on the hardware specification and the machine language syntax.

Since binary codes are rather cryptic, machine languages are normally specified

using both binary codes and symbolic mnemonics (a mnemonic is a symbolic label

whose name hints at what it stands for—in our case hardware elements and binary

operations). For example, the language designer can decide that the operation code

1010 will be represented by the mnemonic add and that the registers of the machine

will be symbolically referred to using the symbols R0, R1, R2, and so forth. Using

these conventions, one can specify machine language instructions either directly, as

1010001100011001, or symbolically, as, say, ADD R3,R1,R9.

59 Machine Language

Taking this symbolic abstraction one step further, we can allow ourselves not

only to read symbolic notation, but to actually write programs using symbolic com-

mands rather than binary instructions. Next, we can use a text processing program

to parse the symbolic commands into their underlying fields (mnemonics and oper-

ands), translate each field into its equivalent binary representation, and assemble the

resulting codes into binary machine instructions. The symbolic notation is called as-

sembly language, or simply assembly, and the program that translates from assembly

to binary is called assembler.

Since different computers vary in terms of CPU operations, number and type of

registers, and assembly syntax rules, there is a Tower of Babel of machine languages,

each with its own obscure syntax. Yet irrespective of this variety, all machine lan-

guages support similar sets of generic commands, which we now describe.

4.1.3 Commands

Arithmetic and Logic Operations Every computer is required to perform basic

arithmetic operations like addition and subtraction as well as basic Boolean oper-

ations like bit-wise negation, bit shifting, and so forth. Here are some examples,

written in typical machine language syntax:

ADD R2,R1,R3 // R2<---R1+R3 where R1,R2,R3 are registers

ADD R2,R1,foo // R2<---R1+foo where foo stands for the

// value of the memory location pointed

// at by the user-defined label foo.

AND R1,R1,R2 // R1<---bit wise And of R1 and R2

Memory Access Memory access commands fall into two categories. First, as we

have just seen, arithmetic and logical commands are allowed to operate not only on

registers, but also on selected memory locations. Second, all computers feature ex-

plicit load and store commands, designed to move data between registers and mem-

ory. These memory access commands may use several types of addressing modes—

ways of specifying the address of the required memory word. As usual, different

computers offer different possibilities and different notations, but the following three

memory access modes are almost always supported:

m Direct addressing The most common way to address the memory is to express a

specific address or use a symbol that refers to a specific address, as follows:

60 Chapter 4

LOAD R1,67 // R1<---Memory[67]

// Or, assuming that bar refers to memory address 67:

LOAD R1,bar // R1<---Memory[67]

m Immediate addressing This form of addressing is used to load constants—

namely, load values that appear in the instruction code: Instead of treating the nu-

meric field that appears in the instruction as an address, we simply load the value of

the field itself into the register, as follows:

LOADI R1,67 // R1<---67

m Indirect addressing In this addressing mode the address of the required memory

location is not hard-coded into the instruction; instead, the instruction specifies a

memory location that holds the required address. This addressing mode is used to

handle pointers. For example, consider the high-level command x=foo[j], where

foo is an array variable and x and j are integer variables. What is the machine lan-

guage equivalent of this command? Well, when the array foo is declared and ini-

tialized in the high-level program, the compiler allocates a memory segment to hold

the array data and makes the symbol foo refer to the base address of that segment.

Now, when the compiler later encounters references to array cells like foo[j], it

translates them as follows. First, note that the jth array entry should be physically

located in a memory location that is at a displacement j from the array’s base ad-

dress (assuming, for simplicity, that each array element uses a single word). Hence

the address corresponding to the expression foo[j] can be easily calculated by add-

ing the value of j to the value of foo. Thus in the C programming language, for ex-

ample, a command like x=foo[j] can be also expressed as x=*(foo+j), where the

notation ‘‘*n’’ stands for ‘‘the value of Memory[n]’’. When translated into machine

language, such commands typically generate the following code (depending on the

assembly language syntax):

// Translation of x=foo[j] or x=*(foo+j):

ADD R1,foo,j // R1<---foo+j

LOAD* R2,R1 // R2<---Memory[R1]

STR R2,x // x<---R2

Flow of Control While programs normally execute in a linear fashion, one com-

mand after the other, they also include occasional branches to locations other than

the next command. Branching serves several purposes including repetition (jump

61 Machine Language

backward to the beginning of a loop), conditional execution (if a Boolean condition is

false, jump forward to the location after the ‘‘if-then’’ clause), and subroutine calling

(jump to the first command of some other code segment). In order to support these

programming constructs, every machine language features the means to jump to

selected locations in the program, both conditionally and unconditionally. In assem-

bly languages, locations in the program can also be given symbolic names, using

some syntax for specifying labels. Figure 4.1 illustrates a typical example.

Unconditional jump commands like JMP beginWhile specify only the address of

the target location. Conditional jump commands like JNG R1,endWhile must also

specify a Boolean condition, expressed in some way. In some languages the condition

is an explicit part of the command, while in others it is a by-product of executing a

previous command.

This ends our informal introduction to machine languages and the generic oper-

ations that they normally support. The next section gives a formal description of one

specific machine language—the native code of the computer that we will build in

chapter 5.

4.2 Hack Machine Language Specification

4.2.1 Overview

The Hack computer is a von Neumann platform. It is a 16-bit machine, consisting

of a CPU, two separate memory modules serving as instruction memory and data

memory, and two memory-mapped I/O devices: a screen and a keyboard.

High-level Low-level

// A while loop:

while (R1>=0) {

code segment 1

}

code segment 2

// Typical translation:

beginWhile:

JNG R1,endWhile // If R1<0 goto endWhile

// Translation of code segment 1 comes here

JMP beginWhile // Goto beginWhile

endWhile:

// Translation of code segment 2 comes here

Figure 4.1 High- and low-level branching logic. The syntax of goto commands varies from
one language to another, but the basic idea is the same.

62 Chapter 4

Memory Address Spaces The Hack programmer is aware of two distinct address

spaces: an instruction memory and a data memory. Both memories are 16-bit wide

and have a 15-bit address space, meaning that the maximum addressable size of each

memory is 32K 16-bit words.

The CPU can only execute programs that reside in the instruction memory. The

instruction memory is a read-only device, and programs are loaded into it using some

exogenous means. For example, the instruction memory can be implemented in a

ROM chip that is pre-burned with the required program. Loading a new program is

done by replacing the entire ROM chip, similar to replacing a cartridge in a game

console. In order to simulate this operation, hardware simulators of the Hack plat-

form must provide a means to load the instruction memory from a text file contain-

ing a machine language program.

Registers The Hack programmer is aware of two 16-bit registers called D and A.

These registers can be manipulated explicitly by arithmetic and logical instructions

like A=D-1 or D=!A (where ‘‘!’’ means a 16-bit Not operation). While D is used

solely to store data values, A doubles as both a data register and an address register.

That is to say, depending on the instruction context, the contents of A can be inter-

preted either as a data value, or as an address in the data memory, or as an address

in the instruction memory, as we now explain.

First, the A register can be used to facilitate direct access to the data memory

(which, from now on, will be often referred to as ‘‘memory’’). Since Hack instruc-

tions are 16-bit wide, and since addresses are specified using 15 bits, it is impossible

to pack both an operation code and an address in one instruction. Thus, the syntax

of the Hack language mandates that memory access instructions operate on an

implicit memory location labeled ‘‘M’’, for example, D=M+1. In order to resolve this

address, the convention is that M always refers to the memory word whose address is

the current value of the A register. For example, if we want to effect the operation

D ¼ Memory[516] � 1, we have to use one instruction to set the A register to 516,
and a subsequent instruction to specify D=M-1.

In addition, the hardworking A register is also used to facilitate direct access to

the instruction memory. Similar to the memory access convention, Hack jump

instructions do not specify a particular address. Instead, the convention is that any

jump operation always effects a jump to the instruction located in the memory word

addressed by A. Thus, if we want to effect the operation goto 35, we use one in-

struction to set A to 35, and a second instruction to code a goto command, without

specifying an address. This sequence causes the computer to fetch the instruction

located in InstructionMemory[35] in the next clock cycle.

63 Machine Language

Example Since the Hack language is self-explanatory, we start with an example.

The only non-obvious command in the language is @value, where value is either a

number or a symbol representing a number. This command simply stores the speci-

fied value in the A register. For example, if sum refers to memory location 17, then

both @17 and @sum will have the same effect: A<---17.

And now to the example: Suppose we want to add the integers 1 to 100, using re-

petitive addition. Figure 4.2 gives a C language solution and a possible compilation

into the Hack language.

Although the Hack syntax is more accessible than that of most machine lan-

guages, it may still look obscure to readers who are not familiar with low-level pro-

gramming. In particular, note that every operation involving a memory location

requires two Hack commands: One for selecting the address on which we want to

operate, and one for specifying the desired operation. Indeed, the Hack language

consists of two generic instructions: an address instruction, also called A-instruction,

and a compute instruction, also called C-instruction. Each instruction has a binary

representation, a symbolic representation, and an effect on the computer, as we now

specify.

4.2.2 The A-Instruction

The A-instruction is used to set the A register to a 15-bit value:

A-instruction: @value // Where value is either a non-negative decimal number

// or a symbol referring to such number.

value (v ¼ 0 or 1)

Binary: 0 v v v v v v v v v v v v v v v

This instruction causes the computer to store the specified value in the A register. For

example, the instruction @5, which is equivalent to 0000000000000101, causes the

computer to store the binary representation of 5 in the A register.

The A-instruction is used for three different purposes. First, it provides the only

way to enter a constant into the computer under program control. Second, it sets the

stage for a subsequent C-instruction designed to manipulate a certain data memory

location, by first setting A to the address of that location. Third, it sets the stage for

a subsequent C-instruction that specifies a jump, by first loading the address of the

jump destination to the A register. These uses are demonstrated in figure 4.2.

64 Chapter 4

C language Hack machine language

// Adds 1+...+100.

int i = 1;

int sum = 0;

While (i <= 100){

sum += i;

i++;

}

// Adds 1+...+100.

@i // i refers to some mem. location.

M=1 // i=1

@sum // sum refers to some mem. location.

M=0 // sum=0

(LOOP)

@i

D=M // D=i

@100

D=D-A // D=i-100

@END

D;JGT // If (i-100)>0 goto END

@i

D=M // D=i

@sum

M=D+M // sum=sum+i

@i

M=M+1 // i=i+1

@LOOP

0;JMP // Goto LOOP

(END)

@END

0;JMP // Infinite loop

Figure 4.2 C and assembly versions of the same program. The infinite loop at the program’s
end is our standard way to ‘‘terminate’’ the execution of Hack programs.

65 Machine Language

4.2.3 The C-Instruction

The C-instruction is the programming workhorse of the Hack platform—the in-

struction that gets almost everything done. The instruction code is a specification

that answers three questions: (a) what to compute, (b) where to store the computed

value, and (c) what to do next? Along with the A-instruction, these specifications

determine all the possible operations of the computer.

C-instruction: dest¼comp;jump // Either the dest or jump fields may be empty.
// If dest is empty, the ‘‘¼’’ is omitted;
// If jump is empty, the ‘‘;’’ is omitted.

comp dest jump

Binary: 1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

The leftmost bit is the C-instruction code, which is 1. The next two bits are not

used. The remaining bits form three fields that correspond to the three parts of the

instruction’s symbolic representation. The overall semantics of the symbolic instruc-

tion dest ¼ comp;jump is as follows. The comp field instructs the ALU what to com-
pute. The dest field instructs where to store the computed value (ALU output). The

jump field specifies a jump condition, namely, which command to fetch and execute

next. We now describe the format and semantics of each of the three fields.

The Computation Specification The Hack ALU is designed to compute a fixed set

of functions on the D, A, and M registers (where M stands for Memory[A]). The

computed function is specified by the a-bit and the six c-bits comprising the instruc-

tion’s comp field. This 7-bit pattern can potentially code 128 different functions, of

which only the 28 listed in figure 4.3 are documented in the language specification.

Recall that the format of the C-instruction is 111a cccc ccdd djjj. Suppose we

want to have the ALU compute D-1, the current value of the D register minus 1.

According to figure 4.3, this can be done by issuing the instruction 1110 0011 1000

0000 (the 7-bit operation code is in bold). To compute the value of D|M, we issue the

instruction 1111 0101 0100 0000. To compute the constant �1, we issue the in-
struction 1110 1110 1000 0000, and so on.

The Destination Specification The value computed by the comp part of the C-

instruction can be stored in several destinations, as specified by the instruction’s 3-bit

66 Chapter 4

dest part (see figure 4.4). The first and second d-bits code whether to store the com-

puted value in the A register and in the D register, respectively. The third d-bit codes

whether to store the computed value in M (i.e., in Memory[A]). One, more than one,

or none of these bits may be asserted.

Recall that the format of the C-instruction is 111a cccc ccdd djjj. Suppose

we want the computer to increment the value of Memory[7] by 1 and to also store the

result in the D register. According to figures 4.3 and 4.4, this can be accomplished by

the following instructions:

0000 0000 0000 0111 // @7

1111 1101 1101 1000 // MD=M+1

(when a=0)

comp mnemonic
c1 c2 c3 c4 c5 c6

(when a=1)

comp mnemonic

0 1 0 1 0 1 0

1 1 1 1 1 1 1

-1 1 1 1 0 1 0

D 0 0 1 1 0 0

A 1 1 0 0 0 0 M

!D 0 0 1 1 0 1

!A 1 1 0 0 0 1 !M

-D 0 0 1 1 1 1

-A 1 1 0 0 1 1 -M

D+1 0 1 1 1 1 1

A+1 1 1 0 1 1 1 M+1

D-1 0 0 1 1 1 0

A-1 1 1 0 0 1 0 M-1

D+A 0 0 0 0 1 0 D+M

D-A 0 1 0 0 1 1 D-M

A-D 0 0 0 1 1 1 M-D

D&A 0 0 0 0 0 0 D&M

D|A 0 1 0 1 0 1 D|M

Figure 4.3 The compute field of the C-instruction. D and A are names of registers. M refers to
the memory location addressed by A, namely, to Memory[A]. The symbols þ and � denote
16-bit 2’s complement addition and subtraction, while !, |, and & denote the 16-bit bit-wise
Boolean operators Not, Or, and And, respectively. Note the similarity between this instruction
set and the ALU specification given in figure 2.6.

67 Machine Language

The first instruction causes the computer to select the memory register whose address

is 7 (the so-called M register). The second instruction computes the value of M þ 1
and stores the result in both M and D.

The Jump Specification The jump field of the C-instruction tells the computer what

to do next. There are two possibilities: The computer should either fetch and execute

the next instruction in the program, which is the default, or it should fetch and exe-

cute an instruction located elsewhere in the program. In the latter case, we assume

that the A register has been previously set to the address to which we have to jump.

Whether or not a jump should actually materialize depends on the three j-bits of

the jump field and on the ALU output value (computed according to the comp field).

The first j-bit specifies whether to jump in case this value is negative, the second j-bit

in case the value is zero, and the third j-bit in case it is positive. This gives eight

possible jump conditions, shown in figure 4.5.

The following example illustrates the jump commands in action:

Logic Implementation

if Memory[3]=5 then goto 100

else goto 200

@3

D=M // D=Memory[3]

@5

D=D-A // D=D-5

@100

D;JEQ // If D=0 goto 100

@200

0;JMP // Goto 200

d1 d2 d3 Mnemonic Destination (where to store the computed value)

0 0 0 null The value is not stored anywhere

0 0 1 M Memory[A] (memory register addressed by A)

0 1 0 D D register

0 1 1 MD Memory[A] and D register

1 0 0 A A register

1 0 1 AM A register and Memory[A]

1 1 0 AD A register and D register

1 1 1 AMD A register, Memory[A], and D register

Figure 4.4 The dest field of the C-instruction.

68 Chapter 4

The last instruction (0;JMP) effects an unconditional jump. Since the C-instruction

syntax requires that we always effect some computation, we instruct the ALU to

compute 0 (an arbitrary choice), which is ignored.

Conflicting Uses of the A Register As was just illustrated, the programmer can use

the A register to select either a data memory location for a subsequent C-instruction

involving M, or an instruction memory location for a subsequent C-instruction

involving a jump. Thus, to prevent conflicting use of the A register, in well-written

programs a C-instruction that may cause a jump (i.e., with some non-zero j bits)

should not contain a reference to M, and vice versa.

4.2.4 Symbols

Assembly commands can refer to memory locations (addresses) using either con-

stants or symbols. Symbols are introduced into assembly programs in the following

three ways:

m Predefined symbols: A special subset of RAM addresses can be referred to by

any assembly program using the following predefined symbols:

� Virtual registers: To simplify assembly programming, the symbols R0 to R15 are

predefined to refer to RAM addresses 0 to 15, respectively.

� Predefined pointers: The symbols SP, LCL, ARG, THIS, and THAT are predefined

to refer to RAM addresses 0 to 4, respectively. Note that each of these memory

j1

(out < 0)

j2

(out ¼ 0)
j3

(out > 0)
Mnemonic Effect

0 0 0 null No jump

0 0 1 JGT If out > 0 jump

0 1 0 JEQ If out ¼ 0 jump
0 1 1 JGE If out b 0 jump

1 0 0 JLT If out < 0 jump

1 0 1 JNE If out 0 0 jump
1 1 0 JLE If out a 0 jump

1 1 1 JMP Jump

Figure 4.5 The jump field of the C-instruction. Out refers to the ALU output (resulting from
the instruction’s comp part), and jump implies ‘‘continue execution with the instruction
addressed by the A register.’’

69 Machine Language

locations has two labels. For example, address 2 can be referred to using either R2 or

ARG. This syntactic convention will come to play in the implementation of the virtual

machine, discussed in chapters 7 and 8.

� I/O pointers: The symbols SCREEN and KBD are predefined to refer to RAM

addresses 16384 (0x4000) and 24576 (0x6000), respectively, which are the base

addresses of the screen and keyboard memory maps. The use of these I/O devices is

explained later.

m Label symbols: These user-defined symbols, which serve to label destinations of

goto commands, are declared by the pseudo-command ‘‘(Xxx)’’. This directive

defines the symbol Xxx to refer to the instruction memory location holding the next

command in the program. A label can be defined only once and can be used any-

where in the assembly program, even before the line in which it is defined.

m Variable symbols: Any user-defined symbol Xxx appearing in an assembly pro-

gram that is not predefined and is not defined elsewhere using the ‘‘(Xxx)’’ com-

mand is treated as a variable, and is assigned a unique memory address by the

assembler, starting at RAM address 16 (0x0010).

4.2.5 Input/Output Handling

The Hack platform can be connected to two peripheral devices: a screen and a key-

board. Both devices interact with the computer platform through memory maps.

This means that drawing pixels on the screen is achieved by writing binary values

into a memory segment associated with the screen. Likewise, listening to the key-

board is done by reading a memory location associated with the keyboard. The

physical I/O devices and their memory maps are synchronized via continuous refresh

loops.

Screen The Hack computer includes a black-and-white screen organized as 256

rows of 512 pixels per row. The screen’s contents are represented by an 8K memory

map that starts at RAM address 16384 (0x4000). Each row in the physical screen,

starting at the screen’s top left corner, is represented in the RAM by 32 consecu-

tive 16-bit words. Thus the pixel at row r from the top and column c from the left

is mapped on the c%16 bit (counting from LSB to MSB) of the word located at

RAM[16384 þ r � 32 þ c=16]. To write or read a pixel of the physical screen, one
reads or writes the corresponding bit in the RAM-resident memory map (1 ¼ black,
0 ¼ white). Example:

70 Chapter 4

// Draw a single black dot at the screen's top left corner:

@SCREEN // Set the A register to point to the memory

// word that is mapped to the 16 left-most

// pixels of the top row of the screen.

M=1 // Blacken the left-most pixel.

Keyboard The Hack computer interfaces with the physical keyboard via a

single-word memory map located in RAM address 24576 (0x6000). Whenever

a key is pressed on the physical keyboard, its 16-bit ASCII code appears in

RAM[24576]. When no key is pressed, the code 0 appears in this location. In

addition to the usual ASCII codes, the Hack keyboard recognizes the keys shown in

figure 4.6.

4.2.6 Syntax Conventions and File Format

Binary Code Files A binary code file is composed of text lines. Each line is a se-

quence of sixteen ‘‘0’’ and ‘‘1’’ ASCII characters, coding a single machine language

instruction. Taken together, all the lines in the file represent a machine language

program. The contract is such that when a machine language program is loaded into

the computer’s instruction memory, the binary code represented by the file’s nth line

is stored in address n of the instruction memory (the count of both program lines and

memory addresses starts at 0). By convention, machine language programs are stored

in text files with a ‘‘hack’’ extension, for example, Prog.hack.

Assembly Language Files By convention, assembly language programs are stored

in text files with an ‘‘asm’’ extension, for example, Prog.asm. An assembly language

Key pressed Code Key pressed Code

newline 128 end 135

backspace 129 page up 136

left arrow 130 page down 137

up arrow 131 insert 138

right arrow 132 delete 139

down arrow 133 esc 140

home 134 f1–f12 141–152

Figure 4.6 Special keyboard codes in the Hack platform.

71 Machine Language

file is composed of text lines, each representing either an instruction or a symbol

declaration:

m Instruction: an A-instruction or a C-instruction.

m (Symbol): This pseudo-command causes the assembler to assign the label

Symbol to the memory location in which the next command of the program will be

stored. It is called ‘‘pseudo-command’’ since it generates no machine code.

(The remaining conventions in this section pertain to assembly programs only.)

Constants and Symbols Constants must be non-negative and are always written in

decimal notation. A user-defined symbol can be any sequence of letters, digits, un-

derscore (_), dot (.), dollar sign ($), and colon (:) that does not begin with a digit.

Comments Text beginning with two slashes (//) and ending at the end of the line is

considered a comment and is ignored.

White Space Space characters are ignored. Empty lines are ignored.

Case Conventions All the assembly mnemonics must be written in uppercase. The

rest (user-defined labels and variable names) is case sensitive. The convention is to

use uppercase for labels and lowercase for variable names.

4.3 Perspective

The Hack machine language is almost as simple as machine languages get. Most

computers have more instructions, more data types, more registers, more instruction

formats, and more addressing modes. However, any feature not supported by the

Hack machine language may still be implemented in software, at a performance cost.

For example, the Hack platform does not supply multiplication and division as

primitive machine language operations. Since these operations are obviously required

by any high-level language, we will later implement them at the operating system

level (chapter 12).

In terms of syntax, we have chosen to give Hack a somewhat different look-and-

feel than the mechanical nature of most assembly languages. In particular, we have

chosen a high-level language-like syntax for the C-command, for example, D=M

and D=D+M instead of the more traditional LOAD and ADD directives. The reader

72 Chapter 4

should note, however, that these are just syntactic details. For example, the + char-

acter plays no algebraic role whatsoever in the command D=D+M. Rather, the three-

character string D+M, taken as a whole, is treated as a single assembly mnemonic,

designed to code a single ALU operation.

One of the main characteristics that gives machine languages their particular flavor

is the number of memory addresses that can appear in a single command. In this

respect, Hack may be described as a ‘‘1
2
address machine’’: Since there is no room to

pack both an instruction code and a 15-bit address in the 16-bit instruction format,

operations involving memory access will normally be specified in Hack using two

instructions: an A-instruction to specify the address and a C-instruction to specify the

operation. In comparison, most machine languages can directly specify at least one

address in every machine instruction.

Indeed, Hack assembly code typically ends up being (mostly) an alternating

sequence of A- and C-instructions, for example, @xxx followed by D=D+M, @YYY fol-

lowed by 0;JMP, and so on. If you find this coding style tedious or even peculiar, you

should note that friendlier macro commands like D=D+M[xxx] and GOTO YYY can

easily be introduced into the language, causing Hack assembly code to be more

readable as well as about 50 percent shorter. The trick is to have the assembler

translate these macro commands into binary code effecting @xxx followed by D=D+M,

@YYY followed by 0;JMP, and so on.

The assembler, mentioned several times in this chapter, is the program responsible

for translating symbolic assembly programs into executable programs written in bi-

nary code. In addition, the assembler is responsible for managing all the system- and

user-defined symbols found in the assembly program, and for replacing them with

physical memory addresses, as needed. We return to this translation task in chapter

6, in which we build an assembler for the Hack language.

4.4 Project

Objective Get a taste of low-level programming in machine language, and get

acquainted with the Hack computer platform. In the process of working on this

project, you will also become familiar with the assembly process, and you will ap-

preciate visually how the translated binary code executes on the target hardware.

Resources In this project you will use two tools supplied with the book: An assem-

bler, designed to translate Hack assembly programs into binary code, and a CPU

emulator, designed to run binary programs on a simulated Hack platform.

73 Machine Language

Contract Write and test the two programs described in what follows. When exe-

cuted on the CPU emulator, your programs should generate the results mandated by

the test scripts supplied in the project directory.

m Multiplication Program (Mult.asm): The inputs of this program are the current

values stored in R0 and R1 (i.e., the two top RAM locations). The program computes

the product R0*R1 and stores the result in R2. We assume (in this program) that

R0>=0, R1>=0, and R0*R1<32768. Your program need not test these conditions, but

rather assume that they hold. The supplied Mult.tst and Mult.cmp scripts will test

your program on several representative data values.

m I/O-Handling Program (Fill.asm): This program runs an infinite loop that

listens to the keyboard input. When a key is pressed (any key), the program

blackens the screen, namely, writes ‘‘black’’ in every pixel. When no key is

pressed, the screen should be cleared. You may choose to blacken and clear

the screen in any spatial order, as long as pressing a key continuously for long

enough will result in a fully blackened screen and not pressing any key for

long enough will result in a cleared screen. This program has a test script (Fill.tst)

but no compare file—it should be checked by visibly inspecting the simulated

screen.

Steps We recommend proceeding as follows:

0. The assembler and CPU emulator programs needed for this project are available

in the tools directory of the book’s software suite. Before using them, go through

the assembler tutorial and the CPU emulator tutorial.

1. Use a plain text editor to write the first program in assembly, and save it as

projects/04/mult/Mult.asm.

2. Use the supplied assembler (in either batch or interactive mode) to translate your

program. If you get syntax errors, go to step 1. If there are no syntax errors, the

assembler will produce a file called projects/04/mult/Mult.hack, containing bi-

nary machine instructions.

3. Use the supplied CPU emulator to test the resulting Mult.hack code. This can

be done either interactively, or batch-style using the supplied Mult.tst script. If you

get run-time errors, go to step 1.

4. Repeat stages 1–3 for the second program (Fill.asm), using the projects/04/

fill directory.

74 Chapter 4

Debugging Tip The Hack language is case sensitive. A common error occurs when

one writes, say, @foo and @Foo in different parts of the program, thinking that both

commands refer to the same variable. In fact, the assembler treats these symbols as

two completely different identifiers.

The Supplied Assembler The book’s software suite includes a Hack assembler that

can be used in either command mode or GUI mode. The latter mode of operation

allows observing the translation process in a visual and step-wise fashion, as shown

in figure 4.7.

The machine language programs produced by the assembler can be tested in

two different ways. First, one can run the .hack program in the CPU emulator.

Figure 4.7 The visual assembler supplied with the book.

75 Machine Language

Alternatively, one can run the same program directly on the hardware, by loading it

into the computer’s instruction memory using the hardware simulator. Since we will

finish building the hardware platform only in the next chapter, the former option

makes more sense at this stage.

The Supplied CPU Emulator This program simulates the Hack computer platform.

It allows loading a Hack program into the simulated ROM and visually observing its

execution on the simulated hardware, as shown in figure 4.8.

Figure 4.8 The CPU emulator supplied with the book. The loaded program can be displayed
either in symbolic notation (as shown in this screen shot) or in binary code. The screen and the
keyboard are not used by this particular program.

76 Chapter 4

For ease of use, the CPU emulator enables loading binary .hack files as well as

symbolic .asm files. In the latter case, the emulator translates the assembly program

into binary code on the fly. This utility seems to render the supplied assembler un-

necessary, but this is not the case. First, the supplied assembler shows the translation

process visually, for instructive purposes. Second, the binary files generated by the

assembler can be executed directly on the hardware platform. To do so, load the

Computer chip (built in chapter 5’s project) into the hardware simulator, then load

the .hack file generated by the assembler into the computer’s ROM chip.

77 Machine Language

5 Computer Architecture

Form ever follows function.

—Louis Sullivan (1856–1924), architect

Form IS function.

—Ludwig Mies van der Rohe (1886–1969), architect

This chapter is the pinnacle of the ‘‘hardware’’ part of our journey. We are now

ready to take all the chips that we built in chapters 1–3 and integrate them into

a general-purpose computer capable of running stored programs written in the

machine language presented in chapter 4. The specific computer we will build, called

Hack, has two important virtues. On the one hand, Hack is a simple machine that

can be constructed in just a few hours, using previously built chips and the hardware

simulator supplied with the book. On the other hand, Hack is sufficiently powerful

to illustrate the key operating principles and hardware elements of any digital com-

puter. Therefore, building it will give you an excellent understanding of how modern

computers work at the low hardware and software levels.

Following an introduction of the stored program concept, section 5.1 gives a

detailed description of the von Neumann architecture—a central dogma in computer

science underlying the design of almost all modern computers. The Hack platform

is one example of a von Neumann machine, and section 5.2 gives its exact hard-

ware specification. Section 5.3 describes how the Hack platform can be implemented

from available chips, in particular the ALU built in chapter 2 and the registers and

memory systems built in chapter 3.

The computer that will emerge from this construction will be as simple as possible,

but not simpler. This means that it will have the minimal configuration necessary

to run interesting programs and deliver a reasonable performance. The comparison

of this machine to typical computers is taken up in section 5.4, which emphasizes the

critical role that optimization plays in the design of industrial-strength computers, but

not in this chapter. As usual, the simplicity of our approach has a purpose: All the

chips mentioned in the chapter, culminating in the Hack computer itself, can be built

and tested on a personal computer running our hardware simulator, following the

technical instructions given in section 5.5. The result will be a minimal yet surpris-

ingly powerful computer.

5.1 Background

5.1.1 The Stored Program Concept

Compared to all the other machines around us, the most unique feature of the digital

computer is its amazing versatility. Here is a machine with finite hardware that can

perform a practically infinite array of tasks, from interactive games to word process-

ing to scientific calculations. This remarkable flexibility—a boon that we have come

to take for granted—is the fruit of a brilliant idea called the stored program concept.

Formulated independently by several mathematicians in the 1930s, the stored pro-

gram concept is still considered the most profound invention in, if not the very

foundation of, modern computer science.

Like many scientific breakthroughs, the basic idea is rather simple. The computer

is based on a fixed hardware platform, capable of executing a fixed repertoire of

instructions. At the same time, these instructions can be used and combined like

building blocks, yielding arbitrarily sophisticated programs. Moreover, the logic of

these programs is not embedded in the hardware, as it was in mechanical com-

puters predating 1930. Instead, the program’s code is stored and manipulated in

the computer memory, just like data, becoming what is known as ‘‘software.’’ Since

the computer’s operation manifests itself to the user through the currently executing

software, the same hardware platform can be made to behave completely differently

each time it is loaded with a different program.

5.1.2 The von Neumann Architecture

The stored program concept is a key element of many abstract and practical

computer models, most notably the universal Turing machine (1936) and the von

Neumann machine (1945). The Turing machine—an abstract artifact describing a

deceptively simple computer—is used mainly to analyze the logical foundations of

80 Chapter 5

computer systems. In contrast, the von Neumann machine is a practical architecture

and the conceptual blueprint of almost all computer platforms today.

The von Neumann architecture is based on a central processing unit (CPU), inter-

acting with a memory device, receiving data from some input device, and sending

data to some output device (figure 5.1). At the heart of this architecture lies the stored

program concept: The computer’s memory stores not only the data that the com-

puter manipulates, but also the very instructions that tell the computer what to do.

Let us explore this architecture in some detail.

5.1.3 Memory

The memory of a von Neumann machine holds two types of information: data items

and programming instructions. The two types of information are usually treated dif-

ferently, and in some computers they are stored in separate memory units. In spite

of their different functions though, both types of information are represented as bi-

nary numbers that are stored in the same generic random-access structure: a contin-

uous array of cells of some fixed width, also called words or locations, each having

a unique address. Hence, an individual word (representing either a data item or an

instruction) is specified by supplying its address.

Data Memory High-level programs manipulate abstract artifacts like variables,

arrays, and objects. When translated into machine language, these data abstractions

become series of binary numbers, stored in the computer’s data memory. Once an

CPU

Output

Input
Arithmetic Logic

Unit (ALU)

Registers

Control

Memory

(data
+

instructions)

Figure 5.1 The von Neumann architecture (conceptual). At this level of detail, this model
describes the architecture of almost all digital computers. The program that operates the
computer resides in its memory, in accordance with the ‘‘stored program’’ concept.

81 Computer Architecture

individual word has been selected from the data memory by specifying its address,

it can be either read or written to. In the former case, we retrieve the word’s value.

In the latter case, we store a new value into the selected location, erasing the old

value.

Instruction Memory When translated into machine language, each high-level com-

mand becomes a series of binary words, representing machine language instructions.

These instructions are stored in the computer’s instruction memory. In each step of

the computer’s operation, the CPU fetches (i.e., reads) a word from the instruction

memory, decodes it, executes the specified instruction, and figures out which instruc-

tion to execute next. Thus, changing the contents of the instruction memory has the

effect of completely changing the computer’s operation.

The instructions that reside in the instruction memory are written in an agreed-

upon formalism called machine language. In some computers, the specification of

each operation and the codes representing its operands are represented in a single-

word instruction. Other computers split this specification over several words.

5.1.4 Central Processing Unit

The CPU—the centerpiece of the computer’s architecture—is in charge of executing

the instructions of the currently loaded program. These instructions tell the CPU to

carry out various calculations, to read and write values from and into the memory,

and to conditionally jump to execute other instructions in the program. The CPU

executes these tasks using three main hardware elements: an Arithmetic-Logic Unit

(ALU), a set of registers, and a control unit.

Arithmetic Logic Unit The ALU is built to perform all the low-level arithmetic

and logical operations featured by the computer. For instance, a typical ALU can

add two numbers, test whether a number is positive, manipulate the bits in a word of

data, and so on.

Registers The CPU is designed to carry out simple calculations quickly. In order

to boost performance, it is desirable to store the results of these calculations locally,

rather than ship them in and out of memory. Thus, every CPU is equipped with a

small set of high-speed registers, each capable of holding a single word.

Control Unit A computer instruction is represented as a binary code, typically 16,

32, or 64 bits wide. Before such an instruction can be executed, it must be decoded,

82 Chapter 5

and the information embedded in it must be used to signal various hardware devices

(ALU, registers, memory) how to execute the instruction. The instruction decoding is

done by some control unit, which is also responsible for figuring out which instruc-

tion to fetch and execute next.

The CPU operation can now be described as a repeated loop: fetch an instruction

(word) from memory; decode it; execute it, fetch the next instruction, and so on. The

instruction execution may involve one or more of the following micro tasks: have

the ALU compute some value, manipulate internal registers, read a word from the

memory, and write a word to the memory. In the process of executing these tasks,

the CPU also figures out which instruction to fetch and execute next.

5.1.5 Registers

Memory access is a slow affair. When the CPU is instructed to retrieve the contents

of address j of the memory, the following process ensues: (a) j travels from the CPU

to the RAM; (b) the RAM’s direct-access logic selects the memory register whose

address is j; (c) the contents of RAM[j] travel back to the CPU. Registers provide

the same service—data retrieval and storage—without the round-trip travel and

search expenses. First, the registers reside physically inside the CPU chip, so access-

ing them is almost instantaneous. Second, there are typically only a handful of

registers, compared to millions of memory cells. Therefore, machine language

instructions can specify which registers they want to manipulate using just a few bits,

resulting in thinner instruction formats.

Different CPUs employ different numbers of registers, of different types, for dif-

ferent purposes. In some computer architectures each register can serve more than

one purpose:

Data registers: These registers give the CPU short-term memory services. For ex-

ample, when calculating the value of ða � bÞ � c, we must first compute and remember
the value of ða � bÞ. Although this result can be temporarily stored in some memory
location, a better solution is to store it locally inside the CPU—in a data register.

Addressing registers: The CPU has to continuously access the memory in order to

read data and write data. In every one of these operations, we must specify which

individual memory word has to be accessed, namely, supply an address. In some

cases this address appears as part of the current instruction, while in others it

depends on the execution of a previous instruction. In the latter case, the address

should be stored in a register whose contents can be later treated as a memory

address—an addressing register.

83 Computer Architecture

Program counter register: When executing a program, the CPU must always keep

track of the address of the next instruction that must be fetched from the instruction

memory. This address is kept in a special register called program counter, or PC. The

contents of the PC are then used as the address for fetching instructions from the in-

struction memory. Thus, in the process of executing the current instruction, the CPU

updates the PC in one of two ways. If the current instruction contains no goto direc-

tive, the PC is incremented to point to the next instruction in the program. If the

current instruction includes a goto n directive that should be executed, the CPU loads

n into the PC.

5.1.6 Input and Output

Computers interact with their external environments using a diverse array of input

and output (I/O) devices. These include screens, keyboards, printers, scanners, net-

work interface cards, CD-ROMs, and so forth, not to mention the bewildering array

of proprietary components that embedded computers are called to control in auto-

mobiles, weapon systems, medical equipment, and so on. There are two reasons why

we do not concern ourselves here with the anatomy of these various devices. First,

every one of them represents a unique piece of machinery requiring a unique knowl-

edge of engineering. Second, and for this very same reason, computer scientists have

devised various schemes to make all these devices look exactly the same to the com-

puter. The simplest trick in this art is called memory-mapped I/O.

The basic idea is to create a binary emulation of the I/O device, making it ‘‘look’’

to the CPU like a normal memory segment. In particular, each I/O device is allo-

cated an exclusive area in memory, becoming its ‘‘memory map.’’ In the case of an

input device (keyboard, mouse, etc.), the memory map is made to continuously re-

flect the physical state of the device; in the case of an output device (screen, speakers,

etc.), the memory map is made to continuously drive the physical state of the device.

When external events affect some input devices (e.g., pressing a key on the keyboard

or moving the mouse), certain values are written in their respective memory maps.

Likewise, if we want to manipulate some output devices (e.g., draw something on the

screen or play a tune), we write some values in their respective memory maps. From

the hardware point of view, this scheme requires each I/O device to provide an in-

terface similar to that of a memory unit. From a software point of view, each I/O

device is required to define an interaction contract, so that programs can access it

correctly. As a side comment, given the multitude of available computer platforms

and I/O devices, one can appreciate the crucial role that standards play in designing

computer architectures.

84 Chapter 5

The practical implications of a memory-mapped I/O architecture are significant:

The design of the CPU and the overall platform can be totally independent of the

number, nature, or make of the I/O devices that interact, or will interact, with the

computer. Whenever we want to connect a new I/O device to the computer, all we

have to do is allocate to it a new memory map and ‘‘take note’’ of its base address

(these one-time configurations are typically done by the operating system). From this

point onward, any program that wants to manipulate this I/O device can do so—all

it needs to do is manipulate bits in memory.

5.2 The Hack Hardware Platform Specification

5.2.1 Overview

The Hack platform is a 16-bit von Neumann machine, consisting of a CPU,

two separate memory modules serving as instruction memory and data memory, and

two memory-mapped I/O devices: a screen and a keyboard. Certain parts of this

architecture—especially its machine language—were presented in chapter 4. A sum-

mary of this discussion is given here, for ease of reference.

The Hack computer executes programs that reside in its instruction memory. The

instruction memory is a read-only device, and thus programs are loaded into it using

some exogenous means. For example, the instruction memory can be implemented in

a ROM chip that is preburned with the required program. Loading a new program

can be done by replacing the entire ROM chip. In order to simulate this operation,

hardware simulators of the Hack platform must provide a means for loading the in-

struction memory from a text file containing a program written in the Hack machine

language. (From now on, we will refer to Hack’s data memory and instruction

memory as RAM and ROM, respectively.)

The Hack CPU consists of the ALU specified in chapter 2 and three registers

called data register (D), address register (A), and program counter (PC). D and A are

general-purpose 16-bit registers that can be manipulated by arithmetic and logical

instructions like A=D-1, D=D|A, and so on, following the Hack machine language

specified in chapter 4. While the D-register is used solely to store data values, the

contents of the A-register can be interpreted in three different ways, depending on the

instruction’s context: as a data value, as a RAM address, or as a ROM address.

The Hack machine language is based on two 16-bit command types. The address

instruction has the format 0vvvvvvvvvvvvvvv, each v being 0 or 1. This instruction

85 Computer Architecture

weymour

Highlight

causes the computer to load the 15-bit constant vvv. . .v into the A-register. The

compute instruction has the format 111accccccdddjjj. The a- and c-bits instruct

the ALU which function to compute, the d-bits instruct where to store the ALU

output, and the j-bits specify an optional jump condition, all according to the Hack

machine language specification.

The computer architecture is wired in such a way that the output of the program

counter (PC) chip is connected to the address input of the ROM chip. This way, the

ROM chip always emits the word ROM[PC], namely, the contents of the instruction

memory location whose address is ‘‘pointed at’’ by the PC. This value is called the

current instruction. With that in mind, the overall computer operation during each

clock cycle is as follows:

Execute: Various bit parts of the current instruction are simultaneously fed to

various chips in the computer. If it’s an address instruction (most significant bit ¼ 0),
the A-register is set to the 15-bit constant embedded in the instruction. If it’s a com-

pute instruction (MSB ¼ 1), its underlying a-, c-, d- and j-bits are treated as control
bits that cause the ALU and the registers to execute the instruction.

Fetch: Which instruction to fetch next is determined by the jump bits of the cur-

rent instruction and by the ALU output. Taken together, these values determine

whether a jump should materialize. If so, the PC is set to the value of the A-register;

otherwise, the PC is incremented by 1. In the next clock cycle, the instruction that

the program counter points at emerges from the ROM’s output, and the cycle

continues.

This particular fetch-execute cycle implies that in the Hack platform, elementary

operations involving memory access usually require two instructions: an address

instruction to set the A register to a particular address, and a subsequent compute

instruction that operates on this address (a read/write operation on the RAM or a

jump operation into the ROM).

We now turn to formally specify the Hack hardware platform. Before starting,

we wish to point out that this platform can be assembled from previously built com-

ponents. The CPU is based on the ALU built in chapter 2. The registers and the

program counter are identical copies of the 16-bit register and 16-bit counter, respec-

tively, built in chapter 3. Likewise, the ROM and the RAM chips are versions of the

memory units built in chapter 3. Finally, the screen and the keyboard devices will

interface with the hardware platform through memory maps, implemented as built-in

chips that have the same interface as RAM chips.

86 Chapter 5

5.2.2 Central Processing Unit (CPU)

The CPU of the Hack platform is designed to execute 16-bit instructions accord-

ing to the Hack machine language specified in chapter 4. It expects to be connected

to two separate memory modules: an instruction memory, from which it fetches

instructions for execution, and a data memory, from which it can read, and into

which it can write, data values. Figure 5.2 gives the specification details.

5.2.3 Instruction Memory

The Hack instruction memory is implemented in a direct-access Read-Only Memory

device, also called ROM. The Hack ROM consists of 32K addressable 16-bit regis-

ters, as shown in figure 5.3.

5.2.4 Data Memory

Hack’s data memory chip has the interface of a typical RAM device, like that built

in chapter 3 (see, e.g., figure 3.3). To read the contents of register n, we put n in the

memory’s address input and probe the memory’s out output. This is a combina-

tional operation, independent of the clock. To write a value v into register n, we put

v in the in input, n in the address input, and assert the memory’s load bit. This is

a sequential operation, and so register n will commit to the new value v in the next

clock cycle.

In addition to serving as the computer’s general-purpose data store, the data

memory also interfaces between the CPU and the computer’s input/output devices,

using memory maps.

Memory Maps In order to facilitate interaction with a user, the Hack platform can

be connected to two peripheral devices: screen and keyboard. Both devices interact

with the computer platform through memory-mapped buffers. Specifically, screen

images can be drawn and probed by writing and reading, respectively, words in a

designated memory segment called screen memory map. Similarly, one can check

which key is presently pressed on the keyboard by probing a designated memory

word called keyboard memory map. The memory maps interact with their respective

I/O devices via peripheral logic that resides outside the computer. The contract is as

follows: Whenever a bit is changed in the screen’s memory map, a respective pixel is

drawn on the physical screen. Whenever a key is pressed on the physical keyboard,

the respective code of this key appears in the keyboard’s memory map.

87 Computer Architecture

16

1

15

15

16 outM

16

1

from
data

memory

from
instruction

memory

inM

instruction

reset

writeM

addressM

pc

to data
memory

to instruction
memory

C
P

U

Chip Name: CPU // Central Processing Unit

Inputs: inM[16], // M value input (M = contents of RAM[A])

instruction[16], // Instruction for execution

reset // Signals whether to restart the current

// program (reset=1) or continue executing

// the current program (reset=0)

Outputs: outM[16], // M value output

writeM, // Write to M?

addressM[15], // Address of M in data memory

pc[15] // Address of next instruction

Function: Executes the instruction according to the Hack machine language

specification. The D and A in the language specification refer to

CPU-resident registers, while M refers to the memory location

addressed by A (inM holds the value of this location).

If the instruction needs to write a value to M, the value is

placed in outM, the address is placed in addressM, and the writeM

bit is asserted. (When writeM=0, any value may appear in outM.)

If reset=1, then the CPU jumps to address 0 (i.e., sets pc=0 in

the next time unit) rather than to the address resulting from

executing the current instruction.

Figure 5.2 The Central Processing Unit. Assembled from the ALU and the registers built in
chapters 2 and 3, respectively.

88 Chapter 5

We specify first the built-in chips that interface between the hardware interface and

the I/O devices, then the complete memory module that embeds these chips.

Screen The Hack computer can interact with a black-and-white screen organized as

256 rows of 512 pixels per row. The computer interfaces with the physical screen via

a memory map, implemented by a chip called Screen. This chip behaves like regular

memory, meaning that it can be read and written to. In addition, it features the side

effect that any bit written to it is reflected as a pixel on the physical screen (1 ¼ black,
0 ¼ white). The exact mapping between the memory map and the physical screen
coordinates is given in figure 5.4.

Keyboard The Hack computer can interact with a standard keyboard, like that of

a personal computer. The computer interfaces with the physical keyboard via a chip

called Keyboard (figure 5.5). Whenever a key is pressed on the physical keyboard, its

16-bit ASCII code appears as the output of the Keyboard chip. When no key is

pressed, the chip outputs 0. In addition to the usual ASCII codes, the Keyboard chip

recognizes, and responds to, the keys listed in figure 5.6.

out

15 16

address
ROM32K

Chip Name: ROM32K // 16-bit read-only 32K memory

Input: address[15] // Address in the ROM

Output: out[16] // Value of ROM[address]

Function: out=ROM[address] // 16-bit assignment

Comment: The ROM is preloaded with a machine language program.

Hardware implementations can treat the ROM as a

built-in chip. Software simulators must supply a

mechanism for loading a program into the ROM.

Figure 5.3 Instruction memory.

89 Computer Architecture

Chip Name: Screen // Memory map of the physical screen

Inputs: in[16], // What to write

load, // Write-enable bit

address[13] // Where to write

Output: out[16] // Screen value at the given address

Function: Functions exactly like a 16-bit 8K RAM:

1. out(t)=Screen[address(t)](t)

2. If load(t-1) then Screen[address(t-1)](t)=in(t-1)

(t is the current time unit, or cycle)

Comment: Has the side effect of continuously refreshing a 256

by 512 black-and-white screen (simulators must

simulate this device). Each row in the physical

screen is represented by 32 consecutive 16-bit words,

starting at the top left corner of the screen. Thus

the pixel at row r from the top and column c from the

left (0<=r<=255, 0<=c<=511) reflects the c%16 bit

(counting from LSB to MSB) of the word found at

Screen[r*32+c/16].

Figure 5.4 Screen interface.

Chip Name: Keyboard // Memory map of the physical keyboard.

// Outputs the code of the currently

// pressed key.

Output: out[16] // The ASCII code of the pressed key, or

// one of the special codes listed in

// figure 5.6, or 0 if no key is pressed.

Function: Outputs the code of the key presently pressed on the

physical keyboard.

Comment: This chip is continuously being refreshed from a

physical keyboard unit (simulators must simulate this

service).

Figure 5.5 Keyboard interface.

90 Chapter 5

Now that we’ve described the internal parts of the data memory, we are ready to

specify the entire data memory address space.

Overall Memory The overall address space of the Hack platform (i.e., its entire

data memory) is provided by a chip called Memory. The memory chip includes the

RAM (for regular data storage) and the screen and keyboard memory maps. These

modules reside in a single address space that is partitioned into four sections, as

shown in figure 5.7.

5.2.5 Computer

The topmost chip in the Hack hardware hierarchy is a complete computer system

designed to execute programs written in the Hack machine language. This abstrac-

tion is described in figure 5.8. The Computer chip contains all the hardware devices

necessary to operate the computer including a CPU, a data memory, an instruction

memory (ROM), a screen, and a keyboard, all implemented as internal parts. In

order to execute a program, the program’s code must be preloaded into the ROM.

Control of the screen and the keyboard is achieved via their memory maps, as

described in the Screen and Keyboard chip specifications.

5.3 Implementation

This section gives general guidelines on how the Hack computer platform can be

built to deliver the various services described in its specification (section 5.2). As

usual, we don’t give exact building instructions, expecting readers to come up with

Key

pressed

Keyboard

output

Key

pressed

Keyboard

output

newline 128 end 135

backspace 129 page up 136

left arrow 130 page down 137

up arrow 131 insert 138

right arrow 132 delete 139

down arrow 133 esc 140

home 134 f1–f12 141–152

Figure 5.6 Special keyboard keys in the Hack platform.

