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Chapter 6   Basic Memory Circuits  
 


 


 
Developing the Memory Circuit 
 


We will look first at a very simple system.  Later, this type of design can be used to discuss 


circuits capable of controlling more complex systems. 


 


The Acme Company has a problem flow of molasses in a storage tank.  In the winter, viscosity 


of the molasses is so high that the molasses run too slow to exit the flow valve.  A present system 


allows for flow out of the tank on request but no sensing of temperature.  A second model is to 


be put in place to allow for a heater to be turned on while the molasses are cool and then flow out 


of the valve. 


 


The first model does not have a temperature sensor or heater.  Sensors consist of two level 


sensors, LH, and LL.  The tank outlet valve turns on to empty the tank when the upper level is 


reached.  After opening, the outlet valve was closed when only when LL has been reached.  


 


The system as designed is shown below.   


 


Molasses Tank


Inlet Valve VIN (not used)


Outlet Valve VOUT


Upper level 


sensor,LH


Control Logic


Lower level 


sensor,LL
Switch covered = ?
     not covered = ?


Switch covered = ?
     not covered = ?


Fig. 6-1  Flow Out when Full


 
 


Signal assignment must be made of the level switches LH and LL.  These switches must be 


assigned a value of 1 or 0 when the switch is covered (level exceeds the switch).  A switch must 


be assigned a value that is safe, that is, that limits bad consequences if the switch fails.  The most 


likely fault is for the switch to lose a wire (wire fall off and open the circuit).  If this happens, 


would the circuit allow some bad event to occur?  In the event of LH, the switch is used to stop the 


fill sequence (turn off the circuit).  It is proper to think of switches that stop a memory circuit as 
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the same as a stop switch.  Stop switches are assigned the value 0 when the switch level is 


exceeded.  For the switch LH, the switch covered = 0, switch not covered = 1.  Not all switches 


are as easy to assess and in some cases, either 0 or 1 is proper to assign as the value for “Signal 


Assignment”. 


 


  


In addition to finding a truth table and Karnaugh map, the requirement for safety requires a 


signal assignment table: 


 


Sensor Function/State Signal Assignment 


LH Upper Level 0 


LL Lower Level 1 


   


   
        Table 6-1a   Input Assignment 


 


Actuator Function/State Signal Assignment 


VOUT Outlet Valve 1 


   
        Table 6-1b   Output Assignment 


The Signal Assignment can be assigned to the Molasses Tank and filled in on the system 


diagram: 


Molasses Tank


Inlet Valve VIN (not used)


Outlet Valve VOUT


Upper level 


sensor,LH


Control Logic


Lower level 


sensor,LL
Switch covered = 1
     not covered = 0


Switch covered = 0
     not covered = 1


Valve on (flow) = 1
Valve off (no flow) = 0


Fig. 6-2  Flow Out 


with I/O Assigned
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A Truth Table is designed and a Karnaugh map is developed from it: 


 


Truth table for outlet valve VOUT 


 
LH LL VOUT VOUT Action 


0 0 0 0 Sensor error; open valve 


0 0 1 0 Sensor error; open valve 


0 1 0 1 Both sensors  covered; open valve 


0 1 1 1 Both sensors covered; maintain open valve 


1 0 0 0 Level below low; leave valve closed 


1 0 1 0 Level below low, close valve 


1 1 0 0 Level between low, high; maintain open 


1 1 1 1 Level between low, high;  maintain closed 


     Table 6-2  Truth Table for VOUT 
 


Vout
0


0 0


0 1


1 1


1 0


1


1


0


0


1


0 0


0


1


LLLH


Vout = LH· LL + LH· Vout =   LH· (LL + Vout)    


LH


Vout


LL Vout


Fig. 6-3   Karnaugh Map 


and Ladder Solution


 
    


 


The Karnaugh Map Simplification of Vout, Boolean Equation, Ladder Equivalent is developed.  


The final design circuit could be built from logic gates and demonstrated for a lab experiment.  


The addition of circuits for temperature and alarm could be added as well.  This may be all that is 


required in the academic world.  In the real world, however, a PLC or similar device is employed 


to turn on and off devices and report the result to computer systems monitoring the factory’s 


production.  This requires more effort than the simple circuit design found on the next page. 
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1K1K


1K


+5V


+5V


+5VUpper level sensor, LH
Switch covered = 0 or open, 


not covered = 1 or closed


Lower level sensor, LL
Switch covered = 1 or open, 


not covered = 0 or closed


VOUT


Fig. 6-4   Solution of Molasses Tank 


with Boolean Gates


 


 


System modifications to the molasses tank include a temperature sensor, Tc and heater H.  Level 


sensors, LL and LH,  are retained.    


 


The outputs are one valve, VOUT, an alarm, A, and a heater, H.  The heater must warm the 


molasses enough for proper flow.   


 


When the upper level sensor is covered, the outlet valve should open if temperature is sufficient 


for proper flow.  Flow should be allowed until the lower sensor is reached or temperature falls 


below the minimum temp for good flow.  Once flow stops, the outlet valve closes until the upper 


level switch is again covered.  Alarms will show improper combinations of level switches.  


Alarms will also cause flow to stop and heater to turn off.   The heater is off if the low level 


switch is not covered. 
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Molasses Tank


Inlet Valve VIN (not used)


Outlet Valve VOUT


Upper level 


sensor,LH


Control Logic


Lower level 


sensor,LL
Switch covered = 1
     not covered = 0


Switch covered = 0
     not covered = 1


Valve on (flow) = 1
Valve off (no flow) = 0


H
TC Switch above temp = 1


     not above temp = 0
Heater on = 1
Heater off = 0


Fig. 6-5   Molasses Tank with Temperature 


Switch and Heater Added  
Sensor Function/State Signal Assignment 


LH Upper Level 0 


LL Lower Level 1 


TC Temperature Sw 1 
       Table 6-3a   Molasses Tank Inputs  


 


Actuator Function/State Signal Assignment 


VOUT Outlet Valve 1 


A Alarm 1 


H Heater 1 
        Table 6-3b   Molasses Tank Outputs 


Truth table Revised System: 


 


LH LL TC VOUT VOUT H A 


0 0 0 0 0 0 1 


0 0 0 1 0 0 1 


0 0 1 0 0 0 1 


0 0 1 1 0 0 1 


0 1 0 0 1 1 0 


0 1 0 1 1 1 0 


0 1 1 0 1 1 0 


0 1 1 1 1 1 0 
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TCVout


0 0


0 1


1 1


1 0


0 0 0 1 1 1 1 0
LHLL


TCVout


0 0


0 1


1 1


1 0


0 0 0 1 1 1 1 0
LHLL


TCVout


0 0


0 1


1 1


1 0


0 0 0 1 1 1 1 0
LHLL


VOUT = H =


A =
 


 


