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Abstract


We present and compare three different approaches to generate
random points on the N -sphere: A simple Monte Carlo algorithm, a
coordinate-by-coordinate strategy and a method based on the rotation
invariance the normal distribution. The latter algorithm is the fastest.


1 Introduction


Computer scientists sometimes encounter the problem of generating random
points on the N -dimensional unit sphere SN = {x ∈ RN +1 : ‖x‖2 = 1}.
In most cases, the random points should be distributed uniformly. For this
task, there exists a nice little algorithm already mentioned in Knuth ([3]),
that is based on the fact that the N -dimensional normal distribution is in-
variant under rotation. This algorithm is indubitably the most efficient, in
particular in high dimensions. But if a special non-uniform distribution is re-
quested, it may be profitable to know other approaches such as a coordinate-
by-coordinate strategy or a simple rejection method.


When N is small, each algorithm is sufficiently fast, and the problem
is not very interesting. For the 1-sphere, i.e. the unit circle in R2, U =
(cos(α), sin(α)) with α uniformly distributed in [0, 2π] does the job. Here, we
will concentrate on the high dimensional case. Applications are for example
in the initialization of a counterpropagation neural network (see [7]) or a
variant of generalized continuous recombination in an evolution strategy (cf.
[4]).


Other discussions of our problem can be found in [6] or [5].








2 A Monte-Carlo algorithm


An immediate algorithm is the following. Take a random point in [−1, 1]N +1
and project it onto the unit sphere . This results in a non-uniform distri-
bution, therefore one extra step is necessary. Generate a random point in
X ∈ [−1, 1]N +1 and reject it if it is outside the unit ball, i.e. ‖X‖ > 1. If
not, U = ‖X‖−1 ·X gives a random point on SN (neglecting the unlikely case
that X = 0), and produces a uniform distribution on the sphere.


This algorithm is often referred to as the rejection method (see [6]). The
major drawback of the algorithm is it’s expected running time: It grows
worse than exponentially in N . This is due to the fact that the volume of
the N -dimesional unit ball


V (N ) =
π


N
2


Γ(1 + N
2
)


more than exponentially decreases as N → ∞, where Γ(·) is the gamma
function


Γ(x) =


∫ ∞
0


e−t · tx−1 dt.


3 The coordinate approach


In high dimensions, the distribution of each single coordinate of a uniformly
distributed random point U on the N -sphere becomes quite complicated.


Suppose we are given a random vector U uniformly distributed on SN .
Consider the projection U1 of U to its first coordinate, lets say the x-coordinate.
Then the density function f1(x) of U1 is a bounded function from [−1, 1] into
R+. We now want to state the f1 explicitely.


The following computations will need the incomplete beta function


Bx(a, b) =


∫ x
0


ta−1 · (1 − t)b−1 dt


and the beta function B(a, b) = B1(a, b).
To determine f1, take a point u ∈ SN and consider a small move along


the first coordinate to another point ũ ∈ SN . We observe that the move
approximately covers the distance


‖ũ − u‖ ≈ | arcsin(x̃) − arcsin(x)|,
and as ũ → u we obtain exact equality, where x and x̃ denote the first
coordinates of u and ũ, respectively. Hence, we have


∂u


∂x
= arcsin(x)′ =


1√
1 − x2


.








On the other hand, whith a fixed first coordinate x ∈ [−1, 1], the point u
lays on a (N − 1)-sphere with radius


√
1 − x2 which has the volume


R(x) = V (N − 1) · (
√


1 − x2)N−1.


Since the density of the distribution of U1 has to be linear in both
∂u
∂x


and
R(x), we obtain


f1(x) = s · arcsin(x)′ · (
√


1 − x2)N−1


= B


(
1


2
,
N


2


)−1
· (
√


1 − x2)N−2


for x ∈ [−1, 1]. The factor s is the appropriate scaling factor assuring that
the integral over f1 is 1 and thus evaluates to


s =


(∫ 1
−1


(
√


1 − x2)N−2dx
)−1


= B


(
1


2
,
N


2


)−1
.


Now it is straightforward to generate random numbers with density f1.
We have to find F1 by integrating f1 and finally get F


−1
1 by inverting F1.