91 Computer Architecture

in

16

15

16

address

Keyboard

(16K)

Screen

(8K)
Keyboard

memory map

memory map

out

RAM

load

Data Memory
0

16383
16384

24576

24575 Screen

Chip Name: Memory // Complete memory address space

Inputs: in[16], // What to write

load, // Write-enable bit

address[15] // Where to write

Output: out[16] // Memory value at the given address

Function: 1. out(t)=Memory[address(t)](t)

2. If load(t-1) then Memory[address(t-1)](t)=in(t-1)

(t is the current time unit, or cycle)

Comment: Access to any address>24576 (0x6000) is invalid.

Access to any address in the range 16384-24575

(0x4000-0x5FFF) results in accessing the screen

memory map. Access to address 24576 (0x6000) results

in accessing the keyboard memory map. The behavior

in these addresses is described in the Screen and

Keyboard chip specifications.

Figure 5.7 Data memory.

92 Chapter 5

their own designs. All the chips can be built in HDL and simulated on a personal

computer using the hardware simulator that comes with the book. As usual, techni-

cal details are given in the final Project section of this chapter.

Since most of the action in the Hack platform occurs in its Central Processing

Unit, the main implementation challenge is building the CPU. The construction of

the rest of the computer platform is straightforward.

5.3.1 The Central Processing Unit

The CPU implementation objective is to create a logic gate architecture capable of

executing a given Hack instruction and fetching the next instruction to be executed.

reset

Keyboard

Screen

Computer

Chip Name: Computer // Topmost chip in the Hack platform

Input: reset

Function: When reset is 0, the program stored in the computer's

ROM executes. When reset is 1, the execution of the

program restarts. Thus, to start a program's

execution, reset must be pushed "up" (1) and then

"down" (0).

From this point onward the user is at the mercy of

the software. In particular, depending on the

program's code, the screen may show some output and

the user may be able to interact with the computer

via the keyboard.

Figure 5.8 Computer. Topmost chip of the Hack hardware platform.

93 Computer Architecture

Naturally, the CPU will include an ALU capable of executing Hack instructions, a

set of registers, and some control logic designed to fetch and decode instructions.

Since almost all these hardware elements were already built in previous chapters, the

key question here is how to connect them in order to effect the desired CPU opera-

tion. One possible solution is illustrated in figure 5.9.

The key element missing in figure 5.9 is the CPU’s control logic, designed to per-

form the following tasks:

m Instruction decoding: Figure out what the instruction means (a function of the

instruction).

m Instruction execution: Signal the various parts of the computer what they should

do in order to execute the instruction (a function of the instruction).

D

reset

addressM

pc

outM
C

C

C

C

C

D

A

PC

C

C

A

A

A

M

C

C

instruction

inM

decode

ALU output

M
ux

writeM

A/MM
ux

A
LU

Figure 5.9 Proposed CPU implementation. The diagram shows only data and address paths,
namely, wires that carry data and addresses from one place to another. The diagram does
not show the CPU’s control logic, except for inputs and outputs of control bits, labeled with a
circled ‘‘c’’. Thus it should be viewed as an incomplete chip diagram.

94 Chapter 5

m Next instruction fetching: Figure out which instruction to execute next (a func-

tion of the instruction and the ALU output).

(In what follows, the term proposed CPU implementation refers to figure 5.9.)

Instruction Decoding The 16-bit word located in the CPU’s instruction input

can represent either an A-instruction or a C-instruction. In order to figure out what

this 16-bit word means, it can be broken into the fields ‘‘i xx a cccccc ddd jjj’’.

The i-bit codes the instruction type, which is 0 for an A-instruction and 1 for a C-

instruction. In case of a C-instruction, the a-bit and the c-bits code the comp part,

the d-bits code the dest part, and the j-bits code the jump part of the instruction. In

case of an A-instruction, the 15 bits other than the i-bit should be interpreted as a

15-bit constant.

Instruction Execution The various fields of the instruction (i-, a-, c-, d-, and j-bits)

are routed simultaneously to various parts of the architecture, where they cause

different chips to do what they are supposed to do in order to execute either the

A-instruction or the C-instruction, as mandated by the machine language specifi-

cation. In particular, the a-bit determines whether the ALU will operate on the A

register input or on the Memory input, the c-bits determine which function the

ALU will compute, and the d-bits enable various locations to accept the ALU

result.

Next Instruction Fetching As a side effect of executing the current instruction, the

CPU also determines the address of the next instruction and emits it via its pc out-

put. The ‘‘driver’’ of this task is the program counter—an internal part of the CPU

whose output is fed directly to the CPU’s pc output. This is precisely the PC chip

built in chapter 3 (see figure 3.5).

Most of the time, the programmer wants the computer to fetch and execute the

next instruction in the program. Thus if t is the current time-unit, the default pro-

gram counter operation should be PCðtÞ ¼ PCðt � 1Þ þ 1. When we want to effect a
goto n operation, the machine language specification requires to first set the A register

to n (via an A-instruction) and then issue a jump directive (coded by the j-bits of a

subsequent C-instruction). Hence, our challenge is to come up with a hardware im-

plementation of the following logic:

If jumpðtÞ then PCðtÞ ¼ Aðt � 1Þ
else PCðtÞ ¼ PCðt � 1Þ þ 1

95 Computer Architecture

Conveniently, and actually by careful design, this jump control logic can be easily

effected by the proposed CPU implementation. Recall that the PC chip interface

(figure 3.5) has a load control bit that enables it to accept a new input value. Thus,

to effect the desired jump control logic, we start by connecting the output of the A

register to the input of the PC. The only remaining question is when to enable the PC

to accept this value (rather than continuing its steadfast counting), namely, when

does a jump need to occur. This is a function of two signals: (a) the j-bits of the

current instruction, specifying on which condition we are supposed to jump, and (b)

the ALU output status bits, indicating whether the condition is satisfied. If we have a

jump, the PC should be loaded with A’s output. Otherwise, the PC should increment

by 1.

Additionally, if we want the computer to restart the program’s execution, all we

have to do is reset the program counter to 0. That’s why the proposed CPU imple-

mentation feeds the CPU’s reset input directly into the reset pin of the PC chip.

5.3.2 Memory

According to its specification, the Memory chip of the Hack platform is essentially a

package of three lower-level chips: RAM16K, Screen, and Keyboard. At the same-

time, users of the Memory chip must see a single logical address space, spanning

from location 0 to 24576 (0x0000 to 0x6000—see figure 5.7). The implementation of

the Memory chip should create this continuum effect. This can be done by the same

technique used to combine small RAM units into larger ones, as we have done in

chapter 3 (see figure 3.6 and the discussion of n-register memory that accompanies it).

5.3.3 Computer

Once the CPU and the Memory chips have been implemented and tested, the con-

struction of the overall computer is straightforward. Figure 5.10 depicts a possible

implementation.

5.4 Perspective

Following the general spirit of the book, the architecture of the Hack computer is

rather minimal. Typical computer platforms have more registers, more data types,

more powerful ALUs, and richer instruction sets. However, these differences are

96 Chapter 5

mainly quantitative. From a qualitative standpoint, Hack is quite similar to most

digital computers, as they all follow the same conceptual paradigm: the von Neu-

mann architecture.

In terms of function, computer systems can be classified into two categories:

general-purpose computers, designed to easily switch from executing one program

to another, and dedicated computers, usually embedded in other systems like cell

phones, game consoles, digital cameras, weapon systems, factory equipment, and

so on. For any particular application, a single program is burned into the dedicated

computer’s ROM, and is the only one that can be executed (in game consoles,

for example, the game software resides in an external cartridge that is simply a re-

placeable ROM module encased in some fancy package). Aside from this differ-

ence, general-purpose and dedicated computers share the same architectural ideas:

stored programs, fetch-decode-execute logic, CPU, registers, program counter, and

so on.

Unlike Hack, most general-purpose computers use a single address space for stor-

ing both data and instructions. In such architectures, the instruction address as well

as the optional data address specified by the instruction must be fed into the same

outM

addressM

pc

reset

inM

instruction
Instruction

Memory

(ROM32K)

writeM

Data
Memory

(Memory)

C
P

U

Figure 5.10 Proposed implementation of the topmost Computer chip.

97 Computer Architecture

destination: the single address input of the shared address space. Clearly, this cannot

be done at the same time. The standard solution is to base the computer implemen-

tation on a two-cycle logic. During the fetch cycle, the instruction address is fed to

the address input of the memory, causing it to immediately emit the current instruc-

tion, which is then stored in an instruction register. In the subsequent execute cycle,

the instruction is decoded, and the optional data address inferred from it is fed to the

memory’s address input, allowing the instruction to manipulate the selected memory

location. In contrast, the Hack architecture is unique in that it partitions the address

space into two separate parts, allowing a single-cycle fetch-execute logic. The price of

this simpler hardware design is that programs cannot be changed dynamically.

In terms of I/O, the Hack keyboard and screen are rather spartan. General-

purpose computers are typically connected to multiple I/O devices like printers,

disks, network connections, and so on. Also, typical screens are obviously much

more powerful than the Hack screen, featuring more pixels, many brightness levels

in each pixel, and colors. Still, the basic principle that each pixel is controlled by a

memory-resident binary value is maintained: instead of a single bit controlling the

pixel’s black or white color, several bits are devoted to control the level of brightness

of each of the three primary colors that, together, produce the pixel’s ultimate color.

Likewise, the memory mapping of the Hack screen is simplistic. Instead of map-

ping pixels directly into bits of memory, most modern computers allow the CPU

to send high-level graphic instructions to a graphics card that controls the screen.

This way, the CPU is relieved from the tedium of drawing figures like circles and

polygons directly—the graphics card takes care of this task using its own embedded

chip-set.

Finally, it should be stressed that most of the effort and creativity in designing

computer hardware is invested in achieving better performance. Thus, hardware ar-

chitecture courses and textbooks typically evolve around such issues as implementing

memory hierarchies (cache), better access to I/O devices, pipelining, parallelism, in-

struction prefetching, and other optimization techniques that were sidestepped in this

chapter.

Historically, attempts to enhance the processor’s performance have led to two

main schools of hardware design. Advocates of the Complex Instruction Set Com-

puting (CISC) approach argue for achieving better performance by providing rich

and elaborate instruction sets. Conversely, the Reduced Instruction Set Computing

(RISC) camp uses simpler instruction sets in order to promote as fast a hardware

implementation as possible. The Hack computer does not enter this debate, featuring

neither a strong instruction set nor special hardware acceleration techniques.

98 Chapter 5

5.5 Project

Objective Build the Hack computer platform, culminating in the topmost Com-

puter chip.

Resources The only tools that you need for completing this project are the hard-

ware simulator supplied with the book and the test scripts described here. The com-

puter platform should be implemented in the HDL language specified in appendix A.

Contract The computer platform built in this project should be capable of executing

programs written in the Hack machine language, specified in chapter 4. Demonstrate

this capability by having your Computer chip run the three programs given here.

Component Testing We supply test scripts and compare files for unit-testing the

Memory and CPU chips in isolation. It’s important to complete the testing of these

chips before building and testing the overall Computer chip.

Test Programs A natural way to test the overall Computer chip implementation

is to have it execute some sample programs written in the Hack machine language.

In order to run such a test, one can write a test script that loads the Computer chip

into the hardware simulator, loads a program from an external text file into its ROM

chip, and then runs the clock enough cycles to execute the program. We supply all

the files necessary to run three such tests, as follows:

1. Add.hack: Adds the two constants 2 and 3 and writes the result in RAM[0].

2. Max.hack: Computes the maximum of RAM[0] and RAM[1] and writes the

result in RAM[2].

3. Rect.hack: Draws a rectangle of width 16 pixels and length RAM[0] at the

top left of the screen.

Before testing your Computer chip on any one of the above programs, read the test

script associated with the program and be sure to understand the instructions given

to the simulator. Appendix B may be a useful reference here.

Steps Build the computer in the following order:

m Memory: Composed from three chips: RAM16K, Screen, and Keyboard. The

Screen and the Keyboard are available as built-in chips and there is no need to build

99 Computer Architecture

them. Although the RAM16K chip was built in the project in chapter 3, we recom-

mend using its built-in version, as it provides a debugging-friendly GUI.

m CPU: Can be composed according to the proposed implementation given in

figure 5.9, using the ALU and register chips built in chapters 2 and 3, respectively.

We recommend using the built-in versions of these chips, in particular ARegister

and DRegister. These chips have exactly the same functionality of the Register chip

specified in chapter 3, plus GUI side effects.

In the course of implementing the CPU, it is allowed (but not necessarily recom-

mended) to specify and build some internal chips of your own. This is up to you. If

you choose to create new chips not mentioned in the book, be sure to document and

test them carefully before you plug them into the architecture.

m Instruction Memory: Use the built-in ROM32K chip.

m Computer: The topmost Computer chip can be composed from the chips men-

tioned earlier, using figure 5.10 as a blueprint.

The Hardware Simulator As in the projects in chapters 1–3, all the chips in this

project (including the topmost Computer chip) can be implemented and tested using

the hardware simulator supplied with the book. Figure 5.11 is a screen shot of testing

the Rect.hack program on a Computer chip implementation.

100 Chapter 5

Figure 5.11 Testing the Computer chip on the hardware simulator. The Rect program draws
a rectangle of width 16 pixels and length RAM[0] at the top left of the screen. Note that the
program is correct. Thus, if it does not work properly, it means that the computer platform on
which it runs (Computer.hdl and/or some of its lower-level parts) is buggy.

101 Computer Architecture

6 Assembler

What’s in a name? That which we call a rose by any other name would smell as sweet.

—Shakespeare, from Romeo and Juliet

The first half of the book (chapters 1–5) described and built a computer’s hardware

platform. The second half of the book (chapters 6–12) focuses on the computer’s

software hierarchy, culminating in the development of a compiler and a basic oper-

ating system for a simple, object-based programming language. The first and most

basic module in this software hierarchy is the assembler. In particular, chapter 4

presented machine languages in both their assembly and binary representations. This

chapter describes how assemblers can systematically translate programs written in

the former into programs written in the latter. As the chapter unfolds, we explain

how to develop a Hack assembler—a program that generates binary code that can

run as is on the hardware platform built in chapter 5.

Since the relationship between symbolic assembly commands and their corre-

sponding binary codes is straightforward, writing an assembler (using some high-

level language) is not a difficult task. One complication arises from allowing

assembly programs to use symbolic references to memory addresses. The assembler is

expected to manage these user-defined symbols and resolve them to physical memory

addresses. This task is normally done using a symbol table—a classical data structure

that comes to play in many software translation projects.

As usual, the Hack assembler is not an end in itself. Rather, it provides a simple

and concise demonstration of the key software engineering principles used in the

construction of any assembler. Further, writing the assembler is the first in the series

of seven software development projects that accompany the rest of the book. Unlike

the hardware projects, which were implemented in HDL, the software projects that

construct the translator programs (assembler, virtual machine, and compiler) may be

implemented in any programming language. In each project, we provide a language-

neutral API and a detailed step-by-step test plan, along with all the necessary test

weymour

Highlight

programs and test scripts. Each one of these projects, beginning with the assembler,

is a stand-alone module that can be developed and tested in isolation from all the

other projects.

6.1 Background

Machine languages are typically specified in two flavors: symbolic and binary. The

binary codes—for example, 110000101000000110000000000000111—represent

actual machine instructions, as understood by the underlying hardware. For exam-

ple, the instruction’s leftmost 8 bits can represent an operation code, say LOAD, the

next 8 bits a register, say R3, and the remaining 16 bits an address, say 7. Depending

on the hardware’s logic design and the agreed-upon machine language, the overall

32-bit pattern can thus cause the hardware to effect the operation ‘‘load the contents

of Memory[7] into register R3.’’ Modern computer platforms support dozens if

not hundreds of such elementary operations. Thus, machine languages can be rather

complex, involving many operation codes, different memory addressing modes, and

various instruction formats.

One way to cope with this complexity is to document machine instructions

using an agreed-upon syntax, say LOAD R3,7 rather than 110000101000000110

000000000000111. And since the translation from symbolic notation to binary code

is straightforward, it makes sense to allow low-level programs to be written in sym-

bolic notation and to have a computer program translate them into binary code. The

symbolic language is called assembly, and the translator program assembler. The

assembler parses each assembly command into its underlying fields, translates each

field into its equivalent binary code, and assembles the generated codes into a binary

instruction that can be actually executed by the hardware.

Symbols Binary instructions are represented in binary code. By definition, they

refer to memory addresses using actual numbers. For example, consider a program

that uses a variable to represent the weight of various things, and suppose that this

variable has been mapped on location 7 in the computer’s memory. At the binary

code level, instructions that manipulate the weight variable must refer to it using the

explicit address 7. Yet once we step up to the assembly level, we can allow writing

commands like LOAD R3,weight instead of LOAD R3,7. In both cases, the command

will effect the same operation: ‘‘set R3 to the contents of Memory[7].’’ In a similar

fashion, rather than using commands like goto 250, assembly languages allow com-

mands like goto loop, assuming that somewhere in the program the symbol loop is

104 Chapter 6

made to refer to address 250. In general then, symbols are introduced into assembly

programs from two sources:

m Variables: The programmer can use symbolic variable names, and the trans-

lator will ‘‘automatically’’ assign them to memory addresses. Note that the actual

values of these addresses are insignificant, so long as each symbol is resolved to the

same address throughout the program’s translation.

m Labels: The programmer can mark various locations in the program with sym-

bols. For example, one can declare the label loop to refer to the beginning of a cer-

tain code segment. Other commands in the program can then goto loop, either

conditionally or unconditionally.

The introduction of symbols into assembly languages suggests that assemblers

must be more sophisticated than dumb text processing programs. Granted, trans-

lating agreed-upon symbols into agreed-upon binary codes is not a complicated task.

At the same time, the mapping of user-defined variable names and symbolic labels

on actual memory addresses is not trivial. In fact, this symbol resolution task is the

first nontrivial translation challenge in our ascent up the software hierarchy from the

hardware level. The following example illustrates the challenge and the common way

to address it.

Symbol Resolution Consider figure 6.1, showing a program written in some self-

explanatory low-level language. The program contains four user-defined symbols:

two variable names (i and sum) and two labels (loop and end). How can we sys-

tematically convert this program into a symbol-less code?

We start by making two arbitrary game rules: The translated code will be stored

in the computer’s memory starting at address 0, and variables will be allocated to

memory locations starting at address 1024 (these rules depend on the specific target

hardware platform). Next, we build a symbol table, as follows. For each new symbol

xxx encountered in the source code, we add a line ðxxx , nÞ to the symbol table,
where n is the memory address associated with the symbol according to the game

rules. After completing the construction of the symbol table, we use it to translate the

program into its symbol-less version.

Note that according to the assumed game rules, variables i and sum are allo-

cated to addresses 1024 and 1025, respectively. Of course any other two addresses

will be just as good, so long as all references to i and sum in the program resolve

to the same physical addresses, as indeed is the case. The remaining code is self-

explanatory, except perhaps for instruction 6. This instruction terminates the pro-

gram’s execution by putting the computer in an infinite loop.

105 Assembler

Three comments are in order here. First, note that the variable allocation as-

sumption implies that the largest program that we can run is 1,024 instructions

long. Since realistic programs (like the operating system) are obviously much larger,

the base address for storing variables will normally be much farther. Second, the as-

sumption that each source command is mapped on one word may be naı̈ve. Typi-

cally, some assembly commands (e.g., if i=101 goto end) may translate into several

machine instructions and thus will end up occupying several memory locations.

The translator can deal with this variance by keeping track of how many words

each source command generates, then updating its ‘‘instruction memory counter’’

accordingly.

Finally, the assumption that each variable is represented by a single memory lo-

cation is also naı̈ve. Programming languages feature variables of different types, and

these occupy different memory spaces on the target computer. For example, the C

language data types short and double represent 16-bit and 64-bit numbers, respec-

tively. When a C program is run on a 16-bit machine, these variables will occupy a

single memory address and a block of four consecutive addresses, respectively. Thus,

when allocating memory space for variables, the translator must take into account

both their data types and the word width of the target hardware.

The Assembler Before an assembly program can be executed on a computer, it must

be translated into the computer’s binary machine language. The translation task is

Code with symbols Symbol table Code with symbols resolved

00

01

02

03

04

05

06

// Computes sum=1+...+100

i=1

sum=0

loop:

if i=101 goto end

sum=sum+i

i=i+1

goto loop

end:

goto end

i 1024

sum 1025

loop 2

end 6

00

01

02

03

04

05

06

M[1024]=1 // (M=memory)

M[1025]=0

if M[1024]=101 goto 6

M[1025]=M[1025]+M[1024]

M[1024]=M[1024]+1

goto 2

goto 6

(assuming that

variables are

allocated to

Memory[1024]

onward)
(assuming that each symbolic

command is translated into one

word in memory)

Figure 6.1 Symbol resolution using a symbol table. The line numbers are not part of the
program—they simply count all the lines in the program that represent real instructions,
namely, neither comments nor label declarations. Note that once we have the symbol table in
place, the symbol resolution task is straightforward.

106 Chapter 6

done by a program called the assembler. The assembler takes as input a stream of

assembly commands and generates as output a stream of equivalent binary instruc-

tions. The resulting code can be loaded as is into the computer’s memory and exe-

cuted by the hardware.

We see that the assembler is essentially a text-processing program, designed to

provide translation services. The programmer who is commissioned to write the

assembler must be given the full documentation of the assembly syntax, on the

one hand, and the respective binary codes, on the other. Following this contract—

typically called machine language specification—it is not difficult to write a program

that, for each symbolic command, carries out the following tasks (not necessarily in

that order):

m Parse the symbolic command into its underlying fields.

m For each field, generate the corresponding bits in the machine language.

m Replace all symbolic references (if any) with numeric addresses of memory

locations.

m Assemble the binary codes into a complete machine instruction.

Three of the above tasks (parsing, code generation, and final assembly) are rather

easy to implement. The fourth task—symbols handling—is more challenging, and

considered one of the main functions of the assembler. This function was described in

the previous section. The next two sections specify the Hack assembly language and

propose an assembler implementation for it, respectively.

6.2 Hack Assembly-to-Binary Translation Specification

The Hack assembly language and its equivalent binary representation were specified

in chapter 4. A compact and formal version of this language specification is repeated

here, for ease of reference. This specification can be viewed as the contract that Hack

assemblers must implement, one way or another.

6.2.1 Syntax Conventions and File Formats

File Names By convention, programs in binary machine code and in assembly

code are stored in text files with ‘‘hack’’ and ‘‘asm’’ extensions, respectively. Thus, a

Prog.asm file is translated by the assembler into a Prog.hack file.

107 Assembler

Binary Code (.hack) Files A binary code file is composed of text lines. Each line is

a sequence of 16 ‘‘0’’ and ‘‘1’’ ASCII characters, coding a single 16-bit machine lan-

guage instruction. Taken together, all the lines in the file represent a machine lan-

guage program. When a machine language program is loaded into the computer’s

instruction memory, the binary code represented by the file’s nth line is stored in ad-

dress n of the instruction memory (the count of both program lines and memory

addresses starts at 0).

Assembly Language (.asm) Files An assembly language file is composed of text

lines, each representing either an instruction or a symbol declaration:

m Instruction: an A-instruction or a C-instruction, described in section 6.2.2.

m (Symbol): This pseudo-command binds the Symbol to the memory location

into which the next command in the program will be stored. It is called ‘‘pseudo-

command’’ since it generates no machine code.

(The remaining conventions in this section pertain to assembly programs only.)

Constants and Symbols Constants must be non-negative and are written in decimal

notation. A user-defined symbol can be any sequence of letters, digits, underscore (_),

dot (.), dollar sign ($), and colon (:) that does not begin with a digit.

Comments Text beginning with two slashes (//) and ending at the end of the line is

considered a comment and is ignored.

White Space Space characters are ignored. Empty lines are ignored.

Case Conventions All the assembly mnemonics must be written in uppercase. The

rest (user-defined labels and variable names) is case sensitive. The convention is to

use uppercase for labels and lowercase for variable names.

6.2.2 Instructions

The Hack machine language consists of two instruction types called addressing in-

struction (A-instruction) and compute instruction (C-instruction). The instruction

format is as follows.

108 Chapter 6

weymour

Highlight

A-instruction: @value // Where value is either a non-negative decimal number

// or a symbol referring to such number.

value (v ¼ 0 or 1)

Binary: 0 v v v v v v v v v v v v v v v

C-instruction: dest¼comp;jump // Either the dest or jump fields may be empty.
// If dest is empty, the ‘‘¼’’ is omitted;
// If jump is empty, the ‘‘;’’ is omitted.

comp dest jump

Binary: 1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

The translation of each of the three fields comp, dest, jump to their binary forms is

specified in the following three tables.

comp

(when a¼0) c1 c2 c3 c4 c5 c6
comp

(when a¼1)
0 1 0 1 0 1 0

1 1 1 1 1 1 1

-1 1 1 1 0 1 0

D 0 0 1 1 0 0

A 1 1 0 0 0 0 M

!D 0 0 1 1 0 1

!A 1 1 0 0 0 1 !M

-D 0 0 1 1 1 1

-A 1 1 0 0 1 1 -M

D+1 0 1 1 1 1 1

A+1 1 1 0 1 1 1 M+1

D-1 0 0 1 1 1 0

A-1 1 1 0 0 1 0 M-1

D+A 0 0 0 0 1 0 D+M

D-A 0 1 0 0 1 1 D-M

A-D 0 0 0 1 1 1 M-D

D&A 0 0 0 0 0 0 D&M

D|A 0 1 0 1 0 1 D|M

109 Assembler

dest d1 d2 d3 jump j1 j2 j3

null 0 0 0 null 0 0 0

M 0 0 1 JGT 0 0 1

D 0 1 0 JEQ 0 1 0

MD 0 1 1 JGE 0 1 1

A 1 0 0 JLT 1 0 0

AM 1 0 1 JNE 1 0 1

AD 1 1 0 JLE 1 1 0

AMD 1 1 1 JMP 1 1 1

6.2.3 Symbols

Hack assembly commands can refer to memory locations (addresses) using

either constants or symbols. Symbols in assembly programs arise from three

sources.

Predefined Symbols Any Hack assembly program is allowed to use the following

predefined symbols.

Label RAM address (hexa)

SP 0 0x0000

LCL 1 0x0001

ARG 2 0x0002

THIS 3 0x0003

THAT 4 0x0004

R0-R15 0-15 0x0000-f

SCREEN 16384 0x4000

KBD 24576 0x6000

Note that each one of the top five RAM locations can be referred to using two

predefined symbols. For example, either R2 or ARG can be used to refer to

RAM[2].

Label Symbols The pseudo-command (Xxx) defines the symbol Xxx to refer to the

instruction memory location holding the next command in the program. A label can

be defined only once and can be used anywhere in the assembly program, even before

the line in which it is defined.

110 Chapter 6

Variable Symbols Any symbol Xxx appearing in an assembly program that is

not predefined and is not defined elsewhere using the (Xxx) command is treated as

a variable. Variables are mapped to consecutive memory locations as they are first

encountered, starting at RAM address 16 (0x0010).

6.2.4 Example

Chapter 4 presented a program that sums up the integers 1 to 100. Figure 6.2 repeats

this example, showing both its assembly and binary versions.

Assembly code (Prog.asm) Binary code (Prog.hack)

// Adds 1 + ... + 100

@i

M=1 // i=1

@sum

M=0 // sum=0

(LOOP)

@i

D=M // D=i

@100

D=D-A // D=i-100

@END

D;JGT // if (i-100)>0 goto END

@i

D=M // D=i

@sum

M=D+M // sum=sum+i

@i

M=M+1 // i=i+1

@LOOP

0;JMP // goto LOOP

(END)

@END

0;JMP // infinite loop

Assembler

(this line should be erased)

0000 0000 0001 0000

1110 1111 1100 1000

0000 0000 0001 0001

1110 1010 1000 1000

(this line should be erased)

0000 0000 0001 0000

1111 1100 0001 0000

0000 0000 0110 0100

1110 0100 1101 0000

0000 0000 0001 0010

1110 0011 0000 0001

0000 0000 0001 0000

1111 1100 0001 0000

0000 0000 0001 0001

1111 0000 1000 1000

0000 0000 0001 0000

1111 1101 1100 1000

0000 0000 0000 0100

1110 1010 1000 0111

(this line should be erased)

0000 0000 0001 0010

1110 1010 1000 0111

Figure 6.2 Assembly and binary representations of the same program.

111 Assembler

6.3 Implementation

The Hack assembler reads as input a text file named Prog.asm, containing a Hack

assembly program, and produces as output a text file named Prog.hack, contain-

ing the translated Hack machine code. The name of the input file is supplied to the

assembler as a command line argument:

prompt> Assembler Prog.asm

The translation of each individual assembly command to its equivalent binary in-

struction is direct and one-to-one. Each command is translated separately. In partic-

ular, each mnemonic component (field) of the assembly command is translated into

its corresponding bit code according to the tables in section 6.2.2, and each symbol in

the command is resolved to its numeric address as specified in section 6.2.3.

We propose an assembler implementation based on four modules: a Parser module

that parses the input, a Code module that provides the binary codes of all the as-

sembly mnemonics, a SymbolTable module that handles symbols, and a main pro-

gram that drives the entire translation process.

A Note about API Notation The assembler development is the first in a series of

five software construction projects that build our hierarchy of translators (assembler,

virtual machine, and compiler). Since readers can develop these projects in the pro-

gramming language of their choice, we base our proposed implementation guidelines

on language independent APIs. A typical project API describes several modules, each

containing one or more routines. In object-oriented languages like Java, Cþþ, and
C#, a module usually corresponds to a class, and a routine usually corresponds to

a method. In procedural languages, routines correspond to functions, subroutines,

or procedures, and modules correspond to collections of routines that handle related

data. In some languages (e.g., Modula-2) a module may be expressed explicitly, in

others implicitly (e.g., a file in the C language), and in others (e.g., Pascal) it will

have no corresponding language construct, and will just be a conceptual grouping of

routines.

6.3.1 The Parser Module

The main function of the parser is to break each assembly command into its under-

lying components (fields and symbols). The API is as follows.

112 Chapter 6

Parser: Encapsulates access to the input code. Reads an assembly language com-

mand, parses it, and provides convenient access to the command’s components

(fields and symbols). In addition, removes all white space and comments.

Routine Arguments Returns Function

Constructor/

initializer

Input file/

stream

— Opens the input file/stream and

gets ready to parse it.

hasMoreCommands — Boolean Are there more commands in the

input?

advance — — Reads the next command from

the input and makes it the current

command. Should be called only

if hasMoreCommands() is true.

Initially there is no current command.

commandType — A_COMMAND,

C_COMMAND,

L_COMMAND

Returns the type of the current

command:
m A_COMMAND for @Xxx where

Xxx is either a symbol or a

decimal number
m C_COMMAND for

dest=comp;jump
m L_COMMAND (actually, pseudo-

command) for (Xxx) where Xxx

is a symbol.

symbol — string Returns the symbol or decimal

Xxx of the current command

@Xxx or (Xxx). Should be called

only when commandType() is

A_COMMAND or L_COMMAND.

dest — string Returns the dest mnemonic in

the current C-command (8 possi-

bilities). Should be called only

when commandType() is C_COMMAND.

113 Assembler

Routine Arguments Returns Function

comp — string Returns the comp mnemonic in

the current C-command (28 pos-

sibilities). Should be called only

when commandType() is

C_COMMAND.

jump — string Returns the jump mnemonic in

the current C-command (8 pos-

sibilities). Should be called only

when commandType() is

C_COMMAND.

6.3.2 The Code Module

Code: Translates Hack assembly language mnemonics into binary codes.

Routine Arguments Returns Function

dest mnemonic (string) 3 bits Returns the binary code of the

dest mnemonic.

comp mnemonic (string) 7 bits Returns the binary code of the

comp mnemonic.

jump mnemonic (string) 3 bits Returns the binary code of the

jump mnemonic.

6.3.3 Assembler for Programs with No Symbols

We suggest building the assembler in two stages. In the first stage, write an assembler

that translates assembly programs without symbols. This can be done using the

Parser and Code modules just described. In the second stage, extend the assembler

with symbol handling capabilities, as we explain in the next section.

The contract for the first symbol-less stage is that the input Prog.asm program

contains no symbols. This means that (a) in all address commands of type @Xxx the

Xxx constants are decimal numbers and not symbols, and (b) the input file contains

no label commands, namely, no commands of type (Xxx).

114 Chapter 6

The overall symbol-less assembler program can now be implemented as follows.

First, the program opens an output file named Prog.hack. Next, the program

marches through the lines (assembly instructions) in the supplied Prog.asm file.

For each C-instruction, the program concatenates the translated binary codes of the

instruction fields into a single 16-bit word. Next, the program writes this word into

the Prog.hack file. For each A-instruction of type @Xxx, the program translates the

decimal constant returned by the parser into its binary representation and writes the

resulting 16-bit word into the Prog.hack file.

6.3.4 The SymbolTable Module

Since Hack instructions can contain symbols, the symbols must be resolved into

actual addresses as part of the translation process. The assembler deals with this task

using a symbol table, designed to create and maintain the correspondence between

symbols and their meaning (in Hack’s case, RAM and ROM addresses). A natural

data structure for representing such a relationship is the classical hash table. In most

programming languages, such a data structure is available as part of a standard

library, and thus there is no need to develop it from scratch. We propose the follow-

ing API.

SymbolTable: Keeps a correspondence between symbolic labels and numeric

addresses.

Routine Arguments Returns Function

Constructor — — Creates a new empty symbol

table.

addEntry symbol (string),

address (int)

— Adds the pair (symbol,

address) to the table.

contains symbol (string) Boolean Does the symbol table contain

the given symbol?

GetAddress symbol (string) int Returns the address associated

with the symbol.

6.3.5 Assembler for Programs with Symbols

Assembly programs are allowed to use symbolic labels (destinations of goto com-

mands) before the symbols are defined. This convention makes the life of assembly

115 Assembler

programmers easier and that of assembler developers harder. A common solution

to this complication is to write a two-pass assembler that reads the code twice, from

start to end. In the first pass, the assembler builds the symbol table and generates

no code. In the second pass, all the label symbols encountered in the program have

already been bound to memory locations and recorded in the symbol table. Thus, the

assembler can replace each symbol with its corresponding meaning (numeric address)

and generate the final binary code.

Recall that there are three types of symbols in the Hack language: predefined

symbols, labels, and variables. The symbol table should contain and handle all these

symbols, as follows.

Initialization Initialize the symbol table with all the predefined symbols and their

pre-allocated RAM addresses, according to section 6.2.3.

First Pass Go through the entire assembly program, line by line, and build the

symbol table without generating any code. As you march through the program lines,

keep a running number recording the ROM address into which the current command

will be eventually loaded. This number starts at 0 and is incremented by 1 whenever

a C-instruction or an A-instruction is encountered, but does not change when a label

pseudocommand or a comment is encountered. Each time a pseudocommand (Xxx)

is encountered, add a new entry to the symbol table, associating Xxx with the ROM

address that will eventually store the next command in the program. This pass results

in entering all the program’s labels along with their ROM addresses into the symbol

table. The program’s variables are handled in the second pass.

Second Pass Now go again through the entire program, and parse each line. Each

time a symbolic A-instruction is encountered, namely, @Xxx where Xxx is a symbol

and not a number, look up Xxx in the symbol table. If the symbol is found in the

table, replace it with its numeric meaning and complete the command’s translation.

If the symbol is not found in the table, then it must represent a new variable. To

handle it, add the pair (Xxx, n) to the symbol table, where n is the next available

RAM address, and complete the command’s translation. The allocated RAM

addresses are consecutive numbers, starting at address 16 (just after the addresses

allocated to the predefined symbols).

This completes the assembler’s implementation.

116 Chapter 6

6.4 Perspective

Like most assemblers, the Hack assembler is a relatively simple program, dealing

mainly with text processing. Naturally, assemblers for richer machine languages are

more complex. Also, some assemblers feature more sophisticated symbol handling

capabilities not found in Hack. For example, the assembler may allow programmers

to explicitly associate symbols with particular data addresses, to perform ‘‘constant

arithmetic’’ on symbols (e.g., to use table+5 to refer to the fifth memory location

after the address referred to by table), and so on. Additionally, many assemblers

are capable of handling macro commands. A macro command is simply a sequence of

machine instructions that has a name. For example, our assembler can be extended

to translate an agreed-upon macro-command, say D=M[xxx], into the two instruc-

tions @xxx followed immediately by D=M (xxx being an address). Clearly, such

macro commands can considerably simplify the programming of commonly occur-

ring operations, at a low translation cost.

We note in closing that stand-alone assemblers are rarely used in practice.

First, assembly programs are rarely written by humans, but rather by compilers. And

a compiler—being an automaton—does not have to bother to generate symbolic

commands, since it may be more convenient to directly produce binary machine

code. On the other hand, many high-level language compilers allow programmers to

embed segments of assembly language code within high-level programs. This capa-

bility, which is rather common in C language compilers, gives the programmer direct

control of the underlying hardware, for optimization.

6.5 Project

Objective Develop an assembler that translates programs written in Hack assembly

language into the binary code understood by the Hack hardware platform. The

assembler must implement the translation specification described in section 6.2.

Resources The only tool needed for completing this project is the program-

ming language in which you will implement your assembler. You may also find

the following two tools useful: the assembler and CPU emulator supplied with the

book. These tools allow you to experiment with a working assembler before you

set out to build one yourself. In addition, the supplied assembler provides a visual

117 Assembler

weymour

Highlight

line-by-line translation GUI and allows online code comparisons with the outputs

that your assembler will generate. For more information about these capabilities,

refer to the assembler tutorial (part of the book’s software suite).

Contract When loaded into your assembler, a Prog.asm file containing a valid

Hack assembly language program should be translated into the correct Hack binary

code and stored in a Prog.hack file. The output produced by your assembler must

be identical to the output produced by the assembler supplied with the book.

Building Plan We suggest building the assembler in two stages. First write a

symbol-less assembler, namely, an assembler that can only translate programs that

contain no symbols. Then extend your assembler with symbol handling capabilities.

The test programs that we supply here come in two such versions (without and with

symbols), to help you test your assembler incrementally.

Test Programs Each test program except the first one comes in two versions:

ProgL.asm is symbol-less, and Prog.asm is with symbols.

Add: Adds the constants 2 and 3 and puts the result in R0.

Max: Computes maxðR0; R1Þ and puts the result in R2.
Rect: Draws a rectangle at the top left corner of the screen. The rectangle is 16

pixels wide and R0 pixels high.

Pong: A single-player Ping-Pong game. A ball bounces constantly off the screen’s

‘‘walls.’’ The player attempts to hit the ball with a bat by pressing the left and right

arrow keys. For every successful hit, the player gains one point and the bat shrinks a

little to make the game harder. If the player misses the ball, the game is over. To quit

the game, press ESC.

The Pong program was written in the Jack programming language (chapter 9)

and translated into the supplied assembly program by the Jack compiler (chap-

ters 10–11). Although the original Jack program is only about 300 lines of code,

the executable Pong application is about 20,000 lines of binary code, most of

which being the Jack operating system (chapter 12). Running this interactive pro-

gram in the CPU emulator is a slow affair, so don’t expect a high-powered Pong

game. This slowness is actually a virtue, since it enables your eye to track the

graphical behavior of the program. In future projects in the book, this game will run

much faster.

118 Chapter 6

Steps Write and test your assembler program in the two stages described

previously. You may use the assembler supplied with the book to compare the out-

put of your assembler to the correct output. This testing procedure is described

next. For more information about the supplied assembler, refer to the assembler

tutorial.

The Supplied Assembler The practice of using the supplied assembler (which pro-

duces correct binary code) to test another assembler (which is not necessarily correct)

is illustrated in figure 6.3. Let Prog.asm be some program written in Hack assembly.

Suppose that we translate this program using the supplied assembler, producing

Figure 6.3 Using the supplied assembler to test the code generated by another assembler.

119 Assembler

a binary file called Prog.hack. Next, we use another assembler (e.g., the one that

you wrote) to translate the same program into another file, say Prog1.hack. Now, if

the latter assembler is working correctly, it follows that Prog.hack = Prog1.hack.

Thus, one way to test a newly written assembler is to load Prog.asm into the sup-

plied assembler program, load Prog1.hack as a compare file, then translate and

compare the two binary files (see figure 6.3). If the comparison fails, the assembler

that produced Prog1.hack must be buggy; otherwise, it may be error-free.

120 Chapter 6

7 Virtual Machine I: Stack Arithmetic

Programmers are creators of universes for which they alone are responsible. Universes of virtu-

ally unlimited complexity can be created in the form of computer programs.

—Joseph Weizenbaum, Computer Power and Human Reason (1974)

This chapter describes the first steps toward building a compiler for a typical object-

based high-level language. We will approach this substantial task in two stages, each

spanning two chapters. High-level programs will first be translated into an interme-

diate code (chapters 10–11), and the intermediate code will then be translated into

machine language (chapters 7–8). This two-tier translation model is a rather old idea

that goes back to the 1970s. Recently, it made a significant comeback following its

adoption by modern languages like Java and C#.

The basic idea is as follows: Instead of running on a real platform, the intermedi-

ate code is designed to run on a Virtual Machine. The VM is an abstract computer

that does not exist for real, but can rather be realized on other computer platforms.

There are many reasons why this idea makes sense, one of which being code trans-

portability. Since the VM may be implemented with relative ease on multiple target

platforms, VM-based software can run on many processors and operating systems

without having to modify the original source code. The VM implementations can be

realized in several ways, by software interpreters, by special-purpose hardware, or by

translating the VM programs into the machine language of the target platform.

This chapter presents a typical VM architecture, modeled after the Java Virtual

Machine (JVM) paradigm. As usual, we focus on two perspectives. First, we moti-

vate and specify the VM abstraction. Next, we implement it over the Hack platform.

Our implementation entails writing a program called VM translator, designed to

translate VM code into Hack assembly code. The software suite that comes with the

book illustrates yet another implementation vehicle, called VM emulator. This pro-

gram implements the VM by emulating it on a standard personal computer using

Java.

weymour

Highlight

A virtual machine model typically has a language, in which one can write VM

programs. The VM language that we present here consists of four types of com-

mands: arithmetic, memory access, program flow, and subroutine calling commands.

We split the implementation of this language into two parts, each covered in a sepa-

rate chapter and project. In this chapter we build a basic VM translator, capable

of translating the VM’s arithmetic and memory access commands into machine lan-

guage. In the next chapter we extend the basic translator with program flow and

subroutine calling functionality. The result is a full-scale virtual machine that will

serve as the backend of the compiler that we will build in chapters 10–11.

The virtual machine that emerges from this effort illustrates many important ideas

in computer science. First, the notion of having one computer emulating another is

a fundamental idea in the field, tracing back to Alan Turing in the 1930s. Over the

years it had many practical implications, for example, using an emulator of an old

generation computer running on a new platform in order to achieve upward code

compatibility. More recently, the virtual machine model became the centerpiece

of two competing mainstreams—the Java architecture and the .NET infrastructure.

These software environments are rather complex, and one way to gain an inside view

of their underlying structure is to build a simple version of their VM cores, as we do

here.

Another important topic embedded in this chapter is stack processing. The stack

is a fundamental and elegant data structure that comes to play in many computer

systems and algorithms. Since the VM presented in this chapter is stack-based, it

provides a working example of this remarkably versatile data structure.

7.1 Background

7.1.1 The Virtual Machine Paradigm

Before a high-level program can run on a target computer, it must be translated into

the computer’s machine language. This translation—known as compilation—is a

rather complex process. Normally, a separate compiler is written specifically for any

given pair of high-level language and target machine language. This leads to a pro-

liferation of many different compilers, each depending on every detail of both its

source and destination languages. One way to decouple this dependency is to break

the overall compilation process into two nearly separate stages. In the first stage,

the high-level program is parsed and its commands are translated into intermediate

122 Chapter 7

processing steps—steps that are neither ‘‘high’’ nor ‘‘low.’’ In the second stage, the

intermediate steps are translated further into the machine language of the target

hardware.

This decomposition is very appealing from a software engineering perspective: The

first stage depends only on the specifics of the source high-level language, and the

second stage only on the specifics of the target machine language. Of course, the in-

terface between the two compilation stages—the exact definition of the intermediate

processing steps—must be carefully designed. In fact, this interface is sufficiently im-

portant to merit its own definition as a stand-alone language of an abstract machine.

Specifically, one can formulate a virtual machine whose instructions are the interme-

diate processing steps into which high-level commands are decomposed. The com-

piler that was formerly a single monolithic program is now split into two separate

programs. The first program, still termed compiler, translates the high-level code into

intermediate VM instructions, while the second program translates this VM code

into the machine language of the target platform.

This two-stage compilation model has been used—one way or another—in many

compiler construction projects. Some developers went as far as defining a formal and

stand-alone virtual machine language, most notably the p-code generated by several

Pascal compilers in the 1970s. Java compilers are also two-tiered, generating a byte-

code language that runs on the JVM virtual machine (also called the Java Runtime

Environment). More recently, the approach has been adopted by the .NET infra-

structure. In particular, .NET requires compilers to generate code written in an

intermediate language (IL) that runs on a virtual machine called CLR (Common

Language Runtime).

Indeed, the notion of an explicit and formal virtual machine language has several

practical advantages. First, compilers for different target platforms can be obtained

with relative ease by replacing only the virtual machine implementation (sometimes

called the compiler’s backend). This, in turn, allows the VM code to become trans-

portable across different hardware platforms, permitting a range of implementation

trade-offs among code efficiency, hardware cost, and programming effort. Second,

compilers for many languages can share the same VM backend, allowing code

sharing and language interoperability. For example, one high-level language may be

good at scientific calculations, while another may excel in handling the user interface.

If both languages compile into a common VM layer, it is rather natural to have

routines in one language call routines in the other, using an agreed-upon invocation

syntax.

Another benefit of the virtual machine approach is modularity. Every improve-

ment in the efficiency of the VM implementation is immediately inherited by all the

123 Virtual Machine I: Stack Arithmetic

compilers above it. Likewise, every new digital device or appliance that is equipped

with a VM implementation can immediately benefit from a huge base of available

software, as seen in figure 7.1.

7.1.2 The Stack Machine Model

Like most programming languages, the VM language consists of arithmetic, memory

access, program flow, and subroutine calling operations. There are several possible

software paradigms on which to base such a language implementation. One of the

key questions regarding this choice is where will the operands and the results of the

VM operations reside? Perhaps the cleanest solution is to put them on a stack data

structure.

In a stack machine model, arithmetic commands pop their operands from the

top of the stack and push their results back onto the top of the stack. Other com-

mands transfer data items from the stack’s top to designated memory locations, and

vice versa. As it turns out, these simple stack operations can be used to implement

the evaluation of any arithmetic or logical expression. Further, any program, written

in any programming language, can be translated into an equivalent stack machine

program. One such stack machine model is used in the Java Virtual Machine as well

as in the VM described and built in what follows.

Elementary Stack Operations A stack is an abstract data structure that supports

two basic operations: push and pop. The push operation adds an element to the top

of the stack; the element that was previously on top is pushed below the newly added

element. The pop operation retrieves and removes the top element; the element just

below it moves up to the top position. Thus the stack implements a last-in-first-out

(LIFO) storage model, illustrated in figure 7.2.

We see that stack access differs from conventional memory access in several

respects. First, the stack is accessible only from the top, one item at a time. Second,

reading the stack is a lossy operation: The only way to retrieve the top value is

to remove it from the stack. In contrast, the act of reading a value from a regular

memory location has no impact on the memory’s state. Finally, writing an item onto

the stack adds it to the stack’s top, without changing the rest of the stack. In con-

trast, writing an item into a regular memory location is a lossy operation, since it

overrides the location’s previous value.

The stack data structure can be implemented in several different ways. The sim-

plest approach is to keep an array, say stack, and a stack pointer variable, say sp,

that points to the available location just above the topmost element. The push x

124 Chapter 7

. . .
RISC

machine

VM language

Other digital platforms, each equipped
with its VM implementation

RISC
machine
language

Hack
computer

Hack
machine
language

CISC
machine
language

CISC
machine

. . .

Chapters
10–11

Written in
a high-level
language

Any
computer

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

VM imp.
over the Hack

platform
VM

emulator

Some other
language

Jack
language

Some
compiler Some othercompiler

Jack
compiler

. . .

ChapterChapters
7–8

Some
language

. . .

Chapters
1–6

Ch. 9: application

Ch. 12: operating system

Figure 7.1 The virtual machine paradigm. Once a high-level program is compiled into VM
code, the program can run on any hardware platform equipped with a suitable VM imple-
mentation. In this chapter we start building the VM implementation on the Hack platform and
use a VM emulator like the one depicted on the right.

125 Virtual Machine I: Stack Arithmetic

command is then implemented by storing x at the array entry pointed by sp and then

incrementing sp (i.e., stack[sp]=x; sp=sp+1). The pop operation is implemented

by first decrementing sp and then returning the value stored in the top position (i.e.,

sp=sp-1; return stack[sp]).

As usual in computer science, simplicity and elegance imply power of expres-

sion. The simple stack model is a versatile data structure that comes to play in many

computer systems and algorithms. In the virtual machine architecture that we build

here, it serves two key purposes. First, it is used for handling all the arithmetic and

logical operations of the VM. Second, it facilitates subroutine calls and the asso-

ciated memory allocation—the subjects of the next chapter.

Stack Arithmetic Stack-based arithmetic is a simple matter: the operands are

popped from the stack, the required operation is performed on them, and the result

is pushed back onto the stack. For example, here is how addition is handled:

a

b

pop a

SP

121
5

17 push b

6

108
...

SP

121
5

17
108

SP

121
5

Stack Memory
...

