
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

5 homeworks in EET2410 Programmable Controller Fmtl
[image: profile]
mustafa88
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

chap6_s.pdf

Home>Engineering homework help>Electrical Engineering homework help>5 homeworks in EET2410 Programmable Controller Fmtl

 Ch 6 Basic Memory Circuits 1

Chapter 6 Basic Memory Circuits

Developing the Memory Circuit

We will look first at a very simple system. Later, this type of design can be used to discuss

circuits capable of controlling more complex systems.

The Acme Company has a problem flow of molasses in a storage tank. In the winter, viscosity

of the molasses is so high that the molasses run too slow to exit the flow valve. A present system

allows for flow out of the tank on request but no sensing of temperature. A second model is to

be put in place to allow for a heater to be turned on while the molasses are cool and then flow out

of the valve.

The first model does not have a temperature sensor or heater. Sensors consist of two level

sensors, LH, and LL. The tank outlet valve turns on to empty the tank when the upper level is

reached. After opening, the outlet valve was closed when only when LL has been reached.

The system as designed is shown below.

Molasses Tank

Inlet Valve VIN (not used)

Outlet Valve VOUT

Upper level

sensor,LH

Control Logic

Lower level

sensor,LL
Switch covered = ?
 not covered = ?

Switch covered = ?
 not covered = ?

Fig. 6-1 Flow Out when Full

Signal assignment must be made of the level switches LH and LL. These switches must be

assigned a value of 1 or 0 when the switch is covered (level exceeds the switch). A switch must

be assigned a value that is safe, that is, that limits bad consequences if the switch fails. The most

likely fault is for the switch to lose a wire (wire fall off and open the circuit). If this happens,

would the circuit allow some bad event to occur? In the event of LH, the switch is used to stop the

fill sequence (turn off the circuit). It is proper to think of switches that stop a memory circuit as

 Ch 6 Basic Memory Circuits 2

the same as a stop switch. Stop switches are assigned the value 0 when the switch level is

exceeded. For the switch LH, the switch covered = 0, switch not covered = 1. Not all switches

are as easy to assess and in some cases, either 0 or 1 is proper to assign as the value for “Signal

Assignment”.

In addition to finding a truth table and Karnaugh map, the requirement for safety requires a

signal assignment table:

Sensor Function/State Signal Assignment

LH Upper Level 0

LL Lower Level 1

 Table 6-1a Input Assignment

Actuator Function/State Signal Assignment

VOUT Outlet Valve 1

 Table 6-1b Output Assignment

The Signal Assignment can be assigned to the Molasses Tank and filled in on the system

diagram:

Molasses Tank

Inlet Valve VIN (not used)

Outlet Valve VOUT

Upper level

sensor,LH

Control Logic

Lower level

sensor,LL
Switch covered = 1
 not covered = 0

Switch covered = 0
 not covered = 1

Valve on (flow) = 1
Valve off (no flow) = 0

Fig. 6-2 Flow Out

with I/O Assigned

 Ch 6 Basic Memory Circuits 3

A Truth Table is designed and a Karnaugh map is developed from it:

Truth table for outlet valve VOUT

LH LL VOUT VOUT Action

0 0 0 0 Sensor error; open valve

0 0 1 0 Sensor error; open valve

0 1 0 1 Both sensors covered; open valve

0 1 1 1 Both sensors covered; maintain open valve

1 0 0 0 Level below low; leave valve closed

1 0 1 0 Level below low, close valve

1 1 0 0 Level between low, high; maintain open

1 1 1 1 Level between low, high; maintain closed

 Table 6-2 Truth Table for VOUT

Vout
0

0 0

0 1

1 1

1 0

1

1

0

0

1

0 0

0

1

LLLH

Vout = LH· LL + LH· Vout = LH· (LL + Vout)

LH

Vout

LL Vout

Fig. 6-3 Karnaugh Map

and Ladder Solution

The Karnaugh Map Simplification of Vout, Boolean Equation, Ladder Equivalent is developed.

The final design circuit could be built from logic gates and demonstrated for a lab experiment.

The addition of circuits for temperature and alarm could be added as well. This may be all that is

required in the academic world. In the real world, however, a PLC or similar device is employed

to turn on and off devices and report the result to computer systems monitoring the factory’s

production. This requires more effort than the simple circuit design found on the next page.

 Ch 6 Basic Memory Circuits 4

1K1K

1K

+5V

+5V

+5VUpper level sensor, LH
Switch covered = 0 or open,

not covered = 1 or closed

Lower level sensor, LL
Switch covered = 1 or open,

not covered = 0 or closed

VOUT

Fig. 6-4 Solution of Molasses Tank

with Boolean Gates

System modifications to the molasses tank include a temperature sensor, Tc and heater H. Level

sensors, LL and LH, are retained.

The outputs are one valve, VOUT, an alarm, A, and a heater, H. The heater must warm the

molasses enough for proper flow.

When the upper level sensor is covered, the outlet valve should open if temperature is sufficient

for proper flow. Flow should be allowed until the lower sensor is reached or temperature falls

below the minimum temp for good flow. Once flow stops, the outlet valve closes until the upper

level switch is again covered. Alarms will show improper combinations of level switches.

Alarms will also cause flow to stop and heater to turn off. The heater is off if the low level

switch is not covered.

 Ch 6 Basic Memory Circuits 5

Molasses Tank

Inlet Valve VIN (not used)

Outlet Valve VOUT

Upper level

sensor,LH

Control Logic

Lower level

sensor,LL
Switch covered = 1
 not covered = 0

Switch covered = 0
 not covered = 1

Valve on (flow) = 1
Valve off (no flow) = 0

H
TC Switch above temp = 1

 not above temp = 0
Heater on = 1
Heater off = 0

Fig. 6-5 Molasses Tank with Temperature

Switch and Heater Added
Sensor Function/State Signal Assignment

LH Upper Level 0

LL Lower Level 1

TC Temperature Sw 1
 Table 6-3a Molasses Tank Inputs

Actuator Function/State Signal Assignment

VOUT Outlet Valve 1

A Alarm 1

H Heater 1
 Table 6-3b Molasses Tank Outputs

Truth table Revised System:

LH LL TC VOUT VOUT H A

0 0 0 0 0 0 1

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 1 0

0 1 0 1 1 1 0

0 1 1 0 1 1 0

0 1 1 1 1 1 0

 Ch 6 Basic Memory Circuits 6

TCVout

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0
LHLL

TCVout

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0
LHLL

TCVout

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0
LHLL

VOUT = H =

A =

Table 6-4 Truth Table and

Karnaugh Maps

Students should finish the Karnaugh Maps, Boolean Equations and Ladder equivalent. This

control circuit may be the needed outcome of the control algorithm. It may not be the best

algorithm, however. The engineer/program designer may first try such a circuit and find it to be

lacking. In this case, if the temperature switch is never satisfied, the output valve VOUT is never

energized. While this may be the desired result, there may be a better approach that should be

looked into. In the meantime, realize that you may have “the best possible program” and find

that in the activation/startup phase that it may need to be totally revamped to satisfy the “real”

problem with the machine or process. The program engineer must also be careful to not create

conditions that would cause equipment failure such as a solenoid cycling on and off

continuously. While an electronic device may survive for years constantly cycling on and off, a

mechanical device such as a solenoid will not stand up to such abuse and quickly burn up.

