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Homework Set 10
Assigned: Monday, March 21
Due: Wednesday, March 23 (at the beginning of class)


Instructions: On your own paper, answer all the following in a complete and comprehensible English.
Make sure your proofs contain only your actual argument! Any scratch work you need to do should be done
on a separate piece of paper, and not turned in. Also, please make the separation between problems very
clear.


1. [5 points] Define the following sequence by recursion: a0 = 1 and for all integers n > 0, an =


1 +
∑n−1


i=0 2ai.


Show by induction that for all integers n ≥ 0, an = 3n.


Note: you may use the geometric series formula, which we proved in class:
∑n


k=m r
k =


rm −rn+1


1 −r
.


2. [5 points] Define the following sequence by recursion: a0 = 2, and for all integers n > 0, an =


2 + 2
∑n−1


i=0 ai.


Show by induction that for all integers n ≥ 0, an ≤ 4n+1.
Note: it is possible to determine an exact formula for an, but this is not the easiest way to solve the
problem.


3. [5 points] Define two sequences (an) and (bn) by recursion. Let a0 = 1, and let an =
√


2 · an−1
whenever n > 0.


Let b0 = 5 and b1 = 5, and let bn = bn−1 + bn−2 whenever n > 1.


Show that for all n ≥ 0, bn > an.
Note: this is the hardest problem on the page, probably.


4. [5 points] Show by strong induction that for all positive integers n, there are integers a and b where
n = 3ab and 3 - b.
Note: do not use the prime factorization theorem! You can (and should) use its proof to inspire your
answer to this problem, though.


5. [5 points] Show that the representation from (4) is unique. That is, if n = 3ab and n = 3cd, and
a, b, c, d are all integers, and 3 - b and 3 - d, then a = c and b = d.


6. [5 points] Show that for all integers n ≥ 43, there are nonnegative integers a and b where n = 6a+ 7b.


7. [5 points] Show that for all integers n ≥ 0, if n is divisible by four, then 5|2n+2 + 3n+4.
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