...

a

b

17

108
...

...

...

a

b

6

108
...

Memory
...

...

Stack

a

bSP

121
5

17

6

108
...

Stack Memory
...

...

Stack Memory

(before) (after)

Figure 7.2 Stack processing example, illustrating the two elementary operations push and
pop. Following convention, the stack is drawn upside down, as if it grows downward. The
location just after the top position is always referred to by a special pointer called sp, or stack
pointer. The labels a and b refer to two arbitrary memory addresses.

126 Chapter 7

SP

17
9

17
4
5

SP

add

The stack version of other operations (subtract, multiply, etc.) are precisely the

same. For example, consider the expression d=(2–x)*(y+5), taken from some high-

level program. The stack-based evaluation of this expression is shown in figure 7.3.

Stack-based evaluation of Boolean expressions has precisely the same flavor. For

example, consider the high-level command if (x<7) or (y=8) then. . . . The stack-

based evaluation of this expression is shown in figure 7.4.

The previous examples illustrate a general observation: any arithmetic and Boo-

lean expression—no matter how complex—can be systematically converted into,

and evaluated by, a sequence of simple operations on a stack. Thus, one can write a

compiler that translates high-level arithmetic and Boolean expressions into sequences

of stack commands, as we will do in chapters 10–11. We now turn to specify these

commands (section 7.2), and describe their implementation on the Hack platform

(section 7.3).

7.2 VM Specification, Part I

7.2.1 General

The virtual machine is stack-based: all operations are done on a stack. It is also

function-based: a complete VM program is organized in program units called func-

tions, written in the VM language. Each function has its own stand-alone code and

is separately handled. The VM language has a single 16-bit data type that can be

used as an integer, a Boolean, or a pointer. The language consists of four types of

commands:

m Arithmetic commands perform arithmetic and logical operations on the stack.

m Memory access commands transfer data between the stack and virtual memory

segments.

m Program flow commands facilitate conditional and unconditional branching

operations.

m Function calling commands call functions and return from them.

127 Virtual Machine I: Stack Arithmetic

// d=(2-x)*(y+5)

push 2

push x

sub

push y

push 5

add

mult

pop d

y

SP

SP

2
5

–3
9
5

x 5

...

...

9
SP

2

SP

–3

SP

–3
9

SP

SP

–3
14 SP

–42

y
x 5

...

...

9

d
...
–42

SP

Memory

Memory

push x subpush 2

push y push 5 add

mult pop d

Stack

Stack

Figure 7.3 Stack-based evaluation of arithmetic expressions. This example evaluates the
expression d ¼ ð2 � xÞ � ðy þ 5Þ, assuming the initial memory state x ¼ 5, y ¼ 9.

128 Chapter 7

Building a virtual machine is a complex undertaking, and so we divide it into two

stages. In this chapter we specify the arithmetic and memory access commands and

build a basic VM translator that implements them only. The next chapter specifies

the program flow and function calling commands and extends the basic translator

into a full-scale virtual machine implementation.

Program and Command Structure A VM program is a collection of one or more

files with a .vm extension, each consisting of one or more functions. From a compi-

lation standpoint, these constructs correspond, respectively, to the notions of pro-

gram, class, and method in an object-oriented language.

// if (x<7) or (y=8)

push x

push 7

lt

push y

push 8

eq

or

y

SP

SP

SP

SP

SP

SP

SP

SP

12
7

8
8

x 12

...

...

8

12

8

Memory

push x push 7

push y push 8

or

it

eq
false false false

false
true

true

Stack

Figure 7.4 Stack-based evaluation of logical expressions. This example evaluates the Boolean
expression ðx < 7Þ or ðy ¼ 8Þ, assuming the initial memory state x ¼ 12, y ¼ 8.

129 Virtual Machine I: Stack Arithmetic

Within a .vm file, each VM command appears in a separate line, and in one of the

following formats: command (e.g., add), command arg (e.g., goto loop), or command

arg1 arg2 (e.g., push local 3). The arguments are separated from each other and

from the command part by an arbitrary number of spaces. ‘‘//’’ comments can ap-

pear at the end of any line and are ignored. Blank lines are permitted and ignored.

7.2.2 Arithmetic and Logical Commands

The VM language features nine stack-oriented arithmetic and logical commands.

Seven of these commands are binary: They pop two items off the stack, compute a

binary function on them, and push the result back onto the stack. The remaining two

commands are unary: they pop a single item off the stack, compute a unary function

on it, and push the result back onto the stack. We see that each command has the net

impact of replacing its operand(s) with the command’s result, without affecting the

rest of the stack. Figure 7.5 gives the details.

Three of the commands listed in figure 7.5 (eq, gt, lt) return Boolean values.

The VM represents true and false as �1 (minus one, 0xFFFF) and 0 (zero, 0x0000),
respectively.

7.2.3 Memory Access Commands

So far in the chapter, memory access commands were illustrated using the pseudo-

commands pop and push x, where the symbol x referred to an individual location

Command

Return value (after

popping the operand/s) Comment

add x þ y Integer addition (2’s complement)
sub x � y Integer subtraction (2’s complement)
neg �y Arithmetic negation (2’s complement)
eq true if x ¼ y, else false Equality
gt true if x > y, else false Greater than

SP

...
x
y

Stack

lt true if x < y, else false Less than

and x And y Bit-wise

or x Or y Bit-wise

not Not y Bit-wise

Figure 7.5 Arithmetic and logical stack commands.

130 Chapter 7

in some global memory. Yet formally, our VM manipulates eight separate virtual

memory segments, listed in figure 7.6.

Memory Access Commands All the memory segments are accessed by the same two

commands:

m push segment index Push the value of segment[index] onto the stack.

m pop segment index Pop the top stack value and store it in segment[index].

Segment Purpose Comments

argument Stores the function’s

arguments.

Allocated dynamically by the VM

implementation when the function

is entered.

local Stores the function’s local

variables.

Allocated dynamically by the VM

implementation and initialized to

0’s when the function is entered.

static Stores static variables

shared by all functions in

the same .vm file.

Allocated by the VM imp.

for each .vm file; shared by all

functions in the .vm file.

constant Pseudo-segment that holds

all the constants in the

range 0 . . . 32767.

Emulated by the VM

implementation; Seen by all the

functions in the program.

this

that

General-purpose segments.

Can be made to correspond

to different areas in the

heap. Serve various

programming needs.

Any VM function can use these

segments to manipulate selected

areas on the heap.

pointer A two-entry segment that

holds the base addresses of

the this and that

segments.

Any VM function can set pointer

0 (or 1) to some address; this has

the effect of aligning the this (or

that) segment to the heap area

beginning in that address.

temp Fixed eight-entry segment

that holds temporary

variables for general use.

May be used by any VM function

for any purpose. Shared by all

functions in the program.

Figure 7.6 The memory segments seen by every VM function.

131 Virtual Machine I: Stack Arithmetic

Where segment is one of the eight segment names and index is a non-negative in-

teger. For example, push argument 2 followed by pop local 1 will store the value

of the function’s third argument in the function’s second local variable (each seg-

ment’s index starts at 0).

The relationship among VM files, VM functions, and their respective virtual

memory segments is depicted in figure 7.7.

In addition to the eight memory segments, which are managed explicitly by

VM push and pop commands, the VM implementation manages two implicit

data structures called stack and heap. These data structures are never mentioned

directly, but their states change in the background, as a side effect of VM com-

mands.

f1 f2 f3 f1 f2

static static

(one set of virtual
memory segments
for each instance
of a running
function)

VM files
(f = VM function)

Foo.vm Bar.vm

VM
translator

VM
translator

argument argument argument

local

this

that

pointer

local

this

that

pointer

local

this

that

pointer

argument

local

this

that

pointer

argument

local

this

that

pointer

temp

constant

Hack machine language code

Figure 7.7 The virtual memory segments are maintained by the VM implementation.

132 Chapter 7

The Stack Consider the commands sequence push argument 2 and pop local 1,

mentioned before. The working memory of such VM operations is the stack. The

data value did not simply jump from one segment to another—it went through the

stack. Yet in spite of its central role in the VM architecture, the stack proper is never

mentioned in the VM language.

The Heap Another memory element that exists in the VM’s background is the

heap. The heap is the name of the RAM area dedicated for storing objects and arrays

data. These objects and arrays can be manipulated by VM commands, as we will see

shortly.

7.2.4 Program Flow and Function Calling Commands

The VM features six additional commands that are discussed at length in the next

chapter. For completeness, these commands are listed here.

Program Flow Commands

label symbol // Label declaration

goto symbol // Unconditional branching

if-goto symbol // Conditional branching

Function Calling Commands

function functionName nLocals // Function declaration, specifying the

// number of the function’s local variables

call functionName nArgs // Function invocation, specifying the

// number of the function’s arguments

return // Transfer control back to the calling function

(In this list of commands, functionName is a symbol and nLocals and nArgs are non-

negative integers.)

7.2.5 Program Elements in the Jack-VM-Hack Platform

We end the first part of the VM specification with a top-down view of all the pro-

gram elements that emerge from the full compilation of a typical high-level program.

At the top of figure 7.8 we see a Jack program, consisting of two classes (Jack, a

133 Virtual Machine I: Stack Arithmetic

weymour

Highlight

simple Java-like language, is described in chapter 9). Each Jack class consists of one

or more methods. When the Jack compiler is applied to a directory that includes n

class files, it produces n VM files (in the same directory). Each Jack method xxx

within a class Yyy is translated into one VM function called Yyy.xxx within the

corresponding VM file.

Next, the figure shows how the VM translator can be applied to the directory in

which the VM files reside, generating a single assembly program. This assembly

program does two main things. First, it emulates the virtual memory segments of

each VM function and file, as well as the implicit stack. Second, it effects the VM

commands on the target platform. This is done by manipulating the emulated

VM data structures using machine language instructions—those translated from the

VM commands. If all works well, that is, if the compiler and the VM translator and

the assembler are implemented correctly, the target platform will end up effecting the

behavior mandated by the original Jack program.

m1 m2 m3 m1 m2

prog directory

Foo.jack

prog directory

Foo.vm
Foo.m1 Foo.m2 Foo.m3

prog.asm

prog.hack

Hack binary code

Hack assembly code

Bar.jack Jack class files

(m = Jack method)

(Chapters 9–10)

Bar.vm
Bar.m1 Bar.m2 VM files

(Chapters 7–8)

Assembly file

Binary file

(Chapter 6)assembler

VM
translator

compiler

Figure 7.8 Program elements in the Jack-VM-Hack platform.

134 Chapter 7

7.2.6 VM Programming Examples

We end this section by illustrating how the VM abstraction can be used to express

typical programming tasks found in high-level programs. We give three examples: (i)

a typical arithmetic task, (ii) typical array handling, and (iii) typical object handling.

These examples are irrelevant to the VM implementation, and in fact the entire sec-

tion 7.2.6 can be skipped without losing the thread of the chapter.

The main purpose of this section is to illustrate how the compiler developed in

chapters 10–11 will use the VM abstraction to translate high-level programs into VM

code. Indeed, VM programs are rarely written by human programmers, but rather by

compilers. Therefore, it is instructive to begin each example with a high-level code

fragment, then show its equivalent representation using VM code. We use a C-style

syntax for all the high-level examples.

A Typical Arithmetic Task Consider the multiplication algorithm shown at the top

of figure 7.9. How should we (or more likely, the compiler) express this algorithm in

the VM language? First, high-level structures like for and while must be rewritten

using the VM’s simple ‘‘goto logic.’’ In a similar fashion, high-level arithmetic and

Boolean operations must be expressed using stack-oriented commands. The resulting

code is shown in figure 7.9. (The exact semantics of the VM commands function,

label, goto, if-goto, and return are described in chapter 8, but their intuitive

meaning is self-explanatory.)

Let us focus on the virtual segments depicted at the bottom of figure 7.9. We see

that when a VM function starts running, it assumes that (i) the stack is empty, (ii) the

argument values on which it is supposed to operate are located in the argument

segment, and (iii) the local variables that it is supposed to use are initialized to 0 and

located in the local segment.

Let us now focus on the VM representation of the algorithm. Recall that VM

commands cannot use symbolic argument and variable names—they are limited to

making hsegment indexi references only. However, the translation from the former
to the latter is straightforward. All we have to do is map x, y, sum and j on argu-

ment 0, argument 1, local 0 and local 1, respectively, and replace all their sym-

bolic occurrences in the pseudo code with corresponding hsegment indexi references.
To sum up, when a VM function starts running, it assumes that it is surrounded

by a private world, all of its own, consisting of initialized argument and local seg-

ments and an empty stack, waiting to be manipulated by its commands. The agent

responsible for staging this virtual worldview for every VM function just before it

starts running is the VM implementation, as we will see in the next chapter.

135 Virtual Machine I: Stack Arithmetic

High-level code (C style)

int mult(int x, int y) {

int sum;

sum = 0;

for(int j = y; j != 0; j--)

sum += x; // Repetitive addition

return sum;

}

First approximation Pseudo VM code Final VM code

function mult

args x, y

vars sum, j

sum = 0

j = y

loop:

if j = 0 goto end

sum = sum + x

j = j - 1

goto loop

end:

return sum

function mult(x,y)

push 0

pop sum

push y

pop j

label loop

push 0

push j

eq

if-goto end

push sum

push x

add

pop sum

push j

push l

sub

pop j

goto loop

label end

push sum

return

function mult 2 // 2 local variables

push constant 0

pop local 0 // sum¼0
push argument 1

pop local 1 // j¼y
label loop

push constant 0

push local 1

Eq

if-goto end // if j¼0 goto end
push local 0

push argument 0

Add

pop local 0 // sum¼sumþx
push local 1

push constant 1

Sub

pop local 1 // j¼j�1
goto loop

label end

push local 0

return // return sum

Figure 7.9 VM programming example.

136 Chapter 7

Array Handling An array is an indexed collection of objects. Suppose that a high-

level program has created an array of ten integers called bar and filled it with some

ten numbers. Let us assume that the array’s base has been mapped (behind the scene)

on RAM address 4315. Suppose now that the high-level program wants to execute

the command bar[2]=19. How can we implement this operation at the VM level?

In the C language, such an operation can be also specified as *(bar+2)=19,

meaning ‘‘set the RAM location whose address is (bar+2) to 19.’’ As shown in figure

7.10, this operation lends itself perfectly well to the VM language.

It remains to be seen, of course, how a high-level command like bar[2]=19 is

translated in the first place into the VM code shown in figure 7.10. This transforma-

tion is described in section 11.1.1, when we discuss the code generation features of

the compiler.

Object Handling High-level programmers view objects as entities that encapsulate

data (organized as fields, or properties) and relevant code (organized as methods). Yet

physically speaking, the data of each object instance is serialized on the RAM as a

list of numbers representing the object’s field values. Thus the low-level handling of

objects is quite similar to that of arrays.

For example, consider an animation program designed to juggle some balls on

the screen. Suppose that each Ball object is characterized by the integer fields x,

y, radius, and color. Let us assume that the program has created one such Ball

object and called it b. What will be the internal representation of this object in the

computer?

Like all other object instances, it will be stored in the RAM. In particular, when-

ever a program creates a new object, the compiler computes the object’s size in terms

of words and the operating system finds and allocates enough RAM space to store

x
y

Just after mult(7,3) is entered:

SP
SP 217

3
0

argument

1
...

sum
j

0
0

0

local

1

Stack Stack

...

(The symbols x, y, sum, and j are not part of the VM program and are shown here only for ease of
reference.)

Just after mult(7,3) returns:

Figure 7.9 (continued)

137 Virtual Machine I: Stack Arithmetic

7
53

1212

0
1

8
7

53
121

4315
4316
4317

8

4324

...

...

...
19

199

3

4318

...

398 4315

0
...

bar

High-level program view RAM view

bar
array

bar
array

following
compilation

(Actual RAM locations of program variables are
run-time dependent, and thus the addresses shown
here are arbitrary examples.)

VM code

/* Assume that the bar array is the first local variable declared in the

high-level program. The following VM code implements the operation

bar[2]=19, i.e., *(bar+2)=19. */

push local 0 // Get bar’s base address

push constant 2

add

pop pointer 1 // Set that’s base to (bar+2)

push constant 19

pop that 0 // *(bar+2)=19

...

0
1

43150
1 ...

0
1 ...

43170
1

43150
1 ...

190
1 ...

local pointer that local pointer that

Virtual memory segments
just before the bar[2]=19 operation:

Virtual memory segments
just after the bar[2]=19 operation:

(that 0
is now
aligned with
RAM[4317])

Figure 7.10 VM-based array manipulation using the pointer and that segments.

138 Chapter 7

it (the exact details of this operation are discussed in chapter 11). For now, let us

assume that our b object has been allocated RAM addresses 3012 to 3015, as shown

in figure 7.11.

Suppose now that a certain method in the high-level program, say resize, takes

a Ball object and an integer r as arguments, and, among other things, sets the ball’s

radius to r. The VM representation of this logic is shown in figure 7.11.

When we set pointer 0 to the value of argument 0, we are effectively setting the

base of the virtual this segment to the object’s base address. From this point on,

VM commands can access any field in the object using the virtual memory segment

this and an index relative to the object’s base-address in memory.

But how did the compiler translate b.radius=17 into the VM code shown in fig-

ure 7.11? And how did the compiler know that the radius field of the object corre-

sponds to the third field in its actual representation? We return to these questions in

section 11.1.1, when we discuss the code generation features of the compiler.

7.3 Implementation

The virtual machine that was described up to this point is an abstract artifact. If we

want to use it for real, we must implement it on a real platform. Building such a

VM implementation consists of two conceptual tasks. First, we have to emulate the

VM world on the target platform. In particular, each data structure mentioned in

the VM specification, namely, the stack and the virtual memory segments, must be

represented in some way by the target platform. Second, each VM command must be

translated into a series of instructions that effect the command’s semantics on the

target platform.

This section describes how to implement the VM specification (section 7.2) on

the Hack platform. We start by defining a ‘‘standard mapping’’ from VM ele-

ments and operations to the Hack hardware and machine language. Next, we suggest

guidelines for designing the software that achieves this mapping. In what follows, we

will refer to this software using the terms VM implementation or VM translator

interchangeably.

7.3.1 Standard VM Mapping on the Hack Platform, Part I

If you reread the virtual machine specification given so far, you will realize that

it contains no assumption whatsoever about the architecture on which the VM can

139 Virtual Machine I: Stack Arithmetic

weymour

Highlight

120
80
50radius:

x:
y:

3color:
120

80
50

3012
3013
3014

33015

412 3012
...

...

High-level program view RAM view
0

...
b

(Actual RAM locations of program variables
are run-time dependent, and thus the addresses
shown here are arbitrary examples.)

following
compilation

b
object

b
object

VM code

/* Assume that the b object and the r integer were passed to the function as

its first two arguments. The following code implements the operation

b.radius=r. */

push argument 0 // Get b’s base address

pop pointer 0 // Point the this segment to b

push argument 1 // Get r’s value

pop this 2 // Set b’s third field to r

...

00
1

Virtual memory segments just before
the operation b.radius=17:

3012
17

0
1

...
...

120
80
17

0
1
2

30120
1

3

3012
17

0
1

argument pointer this

...
3

...

argument pointer this

(this 0
is now
aligned with
RAM[3012])

Virtual memory segments just after
the operation b.radius=17:

Figure 7.11 VM-based object manipulation using the pointer and this segments.

140 Chapter 7

be implemented. When it comes to virtual machines, this platform independence is

the whole point: You don’t want to commit to any one hardware platform, since you

want your machine to potentially run on all of them, including those that were not

built yet.

It follows that the VM designer can principally let programmers implement the

VM on target platforms in any way they see fit. However, it is usually recommended

that some guidelines be provided as to how the VM should map on the target plat-

form, rather than leaving these decisions completely to the implementer’s discretion.

These guidelines, called standard mapping, are provided for two reasons. First, they

entail a public contract that regulates how VM-based programs can interact with

programs produced by compilers that don’t use this VM (e.g., compilers that pro-

duce binary code directly). Second, we wish to allow the developers of the VM

implementation to run standardized tests, namely, tests that conform to the standard

mapping. This way, the tests and the software can be written by different people,

which is always recommended. With that in mind, the remainder of this section

specifies the standard mapping of the VM on a familiar hardware platform: the Hack

computer.

VM to Hack Translation Recall that a VM program is a collection of one or more

.vm files, each containing one or more VM functions, each being a sequence of VM

commands. The VM translator takes a collection of .vm files as input and produces a

single Hack assembly language .asm file as output (see figure 7.7). Each VM com-

mand is translated by the VM translator into Hack assembly code. The order of the

functions within the .vm files does not matter.

RAM Usage The data memory of the Hack computer consists of 32K 16-bit words.

The first 16K serve as general-purpose RAM. The next 16K contain memory maps

of I/O devices. The VM implementation should use this space as follows:

RAM addresses Usage

0–15 Sixteen virtual registers, usage described below

16–255 Static variables (of all the VM functions in the VM program)

256–2047 Stack

2048–16483 Heap (used to store objects and arrays)

16384–24575 Memory mapped I/O

Recall that according to the Hack Machine Language Specification, RAM addresses

0 to 15 can be referred to by any assembly program using the symbols R0 to R15,

141 Virtual Machine I: Stack Arithmetic

respectively. In addition, the specification states that assembly programs can refer

to RAM addresses 0 to 4 (i.e., R0 to R4) using the symbols SP, LCL, ARG, THIS, and

THAT. This convention was introduced into the assembly language with foresight, in

order to promote readable VM implementations. The expected use of these registers

in the VM context is described as follows:

Register Name Usage

RAM[0] SP Stack pointer: points to the next topmost location in

the stack;

RAM[1] LCL Points to the base of the current VM function’s

local segment;

RAM[2] ARG Points to the base of the current VM function’s

argument segment;

RAM[3] THIS Points to the base of the current this segment

(within the heap);

RAM[4] THAT Points to the base of the current that segment

(within the heap);

RAM[5–12] Holds the contents of the temp segment;

RAM[13–15] Can be used by the VM implementation as general-

purpose registers.

Memory Segments Mapping

local, argument, this, that: Each one of these segments is mapped directly

on the RAM, and its location is maintained by keeping its physical base address in a

dedicated register (LCL, ARG, THIS, and THAT, respectively). Thus any access to the

ith entry of any one of these segments should be translated to assembly code that

accesses address (base þ i) in the RAM, where base is the current value stored in the
register dedicated to the respective segment.

pointer, temp: These segments are each mapped directly onto a fixed area in the

RAM. The pointer segment is mapped on RAM locations 3–4 (also called THIS

and THAT) and the temp segment on locations 5–12 (also called R5, R6, . . . , R12).

Thus access to pointer i should be translated to assembly code that accesses RAM

location 3 þ i, and access to temp i should be translated to assembly code that
accesses RAM location 5 þ i.
constant: This segment is truly virtual, as it does not occupy any physical space

on the target architecture. Instead, the VM implementation handles any VM access

to hconstant ii by simply supplying the constant i.

142 Chapter 7

static: According to the Hack machine language specification, when a new sym-

bol is encountered for the first time in an assembly program, the assembler allocates

a new RAM address to it, starting at address 16. This convention can be exploited

to represent each static variable number j in a VM file f as the assembly language

symbol f.j. For example, suppose that the file Xxx.vm contains the command push

static 3. This command can be translated to the Hack assembly commands

@Xxx.3 and D=M, followed by additional assembly code that pushes D’s value to the

stack. This implementation of the static segment is somewhat tricky, but it works.

Assembly Language Symbols We recap all the assembly language symbols used by

VM implementations that conform to the standard mapping.

Symbol Usage

SP, LCL, ARG,

THIS, THAT

These predefined symbols point, respectively, to the

stack top and to the base addresses of the virtual

segments local, argument, this, and that.

R13-R15 These predefined symbols can be used for any

purpose.

Xxx.j symbols Each static variable j in file Xxx.vm is translated into

the assembly symbol Xxx.j. In the subsequent

assembly process, these symbolic variables will be

allocated RAM space by the Hack assembler.

Flow of control

symbols

The implementation of the VM commands

function, call, and label involves generating

special label symbols, to be discussed in chapter 8.

7.3.2 Design Suggestion for the VM Implementation

The VM translator should accept a single command line parameter, as follows:

prompt> VMtranslator source

Where source is either a file name of the form Xxx.vm (the extension is mandatory)

or a directory name containing one or more .vm files (in which case there is no ex-

tension). The result of the translation is always a single assembly language file named

Xxx.asm, created in the same directory as the input Xxx. The translated code must

conform to the standard VM mapping on the Hack platform.

143 Virtual Machine I: Stack Arithmetic

weymour

Highlight

7.3.3 Program Structure

We propose implementing the VM translator using a main program and two mod-

ules: parser and code writer.

The Parser Module

Parser: Handles the parsing of a single .vm file, and encapsulates access to the input

code. It reads VM commands, parses them, and provides convenient access to their

components. In addition, it removes all white space and comments.

Routine Arguments Returns Function

Constructor Input file/

stream

— Opens the input file/stream

and gets ready to parse it.

hasMoreCommands — Boolean Are there more commands

in the input?

advance — — Reads the next command

from the input and makes it

the current command.

Should be called only if

hasMoreCommands() is

true. Initially there is no

current command.

commandType — C_ARITHMETIC,

C_PUSH, C_POP,

C_LABEL,

C_GOTO, C_IF,

C_FUNCTION,

C_RETURN,

C_CALL

Returns the type of the

current VM command.

C_ARITHMETIC is returned

for all the arithmetic

commands.

arg1 — string Returns the first argument

of the current command. In

the case of C_ARITHMETIC,

the command itself (add,

sub, etc.) is returned.

Should not be called if the

current command is

C_RETURN.

144 Chapter 7

Routine Arguments Returns Function

arg2 — int Returns the second

argument of the current

command. Should be called

only if the current

command is C_PUSH,

C_POP, C_FUNCTION, or

C_CALL.

The CodeWriter Module

CodeWriter: Translates VM commands into Hack assembly code.

Routine Arguments Returns Function

Constructor Output file/stream — Opens the output file/

stream and gets ready to

write into it.

setFileName fileName (string) — Informs the code writer

that the translation of a

new VM file is started.

writeArithmetic command (string) — Writes the assembly code

that is the translation of

the given arithmetic

command.

WritePushPop command (C_PUSH

or C_POP),

segment (string),

index (int)

— Writes the assembly code

that is the translation of

the given command,

where command is either

C_PUSH or C_POP.

Close — — Closes the output file.

Comment: More routines will be added to this module in chapter 8.

Main Program The main program should construct a Parser to parse the VM

input file and a CodeWriter to generate code into the corresponding output file. It

145 Virtual Machine I: Stack Arithmetic

should then march through the VM commands in the input file and generate assem-

bly code for each one of them.

If the program’s argument is a directory name rather than a file name, the main

program should process all the .vm files in this directory. In doing so, it should use a

separate Parser for handling each input file and a single CodeWriter for handling

the output.

7.4 Perspective

In this chapter we began the process of developing a compiler for a high-level lan-

guage. Following modern software engineering practices, we have chosen to base the

compiler on a two-tier compilation model. In the frontend tier, covered in chapters 10

and 11, the high-level code is translated into an intermediate code, running on a vir-

tual machine. In the backend tier, covered in this and in the next chapter, the inter-

mediate code is translated into the machine language of a target hardware platform

(see figures 7.1 and 7.9).

The idea of formulating the intermediate code as the explicit language of a virtual

machine goes back to the late 1970s, when it was used by several popular Pascal

compilers. These compilers generated an intermediate ‘‘p-code’’ that could execute

on any computer that implemented it. Following the wide spread use of the World

Wide Web in the mid-1990s, cross-platform compatibility became a universally vex-

ing issue. In order to address the problem, the Sun Microsystems company sought to

develop a new programming language that could potentially run on any computer

and digital device connected to the Internet. The language that emerged from this

initiative—Java—is also founded on an intermediate code execution model called

the Java Virtual Machine, on JVM.

The JVM is a specification that describes an intermediate language called byte-

code—the target language of Java compilers. Files written in bytecode are then used

for dynamic code distribution of Java programs over the Internet, most notably as

applets embedded in web pages. Of course in order to execute these programs, the

client computers must be equipped with suitable JVM implementations. These pro-

grams, also called Java Run-time Environments (JREs), are widely available for nu-

merous processor/OS combinations, including game consoles and cell phones.

In the early 2000s, Microsoft entered the fray with its .NET infrastructure. The

centerpiece of .NET is a virtual machine model called Common Language Runtime

(CLR). According to the Microsoft vision, many programming languages (including

146 Chapter 7

Cþþ, C#, Visual Basic, and J#—a Java variant) could be compiled into intermedi-
ate code running on the CLR. This enables code written in different languages to

interoperate and share the software libraries of a common run-time environment.

We note in closing that a crucial ingredient that must be added to the virtual

machine model before its full potential of interoperability is unleashed is a com-

mon software library. Indeed the Java virtual machine comes with the standard

Java libraries, and the Microsoft virtual machine comes with the Common Language

Runtime. These software libraries can be viewed as small operating systems, provid-

ing the languages that run on top of the VM with unified services like memory man-

agement, GUI utilities, string functions, math functions, and so on. One such library

will be described and built in chapter 12.

7.5 Project

This section describes how to build the VM translator presented in the chapter. In

the next chapter we will extend this basic translator with additional functionality,

leading to a full-scale VM implementation. Before you get started, two comments are

in order. First, section 7.2.6 is irrelevant to this project. Second, since the VM trans-

lator is designed to generate Hack assembly code, it is recommended to refresh your

memory about the Hack assembly language rules (section 4.2).

Objective Build the first part of the VM translator (the second part is implemented

in Project 8), focusing on the implementation of the stack arithmetic and memory

access commands of the VM language.

Resources You will need two tools: the programming language in which you will

implement your VM translator, and the CPU emulator supplied with the book. This

emulator will allow you to execute the machine code generated by your VM transla-

tor—an indirect way to test the correctness of the latter. Another tool that may come

in handy in this project is the visual VM emulator supplied with the book. This pro-

gram allows experimenting with a working VM implementation before you set out to

build one yourself. For more information about this tool, refer to the VM emulator

tutorial.

Contract Write a VM-to-Hack translator, conforming to the VM Specification,

Part I (section 7.2) and to the Standard VM Mapping on the Hack Platform, Part I

147 Virtual Machine I: Stack Arithmetic

(section 7.3.1). Use it to translate the test VM programs supplied here, yielding cor-

responding programs written in the Hack assembly language. When executed on the

supplied CPU emulator, the assembly programs generated by your translator should

deliver the results mandated by the supplied test scripts and compare files.

Proposed Implementation Stages

We recommend building the translator in two stages. This will allow you to unit-test

your implementation incrementally, using the test programs supplied here.

Stage I: Stack Arithmetic Commands The first version of your VM translator

should implement the nine stack arithmetic and logical commands of the VM lan-

guage as well as the push constant x command (which, among other things, will

help in testing the nine former commands). Note that the latter is the generic push

command for the special case where the first argument is constant and the second

argument is some decimal constant.

Stage II: Memory Access Commands The next version of your translator should

include a full implementation of the VM language’s push and pop commands, han-

dling all eight memory segments. We suggest breaking this stage into the following

substages:

0. You have already handled the constant segment.

1. Next, handle the segments local, argument, this, and that.

2. Next, handle the pointer and temp segments, in particular allowing modifica-

tion of the bases of the this and that segments.

3. Finally, handle the static segment.

Test Programs

The five VM programs listed here are designed to unit-test the proposed implemen-

tation stages just described.

Stage I: Stack Arithmetic

m SimpleAdd: Pushes and adds two constants.

m StackTest: Executes a sequence of arithmetic and logical operations on the

stack.

148 Chapter 7

Stage II: Memory Access

m BasicTest: Executes pop and push operations using the virtual memory

segments.

m PointerTest: Executes pop and push operations using the pointer, this,

and that segments.

m StaticTest: Executes pop and push operations using the static segment.

For each program Xxx we supply four files, beginning with the program’s

code in Xxx.vm. The XxxVME.tst script allows running the program on the supplied

VM emulator, so that you can gain familiarity with the program’s intended opera-

tion. After translating the program using your VM translator, the supplied Xxx.tst

and Xxx.cmp scripts allow testing the translated assembly code on the CPU

emulator.

Tips

Initialization In order for any translated VM program to start running, it must in-

clude a preamble startup code that forces the VM implementation to start executing

it on the host platform. In addition, in order for any VM code to operate properly,

the VM implementation must anchor the base addresses of the virtual segments in

selected RAM locations. Both issues—startup code and segments initializations—are

implemented in the next project. The difficulty of course is that we need these initi-

alizations in place in order to execute the test programs given in this project. The

good news is that you should not worry about these issues at all, since the supplied

test scripts carry out all the necessary initializations in a manual fashion (for the

purpose of this project only).

Testing/Debugging For each one of the five test programs, follow these steps:

1. Run the Xxx.vm program on the supplied VM emulator, using the XxxVME.tst

test script, to get acquainted with the intended program’s behavior.

2. Use your partial translator to translate the .vm file. The result should be a

text file containing a translated .asm program, written in the Hack assembly

language.

3. Inspect the translated .asm program. If there are visible syntax (or any other)

errors, debug and fix your translator.

149 Virtual Machine I: Stack Arithmetic

4. Use the supplied .tst and .cmp files to run your translated .asm program on

the CPU emulator. If there are run-time errors, debug and fix your translator.

The supplied test programs were carefully planned to test the specific features of each

stage in your VM implementation. Therefore, it’s important to implement your

translator in the proposed order and to test it using the appropriate test programs

at each stage. Implementing a later stage before an early one may cause the test

programs to fail.

Figure 7.12 The VM emulator supplied with the book.

150 Chapter 7

Tools

The VM Emulator The book’s software suite includes a Java-based VM imple-

mentation. This VM emulator allows executing VM programs directly, without

having to translate them first into machine language. This practice enables experi-

mentation with the VM environment before you set out to implement one yourself.

Figure 7.12 is a typical screen shot of the VM emulator in action.

151 Virtual Machine I: Stack Arithmetic

8 Virtual Machine II: Program Control

If everything seems under control, you’re just not going fast enough.

—Mario Andretti (b. 1940), race car champion

Chapter 7 introduced the notion of a virtual machine (VM) and ended with the

construction of a basic VM implementation over the Hack platform. In this chapter

we continue to develop the VM abstraction, language, and implementation. In par-

ticular, we design stack-based mechanisms for handling nested subroutine calls (pro-

cedures, functions, methods) of procedural or object-oriented languages. As the

chapter progresses, we extend the previously built basic VM implementation, end-

ing with a full-scale VM translator. This translator will serve as the backend of the

compiler that we will build in chapters 10 and 11, following the introduction of a

high-level object-based language in chapter 9.

In any Great Gems in Computer Science contest, stack processing will be a strong

finalist. The previous chapter showed how arithmetic and Boolean expressions can

be calculated by elementary stack operations. This chapter goes on to show how this

remarkably simple data structure can also support remarkably complex tasks like

nested subroutine calling, parameter passing, recursion, and the associated memory

allocation techniques. Most programmers tend to take these capabilities for granted,

expecting the compiler to deliver them, one way or another. We are now in a position

to open this black box and see how these fundamental programming mechanisms are

actually implemented by a stack-based virtual machine.

8.1 Background

High-level languages allow writing programs in high-level terms. For example,

x ¼ �b þ
ffi
b2 � 4 � a � c

p
can be expressed as x=-b+sqrt(power(b,2)-4*a*c),

weymour

Highlight

which is almost as descriptive as the real thing. High-level languages support this

power of expression through three conventions. First, one is allowed to freely define

high-level operations like sqrt and power, as needed. Second, one is allowed to

freely use (call) these subroutines as if they were elementary operations like + and *.

Third, one is allowed to assume that each called subroutine will get executed—

somehow—and that following its termination control will return—somehow—to the

next command in one’s code. Flow of control commands take this freedom one step

further, allowing writing, say, if ~(a=0) {x=(-b+sqrt(power(b,2)-4*a*c))/

(2*a)} else {x=-c/b}.

The ability to compose such expressions freely permits us to write abstract code,

closer to the world of algorithmic thought than to that of machine execution. Of

course the more abstract the high level, the more work we have to do at the low level.

In particular, the low level must manage the delicate interplay between the calling

subroutine (the caller) and the called subroutines—the program units that implement

system- and user-defined operations like sqrt and power. For each subroutine call

during runtime, the low level must handle the following details behind the scene:

m Passing parameters from the caller to the called subroutine

m Saving the state of the caller before switching to execute the called subroutine

m Allocating space for the local variables of the called subroutine

m Jumping to execute the called subroutine

m Returning values from the called subroutine back to the caller

m Recycling the memory space occupied by the called subroutine, when it returns

m Reinstating the state of the caller

m Jumping to execute the code of the caller immediately following the spot where

we left it

Taking care of these housekeeping chores is a major headache, and high-level

programmers are fortunate that the compiler relieves them from this duty. So how

does the compiler do it? Well, if we choose to base our low level implementation on a

stack machine, the job will be surprisingly manageable. In fact, the stack structure

lends itself perfectly well to supporting all the housekeeping tasks mentioned above.

With that in mind, the remainder of this section describes how program flow and

subroutine calling commands can be implemented on a stack machine. We begin with

the implementation of program flow commands, which is rather simple and requires

no memory management, and continue to describe the more challenging implemen-

tation of subroutine calling commands.

154 Chapter 8

8.1.1 Program Flow

The default execution of computer programs is linear, one command after the other.

This sequential flow is occasionally broken by branching commands, for example,

embarking on a new iteration in a loop. In low-level programming, the branching

logic is accomplished by instructing the machine to continue execution at some des-

tination in the program other than the next instruction, using a goto destination

command. The destination specification can take several forms, the most primitive

being the physical address of the instruction that should be executed next. A slightly

more abstract redirection command is established by describing the jump destination

using a symbolic label. This variation requires that the language be equipped with

some labeling directive, designed to assign symbols to selected points in the code.

This basic goto mechanism can easily be altered to effect conditional branching

as well. For example, an if-goto destination command can instruct the machine to

take the jump only if a given Boolean condition is true; if the condition is false, the

regular program flow should continue, executing the next command in the code.

How should we introduce the Boolean condition into the language? In a stack ma-

chine paradigm, the most natural approach is conditioning the jump on the value of

the stack’s topmost element: if it’s not zero, jump to the specified destination; other-

wise, execute the next command in the program.

In chapter 7 we saw how primitive VM operations can be used to compute

any Boolean expression, leaving its truth-value at the stack’s topmost element. This

power of expression, combined with the goto and if-goto commands just described,

can be used to express any flow of control structure found in any programming lan-

guage. Two typical examples appear in figure 8.1.

The low-level implementation of the VM commands label, goto label, and if-goto

label is straightforward. All programming languages, including the ‘‘lowest’’ ones,

feature branching commands of some sort. For example, if our low-level implemen-

tation is based on translating the VM commands into assembly code, all we have

to do is reexpress these goto commands using the branching logic of the assembly

language.

8.1.2 Subroutine Calling

Each programming language is characterized by a fixed set of built-in com-

mands. The key abstraction mechanism provided by modern languages is the

freedom to extend this basic repertoire with high-level, programmer-defined oper-

ations. In procedural languages, the high-level operations are called subroutines,

155 Virtual Machine II: Program Control

procedures, or functions, and in object-oriented languages they are usually called

methods. Throughout this chapter, all these high-level program units are referred to

as subroutines.

In well-designed programming languages, the use of a high-level operation

(implemented by a subroutine) has the same ‘‘look and feel’’ as that of built-in com-

mands. For example, consider the functions add and raise to a power. Most lan-

guages feature the former as a built-in operation, while the latter may be written as a

subroutine. In spite of these different implementations, both functions should ideally

look alike from the caller’s perspective. This would allow the caller to weave the two

operations together naturally, yielding consistent and readable code. A stack lan-

guage implementation of this principle is illustrated in figure 8.2.

We see that the only difference between invoking a built-in command and calling a

user-defined subroutine is the keyword call preceding the latter. Everything else is

exactly the same: Both operations require the caller to set up their arguments, both

operations are expected to remove their arguments from the stack, and both operations

are expected to return a value which becomes the topmost stack element. The unifor-

mity of this protocol has a subtle elegance that, we hope, is not lost on the reader.

Flow of control structure Pseudo VM code

if (cond)

s1

else

s2

...

VM code for computing ~(cond)

if-goto L1

VM code for executing s1

goto L2

label L1

VM code for executing s2

label L2

...

while (cond)

s1

...

label L1

VM code for computing ~(cond)

if-goto L2

VM code for executing s1

goto L1

label L2

...

Figure 8.1 Low-level flow of control using goto commands.

156 Chapter 8

Subroutines like power usually use local variables for temporary storage. These

local variables must be represented in memory during the subroutine’s lifetime,

namely, from the point the subroutine starts executing until a return command

is encountered. At this point, the memory space occupied by the subroutine’s local

variables can be freed. This scheme is complicated by allowing subroutines to be

arbitrarily nested: One subroutine may call another subroutine, which may then call

another one, and so on. Further, subroutines should be allowed to call themselves

recursively; each recursive call must be executed independently of all the other calls

and maintain its own set of local and argument variables. How can we implement

this nesting mechanism and the memory management tasks implied by it?

The property that makes this housekeeping task tractable is the hierarchical nature

of the call-and-return logic. Although the subroutine calling chain may be arbitrarily

deep as well as recursive, at any given point in time only one subroutine executes at

the top of the chain, while all the other subroutines down the calling chain are wait-

ing for it to terminate. This Last-In-First-Out (LIFO) processing model lends itself

perfectly well to a stack data structure, which is also LIFO. When subroutine xxx

calls subroutine yyy, we can push (save) xxx’s world on the stack and branch to

execute yyy. When yyy returns, we can pop (reinstate) xxx’s world off the stack, and

continue executing xxx as if nothing happened. This execution model is illustrated in

figure 8.3.

We use the term frame to refer, conceptually, to the subroutine’s local variables,

the arguments on which it operates, its working stack, and the other memory seg-

ments that support its operation. In chapter 7, the term stack referred to the working

memory that supports operations like pop, push, add, and so on. From now on, when

we say stack we mean global stack—the memory area containing the frames of the

// x+2

push x

push 2

add

...

// x^3

push x

push 3

call power

...

// (x^3+2)^y

push x

push 3

call power

push 2

add

push y

call power

...

// Power function

// result = first arg

// raised to the power

// of the second arg.

function power

// code omitted

push result

return

Figure 8.2 Subroutine calling. Elementary commands (like add) and high-level operations
(like power) have the same look and feel in terms of argument handling and return values.

157 Virtual Machine II: Program Control

current subroutine and all the subroutines waiting for it to return. These two stack

notions are closely related, since the working stack of the current subroutine is

located at the very tip of the global stack.

To recap, the low-level implementation of the call xxx operation entails saving

the caller’s frame on the stack, allocating stack space for the local variables of the

called subroutine (xxx), then jumping to execute its code. This last ‘‘mega jump’’ is

not hard to implement. Since the name of the target subroutine is specified in the

call command, the implementation can resolve the symbolic name to a memory

address, then jump to execute the code starting at that address. Returning from the

called subroutine via a return command is trickier, since the command specifies

no return address. Indeed, the caller’s anonymity is inherent in the very notion of a

subroutine call. For example, subroutines like power(x,y) or sqrt(x) are designed

to serve any caller, implying that the return address cannot be part of their code.

Instead, a return command should be interpreted as follows: Redirect the pro-

gram’s execution to the command following the call command that called the

current subroutine, wherever this command may be. The memory location of this

command is called return address.

Code: Flow:
Stack state:

a frame
b frame
c frame

a frame
c frame

a frame
b frame
d frame

d frame

subroutine a:

call b

call c

...

subroutine b:

call c

call d

...

subroutine c:

call d

...

subroutine d:

...

start a

start b

start c

start d

end d

end c

start d

end d

end b

start c

start d

end d

end c

end a

Figure 8.3 Subroutine calls and stack states associated with three representative points in the
program’s life cycle. All the layers in the stack are waiting for the current layer to complete
its execution, at which point the stack becomes shorter and execution resumes at the level just
below the current layer. (Following convention, the stack is drawn as if it grows downward.)

158 Chapter 8

A glance at figure 8.3 suggests a stack-based solution to implementing this return

logic. When we encounter a call xxx operation, we know exactly what the return

address should be: It’s the address of the next command in the caller’s code. Thus,

we can push this return address on the stack and proceed to execute the code of the

called subroutine. When we later encounter a return command, we can pop the

saved return address and simply goto it. In other words, the return address can also

be placed in the caller’s frame.

8.2 VM Specification, Part II

This section extends the basic VM specification from chapter 7 with program flow

and function calling commands, thereby completing the overall VM specification.

8.2.1 Program Flow Commands

The VM language features three program flow commands:

m label label This command labels the current location in the function’s code.

Only labeled locations can be jumped to from other parts of the program. The scope

of the label is the function in which it is defined. The label is an arbitrary string

composed of any sequence of letters, digits, underscore (_), dot (.), and colon (:) that

does not begin with a digit.

m goto label This command effects an unconditional goto operation, causing exe-

cution to continue from the location marked by the label. The jump destination must

be located in the same function.

m if-goto label This command effects a conditional goto operation. The stack’s

topmost value is popped; if the value is not zero, execution continues from the loca-

tion marked by the label; otherwise, execution continues from the next command in

the program. The jump destination must be located in the same function.

8.2.2 Function Calling Commands

Different high-level languages have different names for program units including

functions, procedures, methods, and subroutines. In our overall compilation model

(elaborated in chapters 10–11), each such high-level program unit is translated into

a low-level program unit called VM function, or simply function.

159 Virtual Machine II: Program Control

weymour

Highlight

A function has a symbolic name that is used globally to call it. The function name

is an arbitrary string composed of any sequence of letters, digits, underscore (_), dot

(.), and colon (:) that does not begin with a digit. (We expect that a method bar

in class Foo in some high-level language will be translated by the compiler to a VM

function named Foo.bar). The scope of the function name is global: All functions in

all files are seen by each other and may call each other using the function name.

The VM language features three function-related commands:

m function f n Here starts the code of a function named f that has n local

variables;

m call f m Call function f , stating that m arguments have already been pushed

onto the stack by the caller;

m return Return to the calling function.

8.2.3 The Function Calling Protocol

The events of calling a function and returning from a function can be viewed from

two different perspectives: that of the calling function and that of the called function.

The calling function view: The called function view:

m Before calling the function, the

caller must push as many arguments

as necessary onto the stack;

m Next, the caller invokes the

function using the call command;

m After the called function returns,

the arguments that the caller has

pushed before the call have

disappeared from the stack, and a

return value (that always exists)

appears at the top of the stack;

m After the called function returns,

the caller’s memory segments

argument, local, static, this,

that, and pointer are the same as

before the call, and the temp segment

is undefined.

m When the called function starts

executing, its argument segment has

been initialized with actual argument

values passed by the caller and its

local variables segment has been

allocated and initialized to zeros. The

static segment that the called

function sees has been set to the

static segment of the VM file to

which it belongs, and the working

stack that it sees is empty. The

segments this, that, pointer, and

temp are undefined upon entry.

m Before returning, the called

function must push a value onto the

stack.

160 Chapter 8

To repeat an observation made in the previous chapter, we see that when a VM

function starts running (or resumes its previous execution), it assumes that it is sur-

rounded by a private world, all of its own, consisting of its memory segments and

stack, waiting to be manipulated by its commands. The agent responsible for build-

ing this virtual worldview for every VM function is the VM implementation, as we

elaborate in section 8.3.

8.2.4 Initialization

A VM program is a collection of related VM functions, typically resulting from the

compilation of some high-level program. When the VM implementation starts run-

ning (or is reset), the convention is that it always executes an argument-less VM

function called Sys.init. Typically, this function then calls the main function in

the user’s program. Thus, compilers that generate VM code must ensure that each

translated program will have one such Sys.init function.

8.3 Implementation

This section describes how to complete the VM implementation that we started

building in chapter 7, leading to a full-scale virtual machine implementation. Sec-

tion 8.3.1 describes the stack structure that must be maintained, along with its stan-

dard mapping over the Hack platform. Section 8.3.2 gives an example, and section

8.3.3 provides design suggestions and a proposed API for actually building the VM

implementation.

Some of the implementation details are rather technical, and dwelling on them

may distract attention from the overall VM operation. This big picture is restored in

section 8.3.2, which illustrates the VM implementation in action. Therefore, one may

want to consult 8.3.2 for motivation while reading 8.3.1.

8.3.1 Standard VM Mapping on the Hack Platform, Part II

The Global Stack The memory resources of the VM are implemented by maintain-

ing a global stack. Each time a function is called, a new block is added to the global

stack. The block consists of the arguments that were set for the called function, a set

of pointers used to save the state of the calling function, the local variables of the

called function (initialized to 0), and an empty working stack for the called function.

Figure 8.4 shows this generic stack structure.

161 Virtual Machine II: Program Control

Note that the shaded areas in figure 8.4 as well as the ARG, LCL, and SP pointers

are never seen by VM functions. Rather, they are used by the VM implementation to

implement the function call-and-return protocol behind the scene.

How can we implement this model on the Hack platform? Recall that the standard

mapping specifies that the stack should start at RAM address 256, meaning that the

VM implementation can start by generating assembly code that sets SP=256. From

this point onward, when the VM implementation encounters commands like pop,

push, add, and so forth, it can emit assembly code that effects these operations by

manipulating SP and relevant words in the host RAM. All this was already done in

argument n–1

ARG

saved state of the calling
function, used to return
to and restore the
segments of, the calling
function upon returning
from the current function

saved THIS

saved ARG

return address

saved LCL

local 0

local 1

. . .
local k–1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

working stack of the
current function

local variables of the
current function

arguments pushed for
the current function

Figure 8.4 The global stack structure.