In general, memory circuits resemble the following and the Truth Table/Karnaugh Map step may

be skipped:

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 0 0

1 1 0 0 0 1 0

1 1 0 1 0 1 0

1 1 1 0 0 1 0

1 1 1 1 1 1 0

 Ch 6 Basic Memory Circuits 7

Stop

CR

Start CR

CR = Stop · (Start + Cr)

CR Stop Start CR

 0 0 0 0 Stop pushed

 0 0 1 0 Stop pushed, start pushed

 0 1 0 0 Nothing pushed

 0 1 1 1 Start pushed, CR active

 1 0 0 0 Stop pushed, start pushed

 1 0 1 0 Stop pushed, start pushed

 1 1 0 1 CR active, start no longer pushed

 1 1 1 1 Start pushed, CR active

>=1Start

&
Cr

Stop

Fig. 6-6 The

Standard Memory

Circuit

Relay Instructions/Memory Instructions

Instructions for building memory circuits must be discussed. They include instructions

commonly referred to as ‘Bit’ logic instructions. Siemens and Allen-Bradley each provide a

number of instructions capable of building combinational and memory circuits. While the same

instructions may not be referenced by the same name, the function of the Normally Open and

Normally Closed contact for both A-B and Siemens produces the same result. Differences arise

when using some of the other instructions, however. The main difference between the two is the

path most programmers take as a first choice when programming their respective PLC. The

European style of programming will be discussed as varying somewhat from the American style.

 Ch 6 Basic Memory Circuits 8

Review of class of instructions for bit logic for Siemens and Allen-Bradley are listed below:

Siemens instructions for Bit logic are:

Fig. 6-7a Siemens S7-1200 Bit

Instruction Set

Allen-Bradley instructions for Bit logic are:

Fig. 6-7b Allen-Bradley

CompactLogix Bit

Instruction Set

Normally Open Contact

Siemens Step 7 Basic:

Fig. 6-8 Siemens Normally

Open Contacts

 Ch 6 Basic Memory Circuits 9

The two contacts form an ‘and’ of the two points, “test_1 and test_2”. If both signals have the
signal state “1”, the combination will conduct from the left power rail to the right. Otherwise, if

either input does not have a “1” state, power is not passed. Siemens refers to the contact as a

normally open contact, the traditional name associated with controls drawings.

Allen-Bradley refers to the normally open input as an XIC or “Examine On” contact. The

RSLogix 5000 example below uses the same two inputs “test_1 and test_2”. Internal memory
addresses are assigned tag addresses with BOOL data type.

Fig. 6-9 A-B Normally

Open (Examine On)

Contacts can be arranged either in ‘and’ or ‘or’ arrangements starting at the left power rail and

flowing to the right. Contacts must be placed on horizontal runs and never on a vertical run.

The expression above would be written in Boolean: test_1 and test_2 =
and the FBD diagram would be:

Fig. 6-10 Example of

Siemens FBD AND

 Ch 6 Basic Memory Circuits 10

Normally Closed Contact

Siemens Step 7 Basic:

Fig. 6-11 Siemens Normally

Closed/Normally Open Pair

The two contacts form an ‘and’ of the two points, “not test_1 and test_2”. If test_1 is 0 and
test_2 is 1, the combination will conduct from the left power rail to the right. Otherwise, power

is not passed. Siemens refers to the first contact as a normally closed contact, the traditional

name associated with controls drawings. The second contact is a normally open contact.

Allen-Bradley refers to the normally closed input as an XIO or “Examine Off” contact. The

RSLogix 5000 example below uses the same two inputs “not test_1 and test_2.

Fig. 6-12 A-B Normally

Closed/Normally Open Pair

The normally closed contact provides the same function as the “NOT” function of Boolean logic.

The expression above would be written in Boolean: not test_1 and test_2 =
and the FBD diagram would be:

Fig. 6-13 Siemens FBD

Normally Closed/Normally

Open Pair

Not inserted as ‘bubble’ here

 Ch 6 Basic Memory Circuits 11

Invert Result of Logic Operation

Siemens Step 7 Basic:

Fig. 6-14 Siemens Logic Inversion

The Invert instruction will invert the state at the point of inclusion. If the state at the point was

“1”, the output of the Invert [NOT] instruction is “0”. Likewise, if the state at the point was “0”,

the output of the Invert [NOT] is “1”.

The instruction has many practical uses in logic design. No instruction is available in the Allen-

Bradley instruction set that exactly duplicates this instruction from Siemens.

The instruction above is read “not[not test_1 and test_2]” and the FBD diagram would be:

Fig. 6-15 Siemens Logic Inversion

using FBD

Not inserted as ‘bubble’ here

Output Coil

Siemens Step 7 Basic:

Fig. 6-16 Siemens Output Coil

The output coil bit sets a bit of memory for a Boolean logic expression. It adds the resultant to

the equation. Before, the result was not included in the equation but with the coil, an output is

set to 0 or 1.

Multiple coils may be programmed but this is not necessary. Multiple coils with additional logic

may be programmed and this may be necessary. Use of multiple coils in one network is shown

below. The FBD equivalent is also shown.

 Ch 6 Basic Memory Circuits 12

Fig. 6-17 Siemens Multiple Coils

The following shows the FBD equivalent of the Ladder circuit above.

Fig. 6-18 FBD Equivalent of

Ladder Diagram (Fig. 6-17)

The following is the Allen-Bradley equivalent of the Siemens Ladder and FBD circuit.

Fig. 6-19 A-B Equivalent of

Siemens’ Fig. 6-17

Negated Coil

Siemens Step 7 Basic:

Fig. 6-20 Siemens Negated Coil

The Negated Coil inverts the logic of the network and assigns the inverted signal value to the tag.

 Ch 6 Basic Memory Circuits 13

Siemens uses the term RLO to signify the signal value at a point in the circuit. RLO is short for

Result of Logic Operation and signifies the status of the network at the point investigated. In the

case of the Negated Coil, the RLO is inverted to find the status of the negated coil.

No instruction is available in the Allen-Bradley instruction set that exactly duplicates this

instruction from Siemens.

Set Output

Siemens Step 7 Basic:

Fig. 6-21 Siemens Set Output

The Set Output operation sets the state of the Boolean bit to 1. If power flows to the output bit,

the output bit is set. If the result is 0, the output remains unchanged (may be 0 or 1).

Reset Output

Siemens Step 7 Basic:

Fig. 6-22 Siemens Reset Output

The Reset Output operation sets the state of the Boolean bit to 0. If power flows to the output bit,

the bit is reset (to 0). If the result is 0, the output remains unchanged (may be 0 or 1).

Set_BF Output

Siemens Step 7 Basic:

Fig. 6-23 Siemens Set

Bit Field

The Set_BF instruction sets several bits beginning at the stored address. The number of bits set

is defined in the second operand <operand2>. As seen in the example above, 5 bits starting at

 Ch 6 Basic Memory Circuits 14

Q20.0 are set with the instruction if power flows to the output.

Reset_BF Output

Siemens Step 7 Basic:

Fig. 6-24 Siemens Reset

Bit Field

The Reset_BF instruction resets several bits beginning at the stored address. The number of bits

reset is defined in the second operand <operand2>. As seen in the example above, 4 bits starting

at Q20.0 are reset or turned off with the instruction if power flows to the output.

SR: Set reset flip-flop

Siemens Step 7 Basic:

Fig. 6-25 Siemens Set

Reset Flip-Flop

The SR flip-flop is used to set or reset a specific output operand based on the state of the S and

the R inputs. The Reset or R input dominates. If the S is 1 and the R is 0, the output turns on - 1.

If the S is 1 and the R is 1, the output turns off - 0. If the S is 0 and R is 1, the output turns off.