Table 6-4   Truth Table and 


Karnaugh Maps  
 


 


Students should finish the Karnaugh Maps, Boolean Equations and Ladder equivalent.  This 


control circuit may be the needed outcome of the control algorithm.  It may not be the best 


algorithm, however.  The engineer/program designer may first try such a circuit and find it to be 


lacking.  In this case, if the temperature switch is never satisfied, the output valve VOUT is never 


energized.  While this may be the desired result, there may be a better approach that should be 


looked into.  In the meantime, realize that you may have “the best possible program” and find 


that in the activation/startup phase that it may need to be totally revamped to satisfy the “real” 


problem with the machine or process.  The program engineer must also be careful to not create 


conditions that would cause equipment failure such as a solenoid cycling on and off 


continuously.  While an electronic device may survive for years constantly cycling on and off, a 


mechanical device such as a solenoid will not stand up to such abuse and quickly burn up.   


 


In general, memory circuits resemble the following and the Truth Table/Karnaugh Map step may 


be skipped:  
 


1 0 0 0 0 0 0 


1 0 0 1 0 0 0 


1 0 1 0 0 0 0 


1 0 1 1 0 0 0 


1 1 0 0 0 1 0 


1 1 0 1 0 1 0 


1 1 1 0 0 1 0 


1 1 1 1 1 1 0 
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Stop


CR


Start CR


CR  = Stop · (Start + Cr) 


CR        Stop       Start          CR


  0   0   0   0 Stop pushed


  0   0   1   0 Stop pushed, start pushed


  0   1   0   0 Nothing pushed


  0   1   1   1 Start pushed, CR active


  1   0   0   0 Stop pushed, start pushed


  1   0   1   0 Stop pushed, start pushed


  1   1   0   1 CR active, start no longer pushed


  1   1   1   1 Start pushed, CR active


>=1Start


&
Cr


Stop


Fig. 6-6   The 


Standard Memory 


Circuit
 


 


 


 


Relay Instructions/Memory Instructions 
 
Instructions for building memory circuits must be discussed.  They include instructions 


commonly referred to as ‘Bit’ logic instructions.  Siemens and Allen-Bradley each provide a 


number of instructions capable of building combinational and memory circuits.  While the same 


instructions may not be referenced by the same name, the function of the Normally Open and 


Normally Closed contact for both A-B and Siemens produces the same result.  Differences arise 


when using some of the other instructions, however.  The main difference between the two is the 


path most programmers take as a first choice when programming their respective PLC.  The 


European style of programming will be discussed as varying somewhat from the American style.   
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Review of class of instructions for bit logic for Siemens and Allen-Bradley are listed below: 


Siemens instructions for Bit logic are: 


 


Fig. 6-7a  Siemens S7-1200 Bit 


Instruction Set


 
 


Allen-Bradley instructions for Bit logic are: 


 


Fig. 6-7b  Allen-Bradley 


CompactLogix Bit 


Instruction Set
 


 
Normally Open Contact 
  


Siemens Step 7 Basic: 


 


Fig. 6-8  Siemens Normally 


Open Contacts
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The two contacts form an ‘and’ of the two points, “test_1 and test_2”.  If both signals have the 
signal state “1”, the combination will conduct from the left power rail to the right.  Otherwise, if 


either input does not have a “1” state, power is not passed.  Siemens refers to the contact as a 


normally open contact, the traditional name associated with controls drawings.   


 


Allen-Bradley refers to the normally open input as an XIC or “Examine On” contact.  The 


RSLogix 5000 example below uses the same two inputs “test_1 and test_2”.  Internal memory 
addresses are assigned tag addresses with BOOL data type.     


 


 


 
 


Fig. 6-9  A-B Normally 


Open (Examine On)


 


 


Contacts can be arranged either in ‘and’ or ‘or’ arrangements starting at the left power rail and 


flowing to the right.  Contacts must be placed on horizontal runs and never on a vertical run.     


 


The expression above would be written in Boolean: test_1 and test_2 = 
and the FBD diagram would be: 


Fig. 6-10  Example of 


Siemens FBD AND
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Normally Closed Contact 
  


Siemens Step 7 Basic: 


 


Fig. 6-11  Siemens Normally 


Closed/Normally Open Pair
 


The two contacts form an ‘and’ of the two points, “not test_1 and test_2”.  If test_1 is 0 and 
test_2 is 1, the combination will conduct from the left power rail to the right.  Otherwise, power 


is not passed.  Siemens refers to the first contact as a normally closed contact, the traditional 


name associated with controls drawings.  The second contact is a normally open contact.   


 


Allen-Bradley refers to the normally closed input as an XIO or “Examine Off” contact.  The 


RSLogix 5000 example below uses the same two inputs “not test_1 and test_2. 
 


Fig. 6-12  A-B Normally 


Closed/Normally Open Pair
 


 


The normally closed contact provides the same function as the “NOT” function of Boolean logic.   


The expression above would be written in Boolean: not test_1 and test_2 =  
and the FBD diagram would be:  


 


  


Fig. 6-13  Siemens FBD 


Normally Closed/Normally 


Open Pair


Not inserted as ‘bubble’ here


 
  








 Ch 6 Basic Memory Circuits 11 


 


Invert Result of Logic Operation 
 
Siemens Step 7 Basic: 
 


Fig. 6-14  Siemens Logic Inversion
 


 


The Invert instruction will invert the state at the point of inclusion.  If the state at the point was 


“1”, the output of the Invert [NOT] instruction is “0”.  Likewise, if the state at the point was “0”, 


the output of the Invert [NOT] is “1”. 


 


The instruction has many practical uses in logic design.  No instruction is available in the Allen-


Bradley instruction set that exactly duplicates this instruction from Siemens. 


 


The instruction above is read “not[not test_1 and test_2]” and the FBD diagram would be:  


Fig. 6-15  Siemens Logic Inversion 


using FBD


Not inserted as ‘bubble’ here


 
 


Output Coil 
  


Siemens Step 7 Basic: 


 


Fig. 6-16  Siemens Output Coil


 
The output coil bit sets a bit of memory for a Boolean logic expression.  It adds the resultant to 


the equation.  Before, the result was not included in the equation but with the coil, an output is 


set to 0 or 1. 