162 Chapter 8

chapter 7. Likewise, when the VM implementation encounters commands like call,

function, and return, it can emit assembly code that maintains the stack structure

shown in figure 8.4 on the host RAM. This code is described next.

Function Calling Protocol Implementation The function calling protocol and the

global stack structure implied by it can be implemented on the Hack platform by

effecting (in Hack assembly) the pseudo-code given in figure 8.5.

Recall that the VM implementation is a translator program, written in some high-

level language. It accepts VM code as input and emits assembly code as output.

VM command Generated (pseudo)code emitted by the VM implementation

call f n

(calling a function f

after n arguments

have been pushed

onto the stack)

push return-address // (Using the label declared below)

push LCL // Save LCL of the calling function

push ARG // Save ARG of the calling function

push THIS // Save THIS of the calling function

push THAT // Save THAT of the calling function

ARG = SP-n-5 // Reposition ARG (n ¼ number of args.)
LCL = SP // Reposition LCL

goto f // Transfer control

(return-address) // Declare a label for the return-address

function f k

(declaring a function

f that has k local

variables)

(f) // Declare a label for the function entry

repeat k times: // k ¼ number of local variables
PUSH 0 // Initialize all of them to 0

return

(from a function)

FRAME = LCL // FRAME is a temporary variable

RET = *(FRAME-5) // Put the return-address in a temp. var.

*ARG = pop() // Reposition the return value for the caller

SP = ARG+1 // Restore SP of the caller

THAT = *(FRAME-1) // Restore THAT of the caller

THIS = *(FRAME-2) // Restore THIS of the caller

ARG = *(FRAME-3) // Restore ARG of the caller

LCL = *(FRAME-4) // Restore LCL of the caller

goto RET // Goto return-address (in the caller’s code)

Figure 8.5 VM implementation of function commands. The parenthetical (return address)
and (f) are label declarations, using Hack assembly syntax convention.

163 Virtual Machine II: Program Control

Hence, each pseudo-operation described in the right column of figure 8.5 is actually

implemented by emitting assembly language instructions. Note that some of these

‘‘instructions’’ entail planting label declarations in the generated code stream.

Assembly Language Symbols As we have seen earlier, the implementation of pro-

gram flow and function calling commands requires the VM implementation to create

and use special symbols at the assembly level. These symbols are summarized in

figure 8.6. For completeness of presentation, the first three rows of the table docu-

ment the symbols described and implemented in chapter 7.

Symbol Usage

SP, LCL, ARG,

THIS, THAT

These predefined symbols point, respectively, to the

stack top and to the base addresses of the virtual

segments local, argument, this, and that.

R13-R15 These predefined symbols can be used for any purpose.

Xxx.j Each static variable j in a VM file Xxx.vm is

translated into the assembly symbol Xxx.j. In the

subsequent assembly process, these symbolic variables

will be allocated RAM space by the Hack assembler.

functionName$label Each label b command in a VM function f should

generate a globally unique symbol ‘‘f$b’’ where ‘‘f’’ is

the function name and ‘‘b’’ is the label symbol within

the VM function’s code. When translating goto b and

if-goto b VM commands into the target language,

the full label specification ‘‘f$b’’ must be used instead

of ‘‘b’’.

(FunctionName) Each VM function f should generate a symbol ‘‘f’’

that refers to its entry point in the instruction memory

of the target computer.

return-address Each VM function call should generate and insert into

the translated code stream a unique symbol that serves

as a return address, namely the memory location (in the

target platform’s memory) of the command following

the function call.

Figure 8.6 All the special assembly symbols prescribed by the VM-on-Hack standard
mapping.

164 Chapter 8

Bootstrap Code When applied to a VM program (a collection of one or more .vm

files), the VM-to-Hack translator produces a single .asm file, written in the Hack

assembly language. This file must conform to certain conventions. Specifically, the

standard mapping specifies that (i) the VM stack should be mapped on location

RAM[256] onward, and (ii) the first VM function that starts executing should be

Sys.init (see section 8.2.4).

How can we effect this initialization in the .asm file produced by the VM transla-

tor? Well, when we built the Hack computer hardware in chapter 5, we wired it in

such a way that upon reset, it will fetch and execute the word located in ROM[0].

Thus, the code segment that starts at ROM address 0, called bootstrap code, is the

first thing that gets executed when the computer ‘‘boots up.’’ Therefore, in view of

the previous paragraph, the computer’s bootstrap code should effect the following

operations (in machine language):

SP=256 // Initialize the stack pointer to 0x0100

call Sys.init // Start executing (the translated code of) Sys.init

Sys.init is then expected to call the main function of the main program and then

enter an infinite loop. This action should cause the translated VM program to start

running.

The notions of ‘‘program,’’ ‘‘main program,’’ and ‘‘main function’’ are compila-

tion-specific and vary from one high-level language to another. For example, in the

Jack language, the default is that the first program unit that starts running auto-

matically is the main method of a class named Main. In a similar fashion, when we

tell the JVM to execute a given Java class, say Foo, it looks for, and executes, the

Foo.main method. Each language compiler can effect such ‘‘automatic’’ startup

routines by programming Sys.init appropriately.

8.3.2 Example

The factorial of a positive number n can be computed by the iterative formula

n! ¼ 1 � 2 � . . . � ðn � 1Þ � n. This algorithm is implemented in figure 8.7.
Let us focus on the call mult command highlighted in the fact function code

from figure 8.7. Figure 8.8 shows three stack states related to this call, illustrating the

function calling protocol in action.

If we ignore the middle stack instance in figure 8.8, we observe that fact has set

up some arguments and called mult to operate on them (left stack instance). When

mult returns (right stack instance), the arguments of the called function have been

replaced with the function’s return value. In other words, when the dust clears from

165 Virtual Machine II: Program Control

function p

...

// Compute 4!

push constant 4

call fact 1 // 1 arg

...

function fact 2 // 2 local variables

// Returns the factorial of a given argument

push constant 1

pop local 0 // result=1

push constant 1

pop local 1 // j=1

label loop

push constant 1

push local 1

add

pop local 1 // j=j+1

push local 1

push argument 0

gt

if-goto end // if j>n goto end

push local 0

push local 1

call mult 2 // 2 arguments were pushed

pop local 0 // result=mult(result,j)

goto loop

label end

push local 0

return

function mult 2

// (2 local variables)

// Multiplies argument 0

// times argument 1.

// Code appears in

// figure 7.9.

...

// Return the result:

push local 0

return

2

call fact(4)

call
mult(1,2)

time

fact

p

mult

waiting

call
mult(2,3)

mult

waiting

call
mult(6,4)

mult

waiting

waiting

6 24

24

return return return

return

Figure 8.7 The life cycle of function calls. An arbitrary function p calls function fact, which
then calls mult several times. Vertical arrows depict transfer of control from one function to
another. At any given point in time, only one function is running, while all the functions up
the calling chain are waiting for it to return. When a function returns, the function that called
it resumes its execution.

just before "call mult"

ARG argument 0

return addr

LCL

ARG

THIS (p)

working
stack (f act)

argument 0 (mult)

argument 1 (mult)

local 0 (fact)

local 1 (fact)

LCL

SP

just after mult is entered just after mult returns

THAT (p)

ARG

argument 0

return addr

LCL

ARG

THIS

working
stack

argument 0

argument 1

local 0

local 1

LCL

SP

THAT

return addr

LCL

ARG

THIS

local 0

local 1

THAT

ARG argument 0

return addr

LCL

ARG

THIS

working
stack

return value

local 0

local 1

LCL

SP

THAT

(p)

(p)

(p)

(fact)

(p)

(p)

(p)

(p)

(p)

(fact)

(fact)

(fact)

(fact)

(fact)

(p)

(fact)

(p)

(p)

(p)

(p)

(fact)

(fact)

(fact)

(fact)

(mult)

(mult)

(mult)

(fact)

(fact)

(fact)

(mult)

Figure 8.8 Global stack dynamics corresponding to figure 8.7, focusing on the call mult
event. The pointers SP, ARG, and LCL are not part of the VM abstraction and are used by
the VM implementation to map the stack on the host RAM.

167 Virtual Machine II: Program Control

the function call, the calling function has received the service that it has requested,

and processing resumes as if nothing happened: The drama of mult’s processing

(middle stack instance) has left no trace whatsoever on the stack, except for the

return value.

8.3.3 Design Suggestions for the VM Implementation

The basic VM translator built in Project 7 was based on two modules: parser and

code writer. This translator can be extended into a full-scale VM implementation by

extending these modules with the functionality described here.

The Parser Module If the basic parser that you built in Project 7 does not al-

ready parse the six VM commands specified in this chapter, then add their parsing

now. Specifically, make sure that the commandType method developed in Project 7

also returns the constants corresponding to the six VM commands described in this

chapter: C_LABEL, C_GOTO, C_IF, C_FUNCTION, C_RETURN, and C_CALL.

The CodeWriter Module The basic CodeWriter specified in chapter 7 should be

augmented with the following methods.

CodeWriter: Translates VM commands into Hack assembly code. The routines

listed here should be added to the CodeWriter module API given in chapter 7.

Routine Arguments Returns Function

writeInit — — Writes assembly code

that effects the VM

initialization, also called

bootstrap code. This

code must be placed at

the beginning of the

output file.

writeLabel label (string) — Writes assembly code

that effects the label

command.

writeGoto label (string) — Writes assembly code

that effects the goto

command.

168 Chapter 8

Routine Arguments Returns Function

writeIf label (string) — Writes assembly code

that effects the if-goto

command.

writeCall functionName (string)

numArgs (int)

— Writes assembly code

that effects the call

command.

writeReturn — — Writes assembly code

that effects the return

command.

writeFunction functionName (string)

numLocals (int)

— Writes assembly code

that effects the

function command.

8.4 Perspective

The notions of subroutine calling and program flow are fundamental to all high-level

languages. This means that somewhere down the translation path to binary code,

someone must take care of the intricate housekeeping chores related to their imple-

mentation. In Java, C#, and Jack, this burden falls on the VM level. And if the VM

is stack-based, it lends itself nicely to the job, as we have seen throughout this chap-

ter. In general then, virtual machines that implement subroutine calls and recursion

as a primitive feature deliver a significant and useful abstraction.

Of course this is just one implementation option. Some compilers handle the

details of subroutine calling directly, without using a VM at all. Other compilers use

various forms of VMs, but not necessarily for managing subroutine calling. Finally,

in some architectures most of the subroutine calling functionality is handled directly

by the hardware.

In the next two chapters we will develop a Jack-to-VM compiler. Since the back-

end of this compiler was already developed—it is the VM implementation built in

chapters 7–8—the compiler’s development will be a relatively easy task.

169 Virtual Machine II: Program Control

8.5 Project

Objective Extend the basic VM translator built in Project 7 into a full-scale VM

translator. In particular, add the ability to handle the program flow and function

calling commands of the VM language.

Resources (same as Project 7) You will need two tools: the programming language

in which you will implement your VM translator, and the CPU emulator supplied

with the book. This emulator will allow you to execute the machine code generated

by your VM translator—an indirect way to test the correctness of the latter. Another

tool that may come in handy in this project is the visual VM emulator supplied with

the book. This program allows experimenting with a working VM implementation

before you set out to build one yourself. For more information about this tool, refer

to the VM emulator tutorial.

Contract Write a full-scale VM-to-Hack translator, extending the translator devel-

oped in Project 7, and conforming to the VM Specification, Part II (section 8.2) and

to the Standard VM Mapping on the Hack Platform (section 8.3.1). Use it to trans-

late the VM programs supplied below, yielding corresponding programs written in

the Hack assembly language. When executed on the supplied CPU emulator, these

assembly programs should deliver the results mandated by the supplied test scripts

and compare files.

Testing Programs

We recommend completing the implementation of the translator in two stages. First

implement the program flow commands, then the function calling commands. This

will allow you to unit-test your implementation incrementally, using the test pro-

grams supplied here.

For each program Xxx, the XxxVME.tst script allows running the program on the

supplied VM emulator, so that you can gain familiarity with the program’s intended

operation. After translating the program using your VM translator, the supplied

Xxx.tst and Xxx.cmp scripts allow testing the translated assembly code on the CPU

emulator.

170 Chapter 8

Test Programs for Program Flow Commands

m BasicLoop: computes 1 þ 2 þ � � � þ n and pushes the result onto the stack.
This program tests the implementation of the VM language’s goto and if-goto

commands.

m Fibonacci: computes and stores in memory the first n elements of the Fibo-

nacci series. This typical array manipulation program provides a more challenging

test of the VM’s branching commands.

Test Programs for Function Calling Commands

m SimpleFunction: performs a simple calculation and returns the result. This

program provides a basic test of the implementation of the function and return

commands.

m FibonacciElement: This program provides a full test of the implementation

of the VM’s function calling commands, the bootstrap section, and most of the other

VM commands.

The program directory consists of two .vm files:

� Main.vm contains one function called fibonacci. This recursive function returns

the n-th element of the Fibonacci series;

� Sys.vm contains one function called init. This function calls the Main.fibonacci

function with n ¼ 4, then loops infinitely.
Since the overall program consists of two .vm files, the entire directory must be

compiled in order to produce a single FibonacciElement.asm file. (compiling each

.vm file separately will yield two separate .asm files, which is not desired here).

m StaticsTest: A full test of the VM implementation’s handling of static vari-

ables. Consists of two .vm files, each representing the compilation of a stand-alone

class file, plus a Sys.vm file. The entire directory should be compiled in order to

produce a single StaticsTest.asm file.

(Recall that according to the VM Specification, the bootstrap code generated by the

VM implementation must include a call to the Sys.init function).

Tips

Initialization In order for any translated VM program to start running, it must in-

clude a preamble startup code that forces the VM implementation to start executing

171 Virtual Machine II: Program Control

it on the host platform. In addition, in order for any VM code to operate properly,

the VM implementation must store the base addresses of the virtual segments in

selected locations in the host RAM. The first three test programs in this project

assume that the startup code was not yet implemented and include test scripts that

effect the necessary initializations ‘‘manually.’’ The last two programs assume that

the startup code is already part of the VM implementation.

Testing/Debugging For each one of the five test programs, follow these steps:

1. Run the program on the supplied VM emulator, using the XxxVME.tst test

script, to get acquainted with the intended program’s behavior.

2. Use your partial translator to translate the .vm file(s), yielding a single .asm text

file that contains a translated program written in the Hack assembly language.

3. Inspect the translated .asm program. If there are visible syntax (or any other)

errors, debug and fix your translator.

4. Use the supplied .tst and .cmp files to run your translated .asm program on

the CPU emulator. If there are run-time errors, debug and fix your translator.

Note: The supplied test programs were carefully planned to unit-test the specific

features of each stage in your VM implementation. Therefore, it’s important to im-

plement your translator in the proposed order and to test it using the appropriate test

programs at each stage. Implementing a later stage before an early one may cause

the test programs to fail.

Tools Same as in Project 7.

172 Chapter 8

9 High-Level Language

High thoughts need a high language.

—Aristophanes (448–380 BC)

All the hardware and software systems presented so far in the book were low-

level, meaning that humans are not expected to interact with them directly. In this

chapter we present a high-level language, called Jack, designed to enable human

programmers write high-level programs. Jack is a simple object-based language.

It has the basic features and flavor of modern languages like Java and C#, with a

much simpler syntax and no support for inheritance. In spite of this simplicity, Jack

is a general-purpose language that can be used to create numerous applications. In

particular, it lends itself nicely to simple interactive games like Snake, Tetris, and

Pong—a program whose complete Jack code is included in the book’s software suite.

The introduction of Jack marks the beginning of the end of our journey. In chap-

ters 10 and 11 we will write a compiler that translates Jack programs into VM code,

and in chapter 12 we will develop a simple operating system for the Jack/Hack plat-

form, written in Jack. This will complete the computer’s construction. With that in

mind, it’s important to say at the outset that the goal of this chapter is not to turn

you into a Jack programmer. Instead, our hidden agenda is to prepare you to de-

velop the compiler and operating system that lie ahead.

If you have any experience with a modern object-oriented programming language,

you will immediately feel at home with Jack. Therefore, the Background section

starts the chapter with some typical programming examples, and the Specification

section proceeds with a full functional description of the language and its standard

library. The Implementation section gives some screen shots of typical Jack appli-

cations and offers general guidelines on how to write similar programs over the Hack

platform. The final Project section provides additional details about compiling and

debugging Jack programs.

weymour

Highlight

All the programs shown in the chapter can be compiled by the Jack compiler sup-

plied with the book. The resulting VM code can then run as is on the supplied

VM emulator. Alternatively, one can further translate the compiled VM code into

binary code, using the VM translator and the assembler built in chapters 7–8 and 6,

respectively. The resulting machine code can then be executed as is on the hardware

platform that we built in chapters 1–5.

It’s important to reiterate that in and by itself, Jack is a rather uninteresting and

simple-minded language. However, this simplicity has a purpose. First, you can learn

(and unlearn) Jack very quickly—in about an hour. Second, the Jack language was

carefully planned to lend itself nicely to simple compilation techniques. As a result,

one can write an elegant Jack compiler with relative ease, as we will do in chapters

10 and 11. In other words, the deliberately simple structure of Jack is designed

to help uncover the software engineering principles underlying modern languages

like Java and C#. Rather than taking the compilers and run-time environments of

these languages for granted, we will build a Jack compiler and a run-time environ-

ment ourselves, beginning in the next chapter. For now, let’s take Jack out of the

box.

9.1 Background

Jack is mostly self-explanatory. Therefore, we defer the language specification to

the next section, starting with some examples. We begin with the inevitable Hello

World program. The second example illustrates procedural programming and array

processing. The third example illustrates how the basic language can be extended

with abstract data types. The fourth example illustrates a linked list implementation

using the language’s object handling capabilities.

9.1.1 Example 1: Hello World

When we tell the Jack run-time environment to run a given program, execution al-

ways starts with the Main.main function. Thus, each Jack program must include at

least one class named Main, and this class must include at least one function named

Main.main. This convention is illustrated in figure 9.1.

Jack is equipped with a standard library whose complete API is given in sec-

tion 9.2.7. This library extends the basic language with various abstractions and

services such as arrays, strings, mathematical functions, memory management, and

input/output functions. Two such functions are invoked by the program in figure

174 Chapter 9

9.1, effecting the ‘‘Hello world’’ printout. The program also demonstrates the three

comment formats supported by Jack.

9.1.2 Example 2: Procedural Programming and Array Handling

Jack is equipped with typical language constructs for procedural programming.

It also includes basic commands for declaring and manipulating arrays. Figure 9.2

illustrates both of these features, in the context of inputting and computing the

average of a series of numbers.

Jack programs declare and construct arrays using the built-in Array class, which

is part of the standard Jack library. Note that Jack arrays are not typed and can

include anything—integers, objects, and so forth.

9.1.3 Example 3: Abstract Data Types

Every programming language has a fixed set of primitive data types, of which Jack

supports three: int, char, and boolean. Programmers can extend this basic reper-

toire by creating new classes that represent abstract data types, as needed. For ex-

ample, suppose we wish to endow Jack with the ability to handle rational numbers,

namely, objects of the form n/m where n and m are integers. This can be done by

creating a stand-alone class, designed to provide a fraction abstraction for Jack pro-

grams. Let us call this class Fraction.

Defining a Class Interface A reasonable way to get started is to specify the set of

properties and services expected from a fraction abstraction. One such Application

Program Interface (API), is given in figure 9.3a.

/** Hello World program. */

class Main {

function void main() {

/* Prints some text using the standard library. */

do Output.printString("Hello World");

do Output.println(); // New line

return;

}

}

Figure 9.1 Hello World.

175 High-Level Language

In Jack, operations on the current object (referred to as this) are represented by

methods, whereas class-level operations (equivalent to static methods in Java) are

represented by functions. Operations that create new objects are called constructors.

Using Classes APIs mean different things to different people. If you are the

programmer who has to implement the fraction class, you can view its API as a con-

tract that must be implemented, one way or another. Alternatively, if you are a

programmer who needs to use fractions in your work, you can view the API as a

documentation of a fraction server, designed to generate fraction objects and supply

fraction-related operations. Taking this latter view, consider the Jack code listed in

figure 9.3b.

Figure 9.3b illustrates an important software engineering principle: Users of any

given abstraction don’t have to know anything about its underlying implementation.

/** Computes the average of a sequence of integers. */

class Main {

function void main() {

var Array a;

var int length;

var int i, sum;

let length = Keyboard.readInt("How many numbers? ");

let a = Array.new(length); // Constructs the array

let i = 0;

while (i < length) {

let a[i] = Keyboard.readInt("Enter the next number: ");

let sum = sum + a[i];

let i = i + 1;

}

do Output.printString("The average is: ");

do Output.printInt(sum / length);

do Output.println();

return;

}

}

Figure 9.2 Procedural programming and array handling.

176 Chapter 9

// A Fraction is an object representation of n/m where n and m are integers.

field int numerator, denominator // Fraction object properties

constructor Fraction new(int a, int b) // Returns a new Fraction object

method int getNumerator() // Returns the numerator of this

// fraction

method int getDenominator() // Returns the denominator of this

// fraction

method Fraction plus(Fraction other) // Returns the sum of this fraction

// and another fraction, as a

// fraction

method void print() // Prints this fraction in the

// format "numerator/denominator"

// Additional fraction-related services are specified here, as needed.

Figure 9.3a Fraction class API.

// Computes the sum of 2/3 and 1/5.

class Main {

function void main() {

var Fraction a, b, c;

let a = Fraction.new(2,3);

let b = Fraction.new(1,5);

let c = a.plus(b); // Compute c = a + b

do c.print(); // Should print the text "13/15"

return;

}

}

Figure 9.3b Using the Fraction abstraction.

177 High-Level Language

/** Provides the Fraction type and related services. */

class Fraction {

field int numerator, denominator;

/** Constructs a new (and reduced) fraction from given

* numerator and denominator. */

constructor Fraction new(int a, int b) {

let numerator = a; let denominator = b;

do reduce(); // If a/b is not reduced, reduce it

return this;

}

/** Reduces this fraction. */

method void reduce() {

var int g;

let g = Fraction.gcd(numerator, denominator);

if (g > 1) {

let numerator = numerator / g;

let denominator = denominator / g; }

return;

}

/** Computes the greatest common denominator of a and b. */

function int gcd(int a, int b){

var int r;

while (~(b = 0)) { // Apply Euclid’s algorithm.

let r = a - (b * (a / b)); // r=remainder of a/b

let a = b; let b = r; }

return a;

}

/** Accessors. */

method int getNumerator() { return numerator; }

method int getDenominator() { return denominator; }

Figure 9.3c A possible Fraction class implementation.

178 Chapter 9

Rather, they can be given access only to the abstraction’s interface, or class API, and

then use it as a black box server of abstraction-related operations.

Implementing the Class We now turn to the other player in our story—the pro-

grammer who has to actually implement the fraction abstraction. A possible Jack

implementation is given in figure 9.3c.

Figure 9.3c illustrates the typical Jack program structure: classes, methods, con-

structors, and functions. It also demonstrates all the statement types available in the

language: let, do, if, while, and return.

9.1.4 Example 4: Linked List Implementation

A linked list (or simply list) is a chain of objects, each consisting of a data element

and a reference (pointer) to the rest of the list. Figure 9.4 shows a possible Jack class

implementation of the linked list abstraction. The purpose of this example is to il-

lustrate typical object handling in the Jack language.

/** Returns the sum of this fraction and another one.

method Fraction plus(Fraction other){

var int sum;

let sum = (numerator * other.getDenominator()) +

(other.getNumerator() * denominator());

return Fraction.new(sum, denominator *

other.getDenominator());

}

// More fraction-related methods: minus, times, div, etc.

/** Prints this fraction. */

method void print() {

do Output.printInt(numerator);

do Output.printString("/");

do Output.printInt(denominator);

return;

}

} // Fraction class

Figure 9.3c (continued)

179 High-Level Language

/** The List class provides a linked list abstraction. */

class List {

field int data;

field List next;

/* Creates a new List object. */

constructor List new(int car, List cdr) {

let data = car;

let next = cdr;

return this;

}

/* Disposes this List by recursively disposing its tail. */

method void dispose() {

if (~(next = null)) {

do next.dispose();

}

// Use an OS routine to recycle the memory held by this

// object.

do Memory.deAlloc(this);

return;

}

// More List-related methods come here

} // class List

/* Creates a list holding the numbers (2,3,5).

(this code can appear in any class). */

function void create235() {

var List v;

let v = List.new(5,null);

let v = List.new(2,List.new(3,v));

... // Does something with the list

do v.dispose();

return;

}

Figure 9.4 Object handling in a linked list context.

180 Chapter 9

9.2 The Jack Language Specification

We now turn to a formal and complete description of the Jack language, organized

by its syntactic elements, program structure, variables, expressions, and statements.

This language specification should be viewed as a technical reference, to be consulted

as needed.

9.2.1 Syntactic Elements

A Jack program is a sequence of tokens separated by an arbitrary amount of white

space and comments, which are ignored. Tokens can be symbols, reserved words,

constants, and identifiers, as listed in figure 9.5.

9.2.2 Program Structure

The basic programming unit in Jack is a class. Each class resides in a separate file

and can be compiled separately. Class declarations have the following format:

class name {

Field and static variable declarations // Must precede subroutine declarations.

Subroutine declarations // Constructor, method and function declarations.

}

Each class declaration specifies a name through which the class can be globally

accessed. Next comes a sequence of zero or more field and static variable declara-

tions. Then comes a sequence of one or more subroutine declarations, each defining a

method, a function, or a constructor. Methods ‘‘belong to’’ objects and provide their

functionality, while functions ‘‘belong to’’ the class in general and are not associated

with a particular object (similar to Java’s static methods). A constructor ‘‘belongs to’’

the class and, when called, generates object instances of this class.

All subroutine declarations have the following format:

subroutine type name (parameter-list) {

local variable declarations

statements

}

where subroutine is either constructor, method, or function. Each subroutine has

a name through which it can be accessed, and a type describing the value returned by

181 High-Level Language

White

space

and

comments

Space characters, newline characters, and comments are ignored.

The following comment formats are supported:

// Comment to end of line

/* Comment until closing */

/** API documentation comment */

Symbols () Used for grouping arithmetic expressions

and for enclosing parameter-lists and argument-lists

[] Used for array indexing

{ } Used for grouping program units and statements

, Variable list separator

; Statement terminator

= Assignment and comparison operator

. Class membership

+ - * / & | ~ < > Operators

Reserved

words

class, constructor, method, function Program components

int, boolean, char, void Primitive types

var, static, field Variable declarations

let, do, if, else, while, return Statements

true, false, null Constant values

this Object reference

Constants Integer constants must be positive and in standard decimal notation, e.g., 1984.

Negative integers like -13 are not constants but rather expressions consisting of a

unary minus operator applied to an integer constant.

String constants are enclosed within two quote (‘‘) characters and may contain any

characters except newline or double-quote. (These characters are supplied by the

functions String.newLine() and String.doubleQuote() from the standard

library.)

Boolean constants can be true or false.

The constant null signifies a null reference.

Identifiers Identifiers are composed from arbitrarily long sequences of letters

(A-Z, a-z), digits (0-9), and ‘‘_’’. The first character must be a letter or ‘‘_’’.

The language is case sensitive. Thus x and X are treated as different identifiers.

Figure 9.5 Jack syntactic elements.

182 Chapter 9

the subroutine. If the subroutine returns no value, the type is declared void; other-

wise, it can be any of the primitive data types supported by the language, or any of

the class types supplied by the standard library, or any of the class types supplied by

other classes in the application. Constructors may have arbitrary names, but they

must return an object of the class type. Therefore the type of a constructor must

always be the name of the class to which it belongs.

Following its header specification, the subroutine declaration contains a sequence

of zero or more local variable declarations, then a sequence of zero or more state-

ments.

As in Java, a Jack program is a collection of one or more classes. One class must

be named Main, and this class must include at least one function named main. When

instructed to execute a Jack program that resides in some directory, the Jack run-

time environment will automatically start running the Main.main function.

9.2.3 Variables

Variables in Jack must be explicitly declared before they are used. There are four

kinds of variables: field, static, local, and parameter variables, each with its asso-

ciated scope. Variables must be typed.

Data Types Each variable can assume either a primitive data type (int, char,

boolean), as predefined in the Jack language specification, or an object type, which

is the name of a class. The class that implements this type can be either part of the

Jack standard library (e.g., String or Array), or it may be any other class residing

in the program directory.

Primitive Types Jack features three primitive data types:

m int: 16-bit 2’s complement

m boolean: false and true

m char: unicode character

Variables of primitive types are allocated to memory when they are declared. For

example, the declarations var int age; var boolean gender; cause the compiler

to create the variables age and gender and to allocate memory space to them.

Object Types Every class defines an object type. As in Java, the declaration of an

object variable only causes the creation of a reference variable (pointer). Memory

183 High-Level Language

for storing the object itself is allocated later, if and when the programmer actually

constructs the object by calling a constructor. Figure 9.6 gives an example.

The Jack standard library provides two built-in object types (classes) that play a

role in the language syntax: Array and String.

Arrays Arrays are declared using a built-in class called Array. Arrays are

one-dimensional and the first index is always 0 (multi-dimensional arrays may be

obtained as arrays of arrays). Array entries do not have a declared type, and different

entries in the same array may have different types. The declaration of an array only

creates a reference, while the actual construction of the array is done by calling the

Array.new(length) constructor. Access to array elements is done using the a[j]

notation. Figure 9.2 illustrates working with arrays.

Strings Strings are declared using a built-in class called String. The Jack compiler

recognizes the syntax "xxx" and treats it as the contents of some String object. The

contents of String objects can be accessed and modified using the methods of the

String class, as documented in its API. Example:

var String s;

var char c;

...

let s = "Hello World";

let c = s.charAt(6); // "W"

// This code assumes the existence of Car and Employee classes.

// Car objects have model and licensePlate fields.

// Employee objects have name and Car fields.

var Employee e, f; // Creates variables e, f that contain null references

var Car c; // Creates a variable c that contains a null reference

...

let c = Car.new("Jaguar","007") // Constructs a new Car object

let e = Employee.new("Bond",c) // Constructs a new Employee object

// At this point c and e hold the base addresses of the memory segments

// allocated to the two objects.

let f = e; // Only the reference is copied - no new object is constructed.

Figure 9.6 Object types (example).

184 Chapter 9

Type Conversions The Jack language is weakly typed. The language specifica-

tion does not define the results of attempted assignment or conversion from one type

to another, and different Jack compilers may allow or forbid them. (This under-

specification is intentional, allowing the construction of minimal Jack compilers that

ignore typing issues.)

Having said that, all Jack compilers are expected to allow, and automatically per-

form, the following assignments:

m Characters and integers are automatically converted into each other as needed,

according to the Unicode specification. Example:

var char c; var String s;

let c = 33; // 'A'

// Equivalently:

let s = "A"; let c = s.charAt(0);

m An integer can be assigned to a reference variable (of any object type), in which

case it is treated as an address in memory. Example:

var Array a;

let a = 5000;

let a[100] = 77; // Memory address 5100 is set to 77

m An object variable (whose type is a class name) may be converted into an Array

variable, and vice versa. The conversion allows accessing the object fields as array

entries, and vice versa. Example:

// Assume that class Complex has two int fields: re and im.

var Complex c; var Array a;

let a = Array.new(2);

let a[0] = 7; let a[1] = 8;

let c = a; // c==Complex(7,8)

Variable Kinds and Scope Jack features four kinds of variables. Static variables are

defined at the class level and are shared by all the objects derived from the class. For

example, a BankAccount class may have a totalBalance static variable holding

the sum of balances of all the bank accounts, each account being an object derived

from the BankAccount class. Field variables are used to define the properties of

individual objects of the class, for example, account owner and balance. Local

variables, used by subroutines, exist only as long as the subroutine is running, and

185 High-Level Language

parameter variables are used to pass arguments to subroutines. For example, our

BankAccount class may include the method signature method void transfer-

(BankAccount from, int sum), declaring the two parameters from and sum. Thus,

if joeAccount and janeAccount were two variables of type BankAccount, the

command joeAccount.transfer(janeAccount,100) will effect a transfer of 100

from Jane to Joe.

Figure 9.7 gives a formal description of all the variable kinds supported by the

Jack language. The scope of a variable is the region in the program in which the

variable name is recognized.

Variable kind Definition/Description Declared in Scope

Static variables static type name1, name2, ...;

Only one copy of each static variable

exists, and this copy is shared by all the

object instances of the class (like private

static variables in Java)

Class

declaration.

The class in

which they are

declared.

Field variables field type name1, name2, ...;

Every object instance of the class has a

private copy of the field variables (like

private object variables in Java)

Class

declaration.

The class in

which they are

declared, except

for functions.

Local variables var type name1, name2, ...;

Local variables are allocated on the stack

when the subroutine is called and freed

when it returns (like local variables in

Java)

Subroutine

declaration.

The subroutine

in which they

are declared.

Parameter

variables

type name1, name2, ...

Used to specify inputs of subroutines, for

example:

function void drive (Car c, int miles)

Appear in

parameter lists

as part of

subroutine

declarations.

The subroutine

in which they

are declared.

Figure 9.7 Variable kinds in the Jack language (throughout the table, subroutine is either a
function, a method, or a constructor).

186 Chapter 9

9.2.4 Statements

The Jack language features five generic statements. They are defined and described in

figure 9.8.

9.2.5 Expressions

Jack expressions are defined recursively according to the rules given in figure

9.9.

Statement Syntax Description

let let variable = expression;

or

let variable [expression] =

expression;

An assignment operation (where

variable is either single-valued or

an array). The variable kind may

be static, local, field, or parameter.

if if (expression) {

statements

}

else {

statements

}

Typical if statement with an

optional else clause.

The curly brackets are mandatory

even if statements is a single

statement.

while while (expression) {

statements

}

Typical while statement.

The curly brackets are mandatory

even if statements is a single

statement.

do do function-or-method-call;

Used to call a function or a

method for its effect, ignoring the

returned value.

return Return expression;

or

return;

Used to return a value from a

subroutine. The second form must

be used by functions and methods

that return a void value.

Constructors must return the

expression this.

Figure 9.8 Jack statements.

187 High-Level Language

Operator Priority and Order of Evaluation Operator priority is not defined by the

language, except that expressions in parentheses are evaluated first. Thus an expres-

sion like 2+3*4 may yield either 20 or 14, whereas 2+(3*4) is guaranteed to yield

14. The need to use parentheses in such expressions makes Jack programming a bit

cumbersome. However, the lack of formal operator priority is intentional, since it

simplifies the writing of Jack compilers. Of course, different language implementa-

tions (compilers) can specify an operator priority and add it to the language docu-

mentation, if so desired.

9.2.6 Subroutine Calls

Subroutine calls invoke methods, functions, and constructors for their effect, using

the general syntax subroutineName(argument-list). The number and type of the ar-

guments must match those of the subroutine’s parameters, as defined in its declara-

tion. The parentheses must appear even if the argument list is empty. Each argument

may be an expression of unlimited complexity. For example, the Math class, which

A Jack expression is one of the following:

m A constant;

m A variable name in scope (the variable may be static, field, local, or

parameter);

m The this keyword, denoting the current object (cannot be used in functions);

m An array element using the syntax name[expression], where name is a variable

name of type Array in scope;

m A subroutine call that returns a non-void type;

m An expression prefixed by one of the unary operators - or ~:

- expression: arithmetic negation;

~ expression: boolean negation (bit-wise for integers);

m An expression of the form expression operator expression where operator is

one of the following binary operators:

+ - * / Integer arithmetic operators;

& | Boolean And and Boolean Or (bit-wise for integers) operators;

< > = Comparison operators;

m (expression): An expression in parentheses.

Figure 9.9 Jack expressions.

188 Chapter 9

is part of Jack’s standard library, contains a square root function whose declaration

is function int sqrt(int n). Such a function can be invoked using calls like

Math.sqrt(17), or Math.sqrt((a * Math.sqrt(c - 17) + 3), and so on.

Within a class, methods are called using the syntax methodName(argument-

list), while functions and constructors must be called using their full names, namely,

className.subroutineName(argument-list). Outside a class, the class functions and

constructors are also called using their full names, while methods are called using the

syntax varName.methodName(argument-list), where varName is a previously defined

object variable. Figure 9.10 gives some examples.

Object Construction and Disposal Object construction is a two-stage affair. When

a program declares a variable of some object type, only a reference (pointer) vari-

able is created and allocated memory. To complete the object’s construction (if so

desired), the program must call a constructor from the object’s class. Thus, a class

that implements a type (e.g., Fraction from figure 9.3c) must contain at least

one constructor. Constructors may have arbitrary names, but it is customary to

class Foo {

// Some subroutine declarations - code omitted

...

method void f() {

var Bar b; // Declares a local variable of class type Bar

var int i; // Declares a local variable of primitive type int

...

do g(5,7) // Calls method g of class Foo (on this object)

do Foo.p(2) // Calls function p of class Foo

do Bar.h(3) // Calls function h of class Bar

let b = Bar.r(4); // Calls constructor or function r of class Bar

do b.q() // Calls method q of class Bar (on object b)

Let i = w(b.s(3), Foo.t()) // Calls method w on this object,

// method s on object b and function

// or constructor t of class Foo

...

}

}

Figure 9.10 Subroutine call examples.

189 High-Level Language

call one of them new. Constructors are called just like any other class function using

the format:

let varName ¼ className.constructorName(parameter-list);
For example, let c = Circle.new(x,y,50) where x, y, and 50 are the screen

location of the circle’s center and its radius. When a constructor is called, the com-

piler requests the operating system to allocate enough memory space to hold the new

object in memory. The OS returns the base address of the allocated memory seg-

ment, and the compiler assigns it to this (in the circle example, the value of this is

assigned to c). Next, the constructed object is typically initialized to some valid state,

effected by the Jack commands found in the constructor’s body.

When an object is no longer needed in a program, it can be disposed. In par-

ticular, objects can be de-allocated from memory and their space reclaimed using

the Memory.deAlloc(object) function from the standard library. Convention calls

for every class to contain a dispose() method that properly encapsulates this de-

allocation. For example, see figure 9.4.

9.2.7 The Jack Standard Library

The Jack language comes with a collection of built-in classes that extend the

language’s capabilities. This standard library, which can also be viewed as a basic

operating system, must be provided in every Jack language implementation. The

standard library includes the following classes, all implemented in Jack:

m Math: provides basic mathematical operations;

m String: implements the String type and string-related operations;

m Array: implements the Array type and array-related operations;

m Output: handles text output to the screen;

m Screen: handles graphic output to the screen;

m Keyboard: handles user input from the keyboard;

m Memory: handles memory operations;

m Sys: provides some execution-related services.

Math This class enables various mathematical operations.

m function void init(): for internal use only.

m function int abs(int x): returns the absolute value of x.

190 Chapter 9

m function int multiply(int x, int y): returns the product of x and y.

m function int divide(int x, int y): returns the integer part of x/y.

m function int min(int x, int y): returns the minimum of x and y.

m function int max(int x, int y): returns the maximum of x and y.

m function int sqrt(int x): returns the integer part of the square root of x.

String This class implements the String data type and various string-related

operations.

m constructor String new(int maxLength): constructs a new empty string (of length

zero) that can contain at most maxLength characters;

m method void dispose(): disposes this string;

m method int length(): returns the length of this string;

m method char charAt(int j): returns the character at location j of this string;

m method void setCharAt(int j, char c): sets the j-th element of this string to c;

m method String appendChar(char c): appends c to this string and returns this

string;

m method void eraseLastChar(): erases the last character from this string;

m method int intValue(): returns the integer value of this string (or of the string

prefix until a non-digit character is detected);

m method void setInt(int j): sets this string to hold a representation of j;

m function char backSpace(): returns the backspace character;

m function char doubleQuote(): returns the double quote (‘‘) character;

m function char newLine(): returns the newline character.

Array This class enables the construction and disposal of arrays.

m function Array new(int size): constructs a new array of the given size;

m method void dispose(): disposes this array.

Output This class allows writing text on the screen.

m function void init(): for internal use only;

m function void moveCursor(int i, int j): moves the cursor to the j-th column of the

i-th row, and erases the character displayed there;

191 High-Level Language

m function void printChar(char c): prints c at the cursor location and advances the

cursor one column forward;

m function void printString(String s): prints s starting at the cursor location and

advances the cursor appropriately;

m function void printInt(int i): prints i starting at the cursor location and advances

the cursor appropriately;

m function void println(): advances the cursor to the beginning of the next line;

m function void backSpace(): moves the cursor one column back.

Screen This class allows drawing graphics on the screen. Column indices start at 0

and are left-to-right. Row indices start at 0 and are top-to-bottom. The screen size is

hardware-dependant (in the Hack platform: 256 rows by 512 columns).

m function void init(): for internal use only;

m function void clearScreen(): erases the entire screen;

m function void setColor(boolean b): sets a color (white ¼ false, black ¼ true) to
be used for all further drawXXX commands;

m function void drawPixel(int x, int y): draws the (x,y) pixel;

m function void drawLine(int x1, int y1, int x2, int y2): draws a line from pixel

(x1,y1) to pixel (x2,y2);

m function void drawRectangle(int x1, int y1, int x2, int y2): draws a filled rec-

tangle whose top left corner is (x1,y1) and bottom right corner is (x2,y2);

m function void drawCircle(int x, int y, int r): draws a filled circle of radius

r <¼ 181 around (x,y).

Keyboard This class allows reading inputs from a standard keyboard.

m function void init(): for internal use only;

m function char keyPressed(): returns the character of the currently pressed key

on the keyboard; if no key is currently pressed, returns 0;

m function char readChar(): waits until a key is pressed on the keyboard and

released, then echoes the key to the screen and returns the character of the pressed key;

m function String readLine(String message): prints the message on the screen,

reads the line (text until a newline character is detected) from the keyboard, echoes

the line to the screen, and returns its value. This function also handles user back-

spaces;

192 Chapter 9

m function int readInt(String message): prints the message on the screen, reads the

line (text until a newline character is detected) from the keyboard, echoes the line to

the screen, and returns its integer value (until the first nondigit character in the line is

detected). This function also handles user backspaces.

Memory This class allows direct access to the main memory of the host platform.

m function void init(): for internal use only;

m function int peek(int address): returns the value of the main memory at this address;

m function void poke(int address, int value): sets the contents of the main memory

at this address to value;

m function Array alloc(int size): finds and allocates from the heap a memory block

of the specified size and returns a reference to its base address;

m function void deAlloc(Array o): De-allocates the given object and frees its

memory space.

Sys This class supports some execution-related services.

m function void init(): calls the init functions of the other OS classes and then

calls the Main.main() function. For internal use only;

m function void halt(): halts the program execution;

m function void error(int errorCode): prints the error code on the screen and halts;

m function void wait(int duration): waits approximately duration milliseconds and

returns.

9.3 Writing Jack Applications

Jack is a general-purpose programming language that can be implemented over dif-

ferent hardware platforms. In the next two chapters we will develop a Jack compiler

that ultimately generates binary Hack code, and thus it is natural to discuss Jack

applications in the Hack context. This section illustrates briefly three such applica-

tions and provides general guidelines about application development on the Jack-

Hack platform.

Examples Four sample applications are illustrated in figure 9.11. The Pong

game, whose Jack code is supplied with the book, provides a good illustration of

Jack programming over the Hack platform. The Pong code is not trivial, requiring

193 High-Level Language

weymour

Highlight

several hundred lines of Jack code organized in several classes. Further, the program

has to carry out some nontrivial mathematical calculations in order to compute the

direction of the ball’s movements. The program must also animate the movement of

graphical objects on the screen, requiring extensive use of the language’s graphics

drawing services. And, in order to do all of the above quickly, the program must be

efficient, meaning that it has to do as few real-time calculations and screen drawing

operations as possible.

Application Design and Implementation The development of Jack applications

over a hardware platform like Hack requires careful planning (as always). First, the

application designer must consider the physical limitations of the hardware, and

plan accordingly. For example, the dimensions of the computer’s screen limit the size

of the graphical images that the program can handle. Likewise, one must consider

the language’s range of input/output commands and the platform’s execution speed,

to gain a realistic expectation of what can and cannot be done.

Figure 9.11 Screen shots of sample Jack applications, running on the Hack computer.
Hangman, Maze, Pong, and a simple data processing program.

194 Chapter 9

As usual, the design process normally starts with a conceptual description of the

application’s behavior. In the case of graphical and interactive programs, this may

take the form of hand-written drawings of typical screens. In simple applications,

one can proceed to implementation using procedural programming. In more com-

plex tasks, it is advisable to first create an object-based design of the application.

This entails the identification of classes, fields, and subroutines, possibly leading to

the creation of some API document (e.g., figure 9.3a).

Next, one can proceed to implement the design in Jack and compile the class files

using a Jack compiler. The testing and debugging of the code generated by the com-

piler depend on the details of the target platform. In the Hack platform supplied with

the book, testing and debugging are normally done using the supplied VM emulator.

Alternatively, one can translate the Jack program all the way to binary code and run

it directly on the Hack hardware, or on the CPU emulator supplied with the book.

The Jack OS Jack programs make an extensive use of the various abstractions

and services supplied by the language’s standard library, also called the Jack OS.

This OS is itself implemented in Jack, and thus its executable version is a set of

compiled .vm files—just like the user program (following compilation). Therefore,

before running any Jack program, you must first copy into the program directory the

.vm files comprising the Jack OS (supplied with the book). The chain of command

is as follows: The computer is programmed to first run the Sys.init. This OS

function, in turn, is programmed to start running your Main.main function. This

function will then call various subroutines from both the user program and from the

OS, and so on.

Although the standard library of the Jack language can be extended, readers will

perhaps want to hone their programming skills elsewhere. After all, we don’t expect

Jack to be part of your life beyond this book. Therefore, it is best to view the Jack/

Hack platform as a given environment and make the best out of it. That’s pre-

cisely what programmers do when they write software for embedded devices and

dedicated processors that operate in restricted environments. Instead of viewing the

constrains imposed by the host platform as a problem, professionals view it as an

opportunity to display their resourcefulness and ingenuity. That’s why some of the

best programmers in the trade were first trained on primitive computers.

9.4 Perspective

Jack is an ‘‘object-based’’ language, meaning that it supports objects and classes, but

not inheritance. In this respect it is located somewhere between procedural languages

195 High-Level Language

like Pascal or C and object-oriented languages like Java or Cþþ. Jack is certainly more
‘‘clunky’’ than any of these industrial-strength programming languages. However,

its basic syntax and semantics are not very different from those of modern languages.

Some features of the Jack language leave much to be desired. For example, its

primitive type system is, well, rather primitive. Moreover, it is a weakly typed lan-

guage, meaning that type conformity in assignments and operations is not strictly

enforced. Also, one may wonder why the Jack syntax includes keywords like do and

let, why curly brackets must be used even in single statement blocks, and why the

language does not enforce a formal operator priority.

Well, all these deviations from normal programming languages were introduced

into Jack with one purpose: to allow the development of elegant and simple Jack

compilers, as we will do in the next two chapters. For example, when parsing a

statement (in any language), it is much easier to handle the code if the first token

of the statement indicates which statement we’re in. That’s why the Jack syntax

includes the do and let keywords, and so on. Thus, although Jack’s simplicity may

be a nuisance when writing a Jack application, you will probably be quite grateful for

it while writing the Jack compiler in the next two chapters.

Most modern languages are deployed with standard libraries, and so is Jack. As in

Java and C#, this library can also be viewed as an interface to a simple and por-

table operating system. In the Jack-Hack platform, the services supplied by this OS

are extremely minimal. They include no concurrency to support multi-threading or

multi-processing, no file system to support permanent storage, and no communica-

tion. At the same time, the Jack OS provides some classical OS services like graphic

and textual I/O (in very basic forms), standard implementation of strings, and stan-

dard memory allocation and de-allocation. Additionally, the Jack OS implements

various mathematical functions, including multiplication and division, normally im-

plemented in hardware. We return to these issues in chapter 12, where we will build

this simple operating system as the last module in our computer system.

9.5 Project

Objective The hidden agenda of this project is to get acquainted with the Jack lan-

guage, for two purposes: writing the Jack compiler in Projects 10 and 11, and writing

the Jack operating system in Project 12.

Contract Adopt or invent an application idea, for example, a simple computer

game or some other interactive program. Then design and build the application.

196 Chapter 9

Resources You will need three tools: the Jack compiler, to translate your program

into a set of .vm files, the VM emulator, to run and test your translated program,

and the Jack Operating System.

The Jack OS The Jack Operating System is available as a set of .vm files. These

files constitute an implementation of the standard library of the Jack programming

language. In order for any Jack program to execute properly, the compiled .vm files

of the program must reside in a directory that also contains all the .vm files of the

Jack OS. When an OS-oriented error is detected by the Jack OS, it displays a nu-

meric error code (rather than text, which wastes precious memory space). A list of all

the currently supported error codes and their textual descriptions can be found in the

file projects/09/OSerrors.txt.

Compiling and Running a Jack Program

0. Each program must be stored in a separate directory, say Xxx. Start by creating

this directory, then copy all the files from tools/OS into it.

1. Write your Jack program—a set of one or more Jack classes—each stored in a

separate ClassName.jack text file. Put all these .jack files in the Xxx directory.

2. Compile your program using the supplied Jack compiler. This is best done by

applying the compiler to the name of the program directory (Xxx). This will cause the

compiler to translate all the .jack classes found in the directory into corresponding

.vm files. If a compilation error is reported, debug the program and recompile Xxx

until no error messages are issued.

3. At this point the program directory should contain three sets of files: (i) your

source .jack files, (ii) the compiled .vm files, one for each of your .jack class files,

and (iii) additional .vm files, comprising the supplied Jack OS. To test the compiled

program, invoke the VM emulator and load the entire Xxx program directory. Then

run the program. In case of run-time errors or undesired program behavior, fix the

program and go to stage 2.

