
 .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

	

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

programming

Proyectsr.G1000

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

gpss.pdf

Home>Computer Science homework help>programming

2/22/2016

1

• General Purpose Simulation System (IBM - 1961)

• is a highly structured, special-purpose simulation language
that is designed for simulating queueing systems

• GPSS uses the process interaction approach of discrete
simulation

• a process is a series of events and activities that describes
the behavior of a customer as it makes its way through the
system

• process interaction is the technique of modelling a system by
a number of possibly overlapping processes

• GPSS is transaction oriented (it treats customers like
transactions)

GPSS

• the basic structure of a GPSS program is a routine that
describes the behavior of a transaction from arrival to
departure

• there is no need to write the event handling routines as these
are provided by GPSS

GPSS

2/22/2016

2

• since its inception, GPSS has undergone a number of
changes to the point that there are several
implementations

• we will concentrate of GPSS/H developed by Wolverine
Software Corporation

• statements in GPSS can be roughly divided into 3
categories:

1) blocks

2) definition statements

3) control statements

• the majority of statements are blocks

Statements in GPSS

• the general format of a GPSS statement is:

Col 2 Col 11 Col 22

label statement type parameters (A,B,C,D,E,F,G)

• introduce the different type of GPSS statements and
the techniques for writing programs with examples

Statements in GPSS

2/22/2016

3

SIMULATE

* Define Ampervariables

INTEGER &LIMIT

LET &LIMIT=1000

* Block Statements

GENERATE 10,5

QUEUE LINE

SEIZE CHECKOUT

ADVANCE 7,5

RELEASE CHECKOUT

DEPART LINE

TABULATE RES

TERMINATE 1

RES TABLE M1,2,5,10

* START &LIMIT

END

Example 1: Single Server Queue

SIMULATE:
- is a control statement specifying that a simulation run is to be run

- it can be placed anywhere in the program

- if not present, the program is compiled and not executed

Ampervariable:
- as with many programming languages, GPSS allows the

declaration of variables (called ampervariables as they are

preceded by an &)

- ampervariables can be either INTEGER or REAL

- value of ampervariables can be changed using the LET and

BLET (block LET) statements

2/22/2016

4

this blocks creates transactions and sends them into

the system at random intervals

- it supports five parameters (of interest to us)
A: specifies the mean length of the generation interval

- can be replaced by functions such as RVEXPO, or

RVNORM

B: for a uniform distribution, gives a plus or minus value about

the mean

C: offset interval for generation of the first transaction

D: maximum number of transactions to be generated

E: priority of transaction

- for our example: GENERATE 10,5
- specifies that the intercreation time of transactions is

uniformly distributed between 5 and 15 (10 ± 5) units

GENERATE:

- these are blocks which are simply related to the
gathering of statistics

- the parameter (in our case LINE), specifies an address of
where to store the statistics (could be a number)

- QUEUE marks the beginning of the statistics gathering
for the block while DEPART marks the end

- all transactions entering the QUEUE/DEPART block
cause the appropriate data collection to occur

- the QUEUE/DEPART block has a zero-delay effect on
transactions

QUEUE/DEPART:

2/22/2016

5

- the actual formation of queues (or line-ups) is as a result of the
SEIZE/RELEASE block

- the SEIZE block governs the admission of transactions to a
facility (server)

- the name (address) of the facility is given as a parameter (in
our case SEIZE CHECKOUT)

- could be a number

- at each instant of time, the facility can be in one of two states
(busy or idle)

- a transaction can only enter the SEIZE block if the specified
facility is idle

- if the specified facility is busy, the transaction joins a delay
chain (FCFS - within Priority levels)

SEIZE/RELEASE:

- when the facility becomes idle (as a result of the
corresponding RELEASE block), the first transaction on the
delay chain enters the SEIZE block

- the time spent in the delay chain corresponds to the waiting
time of the customer

SEIZE/RELEASE:

2/22/2016

6

- the ADVANCE block is the only block in GPSS that can
delay a transaction for a specified amount of time

- it models the service provided to a transaction

- it has two parameter:

A: specifies the mean length of holding time

- can be replaced by functions such as RVEXPO, or

RVNORM

B: for a uniform distribution, gives a plus or minus value

about the mean

- for our example: ADVANCE 7,5

- specifies that the service time of transactions is
uniformly distributed between 7 and 12 (7 ± 5) units

ADVANCE:

- the TABULATE block is used to collect histogram data for
a particular performance measure