 


Multiple coils may be programmed but this is not necessary.  Multiple coils with additional logic 


may be programmed and this may be necessary.  Use of multiple coils in one network is shown 


below.  The FBD equivalent is also shown. 








 Ch 6 Basic Memory Circuits 12 


 


Fig. 6-17  Siemens Multiple Coils
 


 


The following shows the FBD equivalent of the Ladder circuit above. 


Fig. 6-18   FBD Equivalent of 


Ladder Diagram (Fig. 6-17)


 
 


The following is the Allen-Bradley equivalent of the Siemens Ladder and FBD circuit. 


 


Fig. 6-19   A-B Equivalent of 


Siemens’ Fig. 6-17


 
 
Negated Coil 
 


Siemens Step 7 Basic: 


 


Fig. 6-20  Siemens Negated Coil


 
 


 


The Negated Coil inverts the logic of the network and assigns the inverted signal value to the tag.  
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Siemens uses the term RLO to signify the signal value at a point in the circuit.  RLO is short for 


Result of Logic Operation and signifies the status of the network at the point investigated.  In the 


case of the Negated Coil, the RLO is inverted to find the status of the negated coil.   


 


No instruction is available in the Allen-Bradley instruction set that exactly duplicates this 


instruction from Siemens. 


 


Set Output 
 
Siemens Step 7 Basic: 


 


Fig. 6-21  Siemens Set Output


 


 


The Set Output operation sets the state of the Boolean bit to 1.  If power flows to the output bit, 


the output bit is set.  If the result is 0, the output remains unchanged (may be 0 or 1).     


 


Reset Output 
 


Siemens Step 7 Basic: 


 


Fig. 6-22  Siemens Reset Output


 


The Reset Output operation sets the state of the Boolean bit to 0.  If power flows to the output bit, 


the bit is reset (to 0).  If the result is 0, the output remains unchanged (may be 0 or 1).     


 


Set_BF Output 
 


Siemens Step 7 Basic: 


 


Fig. 6-23  Siemens Set 


Bit Field
 


The Set_BF instruction sets several bits beginning at the stored address.  The number of bits set 


is defined in the second operand <operand2>.  As seen in the example above, 5 bits starting at 
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Q20.0 are set with the instruction if power flows to the output. 


 


Reset_BF Output 
 


Siemens Step 7 Basic: 


 


Fig. 6-24  Siemens Reset 


Bit Field
 


 


The Reset_BF instruction resets several bits beginning at the stored address.  The number of bits 


reset is defined in the second operand <operand2>.  As seen in the example above, 4 bits starting 


at Q20.0 are reset or turned off with the instruction if power flows to the output. 


 
SR: Set reset flip-flop 
 
Siemens Step 7 Basic:  
 


Fig. 6-25  Siemens Set 


Reset Flip-Flop


 


The SR flip-flop is used to set or reset a specific output operand based on the state of the S and 


the R inputs.  The Reset or R input dominates.  If the S is 1 and the R is 0, the output turns on - 1.  


If the S is 1 and the R is 1, the output turns off  - 0.  If the S is 0 and R is 1, the output turns off. 


RS: Reset set flip-flop 
 
Siemens Step 7 Basic: 


 


Fig. 6-26  Siemens Reset 


Set Flip-Flop
 








 Ch 6 Basic Memory Circuits 15 


 


The RS flip-flop is used to set or reset a specific output operand based on the state of the S and 


the R inputs.  The Set or S input dominates.  If the S is 1 and the R is 0, the output turns on 1.  If 


the S is 1 and the R is 1, the output turns on - 1.  If the S is 0 and R is 1, the output turns off - 0. 


OTL:  Output Latch 


OUT:  Output Unlatch 


These instructions are Allen-Bradley instructions similar to the SR or RS flip-flop instructions of 


Siemens.  The orientation determines the dominance.  If (L) is before (U), the Unlatch or Reset is 


dominant.  If (U) is before (L), the Latch or Set is dominant.  The difference between A-B and 


Siemens is that the bit programmed for the latch is retained after a power fail or change to 


program mode and then back to run.  The Siemens data bit will turn off after a power fail or 


change to program mode and then back to run.  Certain data areas in the Siemens program are 


reserved for data that is retained and can be programmed using the S-R flip flop similarly to the 


A-B latch. 


 


Fig. 6-27  A-B Latch-Unlatch


 
 


Retentive Memory 
 


Relay coils may be either retentive or non-retentive. Retentive refers to the coil’s ability to retain 


its former status through a power loss. If the PLC either loses power or stops processing the 


program, coils are reset to 0 unless specified as a latch coil.  Latch coils retain their state when 


the power is turned back on or when the program returns to the run mode. Mechanical relays 


accomplish this with a slide-over arrangement similar to the light switch on the wall.  The coil’s 


status remains in the last state until energized to move to the opposite state. 


 


Problems inherent in latch coil design cause their use to be restricted to applications requiring 


their use. For example, it is difficult to determine the state of a coil if both the latch and unlatch 


coil are on at the same time.  A mechanical relay will hum and eventually burn up because high 


inrush currents would continue to flow if the relay’s air gap is not essentially zero distance 


between the core and plunger. Although the program can determine which rung will be dominant 
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(either latch-L or unlatch-U), the condition is generally not considered good programming 


practice and something to guard against. 


 


Also, the programmer must guard against all conditions that may cause the circuit to reset the 


latch coil to off and provide for those conditions with the Unlatch coil.  Many circuits do not 


provide for all conditions to reset the coil.   


 


Seal circuits are developed differently than latch coils.  In seal circuits start logic is positive and 


stop logic is negative for relay coils.  In Latch coils (L), the logic is positive that turns on the coil.  


Inn Unlatch coils (U), the logic is also positive that turns off the same coil. Coils allow the end 


user to cycle power and de-energize all seal circuits.  This ability to cycle power and restart a 


machine from a known state is very useful and should be used as much as possible.  If the 


program does not follow this suggestion, the result may be a flurry of mid-night calls to fix the 


machine.  Machines that use latch circuits in them are sometimes described as machines that 


have “a mind of their own” since all circuits may not be reset to a known state at any time.   


 


From Instruction Help, Allen-Bradley describes the Latch function as: 


 


“This instruction functions much the same as the OTE with the exception that once a bit is set 


with an OTL, it is "latched" on.  Once an OTL bit has been set "on" (1 in the memory) it will 


remain "on" even if the rung condition goes false.  The bit must be reset with an OTU instruction. 