A Sample Jack Program The book’s software suite includes a complete example

of a Jack application, stored in projects/09/Square. This directory contains the

source Jack code of three classes comprising a simple interactive game.

197 High-Level Language

weymour

Highlight

10 Compiler I: Syntax Analysis

Neither can embellishments of language be found without arrangement and expression of

thoughts, nor can thoughts be made to shine without the light of language.

—Cicero (106–43 BC)

The previous chapter introduced Jack—a simple object-based programming lan-

guage whose syntax resembles that of Java and C#. In this chapter we start building

a compiler for the Jack language. A compiler is a program that translates programs

from a source language into a target language. The translation process, known as

compilation, is conceptually based on two distinct tasks. First, we have to understand

the syntax of the source program, and, from it, uncover the program’s semantics. For

example, the parsing of the code can reveal that the program seeks to declare an

array or manipulate an object. This information enables us to reconstruct the pro-

gram’s logic using the syntax of the target language. The first task, typically called

syntax analysis, is described in this chapter; the second task—code generation—is

taken up in chapter 11.

How can we tell that a compiler is capable of ‘‘understanding’’ the language’s

syntax? Well, as long as the code generated by the compiler is doing what it is sup-

posed to do, we can optimistically assume that the compiler is operating properly.

Yet in this chapter we build only the syntax analyzer module of the compiler, with

no code generation capabilities. If we wish to unit-test the syntax analyzer in isola-

tion, we have to contrive some passive way to demonstrate that it ‘‘understands’’ the

source program. Our solution is to have the syntax analyzer output an XML file

whose format reflects the syntactic structure of the input program. By inspecting the

generated XML output, we should be able to ascertain that the analyzer is parsing

input programs correctly.

The chapter starts with a Background section that surveys the minimal set of con-

cepts necessary for building a syntax analyzer: lexical analysis, context-free gram-

mars, parse trees, and recursive descent algorithms for building them. This sets the

stage for a Specification section that presents the formal grammar of the Jack lan-

guage and the format of the output that a Jack analyzer is expected to generate. The

Implementation section proposes a software architecture for constructing a Jack

analyzer, along with a suggested API. As usual, the final Project section gives step-

by-step instructions and test programs for actually building and testing the syntax

analyzer. In the next chapter, this analyzer will be extended into a full-scale compiler.

Writing a compiler from scratch is a task that brings to bear several fundamental

topics in computer science. It requires an understanding of language translation and

parsing techniques, use of classical data structures like trees and hash tables, and

application of sophisticated recursive compilation algorithms. For all these reasons,

writing a compiler is also a challenging task. However, by splitting the compiler’s

construction into two separate projects (or actually four, counting the VM projects

as well), and by allowing the modular development and unit-testing of each part in

isolation, we have turned the compiler’s development into a surprisingly manageable

and self-contained activity.

Why should you go through the trouble of building a compiler? First, a hands-on

grasp of compilation internals will turn you into a significantly better high-level pro-

grammer. Second, the same types of rules and grammars used for describing pro-

gramming languages are also used for specifying the syntax of data sets in diverse

applications ranging from computer graphics to database management to communi-

cations protocols to bioinformatics. Thus, while most programmers will not have to

develop compilers in their careers, it is very likely that they will be required to parse

and manipulate files of some complex syntax. These tasks will employ the same

concepts and techniques used in the parsing of programming languages, as described

in this chapter.

10.1 Background

A typical compiler consists of two main modules: syntax analysis and code genera-

tion. The syntax analysis task is usually divided further into two modules: tokenizing,

or grouping of input characters into language atoms, and parsing, or attempting to

match the resulting atoms stream to the syntax rules of the underlying language.

Note that these activities are completely independent of the target language into

which we seek to translate the source program. Since in this chapter we don’t deal

with code generation, we have chosen to have the syntax analyzer output the parsed

structure of the compiled program as an XML file. This decision has two benefits.

200 Chapter 10

First, the XML file can be easily viewed in any Web browser, demonstrating that

the syntax analyzer is parsing source programs correctly. Second, the requirement to

output this file explicitly forces us to write the syntax analyzer in a software archi-

tecture that can be later morphed into a full-scale compiler. In particular, in the next

chapter we will simply replace the routines that generate the passive XML code with

routines that generate executable VM code, leaving the rest of the compiler’s archi-

tecture intact (see figure 10.1).

In this chapter we focus only on the syntax analyzer module of the compiler,

whose job is ‘‘understanding the structure of a program.’’ This notion needs some

explanation. When humans read a computer program, they immediately recognize

the program’s structure. They can identify where classes and methods begin and

end, what are declarations, what are statements, what are expressions and how they

are built, and so on. This understanding is not trivial, since it requires an ability to

identify and classify nested patterns: In a typical program, classes contain methods

that contain statements that contain other statements that contain expressions, and

so on. In order to recognize these language constructs correctly, human cognition

must recursively map them on the range of textual patterns permitted by the lan-

guage syntax.

When it comes to understanding a natural language like English, the question of

how syntax rules are represented in the human brain and whether they are innate or

acquired is a subject of intense debate. However, if we limit our attention to formal

languages—artifacts whose simplicity hardly justifies the title ‘‘language’’—we know

precisely how to formalize their syntactic structure. In particular, programming

Jack
Program

Toke-
nizer Parser

Code
Gene-
ration

Syntax Analyzer

Jack Compiler

VM
code

XML
code

(Project 10)

(Project 11)

Figure 10.1 The Jack Compiler. The project in chapter 10 is an intermediate step, designed to
localize the development and unit-testing of the syntax analyzer module.

201 Compiler I: Syntax Analysis

languages are usually described using a set of rules called context-free grammar. To

understand—parse—a given program means to determine the exact correspondence

between the program’s text and the grammar’s rules. In order to do so, we first have

to transform the program’s text into a list of tokens, as we now describe.

10.1.1 Lexical Analysis

In its plainest syntactic form, a program is simply a sequence of characters, stored

in a text file. The first step in the syntax analysis of a program is to group the char-

acters into tokens (as defined by the language syntax), while ignoring white space and

comments. This step is usually called lexical analysis, scanning, or tokenizing. Once a

program has been tokenized, the tokens (rather than the characters) are viewed as its

basic atoms, and the tokens stream becomes the main input of the compiler. Figure

10.2 illustrates the tokenizing of a typical code fragment, taken from a C or Java

program.

As seen in figure 10.2, tokens fall into distinct categories, or types: while is a

keyword, count is an identifier, <= is an operator, and so on. In general, each pro-

gramming language specifies the types of tokens it allows, as well as the exact syntax

rules for combining them into valid programmatic structures. For example, some

languages may specify that ‘‘++’’ is a valid operator token, while other languages

may not. In the latter case, an expression containing two consecutive ‘‘+’’ characters

will be rendered invalid by the compiler.

C code Tokens

while (count <= 100) { /** some loop */

count++;

// Body of while continues

...

tokenizing

while

(

count

<=

100

)

{

count

++

;

...

Figure 10.2 Lexical analysis.

202 Chapter 10

10.1.2 Grammars

Once we have lexically analyzed a program into a stream of tokens, we now face the

more challenging task of parsing the tokens stream into a formal structure. In other

words, we have to figure out how to group the tokens into language constructs like

variable declarations, statements, expressions, and so on. These grouping and classi-

fication tasks can be done by attempting to match the tokens stream on some pre-

defined set of rules known as a grammar.

Almost all programming languages, as well as most other formal languages used

for describing the syntax of complex file types, can be specified using formalisms

known as context-free grammars. A context-free grammar is a set of rules specifying

how syntactic elements in some language can be formed from simpler ones. For ex-

ample, the Java grammar allows us to combine the atoms 100,count, and <= into

the expression count<=100. In a similar fashion, the Java grammar allows us to

ascertain that the text count<=100 is a valid Java expression. Indeed, each grammar

has a dual perspective. From a declarative standpoint, the grammar specifies al-

lowable ways to combine tokens, also called terminals, into higher-level syntactic

elements, also called non-terminals. From an analytic standpoint, the grammar is a

prescription for doing the reverse: parsing a given input (set of tokens resulting from

the tokenizing phase) into non-terminals, lower-level non-terminals, and eventually

terminals that cannot be decomposed any further. Figure 10.3 gives an example of a

typical grammar.

In this chapter we specify grammars using the following notation: Terminal ele-

ments appear in bold text enclosed in single quotes, and non-terminal elements in

regular font. When there is more than one way to parse a non-terminal, the ‘‘|’’ no-

tation is used to list the alternative possibilities. Thus, figure 10.3 specifies that a

statement can be either a whileStatement, or an ifStatement, and so on. Typically,

grammar rules are highly recursive, and figure 10.3 is no exception. For example,

statementSequence is either null, or a single statement followed by a semicolon and a

statementSequence. This recursive definition can accommodate a sequence of 0, 1, 2,

or any other positive number of semicolon-separated statements. As an exercise, the

reader may use figure 10.3 to ascertain that the text appearing in the right side of the

figure constitutes a valid C code. You may start by trying to match the entire text

with statement, and work your way from there.

10.1.3 Parsing

The act of checking whether a grammar ‘‘accepts’’ an input text as valid is called

parsing. As we noted earlier, parsing a given text means determining the exact

203 Compiler I: Syntax Analysis

correspondence between the text and the rules of a given grammar. Since the gram-

mar rules are hierarchical, the output generated by the parser can be described in a

tree-oriented data structure called a parse tree or a derivation tree. Figure 10.4 gives a

typical example.

Note that as a side effect of the parsing process, the entire syntactic structure of the

input text is uncovered. Some compilers represent this tree by an explicit data struc-

ture that is further used for code generation and error reporting. Other compilers

(including the one that we will build) represent the program’s structure implicitly,

generating code and reporting errors on the fly. Such compilers don’t have to hold

the entire program structure in memory, but only the subtree associated with the

presently parsed element. More about this later.

Recursive Descent Parsing There are several algorithms for constructing parse trees.

The top-down approach, also called recursive descent parsing, attempts to parse the

tokens stream recursively, using the nested structure prescribed by the language

grammar. Let us consider how a parser program that implements this strategy can be

written. For every rule in the grammar describing a non-terminal, we can equip the

parser program with a recursive routine designed to parse that non-terminal. If the

non-terminal consists of terminal atoms only, the routine can simply process them.

...

statement: whileStatement

| ifStatement

| ... // Other statement possibilities

| '{' statementSequence '}'

whileStatement: 'while' '(' expression ')'

statement

ifStatement: ... // Definition of "if"

statementSequence: '' // empty sequence (null)

| statement ';'

statementSequence

expression: ... // Definition of "expression"

... // More definitions follow

while (expression) {

statement;

statement;

while (expression) {

while(expression)

statement;

statement;

}

}

Figure 10.3 A subset of the C language grammar (left) and a sample code segment accepted
by this grammar (right).

204 Chapter 10

C code C language grammar (partial)

while (count<=100) {

count++;

// ...

statement: whileStatement | ifStatement

| ... | '{' statementSequence '}'

whileStatement: 'while' '(' expression ')'

statement

ifStatement: ... // Definition of "if"

statementSequence: '' // Null

| statement ';' statementSequence

expression: ... // Definition of "expression"

Tokenized

(parser’s input):

while

(

count

<=

100

)

{

count

++

;

...

while . . .()count <= 100 { count ++

statement

whileStatement

expression

statementSequence

statement

;

statement statementSequence

Figure 10.4 Parse tree of a program segment according to a grammar segment. Solid tri-
angles represent lower-level parse trees.

205 Compiler I: Syntax Analysis

Otherwise, for every non-terminal building block in the rule’s right-hand side, the

routine can recursively call the routine designed to parse this non-terminal. The pro-

cess will continue recursively, until all the terminal atoms have been reached and

processed.

To illustrate, suppose we have to write a recursive descent parser that follows the

grammar from figure 10.3. Since the grammar has five derivation rules, the parser

implementation can consist of five major routines: parseStatement(), parse-

WhileStatement(), parseIfStatement(), parseStatementSequence(), and

parseExpression(). The parsing logic of these routines should follow the syntactic

patterns appearing in the right-hand sides of the corresponding grammar rules. Thus

parseStatement() should probably start its processing by determining what is the

first token in the input. Having established the token’s identity, the routine could

determine which statement we are in, and then call the parsing routine associated

with this statement type.

For example, if the input stream were that depicted in figure 10.4, the routine

will establish that the first token is while, then call the parseWhileStatement()

routine. According to the corresponding grammar rule, this routine should next

attempt to read the terminals ‘‘while’’ and ‘‘(’’, and then call parseExpression()

to parse the non-terminal expression. After parseExpression() would return

(having parsed the ‘‘count<=100’’ sequence in our example), the grammar dictates

that parseWhileStatement() should attempt to read the terminal ‘‘)’’ and then

recursively call parseStatement(). This call would continue recursively, until at

some point only terminal atoms are read. Clearly, the same logic can also be used for

detecting syntax errors in the source program. The better the compiler, the better will

be its error diagnostics.

LL(0) Grammars Recursive parsing algorithms are simple and elegant. The

only possible complication arises when there are several alternatives for parsing

non-terminals. For example, when parseStatement() attempts to parse a state-

ment, it does not know in advance whether this statement is a while-statement, an

if-statement, or a bunch of statements enclosed in curly brackets. The span of pos-

sibilities is determined by the grammar, and in some cases it is easy to tell which al-

ternative we are in. For example, consider figure 10.3. If the first token is ‘‘while,’’ it

is clear that we are faced with a while statement, since this is the only alternative in

the grammar that starts with a ‘‘while’’ token. This observation can be generalized

as follows: whenever a non-terminal has several alternative derivation rules, the first

token suffices to resolve without ambiguity which rule to use. Grammars that have

206 Chapter 10

this property are called LL(0). These grammars can be handled simply and neatly

by recursive descent algorithms.

When the first token does not suffice to resolve the element’s type, it is possible

that a ‘‘look ahead’’ to the next token will settle the dilemma. Such parsing can

obviously be done, but as we need to look ahead at more and more tokens down the

stream, things start getting complicated. The Jack language grammar, which we now

turn to present, is almost LL(0), and thus it can be handled rather simply by a

recursive descent parser. The only exception is the parsing of expressions, where just

a little look ahead is necessary.

10.2 Specification

This section has two distinct parts. First, we specify the Jack language’s grammar.

Next, we specify a syntax analyzer designed to parse programs according to this

grammar.

10.2.1 The Jack Language Grammar

The functional specification of the Jack language given in chapter 9 was aimed at

Jack programmers. We now turn to giving a formal specification of the language,

aimed at Jack compiler developers. Our grammar specification is based on the fol-

lowing conventions:

‘xxx’: quoted boldface is used for tokens that appear verbatim (‘‘terminals’’);

xxx: regular typeface is used for names of language constructs (‘‘non-terminals’’);

(): parentheses are used for grouping of language constructs;

xjy: indicates that either x or y can appear;
x?: indicates that x appears 0 or 1 times;

x*: indicates that x appears 0 or more times.

The Jack language syntax is given in figure 10.5, using the preceding conventions.

10.2.2 A Syntax Analyzer for the Jack Language

The main purpose of the syntax analyzer is to read a Jack program and ‘‘under-

stand’’ its syntactic structure according to the Jack grammar. By understanding, we

207 Compiler I: Syntax Analysis

weymour

Highlight

Lexical elements: The Jack language includes five types of terminal elements (tokens):

keyword: 'class' | 'constructor' | 'function' |

'method' | 'field' | 'static' | 'var' |

'int' | 'char' | 'boolean' | 'void' | 'true' |

'false' | 'null' | 'this' | 'let' | 'do' |

'if' | 'else' | 'while' | 'return'

symbol: '{' | '}' | '(' | ')' | '[' | ']' | '.' |

',' | ';' | '+' | '-' | '*' | '/' | '&' |

'|' | '<' | '>' | '=' | '~'

integerConstant: A decimal number in the range 0 .. 32767.

StringConstant '"""' A sequence of Unicode characters not including double quote or

newline '"""'

identifier: A sequence of letters, digits, and underscore ('_') not starting with a

digit.

Program structure: A Jack program is a collection of classes, each appearing in a separate file.

The compilation unit is a class. A class is a sequence of tokens structured

according to the following context free syntax:

class: 'class' className '{' classVarDec* subroutineDec* '}'

classVarDec: ('static' | 'field') type varName (',' varName)* ';'

type: 'int' | 'char' | 'boolean' | className

subroutineDec: ('constructor' | 'function' | 'method')

('void' | type) subroutineName '(' parameterList ')'

subroutineBody

parameterList: ((type varName) (',' type varName)*)?

subroutineBody: '{' varDec* statements '}'

varDec: 'var' type varName (',' varName)* ';'

className: identifier

subroutineName: identifier

varName: identifier

Figure 10.5 Complete grammar of the Jack language.

208 Chapter 10

Statements:

statements: statement*

statement: letStatement | ifStatement | whileStatement |

doStatement | returnStatement

letStatement: 'let' varName ('[' expression ']')? '=' expression ';'

ifStatement: 'if' '(' expression ')' '{' statements '}'

('else' '{' statements '}')?

whileStatement: 'while' '(' expression ')' '{' statements '}'

doStatement: 'do' subroutineCall ';'

ReturnStatement 'return' expression? ';'

Expressions:

expression: term (op term)*

term: integerConstant | stringConstant | keywordConstant |

varName | varName '[' expression ']' | subroutineCall |

'(' expression ')' | unaryOp term

subroutineCall: subroutineName '(' expressionList ')' | (className |

varName) '.' subroutineName '(' expressionList ')'

expressionList: (expression (',' expression)*)?

op: '+' | '-' | '*' | '/' | '&' | '|' | '<' | '>' | '='

unaryOp: '-' | '~'

KeywordConstant: 'true' | 'false' | 'null' | 'this'

Figure 10.5 (continued)

209 Compiler I: Syntax Analysis

mean that the syntax analyzer must know, at each point in the parsing process, the

structural identity of the program element that it is currently reading, namely,

whether it is an expression, a statement, a variable name, and so on. The syntax ana-

lyzer must possess this syntactic knowledge in a complete recursive sense. Without it,

it will be impossible to move on to code generation—the ultimate goal of the overall

compiler.

The fact that the syntax analyzer ‘‘understands’’ the programmatic structure of

the input can be demonstrated by having it print the processed text in some well-

structured and easy-to-read format. One can think of several ways to cook up such a

demonstration. In this book, we decided to have the syntax analyzer output an XML

file whose marked-up format reflects the syntactic structure of the underlying pro-

gram. By viewing this XML output file—a task that can be conveniently done with

any Web browser—one should be able to tell right away if the syntax analyzer is

doing the job or not.

10.2.3 The Syntax Analyzer’s Input

The Jack syntax analyzer accepts a single command line parameter, as follows:

prompt> JackAnalyzer source

Where source is either a file name of the form Xxx.jack (the extension is

mandatory) or a directory name containing one or more .jack files (in which case

there is no extension). The syntax analyzer compiles the Xxx.jack file into a file

named Xxx.xml, created in the same directory in which the source file is located. If

source is a directory name, each .jack file located in it is compiled, creating a cor-

responding .xml file in the same directory.

Each Xxx.jack file is a stream of characters. This stream should be tokenized

into a stream of tokens according to the rules specified by the lexical elements of the

Jack language (see figure 10.5, top). The tokens may be separated by an arbitrary

number of space characters, newline characters, and comments, which are ignored.

Comments are of the standard formats /* comment until closing */, /** API

comment */, and // comment to end of line.

10.2.4 The Syntax Analyzer’s Output

Recall that the development of the Jack compiler is split into two stages (see figure

10.1), starting with the syntax analyzer. In this chapter, we want the syntax analyzer

210 Chapter 10

to emit an XML description of the input program, as illustrated in figure 10.6. In

order to do so, the syntax analyzer has to recognize two major types of language

constructs: terminal and non-terminal elements. These constructs are handled as

follows.

Non-Terminals Whenever a non-terminal language element of type xxx is encoun-

tered, the syntax analyzer should generate the marked-up output:

hxxxi
Recursive code for the body of the xxx element.

h/xxxi

Where xxx is one of the following (and only the following) non-terminals of the Jack

grammar:

m class, classVarDec, subroutineDec, parameterList,

subroutineBody, varDec;

m statements, whileSatement, ifStatement, returnStatement,

letStatement, doStatement;

m expression, term, expressionList.

Terminals Whenever a terminal language element of type xxx is encountered, the

syntax analyzer should generate the marked-up output:

hxxxi terminal h/xxxi

Where xxx is one of the five token types recognized by the Jack language (as

specified in the Jack grammar’s ‘‘lexical elements’’ section), namely, keyword,

symbol, integerConstant, stringConstant, or identifier.

Figure 10.6, which shows the analyzer’s output, should evoke some sense of déjà

vu. Earlier in the chapter we noted that the structure of a program can be analyzed

into a parse tree. And indeed, XML output is simply a textual description of a tree.

In particular, note that in a parse tree, the non-terminal nodes form a ‘‘super struc-

ture’’ that describes how the tree’s terminal nodes (the tokens) are grouped into lan-

guage constructs. This pattern is mirrored in the XML output, where non-terminal

XML elements describe how terminal XML items are arranged. In a similar fashion,

the tokens generated by the tokenizer form the lowest level of the XML output, just

as they form the terminal leaves of the program’s parse tree.

211 Compiler I: Syntax Analysis

Analyzer’s input (Jack code) Analyzer’s output (XML code)

Class Bar {

method Fraction foo(int y) {

var int temp; // a variable

let temp = (xxx+12)*-63;

...

<class>

<keyword> class </keyword>

<identifier> Bar </identifier>

<symbol> { </symbol>

<subroutineDec>

<keyword> method </keyword>

<identifier> Fraction </identifier>

<identifier> foo </identifier>

<symbol> (</symbol>

<parameterList>

<keyword> int </keyword>

<identifier> y </identifier>

</parameterList>

<symbol>) </symbol>

<subroutineBody>

<symbol> { </symbol>

<varDec>

<keyword> var </keyword>

<keyword> int </keyword>

<identifier> temp </identifier>

<symbol> ; </symbol>

</varDec>

<statements>

<letStatement>

<keyword> let </keyword>

<identifier> temp </identifier>

<symbol> = </symbol>

<expression>

...

</expression>

<symbol> ; </symbol>

...

Syntax Analyzer

Figure 10.6 Jack Analyzer in action.

212 Chapter 10

Code Generation We have just finished specifying the analyzer’s XML output. In

the next chapter we replace the software that generates this output with software that

generates executable VM code, leading to a full-scale Jack compiler.

10.3 Implementation

Section 10.2 gave all the information necessary to build a syntax analyzer for the

Jack language, without any implementation details. This section describes a pro-

posed software architecture for the syntax analyzer. We suggest arranging the im-

plementation in three modules:

m JackAnalyzer: top-level driver that sets up and invokes the other modules;

m JackTokenizer: tokenizer;

m CompilationEngine: recursive top-down parser.

These modules are designed to handle the language’s syntax. In the next chapter

we extend this architecture with two additional modules that handle the language’s

semantics: a symbol table and a VM-code writer. This will complete the construction

of a full-scale compiler for the Jack language. Since the module that drives the pars-

ing process in this project will also drive the overall compilation in the next project,

we call it CompilationEngine.

10.3.1 The JackAnalyzer Module

The analyzer program operates on a given source, where source is either a file name

of the form Xxx.jack or a directory name containing one or more such files. For

each source Xxx.jack file, the analyzer goes through the following logic:

1. Create a JackTokenizer from the Xxx.jack input file.

2. Create an output file called Xxx.xml and prepare it for writing.

3. Use the CompilationEngine to compile the input JackTokenizer into the output

file.

213 Compiler I: Syntax Analysis

10.3.2 The JackTokenizer Module

JackTokenizer: Removes all comments and white space from the input stream and

breaks it into Jack-language tokens, as specified by the Jack grammar.

Routine Arguments Returns Function

Constructor input file/

stream

— Opens the input file/stream and gets

ready to tokenize it.

hasMoreTokens — Boolean Do we have more tokens in the input?

advance — — Gets the next token from the input

and makes it the current token. This

method should only be called if

hasMoreTokens() is true. Initially

there is no current token.

tokenType — KEYWORD, SYMBOL,

IDENTIFIER, INT_CONST,

STRING_CONST

Returns the type of the current token.

keyWord — CLASS, METHOD, FUNCTION,

CONSTRUCTOR, INT,

BOOLEAN, CHAR, VOID,

VAR, STATIC, FIELD, LET,

DO, IF, ELSE, WHILE,

RETURN, TRUE, FALSE,

NULL, THIS

Returns the keyword which is the

current token. Should be called only

when tokenType() is KEYWORD.

symbol — Char Returns the character which is the

current token. Should be called only

when tokenType() is SYMBOL.

identifier — String Returns the identifier which is the

current token. Should be called only

when tokenType() is IDENTIFIER.

intVal Int Returns the integer value of the

current token. Should be called only

when tokenType() is INT_CONST.

214 Chapter 10

Routine Arguments Returns Function

stringVal String Returns the string value of the current

token, without the double quotes.

Should be called only when

tokenType() is STRING_CONST.

10.3.3 The CompilationEngine Module

CompilationEngine: Effects the actual compilation output. Gets its input from a

JackTokenizer and emits its parsed structure into an output file/stream. The

output is generated by a series of compilexxx() routines, one for every syntactic

element xxx of the Jack grammar. The contract between these routines is that each

compilexxx() routine should read the syntactic construct xxx from the input,

advance() the tokenizer exactly beyond xxx, and output the parsing of xxx. Thus,

compilexxx() may only be called if indeed xxx is the next syntactic element of the

input.

In the first version of the compiler, described in chapter 10, this module emits a

structured printout of the code, wrapped in XML tags. In the final version of the

compiler, described in chapter 11, this module generates executable VM code. In

both cases, the parsing logic and module API are exactly the same.

Routine Arguments Returns Function

Constructor Input

stream/file

Output

stream/file

— Creates a new compilation

engine with the given input and

output. The next routine called

must be compileClass().

CompileClass — — Compiles a complete class.

CompileClassVarDec — — Compiles a static declaration or

a field declaration.

CompileSubroutine — — Compiles a complete method,

function, or constructor.

compileParameterList — — Compiles a (possibly empty)

parameter list, not including the

enclosing ‘‘()’’.

215 Compiler I: Syntax Analysis

Routine Arguments Returns Function

compileVarDec — — Compiles a var declaration.

compileStatements — — Compiles a sequence of state-

ments, not including the

enclosing ‘‘{}’’.

compileDo — — Compiles a do statement.

compileLet — — Compiles a let statement.

compileWhile — — Compiles a while statement.

compileReturn — — Compiles a return statement.

compileIf — — Compiles an if statement, pos-

sibly with a trailing else clause.

CompileExpression — — Compiles an expression.

CompileTerm — — Compiles a term. This routine is

faced with a slight difficulty

when trying to decide between

some of the alternative parsing

rules. Specifically, if the current

token is an identifier, the routine

must distinguish between a

variable, an array entry, and a

subroutine call. A single look-

ahead token, which may be one

of ‘‘[’’, ‘‘(’’, or ‘‘.’’ suffices to dis-

tinguish between the three possi-

bilities. Any other token is not

part of this term and should not

be advanced over.

CompileExpressionList — — Compiles a (possibly empty)

comma-separated list of

expressions.

216 Chapter 10

10.4 Perspective

Although it is convenient to describe the structure of computer programs using parse

trees and XML files, it’s important to understand that compilers don’t necessarily

have to maintain such data structures explicitly. For example, the parsing algorithm

described in this chapter runs ‘‘on-line,’’ meaning that it parses the input as it reads

it and does not keep the entire input program in memory. There are essentially

two types of strategies for doing such parsing. The simpler strategy works top-down,

and this is the one presented in this chapter. The more advanced algorithms, which

work bottom-up, are not described here since they require some elaboration of

theory.

Indeed, in this chapter we have sidestepped almost all the formal language theory

studied in typical compilation courses. We were able to do so by choosing a very

simple syntax for the Jack language—a syntax that can be easily compiled using

recursive descent techniques. For example, the Jack grammar does not mandate the

usual operator precedence in expressions evaluation (multiplication before addition,

and so on). This has enabled us to avoid parsing algorithms that are more powerful

yet much more technical than the elegant top-down parsing techniques presented in

the chapter.

Another topic that was hardly mentioned in the chapter is how the syntax of

languages is specified in general. There is a rich theory called formal languages that

discusses properties of classes of languages, as well as metalanguages and formalisms

for specifying them. This is also the point where computer science meets the study of

human languages, leading to the vibrant area of research known as computational

linguistics.

Finally, it is worth mentioning that syntax analyzers are not stand-alone programs,

and are rarely written from scratch. Instead, programmers usually build tokenizers

and parsers using a variety of ‘‘compiler generator’’ tools like LEX (for lexical anal-

ysis) and YACC (for Yet Another Compiler Compiler). These utilities receive as input

a context-free grammar, and produce as output syntax analysis code capable of

tokenizing and parsing programs written in that grammar. The generated code can

then be customized to fit the specific compilation needs of the application at hand.

Following the ‘‘show me’’ spirit of this book, we have chosen not to use such black

boxes in the implementation of our compiler, but rather to build everything from the

ground up.

217 Compiler I: Syntax Analysis

10.5 Project

The compiler construction spans two projects: 10 and 11. This section describes how

to build the syntax analyzer described in this chapter. In the next chapter we extend

this analyzer into a full-scale Jack compiler.

Objective Build a syntax analyzer that parses Jack programs according to the Jack

grammar. The analyzer’s output should be written in XML, as defined in the speci-

fication section.

Resources The main tool in this project is the programming language in which you

will implement the syntax analyzer. You will also need the supplied TextComparer

utility, which allows comparing the output files generated by your analyzer to the

compare files supplied by us. You may also want to inspect the generated and sup-

plied output files using an XML viewer (any standard Web browser should do the

job).

Contract Write the syntax analyzer program in two stages: tokenizing and parsing.

Use it to parse all the .jack files mentioned here. For each source .jack file, your

analyzer should generate an .xml output file. The generated files should be identical

to the .xml compare-files supplied by us.

Test Programs

The syntax analyzer’s job is to parse programs written in the Jack language. Thus, a

reasonable way to test your analyzer it is to have it parse several representative Jack

programs. We supply two such test programs, called Square Dance and Array Test.

The former includes all the features of the Jack language except for array processing,

which appears in the latter. We also provide a simpler version of the Square Dance

program, as explained in what follows.

For each one of the three programs, we supply all the Jack source files comprising

the program. For each such Xxx.jack file, we supply two compare files named

XxxT.xml and Xxx.xml. These files contain, respectively, the output that should be

produced by a tokenizer and by a parser applied to Xxx.jack.

m Square Dance (projects/10/Square): A trivial interactive ‘‘game’’ that en-

ables moving a black square around the screen using the keyboard’s four arrow keys.

218 Chapter 10

m Expressionless Square Dance (projects/10/ExpressionlessSquare): An

identical copy of Square Dance, except that each expression in the original program

is replaced with a single identifier (some variable name in scope). For example, the

Square class has a method that increases the size of the graphical square object by 2

pixels, as long as the new size does not cause the square image to spill over the

screen’s boundaries. The code of this method is as follows.

Square Class Code ExpressionlessSquare Class Code

method void incSize() {

if (((y + size) < 254) &

((x + size) < 510) {

do erase();

let size = size + 2;

do draw();

}

return;

}

method void incSize() {

if (x) {

do erase();

let size=size;

do draw();

}

return;

}

Note that the replacement of expressions with variables has resulted in a nonsensical

program that cannot be compiled by the supplied Jack compiler. Still, it follows all

the Jack grammar rules. The expressionless class files have the same names as those

of the original files, but they are located in a separate directory.

m Array test (projects/10/ArrayTest): A single-class Jack program that com-

putes the average of a user-supplied sequence of integers using array notation and

array manipulation.

Experimenting with the Test Programs If you want, you can compile the Square

Dance and ArrayTest programs using the supplied Jack compiler, then use the sup-

plied VM emulator to run the compiled code. These activities are completely irrele-

vant to this project, but they serve to highlight the fact that the test programs are not

just plain text (although this is perhaps the best way to think about them in the con-

text of this project).

Stage 1: Tokenizer

First, implement the JackTokenizer module specified in section 10.3. When applied

to a text file containing Jack code, the tokenizer should produce a list of tokens, each

219 Compiler I: Syntax Analysis

printed in a separate line along with its classification: symbol, keyword, identifier, in-

teger constant, or string constant. The classification should be recorded using XML

tags. Here is an example:

Source Code Tokenizer Output

if (x < 153)

{let city="Paris";}

<tokens>

<keyword> if </keyword>

<symbol> (</symbol>

<identifier> x </identifier>

<symbol> < </symbol>

<integerConstant> 153

</integerConstant>

<symbol>) </symbol>

<symbol> { </symbol>

<keyword> let </keyword>

<identifier> city </identifier>

<symbol> = </symbol>

<stringConstant> Paris

</stringConstant>

<symbol> ; </symbol>

<symbol> } </symbol>

</tokens>

Note that in the case of string constants, the tokenizer throws away the double quote

characters. That’s intentional.

The tokenizer’s output has two ‘‘peculiarities’’ dictated by XML conventions.

First, an XML file must be enclosed in some begin and end tags, and that’s why the

<tokens> and </tokens> tags were added to the output. Second, four of the sym-

bols used in the Jack language (<, >, ", &) are also used for XML markup, and

thus they cannot appear as data in XML files. To solve the problem, we require

the tokenizer to output these tokens as <, >, ", and &, respectively.

For example, in order for the text ‘‘<symbol> < </symbol>’’ to be displayed prop-

erly in a Web browser, the source XML should be written as ‘‘<symbol> <

</symbol>.’’

Testing Your Tokenizer

m Test your tokenizer on the Square Dance and Test Array programs. There is no

need to test it on the expressionless version of the former.

220 Chapter 10

m For each source file Xxx.jack, have your tokenizer give the output file the

name XxxT.xml. Apply your tokenizer to every class file in the test programs, then

use the supplied TextComparer utility to compare the generated output to the sup-

plied .xml compare files.

m Since the output files generated by your tokenizer will have the same names and

extensions as those of the supplied compare files, we suggest putting them in separate

directories.

Stage 2: Parser

Next, implement the CompilationEngine module specified in section 10.3. Write

each method of the engine, as specified in the API, and make sure that it emits the

correct XML output. We recommend to start by writing a compilation engine that

handles everything except expressions, and test it on the expressionless Square Dance

program only. Next, extend the parser to handle expressions as well, and proceed to

test it on the Square Dance and Array Test programs.

Testing Your Parser

m Apply your CompilationEngine to the supplied test programs, then use the

supplied TextComparer utility to compare the generated output to the supplied

.xml compare files.

m Since the output files generated by your analyzer will have the same names and

extensions as those of the supplied compare files, we suggest putting them in separate

directories.

m Note that the indentation of the XML output is only for readability. Web

browsers and the supplied TextComparer utility ignore white space.

221 Compiler I: Syntax Analysis

11 Compiler II: Code Generation

The syntactic component of a grammar must specify, for each sentence, a deep structure that

determines its semantic interpretation.

—Noam Chomsky (b. 1928), mathematical linguist

Most programmers take compilers for granted. But if you’ll stop to think about it

for a moment, the ability to translate a high-level program into binary code is almost

like magic. In this book we demystify this transformation by writing a compiler for

Jack—a simple yet modern object-based language. As with Java and C#, the overall

Jack compiler is based on two tiers: a virtual machine back-end, developed in chap-

ters 7–8, and a typical front-end module, designed to bridge the gap between the

high-level language and the VM language. The compiler’s front-end module consists

of a syntax analyzer, developed in chapter 10, and a code generator—the subject of

this chapter.

Although the compiler’s front-end comprises two conceptual modules, they are

usually combined into a single program, as we will do here. Specifically, in chapter

10 we built a syntax analyzer capable of ‘‘understanding’’—parsing—source Jack

programs. In this chapter we extend the analyzer into a full-scale compiler that con-

verts each ‘‘understood’’ high-level construct into an equivalent series of VM opera-

tions. This approach follows the modular analysis-synthesis paradigm underlying

the construction of most compilers.

Modern high-level programming languages are rich and powerful. They allow

defining and using elaborate abstractions such as objects and functions, implement-

ing algorithms using elegant flow of control statements, and building data structures

of unlimited complexity. In contrast, the target platforms on which these programs

eventually run are spartan and minimal. Typically, they offer nothing more than a

vector of registers for storage and a primitive instruction set for processing. Thus, the

translation of programs from high-level to low-level is an interesting brain teaser.

weymour

Highlight

If the target platform is a virtual machine, life is somewhat easier, but still the gap

between the expressiveness of a high-level language and that of a virtual machine is

wide and challenging.

The chapter begins with a Background section covering the minimal set of topics

necessary for completing the compiler’s development: managing a symbol table;

representing and generating code for variables, objects, and arrays; and translating

control flow commands into low-level instructions. The Specification section defines

how to map the semantics of Jack programs on the VM platform and language, and

the Implementation section proposes an API for a code generation module that per-

forms this transformation. The chapter ends with the usual Project section, providing

step-by-step guidelines and test programs for completing the compiler’s construction.

So what’s in it for you? Typically, students who don’t take a formal compilation

course don’t have an opportunity to develop a full-scale compiler. Thus readers who

follow our instructions and build the Jack compiler from scratch will gain an impor-

tant lesson for a relatively small effort (of course, their knowledge of compilation

theory will remain limited unless they take a course on the subject). Further, some

of the tricks and techniques used in the code generation part of the compiler are

rather clever. Seeing these tricks in action leads one to marvel, once again, at how

human ingenuity can dress up a primitive switching machine to look like something

approaching magic.

11.1 Background

A program is essentially a series of operations that manipulate data. Thus, the com-

pilation of high-level programs into a low-level language focuses on two main issues:

data translation and command translation.

The overall compilation task entails translation all the way to binary code.

However, since we are focusing on a two-tier compiler architecture, we assume

throughout this chapter that the compiler generates VM code. Therefore, we do not

touch low-level issues that have already been dealt with at the Virtual Machine level

(chapters 7 and 8).

11.1.1 Data Translation

Programs manipulate many types of variables, including simple types like integers

and booleans and complex types like arrays and objects. Another dimension of

224 Chapter 11

interest is the variables’ kind of life cycle and scope—namely, whether it is local,

global, an argument, an object field, and so forth.

For each variable encountered in the program, the compiler must map the variable

on an equivalent representation suitable to accommodate its type in the target plat-

form. In addition, the compiler must manage the variable’s life cycle and scope, as

implied by its kind. This section describes how compilers handle these tasks, begin-

ning with the notion of a symbol table.

Symbol Table High-level programs introduce and manipulate many identifiers.

Whenever the compiler encounters an identifier, say xxx, it needs to know what xxx

stands for. Is it a variable name, a class name, or a function name? If it’s a variable,

is xxx a field of an object, or an argument of a function? What type of variable is

it—an integer, a boolean, a char, or perhaps some class type? The compiler must re-

solve these questions before it can represent xxx’s semantics in the target language.

Further, all these questions must be answered (for code generation) each time xxx is

encountered in the source code.

Clearly, there is a need to keep track of all the identifiers introduced by the

program, and, for each one, to record what the identifier stands for in the source

program and on which construct it is mapped in the target language. Most com-

pilers maintain this information using a symbol table abstraction. Whenever a new

identifier is encountered in the source code for the first time (e.g., in a variable dec-

laration), the compiler adds its description to the table. Whenever an identifier is

encountered elsewhere in the code, the compiler looks it up in the symbol table and

gets all the necessary information about it. Here is a typical example:

Symbol table (of some hypothetical subroutine)

Name Type Kind #

nAccounts int static 0

id int field 0

name String field 1

balance int field 2

sum int argument 0

status boolean local 0

The symbol table is the ‘‘Rosetta stone’’ that the compiler uses when translating

high-level code involving identifiers. For example, consider the statement balance=

225 Compiler II: Code Generation

balance+sum. Using the symbol table, the compiler can translate this statement into

code reflecting the facts that balance is field number 2 of the current object, while

sum is argument number 0 of the running subroutine. Other details of this translation

will depend on the target language.

The basic symbol table abstraction is complicated slightly due to the fact that most

languages permit different program units to use the same identifiers to represent

completely different things. In order to enable this freedom of expression, each iden-

tifier is implicitly associated with a scope, namely, the region of the program in which

the identifier is recognized. The scopes are typically nested, the convention being that

inner-scoped definitions hide outer ones. For example, if the statement x++ appears

in some C function, the C compiler first checks whether the identifier x is declared

locally in the current function, and if so, generates code that increments the local

variable. Otherwise, the compiler checks whether x is declared globally in the file,

and if so, generates code that increments the global variable. The depth of this scop-

ing convention is potentially unlimited, since some languages permit defining vari-

ables which are local only to the block of code in which they are declared.

Thus, we see that in addition to all the relevant information that must be kept

about each identifier, the symbol table must also record in some way the identifier’s

scope. The classic data structure for this purpose is a list of hash tables, each reflect-

ing a single scope nested within the next one in the list. When the compiler fails to

find the identifier in the table associated with the current scope, it looks it up in the

next table in the list, from inner scopes outward. Thus if x appears undeclared in a

certain code segment (e.g., a method), it may be that x is declared in the code seg-

ment that owns the current segment (e.g., a class), and so on.

Handling Variables One of the basic challenges faced by every compiler is how to

map the various types of variables declared in the source program onto the memory

of the target platform. This is not a trivial task. First, different types of variables

require different sizes of memory chunks, so the mapping is not one-to-one. Second,

different kinds of variables have different life cycles. For example, a single copy of

each static variable should be kept alive during the complete duration of the pro-

gram’s run-time. In contrast, each object instance of a class should have a differ-

ent copy of all its instance variables (fields), and, when disposed, the object’s

memory should be recycled. Also, each time a subroutine is being called, new copies

of its local and argument variables must be created—a need that is clearly seen in

recursion.

That’s the bad news. The good news is that we have already handled all these dif-

ficulties. In our two-tier compiler architecture, memory allocation of variables was

226 Chapter 11

delegated to the VM back-end. In particular, the virtual machine that we built in

chapters 7–8 includes built-in mechanisms for accommodating the standard kinds of

variables needed by most high-level languages: static, local, and argument variables,

as well as fields of objects. All the allocation and de-allocation details of these vari-

ables were already handled at the VM level, using the global stack and the virtual

memory segments.

Recall that this functionality was not achieved easily. In fact, we had to work

rather hard to build a VM implementation that maps the global stack and the virtual

memory segments on the ultimate hardware platform. Yet this effort was worth our

while: For any given language L, any L-to-VM compiler is now completely relieved

from low-level memory management. The only thing required from the compiler

is mapping the variables found in the source program on the virtual memory seg-

ments and expressing the high-level commands that manipulate them using VM

commands—a rather simple translation task.

Handling Arrays Arrays are almost always stored as sequences of consecutive

memory locations (multi-dimensional arrays are flattened into one-dimensional

ones). The array name is usually treated as a pointer to the base address of the RAM

block allocated to store the array in memory. In some languages like Pascal, the

entire memory space necessary to represent the array is allocated when the array is

declared. In other languages like Java, the array declaration results in the allocation

of a single pointer only, which, eventually, may point to the array’s base address.

The array proper is created in memory later, if and when the array is actually con-

structed at run-time. This type of dynamic memory allocation is done from the heap,

using the memory management services of the operating system. Typically, the OS

has an alloc(size) function that knows how to find an available memory block

of size size and return its base address to the caller. Thus, when compiling a high-

level statement like bar=new int[10], the compiler generates low-level code that

effects the operation bar=alloc(10). This results in assigning the base-address of

the array’s memory block to bar, which is exactly what we want. Figure 11.1 offers a

snapshot of this practice.

Let us consider how the compiler translates the statement bar[k]=19. Since the

symbol bar points to the array’s base-address, this statement can be also expressed

using the C-language notation *(bar+k)=19, that is, ‘‘store 19 in the memory cell

whose address is bar+k.’’ In order to implement this operation, the target language

must be equipped with some sort of an indirect addressing mechanism. Specifically,

instead of storing a value in some memory location y, we need to be able to store the

value in the memory location whose address is the current contents of y. Different

227 Compiler II: Code Generation

weymour

Highlight

languages have different means to carry out this pointer arithmetic, and figure 11.2

shows two possibilities.

Handling Objects Object instances of a certain class, say Employee, are said to en-

capsulate data items like name and salary, as well as a set of operations (methods)

that manipulate them. The data and the operations are handled quite differently by

the compiler. Let’s start with the data.

The low-level handling of object data is quite similar to that of arrays, storing

the fields of each object instance in consecutive memory locations. In most object-

oriented languages, when a class-type variable is declared, the compiler only allo-

cates a pointer variable. The memory space for the object proper is allocated later, if

and when the object is actually created via a call to a class constructor. Thus, when

compiling a constructor of some class Xxx, the compiler first uses the number and

type of the class fields to determine how many words—say n—are necessary to rep-

resent an object instance of type Xxx on the host RAM. Next, the compiler generates

the code necessary for allocating memory for the newly constructed object, for ex-

ample, this=alloc(n). This operation sets the this pointer to the base address of

Java code

...

void foo (int k) {

int x, y;

int[] bar; // Declare an array

...

// Construct the array

bar = new int[10];

...

bar[k] = 19;

}

...

Main.foo(2); // Call the foo method

...

19

4315
4316
4317

4324

(bar array)

...

...

4318

RAM

...

...

4315

...
0

bar

x
y

2 k

(local 0)
(local 1)
(local 2)

(argument 0)

275
276
277

504

following
compilation:

(The RAM state is shown just after executing

bar[k]=19)

Figure 11.1 Array handling. Since memory allocations are run-time dependent, all the shown
addresses are arbitrary examples.

228 Chapter 11

the memory block that represents the new object, which is exactly what we want.

Figure 11.3 illustrates these operations in a Java context.

Since each object is represented by a pointer variable that contains its base-

address, the data encapsulated by the object can be accessed linearly, using an index

relative to its base. For example, suppose that the Complex class includes the fol-

lowing method:

Public void mult (int c) {
re = re * c;
im = im * c;

}

How should the compiler handle the statement im = im * c? Well, an inspection of

the symbol table will tell the compiler that im is the second field of this object and

that c is the first argument of the mult method. Using this information, the compiler

can translate im = im * c into code effecting the operation *(this + 1) = *(this +

1) times (argument 0). Of course, the generated code will have to accomplish this

operation using the target language.

Suppose now that we wish to apply the mult method to the b object, using a

method call like b.mult(5). How should the compiler handle this method call?

Unlike the fields data (e.g., re and im), of which different copies are kept for each

object instance, only one copy of each method (e.g., mult) is actually kept at the

target code level for all the object instances derived from this class. In order to

make it look as if each object encapsulates its own code, the compiler must force this

single method to always operate on the desired object. The standard compilation

Pseudo VM code Final VM code

// bar[k]=19, or *(bar+k)=19

push bar

push k

add

// Use a pointer to access x[k]

pop addr // addr points to bar[k]

push 19

pop *addr // Set bar[k] to 19

// bar[k]=19, or *(bar+k)=19

push local 2

push argument 0

add

// Use the that segment to access x[k]

pop pointer 1

push constant 19

pop that 0

Figure 11.2 Array processing. The Hack VM code (right) follows the conventions described
in section 7.2.6.

229 Compiler II: Code Generation

trick that accomplishes this abstraction is to pass a reference to the manipulated

object as a hidden argument of the called method, compiling b.mult(5) as if it

were written as mult(b,5). In general then, each object-based method call

foo.bar(v1,v2,...) is translated into the VM code push foo, push v1, push

v2, . . . , call bar. This way, the compiler can force the same method to operate on

any desired object for instance, creating the high-level perception that each object

encapsulates its own code.

However, the compiler’s job is not done yet. Since the language allows different

methods in different classes to have the same name, the compiler must ensure that the

right method is applied to the right object. Further, due to the possibility of method

overriding in a subclass, compilers of object-oriented languages must do this deter-

Java code

class Complex {

// Properties (fields):

int re; // Real part

int im; // Imaginary part

...

/** Constructs a new Complex object. */

public Complex(int aRe, int aIm) {

re = aRe;

im = aIm;

}

...

}

// The following code can be in any class:

public void bla() {

Complex a, b, c;

...

a = new Complex(5,17);

b = new Complex(12,192);

...

c = a; // Only the reference is copied

...

}

326
327
328

5
17

6712
6713

...

...

12
192

7002
7003

...

following
compilation:

RAM

...
0

c
b
a (local 0)

(local 1)
(local 2)

6712
7002
6712

a object

b object

Figure 11.3 Objects handling. Since memory allocations are run-time dependent, all the
shown addresses are arbitrary examples.

230 Chapter 11

mination at run-time. When run-time typing is out of the picture, for example, in

languages like Jack, this determination can be done at compile-time. Specifically, in

each method call like x.m(y), the compiler must ensure that the called method m()

belongs to the class from which the x object was derived.

11.1.2 Commands Translation

We now describe how high-level commands are translated into the target language.

Since we have already discussed the handling of variables, objects, and arrays, there

are only two more issues to consider: expression evaluation and flow control.

Evaluating Expressions How should we generate code for evaluating high-level

expressions like x+g(2,y,-z)*5? First, we must ‘‘understand’’ the syntactic struc-

ture of the expression, for example, convert it into a parse tree like the one depicted

in figure 11.4. This parsing was already handled by the syntax analyzer described in

chapter 10. Next, as seen in the figure, we can traverse the parse tree and generate

from it the equivalent VM code.

