Let V and W be vector spaces over a field F. Let $\alpha \in \operatorname{Hom}(V,W)$ and $\beta \in \text{Hom}(W, V)$ satisfy the condition that $\alpha \beta \alpha = \alpha$. If $w \in \text{im}(\alpha)$, show that $\alpha^{-1}(w) = \{\beta(w) + v - \beta\alpha(v) \mid v \in V\}.$

Exercise 269

Let $\alpha: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by

$$\alpha: \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mapsto \begin{bmatrix} a+b+c \\ -a-c \\ b \end{bmatrix}.$$

Find $ker(\alpha)$ and $im(\alpha)$.

Exercise 277

Let V be a finite-dimensional vector space over a field F and let $\alpha, \beta \in$ Hom(V, V) be linear transformations satisfying $\operatorname{im}(\alpha) + \operatorname{im}(\beta) = V = \ker(\alpha) + \operatorname{ker}(\alpha) + \operatorname{ker}$ $\ker(\beta)$. Show that $\operatorname{im}(\alpha) \cap \operatorname{im}(\beta) = \{0_V\} = \ker(\alpha) \cap \ker(\beta)$.

Exercise 320

Let V be a finitely-generated vector space over a field F and let $\alpha \in \text{End}(V)$. Show that α is not monic if and only if there exists an endomorphism $\beta \neq \sigma_0$ of V satisfying $\alpha\beta = \sigma_0$.

Exercise 321

Let V be a vector space over a field F and let $\alpha \in \text{End}(V)$. Show that $\ker(\alpha) =$ $\ker(\alpha^2)$ if and only if $\ker(\alpha)$ and $\operatorname{im}(\alpha)$ are disjoint.

Exercise 379

Let α and β be endomorphisms of a vector space V over a field F satisfying $\alpha\beta = \beta\alpha$. Is $ker(\alpha)$ invariant under β ?

Exercise 385

Let V be a vector space over a field F and let W and Y be subspaces of Vsatisfying W + Y = V. Let Y' be a complement of Y in V and let Y" be a complement of $W \cap Y$ in W. Show that $Y' \cong Y''$.

Exercise 387

Let V be a vector space over F and let $\alpha, \beta \in \text{End}(V)$. Show that α and β are projections satisfying $ker(\alpha) = ker(\beta)$ if and only if $\alpha\beta = \alpha$ and $\beta\alpha = \beta$.

Exercise 421

Let $B = \{1 + i, 2 + i\}$, which is a basis for \mathbb{C} as a vector space over \mathbb{R} . Let α be the endomorphism of this space defined by $\alpha: z \mapsto \overline{z}$. Find $\Phi_{BB}(\alpha)$.

Exercise 431

Find a nonzero matrix A in $\mathcal{M}_{2\times 2}(\mathbb{R})$ satisfying $v\odot Av=0$ for all $v\in \mathbb{R}^2$.