 


Latch and Unlatch instructions must be assigned the same address in your logic program.  Output 


addresses are specified to the bit level.  


 


Stop


CR


Start CR


 


Stop
Start


L


Lxx


U


Lxx


 


 


Conversion of control circuitry to the PLC’s logic requires care in the intent of circuits to retain a 


memory bit even though power has been removed.  The use of latch-unlatch coils or S-R flip-


flop circuits with retentive memory is to be limited to only circuitry with a need for that function 


at start-up. 


Fig. 6-28a 


Control Circuit Seal 


Fig. 6-28b 


Control Circuit Latch/Unlatch 
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The following circuit demonstrates a PLC circuit exactly emulating the first control circuit seal 


of an off-dominant seal circuit.  In an off-dominant circuit, the STOP is dominant.  The START 


button only will work if the STOP button is not pushed.  The second circuit re-arranges the circuit 


to allow the START to work regardless of the position of the STOP.  This is referred to as an on-


dominant circuit.  In general the off-dominant circuit is preferred as it is safer. 


 


Start


Stop


Start_I


Stop_I


 


 


Stop_I


M


Start_I M


Stop_I M


Start_I M


 


 


Both types of rungs are found in logic.  Typically, the first or off-dominant is found in most logic 


but the latter or on-dominant is used from time to time.  To convert from an off-dominant to the 


on-dominant, move the stop contact to the seal loop.  Siemens provides the S-R flip-flop 


circuitry to provide the same seal circuit shown above.   
         


Start_I


S


M


Stop_I


R


M


 


Fig. 6-29a 


PLC Inputs for Start and Stop 


Fig. 6-29b 


PLC Seal Circuit with Off-Dominance 


Fig. 6-29c 


PLC Seal Circuit with On-Dominance 


Fig. 6-30 


Siemens PLC Memory with 
Off-Dominance 
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Circuits with off-dominant structure are used in most control circuits while the on-dominant 


structure is used in alarm circuits (circuits that report something bad).  While no absolute rule 


exists, an alarm circuit will almost always use on-dominant and control circuits will use off-


dominant. 


Start_I


S


M


Stop_I


R


M


 


Start_I


L


B


Stop_I


U


B


 


Start_I


L


B


Stop_I


U


B


 


Start_I


S


M


Stop_I


R


M


 


Fig. 6-31a 


Siemens PLC Memory with  
On-Dominance 


Fig. 6-31b 


Allen-Bradley Latch with  
Off-Dominance 


Fig. 6-31c 


Allen-Bradley Latch with  
On-Dominance 


Fig. 6-31d 


Siemens PLC Memory with 
Off-Dominance:  


Latch if using Retentive 


Memory 
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Start_I


S


M


Stop_I


R


M


 


As long as the circuit is started or stopped with a single contact, it is simple to design.  Most 


circuits do not just have one start or stop contact, however.  The following circuit is typical of 


logic required to start or stop a memory circuit.   


 


 


   Fig. 6-31f   How Siemens Sets Retentive Memory 


The figure 6-31f shows the method used to set retentive memory in the Siemens’ S7-1200 


processor.  The retentive bytes start at MB0.  The total number of bytes is limited in the 1214C 


processor to 2048.  While this is restrictive, the limit has been raised in later processors.  


 


 


An Exercise Converting Between Seal and Latch/Flip-Flop Logic 


Fig. 6-32  Typical Seal Circuit


 


Fig. 6-31e 


Siemens PLC Memory with  
On-Dominance: 


Latch if using Retentive 


Memory 








 Ch 6 Basic Memory Circuits 20 


 


If this circuit were converted to a seal circuit, the start circuit would be copied intact to the start 


portion of the circuit.  However, the stop portion would be converted to the negative (DeMorgan) 


of the L-U circuit prior to implementation.  See the seal circuit below: 


 


Negative of Unlatch Same as Latch


Seal contact


Non-retentive


Coil


Fig. 6-33a  Seal Circuit


 
The following is the latch/unlatch equivalent of the circuit above: 


Fig. 6-33b  Latch/Unlatch 


Equivalent Circuit


test1


Set


test1


Reset


 
 


The same circuit could be used for Siemens’ S-R flip-flop.  These are Off-dominant circuits.   


 


To convert to the On-dominant circuits, move the Stop portion of the circuit to in series with the 


seal contact. 


Stop moved 


to here


Fig. 6-33c  On-Dominant Seal 


Circuit
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To convert to the On-Dominant Latch circuit, switch the position of the L and U coils.  The Latch 


or on portion now dominates.  Siemens’ R-S flip-flop has similar results. 
 


Fig. 6-33d  On-Dominant 


Latch-Unlatch


test1


Reset


test1


Set


 
 


While European and American programmers tend to have their preferences for memory circuits, 


we will be ready to convert from one style to another as necessary.  In general, American-trained 


engineers tend to use seal circuit design and European-trained engineers tend to use S-R circuit 


design as well as a now-antiquated assembler look-alike language Statement list (STL). 


 


Other memory circuits are shown below.  They show the implementation of memory circuits in 


FBD as well as Ladder circuits.  FBD is more able to combine complicated memory circuits into 


one circuit as shown below: 


Logical operations including memory embedded in the circuit :


Fig. 6-34a  Set-Reset Logic in 


FBD
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A second example of logical operations including memory embedded in the circuit :


Fig. 6-34b  Set-Reset Logic in 


FBD  (another example)


 
 
Use of Seal (Memory) Circuits 
 


The following example shows the need for a seal or memory circuit.   


 


A tank is filling from above from buckets of water dumped into the tank.  When the tank’s upper 


level is reached, the pump starts and empties the tank until the lower level switch is reached.  At 


this time, the pump turns off.  The program of the pump starter circuit is found after the 


Function/State table on the next page. 


 


Fig. 6-35a  Empty the Tank 


with Seal Circuit


Upper Level Sw


Lower Level Sw


Pump


 


Sensor Function/State Signal Assignment 


LH Upper Level  


LL Lower Level  


   


   
    (Input Table for Fig. 6-35a above) 
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Actuator Function/State Signal Assignment 


Pump Pump Liquid Out 1 


   
    (Output Table for Fig. 6-35a above) 


 


Solution: 


 


Fig. 6-35b  Empty the Tank 


with Seal Circuit


Pump Run


Pump Run


Upper Level 
Sw


Lower Level Sw


 
 


 


The correct contact must be identified as the start contact and as the stop contact.  For instance, 


when a pump is installed above the tank to fill the tank, the lower level switch becomes the start 


contact and the upper level switch becomes the stop contact.   