The choice of the code generation algorithm depends on the target language into

which we are translating. For a stack-based target platform, we simply need to print

the tree in postfix notation, also known as Right Polish Notation (RPN). In RPN

Target code:

Source code:

push x

push 2

push y

push z

neg

call g

push 5

call multiply

add

x+g(2,y,-z)*5

+

x *

g 5

2 -y

z

code
generation

syntax
analysis

(chapter 10) (chapter 11)

Figure 11.4 Code generation.

231 Compiler II: Code Generation

syntax, an operation like f ðx; yÞ is expressed as x; y; f (or, in the VM language
syntax, push x, push y, call f). Likewise, an operation like x þ y, which is þðx; yÞ
in prefix notation, is stated as x, y, þ (i.e., push x, push y, add). The strategy for
translating expressions into stack-based VM code is straightforward and is based on

recursive post-order traversal of the underlying parse tree, as follows:

codeWrite(exp):

if exp is a number n then output ‘‘push n’’

if exp is a variable v then output ‘‘push v’’

if exp ¼ (exp1 op exp2) then codeWrite(exp1), codeWrite(exp2),
output ‘‘op’’

if exp ¼ op(exp1) then codeWrite(exp1), output ‘‘op’’
if exp ¼ f (exp1 . . . expN) then codeWrite(exp1), . . . , codeWrite(expN),

output ‘‘call f’’

The reader can verify that when applied to the tree in figure 11.4, this algorithm

generates the stack-machine code shown in the figure.

Translating Flow Control High-level programming languages are equipped with a

variety of control flow structures like if, while, for, switch, and so on. In con-

trast, low-level languages typically offer two basic control primitives: conditional goto

and unconditional goto. Therefore, one of the challenges faced by the compiler writer

is to translate structured code segments into target code utilizing these primitives

only. As shown in figure 11.5, the translation logic is rather simple.

Two features of high-level languages make the compilation of control structures

slightly more challenging than that shown in figure 11.5. First, a program normally

contains multiple instances of if and while statements. The compiler can handle

this multiplicity by generating and using unique label names. Second, control struc-

tures can be nested, for example, if within while within another while and so on.

This complexity can be dealt with easily using a recursive compilation strategy.

11.2 Specification

Usage The Jack compiler accepts a single command line parameter, as follows:

prompt> JackCompiler source

232 Chapter 11

Where source is either a file name of the form Xxx.jack (the extension is mandatory)

or a directory name containing one or more .jack files (in which case there is no

extension). The compiler compiles each Xxx.jack file into a file named Xxx.vm,

created in the same directory in which the source file is located. If source is a direc-

tory name, each .jack file located in it is compiled, creating a corresponding .vm file

in the same directory.

11.2.1 Standard Mapping over the Virtual Machine

The compiler translates each .jack file into a .vm file containing one VM function

for each constructor, function, and method found in the .jack file (see figure 7.8). In

doing so, every Jack-to-VM compiler must follow the following code generation

conventions.

File and Function Naming Each .jack class file is compiled into a separate .vm file.

The Jack subroutines (functions, methods, and constructors) are compiled into VM

functions as follows:

Source code Generated code

if (cond)

s1

else

s2

...

Compiler

VM code for computing ~(cond)

if-goto L1

VM code for executing s1

goto L2

label L1

VM code for executing s2

label L2

...

while (cond)

s1

...
Compiler

label L1

VM code for computing ~(cond)

if-goto L2

VM code for executing s1

goto L1

label L2

...

Figure 11.5 Compilation of control structures.

233 Compiler II: Code Generation

m A Jack subroutine xxx() in a Jack class Yyy is compiled into a VM function

called Yyy.xxx.

m A Jack function or constructor with k arguments is compiled into a VM function

that operates on k arguments.

m A Jack method with k arguments is compiled into a VM function that operates on

k þ 1 arguments. The first argument (argument number 0) always refers to the this
object.

Memory Allocation and Access

m The local variables of a Jack subroutine are allocated to, and accessed via, the

virtual local segment.

m The argument variables of a Jack subroutine are allocated to, and accessed via,

the virtual argument segment.

m The static variables of a .jack class file are allocated to, and accessed via, the

virtual static segment of the corresponding .vm file.

m Within a VM function corresponding to a Jack method or a Jack constructor,

access to the fields of the this object is obtained by first pointing the virtual this

segment to the current object (using pointer 0) and then accessing individual fields

via this index references, where index is an non-negative integer.

m Within a VM function, access to array entries is obtained by first pointing the

virtual that segment (using pointer 1) to the address of the desired array entry and

then accessing the array entry via that 0 references.

Subroutine Calling

m Before calling a VM function, the caller (itself a VM function) must push the

function’s arguments onto the stack. If the called VM function corresponds to a Jack

method, the first pushed argument must be a reference to the object on which the

method is supposed to operate.

m When compiling a Jack method into a VM function, the compiler must insert

VM code that sets the base of the this segment properly. Similarly, when compil-

ing a Jack constructor, the compiler must insert VM code that allocates a memory

block for the new object and then sets the base of the this segment to point at its

base.

234 Chapter 11

Returning from Void Methods and Functions High-level void subroutines don’t

return values. This abstraction is handled as follows:

m VM functions corresponding to void Jack methods and functions must return the

constant 0 as their return value.

m When translating a do sub statement where sub is a void method or function, the

caller of the corresponding VM function must pop (and ignore) the returned value

(which is always the constant 0).

Constants

m null and false are mapped to the constant 0. True is mapped to the constant

�1 (this constant can be obtained via push constant 1 followed by neg).

Use of Operating System Services The basic Jack OS is implemented as a set of

VM files named Math.vm, Array.vm, Output.vm, Screen.vm, Keyboard.vm,

Memory.vm, and Sys.vm (the API of these compiled class files was given in chapter

9). All these files must reside alongside the VM files generated by the compiler.

This way, any VM function can call any OS VM function for its effect. In partic-

ular, when needed, the compiler should generate code that uses the following OS

functions:

m Multiplication and division are handled using the OS functions Math.

multiply() and Math.divide().

m String constants are created using the OS constructor String.new(length).

String assignments like x="cc...c" are handled using a series of calls to the OS

routine String.appendChar(nextChar).

m Constructors allocate space for new objects using the OS function

Memory.alloc(size).

11.2.2 Compilation Example

Compiling a Jack program (one or more .jack class files) involves two main tasks:

parsing the code using the compilation engine developed in the previous chapter, and

generating code according to the guidelines and specifications given above. Figure

11.6 gives a ‘‘live example’’ of many of the code generation issues mentioned in this

chapter.

235 Compiler II: Code Generation

High-level code (BankAccount.jack class file)

/* Some common sense was sacrificed in this banking example in order to

create a nontrivial and easy-to-follow compilation example. */

class BankAccount {

// Class variables

static int nAccounts;

static int bankCommission; // As a percentage, e.g., 10 for 10 percent

// account properties

field int id;

field String owner;

field int balance;

method int commission(int x) { /* Code omitted */ }

method void transfer(int sum, BankAccount from, Date when) {

var int i, j; // Some local variables

var Date due; // Date is a user-defined type

let balance = (balance + sum) - commission(sum * 5);

// More code ...

return;

}

// More methods ...

}

Class-scope symbol table

Name Type Kind #

nAccounts int static 0

bankCommission int static 1

id int field 0

owner String field 1

balance int field 2

Method-scope (transfer) symbol table

Name Type Kind #

this BankAccount argument 0

sum int argument 1

from BankAccount argument 2

when Date argument 3

i int var 0

j int var 1

due Date var 2

Figure 11.6 Code generation example focusing on the translation of the statement
let balance = (balance + sum) - commission(sum * 5).

236 Chapter 11

11.3 Implementation

We now turn to propose a software architecture for the overall compiler. This archi-

tecture builds upon the syntax analyzer described in chapter 10. In fact, the current

architecture is based on gradually evolving the syntax analyzer into a full-scale

compiler. The overall compiler can thus be constructed using five modules:

m JackCompiler: top-level driver that sets up and invokes the other modules;

m JackTokenizer: tokenizer;

m SymbolTable: symbol table;

m VMWriter: output module for generating VM code;

m CompilationEngine: recursive top-down compilation engine.

Pseudo VM code Final VM code

function BankAccount.commission

// Code omitted

function BankAccount.transfer

// Code for setting "this" to point

// to the passed object (omitted)

push balance

push sum

add

push this

push sum

push 5

call multiply

call commission

sub

pop balance

// More code ...

push 0

return

function BankAccount.commission 0

// Code omitted

function BankAccount.transfer 3

push argument 0

pop pointer 0

push this 2

push argument 1

add

push argument 0

push argument 1

push constant 5

call Math.multiply 2

call BankAccount.commission 2

sub

pop this 2

// More code ...

push 0

return

Figure 11.6 (continued)

237 Compiler II: Code Generation

11.3.1 The JackCompiler Module

The compiler operates on a given source, where source is either a file name of the

form Xxx.jack or a directory name containing one or more such files. For each

Xxx.jack input file, the compiler creates a JackTokenizer and an output Xxx.vm file.

Next, the compiler uses the CompilationEngine, SymbolTable, and VMWriter mod-

ules to write the output file.

11.3.2 The JackTokenizer Module

The tokenizer API was given in section 10.3.2.

11.3.3 The SymbolTable Module

This module provides services for creating and using a symbol table. Recall that each

symbol has a scope from which it is visible in the source code. The symbol table

implements this abstraction by giving each symbol a running number (index) within

the scope. The index starts at 0, increments by 1 each time an identifier is added to

the table, and resets to 0 when starting a new scope. The following kinds of identi-

fiers may appear in the symbol table:

Static: Scope: class.

Field: Scope: class.

Argument: Scope: subroutine (method/function/constructor).

Var: Scope: subroutine (method/function/constructor).

When compiling error-free Jack code, any identifier not found in the symbol table

may be assumed to be a subroutine name or a class name. Since the Jack language

syntax rules suffice for distinguishing between these two possibilities, and since no

‘‘linking’’ needs to be done by the compiler, there is no need to keep these identifiers

in the symbol table.

238 Chapter 11

SymbolTable: Provides a symbol table abstraction. The symbol table associates the

identifier names found in the program with identifier properties needed for com-

pilation: type, kind, and running index. The symbol table for Jack programs has

two nested scopes (class/subroutine).

Routine Arguments Returns Function

Constructor — — Creates a new empty symbol

table.

startSubroutine — — Starts a new subroutine scope

(i.e., resets the subroutine’s

symbol table).

Define name (String)

type (String)

kind (STATIC,

FIELD, ARG,

or VAR)

— Defines a new identifier of a

given name, type, and kind

and assigns it a running index.

STATIC and FIELD identifiers

have a class scope, while ARG

and VAR identifiers have a

subroutine scope.

VarCount kind (STATIC,

FIELD, ARG,

or VAR)

int Returns the number of

variables of the given kind

already defined in the current

scope.

KindOf name (String) (STATIC,

FIELD,

ARG, VAR,

NONE)

Returns the kind of the named

identifier in the current scope.

If the identifier is unknown in

the current scope, returns

NONE.

TypeOf name (String) String Returns the type of the named

identifier in the current scope.

IndexOf name (String) int Returns the index assigned to

the named identifier.

Implementation Tip The symbol table abstraction and API can be implemented

using two separate hash tables: one for the class scope and another one for the sub-

routine scope. When a new subroutine is started, the subroutine scope table can be

cleared.

239 Compiler II: Code Generation

11.3.4 The VMWriter Module

VMWriter: Emits VM commands into a file, using the VM command syntax.

Routine Arguments Returns Function

Constructor Output file/stream — Creates a new file and prepares

it for writing.

writePush Segment (CONST,

ARG, LOCAL,

STATIC, THIS,

THAT, POINTER,

TEMP)

Index (int)

— Writes a VM push command.

writePop Segment (CONST,

ARG, LOCAL,

STATIC, THIS,

THAT, POINTER,

TEMP)

Index (int)

— Writes a VM pop command.

WriteArithmetic command (ADD,

SUB, NEG, EQ, GT,

LT, AND, OR, NOT)

— Writes a VM arithmetic

command.

WriteLabel label (String) — Writes a VM label command.

WriteGoto label (String) — Writes a VM goto command.

WriteIf label (String) Writes a VM If-goto

command.

writeCall name (String)

nArgs (int)

— Writes a VM call command.

writeFunction name (String)

nLocals (int)

— Writes a VM function

command.

writeReturn — — Writes a VM return

command.

close — — Closes the output file.

240 Chapter 11

11.3.5 The CompilationEngine Module

This class does the compilation itself. It reads its input from a JackTokenizer and

writes its output into a VMWriter. It is organized as a series of compilexxx() rou-

tines, where xxx is a syntactic element of the Jack language. The contract between

these routines is that each compilexxx() routine should read the syntactic construct

xxx from the input, advance() the tokenizer exactly beyond xxx, and emit to the

output VM code effecting the semantics of xxx. Thus compilexxx() may only be

called if indeed xxx is the next syntactic element of the input. If xxx is a part of an

expression and thus has a value, the emitted code should compute this value and

leave it at the top of the VM stack.

The API of this module is identical to that of the syntax analyzer’s compilation-

Engine module from chapter 10, and thus we suggest gradually morphing the syntax

analyzer into a full compiler. Section 11.5 provides step-by-step instructions and test

programs for this construction.

11.4 Perspective

The fact that Jack is a relatively simple language permitted us to sidestep several

thorny compilation issues. For example, while Jack looks like a typed language, this

is hardly the case. All of Jack’s data types are 16-bits long, and the language seman-

tics allows Jack compilers to ignore almost all type information. As a result, when

compiling and evaluating expressions, Jack compilers need not determine their types

(with the single exception that compiling a method call x.m() requires determining

the class type of x). Likewise, array entries in Jack are not typed. In contrast, most

programming languages feature rich type systems that have significant implications

on their compilers: Different amounts of memory must be allocated for different

types of variables; conversion from one type into another requires specific language

operations; the compilation of a simple expression like x+y depends strongly on the

types of x and y; and so on.

Another significant simplification is that the Jack language does not support

inheritance. This implies that all method calls can be handled statically, at compile-

time. In contrast, compilers of languages with inheritance must treat methods as vir-

tual, and determine their locations according to the run-time type of the underlying

object. For example, consider the method call x.m(). If the language supports in-

heritance, x can be derived from more than one class, and we cannot know which

241 Compiler II: Code Generation

weymour

Highlight

until run-time. Thus, if the definition of the method m is not found in the class from

which x was derived, it may still be found in a class that supersedes it, and so on.

Another common feature of object-oriented languages not supported by Jack is

public class fields. For example, if circ is an object of type Circle with a property

radius, one cannot write statements like r=circ.radius. Instead, the programmer

must equip the Circle class with accessor methods, allowing only statements like

r=circ.getRadius() (which is good programming practice anyway).

The lack of real typing, inheritance, and public class fields allows a truly inde-

pendent compilation of classes. In particular, a Jack class can be compiled without

accessing the code of any other class: The fields of other classes are never referred to

directly, and all linking to methods of other classes is ‘‘late’’ and done just by name.

Many other simplifications of the Jack language are not significant and can be

relaxed with little effort. For example, one may easily extend the language with for

and switch statements. Likewise, one can add the capability to assign constants like

‘c’ to char type variables, which is presently not supported by the language. (To

assign the constant ’c’ to a Jack char variable x, one must first assign "c" to a

String variable, say s, and then use let x=s.charAt(0). Clearly, it would be nicer

to simply say let x=’c’, as in Java).

Finally, as usual, we did not pay any attention to optimization. Consider the high-

level statement c++. A naı̈ve compiler may translate it into the series of low-level VM

operations push c, push 1, add, pop c. Next, the VM implementation will translate

each one of these VM commands into several machine-level instructions, resulting in

a considerable chunk of code. At the same time, an optimized compiler will notice

that we are dealing with nothing more than a simple increment, and translate it into,

say, the two machine instructions @c followed by M=M+1 on the Hack platform. Of

course this is just one example of the finesse expected from industrial-strength com-

pilers. Therefore, time and space efficiency play an important role in the code gener-

ation part of compilers and compilation courses.

11.5 Project

Objective Extend the syntax analyzer built in chapter 10 into a full-scale Jack

compiler. In particular, gradually replace the software modules that generate passive

XML code with software modules that generate executable VM code.

Resources The main tool that you need is the programming language in which you

will implement the compiler. You will also need an executable copy of the Jack

242 Chapter 11

weymour

Highlight

operating system, as explained below. Finally, you will need the supplied VM Emu-

lator, to test the code generated by your compiler on a set of test programs supplied

by us.

Contract Complete the Jack compiler implementation. The output of the compiler

should be VM code designed to run on the virtual machine built in the projects in

chapters 7 and 8. Use your compiler to compile all the Jack programs given here.

Make sure that each translated program executes according to its documentation.

Stage 1: Symbol Table

We suggest that you start by building the compiler’s symbol table module and

using it to extend the syntax analyzer built in Project 10. Presently, whenever an

identifier is encountered in the program, say foo, the syntax analyzer outputs the

XML line <identifier> foo </identifier>. Instead, have your analyzer output

the following information as part of its XML output (using some format of your

choice):

m the identifier category (var, argument, static, field, class, subroutine);

m whether the identifier is presently being defined (e.g., the identifier stands for a

variable declared in a var statement) or used (e.g., the identifier stands for a variable

in an expression);

m whether the identifier represents a variable of one of the four kinds (var, argu-

ment, static, field), and the running index assigned to the identifier by the symbol

table.

You may test your symbol table module and the preceding capability by running

your (extended) syntax analyzer on the test Jack programs supplied in Project 10.

Once the output of your extended syntax analyzer includes this information, it means

that you have developed a complete executable capability to understand the seman-

tics of Jack programs. At this stage you can make the switch to a full-scale compiler

and start generating VM code instead of XML output. This can be done by gradu-

ally morphing the code of the extended syntax analyzer into a full compiler.

Stage 2: Code Generation

We don’t provide specific guidelines on how to develop the code generation features

of the compiler, though the examples spread throughout the chapter are quite instruc-

tive. Instead, we provide a set of six application programs designed to unit-test these

243 Compiler II: Code Generation

features incrementally. We strongly suggest to test your compiler on these programs

in the given order. This way, you will be implicitly guided to build the compiler’s code

generation capabilities in stages, according to the demands of each test program.

The Operating System The Jack OS—the subject of chapter 12—was written in the

Jack language. The source OS code was then translated (by an error-free Jack com-

piler) into a set of VM files, collectively known as the Jack OS. Each time we want to

run an application program on the VM emulator, we must load into the emulator

not only the application’s .vm files, but also all the OS .vm files. This way, when an

application-level VM function calls some OS-level VM function, they will find each

other in the same environment.

Testing Method Normally, when you compile a program and run into some prob-

lems, you conclude that the program is screwed up and proceed to debug it. In this

project the setting is exactly the opposite. All the test programs that we supply are

error-free. Therefore, if their compilation yields any errors, it’s the compiler that

you have to fix, not the test programs. For each test program, we recommend going

through the following routine:

1. Copy all the supplied OS .vm files from tools/OS into the program directory,

together with the supplied .jack file(s) comprising the test program.

2. Compile the program directory using your compiler. This operation should

compile only the .jack files in the directory, which is exactly what we want.

3. If there are any compilation errors, fix your compiler and return to step 2 (note

that all the supplied test programs are error-free).

4. At this point, the program directory should contain one .vm file for each source

.jack file, as well as all the supplied OS .vm files. If this is not the case, fix your

compiler and return to step 2.

5. Execute the translated VM program in the VM Emulator, loading the entire

directory and using the ‘‘no animation’’ mode. Each one of the six test programs

contains specific execution guidelines, as listed here.

6. If the program behaves unexpectedly or some error message is displayed by the

VM emulator, fix your compiler and return to step 2.

Test Programs

We supply six test programs. Each program is designed to gradually unit-test specific

language handling capabilities of your compiler.

244 Chapter 11

Seven This program computes the value of (3*2)+1 and prints the result at the

top left of the screen. To test whether your compiler has translated the program

correctly, run the translated code in the VM emulator and make sure that it displays

7 correctly. Purpose: Tests how your compiler handles a simple program containing

an arithmetic expression with integer constants (without variables), a do statement,

and a return statement.

Decimal-to-Binary Conversion This program converts a 16-bit decimal number into

its binary representation. The program takes a decimal number from RAM[8000],

converts it to binary, and stores the individual bits in RAM[8001..8016] (each

location will contain 0 or 1). Before the conversion starts, the program initializes

RAM[8001..8016] to -1. To test whether your compiler has translated the program

correctly, load the translated code into the VM emulator and go through the fol-

lowing routine:

m Put (interactively) a 16-bit decimal value in RAM[8000].

m Run the program for a few seconds, then stop its execution.

m Check (interactively) that RAM[8001..8016] contain the correct results, and that

none of them contains -1.

Purpose: Tests how your compiler handles all the procedural elements of the Jack

language, namely, expressions (without arrays or method calls), functions, and all

the language statements. The program does not test the handling of methods, con-

structors, arrays, strings, static variables, and field variables.

Square Dance This program is a trivial interactive ‘‘game’’ that enables moving a

black square around the screen using the keyboard’s four arrow keys. While moving,

the size of the square can be increased and decreased by pressing the ‘‘z’’ and ‘‘x’’

keys, respectively. To quit the game, press the ‘‘q’’ key. To test if your compiler

has translated the program correctly, run the translated code in the VM emulator

and make sure that it works according to this description. Purpose: Tests how your

compiler handles the object-oriented constructs of the Jack language: constructors,

methods, fields and expressions that include method calls. It does not test the handling

of static variables.

Average This program computes the average of a user-supplied sequence of inte-

gers. To test if your compiler has translated the program correctly, run the translated

code in the VM emulator and follow the instructions displayed on the screen. Pur-

pose: Tests how your compiler handles arrays and strings.

245 Compiler II: Code Generation

Pong A ball is moving randomly on the screen, bouncing off the screen ‘‘walls.’’

The user can move a small bat horizontally by pressing the keyboard’s left and right

arrow keys. Each time the bat hits the ball, the user scores a point and the bat

shrinks a little, to make the game harder. If the user misses and the ball hits the

bottom horizontal line, the game is over. To test whether your compiler has trans-

lated this program correctly, run the translated code in the VM emulator and play

the game (make sure to score some points, to test the part of the program that dis-

plays the score on the screen). Purpose: Provides a complete test of how your com-

piler handles objects, including the handling of static variables.

Complex Arrays Performs five complex calculations using arrays. For each such

calculation, the program prints on the screen the expected result versus the actual

result (as performed by the compiled program). To test whether your compiler has

translated the program correctly, run the translated code in the VM emulator and

make sure that the actual results are identical to the expected results. Purpose: Tests

how your compiler handles complex array references and expressions.

246 Chapter 11

12 Operating System

Civilization progresses by extending the number of operations that we can perform without

thinking about them.

—Alfred North Whitehead, Introduction to Mathematics (1911)

In previous chapters of this book, we described and built the hardware architec-

ture of a computer platform, called Hack, and the software hierarchy that makes

it usable. In particular, we introduced an object-based language, called Jack, and

described how to write a compiler for it. Other high-level programming languages

can be specified on top of the Hack platform, each requiring its own compiler.

The last major interface missing in this puzzle is an operating system (OS). The

OS is designed to close gaps between the computer’s hardware and software sys-

tems, and to make the overall computer more accessible to programmers and users.

For example, in order to render the text ‘‘Hello World’’ on our computer’s screen,

several hundred pixels must be drawn at specific screen locations. This can be

done by consulting the hardware specification and writing code that puts the nec-

essary bits in the RAM-resident screen memory map. Obviously, high-level pro-

grammers expect something better than that. They want to use a command like

printString("Hello World") and let someone else worry about the details. And

that’s where the operating system enters the picture.

Throughout this chapter, the term operating system is used rather loosely. In fact,

the OS services that we describe comprise an operating system in a very minimal

fashion, aiming at (i) encapsulating various hardware-specific services in a software-

friendly way, and (ii) extending high-level languages with various functions and ab-

stract data types. The dividing line between an operating system in this sense and a

standard language library is not very clear. Indeed, some modern languages, most

notably Java, tend to pack many classic operating system services like GUI man-

agement, memory management, and multitasking in its standard software library,

along with many language extensions.

weymour

Highlight

Following this pattern, the collection of services that we specify and build in this

chapter can be viewed as a combination of a simple OS and a standard library for

the Jack language. This OS is packaged as a collection of Jack classes, each provid-

ing a set of related services via Jack subroutine calls. The resulting OS has many

features resembling those of industrial strength operating systems, but it still lacks

numerous OS features such as process handling, disk management, communications,

and more.

Operating systems are usually written in a high-level language and compiled into

binary form, just like any other program. Our OS is no exception—it can be written

completely in Jack. Yet unlike other programs written in high-level languages, the

operating system code must be aware of the hardware platform on which it runs. In

other words, in order to hide the gory hardware details from the application pro-

grammer, the OS programmer must write code that manipulates these details directly

(a task that requires access to the hardware documentation). Conveniently, this can be

done using the Jack language. As we observe in this chapter, Jack was defined with suf-

ficient ‘‘lowness’’ in it, permitting an intimate closeness to the hardware when needed.

The chapter starts with a relatively long Background section, describing key algo-

rithms normally used to implement basic operating system services. These include

mathematical functions, string operations, memory management, handling text and

graphics output to the screen, and handling inputs from the keyboard. This algo-

rithmic introduction is followed by a Specification section, providing the complete

API of the Jack OS, and an Implementation section, describing how to build the OS

using the classic algorithms presented earlier. As usual, the final Project section pro-

vides all the necessary project materials for gradual construction and unit-testing the

entire OS presented in the chapter.

The chapter provides two key lessons, one in software engineering and one in

computer science. First, we complete the construction of the high-level language,

compiler, and operating system trio. Second, since operating system services must

execute efficiently, we pay attention to running time considerations. The result is an

elegant series of algorithms, each being a computer science gem.

12.1 Background

12.1.1 Mathematical Operations

Computer systems must support mathematical operations like addition, multipli-

cation, and division. Normally, addition is implemented in hardware, at the ALU

248 Chapter 12

weymour

Highlight

level, as we have done in chapter 3. Other operations like multiplication and di-

vision can be handled by either hardware or software, depending on the computer’s

cost/performance requirements. This section shows how multiplication, division, and

square root operations can be implemented efficiently in software, at the OS level.

We note in passing that hardware implementations of these mathematical operations

can be based on the same algorithms presented here.

Efficiency First Mathematical algorithms operate on n-bit binary numbers, with

typical computer architectures having n ¼ 16; 32, or 64. As a rule, we seek algo-
rithms whose running time is proportional (or at least polynomial) in this parameter

n. Algorithms whose running time is proportional to the value of n-bit numbers are

unacceptable, since these values are exponential in n. For example, suppose we im-

plement the multiplication operation x � y using the repeated addition algorithm for
i ¼ 1 . . . y fresult ¼ result þ xg. Well, the problem is that in a 64-bit computer, y can
be greater than 18,000,000,000,000,000,000, implying that this naı̈ve algorithm may

run for years even on the fastest computers. In sharp contrast, the running time of

the multiplication algorithm that we present below is proportional not to the multi-

plicands’ value, which may be as large as 2n, but rather to n. Therefore, it will require

only c � n elementary operations for any pair of multiplicands, where c is a small
constant representing the number of elementary operations performed in each loop

iteration.

We use the standard ‘‘Big-Oh’’ notation, OðnÞ, to describe the running time of
algorithms. Readers who are not familiar with this notation can simply read OðnÞ as
‘‘in the order of magnitude of n.’’ With that in mind, we now turn to present an effi-

cient multiplication x � y algorithm for n-bit numbers whose running time is OðnÞ
rather than OðxÞ or OðyÞ, which are exponentially larger.

Multiplication Consider the standard multiplication method taught in elementary

school. To compute 356 times 27, we line up the two numbers one on top of the

other. Next, we multiply each digit of 356 by 7. Next, we ‘‘shift to the left’’ one

position, and multiply each digit of 356 by 2. Finally, we sum up the columns and

obtain the result. The binary version of this technique—figure 12.1—follows exactly

the same logic.

The algorithm in figure 12.1 performs OðnÞ addition operations on n-bit numbers,
where n is the number of bits in x and y. Note that shiftedX � 2 can be efficiently
obtained by either left-shifting its bit representation or by adding shiftedX to itself.

Both operations can be easily performed using primitive ALU operations. Thus this

algorithm lends itself naturally to both software and hardware implementations.

249 Operating System

weymour

Highlight

A Comment about Notation The algorithms in this chapter are written using a

self-explanatory pseudocode syntax. The only non-obvious convention is that we

use indentation to represent blocks of code (avoiding curly brackets or begin/end

keywords). For example, in figure 12.1, sum ¼ sum þ shiftedX belongs to the single-
statement body of the if statement whereas shiftedX ¼ shiftedX � 2 ends the two-
statement body of the for statement.

Division The naı̈ve way to compute the division of two n-bit numbers x=y is to

repeatedly subtract y from x until it is impossible to continue (i.e., until x < y). The

running time of this algorithm is clearly proportional to the quotient, and may be as

large as OðxÞ, that is, exponential in the number of bits n. To speed up this algo-
rithm, we can try to subtract large chunks of y’s from x in each iteration. For ex-

ample, if x ¼ 891 and y ¼ 5, we can tell right away that we can deduct a hundred 5’s
from x and the remainder will still be greater than 5, thus shaving 100 iterations from

the naı̈ve approach. Indeed, this is the rationale behind the school method for long

division x=y. Formally, in each iteration we try to subtract from x the largest possi-

ble shift of y, namely, y � T where T is the largest power of 10 such that y � T a x.

Long multiplication

x 1 0 1 1 ¼ 1 1
y � 1 0 1 ¼ 5 j-th bit of y

1 0 1 1 1

0 0 0 0 0

1 0 1 1 1

x � y 1 1 0 1 1 1 ¼ 5 5

multiply(x, y):

// Where x; y b 0

sum ¼ 0
shiftedX ¼ x
for j ¼ 0 . . . ðn � 1Þ do

if (j-th bit of y) ¼ 1 then
sum ¼ sum þ shiftedX

shiftedX ¼ shiftedX � 2

Figure 12.1 Multiplication of two n-bit numbers.

250 Chapter 12

The binary version of this opportunistic algorithm is identical, except that T is a

power of 2 instead of 10.

Writing down this long division algorithm as we have done for multiplication is an

easy exercise. We find it more illuminating to formulate the same logic as a recursive

program that is probably easier to implement, shown in figure 12.2.

The running time of this algorithm is determined by the depth of the recursion.

Since in each level of recursion the value of y is multiplied by 2, and since we termi-

nate once y > x, it follows that the recursion depth is bounded by n, the number of

bits in x. Each recursion level involves a constant number of addition, subtraction,

and multiplication operations, implying a total running time of OðnÞ such operations.
This algorithm may be considered suboptimal since each multiplication operation

also requires OðnÞ addition and subtraction operations. However, careful inspec-
tion reveals that the product 2 � q � y can be computed without any multiplication.
Instead, we can rely on the value of this product in the previous recursion level, and

use addition to establish its current value.

Square Root Square roots can be computed efficiently in a number of different

ways, for example, by using the Newton-Raphson method or a Taylor series ex-

pansion. For our purpose though, a simpler algorithm will suffice. The square root

function y ¼ ffiffiffixp has two convenient properties. First, it is monotonically increas-
ing. Second, its inverse function, x ¼ y2, is something that we already know how to
compute (multiplication). Taken together, these properties imply that we have all we

need to compute square roots using binary search. Figure 12.3 gives the details.

Note that each loop iteration takes a constant number of arithmetic operations.

Since the number of iterations is bound by n=2, the algorithm’s running time is OðnÞ
arithmetic operations.

divide (x, y):

// Integer part of x=y, where x b 0 and y > 0

if y > x return 0

q ¼ divideðx; 2 � yÞ
if ðx � 2 � q � yÞ < y

return 2 � q
else

return 2 � q þ 1

Figure 12.2 Division.

251 Operating System

12.1.2 String Representation of Numbers

Computers represent numbers internally using binary codes. Yet humans are used

to dealing with numbers in a decimal notation. Thus, when humans have to read or

input numbers, and only then, a conversion to or from decimal notation must be

performed. Typically, this service is implicit in the character handling routines sup-

plied by the operating system. We now turn to describe how these OS services are

actually implemented.

Of course the only subset of characters which is of interest here are the ten digit sym-

bols that represent actual numbers. The ASCII codes of these characters are as follows:

Character: ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

ASCII code: 48 49 50 51 52 53 54 55 56 57

As gleaned from the ASCII code, single digit characters can be easily converted

into their numeric representation, and vice versa, as follows. To compute the ASCII

code of a given digit 0 a x a 9, we can simply add x to 48 � the code of ‘0’. Con-
versely, the numeric value represented by an ASCII code 48 a c a 57 is obtained by

c � 48. And once we know how to convert single digits, we can proceed to convert
any given integer. These conversion algorithms can be based on either iterative or

recursive logic, so we present one of each in figures 12.4 and 12.5, respectively.

12.1.3 Memory Management

Dynamic Memory Allocation Computer programs declare and use all sorts of vari-

ables, including simple data items like integers and booleans and complex ones like

arrays and objects. One of the greatest virtues of high-level languages is that pro-

sqrt(x):

// Compute the integer part of y ¼ ffiffiffixp . Strategy:
// Find an integer y such that y2 a x < ðy þ 1Þ2 (for 0 a x < 2n)
// By performing a binary search in the range 0 . . . 2n=2 � 1.
y ¼ 0
for j ¼ n=2 � 1 . . . 0 do

if ðy þ 2 jÞ2 a x then y ¼ y þ 2 j
return y

Figure 12.3 Square root computation using binary search.

252 Chapter 12

grammers don’t have to worry about the details of allocating RAM space to these

variables and recycling the space when it is no longer needed. Instead, all these

memory management chores are done behind the scene by the compiler, the operat-

ing system, and the virtual machine implementation. This section describes the role

of the operating system in this joint effort.

Different variables are allocated memory at different points of time during the

program’s life cycle. For example, static variables may be allocated by the compiler

at compile time, while local variables are allocated on the stack each time a sub-

routine starts running. Other memory is dynamically allocated during the program’s

execution, and that’s where the OS enters the picture. For example, each time a Java

program creates a new array or a new object, a memory block whose size can be

determined only during run-time should be allocated. And when the array or the

object is no longer needed, its RAM space may be recycled. In some languages like

Cþþ and Jack, de-allocation of un-needed space is the responsibility of the pro-
grammer, while in others, like Java, ‘‘garbage collection’’ occurs automatically. The

RAM segment from which memory is dynamically allocated is called heap, and the

agent responsible for managing this resource is the operating system.

Operating systems use various techniques for handling dynamic memory allo-

cation and de-allocation. These techniques are implemented in two functions tra-

ditionally called alloc() and deAlloc(). We present two versions of these

algorithms: a basic one and an improved one.

Basic Memory Allocation Algorithm The data structure that this algorithm man-

ages is a single pointer, called free, which points to the beginning of the heap segment

that was not yet allocated. Figure 12.6a gives the details.

// Convert a non-negative number to a string

int2String(n):

lastDigit ¼ n % 10
c ¼ character representing lastDigit
if n < 10

return c (as a string)

else

return int2String(n=10).append(c)

// Convert a string to a non-negative number

string2Int(s):

v ¼ 0
for i ¼ 1 . . . length of s do

d ¼ integer value of the digit s½i�
v ¼ v � 10 þ d

return v

// (Assuming that s½1� is the most
// significant digit character of s.)

Figures 12.4 and 12.5 String-numeric conversions.

253 Operating System

This algorithm is clearly wasteful, as it does not reclaim the space of decom-

missioned objects.

Improved Memory Allocation Algorithm This algorithm manages a linked list of

available memory segments, called freeList. Each segment contains two housekeep-

ing fields: the segment’s length and a pointer to the next segment in the list. These

fields can be physically kept in the segment’s first two memory locations. For exam-

ple, the implementation can use the convention segment.length==segment[0]

and segment.next==segment[1]. Figure 12.6b (top left) illustrates a typical free-

List state.

When asked to allocate a memory block of some given size, the algorithm has to

search the freeList for a suitable segment. There are two well-known heuristics for

doing this search. Best-fit finds the segment whose length is the closest (from above)

to the required size, while first-fit finds the first segment that is long enough. Once a

suitable segment has been found, the required memory block is taken from it (the

location just before the beginning of the returned block, block[-1], is reserved to

hold its length, to be used during de-allocation). Next, this segment is updated in the

freeList, becoming the part that remained after the allocation. If no memory was left

in the block, or if the remaining part is practically too small, the entire segment is

eliminated from the freeList.

When asked to reclaim the memory block of an unused object, the algorithm

appends the de-allocated block to the freeList. The details are given in figure 12.6b.

After a while, dynamic memory allocation schemes like the algorithm in figure

12.6b may create a block fragmentation problem. Hence, some kind of ‘‘defrag’’ op-

Initialization: free ¼ heapBase
// Allocate a memory block of size words.

alloc(size):

pointer ¼ free
free ¼ free þ size
return pointer

// De-allocate the memory space of a given object.

deAlloc(object):

do nothing

Figure 12.6a Basic memory allocation scheme (wasteful).

254 Chapter 12

freeList 4 9 5 freeList 4 3 5

6
returned block

Data structure After alloc(5)

Initialization:

freeList ¼ heapBase
freeList.length ¼ heapLength
freeList.next ¼ null

// Allocate a memory space of size words.

alloc(size):

Search freeList using best-fit or first-fit heuristics

to obtain a segment with segment.length > size

If no such segment is found, return failure

(or attempt defragmentation)

block ¼ needed part of the found segment
(or all of it, if the segment remainder is too small)

Update freeList to reflect the allocation

block½�1� ¼ size þ 1 // Remember block size, for de-allocation
Return block

// Deallocate a decommissioned object.

deAlloc(object):

segment ¼ object � 1
segment:length ¼ object½�1�
Insert segment into the freeList

Figure 12.6b Improved memory allocation scheme (with recycling).

255 Operating System

eration should be considered, namely, merging memory areas that are physically

consecutive in memory but logically split into different segments in the freeList. The

defragmentation operation can be done each time an object is de-allocated, or when

alloc() fails to find an appropriate block, or according to some other intermediate

or ad-hoc condition.

12.1.4 Variable-length Arrays and Strings

Suppose we want to use high-level operations like s1="New York" or s2=

readLine("enter a city"). How can we implement these variable-length abstrac-

tions? The common approach in modern languages is to use a String class that

supplies services for creating and manipulating string objects. The string object can

be physically realized using an array. Normally, when the string is created, this array

is allocated to hold some maximum possible length. The actual length of the string

at each point of time may be shorter than this maximum, and must be maintained

throughout the string object’s life cycle. For example, if we issue a command like

s1.eraseLastChar(), the actual length of s1 should decrease from 8 to 7 (although

the length of the initially created array does not change). In general then, array

locations beyond the current length are not considered part of the string contents.

Most programming languages feature string types, as well as other data types of

variable lengths. The string objects are usually provided by the language’s standard

library, for example, the String and StringBuffer classes in Java or the strXXX

functions in C.

12.1.5 Input/Output Management

Computers are typically connected to a variety of input/output devices such as key-

board, screen, mouse, disk, network card, etc. Each of these I/O devices has its own

electromechanical and physical idiosyncrasies, and thus reading and writing data

on them involves many technical details. High-level languages abstract these details

away from the programmer using high-level operations like c=readChar() and

printChar(c). These operations are implemented by OS routines that carry out the

actual I/O.

Hence, an important function of the operating system is handling the various

I/O devices connected to the computer. This is done by encapsulating the details of

interfacing the device and by providing convenient access to its basic functionality,

using a set of O/S routines collectively known as the device driver. In this book we

describe the basic elements of handling the two most prevalent I/O devices: a screen

256 Chapter 12

and a keyboard. We divide the handling of the screen into two logically separate

modules: handling graphics output and handling character output.

Graphics Output

Pixel Drawing Most computers today use raster, also called bitmap, display tech-

nologies. The only primitive operation that can be physically performed in a bitmap

screen is drawing an individual pixel—a single ‘‘dot’’ on the screen specified by (col-

umn, row) coordinates. The usual convention is that columns are numbered from left

to right (like the conventional x-axis) while rows are numbered from the top down

(opposite of the conventional y-axis). Thus the screen coordinates of the top left pixel

are (0,0).

The low-level drawing of a single pixel is a hardware-specific operation that

depends on the particular interface of the screen and the underlying graphics card. If

the screen interface is based on a RAM-resident memory map, as in Hack, then

drawing a pixel is achieved by writing the proper binary value into the RAM loca-

tion that represents the required pixel in memory (see figure 12.7).

The memory map interface of the Hack screen was described in section 5.2.4.

Formulating a drawPixel algorithm that follows this contract is a simple task left to

the reader as an exercise. So, now that we know how to draw a single pixel, let us

turn to describing how to draw lines and circles.

Line Drawing When asked to draw a line between two locations on a bitmap

screen, the best that we can possibly do is approximate the line by drawing a series of

pixels along the imaginary line connecting the two points. Note that the ‘‘pen’’ that

we use can move in four directions only: up, down, left, and right. Thus the drawn

line is bound to be jagged, and the only way to make it look good is to use a high-

resolution screen. Since the receptor cells in the human eye’s retina also form a grid

of ‘‘input pixels,’’ there is a limit to the image granularity that the human eye can

resolve anyway. Thus, high-resolution screens and printers can fool the human eye to

drawPixel ðx; yÞ:
// Hardware-specific.

// Assuming a memory mapped screen:

Write a predetermined value in the RAM location corresponding to screen

location ðx; yÞ.

Figure 12.7 Drawing a pixel.

257 Operating System

believe that the lines drawn by pixels or printed dots are visibly smooth. In fact they

are always jagged.

The procedure for drawing a line from location ðx1; y1Þ to location ðx2; y2Þ starts
by drawing the ðx1; y1Þ pixel and then zigzagging in the direction of ðx2; y2Þ, until
this pixel is reached. See figure 12.8a for the details.

To extend this algorithm to a general-purpose line drawing routine, one also

has to take care of the possibilities dx; dy < 0, dx > 0, dy < 0, and dx < 0, dy > 0.

To complete the picture, note that the special cases dx ¼ 0 or dy ¼ 0, required for
drawing vertical and horizontal lines, are not handled by this algorithm. These

widely used cases should probably benefit from a separate and optimized treatment

anyway.

An annoying feature of the algorithm in figure 12.8a is the use of division oper-

ations in each loop iteration. Not only are these division operations time-consuming,

but they also require floating point operations rather than simple integer arithmetic.

The first obvious solution is to replace the a=dx < b=dy condition with the equivalent

a � dy < b � dx, which requires only integer multiplication. Further, careful inspection
of the algebraic structure of the latter condition reveals that it may be checked

b
a

b
adx

dy

dx
dy

(x + dx, y + dy)

(x + a, y + b)

(x + a, y + b)

a + +
b + +

(x, y) (x, y)

(x + dx, y + dy)

overshooting undershooting

drawLineðx; y; x þ dx; y þ dyÞ:
// Assuming dx; dy > 0

initialize ða; bÞ ¼ ð0; 0Þ
while a a dx and b a dy do

drawPixelðx þ a; y þ bÞ
if a=dx < b=dy then aþþ else bþþ

Figure 12.8a Line drawing.

258 Chapter 12

without using any multiplication at all. As shown in figure 12.8b, this may be done

efficiently by maintaining a variable that updates the value of a � dy � b � dx each
time either a or b are modified.

Circle Drawing There are several ways to draw a circle on a bitmap screen. We

present an algorithm (figure 12.9) that uses three routines already implemented in

this chapter: multiplication, square root, and line drawing.

The algorithm is based on drawing a series of horizontal lines (like the typical line

ab in figure 12.9), one for each row in the range y � r to y þ r. Since r is specified in
pixels, the algorithm ends up drawing a line in every screen row along the circle’s

north-south axis, resulting in a completely filled circle. A trivial tweaking of this

algorithm can yield an empty circle as well.

Note that the algorithm is somewhat inefficient, since the square root compu-

tation in each iteration is an expensive operation. There exist many more efficient

circle-drawing algorithms, including ones that involve addition operations only, in

the same spirit of our line-drawing algorithm.

Character Output All the output that we have described so far is graphical: pixels,

lines, and circles. We now describe how characters are printed on the screen, pixel by

pixel, using the good services of the operating system. Here are the details.

To develop a capability to write text on a bitmap screen, we first have to divide

the physical pixel-oriented screen into a logical, character-oriented screen suitable

for writing complete characters. For example, consider a screen that is 256 rows

by 512 columns. If we allocate a grid of 11 � 8 pixels for drawing a single character
(11 rows, 8 columns), then our screen can show 23 lines of 64 characters each (with

3 extra rows of pixels left unused).

Next, for each character that we want to display on the screen, we can design a

good-looking font, and then implement the font using a series of character bitmaps.

For example, figure 12.10 gives a possible bitmap for the letter ‘A’.

// To test whether a=dx < b=dy, maintain a variable adyMinusbdx,

// and test if it becomes negative.

Initialization: set adyMinusbdx ¼ 0
When aþþ is performed: set adyMinusbdx ¼ adyMinusbdx þ dy
When bþþ is performed: set adyMinusbdx ¼ adyMinusbdx � dx

Figure 12.8b Efficient testing using addition operations only.

259 Operating System

weymour

Highlight

Note that in order for our display scheme to account for the requisite inter-

character spacing, we must make sure that the 11 � 8 bitmap of each character
includes at least a 1-pixel space before the next character and at least a 1-pixel space

between adjacent lines (the exact spacing may vary with the size of the individual

characters).

Characters are usually drawn on the screen one after the other, from left to right.

For example, the two commands print("a") and print("b") probably mean

that the programmer wants to see the image "ab" drawn on the screen. Thus the

character-writing package must maintain a ‘‘cursor’’ object that keeps track of the

screen location where the next character should be drawn. The cursor information

r dy

),(yx

),(22 dyydyrxa +––=),(22 dyydyrxb +–+=

a b

..

.

..

.

dy = – r

dy = – 2

dy = – 1

dy = 0

dy = 1

dy = 2

dy = r

point point

22 dyr –

drawCircleðx; y; rÞ:
for each dy A �r . . . r do

drawLine from ðx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � dy2

p
; y þ dyÞ to ðx þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � dy2

p
; y þ dyÞ

Figure 12.9 Circle drawing.

260 Chapter 12

consists of line and column counts. For example, the character screen described at

the section’s beginning is characterized (excuse the pun) by 0 a line a 22 and

0 a column a 63. Drawing a single character at location (line, column) is achieved by

writing the character’s bitmap onto the box of pixels at rows line � 11 . . . line � 11 þ 10
and columns column � 8 . . . column � 8 þ 7. After the character has been drawn, the
cursor should be moved one step to the right (i.e., column ¼ column þ 1), and, when
a new line is requested, row should be increased by 1 and column reset to 0. When the

bottom of the screen is reached, there is a question of what to do next, the common

solution being to effect a ‘‘scrolling’’ operation. Another possibility is starting over at

the top left corner, namely, setting the cursor to (0,0).

To conclude, we know how to write characters on the screen. Writing other types

of data follows naturally from this basic capability: strings are written character by

character, numbers are first converted to strings and then written as strings, and so on.

Keyboard Handling Handling user-supplied text input is more involved than

meets the eye. For example, consider the command name=readLine("enter your

name:"). The low-level implementation of this command is not trivial, since it

involves an unpredictable event: A human user is supposed to press some keys on the

keyboard before this code can terminate properly. And the problem, of course, is

that human users press keyboard keys for variable durations of time. Hence, the trick

is to encapsulate the handling of all these messy low-level details in OS routines like

readLine, freeing high-level programs from this tedium.

Figure 12.10 Character bitmap of the letter ‘‘A’’.

261 Operating System

This section describes how the operating system manages text-oriented input in

three increasing levels of abstraction: (i) detecting which key is currently pressed

on the keyboard, (ii) capturing single-character inputs, and (iii) capturing multi-

character inputs, that is, strings.

Detecting Keyboard Input In the lowest-level form of capturing keyboard input, the

program gets data directly from the hardware, indicating which key is currently

pressed by the user. The access to this raw data depends on the specifics of the key-

board interface. For example, if the interface is a memory map that is continuously

refreshed from the keyboard, as in Hack, we can simply inspect the contents of

the relevant RAM area to determine which key is presently pressed. The details of

this inspection can then be incorporated into the implementation of the algorithm

in figure 12.11.

For example, if you know the RAM address of the keyboard memory map in the

host computer, the implementation of this algorithm entails nothing more than a

memory lookup.

Reading a Single Character The elapsed time between ‘‘key pressed’’ and ‘‘key

released’’ events is unpredictable. Hence, we have to write code that neutralizes this

variation. Also, when users press keys on the keyboard, we usually want to give a

visual feedback as to which keys have been pressed (something that you have prob-

ably grown to take for granted). Typically, we want to display some graphical cursor

at the screen location where the next input ‘‘goes’’ and, after some key has been

pressed, we typically want to echo the inputted character by displaying its bitmap on

the screen at the cursor location. This logic is implemented in figure 12.12.

Reading a String Usually, a multi-key input typed by the user is considered final

only after the enter key has been pressed, yielding the newline character. And, until

keyPressed():

// Depends on the specifics of the keyboard interface

if a key is presently pressed on the keyboard

return the ASCII value of the key

else

return 0

Figure 12.11 Capturing ‘‘raw’’ keyboard input.

262 Chapter 12

the enter key is pressed, the user should be allowed to backspace and erase pre-

viously typed characters. The code that implements this logic and renders its visual

effect is given in figure 12.13.

As usual, our input handling solutions are based on a cascading series of abstrac-

tions: The high-level program relies on the readLine abstraction, which relies on the

readChar abstraction, which relies on the keyPressed abstraction, which relies on

the hardware.