- Parameter A of this block contains the address of the
TABLE definition

- the placement of the TABULATE is used to mark the time

- the TABLE block has the following parameters:
A: which standard numerical attribute (SNA) to tabulate

B: upper limit of the first interval

C: width of each interval

D: number of intervals

TABULATE/TABLE:

2/22/2016

7

- for our example:

-TABULATE RES is placed after ADVANCE so we are

considering the entire time in system

- RES TABLE M1,5,5,10 implies we are tabulating SNA
M1 (which is transit time = current clock - arrival time)

in a table where the upper limit of first interval is 5,

width of intervals is 5 and there are 10 intervals

- this leads to a table which has the following structure

Interval Range

1 val < 5

2 5 # val < 10

3 10 # val < 15

4 15 # val < 20

5 20 # val < 25

6 25 # val < 30

7 30 # val < 35

8 35 # val < 40

9 40 # val < 45

10 val $ 45

- other interesting SNA’s include

Please note the when symbolic names are used instead of
numerical addresses, j should be replace by $name

RNj - uniform random deviate from stream j

Pj - transaction parameter j

M1 - transit time = Current clock - mark time

MPj - parameter transit time = current clock – Pj

Fj - current status of facility j (busy = 1, idle = 0)

Sj - current number of busy servers in storage j

Qj - current length of delay chain j

Xj - value in savevalue j

FNj - computed value of function j

Vj - computed value of variable j

2/22/2016

8

- the terminate block acts as a sink for transactions

- the parameter specifies the number of units to be
deducted from the termination count (specified by
the START block) each time a transaction enters the
block

- if the parameter is left blank, the termination count is
not changed but the transaction is deleted

- when the termination count reaches 0, the simulation
is terminated

START:

- specifies the termination count as a parameter

TERMINATE:

Output Results

• in GPSS, statistics are automatically generated during the
simulation run

• these statistics are as follows:

1) For each facility

a) utilization factor

b) mean service time

2) for each QUEUE

a) maximum queue length

b) mean queue length

c) mean waiting time

d) % of transactions with zero waiting time

e) mean waiting time of those transactions that had to wait

3) for each table

a) observed frequencies

b) relative frequencies

c) mean

d) standard deviations

2/22/2016

9

• from our example, statistics for queue LINE, facility
CHECKOUT, and table RES are automatically collected and
printed

Example 2: Bank Model

- Consider a bank which contains tables for filling out slips, etc. and

tellers. Assume we have 6 tables and 3 tellers and 40% of the time, a

customer can head directly to a teller.

SIMULATE

* Define Ampervariables

INTEGER &LIMIT

REAL &IAT,&ST1,&ST2

LET &LIMIT=5000

LET &IAT=50

LET &ST1=10

LET &ST2=30

* Block Statements

GENERATE RVEXPO(1,&IAT)

TRANSFER .4,TAB,TEL

TAB QUEUE OVER

ENTER 1,1

ADVANCE RVEXPO(2,&ST1)

DEPART OVER

LEAVE 1,1

TEL QUEUE TELLER

ENTER 2,1

ADVANCE RVEXPO(2,&ST2)

DEPART TELLER

LEAVE 2,1

TERMINATE
*

STORAGE

S1,6/S2,3
*

GENERATE &LIMIT

TERMINATE 1

START 1

END

• several new statements
are introduced in this
program

2/22/2016

10

- the TRANSFER block moves transactions to different parts of the
program based an uniform random variate

- TRANSFER prob, label1, label2

- a uniform random variate is generated and if its value is less than

prob, the program branches to label2; otherwise the program

branches to label1

- for our example: TRANSFER .4, TAB, TEL

- specifies that a transaction entering this block is to be

transferred to statement with labels TAB and TEL with

probability 60% and 40% respectively

- this is a probabilistic transfer and not a conditional transfer (like an

IF statement)

- the TRANSFER block can also be used for an unconditional

transfer (i.e. TRANSFER ,label)

TRANSFER:

- similar to SEIZE/RELEASE except that the service facility
may have multiple servers

- the first parameter in both the ENTER and LEAVE blocks
refers to the address of the storage facility while the
second indicates the number of servers required by the
transaction

- a transaction is allowed to enter the ENTER block only if
the number of servers it requires is less than or equal to
the number of servers in that storage facility that are idle

- otherwise, the transaction is blocked and forced to join a
delay chain

- thus the ENTER/LEAVE implements a single queue,
multiple server model

ENTER/LEAVE:

2/22/2016

11

- the STORAGE definition statement specifies the total
number of servers for each storage facility