RS: Reset set flip-flop

Siemens Step 7 Basic:

Fig. 6-26 Siemens Reset

Set Flip-Flop

 Ch 6 Basic Memory Circuits 15

The RS flip-flop is used to set or reset a specific output operand based on the state of the S and

the R inputs. The Set or S input dominates. If the S is 1 and the R is 0, the output turns on 1. If

the S is 1 and the R is 1, the output turns on - 1. If the S is 0 and R is 1, the output turns off - 0.

OTL: Output Latch

OUT: Output Unlatch

These instructions are Allen-Bradley instructions similar to the SR or RS flip-flop instructions of

Siemens. The orientation determines the dominance. If (L) is before (U), the Unlatch or Reset is

dominant. If (U) is before (L), the Latch or Set is dominant. The difference between A-B and

Siemens is that the bit programmed for the latch is retained after a power fail or change to

program mode and then back to run. The Siemens data bit will turn off after a power fail or

change to program mode and then back to run. Certain data areas in the Siemens program are

reserved for data that is retained and can be programmed using the S-R flip flop similarly to the

A-B latch.

Fig. 6-27 A-B Latch-Unlatch

Retentive Memory

Relay coils may be either retentive or non-retentive. Retentive refers to the coil’s ability to retain

its former status through a power loss. If the PLC either loses power or stops processing the

program, coils are reset to 0 unless specified as a latch coil. Latch coils retain their state when

the power is turned back on or when the program returns to the run mode. Mechanical relays

accomplish this with a slide-over arrangement similar to the light switch on the wall. The coil’s

status remains in the last state until energized to move to the opposite state.

Problems inherent in latch coil design cause their use to be restricted to applications requiring

their use. For example, it is difficult to determine the state of a coil if both the latch and unlatch

coil are on at the same time. A mechanical relay will hum and eventually burn up because high

inrush currents would continue to flow if the relay’s air gap is not essentially zero distance

between the core and plunger. Although the program can determine which rung will be dominant

 Ch 6 Basic Memory Circuits 16

(either latch-L or unlatch-U), the condition is generally not considered good programming

practice and something to guard against.

Also, the programmer must guard against all conditions that may cause the circuit to reset the

latch coil to off and provide for those conditions with the Unlatch coil. Many circuits do not

provide for all conditions to reset the coil.

Seal circuits are developed differently than latch coils. In seal circuits start logic is positive and

stop logic is negative for relay coils. In Latch coils (L), the logic is positive that turns on the coil.

Inn Unlatch coils (U), the logic is also positive that turns off the same coil. Coils allow the end

user to cycle power and de-energize all seal circuits. This ability to cycle power and restart a

machine from a known state is very useful and should be used as much as possible. If the

program does not follow this suggestion, the result may be a flurry of mid-night calls to fix the

machine. Machines that use latch circuits in them are sometimes described as machines that

have “a mind of their own” since all circuits may not be reset to a known state at any time.

From Instruction Help, Allen-Bradley describes the Latch function as:

“This instruction functions much the same as the OTE with the exception that once a bit is set

with an OTL, it is "latched" on. Once an OTL bit has been set "on" (1 in the memory) it will

remain "on" even if the rung condition goes false. The bit must be reset with an OTU instruction.

Latch and Unlatch instructions must be assigned the same address in your logic program. Output

addresses are specified to the bit level.

Stop

CR

Start CR

Stop
Start

L

Lxx

U

Lxx

Conversion of control circuitry to the PLC’s logic requires care in the intent of circuits to retain a

memory bit even though power has been removed. The use of latch-unlatch coils or S-R flip-

flop circuits with retentive memory is to be limited to only circuitry with a need for that function

at start-up.

Fig. 6-28a

Control Circuit Seal

Fig. 6-28b

Control Circuit Latch/Unlatch

 Ch 6 Basic Memory Circuits 17

The following circuit demonstrates a PLC circuit exactly emulating the first control circuit seal

of an off-dominant seal circuit. In an off-dominant circuit, the STOP is dominant. The START

button only will work if the STOP button is not pushed. The second circuit re-arranges the circuit

to allow the START to work regardless of the position of the STOP. This is referred to as an on-

dominant circuit. In general the off-dominant circuit is preferred as it is safer.

Start

Stop

Start_I

Stop_I

Stop_I

M

Start_I M

Stop_I M

Start_I M

Both types of rungs are found in logic. Typically, the first or off-dominant is found in most logic

but the latter or on-dominant is used from time to time. To convert from an off-dominant to the

on-dominant, move the stop contact to the seal loop. Siemens provides the S-R flip-flop

circuitry to provide the same seal circuit shown above.

Start_I

S

M

Stop_I

R

M

Fig. 6-29a

PLC Inputs for Start and Stop

Fig. 6-29b

PLC Seal Circuit with Off-Dominance

Fig. 6-29c

PLC Seal Circuit with On-Dominance

Fig. 6-30

Siemens PLC Memory with
Off-Dominance

 Ch 6 Basic Memory Circuits 18

Circuits with off-dominant structure are used in most control circuits while the on-dominant

structure is used in alarm circuits (circuits that report something bad). While no absolute rule

exists, an alarm circuit will almost always use on-dominant and control circuits will use off-

dominant.

Start_I

S

M

Stop_I

R

M

Start_I

L

B

Stop_I

U

B

Start_I

L

B

Stop_I

U

B

Start_I

S

M

Stop_I

R

M

Fig. 6-31a

Siemens PLC Memory with
On-Dominance

Fig. 6-31b

Allen-Bradley Latch with
Off-Dominance

Fig. 6-31c

Allen-Bradley Latch with
On-Dominance

Fig. 6-31d

Siemens PLC Memory with
Off-Dominance:

Latch if using Retentive

Memory

 Ch 6 Basic Memory Circuits 19

Start_I

S

M

Stop_I

R

M

As long as the circuit is started or stopped with a single contact, it is simple to design. Most

circuits do not just have one start or stop contact, however. The following circuit is typical of

logic required to start or stop a memory circuit.

 Fig. 6-31f How Siemens Sets Retentive Memory

The figure 6-31f shows the method used to set retentive memory in the Siemens’ S7-1200

processor. The retentive bytes start at MB0. The total number of bytes is limited in the 1214C

processor to 2048. While this is restrictive, the limit has been raised in later processors.

An Exercise Converting Between Seal and Latch/Flip-Flop Logic

Fig. 6-32 Typical Seal Circuit

Fig. 6-31e

Siemens PLC Memory with
On-Dominance:

Latch if using Retentive

Memory

 Ch 6 Basic Memory Circuits 20

If this circuit were converted to a seal circuit, the start circuit would be copied intact to the start

portion of the circuit. However, the stop portion would be converted to the negative (DeMorgan)

of the L-U circuit prior to implementation. See the seal circuit below:

Negative of Unlatch Same as Latch

Seal contact

Non-retentive

Coil

Fig. 6-33a Seal Circuit

The following is the latch/unlatch equivalent of the circuit above:

Fig. 6-33b Latch/Unlatch

Equivalent Circuit

test1

Set

test1

Reset

The same circuit could be used for Siemens’ S-R flip-flop. These are Off-dominant circuits.

To convert to the On-dominant circuits, move the Stop portion of the circuit to in series with the

seal contact.

Stop moved

to here

Fig. 6-33c On-Dominant Seal

Circuit

 Ch 6 Basic Memory Circuits 21

To convert to the On-Dominant Latch circuit, switch the position of the L and U coils. The Latch

or on portion now dominates. Siemens’ R-S flip-flop has similar results.