Thus, U1 = F
−1
1 (Z) will have the desired properties, if Z is uniformly dis-


tributed on [0, 1]. Performing the integration yields


F1(x) =


∫ x
−1


f1(y)dy =
1


2
+ sign(x) · Bx2


(
1
2
, N


2


)


2 · B
(


1
2
, N


2


).


The last step of inverting F1 cannot be done in a closed form. So one has
to employ an approximation algorithm such as Newton’s method to perform
this task numerically.


Once constructed a properly distributed U1, the rest is done by recursion:
The remaining task is to generate a random point distributed uniformly on
the (N − 1)-sphere with radius


√
1 − x2. The recursion will finally stop at


N = 0, where it remains to randomly choose a point out of {−1, 1}. For
the reason of efficiency and accuracy, one can also treat the cases N = 1
and N = 2 seperately: For N = 1 one has to construct one coordinate of
a point on the unit circle, while for N = 2 the formulas yield f1 ≡ 12 and
F1(x) =


1
2
(x + 1).


The time complexity of this algorithm is clearly linear, as solving the
equation can be done in constant time. The main drawback of a practical
implementation of this algorithm is the approximation that has to be done
to solve the equation. Even a rapidly convergent approximation such as
Newton’s method restrains the performance considerably.








Note:


var(randball(d)) =


√
πΓ( d+1


2
)


2Γ( d+4
2


)B( 1
2
, d+1


2
)


=
Γ(1 + d


2
)


2Γ(2 + d
2
)


4 Using normally distributed random vectors


This is the algorithm mentioned in Knuth ([3]). It makes use of a strong
property of a normally distributed random vector. We briefly recall the
definition.


Definition. A random variable has distribution N (0, 1) if it has the density
function


f (x) =
1√
2π


e−
1
2
x2 .


A d-dimensional random vector X has distribution N (0, I) if the components
are independant and have distribution N (0, 1) each. In this case, the density
of X is given by


f (x) =
1


(
√


2π)d
e−


1
2
<x,x>.


In fact, the latter condition is also sufficient for X having independant
and normally distributed components. This follows from the uniqueness of
the Fourier transform and the particular form of the Fourier transform of the
normal distribution (see [1]).


Theorem. Let X be a d-dimensional random vector with distribution
N (0, I) and U ∈ Rd×d an orthogonal matrix (i.e. U U t = U tU = I). Then
Y = U X has distribution N (0, I), too.


Proof. For any measurable set A ⊂ Rd we have


P (Y ∈ A) = P (X ∈ U tA)
=


∫


U tA


1


(
√


2π)d
e−


1
2
<x,x>


=


∫


A


1


(
√


2π)d
e−


1
2
<U x,U x>


=


∫


A


1


(
√


2π)d
e−


1
2
<x,x>
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Figure 1: The performance of the three algorithms


by orthogonalty of U , hence the conclusion follows. 2


As any rotation is in fact just a multiplication with an appropriate or-
thogonal matrix, we conclude from this theorem that normally distributed
random vectors are invariant under rotation. Thus, generating X ∈ RN +1
with distribution N (0, I) and then projecting it onto the sphere SN produces
random vectors U = ‖X‖−1 ·X that are uniformly distributed on the sphere.


For generating the random vector X, we can make use of the Box-Muller
method (see [2]). Thus, the time time comlexity of the algorithm is clearly
linear.


5 Comparison of the algorithms


As the latter of our algorithms neither rejects points nor involves slow ap-
proximation methods, we expect it to be the most efficient one. This is
perfectly affirmed by Fig. 1. The figure displayes the time (in seconds) it
took to generate 1000 random points on the N -sphere with varying N . As
the experiments were carried out in Matlab, the data is a little biased: While
the normal distribution algorithm profits from the very fast built in generator
for normally distributed random numbers, the code for the incomplete beta
function is very slow. Nontheless, the relations are correct. The time used
by the Monte Carlo algorithm drastically increases at about N = 10, the
algorithm is not usable for larger N . The coordinate algorithm takes linear
time. The same does the normal distribution algorithm, but with a much
smaller ascent.








6 Conclusions


For solving the problem of generating uniformly distributed random points
on a high dimensional unit sphere in practice, the last algorithm is obviously
the most efficient and therefore to be preferred. However, if a specific non-
uniform distribution is needed, a modification of the coordinate alogrithm
may be appropriate. Even a modification of the Monte Carlo algorithm can
be suitable, even though it will probably result in an inefficient algorithm for
high dimensions.
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