 


The circuit below demonstrates the principle of a seal or memory circuit used to fill a vessel. 


 


Fig. 6-36a  Fill the Tank with 


Seal Circuit


Upper Level Sw


Lower Level Sw


Pump
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Sensor Function/State Signal Assignment 


LH Upper Level  


LL Lower Level  


   


   
    (Input Table for Fig. 6-36a above) 


 


Actuator Function/State Signal Assignment 


Pump Pump Liquid In 1 


   
    (Output Table for Fig. 6-36a above) 


 


 


Fig. 6-36b  Fill the Tank with 


Seal Circuit


Pump Run


Pump Run


Upper Level 
Sw


Lower Level Sw


 
 


Many times, two contacts are used to back up critical applications.  In this case, both are used in 


the start or stop circuit with the second or back-up contact also used to alarm.  For instance, the 


following circuit would be controlled as before except that an additional contact is found to also 


start or stop the circuit.  In addition to the control portion of the control circuit, a diagnostic or 


alarm circuit is also used with the Hi-Hi and Low-Low contacts to alert the operator or supervisor 


that a problem has occurred. 


 


 


Fig. 6-37  Using Double High 


and Low Contacts for Safety


Pump Run


Pump Run


Low Level Sw


Low-Low Level Sw


High Level 
Sw


High-High 
Level Sw
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One-Shot Logic 
 
One shot or positive signal edge instructions predate both the Siemens and Allen-Bradley current 


processors.  The first believed to introduce the concept was Modicon with the Modicon 484 


processor in 1978.  Their positive transition and negative transition instructions were unique and 


added to the computer flavor of the PLC over the idea of just a relay replacer.  The instructions 


were: 


 


P N


or


 
 


The Modicon 484 instructions did not require the use of a blocking bit as both the Siemens and 


A-B processors do.  Instead, Modicon kept a complete last-scan table of the entire Boolean table 


of inputs, outputs and discrete internal bits used in logic.  This last-scan table then was used to 


report on the previous scan’s status.  If the status was different than the present scan, then a 


signal was allowed to pass.  Otherwise, the branch was effectively blocked from passing power.  


While an excellent concept, the execution time needed to process this function was prohibitive 


time-wise and was dropped with subsequent manufacturers implementing the one-shot 


instruction.  Both Siemens and Allen-Bradley use a blocking bit that is programmed to keep the 


last-scan information at hand and process an instruction similar to the Modicon approach.  They 


both require this blocking bit be programmed and defined, however.  The blocking bit is not used 


in logic.  It is only used to block the future scans of power through the branch.  You may say that 


you have to use a bit (blocking bit) to get a bit (one-shot bit).  This may help you as you work 
through this next section. 


 


 
 Edge Detection- Siemens 
 


|P|: Scan operand for positive signal edge 
 
The "Scan operand for positive signal edge" instruction is used to determine whether there is a 0 


to 1 change in the signal state of a specified operand (<Operand1>).  The instruction compares 
the current signal state of the operand with the signal state of the previous query saved in an edge 


memory bit (<Operand2>).  If the instruction detects a change in the result of logic operation 


from 0 to 1, there is a positive, rising edge. 


If a falling edge is detected, the output of the instruction has the signal state 1.  In all other cases, 


the signal state at the output of the instruction is 0. 


Specify the operand to be queried (<Operand1>) in the operand placeholder above the 


instruction.  Specify the edge memory bit (<Operand2>) in the operand placeholder below the 


instruction. 








 Ch 6 Basic Memory Circuits 26 


 


The following example shows how the "Scan operand for positive signal edge" instruction 


works: 


 


Output "TagOut" is set when the following conditions are fulfilled: 


 There is a rising edge at input "TagIn_1". 


 The signal state of the operand "TagIn_2" is 1. 


|N|: Scan operand for negative signal edge 


The "Scan operand for negative signal edge" instruction is used to determine whether there is a 1 


to 0 change in the signal state of a specified operand (<Operand1>). The instruction compares 
the current signal state of the operand with the signal state of the previous query saved in an edge 


memory bit (<Operand2>). If the instruction detects a change in the result of logic operation 


from 1 to 0, there is a negative, falling edge. 


If a falling edge is detected, the output of the instruction has the signal state 1. In all other cases, 


the signal state at the output of the instruction is 0. 


Specify the operand to be queried (<Operand1>) in the operand placeholder above the 


instruction. Specify the edge memory bit (<Operand2>) in the operand placeholder below the 


instruction. 


The following example shows how the "Scan operand for negative signal edge" instruction 


works: 


 


Output "TagOut" is set when the following conditions are fulfilled: 


 There is a falling edge at input "TagIn_1". 


 The signal state of the operand "TagIn_2" is 1. 


  


Fig.  6-38  Positive Signal Edge  


Fig.  6-39  Negative Signal Edge  
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(P=): Set operand on positive signal edge 


The "Set operand on positive signal edge" instruction is used to set a specified operand 


(<Operand2>) when there is a 0 to 1 change in the result of logic operation (RLO). The 


instruction compares the current result of logic operation with the result of logic operation from 


the previous query, which is saved in the edge memory bit (<Operand1>). If the instruction 


detects a change in the RLO from 0 to 1, there is a positive, rising edge.  


When a positive edge is detected, <Operand2> is set to signal state 1 for one program cycle. In 


all other cases, the operand has the signal state 0. 


You specify the operand (<Operand2>) to be set in the operand placeholder above the 


instruction. You specify the edge memory bit (<Operand1>) in the operand placeholder below 


the instruction.  The following example shows the parameters of the "Set operand on positive 


signal edge" instruction: 


 


The "TagOut" output is set for one program cycle, when the signal state at the input of the 


instruction box switches from 0 to 1 (positive signal edge). In all other cases, the "TagOut" 


output has signal state 0. 


 


(N=): Set operand on negative signal edge 


The "Set operand on negative signal edge" instruction is used to set a specified operand 


(<Operand1>) when there is a 1 to 0 change in the result of logic operation (RLO). The 


instruction compares the current RLO with the RLO from the previous query, which is saved in 


the edge memory bit (<Operand2>). If the instruction detects a change in the RLO from 1 to 0, 


there is a negative, falling edge.  