Fig. 6-33d On-Dominant

Latch-Unlatch

test1

Reset

test1

Set

While European and American programmers tend to have their preferences for memory circuits,

we will be ready to convert from one style to another as necessary. In general, American-trained

engineers tend to use seal circuit design and European-trained engineers tend to use S-R circuit

design as well as a now-antiquated assembler look-alike language Statement list (STL).

Other memory circuits are shown below. They show the implementation of memory circuits in

FBD as well as Ladder circuits. FBD is more able to combine complicated memory circuits into

one circuit as shown below:

Logical operations including memory embedded in the circuit :

Fig. 6-34a Set-Reset Logic in

FBD

 Ch 6 Basic Memory Circuits 22

A second example of logical operations including memory embedded in the circuit :

Fig. 6-34b Set-Reset Logic in

FBD (another example)

Use of Seal (Memory) Circuits

The following example shows the need for a seal or memory circuit.

A tank is filling from above from buckets of water dumped into the tank. When the tank’s upper

level is reached, the pump starts and empties the tank until the lower level switch is reached. At

this time, the pump turns off. The program of the pump starter circuit is found after the

Function/State table on the next page.

Fig. 6-35a Empty the Tank

with Seal Circuit

Upper Level Sw

Lower Level Sw

Pump

Sensor Function/State Signal Assignment

LH Upper Level

LL Lower Level

 (Input Table for Fig. 6-35a above)

 Ch 6 Basic Memory Circuits 23

Actuator Function/State Signal Assignment

Pump Pump Liquid Out 1

 (Output Table for Fig. 6-35a above)

Solution:

Fig. 6-35b Empty the Tank

with Seal Circuit

Pump Run

Pump Run

Upper Level
Sw

Lower Level Sw

The correct contact must be identified as the start contact and as the stop contact. For instance,

when a pump is installed above the tank to fill the tank, the lower level switch becomes the start

contact and the upper level switch becomes the stop contact.

The circuit below demonstrates the principle of a seal or memory circuit used to fill a vessel.

Fig. 6-36a Fill the Tank with

Seal Circuit

Upper Level Sw

Lower Level Sw

Pump

 Ch 6 Basic Memory Circuits 24

Sensor Function/State Signal Assignment

LH Upper Level

LL Lower Level

 (Input Table for Fig. 6-36a above)

Actuator Function/State Signal Assignment

Pump Pump Liquid In 1

 (Output Table for Fig. 6-36a above)

Fig. 6-36b Fill the Tank with

Seal Circuit

Pump Run

Pump Run

Upper Level
Sw

Lower Level Sw

Many times, two contacts are used to back up critical applications. In this case, both are used in

the start or stop circuit with the second or back-up contact also used to alarm. For instance, the

following circuit would be controlled as before except that an additional contact is found to also

start or stop the circuit. In addition to the control portion of the control circuit, a diagnostic or

alarm circuit is also used with the Hi-Hi and Low-Low contacts to alert the operator or supervisor

that a problem has occurred.

Fig. 6-37 Using Double High

and Low Contacts for Safety

Pump Run

Pump Run

Low Level Sw

Low-Low Level Sw

High Level
Sw

High-High
Level Sw

 Ch 6 Basic Memory Circuits 25

One-Shot Logic

One shot or positive signal edge instructions predate both the Siemens and Allen-Bradley current

processors. The first believed to introduce the concept was Modicon with the Modicon 484

processor in 1978. Their positive transition and negative transition instructions were unique and

added to the computer flavor of the PLC over the idea of just a relay replacer. The instructions

were:

P N

or

The Modicon 484 instructions did not require the use of a blocking bit as both the Siemens and

A-B processors do. Instead, Modicon kept a complete last-scan table of the entire Boolean table

of inputs, outputs and discrete internal bits used in logic. This last-scan table then was used to

report on the previous scan’s status. If the status was different than the present scan, then a

signal was allowed to pass. Otherwise, the branch was effectively blocked from passing power.

While an excellent concept, the execution time needed to process this function was prohibitive

time-wise and was dropped with subsequent manufacturers implementing the one-shot

instruction. Both Siemens and Allen-Bradley use a blocking bit that is programmed to keep the

last-scan information at hand and process an instruction similar to the Modicon approach. They

both require this blocking bit be programmed and defined, however. The blocking bit is not used

in logic. It is only used to block the future scans of power through the branch. You may say that

you have to use a bit (blocking bit) to get a bit (one-shot bit). This may help you as you work
through this next section.

 Edge Detection- Siemens

|P|: Scan operand for positive signal edge

The "Scan operand for positive signal edge" instruction is used to determine whether there is a 0

to 1 change in the signal state of a specified operand (<Operand1>). The instruction compares
the current signal state of the operand with the signal state of the previous query saved in an edge

memory bit (<Operand2>). If the instruction detects a change in the result of logic operation

from 0 to 1, there is a positive, rising edge.

If a falling edge is detected, the output of the instruction has the signal state 1. In all other cases,

the signal state at the output of the instruction is 0.

Specify the operand to be queried (<Operand1>) in the operand placeholder above the

instruction. Specify the edge memory bit (<Operand2>) in the operand placeholder below the

instruction.

 Ch 6 Basic Memory Circuits 26

The following example shows how the "Scan operand for positive signal edge" instruction

works:

Output "TagOut" is set when the following conditions are fulfilled:

 There is a rising edge at input "TagIn_1".

 The signal state of the operand "TagIn_2" is 1.

|N|: Scan operand for negative signal edge

The "Scan operand for negative signal edge" instruction is used to determine whether there is a 1

to 0 change in the signal state of a specified operand (<Operand1>). The instruction compares
the current signal state of the operand with the signal state of the previous query saved in an edge

memory bit (<Operand2>). If the instruction detects a change in the result of logic operation

from 1 to 0, there is a negative, falling edge.

If a falling edge is detected, the output of the instruction has the signal state 1. In all other cases,

the signal state at the output of the instruction is 0.

Specify the operand to be queried (<Operand1>) in the operand placeholder above the

instruction. Specify the edge memory bit (<Operand2>) in the operand placeholder below the

instruction.

The following example shows how the "Scan operand for negative signal edge" instruction

works:

Output "TagOut" is set when the following conditions are fulfilled:

 There is a falling edge at input "TagIn_1".

 The signal state of the operand "TagIn_2" is 1.

Fig. 6-38 Positive Signal Edge

Fig. 6-39 Negative Signal Edge

 Ch 6 Basic Memory Circuits 27

(P=): Set operand on positive signal edge

The "Set operand on positive signal edge" instruction is used to set a specified operand

(<Operand2>) when there is a 0 to 1 change in the result of logic operation (RLO). The

instruction compares the current result of logic operation with the result of logic operation from

the previous query, which is saved in the edge memory bit (<Operand1>). If the instruction

detects a change in the RLO from 0 to 1, there is a positive, rising edge.

When a positive edge is detected, <Operand2> is set to signal state 1 for one program cycle. In

all other cases, the operand has the signal state 0.

You specify the operand (<Operand2>) to be set in the operand placeholder above the

instruction. You specify the edge memory bit (<Operand1>) in the operand placeholder below

the instruction. The following example shows the parameters of the "Set operand on positive

signal edge" instruction:

The "TagOut" output is set for one program cycle, when the signal state at the input of the

instruction box switches from 0 to 1 (positive signal edge). In all other cases, the "TagOut"

output has signal state 0.