- for our example: STORAGE S1,6/S2,3

- indicates that storage 1 (SNA is S1) has 6 servers and storage 2

(SNA is S2) has 3 servers

STORAGE:

- this example also shows how a simulation can be
terminated after a pre-specified amount of time (instead of
after a pre-specified number of customers)

- the first TERMINATE block does not contain a parameter
implying the transaction is deleted but the termination
count is not decrement

- the second GENERATE block generates a transaction at
5000 time units

- this transaction immediately enters a TERMINATE 1 block

- since the START block specifies a termination count of 1,
the simulation will terminate

End of Simulation:

2/22/2016

12

- this model consists of n (n>1) single server queues in
series. Customers arriving to the system always queue for
server 1 and then visit servers 2, 3, 4, ..., n in a sequential
manner

- this is essentially Example 1, n times

Example 3: Queues in Series

SIMULATE

INITIAL X1,20/X2,25/X3,30

* Define Ampervariables

INTEGER &LIMIT

REAL &IAT

LET &LIMIT=5000

LET &IAT=50

* Block Statements

GENERATE RVEXPO(1,&IAT)

ASSIGN 1,3

NEXT ASSIGN 2+,1

QUEUE *2

SEIZE *2

DEPART *2

ADVANCE RVEXPO(2,X*2)

RELEASE *2

LOOP 1,NEXT

TABULATE RES

RES TABLE M1,10,10,10

TERMINATE 1

*

START &LIMIT

END

2/22/2016

13

Assign
- the ASSIGN block is used to modify the value stored in a transaction

parameter

- these parameters can be used to store information such as the

transaction’s arrival time, service time, etc.

- the total number of transaction parameters can be specified by the F

parameter of the GENERATE block (the default is 12)

- GENERATE 10,5,,,,30 would generate transactions at intervals

uniformly distributed between 5 and 15 and each transaction would

have 30 parameters

- the SNA reference to the jth parameter is Pj

- all transaction parameters are intialized to 0

- variations of the ASSIGN block

ASSIGN 1,3 stores 3 into P1

ASSIGN 1+,3 increments P1 by 3

ASSIGN 1-,3 decrements P1 by 3

ASSIGN 1,RVEXPO(1,20)

- stores exponential variate with mean 20 into P1

Indirect Addressing:
- from our example, transaction parameter P1 contains the

number of servers in the series that have to be visited

- transaction parameter P2 contains the numeric address of the
server to visit next

- a newly created transaction has its P1 set to 3 and its P2 set to
1 prior to entering the QUEUE block

- the QUEUE block uses indirect addressing to specify the
queue address

- the “*2” in the statement results in the value stored in P2 being
used

- thus, the QUEUE block updates the statistics for queue 1

- the same indirect address is used in the SEIZE, DEPART, and
RELEASE blocks

2/22/2016

14

Savevalues:
- storage locations accessible to all transactions

- SNA for the jth savevalue is Xj

- the INITIAL statement is used to initialize the value of the

savevalues

- from our example, ADVANCE RVEXPO(1,X*2) generates an

exponential variate based on the service time stored in

savevalue stored in P2

- the value of a savevalue can be modified by a SAVEVALUE

block

- SAVEVALUE is analogous to the ASSIGN block in terms of

modifying the value of a transaction parameter

SAVEVALUE 1,3 stores 3 into X1

SAVEVALUE 1+,3 increments X1 by 3

SAVEVALUE 1-,3 decrements X1 by 3

SAVEVALUE 1,RVEXPO(1,20)

- stores exponential variate with mean 20 into X1

LOOP:

- the LOOP block implements a do-loop

- when a transaction enters the LOOP block, the

contents of P1 (as specified by parameter A) is

decremented by 1

- if P1 > 0, the transaction is moved to the block

specified in parameter B (NEXT in our case)

- otherwise the transaction is moved to the next

sequential block

- from our example, as P2 is incremented to select the

next server while P1 is decremented to count down

the loop

2/22/2016

15

Example 4: Round Robin Model

- with this model, an arrival from the outside of the system joins

the end of a single queue. Customers in the queue are served

in FCFS order for a quantum of service time. If a customers

service requirement is satisfied before the quantum, they simply

leave. Otherwise, they release the server and rejoin the end of

the queue

SIMULATE

GENERATE RVEXPO(1,50)

ASSIGN 1,RVEXPO(1,30)