When a negative edge is detected, <Operand1> is set to signal state 1 for one program cycle. In 


all other cases, the operand has the signal state 0. 


You specify the operand (<Operand1>) to be set in the operand placeholder above the 


instruction. Specify the edge memory bit (<Operand2>) in the operand placeholder below the 


instruction.  The following example shows the mode of operation of the "Set operand on 


negative signal edge" instruction: 


 


The operand "TagOut" is set for one program cycle if the signal state at the input of the 


instruction box changes from 1 to 0 (negative signal edge). In all other cases, the operand 


"TagOut" has the signal state 0.  


Fig.  6-40  Positive Signal Edge Output 


Fig.  6-41  Negative Signal Edge Output 
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P_TRIG: Scan RLO for positive signal edge 
 
The "Scan RLO for positive signal edge" instruction is used to query a 0 to 1 change in the signal 
state of the result of logic operation (RLO). The instruction compares the current signal state of 


the RLO with the signal state of the previous query, which is saved in an edge memory bit 


(<Operand>). If the instruction detects a change in the RLO from 0 to 1, there is a positive, rising 


edge.  


If a rising edge is detected, the output of the instruction has the signal state 1. In all other cases, 


the signal state at the output of the instruction is 0. 


The following example shows how the instruction works: 


 


The RLO of the preceding bit logic operation is saved in the edge memory bit "Tag_M".  If a 0 to 


1 change is detected in the signal state of the RLO, the program jumps to jump label CAS1.  


 
The following is an example from Siemens showing one-shots in S-R logic: 


 


 
  


Fig.  6-42  Positive Trigger 


Fig.  6-43  One Shot in S-R Logic 
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Edge Trigger or One-Shots in A-B Instructions: 
 
Allen-Bradley refers to the edge trigger instructions above as One Shot instructions.  To use one-


shot logic, a circuit similar to the following must be programmed for the SLC processor. 


 


 


   
 


  


This circuit responds as follows: 


 


I:0/1


B3:0/0


B3:0/1


ON


OFF


time


 
 


Notice that the desired coil to be used in the program is the coil at the right.  The OSR bit is used 


as a blocking bit and is not as a rule referenced elsewhere in the program.  The OSR bit may be 


useful if the input I:0/1 is necessary one scan delayed.  Otherwise, it is not to be used in any 


other logic in the program.  B3:0/1 is on for only one scan.  This may be very short as in a 


millisecond or less or in the slower PLCs, the delay may be 20, 30, or even 50 milliseconds.  It is 


a relatively quick transition, however, and is not seen on the screen of the monitoring 


program in most circumstances. 


 


 


The OSR is used as a conditional input triggering an event only on the leading edge.  Use the 


OSR command to start a sequence of events when an event occurs.  A one-shot in electronic 


terms squares a waveform and makes it more exact for the circuitry.  The PLC one-shot is 


primarily equal to the electronic one-shot in that it runs through the entire program one time with 


an on pulse and then turns off. 


 


The OSR is to be placed immediately before the output instruction. It is referenced with a bit that 


is not used elsewhere in the program. Either a binary file or integer file address may be used. 


 


An example of improper use of the OSR command for the MicroLogix 1000 processor is shown 


below when a parallel branch is programmed around the [OSR] instruction. 


 


Fig.  6-44a  A-B SLC One Shot 


Fig.  6-44b  Timing Diagram 


for A-B SLC One Shot 
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Fig. 6-45  Illegal One Shot added in SLC


 
  


To correct the problem in the circuit, all parallel branches must be resolved before the [OSR] 


instruction as shown below: 


 


Fig. 6-46  Corrected Logic in SLC


 
 


The ONS instruction turns the output of the rung to on for one scan when the contact sees a false-


to-true transition of the conditions preceding the ONS instruction on the rung.  Rules for the 


Micro1200/1500 ONS one-shot are similar to other SLC processors' OSR instruction.  Rules for 


these one-shot instructions include: 


 


 1. Never branch around the OSR or ONS instruction 


 2. Use the OSR or ONS instruction to turn on an output 


 3. Other contacts may exist between the OSR or ONS instruction and the   


  output coil 


 


The OSR commands are used by the MicroLogix 1200 and 1500 as output coils and are one-shot 


bits used on the rising or falling of power to the output.  An example of an OSR instruction used 


in logic is shown below: 
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Fig. 6-47a  One Shot as Output


 
The OSR circuit above acts in a similar manner to the ONS instruction with tag names instead of 


file names used in the SLC architecture.  The timing diagram for the OSR above is shown below: 


 


Fig. 6-47b  One Shot as Output Timing Diagram


first


second


third


ON


OFF


time


 
Similar to the OSR instruction is the OSF or One Shot Falling bit.  Its timing chart is shown after 


the instruction: 


 


Fig. 6-48a  One Shot Falling as Output
 


   


first


second


third


ON


OFF


time


Fig. 6-48b  One Shot Falling as Output 


Timing Diagram
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A more robust type of one-shot is the ONS one-shot found in the MicroLogix 1200, 1500 and 


ControlLogix/CompactLogix processors.  The purpose of this newer type is to provide one-shot 


logic inside a single rung without having to create a rung for the one-shot and then a second rung 


that includes the one-shot logic.  


 


In this example, the [ONS] instruction acts as a blocking bit one scan delayed.  The resulting 


logic creates a one-shot signal in the branch of the [ONS] instruction.  An example of the use of 


the [ONS] instruction is shown in addition to the circuit’s timing diagram: 


 


 
 


start


second


ON


OFF


time


 
 Fig. 6-49   A-B One Shot Added in Branch  


 


The series branch of start and [ONS] combine to provide a one-shot when start turns on.  The 


input start may remain on for a long duration but the branch of the network will remain on for 


only one scan.   
 


 


Use of the One Shot 
 


The use of one-shot contacts requires programmers to ask when the leading edge of a signal is 


more useful in the development of logic than the signal itself.  Experience is the best teacher in 


knowing when to use the one-shot. 


 


For an example of a one-shot that can occur without the need to build an [ONS] or [OSR] 


instruction, refer to Lab 4.1, The Hot Dog Counter.   
 