(N=): Set operand on negative signal edge

The "Set operand on negative signal edge" instruction is used to set a specified operand

(<Operand1>) when there is a 1 to 0 change in the result of logic operation (RLO). The

instruction compares the current RLO with the RLO from the previous query, which is saved in

the edge memory bit (<Operand2>). If the instruction detects a change in the RLO from 1 to 0,

there is a negative, falling edge.

When a negative edge is detected, <Operand1> is set to signal state 1 for one program cycle. In

all other cases, the operand has the signal state 0.

You specify the operand (<Operand1>) to be set in the operand placeholder above the

instruction. Specify the edge memory bit (<Operand2>) in the operand placeholder below the

instruction. The following example shows the mode of operation of the "Set operand on

negative signal edge" instruction:

The operand "TagOut" is set for one program cycle if the signal state at the input of the

instruction box changes from 1 to 0 (negative signal edge). In all other cases, the operand

"TagOut" has the signal state 0.

Fig. 6-40 Positive Signal Edge Output

Fig. 6-41 Negative Signal Edge Output

 Ch 6 Basic Memory Circuits 28

P_TRIG: Scan RLO for positive signal edge

The "Scan RLO for positive signal edge" instruction is used to query a 0 to 1 change in the signal
state of the result of logic operation (RLO). The instruction compares the current signal state of

the RLO with the signal state of the previous query, which is saved in an edge memory bit

(<Operand>). If the instruction detects a change in the RLO from 0 to 1, there is a positive, rising

edge.

If a rising edge is detected, the output of the instruction has the signal state 1. In all other cases,

the signal state at the output of the instruction is 0.

The following example shows how the instruction works:

The RLO of the preceding bit logic operation is saved in the edge memory bit "Tag_M". If a 0 to

1 change is detected in the signal state of the RLO, the program jumps to jump label CAS1.

The following is an example from Siemens showing one-shots in S-R logic:

Fig. 6-42 Positive Trigger

Fig. 6-43 One Shot in S-R Logic

 Ch 6 Basic Memory Circuits 29

Edge Trigger or One-Shots in A-B Instructions:

Allen-Bradley refers to the edge trigger instructions above as One Shot instructions. To use one-

shot logic, a circuit similar to the following must be programmed for the SLC processor.

This circuit responds as follows:

I:0/1

B3:0/0

B3:0/1

ON

OFF

time

Notice that the desired coil to be used in the program is the coil at the right. The OSR bit is used

as a blocking bit and is not as a rule referenced elsewhere in the program. The OSR bit may be

useful if the input I:0/1 is necessary one scan delayed. Otherwise, it is not to be used in any

other logic in the program. B3:0/1 is on for only one scan. This may be very short as in a

millisecond or less or in the slower PLCs, the delay may be 20, 30, or even 50 milliseconds. It is

a relatively quick transition, however, and is not seen on the screen of the monitoring

program in most circumstances.

The OSR is used as a conditional input triggering an event only on the leading edge. Use the

OSR command to start a sequence of events when an event occurs. A one-shot in electronic

terms squares a waveform and makes it more exact for the circuitry. The PLC one-shot is

primarily equal to the electronic one-shot in that it runs through the entire program one time with

an on pulse and then turns off.

The OSR is to be placed immediately before the output instruction. It is referenced with a bit that

is not used elsewhere in the program. Either a binary file or integer file address may be used.

An example of improper use of the OSR command for the MicroLogix 1000 processor is shown

below when a parallel branch is programmed around the [OSR] instruction.

Fig. 6-44a A-B SLC One Shot

Fig. 6-44b Timing Diagram

for A-B SLC One Shot

 Ch 6 Basic Memory Circuits 30

Fig. 6-45 Illegal One Shot added in SLC

To correct the problem in the circuit, all parallel branches must be resolved before the [OSR]

instruction as shown below:

Fig. 6-46 Corrected Logic in SLC

The ONS instruction turns the output of the rung to on for one scan when the contact sees a false-

to-true transition of the conditions preceding the ONS instruction on the rung. Rules for the

Micro1200/1500 ONS one-shot are similar to other SLC processors' OSR instruction. Rules for

these one-shot instructions include:

 1. Never branch around the OSR or ONS instruction

 2. Use the OSR or ONS instruction to turn on an output

 3. Other contacts may exist between the OSR or ONS instruction and the

 output coil

The OSR commands are used by the MicroLogix 1200 and 1500 as output coils and are one-shot

bits used on the rising or falling of power to the output. An example of an OSR instruction used

in logic is shown below:

 Ch 6 Basic Memory Circuits 31

Fig. 6-47a One Shot as Output

The OSR circuit above acts in a similar manner to the ONS instruction with tag names instead of

file names used in the SLC architecture. The timing diagram for the OSR above is shown below:

Fig. 6-47b One Shot as Output Timing Diagram

first

second

third

ON

OFF

time

Similar to the OSR instruction is the OSF or One Shot Falling bit. Its timing chart is shown after

the instruction:

Fig. 6-48a One Shot Falling as Output

first

second

third

ON

OFF

time

Fig. 6-48b One Shot Falling as Output

Timing Diagram

 Ch 6 Basic Memory Circuits 32

A more robust type of one-shot is the ONS one-shot found in the MicroLogix 1200, 1500 and

ControlLogix/CompactLogix processors. The purpose of this newer type is to provide one-shot

logic inside a single rung without having to create a rung for the one-shot and then a second rung

that includes the one-shot logic.

In this example, the [ONS] instruction acts as a blocking bit one scan delayed. The resulting

logic creates a one-shot signal in the branch of the [ONS] instruction. An example of the use of

the [ONS] instruction is shown in addition to the circuit’s timing diagram:

start

second

ON

OFF

time

 Fig. 6-49 A-B One Shot Added in Branch

The series branch of start and [ONS] combine to provide a one-shot when start turns on. The

input start may remain on for a long duration but the branch of the network will remain on for

only one scan.

Use of the One Shot

The use of one-shot contacts requires programmers to ask when the leading edge of a signal is

more useful in the development of logic than the signal itself. Experience is the best teacher in

knowing when to use the one-shot.

For an example of a one-shot that can occur without the need to build an [ONS] or [OSR]

instruction, refer to Lab 4.1, The Hot Dog Counter.

In the logic of the Hot Dog Counter, the rung output turns on incrementing the counter. Then the

program starts again at rung 0 executing the first two rungs. These two rungs turn off, in turn

turning off the count bit. The count bit is only on for one scan. The count bit (Hot_Dog) is

essentially a one-shot coil that turns on for one scan only before turning off.

 Ch 6 Basic Memory Circuits 33

 Fig. 6-50 One Shot Signal w/o OSR Needed

Example of Making Momentary Switch into Toggle Switch

Fig. 6-51 One Shots used for

Toggle Switch

Button

Button
Blocking

Bit

Button
OS

OS and
Toggle

Button
OS

Toggle
Output

Toggle
Output

Button
OS

Toggle
Output

OS and
Toggle

The circuit above is useful to turn a pushbutton input into a toggle-type switch. The use of one-

shot logic is of benefit. Each time the input Button turns on, a one-shot is generated (Button OS).

As the first two rungs are executed, the status of OS and Toggle is critical. On every other

occurrence of Button, Toggle Output is on. When OS and Toggle is on, Toggle Output is off. The

scan that Toggle Output turns on is the same scan that generates the one-shot Button OS. It does

not turn on any other time. Using this logic, one can build a seal circuit that alternatively turns

on Toggle Output with Button OS and turns off Toggle Output with OS and Toggle.