12.2 The Jack OS Specification

The previous section presented a series of algorithms that address some classic

operating system tasks. In this section we turn to formally specify one particular

operating system—the Jack OS—in API form. Since the Jack OS can also be viewed

as an extension of the Jack programming language, this documentation duplicates

exactly ‘‘The Jack Standard Library’’ from section 9.2.7. In chapter 9, the OS speci-

fication was intended for programmers who want to use its abstract services; in

this chapter, the OS specification is intended for programmers who have to im-

plement these services. Technical information and implementation tips follow in

section 12.3.

readChar():

// Read and echo a single character

display the cursor

while no key is pressed on the keyboard

do nothing // wait till a key is pressed

c ¼ code of currently pressed key
while a key is pressed

do nothing // wait for the user to let go

print c at the current cursor location

move the cursor one position to the right

return c

readLine():

// Read and echo a ‘‘line’’ (until newline)

s ¼ empty string
repeat

c ¼ readChar()
if c ¼ newline character

print newline

return s

else if c ¼ backspace character
remove last character from s

move the cursor 1 position back

else

s ¼ s.append(c)

Figures 12.12 and 12.13 Capturing ‘‘cooked’’ keyboard input.

263 Operating System

The operating system is divided into eight classes:

m Math: provides basic mathematical operations;

m String: implements the String type and string-related operations;

m Array: implements the Array type and array-related operations;

m Output: handles text output to the screen;

m Screen: handles graphic output to the screen;

m Keyboard: handles user input from the keyboard;

m Memory: handles memory operations;

m Sys: provides some execution-related services.

12.2.1 Math

This class enables various mathematical operations.

m function void init(): for internal use only;

m function int abs(int x): returns the absolute value of x;

m function int multiply(int x, int y): returns the product of x and y;

m function int divide(int x, int y): returns the integer part of x/y;

m function int min(int x, int y): returns the minimum of x and y;

m function int max(int x, int y): returns the maximum of x and y;

m function int sqrt(int x): returns the integer part of the square root of x.

12.2.2 String

This class implements the String data type and various string-related operations.

m constructor String new(int maxLength): constructs a new empty string (of length

zero) that can contain at most maxLength characters;

m method void dispose(): disposes this string;

m method int length(): returns the length of this string;

m method char charAt(int j): returns the character at location j of this string;

m method void setCharAt(int j, char c): sets the j-th element of this string to c;

m method String appendChar(char c): appends c to this string and returns this

string;

264 Chapter 12

m method void eraseLastChar(): erases the last character from this string;

m method int intValue(): returns the integer value of this string (or the string pre-

fix until a non-digit character is detected);

m method void setInt(int j): sets this string to hold a representation of j;

m function char backSpace(): returns the backspace character;

m function char doubleQuote(): returns the double quote (‘‘) character;

m function char newLine(): returns the newline character.

12.2.3 Array

This class enables the construction and disposal of arrays.

m function Array new(int size): constructs a new array of the given size;

m method void dispose(): disposes this array.

12.2.4 Output

This class allows writing text on the screen.

m function void init(): for internal use only;

m function void moveCursor(int i, int j): moves the cursor to the j-th column of the

i-th row, and erases the character displayed there;

m function void printChar(char c): prints c at the cursor location and advances the

cursor one column forward;

m function void printString(String s): prints s starting at the cursor location and

advances the cursor appropriately;

m function void printInt(int i): prints i starting at the cursor location and advan-

ces the cursor appropriately;

m function void println(): advances the cursor to the beginning of the next line;

m function void backSpace(): moves the cursor one column back.

12.2.5 Screen

This class allows drawing graphics on the screen. Column indices start at 0 and

are left to right. Row indices start at 0 and are top to bottom. The screen size is

hardware-dependant (in the Hack platform: 256 rows by 512 columns).

265 Operating System

m function void init(): for internal use only;

m function void clearScreen(): erases the entire screen;

m function void setColor(boolean b): sets a color (white ¼ false, black ¼ true) to
be used for all further drawXXX commands;

m function void drawPixel(int x, int y): draws the (x,y) pixel;

m function void drawLine(int x1, int y1, int x2, int y2): draws a line from pixel

(x1,y1) to pixel (x2,y2);

m function void drawRectangle(int x1, int y1, int x2, int y2): draws a filled rect-

angle whose top left corner is (x1,y1) and whose bottom right corner is (x2,y2);

m function void drawCircle(int x, int y, int r): draws a filled circle of radius

r <¼ 181 around (x,y).

12.2.6 Keyboard

This class allows reading inputs from a standard keyboard.

m function void init(): for internal use only;

m function char keyPressed(): returns the character of the currently pressed key

on the keyboard; if no key is currently pressed, returns 0;

m function char readChar(): waits until a key is pressed on the keyboard and re-

leased, then echoes the key to the screen and returns the character of the pressed key;

m function String readLine(String message): prints the message on the screen, reads

the line (text until a newline character is detected) from the keyboard, echoes the line

to the screen, and returns its value. This function also handles user backspaces;

m function int readInt(String message): prints the message on the screen, reads the

line (text until a newline character is detected) from the keyboard, echoes the line to

the screen, and returns its integer value (until the first non-digit character in the line

is detected). This function also handles user backspaces.

12.2.7 Memory

This class allows direct access to the main memory of the host platform.

m function void init(): for internal use only;

m function int peek(int address): returns the value of the main memory at this

address;

266 Chapter 12

m function void poke(int address, int value): sets the contents of the main memory

at this address to value;

m function Array alloc(int size): finds and allocates from the heap a memory block

of the specified size and returns a reference to its base address;

m function void deAlloc(Array o): De-allocates the given object and frees its

memory space.

12.2.8 Sys

This class supports some execution-related services.

m function void init(): calls the init functions of the other OS classes and then

calls the Main.main() function. For internal use only;

m function void halt(): halts the program execution;

m function void error(int errorCode): prints the error code on the screen and halts;

m function void wait(int duration): waits approximately duration milliseconds and

returns.

12.3 Implementation

The operating system described in the previous section can be implemented as a col-

lection of Jack classes. Each OS subroutine can be implemented as a Jack construc-

tor, function, or method. The API of all these subroutines was given in section 12.2,

and key algorithms were presented in section 12.1. This section provides some addi-

tional hints and suggestions for completing this implementation. Final technical

details and test programs for unit-testing all the OS services are given in section 12.5.

Note that most of the subroutines specified in the OS API are rather simple, requir-

ing straightforward Jack programming. Thus we focus here only on the implemen-

tation of selected OS subroutines.

Some OS classes require class-level initialization. For example, some mathemati-

cal functions can run more quickly if they can use previously calculated values, kept

in some static array, constructed once and for all in the Math class. As a rule, when

an OS class Xxx needs some initialization code, this code should be embedded in

a single function called Xxx.init(). Later in this section we explain how these

init() functions are activated when the computer boots up and the OS starts

running.

267 Operating System

weymour

Highlight

12.3.1 Math

Math.multiply(), Math.divide(): The algorithms in figures 12.1 and 12.2 are

designed to operate on non-negative integers only. A simple way of handling nega-

tive numbers is applying the algorithms on absolute values and then setting the sign

appropriately. For the multiplication algorithm, this is not really needed: it turns out

that if the multiplicands are given in 2’s complement, their product will be correct

with no further ado.

Note that in each iteration j of the algorithm in figure 12.1, the j-th bit of the

second number is extracted. We suggest encapsulating this operation in the following

function:

bit(x,j): Returns true if the j-th bit of the integer x is 1 and false otherwise.

The bit(x,j) function can be easily implemented using shifting operations. Alas,

Jack does not support shifting. Instead, to speed up this function implementation

in Jack, it may be convenient to define a fixed static array of length 16, say

twoToThe[j], whose j-th location holds the value 2 to the power of j. This array

may be initialized once (in Math.init), and then used, via bitwise Boolean opera-

tions, in the implementation of bit(x,j).

In figure 12.2, y is multiplied by a factor of 2 until y > x. A detail that needs to be

taken into account is that y can overflow. The overflow can be detected by noting

when y becomes negative.

Math.sqrt(): Since the calculation of ðy þ 2 jÞ2 in figure 12.3 can overflow, the
result may be an abnormally negative number. This problem can be addressed by

(efficiently) changing the algorithm’s if logic to

if ððy þ 2 jÞ2 a xÞ and ððy þ 2 jÞ2 > 0Þ then y ¼ y þ 2 j

12.3.2 String

As explained in section 12.1.4, string objects can be implemented as arrays. In a

similar vein, all the string related services can be implemented as operations on

arrays. An important implementation detail is that the actual length of the string

must be maintained throughout these operations and that array entries beyond this

length are not considered part of the string.

String.intValue, String.setInt: These functions can be implemented using

the algorithms from figures 12.4 and 12.5, respectively. Note that both algo-

268 Chapter 12

weymour

Highlight

rithms don’t handle negative numbers—a detail that must be handled by the

implementation.

All other subroutines in this class are straightforward. Note that the ASCII codes

of newline, backspace, and doubleQuote are 128, 129, and 34, respectively.

12.3.3 Array

Note that Array.new() is not a constructor, but rather a function (despite its name).

Therefore, memory space for a new array should be explicitly allocated using a call

to Memory.alloc(). Similarly, de-allocation of arrays must be done explicitly using

Memory.deAlloc().

12.3.4 Output

Character Bitmaps We suggest using character bitmaps of 11 rows by 8 columns,

leading to 23 lines of 64 characters each. Since designing and building bitmaps for all

the printable ASCII characters is quite a burden, we supply predefined bitmaps (ex-

cept for one or two characters, left to you as an exercise). Specifically, we supply a

skeletal Output class containing Jack code that defines, for each printable ASCII

character, an array that holds its bitmap (implementing a font that we created). The

array consists of 11 entries, each corresponding to a row of pixels. In particular,

the value of entry j is a binary number whose bits represent the 8 pixels that render

the character’s image in the j-th row of its bitmap.

12.3.5 Screen

Screen.drawPixel(): Drawing a pixel on the screen is done by directly accessing

the screen’s memory map using Memory.peek() and Memory.poke(). Recall that

the memory map of the screen on the Hack platform specifies that the pixel at col-

umn c and row r ð0 a c a 511; 0 a r a 255Þ is mapped to the c%16 bit of memory
location 16384 þ r � 32 þ c=16. Notice that drawing a single pixel requires changing a
single bit in the accessed word, a task that can be achieved in Jack using bit-wise

operations.

Screen.drawLine(): The algorithm from figure 12.8a can potentially lead to

overflow. However, the efficiency improvement suggested in figure 12.8b also elimi-

nates the overflow problem.

Screen.drawCircle(): Likewise, the algorithm from figure 12.9 can potentially

lead to overflow. Limiting circle radii to be at most 181 avoids this problem.

269 Operating System

12.3.6 Keyboard

In the Hack platform, the memory map of the keyboard is a single 16-bit word

located at memory address 24576.

Keyboard.keyPressed(): This function provides ‘‘raw’’ (direct) access to this

memory location and can be implemented easily using Memory.peek().

Keyboard.readChar, Keyboard.readString: These functions provide ‘‘cooked’’

access to single character inputs and to string inputs, respectively. Proposed cooking

instructions appear in figures 12.12 and 12.13.

12.3.7 Memory

Memory.peek(), Memory.poke(): These functions are supposed to provide direct

access to the underlying memory. How can this be accomplished in a high-level

language? As it turns out, the Jack language includes a trapdoor that enables pro-

grammers to gain complete control of the computer’s memory. This hacking trick

can be exploited to implement peek and poke using plain Jack programming.

The trick is based on an anomalous use of reference variables (pointers). Specifi-

cally, the Jack language does not prevent the programmer from assigning a constant

to a reference variable. This constant can then be treated as an absolute memory

address. In particular, when the reference variable happens to be an array, this trick

can give convenient and direct access to the entire computer memory. Figure 12.4

gives the details.

Following the first two lines of figure 12.14, the base of the memory array points to

the first address in the computer’s RAM. To set or get the value of the RAM loca-

tion whose physical address is j, all we have to do is manipulate the array entry

// To create a Jack-level "proxy" of the RAM:

var Array memory;

let memory = 0;

// From this point on we can use code like:

let x = memory[j] // Where j is any RAM address

let memory[j] = y // Where j is any RAM address

Figure 12.14 A trapdoor enabling complete control of the RAM from Jack.

270 Chapter 12

memory[j]. This will cause the compiler to manipulate the RAM location whose

address is 0+j, which is precisely what is desired.

As we have pointed out earlier, Jack arrays are not allocated space on the heap at

compile-time, but rather at run-time, when the array’s new function is called. Here,

however, a new initialization will defeat the purpose, since the whole idea is to an-

chor the array in a selected address rather then let the OS allocate it to an address in

the heap that we don’t control. In short, this hacking trick works because we use the

array variable without allocating it ‘‘properly,’’ as we would do in normal usage of

arrays.

Memory.alloc(), Memory.deAlloc(): These functions can be implemented by

either the basic algorithm from figure 12.6a on the improved algorithm from figure

12.6b using either best-fit or first-fit. Recall that the standard implementation of

the VM over the Hack platform specifies that the heap resides at RAM locations

2048-16383.

12.3.8 Sys

Sys.init: An application program written in Jack is a set of classes. One class

must be named Main, and this class must include a function named main. In order

to start running the application program, the Main.main() function should be

invoked. Now, it should be understood that the operating system is itself a program

(set of classes). Thus, when the computer boots up, we want to start running the

operating system program first, and then we want the OS to start running the main

program.

With that in mind, the chain of command is implemented as follows. First, the

VM (chapter 8) includes bootstrap code that automatically invokes a function called

Sys.init(). This function, which is assumed to exist in the OS’s Sys class, should

then call all the init() functions of the other OS classes, and then call

Main.main(). This latter function is assumed to exist in the application program.

Sys.wait: This function can be implemented pragmatically, under the limita-

tions of the simulated Hack platform. In particular, you can use a loop that runs

approximately n milliseconds before it (and the function) returns. You will have to

time your specific computer to obtain a one millisecond wait, as this constant varies

from one CPU to another. As a result, your Sys.wait() function will not be por-

table, but that’s life.

Sys.halt: This function can be implemented by entering an infinite loop.

271 Operating System

12.4 Perspective

The software library presented in this chapter includes some basic services found

in most operating systems, for example, managing memory, driving I/O, handling

initialization, supplying mathematical functions not implemented in hardware, and

implementing data types like the string abstraction. We have chosen to call this

standard software library an ‘‘operating system’’ to reflect its main function: encap-

sulating the gory hardware details, omissions, and idiosyncrasies in a transparent

software packaging, enabling other programs to use its services via a clean interface.

However, the gap between what we have called here an OS and industrial-strength

operating systems remains wide.

For starters, our OS lacks some of the very basic components most closely asso-

ciated with operating systems. For example, our OS supports neither multi-threading

nor multi-processing; in contrast, the very kernel of most operating systems is de-

voted to exactly that. Our OS has no mass storage devices; in contrast, the main data

store kept and handled by operating systems is a file system abstraction. Our OS

has neither a ‘‘command line’’ interface (as in a Unix shell or a DOS window) nor a

graphical one (windows, mouse, icons, etc.); in contrast, this is the operating system

aspect that users expect to see and interact with. Numerous other services commonly

found in operating systems are not present in our OS, for example, security, com-

munication, and more.

Another major difference lies in the interplay between the OS code and the user

code. In most computers, the OS code is considered ‘‘privileged’’—the hardware

platform forbids the user code from performing various operations allowed exclu-

sively to OS code. Consequently, access to operating system services requires a

mechanism that is more elaborate than a simple function call. Further, programming

languages usually wrap these OS services in regular functions or methods. In contrast,

in the Hack platform there is no difference between OS code and user code, and oper-

ating system services run in the same ‘‘user mode’’ as that of application programs.

In terms of efficiency, the algorithms that we presented for multiplication and

division were standard. These algorithms, or variants thereof, are typically imple-

mented in hardware rather than in software. The running time of these algorithms

is OðnÞ addition operations. Since adding two n-bit numbers requires OðnÞ-bit oper-
ations (gates in hardware), these algorithms end up requiring Oðn2Þ-bit operations.
There exist multiplication and division algorithms whose running time is asymptoti-

cally significantly faster than Oðn2Þ, and, for a large number of bits, these algorithms
are more efficient. In a similar fashion, optimized versions of the geometric opera-

272 Chapter 12

tions that we presented (e.g., line- and circle-drawing) are often also implemented in

special graphics acceleration hardware.

Readers who wish to extend the OS functionality are welcome to do so, as we

comment on in chapter 13.

12.5 Project

Objective Implement the operating system described in the chapter. Each of the OS

classes can be implemented and unit-tested in isolation, and in any particular order.

Resources The main tool that you need for this project is Jack—the language in

which you will develop the OS. Therefore, you also need the supplied Jack compiler

to compile your OS implementation as well as the supplied test programs. In order

to facilitate partial testing of the OS, you also need the complete compiled version of

our OS, consisting of a collection of .vm files (one for each OS class). Finally, you

need the supplied VM emulator. This program will be used as the platform on which

the actual test takes place.

Contract Write a Jack OS implementation and test it using the programs and

testing scenarios described here. Each test program uses a certain subset of OS

services.

Testing Strategy

We suggest developing and unit-testing each OS class in isolation. This can be done

by compiling the OS class that you write and then putting the resulting .vm file in a

directory that contains the supplied .vm files of the rest of the OS. In particular, to

develop, compile, and test each OS class Xxx.jack in isolation, we recommend fol-

lowing this routine:

1. Put, in the same directory, the following items: the OS class Xxx.jack that you

are developing, all the supplied OS .vm files, and the relevant supplied test program

(a collection of one or more .jack files).

2. Compile the directory using the supplied Jack compiler. This will result in

compiling your Xxx.jack OS class as well as the class files of the test program. In

the process, a new Xxx.vm file will be created, replacing the originally supplied OS

class. That’s exactly what we want: the directory now contains the executable test

273 Operating System

program, the complete OS minus the original Xxx.vm OS class, plus your version of

Xxx.vm.

3. Load the directory’s code (OS þ test program) into the VM emulator.
4. Execute the code and check that the OS services are working properly, according

to the guidelines given below.

OS Classes and Test Programs

There are eight OS classes: Memory, Array, Math, String, Output, Screen,

Keyboard, and Sys. For each OS class Xxx we supply a skeletal Xxx.jack class

file with all the required subroutine signatures, a corresponding test class named

Main.jack, and related test scripts.

Memory, Array, Math To test your implementation of every one of these OS

classes, compile the relevant directory, execute the supplied test script on the VM

emulator, and make sure that the comparison with the compare file ends successfully.

Note that the supplied test programs don’t comprise a full test of the

Memory.alloc and Memory.deAlloc functions. A complete test of these memory

management functions requires inspecting internal implementation details not visible

in user-level testing. Thus it is recommended that you test these two functions using

step-by-step debugging in the VM emulator.

String Execution of the corresponding test program should yield the following

output:

274 Chapter 12

Output Execution of the corresponding test program should yield the following

output:

Screen Execution of the corresponding test program should yield the following

output:

Keyboard This OS class is tested using a test program that effects some user-

program interaction. For each function in the Keyboard class (keyPressed,

275 Operating System

readChar, readLine, readInt), the program requests the user to press some key-

board keys. If the function is implemented correctly and the requested keys are

pressed, the program prints the text ‘‘ok’’ and proceeds to test the next function. If

not, the program repeats the request for the same function. If all requests end suc-

cessfully, the program prints ‘Test ended successfully’, at which point the screen

may look like this:

Sys Only two functions in this class can be tested: Sys.init and Sys.wait. The

supplied test program tests the Sys.wait function by requesting the user to press

any key, then waiting for two seconds (using Sys.wait), and then printing another

message on the screen. The time that elapses from the moment the key is released

until the next message is printed should be two seconds.

The Sys.init function is not tested explicitly. However, recall that it performs

all the necessary OS initializations and then calls the Main.main function of each

test program. Therefore, we can assume that nothing would work properly unless

Sys.init is implemented correctly. A simple way to test Sys.init in isolation is to

run the Pong game using your Sys.vm file.

Complete Test After testing successfully each OS class in isolation, test your

entire OS implementation using the Pong game, whose source code is available in

projects/12/Pong. Put all your OS .jack files in the Pong directory, compile the

directory, and execute the game in the VM emulator. If the game works, then Mazel

Tov! You are the proud owner of an operating system written entirely by you.

276 Chapter 12

13 Postscript: More Fun to Go

We shall not cease from exploration, and at the end we will arrive where we started, and know the

place for the first time.

—T. S. Eliot (1888–1965)

Congratulations! You have finished the construction of a complete computing sys-

tem. We hope that you enjoyed this journey. Let us, the authors of this book, share

a secret with you: We suspect that we enjoyed writing the book even more. After

all, we got to design this computing system, and design is often the ‘‘funnest’’ part of

every project. We are sure that some of you, adventurous readers, would like to get

in on some of that design action. Maybe you would like to improve the architecture;

maybe you have ideas for adding new features here and there; maybe you envision a

wider system. And then, maybe, you just want to be in the navigator’s seat and de-

cide where to go, not only how to get there.

Many alternative design elements can be implemented by modifying and extending

the software that you have written in the various projects. For example, the assembly

language, the Jack language, and the operating system can be modified and extended

at will, by changing their specifications and rewriting portions of your respective

assembler, compiler, and OS implementations. Other changes would likely require

modification of the software supplied by us. For example, if you change the VM

specification or the hardware specification, then you would probably want to change

the respective emulators as well. Or if you want to add a new input or output device

to the Hack computer, you would probably need to model them as built-in chips in

the hardware simulator.

In order to allow complete flexibility of modifications and extensions, we are

making all the source code of the software associated with the book publicly avail-

able. All our code is 100 percent Java, expect for the batch files used for starting the

software on the Windows and Linux platforms. The software and its documentation

weymour

Highlight

are available from the book’s Web site at http://www.idc.ac.il/tecs. You are welcome

to modify and extend all our tools as you deem desirable for your latest idea—and

then share them with others, if you want. We hope that our code is written and

documented well enough to make modification a satisfying experience. In particular,

we wish to mention that the supplied hardware simulator has a simple and well-

documented interface for adding new ‘‘built-in’’ chips. This interface can be used for

extending the simulated hardware platform with, say, disk storage or communica-

tions devices.

While we cannot even start to imagine what your design improvements may be, we

can briefly sketch some of the ones we were thinking of.

13.1 Hardware Realizations

Every hardware module presented in the book was software-based and HDL-

simulated. This, in fact, is how hardware is actually designed. However, at some

point the HDL designs are committed to silicon, becoming ‘‘real computers.’’

Wouldn’t it be nice to make Hack or Jack also run on some ‘‘real platform,’’ made

from some ‘‘real stuff’’? Several different approaches may be taken towards this goal.

On one extreme, you can attempt to nearly directly fabricate a real chip using the

existing HDL design of Hack, and then deal with implementation issues related to the

RAM, ROM, and I/O devices. Another extreme approach may be to attempt emu-

lation (of either Hack, the VM, or even the Jack platform) on some existing hard-

ware device like a cell phone or a PDA. It seems that any such project would want

to reduce the size of the Hack screen as to keep the cost of the hardware resources

reasonable.

13.2 Hardware Improvements

Although Hack is a stored program computer, the program that it runs must be pre-

stored in its ROM device. In the present Hack architecture, there is no way of load-

ing another program into the computer under user control, except for simulating the

replacement of the entire physical ROM chip. Adding a ‘‘load program’’ capability

in a balanced way would likely involve changes at several levels of the hierarchy.

The Hack hardware can be modified to allow loaded programs to reside in a writ-

able RAM rather than in the existing ROM. Some type of permanent storage (e.g., a

278 Chapter 13

disk-on-chip) can probably be added to the hardware, to allow storage of programs.

The operating system can be extended to handle this permanent storage device, as

well as new logic for loading and running programs. At this point some kind of an

OS user interface (‘‘shell’’ or ‘‘DOS window’’) would come in handy.

13.3 High-Level Languages

Like all professionals, programmers have strong feelings about their tools—the pro-

gramming languages they use—and like to personalize them. And indeed, the Jack

language, which leaves much to be desired, can be significantly improved or com-

pletely replaced (e.g., how about Scheme?). Some changes are simple, some are more

involved, and some would likely require modifying the VM specification (e.g., adding

real inheritance).

13.4 Optimizations

The book has almost completely sidestepped optimization issues (except for chapter

12, which introduced some efficiency measures). Optimization is a great playfield

for every hacker. You can start with local optimizations in the existing compiler or

hardware (or, in our platform, the best bang for the buck will probably come from

optimizing the VM translator). Ambitious optimizations on a more global scale will

involve changing specifications of interfaces such as the machine language or the VM

language.

13.5 Communications

Wouldn’t it be nice to connect the Hack computer to the Internet? This could prob-

ably be done by adding a built-in communication chip to the hardware and writing

some OS code to deal with it and to handle higher-level communication protocols.

Some other programs would need to ‘‘talk’’ with the simulated communication

chip, providing an interface to the Internet. For example, an HTTP-speaking Web

browser in Jack seems like a feasible and worthy project.

These are some of our design itches—what are yours?

279 Postscript

Appendix A: Hardware Description Language (HDL)

Intelligence is the faculty of making artificial objects, especially tools to make tools.

—Henry Bergson (1859–1941)

A Hardware Description Language (HDL) is a formalism for defining and testing

chips: objects whose interfaces consist of input and output pins that carry Boolean

signals, and whose bodies are composed of interconnected collections of other,

lower-level, chips. This appendix describes a typical HDL, as understood by the

hardware simulator supplied with the book. Chapter 1 (in particular, section 1.1)

provides essential background without which this appendix does not make much

sense.

How to Use This Appendix This is a technical reference, and thus there is no need

to read it from beginning to end. Instead, we recommended focusing on selected

sections, as needed. Also, HDL is an intuitive and self-explanatory language, and the

best way to learn it is to play with some HDL programs using the supplied hardware

simulator. Therefore, we recommend to start experimenting with HDL programs as

soon as you can, beginning with the following example.

A.1 Example

Figure A.1 specifies a chip that accepts two three-bit numbers and outputs whether

they are equal or not. The chip logic uses Xor gates to compare the three bit-pairs,

and outputs true if all the comparisons agree. Each internal part Xxx invoked by an

HDL program refers to a stand-alone chip defined in a separate Xxx.hdl program.

Thus the chip designer who wrote the EQ3.hdl program assumed the availability of

three other lower-level programs: Xor.hdl, Or.hdl, and Not.hdl. Importantly,

though, the designer need not worry about how these chips are implemented. When

building a new chip in HDL, the internal parts that participate in the design are

always viewed as black boxes, allowing the designer to focus only on their proper

arrangement in the current chip architecture.

Thanks to this modularity, all HDL programs, including those that describe

high-level chips, can be kept short and readable. For example, a complex chip like

RAM16K can be implemented using a few internal parts (e.g., RAM4K chips), each

described in a single HDL line. When fully evaluated by the hardware simulator all

the way down the recursive chip hierarchy, these internal parts are expanded into

many thousands of interconnected elementary logic gates. Yet the chip designer need

not be concerned by this complexity, and can focus instead only on the chip’s top-

most architecture.

A.2 Conventions

File extension: Each chip is defined in a separate text file. A chip whose name is

Xxx is defined in file Xxx.hdl.

Chip structure: A chip definition consists of a header and a body. The header

specifies the chip interface, and the body its implementation. The header acts as the

chip’s API, or public documentation. The body should not interest people who use

the chip as an internal part in other chip definitions.

/** Checks if two 3-bit input buses are equal */

CHIP EQ3 {

IN a[3], b[3];

OUT out; // True iff a=b

PARTS:

Xor(a=a[0], b=b[0], out=c0);

Xor(a=a[1], b=b[1], out=c1);

Xor(a=a[2], b=b[2], out=c2);

Or(a=c0, b=c1, out=c01);

Or(a=c01, b=c2, out=neq);

Not(in=neq, out=out);

}

Figure A.1 HDL program example.

282 Appendix A

Syntax conventions: HDL is case sensitive. HDL keywords are written in uppercase

letters.

Identifier naming: Names of chips and pins may be any sequence of letters and

digits not starting with a digit. By convention, chip and pin names start with a capi-

tal letter and a lowercase letter, respectively. For readability, such names can include

uppercase letters.

White space: Space characters, newline characters, and comments are ignored.

Comments: The following comment formats are supported:

// Comment to end of line

/* Comment until closing */

/** API documentation comment */

A.3 Loading Chips into the Hardware Simulator

HDL programs (chip descriptions) are loaded into the hardware simulator in three

different ways. First, the user can open an HDL file interactively, via a ‘‘load file’’

menu or GUI icon. Second, a test script (discussed here) can include a load Xxx.hdl

command, which has the same effect. Finally, whenever an HDL program is loaded

and parsed, every chip name Xxx listed in it as an internal part causes the simulator

to load the respective Xxx.hdl file, all the way down the recursive chip hierarchy. In

every one of these cases, the simulator goes through the following logic:

if Xxx.hdl exists in the current directory

then load it (and all its descendents) into the simulator

else

if Xxx.hdl exists in the simulator’s builtIn chips directory

then load it (and all its descendents) into the simulator

else

issue an error message.

The simulator’s builtIn directory contains executable versions of all the chips

specified in the book, except for the highest-level chips (CPU, Memory, and Com-

puter). Hence, one may construct and test every chip mentioned in the book before

all, or even any, of its lower-level chip parts have been implemented: The simulator

will automatically invoke their built-in versions instead. Likewise, if a lower-level

chip Xxx has been implemented by the user in HDL, the user can still force the

283 Hardware Description Language (HDL)

simulator to use its built-in version instead, by simply moving the Xxx.hdl file out

from the current directory. Finally, in some cases the user (rather than the simulator)

may want to load a built-in chip directly, for example, for experimentation. To do

so, simply navigate to the tools/builtIn directory—a standard part of the hard-

ware simulator environment—and select the desired chip from there.

A.4 Chip Header (Interface)

The header of an HDL program has the following format:

CHIP chip name {

IN input pin name, input pin name, . . . ;

OUT output pin name, output pin name, . . . ;

// Here comes the body.

}

m CHIP declaration: The CHIP keyword is followed by the chip name. The rest of

the HDL code appears between curly brackets.

m Input pins: The IN keyword is followed by a comma-separated list of input pin

names. The list is terminated with a semicolon.

m Output pins: The OUT keyword is followed by a comma-separated list of output

pin names. The list is terminated with a semicolon.

Input and output pins are assumed by default to be single-bit wide. A multi-bit

bus can be declared using the notation pin name[w] (e.g., a[3] in EQ3.hdl). This

specifies that the pin is a bus of width w. The individual bits in a bus are indexed

0 . . . w � 1, from right to left (i.e., index 0 refers to the least significant bit).

A.5 Chip Body (Implementation)

A.5.1 Parts

A typical chip consists of several lower-level chips, connected to each other and to the

chip input/output pins in a certain ‘‘logic’’ (connectivity pattern) designed to deliver

the chip functionality. This logic, written by the HDL programmer, is described in

the chip body using the format:

284 Appendix A

PARTS:

internal chip part;

internal chip part;

. . .

internal chip part;

Where each internal chip part statement describes one internal chip with all its con-

nections, using the syntax:

chip name (connection, . . . , connection);

Where each connection is described using the syntax:

part’s pin names ¼ chip’s pin name
(Throughout this appendix, the presently defined chip is called chip, and the lower-

level chips listed in the PARTS section are called parts).

A.5.2 Pins and Connections

Each connection describes how one pin of a part is connected to another pin in the

chip definition. In the simplest case, the programmer connects a part’s pin to an in-

put or output pin of the chip. In other cases, a part’s pin is connected to another pin

of another part. This internal connection requires the introduction of an internal pin,

as follows:

Internal Pins In order to connect an output pin of one part to the input pins of

other parts, the HDL programmer can create and use an internal pin, say v, as

follows:

Part1 (..., out=v); // out of Part1 is piped into v

Part2 (in=v, ...); // v is piped into in of Part2

Part3 (a=v, b=v, ...); // v is piped into both a and b of Part3

Internal pins (like v) are created as needed when they are specified the first time in

the HDL program, and require no special declaration. Each internal pin has fan-in 1

and unlimited fan-out, meaning that it can be fed from a single source only, yet it can

feed (through multiple connections) many other parts. In the preceding example, the

internal pin v simultaneously feeds both Part2 (through in) and Part3 (though a

and b).

285 Hardware Description Language (HDL)

Input Pins Each input pin of a part may be fed by one of the following sources:

m an input pin of the chip

m an internal pin

m one of the constants true and false, representing 1 and 0, respectively

Each input pin has fan-in 1, meaning that it can be fed by one source only. Thus

Part (in1=v,in2=v,...) is a valid statement, whereas Part (in1=v,in1=u,

...) is not.

Output Pins Each output pin of a part may feed one of the following destinations:

m an output pin of the chip

m an internal pin

A.5.3 Buses

Each pin used in a connection—whether input, output, or internal—may be a multi-

bit bus. The widths (number of bits) of input and output pins are defined in the chip

header. The widths of internal pins are deduced implicitly, from their connections.

In order to connect individual elements of a multi-bit bus input or output pin, the

pin name (say x) may be subscripted using the syntax x[i] or x[i...j]=v, where v

is an internal pin. This means that only the bits indexed i to j (inclusive) of pin x are

connected to the specified internal pin. An internal pin (like v above) may not be

subscripted, and its width is deduced implicitly from the width of the bus pin to

which it is connected the first time it is mentioned in the HDL program.

The constants true and false may also be used as buses, in which case the

required width is deduced implicitly from the context of the connection.

Example

CHIP Foo {

IN in[8] // 8-bit input

OUT out[8] // 8-bit output

// Foo's body (irrelevant to the example)

}

Suppose now that Foo is invoked by another chip using the part statement:

Foo(in[2..4]=v, in[6..7]=true, out[0..3]=x, out[2..6]=y)

286 Appendix A

where v is a previously declared 3-bit internal pin, bound to some value. In that case,

the connections in[2..4]=v and in[6..7]=true will bind the in bus of the Foo

chip to the following values:

7 6 5 4 3 2 1 0 (Bit)
in:

1 1 ? v[2] v[1] v[0] ? ? (Contents)

Now, let us assume that the logic of the Foo chip returns the following output:

7 6 5 4 3 2 1 0
out:

1 1 0 1 0 0 1 1

In that case, the connections out[0..3]=x and out[2..6]=y will yield:

3 2 1 0 4 3 2 1 0
x:

0 0 1 1
y:

1 0 1 0 0

A.6 Built-In Chips

The hardware simulator features a library of built-in chips that can be used as inter-

nal parts by other chips. Built-in chips are implemented in code written in a pro-

gramming language like Java, operating behind an HDL interface. Thus, a built-in

chip has a standard HDL header (interface), but its HDL body (implementation)

declares it as built-in. Figure A.2 gives a typical example.

The identifier following the keyword BUILTIN is the name of the program unit

that implements the chip logic. The present version of the hardware simulator is built

in Java, and all the built-in chips are implemented as compiled Java classes. Hence,

the HDL body of a built-in chip has the following format:

BUILTIN Java class name;

where Java class name is the name of the Java class that delivers the chip function-

ality. Normally, this class will have the same name as that of the chip, for example

Mux.class. All the built-in chips (compiled Java class files) are stored in a directory

called tools/builtIn, which is a standard part of the simulator’s environment.

Built-in chips provide three special services:

m Foundation: Some chips are the atoms from which all other chips are built.

In particular, we use Nand gates and flip-flop gates as the building blocks of all

287 Hardware Description Language (HDL)

combinational and sequential chips, respectively. Thus the hardware simulator fea-

tures built-in versions of Nand.hdl and DFF.hdl.

m Certification and efficiency: One way to modularize the development of a com-

plex chip is to start by implementing built-in versions of its underlying chip parts.

This enables the designer to build and test the chip logic while ignoring the logic

of its lower-level parts—the simulator will automatically invoke their built-in imple-

mentations. Additionally, it makes sense to use built-in versions even for chips that

were already constructed in HDL, since the former are typically much faster and

more space-efficient than the latter (simulation-wise). For example, when you load

RAM4k.hdl into the simulator, the simulator creates a memory-resident data struc-

ture consisting of thousands of lower-level chips, all the way down to the flip-flop

gates at the bottom of the recursive chip hierarchy. Clearly, there is no need to repeat

this drill-down simulation each time RAM4K is used as part in higher-level chips. Best

practice tip: To boost performance and minimize errors, always use built-in versions

of chips whenever they are available.

m Visualization: Some high-level chips (e.g., memory units) are easier to under-

stand and debug if their operation can be inspected visually. To facilitate this ser-

vice, built-in chips can be endowed (by their implementer) with GUI side effects.

This GUI is displayed whenever the chip is loaded into the simulator or invoked as

a lower-level part by the loaded chip. Except for these visual side effects, GUI-

empowered chips behave, and can be used, just like any other chip. Section A.8 pro-

vides more details about GUI-empowered chips.

/** 16-bit Multiplexor.

If sel = 0 then out = a else out = b.

This chip has a built-in implementation delivered by an external

Java class. */

CHIP Mux16 {

IN a[16], a[16], sel;

OUT out[16];

BUILTIN Mux; // Reference to builtIn/Mux.class, that

// implements both the Mux.hdl and the

// Mux16.hdl built-in chips.

}

Figure A.2 HDL definition of a built-in chip.

288 Appendix A

A.7 Sequential Chips

Computer chips are either combinational or sequential (also called clocked). The op-

eration of combinational chips is instantaneous. When a user or a test script changes

the values of one or more of the input pins of a combinational chip and reevaluates

it, the simulator responds by immediately setting the chip output pins to a new set of

values, as computed by the chip logic. In contrast, the operation of sequential chips is

clock-regulated. When the inputs of a sequential chip change, the outputs of the chip

may change only at the beginning of the next time unit, as effected by the simulated

clock.

In fact, sequential chips (e.g., those implementing counters) may change their out-

put values when the time changes even if none of their inputs changed. In contrast,

combinational chips never change their values just because of the progression of

time.

A.7.1 The Clock

The simulator models the progression of time by supporting two operations called

tick and tock. These operations can be used to simulate a series of time units, each

consisting of two phases: a tick ends the first phase of a time unit and starts its sec-

ond phase, and a tock signals the first phase of the next time unit. The real time that

elapsed during this period is irrelevant for simulation purposes, since we have full

control over the clock. In other words, either the simulator’s user or a test script can

issue ticks and tocks at will, causing the clock to generate series of simulated time

units.

The two-phased time units regulate the operations of all the sequential chip parts

in the simulated chip architecture, as follows. During the first phase of the time unit

(tick), the inputs of each sequential chip in the architecture are read and affect the

chip’s internal state, according to the chip logic. During the second phase of the time

unit (tock), the outputs of the chip are set to the new values. Hence, if we look at a

sequential chip ‘‘from the outside,’’ we see that its output pins stabilize to new values

only at tocks—between consecutive time units.

There are two ways to control the simulated clock: manual and script-based. First,

the simulator’s GUI features a clock-shaped button. One click on this button (a tick)

ends the first phase of the clock cycle, and a subsequent click (a tock) ends the second

phase of the cycle, bringing on the first phase of the next cycle, and so on. Alter-

natively, one can run the clock from a test script, for example, using the command

289 Hardware Description Language (HDL)

repeat n {tick, tock, output;}. This particular example instructs the simulator

to advance the clock n time units, and to print some values in the process. Test

scripts and commands like repeat and output are described in detail in appendix B.

A.7.2 Clocked Chips and Pins

A built-in chip can declare its dependence on the clock explicitly, using the

statement:

CLOCKED pin, pin, . . . , pin;

where each pin is one of the input or output pins declared in the chip header. The

inclusion of an input pin x in the CLOCKED list instructs the simulator that changes to

x should not affect any of the chip’s output pins until the beginning of the next time

unit. The inclusion of an output pin x in the CLOCKED list instructs the simulator that

changes in any of the chip’s input pins should not affect x until the beginning of the

next time unit.

Note that it is quite possible that only some of the input or output pins of a chip

are declared as clocked. In that case, changes in the nonclocked input pins may affect

the nonclocked output pins in a combinational manner, namely, independent of the

clock. In fact, it is also possible to have the CLOCKED keyword with an empty list of

pins, signifying that even though the chip may change its internal state depending on

the clock, changes to any of its input pins may cause immediate changes to any of its

output pins.

The ‘‘Clocked’’ Property of Chips How does the simulator know that a given chip

is clocked? If the chip is built-in, then its HDL code may include the keyword

CLOCKED. If the chip is not built-in, then it is said to be clocked when one or more of

its lower-level chip parts are clocked. This ‘‘clocked’’ property is checked recursively,

all the way down the chip hierarchy, where a built-in chip may be explicitly clocked.

If such a chip is found, it renders every chip that depends on it (up the hierarchy)

implicitly clocked. It follows that nothing in the HDL code of a given chip suggests

that it may be clocked—the only way to know for sure is to read the chip documen-

tation. For example, let us consider how the built-in DFF chip (figure A.3) impacts

the ‘‘clockedness’’ of some of other chips presented in the book.

Every sequential chip in our computer architecture depends in one way or another

on (typically numerous) DFF chips. For example, the RAM64 chip is made of eight

RAM8 chips. Each one of these chips is made of eight lower-level Register chips.

Each one of these registers is made of sixteen Bit chips. And each one of these Bit

290 Appendix A

chips contains a DFF part. It follows that Bit, Register, RAM8, RAM64 and all the

memory units above them are also clocked chips.

It’s important to remember that a sequential chip may well contain combinational

logic that is not affected by the clock. For example, the structure of every sequen-

tial RAM chip includes combinational circuits that manage its addressing logic (de-

scribed in chapter 3).

A.7.3 Feedback Loops

We say that the use of a chip entails a feedback loop when the output of one of

its parts affects the input of the same part, either directly or through some (possibly

long) path of dependencies. For example, consider the following two examples of

direct feedback dependencies:

Not (in=loop1, out=loop1) // Invalid

DFF (in=loop2, out=loop2) // Valid

In each example, an internal pin (loop1 or loop2) attempts to feed the chip’s input

from its output, creating a cycle. The difference between the two examples is that Not

is a combinational chip whereas DFF is clocked. In the Not example, loop1 creates

an instantaneous and uncontrolled dependency between in and out, sometimes

called data race. In the DFF case, the in-out dependency created by loop2 is

delayed by the clocked logic of the DFF, and thus out(t) is not a function of in(t)

but rather of in(t-1). In general, we have the following:

Valid/Invalid Feedback Loops When the simulator loads a chip, it checks recur-

sively if its various connections entail feedback loops. For each loop, the simulator

/** D-Flip-Flop.

If load[t-1]=1 then out[t]=in[t-1] else out does not change. */

CHIP DFF {

IN in;

OUT out;

BUILTIN DFF; // Implemented by builtIn/DFF.class.

CLOCKED in, out; // Explicitly clocked.

}

Figure A.3 HDL definition of a clocked chip.

291 Hardware Description Language (HDL)

checks if the loop goes through a clocked pin, somewhere along the loop. If so, the

loop is allowed. Otherwise, the simulator stops processing and issues an error mes-

sage. This is done in order to avoid uncontrolled data races.

A.8 Visualizing Chip Operations

Built-in chips may be ‘‘GUI-empowered.’’ These chips feature visual side effects,

designed to animate chip operations. A GUI-empowered chip can come to play in a

simulation in two different ways, just like any other chip. First, the user can load it

directly into the simulator. Second, and more typically, whenever a GUI-empowered

chip is used as a part in the simulated chip, the simulator invokes it automatically.

In both cases, the simulator displays the chip’s graphical image on the screen. Using

this image, which is typically an interactive GUI component, one may inspect the

current contents of the chip as well as change its internal state, when this operation is

supported by the built-in chip implementation. The current version of this simulator

features the following set of GUI-empowered chips:

ALU: Displays the Hack ALU’s inputs and output as well as the presently com-

puted function.

Registers (There are three of them: ARegister—address register, DRegister—data

register, and PC—program counter): Displays the contents of the register and

allows modifying its contents.

Memory chips (ROM32K and various RAM chips): Displays a scrollable array-like

image that shows the contents of all the memory locations and allows their modifi-

cation. If the contents of a memory location changes during the simulation, the re-

spective entry in the GUI changes as well. In the case of the ROM32K chip (which

serves as the instruction memory of our computer platform), the GUI also features a

button that enables loading a machine language program from an external text file.

Screen chip: If the HDL code of a loaded chip invokes the built-in Screen chip, the

hardware simulator displays a 256 rows by 512 columns window that simulates the

physical screen. When the RAM-resident memory map of the screen changes during

the simulation, the respective pixels in the screen GUI change as well, via a ‘‘refresh

logic’’ embedded in the simulator implementation.

Keyboard chip: If the HDL code of a loaded chip invokes the built-in Keyboard

chip, the simulator displays a clickable keyboard icon. Clicking this button connects

the real keyboard of your computer to the simulated chip. From this point on, every

292 Appendix A

key pressed on the real keyboard is intercepted by the simulated chip, and its binary

code is displayed in the keyboard’s RAM-resident memory map. If the user moves

the mouse focus to another area in the simulator GUI, the control of the keyboard

is restored to the real computer. Figure A.4 illustrates many of the features just

described.

The chip logic in figure A.4 feeds the 16-bit in value into two destinations: register

number address in the RAM16K chip and register number address in the Screen chip

(presumably, the HDL programmer who wrote this code has figured out the widths

of these address pins from the documentation of these chips). In addition, the chip

logic routes the value of the currently pressed keyboard key to the internal pin c.

These meaningless operations are designed for one purpose only: to illustrate how

the simulator deals with built-in GUI-empowered chips. The actual impact is shown

in figure A.5.

A.9 Supplied and New Built-In Chips

The built-in chips supplied with the hardware simulator are listed in figure A.6.

These Java-based chip implementations were designed to support the construction

and simulation of the Hack computer platform (although some of them can be used

to support other 16-bit platforms). Users who wish to develop hardware platforms

// Demo of GUI-empowered chips.

// The logic of this chip is meaningless, and is used merely to

// force the simulator to display the GUI effects of some other

// chips.

CHIP GUIDemo {

IN in[16], load, address[15];

OUT out[16];

PARTS:

RAM16K(in=in, load=load, address=address[0. .13], out=a);

Screen(in=in, load=load, address=address[0. .12], out=b);

Keyboard(out=c);

}

Figure A.4 HDL definition of a GUI-empowered chip.

293 Hardware Description Language (HDL)

Figure A.5 GUI-empowered chips. Since the loaded HDL program uses GUI-empowered
chips as internal parts (step 1), the simulator draws their respective GUI images (step 2).
When the user changes the values of the chip input pins (step 3), the simulator reflects these
changes in the respective GUIs (step 4). The circled horizontal line is the visual side effect
of storing �1 in memory location 5012. Since the 16-bit 2’s complement binary code of �1
is 1111111111111111, the computer draws 16 pixels starting at the 320th column of row 156,
which happen to be the screen coordinates associated with address 5012 of the screen memory
map (the exact memory-to-screen mapping is given in chapter 4).

294 Appendix A

Chip name
Specified

in chapter

Has

GUI
Comment

Nand 1 Foundation of all combinational chips

Not 1

And 1

Or 1

Xor 1

Mux 1

DMux 1

Not16 1

And16 1

Or16 1

Mux16 1

Or8way 1

Mux4way16 1

Mux8way16 1

DMux4way 1

DMux8way 1

HalfAdder 2

FullAdder 2

Add16 2

ALU 2 rZ
Inc16 2

DFF 3 Foundation of all sequential chips

Bit 3

Register 3

ARegister 3 rZ Identical operation to Register, with GUI
DRegister 3 rZ Identical operation to Register, with GUI
RAM8 3 rZ
RAM64 3 rZ
RAM512 3 rZ
RAM4K 3 rZ
RAM16K 3 rZ
PC 3 rZ Program counter
ROM32K 5 rZ GUI allows loading a program from a text file
Screen 5 rZ GUI connects to a simulated screen
Keyboard 5 rZ GUI connects to the actual keyboard

Figure A.6 All the built-in chips supplied with the present version of the hardware simulator.
A built-in chip has an HDL interface but is implemented as an executable Java class.

295 Hardware Description Language (HDL)

other than Hack would probably benefit from the simulator’s ability to accommo-

date new built-in chip definitions.

Developing New Built-In Chips The hardware simulator can execute any desired

chip logic written in HDL; the ability to execute new built-in chips (in addition to

those listed in figure A.6) written in Java is also possible, using a chip-extension API.

Built-in chip implementations can be designed by users in Java to add new hardware

components, introduce GUI effects, speed-up execution, and facilitate behavioral

simulation of chips that are not yet developed in HDL (an important capability when

designing new hardware platforms and related hardware construction projects). For

more information about developing new built-in chips, see chapter 13.

296 Appendix A

Appendix B: Test Scripting Language

Mistakes are the portals of discovery.

—James Joyce (1882–1941)

Testing is a critically important element of systems development, and one that typi-

cally gets little attention in computer science education. In this book we take testing

very seriously. In fact, we believe that before one sets out to develop a new hardware

or software module P, one should first develop a module T designed to test it. Fur-

ther, T should then become part of P’s official development’s contract.

As a matter of best practice, the ultimate test of a newly designed module should

be formulated not by the module’s developer, but rather by the architect who speci-

fied the module’s interface. Therefore, for every chip or software system specified in

the book, we supply an official test program, written by us. Although you are wel-

come to test your work in any way you see fit, the contract is such that eventually,

your implementation must pass our tests.