In the logic of the Hot Dog Counter, the rung output turns on incrementing the counter.  Then the 


program starts again at rung 0 executing the first two rungs.  These two rungs turn off, in turn 


turning off the count bit.  The count bit is only on for one scan. The count bit (Hot_Dog) is 


essentially a one-shot coil that turns on for one scan only before turning off.   
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 Fig. 6-50   One Shot Signal w/o OSR Needed 


 
Example of Making Momentary Switch into Toggle Switch  


 


Fig. 6-51  One Shots used for 


Toggle Switch


Button


Button  
Blocking 


Bit


Button 
OS


OS and 
Toggle


Button 
OS


Toggle 
Output


Toggle 
Output


Button 
OS


Toggle 
Output


OS and 
Toggle


 
 


The circuit above is useful to turn a pushbutton input into a toggle-type switch.  The use of one-


shot logic is of benefit.  Each time the input Button turns on, a one-shot is generated (Button OS).  


As the first two rungs are executed, the status of OS and Toggle is critical.  On every other 


occurrence of Button, Toggle Output is on.  When OS and Toggle is on, Toggle Output is off.  The 


scan that Toggle Output turns on is the same scan that generates the one-shot Button OS.  It does 


not turn on any other time.  Using this logic, one can build a seal circuit that alternatively turns 


on Toggle Output with Button OS and turns off Toggle Output with OS and Toggle. 


 


This circuit is useful to demonstrate the utility of the one-shot contact.  One-shots are useful to 


isolate logic and to usually make solution of circuits easier.  One-shots are used a great deal in 


both turning on and turning off of seal circuits.  Usually a circuit that is turned on with one-shots 


may be turned off with one-shots as well.  Circuits such as this do not have to be turned off with 


one-shots, however.   


 


A timing diagram of the circuit is shown to demonstrate the use of one-shots in logic.
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Fig. 6-51b   Toggle Switch 


using One Shot Logic 


Timing Diagram


Button


Button 
OS


OS 
and 


Toggle


Toggle  
 


The timing diagram shows the use of one-shots to selectively block the seal circuit Toggle from 


turning on every other leading edge.  The event of the leading edge is isolated using the one-shot 


and then the blocking contact is inserted just before the seal circuit to set logic on to block the 


circuit from turning on when the output was already on.   


 
One Shots Used to Remember Order of Events 
 


The following circuit may be useful to remember which of three events turned on last:  IN1, IN2, 


or IN3.  An advanced form of this circuit will demonstrate the use of one-shots in logic. 


 


IN1


IN2


IN3


Signals that are never on at the same time!


IN1 Last 
Input On


IN2 Last 
Input On


IN3 Last 
Input On


IN1


IN1


IN1


IN2


IN2


IN2


IN3


IN3


IN3


IN1
Last On


IN1
Last On


IN2
Last On


IN2
Last On


IN3
Last On


IN3
Last On


Fig. 6-52a  Non-Overlapping Signals
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However, if the events overlap or the signals IN1, IN2 or IN3 are ever on simultaneously, then 


one-shots are needed to separate the events.  Notice that if IN1 and IN2 are on at the same time, 


indeterminate results will occur.  


 


To accommodate the problem of overlapping signals, consider the following improvement to the 


circuit above.  This circuit remembers which leading edge turned on last.  


 


IN1


IN2


IN3


IN1
Blocking


Bit


IN2
Blocking


Bit


IN3
Blocking


Bit


IN1
OS


IN2
OS


IN3
OS


IN1
OS


IN1
OS


IN1
OS


IN2
OS


IN2
OS


IN2
OS


IN3
OS


IN3
OS


IN3
OS


IN1 OS
Remembered


IN1 OS
Remembered


IN2 OS
Remembered


IN2 OS
Remembered


IN3 OS
Remembered


IN3 OS
Remembered Fig. 6-52b  Overlapping Signals 


Remembered


IN1


IN2


IN3


Signals that maya be on at the same time!
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Edge evaluation or one-shot circuits may be included in transferring of a seal circuit to an S/R 


circuit.  Care must be taken when this is attempted as the DeMorgan rules are not necessarily still 


the only tool needed.  For example, if the following seal circuit were evaluated, what would be 


the equivalent S/R circuit?   


 


 
 


This circuit would be evaluated as follows: 


 


 
 


 


This leads to the observation that as long as the one-shot is involved in the “start” portion, all is 


well.  However, if the “Stop” portion is involved in a one-shot and the DeMorgan Theorem is 


necessary, a one-shot should be evaluated in coordination with a timing diagram.  The inverse 


must be the inverse in all circumstances with all combinations of inputs evaluated.  The one-shot 


does introduce a problem in using DeMorgan’s Theorem to invert logic and convert from seal 


memory to S/R memory.   


  


Fig. 6-53a  Edge Evaluation of OS 


Fig. 6-53b  Seal Circuit with OS 








 Ch 6 Basic Memory Circuits 37 


 


Second Look at the Juice Condenser 
 
Since last chapter, several problems have been introduced, and the juice condenser problem was 


partially solved but a total solution was delayed until the memory circuit was discussed.  The 


juice condenser problem includes memory that may require a second look.   


 


The operation included a fill, a condensate portion and a drain.  These operations were not to be 


overlaid but rather were to be consecutive in nature.  This leads to a memory circuit that includes 


more than one set of events.   


 


 


V-2


High Level


Half Level


 


V-1


Temperature Sw


Agitator


Heat


Start


Done/Ready


Fig. 5-1   The Juice Maker
 


 


Each memory circuit must be exclusive of the other two events and must occur in a proper 


sequence.  For example, the fill operation must occur first, then the condensate operation and 


finally the drain operation.  This may be expressed using three seal circuits: 


 
Operation 


running
start 


operation
stop operation


Operation 
running
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The three operations may be represented by three seal circuits as follows with modifications to 


follow: 


 


Fill Runningstart 
operation


stop operation


Condensate 
Running


start 
operation


stop operation


Drain 
Running


start 
operation


stop operation


Fill Running


Condensate 
Running


Drain 
Running


 
 


 


The three operations must be done in order.  This requires that before the first operation starts, 


the requirement that there is not a fill, condensate or drain action presently active must be 


determined.  This can be expressed in the start portion of the fill operation as: 


 


 
start 


operation
Drain 


Running
Fill


Running
Condensate


Running


 
 


 


Succeeding operations must likewise be programmed using a start portion with the prior 


operation present.   
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condition(s) 
allowing start Start for 


condensate 
portion


Fill
Running


condition(s) 
allowing start


Start for 
drain portion


condensate
Running


  
 


The conclusion of this problem is left as an exercise.   


 


Several of the other problems at the end of the chapter use a similar type of logic.  The logic may 


be described also as ‘state logic’ and this will be discussed further in chapter 11.  For now, we 


will use multiple bits to describe states and use the state information to drive the remainder of the 


programming.   