This circuit is useful to demonstrate the utility of the one-shot contact. One-shots are useful to

isolate logic and to usually make solution of circuits easier. One-shots are used a great deal in

both turning on and turning off of seal circuits. Usually a circuit that is turned on with one-shots

may be turned off with one-shots as well. Circuits such as this do not have to be turned off with

one-shots, however.

A timing diagram of the circuit is shown to demonstrate the use of one-shots in logic.

 Ch 6 Basic Memory Circuits 34

Fig. 6-51b Toggle Switch

using One Shot Logic

Timing Diagram

Button

Button
OS

OS
and

Toggle

Toggle

The timing diagram shows the use of one-shots to selectively block the seal circuit Toggle from

turning on every other leading edge. The event of the leading edge is isolated using the one-shot

and then the blocking contact is inserted just before the seal circuit to set logic on to block the

circuit from turning on when the output was already on.

One Shots Used to Remember Order of Events

The following circuit may be useful to remember which of three events turned on last: IN1, IN2,

or IN3. An advanced form of this circuit will demonstrate the use of one-shots in logic.

IN1

IN2

IN3

Signals that are never on at the same time!

IN1 Last
Input On

IN2 Last
Input On

IN3 Last
Input On

IN1

IN1

IN1

IN2

IN2

IN2

IN3

IN3

IN3

IN1
Last On

IN1
Last On

IN2
Last On

IN2
Last On

IN3
Last On

IN3
Last On

Fig. 6-52a Non-Overlapping Signals

 Ch 6 Basic Memory Circuits 35

However, if the events overlap or the signals IN1, IN2 or IN3 are ever on simultaneously, then

one-shots are needed to separate the events. Notice that if IN1 and IN2 are on at the same time,

indeterminate results will occur.

To accommodate the problem of overlapping signals, consider the following improvement to the

circuit above. This circuit remembers which leading edge turned on last.

IN1

IN2

IN3

IN1
Blocking

Bit

IN2
Blocking

Bit

IN3
Blocking

Bit

IN1
OS

IN2
OS

IN3
OS

IN1
OS

IN1
OS

IN1
OS

IN2
OS

IN2
OS

IN2
OS

IN3
OS

IN3
OS

IN3
OS

IN1 OS
Remembered

IN1 OS
Remembered

IN2 OS
Remembered

IN2 OS
Remembered

IN3 OS
Remembered

IN3 OS
Remembered Fig. 6-52b Overlapping Signals

Remembered

IN1

IN2

IN3

Signals that maya be on at the same time!

 Ch 6 Basic Memory Circuits 36

Edge evaluation or one-shot circuits may be included in transferring of a seal circuit to an S/R

circuit. Care must be taken when this is attempted as the DeMorgan rules are not necessarily still

the only tool needed. For example, if the following seal circuit were evaluated, what would be

the equivalent S/R circuit?

This circuit would be evaluated as follows:

This leads to the observation that as long as the one-shot is involved in the “start” portion, all is

well. However, if the “Stop” portion is involved in a one-shot and the DeMorgan Theorem is

necessary, a one-shot should be evaluated in coordination with a timing diagram. The inverse

must be the inverse in all circumstances with all combinations of inputs evaluated. The one-shot

does introduce a problem in using DeMorgan’s Theorem to invert logic and convert from seal

memory to S/R memory.

Fig. 6-53a Edge Evaluation of OS

Fig. 6-53b Seal Circuit with OS

 Ch 6 Basic Memory Circuits 37

Second Look at the Juice Condenser

Since last chapter, several problems have been introduced, and the juice condenser problem was

partially solved but a total solution was delayed until the memory circuit was discussed. The

juice condenser problem includes memory that may require a second look.

The operation included a fill, a condensate portion and a drain. These operations were not to be

overlaid but rather were to be consecutive in nature. This leads to a memory circuit that includes

more than one set of events.

V-2

High Level

Half Level

V-1

Temperature Sw

Agitator

Heat

Start

Done/Ready

Fig. 5-1 The Juice Maker

Each memory circuit must be exclusive of the other two events and must occur in a proper

sequence. For example, the fill operation must occur first, then the condensate operation and

finally the drain operation. This may be expressed using three seal circuits:

Operation

running
start

operation
stop operation

Operation
running

 Ch 6 Basic Memory Circuits 38

The three operations may be represented by three seal circuits as follows with modifications to

follow:

Fill Runningstart
operation

stop operation

Condensate
Running

start
operation

stop operation

Drain
Running

start
operation

stop operation

Fill Running

Condensate
Running

Drain
Running

The three operations must be done in order. This requires that before the first operation starts,

the requirement that there is not a fill, condensate or drain action presently active must be

determined. This can be expressed in the start portion of the fill operation as:

start

operation
Drain

Running
Fill

Running
Condensate

Running

Succeeding operations must likewise be programmed using a start portion with the prior

operation present.

 Ch 6 Basic Memory Circuits 39

condition(s)
allowing start Start for

condensate
portion

Fill
Running

condition(s)
allowing start

Start for
drain portion

condensate
Running

The conclusion of this problem is left as an exercise.

Several of the other problems at the end of the chapter use a similar type of logic. The logic may

be described also as ‘state logic’ and this will be discussed further in chapter 11. For now, we

will use multiple bits to describe states and use the state information to drive the remainder of the

programming.

Problem statements for the following three processes also require similar treatment:

This problem’s problem statement hints that the conveyor C1 should start with the Start Button

PB1. But an additional condition involves conveyor C2. C1 needs to turn on and off based on

the condition of conveyor C2. This suggests a seal circuit that does not include C1 directly but

rather indirectly. The seal or memory circuit should be an internal bit coil that turns on with the

PB1 and turns off when the box has cleared PE1. The conveyor C1 Run should be linked to the

Conveyor 1 internal Run bit and the C2 Run bit as shown in the figure below:

Start Button PB1

Conveyor C1 Conveyor C2

Photoeye PE1Box

PB1
Photo-
Eye TE

C1_Run
Internal

C1_Run
Internal

C1_Run
Internal

C1_Run
Output

C2_Run

 Ch 6 Basic Memory Circuits 40

A method for development of the stop bit Photo-Eye TE would be to use a one-shot on the

trailing edge of the Photo-eye signal as follows:

Photo-
Eye PE1

Photo-
Eye TE

One
Shot

Dummy
Bit

ONS

The following conveyor system at first appears very complex but may be divided into a number

of smaller areas and programmed by area. For instance, if a bin goes low, it calls for material.

The call can only occur if there is not a fill operation already in progress with the other bin. The

memory circuits then are developed as follows:

High Level L3

Low Level L2

High Level L5

Low Level L4

Conv C1
High Level L1

Low Level L0

Screw Conv SC1

Conv C2 Left Conv C2 Right

Storage Bin 1

Bin 1 Bin 2

Bin 1
Low
Level

Bin 1
High
Level

Bin 2
Filling

Bin 1
Filling

Bin 1
Filling

 Ch 6 Basic Memory Circuits 41

Bin 2
Low
Level

Bin 2
High
Level

Bin 1
Filling

Bin 2
Filling

Bin 2
Filling

We then work back toward the top of the process. The two memory circuits above determine the

state of Conveyor 2. If Bin 1 is filling, then Conveyor 2 Left is on. If Bin 2 is filling, then

Conveyor 2 Right is on. If Conveyor 2 is running, then the Screw Conveyor SC1 is on.

The fill operation for the Storage Bin 1 is handled in a separate memory circuit with its own

memory circuit using low and high level to set and turn off the memory circuit. The method of

working from the bottom to the top is used in many process programs to control flows.