In order to streamline the definition and execution of the numerous tests scattered

all over the book projects, we designed a uniform test scripting language. This lan-

guage works almost the same across all the simulators supplied with the book:

m Hardware simulator: used to simulate and test chips written in HDL

m CPU emulator: used to simulate and test machine language programs

m VM emulator: used to simulate and test programs written in the VM language

Every one of these simulators features a rich GUI that enables the user to test the

loaded chip or program interactively, using graphical icons, or batch-style, using a

test script. A test script is a series of commands that (a) load a hardware or soft-

ware module into the relevant simulator, and (b) subject the module to a series of

preplanned (rather than ad hoc) testing scenarios. In addition, the test scripts feature

commands for printing the test results and comparing them to desired results, as

defined in supplied compare files. In sum, a test script enables a systematic, repli-

cable, and documented testing of the underlying code—an invaluable requirement in

any hardware or software development project.

Important We don’t expect students to write test scripts. The test scripts necessary

to test all the hardware and software modules mentioned in the book are supplied by us

and available on the book’s Web site. Therefore, the chief purpose of this appendix is

to explain the syntax and logic of the supplied test scripts, as needed.

B.1 File Format and Usage

The act of testing a hardware or software module using any one of the supplied

simulators involves four types of files:

Xxx.yyy: where Xxx is the module name and yyy is either hdl, hack, asm, or

vm, standing respectively for a chip definition written in HDL, a program written in

the Hack machine language, a program written in the Hack assembly language, or a

program written in the VM virtual machine language;

Xxx.tst: this test script walks the simulator through a series of steps designed to

test the code stored in Xxx.yyy;

Xxx.out: this optional output file keeps a printed record of the actual simulation

results;

Xxx.cmp: this optional compare file contains a presupplied record of the desired

simulation results.

All these files should be kept in the same directory, which can be conveniently named

xxx. In all simulators, the ‘‘current directory’’ refers to the directory from which the

last file has been opened in the simulator environment.

White space: Space characters, newline characters, and comments in test scripts

(Xxx.tst files) are ignored. Test scripts are not case sensitive, except for file and di-

rectory names.

Comments: The following comment formats can appear in test scripts:

// Comment to end of line

/* Comment until closing */

/** API documentation comment */

298 Appendix B

Usage: In all the projects that appear in the book, the files Xxx.tst, Xxx.out, and

Xxx.cmp are supplied by us. These files are designed to test Xxx.yyy, whose devel-

opment is the essence of the project. In some cases, we also supply a skeletal version

of Xxx.yyy, for example, an HDL interface with a missing implementation part. All

the files in all the projects are plain text files that can be viewed and edited using

plain text editors.

Typically, one starts a simulation session by loading the supplied Xxx.tst script

file into the relevant simulator. Typically, the first commands in the script instruct

the simulator to load the code stored in Xxx.yyy and then, optionally, initialize an

output file and a compare file. The remaining commands in the script run the actual

tests, as we elaborate below.

B.2 Testing Chips on the Hardware Simulator

The hardware simulator supplied with the book is designed for testing and simulating

chip definitions written in the Hardware Description Language (HDL) described in

appendix A. Chapter 1 provides essential background on chip development and

testing, and thus it is recommended to read it first.

B.2.1 Example

The script shown in figure B.1 is designed to test the EQ3 chip defined in figure

A.1. A test script normally starts with some initialization commands, followed by a

series of simulation steps, each ending with a semicolon. A simulation step typically

instructs the simulator to bind the chip’s input pins to some test values, evaluate the

chip logic, and write selected variable values into a designated output file. Figure B.2

illustrates the EQ3.tst script in action.

B.2.2 Data Types and Variables

Data Types Test scripts support two data types: integers and strings. Integer con-

stants can be expressed in hexadecimal (%X prefix), binary (%B prefix), or decimal

(%D prefix) format, which is the default. These values are always translated into

their equivalent 2’s complement binary values. For example, the commands set

al %B1111111111111111, set a2 %XFFFF, set a3 %D-1, set a4 -1 will set the

four variables to the same value: a series of sixteen 1’s, representing ‘‘minus one’’ in

299 Test Scripting Language

decimal. String values (%S prefix) are used strictly for printing purposes and cannot

be assigned to variables. String constants must be enclosed by ‘‘’’.

The simulator clock (used in testing sequential chips only) emits a series of values

denoted 0, 0þ, 1, 1þ, 2, 2þ, 3, 3þ, and so forth. The progression of these clock
cycles (also called time units) is controlled by two script commands called tick and

tock. A tick moves the clock value from t to tþ, and a tock from tþ to t þ 1,
bringing upon the next time unit. The current time unit is stored in a system variable

called time.

Script commands can access three types of variables: pins, variables of built-in

chips, and the system variable time.

Pins: Input, output, and internal pins of the simulated chip. For example, the

command set in 0 sets the value of the pin whose name is in to 0.

Variables of built-in chips: Exposed by the chip’s external implementation. See sec-

tion B.2.4 for more details.

Time: The number of time units that elapsed since the simulation started running

(read-only).

/* EQ3.tst: tests the EQ3.hdl program. The EQ3 chip should

return true if its two 3-bit inputs are equal and false

otherwise. */

load EQ3.hdl, // Load the HDL program into the simulator

output-file EQ3.out, // Write script outputs to this file

compare-to EQ3.cmp, // Compare script outputs to this file

output-list a b out; // Each subsequent output command should

// print the values of the variables

// a, b, and out

set a %B000, set b %B000, eval, output;

set a %B111, set b %B111, eval, output;

set a %B111, set b %B000, eval, output;

set a %B000, set b %B111, eval, output;

set a %B001, set b %B000, eval, output;

// Since the chip has two 3-bit inputs,

// an exhaustive test requires 2^3*2^3=64 such scenarios.

Figure B.1 Testing a chip on the hardware simulator.

300 Appendix B

B.2.3 Script Commands

Command Syntax A script is a sequence of commands. Each command is termi-

nated by a comma, a semicolon, or an exclamation mark. These terminators have the

following semantics:

m Comma (,): terminates a script command.

m Semicolon (;): terminates a script command and a simulation step. A simulation

step consists of one or more script commands. When the user instructs the simulator

Figure B.2 Typical hardware simulation session, shown at the script’s end. The loaded script
is identical to EQ3.tst from figure B.1, except that some white space was added to improve
readability.

301 Test Scripting Language

to ‘‘single-step’’ via the simulator’s GUI, the simulator executes the script from the

current command until a semicolon is reached, at which point the simulation is

paused.

m Exclamation mark (!): terminates a script command and stops the script execu-

tion. The user can later resume the script execution from that point onward. This

option is typically used to facilitate interactive debugging.

It is convenient to organize the script commands in two conceptual sections. ‘‘Set up

commands’’ are used to load files and initialize global settings. ‘‘Simulation com-

mands’’ walk the simulator through a series of tests.

Setup Commands

load Xxx.hdl: Loads the HDL program stored in Xxx.hdl into the simulator.

The file name must include the .hdl extension and must not include a path specifi-

cation. The simulator will try to load the file from the current directory, and, failing

that, from the simulator’s builtIn directory, as described in section A.3.

output-file Xxx.out: Instructs the simulator to write further output to the

named file, which must include an .out extension. The output file will be created in

the current directory.

output-list v1; v2; . . . : Instructs the simulator what to write to the output file

in every subsequent output command in this script (until the next output-list

command, if any). Each value in the list is a variable name followed by a format-

ting specification. The command also produces a single header line consisting of

the variable names. Each item v in the output-list has the syntax variable format

padL.len.padR. This directive instructs the simulator to write padL spaces, then the

current variable value in the specified format using len columns, then padR spaces,

then the divider symbol ‘‘|’’. Format can be either %B (binary), %X (hexa), %D (deci-

mal) or %S (string). The default format specification is %B1.1.1.

For example, the CPU.hdl chip of the Hack platform has an input pin named reset,

an output pin named pc (among others), and a chip part named DRegister (among

others). If we want to track the values of these variables during the chip’s execution,

we can use something like the following command:

Output-list time%S1.5.1 // System variable

reset%B2.1.2 // Input pin of the chip

pc%D2.3.1 // Output pin of the chip

DRegister[] %X3.4.4 // State of this built-in part

302 Appendix B

(Sate variables of built-in chips are explained here.) This command may produce the

following output (after two subsequent output commands):

| time |reset| pc |DRegister[]|

| 20+ | 0 | 21 | FFFF |

| 21 | 0 | 22 | FFFF |

compare-to Xxx.cmp: Instructs the simulator that each subsequent output line

should be compared to its corresponding line in the specified comparison file (which

must include the .cmp extension). If any two lines are not the same, the simulator

displays an error message and halts the script execution. The compare file is assumed

to be present in the current directory.

Simulation Commands

set variable value: Assigns the value to the variable. The variable is either a pin

or an internal variable of the simulated chip or one of its chip parts. The widths of

the value and the variable must be compatible. For example, if x is a 16-bit pin and y

is a 1-bit pin, then set x 153 is valid whereas set y 153 will yield an error and halt

the simulation.

eval: Instructs the simulator to apply the chip logic to the current values of the

input pins and compute the resulting output values.

output: This command causes the simulator to go through the following logic:

1. Get the current values of all the variables listed in the last output-list

command.

2. Create an output line using the format specified in the last output-list

command.

3. Write the output line to the output file.

4. (if a compare file has been previously declared via the compare-to command):

If the output line differs from the current line of the compare file, display an error

message and stop the script’s execution.

5. Advance the line cursors of the output file and the compare file.

tick: Ends the first phase of the current time unit (clock cycle).

tock: Ends the second phase of the current time unit and embarks on the first

phase of the next time unit.

repeat num {commands}: Instructs the simulator to repeat the commands enclosed

by the curly brackets num times. If num is omitted, the simulator repeats the com-

mands until the simulation has been stopped for some reason.

303 Test Scripting Language

while Boolean-condition {commands}: Instructs the simulator to repeat the com-

mands enclosed in the curly brackets as long as the Boolean-condition is true. The

condition is of the form x op y where x and y are either constants or variable names

and op is one of the following: =, >, <, >=, <=, <>. If x and y are strings, op can be

either = or <>.

echo text: Instructs the simulator to display the text string in the status line (which

is part of the simulator GUI). The text must be enclosed by ‘‘’’.

clear-echo: Instructs the simulator to clear the status line.

breakpoint variable value: Instructs the simulator to compare the value of the

specified variable to the specified value. The comparison is performed after the exe-

cution of each script command. If the variable contains the specified value, the exe-

cution halts and a message is displayed. Otherwise, the execution continues normally.

clear-breakpoints: Clears all the previously defined breakpoints.

built-in-chip method argument(s): External implementations of built-in chips can

expose methods that perform chip-specific operations. The syntax of the allowable

method calls varies from one built-in chip to another and is documented next.

B.2.4 Variables and Methods of Built-In Chips

The logic of a chip can be implemented by either an HDL program or by a high-level

programming language, in which case the chip is said to be ‘‘built-in’’ and ‘‘exter-

nally implemented.’’ External implementations of built-in chips can facilitate access

to the chip’s state via the syntax chipName[varName], where varName is an imple-

mentation-specific variable that should be documented in the chip API. The APIs of

all the built-in chips supplied with the book (as part of the Hack computer platform)

are shown in figure B.3.

For example, consider the command set RAM16K[1017] 15. If RAM16K is

the currently simulated chip or an internal part of the currently simulated chip, this

command will set its memory location number 1017 to the 2’s complement binary

value of 15. Further, since the built-in RAM16K chip happens to have GUI side

effects, the new value will also be displayed in the chip’s visual image.

If a built-in chip maintains a single-valued internal state, the current value of the

state can be accessed through the notation chipName[]. If the internal state is a

vector, the notation chipName[i] is used. For example, when simulating the built-in

Register chip, one can write script commands like set Register[] 135. This com-

mand sets the internal state of the chip to the 2’s complement binary value of 135; in

304 Appendix B

the next time unit, the Register chip will commit to this value and its output will start

emitting it.

Built-in chips can also expose implementation-specific methods that extend the

simulator’s commands repertoire. For example, in the Hack computer, programs re-

side in an instruction memory unit implemented by a chip named ROM32K. Before

one runs a machine language program on this computer, one must first load a pro-

gram into this chip. In order to facilitate this service, our built-in implementation

of ROM32K features a load file name method, referring to a text file that, hopefully,

contains machine language instructions. This chip-specific method can be accessed by

a test script via commands like ROM32K load Myprog.hack. In the chip set supplied

with the book, this is the only method supported by any of the built-in chips.

B.2.5 Ending Example

We end this section with a relatively complex test script, designed to test the topmost

Computer chip of the Hack platform. One way to test the Computer chip is to load a

machine language program into it and monitor selected values as the computer exe-

cutes the program, one instruction at a time. For example, we wrote a program that

(hopefully) computes the maximum of RAM[0] and RAM[1] and writes the result

to RAM[2]. The machine language version of this program is stored in the text file

Max.hack. Note that at the very low level in which we operate, if such a program

Chip name Exposed variables Data type/range Methods

Register Register[] 16-bit (-32768. . .32767)

ARegister ARegister[] 16-bit

DRegister DRegister[] 16-bit

PC PC[] 15-bit (0. .32767)

RAM8 RAM8[0..7] Each entry is 16-bit

RAM64 RAM64[0..63] "

RAM512 RAM512[0..511] "

RAM4K RAM4K[0..4095] "

RAM16K RAM16K[0..16383] "

ROM32K ROM32K[0..32767] " load Xxx.hack/Xxx.asm

Screen Screen[0..16383] "

Keyboard Keyboard[] 16-bit, read-only

Figure B.3 API of all the built-in chips supplied with the book.

305 Test Scripting Language

does not run properly it may be either because the program is buggy, or the hard-

ware is buggy (and, for completeness, it may also be that the test script or the hard-

ware simulator are buggy). For simplicity, let us assume that everything is error-free,

except, possibly, for the tested Computer chip.

To test the Computer chip using the Max.hack program, we wrote a test script

called ComputerMax.tst. This script loads Computer.hdl into the hardware simu-

lator and then loads the Max.hack program into its ROM32K chip part. A reason-

able way to check if the chip works properly is as follows: put some values in

RAM[0] and RAM[1], reset the computer, run the clock, and inspect RAM[2]. This,

in a nutshell, is what the script in figure B.4 is designed to do.

How can we tell that fourteen clock cycles are sufficient for executing this pro-

gram? This can be found by trial and error, starting with a large value and watching

the computer’s outputs stabilizing after a while, or by analyzing the run-time behav-

ior of the currently loaded program.

B.2.6 Default Script

The simulator’s GUI buttons (single step, run, stop, reset) don’t control the loaded

chip. Rather, they control the progression of the loaded script, which controls the

loaded chip’s operation. Thus, there is a question of what to do if the user has loaded

a chip directly into the simulator without loading a script first. In such cases, the

simulator uses the following default script:

// Default script of the hardware simulator

repeat {

tick,

tock;

}

B.3 Testing Machine Language Programs on the CPU Emulator

The CPU emulator supplied with the book is designed for testing and simulating the

execution of binary programs on the Hack computer platform described in chapter 5.

The tested programs can be written in either the native Hack code or the assembly

language described in chapter 4. In the latter case, the simulator translates the loaded

code into binary on the fly, as part of the ‘‘load program’’ operation.

306 Appendix B

/* ComputerMax.tst script.

The max.hack program should compute the maximum of

RAM[0] and RAM[1] and write the result in RAM[2]. */

// Load the Computer chip and set up for the simulation

load Computer.hdl,

output-file Computer.out,

compare-to ComputerMax.cmp,

output-list RAM16K[0] RAM16K[1] RAM16K[2];

// Load the Max.hack program into the ROM32K chip part

ROM32K load Max.hack,

// Set the first 2 cells of the RAM16K chip part to some test values

set RAM16K[0] 3,

set RAM16K[1] 5,

output;

// Run the clock enough cycles to complete the program’s execution

repeat 14 {

tick, tock,

output;

}

// Reset the Computer

set reset 1,

tick, // Run the clock in order to commit the Program

tock, // Counter (PC, a sequential chip) to the new reset value

output;

// Now re-run the program with different test values.

set reset 0, // "De-reset" the computer (committed in next tick-tock)

set RAM16K[0] 23456,

set RAM16K[1] 12345,

output;

repeat 14 {

tick, tock,

output;

}

Figure B.4 Testing the topmost Computer chip.

307 Test Scripting Language

As a convention, a script that tests a machine language program Xxx.hack

or Xxx.asm is called Xxx.tst. As usual, the simulation involves four files: the test

script itself (Xxx.tst), the tested program (Xxx.hack or Xxx.asm), an optional

output file (Xxx.out) and an optional compare file (Xxx.cmp). All these files must

reside in the same directory. This directory can be conveniently named xxx. For

more information about file structure and recommended usage, see section B.1.

B.3.1 Example

Consider the multiplication program Mult.hack, designed to effect RAM[2] ¼
RAM[0]*RAM[1]. A reasonable way to test this program is to put some values in

RAM[0] and RAM[1], run the program, and inspect RAM[2]. This logic is carried

out in figure B.5.

// Load the program and set up for the simulation

load Mult.hack,

output-file Mult.out,

compare-to Mult.cmp,

output-list RAM[2]%D2.6.2;

// Set the first 2 cells of the RAM to some test values

set RAM[0] 2,

set RAM[1] 5;

// Run the clock enough cycles to complete the program's execution

repeat 20 {

ticktock;

}

output;

// Re-run the same program with different test values

set PC 0,

set RAM[0] 8,

set RAM[1] 7;

repeat 50 { // Mult.hack is based on repetitive addition, so

ticktock; // greater multiplicands require more clock cycles

}

output;

Figure B.5 Testing a machine language program on the CPU emulator.

308 Appendix B

B.3.2 Variables

The CPU emulator, which is hardware-specific, recognizes a set of variables related

to internal components of the Hack platform. In particular, scripting commands

running on the CPU emulator can access the following elements:

A: value of the address register (unsigned 15-bit);

D: value of the data register (16-bit);

PC: value of the Program Counter register (unsigned 15-bit);

RAM[i]: value of RAM location i (16-bit);

time: Number of time units (also called clock cycles, or ticktocks) that elapsed

since the simulation started (read-only).

B.3.3 Commands

The CPU emulator supports all the commands described in section B.2.3, except for

the following changes:

load program: Here program is either Xxx.hack or Xxx.asm. This command loads

a machine language program (to be tested) into the simulated instruction memory. If

the program is written in assembly, it is translated into binary on the fly.

eval: Not applicable;

built-in-chip method argument(s): Not applicable;

ticktock: This command is used instead of tick and tock. Each ticktock

advances the clock one time unit (cycle).

B.3.4 Default Script

The CPU emulator’s GUI buttons (single step, run, stop, reset) don’t control the

loaded program. Rather, they control the progression of the loaded script, which

controls the program’s operation. Thus, there is a question of what to do if the user

has loaded a program directly into the CPU emulator without loading a script first.

In such cases, the emulator uses the following default script:

// Default script of the CPU emulator

repeat {

ticktock;

}

309 Test Scripting Language

B.4 Testing VM Programs on the VM Emulator

Chapters 7–8 describe a virtual machine model and specify a VM implementation

on the Hack platform. The VM emulator supplied with the book is an alternative

VM implementation that uses Java to run VM programs, visualize their operations,

and display the states of the effected virtual memory segments.

Recall that a VM program consists of one or more .vm files. Thus, the simulation

of a VM program involves four elements: the test script (Xxx.tst), the tested pro-

gram (a single Xxx.vm file or an Xxx directory containing one or more .vm files), an

optional output file (Xxx.out) and an optional compare file (Xxx.cmp). All these

files must reside in the same directory, which can be conveniently named xxx. For

more information about file structure and recommended usage, see section B.1.

Chapter 7 provides essential information about the virtual machine architecture,

without which the discussion below will not make much sense.

Startup Code A VM program is normally assumed to contain at least two func-

tions: Main.main and Sys.init. When the VM translator translates a VM pro-

gram, it generates machine language code that sets the stack pointer to 256 and then

calls the Sys.init function, which then calls Main.main. In a similar fashion, when

the VM emulator is instructed to execute a VM program (collection of one or more

VM functions), it is programmed to start running the Sys.init function, which is

assumed to exist somewhere in the loaded VM code. If a Sys.init function is

not found, the emulator is programmed to start executing the first command in the

loaded VM code.

The latter convention was added to the emulator in order to assist the gradual

development of the VM implementation, which spans two chapters in the book. In

chapter 7, we build only the part of the VM implementation that deals with pop,

push, and arithmetic commands, without getting into subroutine calling commands.

Thus, the test programs associated with Project 7 consist of ‘‘raw’’ VM commands

without the typical function/return wrapping. Since we wish to allow informal

experimentation with such commands, we gave the VM emulator the ability to exe-

cute ‘‘raw’’ VM code which is neither properly initialized nor properly packaged in a

function structure.

Virtual Memory Segments In the process of simulating the virtual machine’s oper-

ations, the VM emulator manages the virtual memory segments of the Hack VM

(argument, local, etc.). These segments must be allocated to the host RAM—a

310 Appendix B

task that the emulator normally carries out as a side effect of simulating the execu-

tion of call, function, and return commands. This means that when simulating

‘‘raw’’ VM code that contains no subroutine calling commands, we must force the

VM emulator to explicitly anchor the virtual segments in the RAM—at least those

segments mentioned in the current code. Conveniently, this initialization can be ac-

complished by script commands that manipulate the pointers controlling the base

RAM addresses of the virtual segments. Using these script commands, we can effec-

tively put the virtual segments in selected areas in the host RAM.

B.4.1 Example

The FibonacciSeries.vm file contains a series of VM commands that compute

the first n elements of the Fibonacci series. The code is designed to operate on two

arguments: the value of n and the starting memory address in which the computed

elements should be stored. The script in figure B.6 is designed to test this program

using the actual arguments 6 and 4000.

B.4.2 Variables

Scripting commands running on the VM emulator can access the following ele-

ments:

Contents of Virtual Memory Segments

local[i]: value of the i-th element of the local segment;

argument[i]: value of the i-th element of the argument segment;

this[i]: value of the i-th element of the this segment;

that[i]: value of the i-th element of the that segment;

temp[i]: value of the i-th element of the temp segment.

Pointers to Virtual Memory Segments

local: base address of the local segment in the RAM;

argument: base address of the argument segment in the RAM;

this: base address of the this segment in the RAM;

that: base address of the that segment in the RAM.

311 Test Scripting Language

Implementation-Specific Variables

RAM[i]: value of the i-th RAM location;

SP: value of the stack pointer;

currentFunction: name of the currently executing function (read only).

line: contains a string of the form: current-function-name.line-index-in-function

(read only).

For example, when execution reaches the third line of the function Sys.init, the

line variable contains ‘‘Sys.init.3’’. This is a useful means for setting breakpoints

in selected locations in the loaded VM program.

/* The FibonacciSeries.vm file contains a series of VM commands

that compute the first n Fibonacci numbers. The program's

code contains no function/call/return commands, and thus the

VM emulator must be forced to initialize the virtual memory

segments used by the code explicitly.

*/

// Load the program and set up for the simulation

load FibonacciSeries.vm,

output-file FibonacciSeries.out,

compare-to FibonacciSeries.cmp,

output-list RAM[4000]%D1.6.2 RAM[4001]%D1.6.2 RAM[4002]%D1.6.2

RAM[4003]%D1.6.2 RAM[4004]%D1.6.2 RAM[4005]%D1.6.2;

// Initialize the stack and the argument and local segments.

set SP 256, // Stack pointer (stack begins in RAM[256])

set local 300, // Base the local segment in some RAM location

set argument 400; // Base the argument segment in some RAM loc.

// Set the arguments to two test values

set argument[0] 6, // n=6

set argument[1] 4000; // Put the series at RAM[4000] and onward

// Execute enough VM steps to complete the program's execution

repeat 140 {

vmstep;

}

output;

Figure B.6 Testing a VM program on the VM emulator.

312 Appendix B

B.4.3 Commands

The VM emulator supports all the commands described in section B.2.3, except for

the following changes:

load source: Here source is either Xxx.vm, the name of a file containing one or

more VM functions, or a series of ‘‘raw’’ VM commands, or Xxx, the name of a

directory containing one or more .vm files (in which case all of them are loaded).

If the .vm files are located in the current directory, the source argument can be

omitted.

tick/tock: Not applicable.

vmstep: Simulates the execution of a single VM command from the VM program,

and advances to the next command in the code.

B.4.4 Default Script

The VM emulator’s GUI buttons (single step, run, stop, reset) don’t control the

loaded VM code. Rather, they control the progression of the loaded script, which

controls the code’s operation. Thus, there is a question of what to do if the user has

loaded a program directly into the VM emulator without loading a script first. In

such cases, the emulator uses the following default script:

// Default script of the VM emulator

repeat {

vmstep;

}

313 Test Scripting Language

Index

Abstraction, 6, 263
implementation paradigm, xi–xii
modules and, 2–3

Adder gates, 29–39
Addresses, 45, 104
direct addressing, 60–61
indirect addressing, 61
machine language and, 60–61, 63
mapping and, 84–91, 137–141
memory and, 81–82 (see also Memory)
program size limits and, 106
registers and, 45, 83–86
subroutines and, 153–159
symbol table and, 105
VM-Hack mapping and, 139–143, 161–168

Addressing instruction (A-instruction), 64–
65, 108–110, 115

Algorithms
efficiency and, 249, 272–273
graphics and, 257–263
mathematics and, 248–252
memory management and, 252–256
operating systems and, 272–273 (see also
Operating systems)

runtime and, 249
syntax and, 250

ALU. See Arithmetic Logic Unit
Analysis-synthesis paradigm, 223
And function, 8–9, 20
implementation of, 26
multi-bit versions of, 21–23

Application Program Interface (API)
notation, 19

Architecture, x, 79, 99–101
bottom-up, 3–4
chip set, 2
CPU and, 82–83
Hack, 5–6, 85–98
hardware, 2
I/O and, 84–85
Jack, 175–176 (see also Jack)
machine language and, 106–107
memory and, 81–82
modifications and, 277–279
modules and, 2–3
optimization and, 80
registers and, 83–84
sequential chip hierarchy and, 47–50
standards and, 84
stored program concept and, 80
top-down, 3
VM and, 121–151 (see also Virtual
Machine)

von Neumann, 62, 79–81, 85
Aristotle, 6
Arithmetic addition, 37
Arithmetic Logic Unit (ALU), 2, 6, 39
Boolean arithmetic and, 29, 32, 35–38
combinational chips and, 46–47
CPU and, x, 82–83, 94
description of, 35–38
Hack and, 86

Arithmetic Logic Unit (ALU) (cont.)
operating systems and, 248–249
visualized chip operations and, 292

Arrays, 81
data translation and, 224–231
Jack and, 175, 184–185, 191, 265, 269
operating systems and, 256, 265, 269
stack processing and, 124–127
variable-length, 256
Virtual Machine (VM) and, 137

ASCII code, 71, 89, 252
Assembler, x, 5, 71–72, 75–76, 118–120, 277
hash table, 115
implementation of, 112–116
labels and, 105
machine language specification and, 107
macros and, 117
mnemonics and, 108, 114
program size limits and, 106
symbols and, 60, 104–106, 110–111, 114–
116, 143, 164

syntax and, 104, 107–110
test scripts and, 103–104
as translator program, 104–107, 163–164
variables and, 105

Best-fit, 254
Big-Oh notation (O(n)), 249
Binary code, 5, 108. See also Boolean logic
code generation and, 223–246
graphics and, 257–263
Jack and, 174

Binary search, 251
Bitmaps, 259–263, 269
Bit shifting, 60
Bit-wise negation, 60
Boolean arithmetic, x
addition, 30
algebra and, 8–10
ALU and, 29, 32, 35–38
binary numbers and, 30–32
CPU and, 29
least significant bits (LSB), 30
memory and, 42–47
most significant bits (MSB), 30

radix complement method, 31
signed binary numbers, 31–32
stack processing and, 126–127

Boolean logic
abstraction of, 11
algebra and, 8–10
canonical representation, 9
conditional execution, 62
gates and, 8, 11–13
hardware construction and, 13–14
HDL and, 14–17
machine language and, 57–77
repetition, 61–62
subroutine calling, 62
truth tables, 8
two-input functions, 9–10

Bootstrap code, 165
Buses, 21–22, 286–287

C#, 4–5, 112, 121, 147, 169
Jack and, 174, 196

C++, 112, 147, 253
Canonical representation, 9
Case conventions, 108
Central Processing Unit (CPU), 6, 29, 59
ALU and, 82–83, 94
architecture and, 82–83
control unit and, 82–83
description of, 82–83
emulators and, 306–309
Hack and, 62–63, 85–96
instruction memory and, 82
program counter and, 84
registers and, 82
testing and, 306–309
von Neumann architecture and, 81

Character output, 259–263, 269
Chips, 2. See also Gates
adder, 29–39
API specification and, 19
Boolean logic and, 7–28
built-in, 287–288, 293, 296, 304–305
buses and, 286–287
clocks and, 289–291
combinational, 41, 46–47

316 Index

connections and, 285–286
cost and, 14–15
description of, 11
efficiency and, 288
feedback loops and, 291–292
Hack platform and, 85–91
hardware simulator and, 283–284
HDL and, 14–17, 281–296
incrementer, 33–39
maintaining state and, 41–42
pins and, 284–286
RAM, 86
ROM, 85
sequential, 41–55, 289–292
simulators and, 299–306
testing and, 297–313
visualized operations for, 288, 292–296

Clocks, 41, 48, 289–290
feedback loops and, 291–292
memory and, 42, 52–54

Code generation
commands translation and, 231–232
data translation and, 224–231
operating systems and, 272 (see also
Operating systems)

registers and, 223–224
syntax analysis and, 237–241
virtual machines and, 224

Combinational logic. See Boolean arithmetic
Commands translation, 231–232
Common Language Runtime (CLR), 123,
146–147

Communications, 279
Compare file, 18
Compilers, ix–x, 2, 5–6, 17, 103, 112
abstraction and, 175–179
analysis-synthesis paradigm and, 223
code generation and, 223–246
description of, 199–201
grammars and, 203, 206–207
Hack and, 133–134 (see also Hack)
high-level language and, 146–147
Jack and, 133–134, 174, 193–195 (see also
Jack)

lexical analysis and, 202, 208

mapping and, 137–141
memory allocation and, 234
nested subroutine calling and, 153
parsing and, 203–207
p-code and, 123, 146
semantics and, 199
syntax analysis and, 199–221, 237–241
VM and, 122–127, 161–168, 233–235 (see
also Virtual Machine)
XML and, 199–201, 211–218, 221

Complex Instruction Set Computing (CISC),
98

Composite gates, 11–13
Compute instruction (C-instruction), 66–69,
86, 108–110, 115

Computers. See also Architecture
ALU and, 29 (see also Arithmetic Logic
Unit)

Boolean abstraction and, 11
bootstrap code and, 165
CPU and, 29 (see also Central Processing
Unit)

dedicated, 97
emulators and, 121–122
general-purpose, 97–98
HDL and, 14–17 (see also Hardware
Description Language)

machine language and, 57–77
memory and, 81–82
program flow and, 153–159
stored program concept and, 79–80

Conditional execution, 62
Conditional jump, 62
Constants, 181–182
Control logic, 94–95
Control unit, 82–83
Converters. See Not function
Counters, x, 45, 47–48, 50, 52, 84, 95
CPU. See Central Processing Unit
Cycles, 42

Data flip-flop (DFF)
clocked chips and, 290–291
implementation of, 50–51
sequential logic and, 42–48

317 Index

Data races, 46
Debugging, 75
Decoding, 94–96
Defragmantation, 254–256
Demultiplexors, 21, 24–26
Design. See also Architecture
alternative elements for, 277
Boolean logic and, 7–28
bottom-up, 3–4
cost and, 14–15
digital, 27
gate logic and, 11–13
HDL and, 14–17 (see also Hardware
Description Language)

modifications and, 277–279
standards and, 84
testing and, 297–313
top-down, 3

Device driver, 256–257
Direct addressing, 60–61
Division, 250–251
DOS, 272

Emulators, 121–122
Hack and, 76–77
testing and, 297, 306–313

Equivalence function, 10
Execute cycle, 86, 98
Expression evaluation, 187–188, 231–232

Feedback loops, 46, 52–53, 291–292
Fetching, 86, 95–96, 98
File formats, 107–110
First-fit, 254
Flip-flops, x, 41, 52–54, 287–288
clocked chips and, 290–291
data, 42–51, 290–291
implementation of, 50–51
memory and, 42

Flow control, 231–232
Formal languages, 201–202
Fragmentation, 254, 256
FreeList, 254, 256
Full-adder chip, 32–33, 38

Functions. See also Boolean logic
And, 8–9, 20–23, 26
assembly language symbols and, 164
bootstrap code and, 165
calling commands and, 159–164
compilers and, 233–235 (see also Compilers)
Jack and, 174–175, 190–193 (see also Jack)
Nand, 2, 7, 10, 19, 27
Nor, 2, 10
Not, 8–9, 26
Or, 8–9, 20–26
subroutines, 62, 112, 153–161, 181–190,
195, 209, 234–235

symbolic names and, 160
testing and, 297–313
VM-Hack mapping and, 139–143, 161–168
Xor, 10, 20–23, 26

Gates, ix–x, xvi, 4, 6
adder, 29–39
And, 8–9, 20–23, 26
API specification and, 19
Boolean arithmetic and, 29–40
Boolean logic and, 7–28
built-in chips and, 287–288
buses and, 21–22, 286–287
composite, 11–13
construction of, 13–14
demultiplexors and, 21
flip-flops and, 41–54, 287–291
HDL and, 14–17 (see also Hardware
Description Language)

interfaces and, 12–13
memory and, 42–47
multi-bit versions of, 21–25
Nand, 2, 7, 10, 19, 27
Nor, 2, 10
Not, 8–9, 26
Or, 8–9, 20–26
primitive, 11–13, 25–26
sequential, 41–55
specification, 17–25
switching devices and, 2
Xor, 10, 20–23, 26

318 Index

Goto operation, 95, 155
Grammars
Jack and, 203, 207–215
parsing and, 203–207
syntax analyzer and, 207–213

Graphical User Interface (GUI), 247, 283,
288–290

testing and, 297–313
visualized chip operations and, 292–296

Graphics, 98
character output, 259–261
circle drawing, 259
keyboard handling and, 261–263
line drawing, 257–258
multiplication and, 258–259
pixel drawing, 257

GUI. See Graphical User Interface

Hack, 5, 35, 79
address instruction format and, 64–65, 85–
86

assembler, 75–76, 103–120
built-in chips and, 293, 296
case conventions and, 108
case sensitivity, 75
C-instruction, 66–69
CPU and, 62–63, 76–77, 85–96
destination specification and, 66–68
file formats and, 71–72, 107–110
graphics card and, 98
input/output (I/O) handling and, 70–71,
98

instructions and, 108–110
Internet and, 279
jump specification, 68–69
memory and, 63, 87–91, 96
modifications and, 278–279
platform description, 62–64, 85–98
symbols, 69–70
syntax, 71–73, 107–110
VM mapping and, 139–143, 161–168

Half-adder chip, 32–33, 38
Hardware, ix–x, 4–6. See also Input/output
architecture of, 2, 79–101

Boolean logic and, 8–28
chips and, 85, 293–296 (see also Chips;
Gates)

keyboard, 71
machine language and, 57–77
memory and, 81–82
modifications and, 278–279
operating systems and, 247–276
RAM, 42–47
screen, 70
sequential chips and, 41–55
simulators and, 299–306
stored program concept and, 79–80

Hardware Description Language (HDL),
x–xiii, 5–6, 93, 278

API notation and, 282
case sensitivity and, 283
chip logic and, 17–25, 281–296
compare file, 18
description of, 281
efficiency and, 288
hardware simulator and, 14, 17–25, 283–
284

header section, 15
identifier naming and, 283
interfaces and, 15–16
logic building and, 39
parts section, 15
statement representation, 15
technical references for, 281–296
testing and, 16–17
visualized chip operations and, 292–296

Hardware simulator, 14, 283–284
chip specifications and, 17–25

Hash tables, 115, 226
HDL. See Hardware Description Language
Heap, 132–133
High-level language, 4–6
Jack, 173 (see also Jack)
operating systems and, 248
program flow and, 153–159
subroutines and, 62, 112, 153–161, 181–190,
195, 209, 234–235

VM-Hack mapping and, 139–143, 161–168

319 Index

If-goto destination, 155
If-x-then-y function, 10
Immediate addressing, 61
Incrementer chip, 33–39
Indirect addressing, 61
Inheritance, 195–196, 241–242
Input/output (I/O), x
characters and, 259–263
device driver, 256–257
graphics, 257–263
Hack and, 62–77, 70–71, 98
keyboards, 261–263, 266
operating systems and, 256–270
screens, 265–266
standards and, 84

Instructions, 116
addresses, 64–65, 108–110 (see also
Addresses)

assembler and, 103–120
CISC, 98
compilers and, 122–127 (see also Compilers)
compute, 66–69, 108–110
decoding, 94–96
execution, 94–96
fetching, 86, 95–96, 98
labels and, 105
macros and, 117
memory and, 63, 82
RISC, 98
stack processing and, 130 (see also Stack
processing)

subroutines and, 62, 112, 153–161, 181–190,
195, 209, 234–235

symbolic vs. binary, 104
variables and, 105

Interfaces, 282, 284
HDL and, 15–16
logic gates and, 12

Intermediate language (IL), 123
Internal pins, 15–16

Jack, 1, 4–5, 147, 165, 169, 197
abstract data types and, 175–179
API notation and, 175–176, 200, 215, 224
applications writing, 193–195

array handling, 175, 184–185, 191, 265, 269
binary code and, 174
classes and, 175–183, 187–193, 208, 248,
263–273

code generation and, 223–246
constants, 181–182
constructor for, 234–235
data types and, 183–185
evaluation order, 188
expression evaluation and, 187–188, 231–
232

flow control and, 231–232
generic statements, 187
grammar and, 203, 207–215
identifiers, 181–182
inheritance and, 195–196, 241–242
I/O and, 191–193, 209–215, 265–266, 269–
270

Java and, 174, 183, 196
keyboards and, 192–193, 266, 270
lexical analysis and, 202, 208
linked list implementation, 179–180
Main.main function, 174–175
memory and, 193, 266–267, 270–271
modifications and, 277–278
as object-based language, 173, 195–196,
199

object handling and, 189–190, 228–231
operating system, 195, 197, 235, 253, 257–
273

operator priority, 188
parsing and, 200, 217, 221
program elements in, 133–134
rational numbers and, 175–179
reserved words, 181–182
screens and, 192, 265–266, 269
simplicity of, 174
standard library of, 174, 190–193, 196, 263
strings and, 191, 264–265, 268–269
subroutines and, 181–190, 195, 209, 234–235
symbols and, 181–182, 238–239
syntax and, 181–182, 187, 207–221, 237–
241

tokenizing and, 181, 202, 205, 208, 214–215,
219–221

320 Index

type conversions, 183, 241
variables and, 181–187
VM code and, 174, 233–235, 240
void methods and, 235
white space, 181–182
XML and, 199–201, 211–218, 221

Java, 17, 247, 253, 277
assembler and, 112
built-in chips and, 293, 296
Jack and, 174, 183, 196
stack arithmetic and, 122, 134
standard libraries, 147
VM and, 122, 134, 169

Java Runtime Environment, 123, 146
Java Virtual Machine (JVM), 121, 123,
146

Jump, 109–110, 114
nested subroutine calling and, 153–159
specification, 61–62, 68–69, 96

Keyboard input, 71, 84, 86, 89, 96
Jack and, 192–193, 266, 270
operating systems and, 266, 270
string reading and, 262–263
text handling and, 261–263
visualized chip operations and, 292–293

Labels, 70, 105, 110, 116, 155, 159
Last-in-first-out (LIFO) storage model, 124,
157

Least significant bits (LSB), 30
Lexical analysis, 202, 208
XML and, 199–201, 211–218, 221

Lexical analysis (LEX) tool, 217
Line drawing, 257–259
Linked list, 179–180
Linux, xiii, 277
Load command, 60
Logic
Boolean, 7–28 (see also Boolean logic)
control logic and, 94–95
decoding, 94–96
fetching, 95–96
HDL and, 281–296
instruction execution, 94–96

jumps, 61–62, 68–69, 96
stack processing and, 130 (see also Stack
processing)

stored program concept and, 79–80

Machine language, x
abstraction and, 81
addressing and, 60–61, 63
assembler and, 103–120
binary codes and, 59–60
commands and, 60–62
compilers and, 122–127 (see also Compilers)
conditional execution, 62
Hack, 62–77
instruction memory and, 82
labels and, 105
memory and, 58–62
mnemonic symbols, 59
processor and, 59
program size limits and, 106
registers and, 59
repetition and, 61–62
subroutine calling, 62
symbolic vs. binary, 104
syntax and, 60–62, 71–73, 104
testing and, 306–309
unconditional jump, 62
variables and, 105
VM and, 122–127 (see also Virtual
Machine)

Macro commands, 117
Mapping
I/O operations and, 84–91
keyboard handling and, 262–263
memory segments and, 142–143
VM-to-Hack, 139–143, 161–168
VM-to-Jack, 233–235

Memory, 2
addresses and, 45, 91 (see also Addresses)
allocation and, 253–254
arrays and, 227–228
clocks and, 42, 52–54
compilers and, 234
dynamic allocation and, 252–253
flip-flops and, 42–54

321 Index

Memory (cont.)
fragmentation and, 254, 256
graphics and, 257–263
Hack and, 63, 87–91, 96
implementation and, 50–52
improved allocation and, 254–256
instruction, 63, 82
Jack and, 193, 266–267, 270–271
machine language and, 58–62
mapped input/output (I/O) and, 84–91
object handling and, 228–231
operating systems and, 247, 252–256, 266–
267, 270–271

RAM, 42–45, 49–50 (see also Random
access memory)

registers and, 42–49
stored program concept and, 79–80
subroutines and, 62, 112, 153–161, 181–190,
195, 209, 234–235

testing and, 310–311
variable locations and, 106
virtual segment mapping and, 142–143
visualized chip operations and, 292
VM and, 127–133
von Neumann architecture and, 81

Mnemonics, 59, 108, 114
Multi-bit bus, 286–287
Multiplexors, x, 20–26
Multiplication, 249–250, 258–259
Multitasking, 247

Nand function, 2, 7, 10, 19, 27
Negative numbers, 31–32
Nested subroutine calling, 153–159
.NET infrastructure, 122, 123, 146–147
Network interface cards, 84
Newton-Raphson method, 251
Non-terminals, 203, 211
Nor function, 2, 10
Not function, 8–9, 26
Number base, 30

Object types, 183–184
Operating systems, ix–x, 4
API notation and, 263, 267

arrays and, 256, 265, 269
classes and, 264–271
description of, 247
graphics and, 257–263
hardware/software gaps and, 247
initialization and, 267
input/output (I/O) management, 256–266,
269–270

Jack and, 195, 235, 263–273 (see also Jack)
mathematical operations and, 248–252, 264,
268

memory and, 247, 252–256, 266–267, 270–
271

program size limits and, 106
screens and, 265–266, 269–270
strings and, 252, 256, 264–265, 268–269
Sys and, 267, 271

Operator priority, 188
Or function, 8–9, 20
implementation of, 26
multi-bit versions of, 21–23
multi-way versions and, 23–25

Overflow, 30

Parsing, 2, 17, 60, 116
assembler and, 112–114
compilers and, 217 (see also Compilers)
expression evaluation and, 187–188, 231–
232

grammar and, 203–207
Jack and, 200, 203–207, 217, 221
programming and, 107
recursive descent, 204–206
symbol-less, 114–115
VM and, 144–146, 168

Pascal, 123, 146
P-code, 123, 146
Pins, 11, 15–16, 284–286, 290, 300
Pixel drawing, 257
Pointers, 69–70, 124, 131, 142, 161
Pop operation, 124, 130–132
Positive numbers, 31–32
Postfix notation, 231–232
Primitive gates, 11–13, 25–26
Program counter, 45, 84, 95

322 Index

Program flow
assembly language symbols and, 164
bootstrap code and, 165
calling protocol and, 160–161
LIFO model and, 157
nested subroutine calling and, 153–159
VM, 129–130, 133–134, 153–168

Push operation, 124, 130–132

Radix complement method, 31
RAM. See Random access memory
Random access memory (RAM), x, 6, 278–
279

clocked chips and, 290–291
Hack platform and, 86, 96, 139–143, 161–
168

implementation of, 52
memory management and, 253
operating systems and, 270–271
registers and, 49–50
sequential logic and, 42–47
testing and, 304–308, 311–312
VM and, 137–143, 161–168

Rational numbers, 175–179
Read-only memory (ROM) chips, 6, 85–86,
91, 278–279

Read/write operations
memory and, 42–47
registers and, 48–49

Recursive descent parsing, 204–206
Reduced Instruction Set Computing (RISC),
98

Registers, x, 2
addresses and, 45, 83–86
API specification and, 48–49
architecture of, 83–84
CPU and, 82
Hack and, 63–64, 69
implementation of, 52
machine language and, 59
memory and, 42–49
RAM and, 49–50
read-write operations and, 48–49
testing and, 304–305

virtual, 69
visualized chip operations and, 292

Reserved words, 181–182
Return address, 158
Right Polish Notation (RPN), 231–232
Rogers, Carl, 1
RPN. See Right Polish Notation

Screen output, 70, 84, 86, 89, 96
characters and, 259–263
graphics and, 257–263
Jack and, 192, 265–266, 269
operating systems and, 265–266, 269–270
resolution and, 257–258
visualized chip operations and, 292–296

Segment index, 131–132, 135
Selectors, 20
Semantics, 199. See also Symbols; Syntax
data translation and, 224–231

Sequential logic, 6
chip hierarchy and, 47–50
clocks and, 289–291
feedback loops and, 291–292
flip-flops and, 41–54
memory and, 42–47
time and, 45–47

Signed binary numbers, 31–32
Simulators, 101
testing and, 297, 299–306

Square root function, 251
Stack pointer, 124, 131, 142, 161
Stack processing, 122
arithmetic and, 126–130
bootstrap code and, 165
heap structure and, 132–133
LIFO model and, 124, 157
memory and, 130–133
model of, 124–127
nested subroutine calling and, 153–159
pop operation, 124, 130–132
push operation, 124, 130–132
subroutines and, 153–159
VM-Hack mapping and, 139–143, 161–168

Standard language library, 4

323 Index

Standard mapping, 141
Store command, 60
Stored program concept, 79–80
Strings, 184
Jack and, 191, 264–265, 268–269
keyboard handling and, 262–263
operating systems and, 252, 256, 264–265,
268–269

Subroutines, 62, 112
calling protocol and, 160–161
code generation and, 234–235
functional commands and, 153–159
Jack and, 181–190, 195, 209, 234–235
LIFO model and, 157
void, 235

Switching technology, 2, 11
Symbols
assembler and, 60, 104–106, 110–111, 114–
116, 143, 164

function calling and, 160
Jack and, 181–182
labels, 70, 105, 110, 116, 155, 159
machine language and, 59–60, 69–70, 104
mnemomic, 59
resolution and, 105–106
variables and, 105

Symbol tables, 103, 105, 115–116, 243
data translation and, 225–226
Jack and, 238–239

Syntax, 5, 104
expression evaluation and, 187–188, 231–
232

formal languages and, 201–202
non-terminals and, 203, 211
RPN, 231–232
semantics and, 199
terminals and, 203, 211
testing and, 301–304
XML and, 199–201, 211–218, 221

Taylor series, 251
Terminals, 203, 211
Testing
chips, 299–306
emulators and, 297, 306–313

GUI and, 297–298
machine language and, 306–309
script commands and, 301–304
simulators and, 297, 299–306
test scripts, 16–17, 103–104
VM and, 310–313

Text files, 2
Time
clocks, 41–54, 289–292
counters, x, 45, 47–48, 50, 52, 84
sequential logic, 6, 42–54, 289–292
testing and, 297–313

Tokens, 181
Jack tokenizing, 202, 205, 208, 214–215,
219–221, 237–241

syntax analyzer and, 207–213
Transistors, 2, 11
Translator program, 163–164
Truth tables, 8–9
Turing, Alan, 122
Turing machine, 80–81
Two-input Boolean functions, 9–10
2’s complement method, 30

Unconditional jump, 62
Unix, 272

Variables, 105, 116
argument, 234
fields, 183, 185, 226, 227
Jack and, 181–187
local, 183, 185–186, 227, 234, 253
parameter, 183, 185–186
scope and, 1, 225–226
static, 183, 185, 226–227, 234, 253

Virtual Hardware Description Language
(VHDL), 14

Virtual Machine (VM)
advantages of, 121, 123–124
arithmetic and, 126–130, 135
array handling and, 137
bootstrap code and, 165
class and, 129
compilers and, 122–127
design suggestions for, 143

324 Index

emulators and, 121–122, 150–151
examples of, 135–139
functions and, 127, 129–130, 133, 135–139
Hack mapping and, 139–143, 161–168
heap structure and, 132–133
high-level language and, 146–147, 153–
154

implementation, 55, 103, 112
Jack and, 174, 233–235, 240
language for, 122
memory and, 127, 129–133
modifications and, 277–279
modularity and, 123–124
nested subroutine calling and, 153–159
object handling and, 137–139
program flow and, 129–130, 133–134, 153–
168

stack processing and, 124–127
subroutines and, 154–159
symbols and, 143
syntax and, 123
testing and, 310–313
translator, 121

Virtual memory segments, 131
Visual Basic, 147
VM. See Virtual Machine
Void methods, 235
von Neumann architecture, 62, 79–81, 85

White space, 108, 113, 181–182
Windows, xiii, 277
Working stack, 161

XML, 199–201, 211–218, 221
Xor function, 10, 20
implementation of, 26
multi-bit versions of, 21–23

Yet Another Compiler Compiler (YACC),
217

325 Index

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