NEXT QUEUE 1

SEIZE 1

DEPART 1

TEST G P1,20,LAST

ASSIGN 1,V1

1 VARIABLE P1-20

ADVANCE 20

RELEASE 1

* Explain the Buffer block later

BUFFER

TRANSFER ,NEXT

LAST ADVANCE *1

RELEASE 1

TERMINATE 1

*

START 1000

END

2/22/2016

16

TEST:

- this is like an IF statement

- the condition is tested and if it is met, the transaction moves to the next

sequential block

- if the condition is not met, it moves to the block specified in parameter

C

- for our case, TEST G P1,20,LAST

- compares transaction parameter P1 to 20 and if it is greater than

(G), it moves to the next block

- if P1 is less than or equal to 20, the transaction moves to the block

with label LAST

- the other TEST operators are GE, E, NE, LE, and L

Variables:

- variables are used to compute arithmetic expressions

- the SNA for the jth variable is Vj

- ASSIGN is used to assign a value to a variable

- associated with each variable is a definition statement

(1 VARIABLE P1-20) which specifies a arithmetic expression

composed of SNA’s

- when a variable is referenced (ASSIGN 1,V1), the

corresponding arithmetic expression is evaluated

2/22/2016

17

Internal Structure of GPSS

• the basic data structure used by GPSS:

1) Future Event Chain - contains transactions whose
scheduled departure time from a block is greater than the
current clock

- ordered in ascending values of event time
- usually as a result of GENERATE and ADVANCE

2) Current Event Chain - contains transactions that are
scheduled to move at the current time and as well,
transactions that are blocked

3) Status Change Flag - a switch used by GPSS for scanning
the CEC

4) Scan Status Indicator - indicates whether a transaction in
the CEC is blocked or active

Algorithm for Moving Transactions

1) Update clock to the time of the next event (this is the time of the first

event in the FEC)

2) Move all transactions with this time from the FEC to the CEC. These

transactions are added to the end of the CEC with their scan status

marked as active.

3) Scan the CEC

a) set Status Change Flag to 0

b) examine first transaction in CEC

c) if scan status is active, goto (f)

d) if no more transactions in the CEC, stop

e) examine the next transaction in the CEC and goto (c)

f) move transaction as far as possible through the GPSS program

(the scan status of other transactions and/or the Status Change

Flag may be changed)

g) if the Status Change Flag is 1, restart the scan by going

to Step (a); otherwise continue with the current scan and

goto (e)

4) Goto (1)

2/22/2016

18

Algorithm for Moving Transactions

• need more detail on Step (f) of the CEC scan

• an active transaction is moved through blocks with zero delay

until one of the following occurs:

1) the transaction becomes blocked -- it remains in the CEC

2) the transaction enters an ADVANCE block -- it is removed from

the CEC and added to the FEC

3) the transaction enters a TERMINATE block -- it is removed

from the system

Algorithm for Moving Transactions

• it should be noted that this move does not alter the position of

transactions in the CEC

- it might change the scan status of these transactions

- for example, a transaction moving through a RELEASE block

causes all transaction in the CEC that are blocked on that

facility will have their scan status changed to active

- the Status Change Flag is also set to 1 to allow the CEC to

start again allowing a previously blocked transaction to seize

this facility

- another example is a transaction moving through the SEIZE

block causing all transactions that are trying to seize the same

facility having their scan status changed to blocked (Status

Change Flag is set to 1)

2/22/2016

19

BUFFER:

- when a transaction enters a BUFFER block it will not be moved any

further

- the natural algorithm is to move a transaction as far as possible

before it blocks (or completes)

- this philosophy is detrimental to a Round Robin scheduling discipline

- consider a situation where a transaction is blocked on the CEC

waiting for a facility

- the next item off the FEC is the completion of the transaction which

currently holds the facility

- since the first transaction is blocked, the second transaction is

moved as far as possible

- if it requires an additional quantum and the BUFFER block is not

present, the transaction will eventually SEIZE the facility again even

though the other transaction was in line a head of it

- the BUFFER block serves to hold the transaction and allow the CEC

scan to start at the beginning and pick the other transaction

- the BUFFERed transaction remains in the CEC

Other GPSS Features:

MARK Block:

- we have already introduced the SNA M1 which is the transit

time of a transaction

- M1 is defined to be current time - mark time

- mark time is initially given by creation time

- mark time can be changed by sending a transaction through a

MARK block which will set mark time to the current clock

2/22/2016

20

Other GPSS Features:

SELECT Block:

- this block is used to find a GPSS entity (e.g. queue, facility,
storage, etc.) that satisfies a specific condition

- it can be used with three types of operations:

1) Logical

1) Conditional

L, LE, E, NE, GE, G

3) Special

MIN, MAX

U - facility in use

SE - storage empty

SF - storage full

NU - facility not in use

SNE - storage not empty

SNF - storage not full

Examples:

SELECT NU 5,1,3,,,NEXT

- facilities 1 to 3 are tested and the address of the first not in use facility

is stored in P5

- the transaction is moved to the next sequential block

- if all facilities used, transaction moved to label NEXT

SELECT E 5,1,3,X1,Q,NEXT

- length of queues 1 to 3 are tested and the address of the first queue

with length equal to X1 is stored in P5

- the transaction is moved to the next sequential block

- if no queue with length = X1 is found, transaction moved to label

NEXT

SELECT MIN 5,1,3,,Q

- queues 1 to 3 are examined and address of the queue with minimum

length is stored in P5

2/22/2016

21

Example Program:

- this program implements a much more realistic grocery store system
consisting of four servers, each with its own queue. Arriving customers
always join the shortest queue (ties broken by address)

SIMULATE

GENERATE 10,5

SELECT MIN 3,1,4,,Q

QUEUE *3

SEIZE *3

DEPART *3

ADVANCE 15,3

RELEASE *3

TABULATE RES

RES TABLE M1,10,10,10
TERMINATE 1

*
START 1000

END

User Chains:

- when transactions are moved from the FEC to the CEC, they

are entered at the end of their priority levels

- the default queueing discipline is therefore FCFS within priority

levels

- other types of queueing disciplines can be implemented by User

Chains

- User Chains are chains that the user can implement

- transactions can be moved from the User Chains to the CEC

and vice-versa

- the status of transactions in User Chain is always inactive

- LINK and UNLINK blocks are used to manipulate

- instead of giving a detailed description of these blocks, try to

illustrate the important features using an example

2/22/2016

22

SIMULATE

GENERATE 10,5

QUEUE 1

LINK 5,FIFO,NEXT

NEXT SEIZE 1

DEPART 1

ADVANCE 7,2

RELEASE 1

UNLINK 5,NEXT,1

TERMINATE 1

*

START 1000

END

- each User Chain has a link indicator which is initially off

- when a transaction enters LINK 5,FIFO,NEXT

- the link indicator for User Chain 5 is checked and if the indicator is

on, the transaction is removed from CEC and entered in User Chain

5 is the specified order (FIFO, LIFO, or user defined)

- if the indicator is off, it is turned on and the transaction is moved to

block specified by label (NEXT)

- when a transaction enters UNLINK 5,NEXT,1

- User Chain 5 is checked and if it is not empty, one transaction

(specified by parameter C) is removed from the chain and entered

into the CEC

- this transaction is then moved to the block specified by the label

(NEXT)

- if the User Chain is empty, its link indicator is turned off

2/22/2016

23

- in either case, the transaction that entered the UNLINK block is

moved to the next sequential block

- the above example does implement a single server queue with

FCFS discipline so LINK/UNLINK unnecessary

- another method to arrange transactions in a User Chain is to use a

transaction parameter

- the statement LINK 5,1,NEXT

- would link transactions in User Chain 5 in ascending order of the

value stored in P1

- if service time of the transaction had been determined immediately

after it had left the GENERATE block then this would be Shortest-

Job First

- one final comment UNLINK 5,NEXT,1,BACK

- this would unlink a transaction from the back of User Chain 5 and

send it to the block labelled NEXT

Control Statements:

START 1000,,100

- would cause the data statistics to be printed each time the termination
count is decremented by 100

RESET

- initializes all internal variables for data collection

CLEAR

- initializes the status of queues, facilities, storages, etc. as well as
variables for data collection

BPUTPIC FILE=OUT,LINES=2,(P2,X1)

Transaction Parameter 2 = ***.**

Savevalue 1 = ***.**

- allows you to print out variables from within GPSS (into file OUT)

2/22/2016

24

DO/ENDDO:

- allows a loop to be executed (rerun the simulation)

DO &I=1,5,1

...

ENDDO

- implies “...” will be repeated 5 times (I=1 to 5 step 1)

- redo EXAMPLE 1 (MM1), this time re-running it 5 times

SIMULATE

INTEGER &I

GENERATE 10,5

QUEUE LINE

SEIZE CHECKOUT

ADVANCE 7,5

RELEASE CHECKOUT

DEPART LINE

TERMINATE 1

*

DO &I=1,5,1

START &LIMIT

CLEAR

ENDDO

END

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		

	

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