The following process hints at a stepping program that moves through a number of steps to make

a batch. Here the level switches above L0 are intended to determine the fill level for the

ingredient. If the solid ingredient delivered from Bucket BE1 is to be delivered first, it is implied

that this ingredient fill from Level L0 to Level L1. Since this is not usually the case since a liquid

is usually added first, we can assume that either the liquid from Pump P1 or Pump P2 is

delivered first to the batch. Then possibly the screw conveyor and finally the second liquid are

to be delivered. The batch content and mix procedure are not the topic of interest here, but rather

the direction the mix is to take to be made. Many systems such as this are more flexible with a

scale weighing the ingredients. Here, the placement of the level switches is extremely critical

and fixes the ingredient amounts at the level of the switch. If the weather is more or less humid

or the ingredient is not at the precise right density, this method is not good if accuracy is needed.

Low Level L0

Bucket BE1

Screw Conv SC1

Pump P1

Pump P2

Agitator A1

High Level L4

Bin 1

Screw Conv SC2

Level L1

Level L2

Level L3

 Ch 6 Basic Memory Circuits 42

The problem below has the following general requirement that logic from one section is fed

upstream. For problems such as this, the down-stream portion must be activated first. For

instance, the last conveyor must run before the conveyor feeding it is allowed to run. Otherwise,

you may be the person with a shovel cleaning up a pile of coal at the in-feed to a conveyor.

Always make sure the down-stream item is running and the down-stream hopper is not plugged

in order to run a conveyor. Then move back to the conveyor feeding it and continue upstream to

the first conveyor. (The first is last and the last is first.)

High Level L1

Low Level L2

Conv C1

Bin 1

Conv C2

Conv C3

High Level L3

High Level L4

Bin
Filling

Run
Conveyor

C3

Bin
Low
Level

Bin
High
Level

Bin
Filling

Bin
Filling

Run
Conveyor

C3

Run
Conveyor

C2

Hopper L4
Not Full

Working back toward Conveyor 1 yields similar results to the logic shown above.

 Ch 6 Basic Memory Circuits 43

Summary

This chapter is useful in the development of logic using memory circuits. The prior chapter was

interested in the development of combinational logic. This chapter began the discussion of

sequential logic. More on sequential logic will follow.

The fill sequence or empty sequence from a bin or tank requires a memory circuit. This was

shown in a number of examples.

Writing of Siemens and Allen-Bradley contact and coil instructions was reviewed. A number of

instructions were added in the discussion including memory instructions as well as one-shot or

edge trigger instructions.

Emphasis was placed on converting from one style of memory circuit to another. For Siemens

and most European designers, the S-R logic dominates. In the US, seal circuits are dominant.

To convert from one to the other is a requirement of this chapter. Also, to convert from off-

dominant to on-dominant logic is necessary. Also, reasons for using the off-dominant versus the

on-dominant logic were discussed.

The various edge trigger instructions from Siemens as well as Allen-Bradley were discussed and

examples provided. The purpose of these instructions was addressed as well.

Several example problems were introduced using the memory circuit concept. When more than

one state is required, then several memory bits must be used to implement the overall logic.

 Ch 6 Basic Memory Circuits 44

Exercises

1. Finish the evaluation of the logic in Table 6-4.

2. The tank is now being filled automatically from the pump. When the tank is low, the pump
turns on and fills the tank. The tank is emptied as needed by the manufacturing process using

the water. Design the circuit to control the pump.

Upper Level Sw

Lower Level Sw

Pump

Sensor Function/State Signal Assignment

LH Upper Level

LL Lower Level

Actuator Function/State Signal Assignment

Pump Pump Liquid In 1

Pump Run

Pump Run

Upper Level

Sw

Lower Level

Sw

Fig. 6-54 Tank

Fill Problem

 Ch 6 Basic Memory Circuits 45

3. Convert the following to an on-dominant seal circuit:

A B C D

E

E

4. Convert the following seal circuit to a latch/unlatch circuit, to an S/R circuit.

A B C D

E

E

F

5. Convert the following seal circuit to a latch/unlatch circuit, to an S/R circuit.

A B C D

G

E
G

F

6. Convert problem 4 to an on-dominant circuit.

7. Name an action in real-life that requires the unconditional start seal circuit instead of the
unconditional stop seal circuit.

8. Write an on-dominant seal circuit with Input1 on turning the circuit on and Input2 on turning

the circuit off.

9. Write an off-dominant seal circuit with Input1 off turning the circuit on and Input2 on turning

the circuit off.

10. For the Conveyor Belt System, convert to seal circuits. This is a real-world problem from
Siemens’ literature in which the program is stated as a written description, I/O list and

program. All that is required by this problem is to re-write the rung logic to convert the

various rungs from S/R logic to seal circuits. (Ignore one-shots on Reset branch logic.)

 Ch 6 Basic Memory Circuits 46

 Ch 6 Basic Memory Circuits 47

11. Convert the following to Ladder Logic. First convert to Siemens S/R logic, then A-B seal

logic:

Input1

Input2

&

Input3

Input4

&

Input5

Input6

>=1

S

R Q

Input7 Output1

>=1

 Ch 6 Basic Memory Circuits 48

12. Convert the following to Ladder Logic. First convert to Siemens, then A-B.

 >=1
Input 1

Input 2
 P &

 S

 R Q

Input 3

 NInput 4 Output

13. Write the program in the PLC to turn on lights H1 and H2 to satisfy the following timing

diagram. By activating switch S1, the light H1 is switched on. If S1 is activated again, a

second light H2 becomes switched on. By activating S1 the next time, both lights are
switched off. Use one-shot logic to complete. The pattern repeats…

t

S1

t

H1

t

H2

14. Write the logic in Ladder to satisfy the following control problem. Drain Valve V1 operates
independently. When the tank level reaches Low Level L0, turn on Fill Pump P1 to fill the vessel.

High Level L1

Low Level L0

Drain Valve V1

Fill Pump P1

 Ch 6 Basic Memory Circuits 49

15. Write the logic in Ladder to satisfy the following control problem. Fill Valve V1 operates
independently. When the tank reaches High Level L1, turn on Drain Pump P1 to empty the

vessel.

High Level L1

Low Level L0

Fill Valve V1

Drain Pump P1

16. Write the logic in Ladder to satisfy the following control problem:

Start Button PB1

Conveyor C1 Conveyor C2

Photoeye PE1
Box

A box is placed on the first conveyor (C1). Then the operator pulls the pull-cord and the

conveyor starts if C2, the second conveyor, is also running. If not, the conveyor C1 waits

until C2 starts and then turns on. The box moves on C1 until the trailing edge passes a

photo-eye between the two conveyors. Then C1 stops and waits for another box. For this

problem, the programmer does not control conveyor C2 but only has a contact from the

conveyor C2 reporting its run status.

 Ch 6 Basic Memory Circuits 50

17. Write the logic in Ladder to satisfy the following control problem:

High Level L3

Low Level L2

High Level L5

Low Level L4

Conv C1
High Level L1

Low Level L0

Screw Conv SC1

Conv C2 Left Conv C2 Right

Storage Bin 1

Bin 1 Bin 2

The process depends on a level switch in the two bins at the bottom (Bin 1 and Bin 2). For

either bin to fill, it must be at a low level. Then the conveyor C2 will turn on and Storage

Bin 1 will run until the high level is met for the bin being filled at bottom. The direction of

C2 must be correct as well (forward or reverse). Also, Storage Bin 1 has a high and low

level switch and will be filled from above by conveyor C1 as needed.

 Ch 6 Basic Memory Circuits 51

18. Write the logic in Ladder to satisfy the following control problem:

Low Level L0

Bucket BE1

Screw Conv SC1

Pump P1

Pump P2

Agitator A1

High Level L4

Bin 1

Screw Conv SC2

Level L1

Level L2

Level L3

The main tank will fill with conveyor SC1 and bucket elevator BE1 as well as liquid from

pumps P1 and P2. To make a batch, fill to a level with L1. Then fill to a second level with

L2. Then turn on the agitator and fill to a final level with L3. When done, agitate for a time

and dump using SC2.

19. Write the logic in Ladder to satisfy the following control problem:

High Level L1

Low Level L2

Conv C1

Bin 1

Conv C2

Conv C3

High Level L3

High Level L4

 Ch 6 Basic Memory Circuits 52

20. Write the logic to satisfy the following control problem:

The Juice Condenser

V-2

High Level

Half Level

V-1

Temperature Sw

Agitator

Heat

Start

Done/Ready

Fig. 5-1 The Juice Maker

A description of the above process is as follows:

For saving transportation cost for apple juice, the juice is condensed in a process of evaporation.

The water is evaporated in the tank using heat. The process of the process includes the following

steps:

1. Operator pushes the start pushbutton.
2. Valve V-2 opens and fills to the high level switch and then closes.
3. Heating occurs with the heat element on and stays on until the level reaches the half level

or the temperature rises above 80
o
C. The temperature switch turns on when the temp

reaches 80
o
C and turns off when the switch falls below 80

o
C.

4. Heating is enabled by the high level switch on and the agitator is always on as long as the
half level switch is satisfied.

5. When the half level switch is not satisfied, the condensing process terminates and the
tank empties through V-1. After the tank starts emptying, 30 seconds is timed and the

tank is assumed to be emptied. The Done/Ready light is turned on and the next cycle is

allowed via the Start button.

 Ch 6 Basic Memory Circuits 53

21. Read the following description and design a start/stop circuit to satisfy the requirement:

What the ability to design or program a simple start/stop circuit says about you

The ability to design or program a simple start/stop circuit says much about both the

individual and our educational system. Here's why.

By Dave Perkon, technical editor

Jun 30, 2015

About the author

Dave Perkon is technical editor for Control Design. He has engineered and managed automation

projects for Fortune 500 companies in the medical, automotive semiconductor, defense and solar

industries.

There are many experienced and productive control designers and programmers in industry

today. The companies they work for know the value of a good controls engineer. Unfortunately,

there are many inexperienced engineers, such as recent college graduates or maybe the seasoned

engineer who likes to hide in the corner and just do what's necessary. Some are excited to learn,

and others not so much. The point is, engineers come in all types—some great, some good and

some bad, as in life. At no point is this less obvious than in a job interview or more obvious than

while working on a project.

As an engineer and manager, I've interviewed many controls engineers, electrical designers,

programmers and CAD operators throughout my 27 years in industry to design and program

automated equipment. Along with all the typical interview questions, I had what I consider a

basic interview task: draw a start/stop circuit. Unfortunately, only about 20% of the

"experienced" control-design and programming applicants could do it. Clearly, industrial, hands-

on experience is all relative, and each interview was quite the learning experience for both me

and interviewee.

“Perhaps I'm asking too much and shouldn't expect an experienced control designer or recent EE

graduate to draw a hardwired start/stop circuit.”

During the interview I simply asked, in writing, that the applicant draw a start/stop circuit ladder

diagram using the following hardware: a normally open pushbutton, a normally closed

pushbutton, a pilot light and a DPDT relay. I also noted the requirement was to turn on the green

pilot light when the momentary start button was pressed and turn off the light when the

momentary stop button was pressed. I also asked the applicant to add wire numbers, device

designators and relay contact cross references.

http://www.controldesign.com/category/?categoryid=37

 Ch 6 Basic Memory Circuits 54

If you want to see the circuit, let me know as it was a great test. It clearly showed experience

with control design and the applicant’s attention to detail—just not many applicants showed

much of either. The experienced designer forgot the wire numbers or cross references and the

inexperienced designer used the eraser quite a bit, along with many other issues.

Perhaps I'm asking too much and shouldn't expect an experienced control designer or recent EE

graduate to draw a hardwired start/stop circuit. If they could not draw a simple hardwired

start/stop circuit, I didn't think they could program one either. However, many of the applicants,

who couldn't draw it, stated on their resumes that they were experienced PLC programmers, as

well. This highlighted concerns about the applicant’s ability to program a PLC step sequence.

In many cases they didn't make the connection that they were the same logical circuit—one was

just hardwired and the other programmed. If they didn't know the answer, I showed them how to

do it with the thought that I could develop the engineer as needed, if the candidate was interested

in learning. It's clear that even with a four-year degree in engineering, the interviewees didn't

have any practical experience. Examples of the problems this causes are endless, so engineering

talent must be developed.

"Developing and training an engineer is a good thing although the results will vary," notes Otto

Fest, president at Otek. Fest thinks the real technical education starts after graduation. "College

graduates are expecting $60,000 to $100,000 per year but are not worth that without experience.

Industry needs to invest two or three years’ time and effort to teach them what schools don't.

And then, once trained in this hands-on work, the engineer may leave for greener pastures."

Fest does offer up what I think is an excellent solution—mandatory internships. "It works great

for doctors, and it works great for German college students,” says Fest. “Maybe we can learn

from that. From my experience, we need to improve the technical education of graduates.

Although college is a great start, it is not enough, as real life doesn't happen in college."

Colleges in Germany, arguably the world’s top technical source, have mandatory internships. In

the United States, college has more to do with the “college experience,” but in Germany it's more

about the classroom and hands-on experience. Forget the dorm room, student union and the

parties. To graduate in Germany, you must read, write, understand and express yourself in three

languages and have three or more six-month internships in foreign countries related to your

major. That sounds like an excellent way to get the technical education needed for industry.

If you don't agree, I'm good with that. However, consider the mechanical engineer who

graduated at the top of his class from a leading engineering university but had no practical,

hands-on experience. This intelligent engineer climbed a cooling tower under construction, in the

hot sun, and spent several hours removing bolts, turning over a split washer and re-tightening the

bolts because he was told the split lock washers, located under the bolts we marked, were upside

down. Yes, we probably shouldn't have done this on-the-job training, but we did stop him after a

few hours of hard work and he now knows what a split lock washer is, in addition to the thermal

dynamics he aced in college.

Nothing beats experience. If you are an engineer and don't have the experience, go get it. Wire

some control panels and design some electrical schematics. It also pays to find a mentor to help

you get there.

http://www.controldesign.com/category/?categoryid=30

http://www.otekcorp.com/

 Ch 6 Basic Memory Circuits 55

This brings me to a future article I’ll be writing on mentoring and the mentored. A mentor

benefits both young and old. As a young engineer, working with a mentor is a great opportunity

to improve productivity and the results of your next control-design project. I've done both, but I

would love to hear some of your comments on that subject.

None of these comments are about politics. Let’s stay away from that; they are about control

design for machine builders and include a few of the many ways to "re-manufacture America."

I'd like to help re-manufacture America and hope industry does, also. If you cannot get it built in

the United States, where are you going to go? My least favorite, but a popular option for others,

is to go to China. They happen to be copying, which they are good at, the German educational

requirements and flooding the world with technical students. Seems like the smart thing to do.

Do you know how to start/stop?

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