 


Problem statements for the following three processes also require similar treatment: 


 


This problem’s problem statement hints that the conveyor C1 should start with the Start Button 


PB1.  But an additional condition involves conveyor C2.  C1 needs to turn on and off based on 


the condition of conveyor C2.  This suggests a seal circuit that does not include C1 directly but 


rather indirectly.  The seal or memory circuit should be an internal bit coil that turns on with the 


PB1 and turns off when the box has cleared PE1.  The conveyor C1 Run should be linked to the 


Conveyor 1 internal Run bit and the C2 Run bit as shown in the figure below: 


 


Start Button PB1


Conveyor  C1 Conveyor  C2


Photoeye PE1Box


PB1
Photo-
Eye TE


C1_Run
Internal


C1_Run
Internal


C1_Run
Internal


C1_Run
Output


C2_Run
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A method for development of the stop bit Photo-Eye TE would be to use a one-shot on the 


trailing edge of the Photo-eye signal as follows: 


 


 


Photo-
Eye PE1


Photo-
Eye TE


One 
Shot 


Dummy 
Bit


ONS


 
 


The following conveyor system at first appears very complex but may be divided into a number 


of smaller areas and programmed by area.  For instance, if a bin goes low, it calls for material.  


The call can only occur if there is not a fill operation already in progress with the other bin.  The 


memory circuits then are developed as follows: 


 


 


High Level L3


Low Level L2


High Level L5


Low Level L4


Conv C1
High Level L1


Low Level L0


Screw Conv SC1


Conv C2 Left Conv C2 Right


Storage Bin 1


Bin 1 Bin 2


 


 


Bin 1 
Low 
Level


Bin 1 
High 
Level


Bin 2 
Filling


Bin 1 
Filling


Bin 1 
Filling
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Bin 2 
Low 
Level


Bin 2 
High 
Level


Bin 1 
Filling


Bin 2 
Filling


Bin 2 
Filling


 
We then work back toward the top of the process.  The two memory circuits above determine the 


state of Conveyor 2.  If Bin 1 is filling, then Conveyor 2 Left is on.  If Bin 2 is filling, then 


Conveyor 2 Right is on.  If Conveyor 2 is running, then the Screw Conveyor SC1 is on.   


 


The fill operation for the Storage Bin 1 is handled in a separate memory circuit with its own 


memory circuit using low and high level to set and turn off the memory circuit.  The method of 


working from the bottom to the top is used in many process programs to control flows. 


 


The following process hints at a stepping program that moves through a number of steps to make 


a batch.  Here the level switches above L0 are intended to determine the fill level for the 


ingredient.  If the solid ingredient delivered from Bucket BE1 is to be delivered first, it is implied 


that this ingredient fill from Level L0 to Level L1.  Since this is not usually the case since a liquid 


is usually added first, we can assume that either the liquid from Pump P1 or Pump P2 is 


delivered first to the batch.  Then possibly the screw conveyor and finally the second liquid are 


to be delivered.  The batch content and mix procedure are not the topic of interest here, but rather 


the direction the mix is to take to be made.  Many systems such as this are more flexible with a 


scale weighing the ingredients.  Here, the placement of the level switches is extremely critical 


and fixes the ingredient amounts at the level of the switch.  If the weather is more or less humid 


or the ingredient is not at the precise right density, this method is not good if accuracy is needed.  


Low Level L0


Bucket BE1


Screw Conv SC1


Pump P1


Pump P2


Agitator A1


High Level L4


Bin 1


Screw Conv SC2


Level L1


Level L2


Level L3
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The problem below has the following general requirement that logic from one section is fed 


upstream.  For problems such as this, the down-stream portion must be activated first.  For 


instance, the last conveyor must run before the conveyor feeding it is allowed to run.  Otherwise, 


you may be the person with a shovel cleaning up a pile of coal at the in-feed to a conveyor. 


Always make sure the down-stream item is running and the down-stream hopper is not plugged 


in order to run a conveyor.  Then move back to the conveyor feeding it and continue upstream to 


the first conveyor.  (The first is last and the last is first.)   
 


 


 


High Level L1


Low Level L2


Conv C1


Bin 1


Conv C2


Conv C3


High Level L3


High Level L4


 
 


Bin 
Filling


Run 
Conveyor 


C3


Bin 
Low 
Level


Bin 
High 
Level


Bin 
Filling


Bin 
Filling


Run 
Conveyor 


C3


Run 
Conveyor 


C2


Hopper L4 
Not Full


 


 


Working back toward Conveyor 1 yields similar results to the logic shown above.   
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Summary 
 


This chapter is useful in the development of logic using memory circuits. The prior chapter was 


interested in the development of combinational logic.  This chapter began the discussion of 


sequential logic.  More on sequential logic will follow. 


 


The fill sequence or empty sequence from a bin or tank requires a memory circuit.  This was 


shown in a number of examples.   


 


Writing of Siemens and Allen-Bradley contact and coil instructions was reviewed.  A number of 


instructions were added in the discussion including memory instructions as well as one-shot or 


edge trigger instructions. 


 


Emphasis was placed on converting from one style of memory circuit to another.  For Siemens 


and most European designers, the S-R logic dominates.  In the US, seal circuits are dominant.  


To convert from one to the other is a requirement of this chapter.  Also, to convert from off-


dominant to on-dominant logic is necessary.  Also, reasons for using the off-dominant versus the 


on-dominant logic were discussed.   


 


The various edge trigger instructions from Siemens as well as Allen-Bradley were discussed and 


examples provided.  The purpose of these instructions was addressed as well. 


 


Several example problems were introduced using the memory circuit concept.  When more than 


one state is required, then several memory bits must be used to implement the overall logic.  
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Exercises 
 


1. Finish the evaluation of the logic in Table 6-4. 


 


2. The tank is now being filled automatically from the pump.  When the tank is low, the pump 
turns on and fills the tank.  The tank is emptied as needed by the manufacturing process using 


the water.  Design the circuit to control the pump. 


 


Upper Level Sw


Lower Level Sw


Pump


 
 


Sensor Function/State Signal Assignment 


LH Upper Level  


LL Lower Level  


   


   
 


Actuator Function/State Signal Assignment 


Pump Pump Liquid In 1 


   
 


Pump Run


Pump Run


Upper Level 


Sw


Lower Level 


Sw


 
 


 


 


Fig. 6-54  Tank 


Fill Problem 
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3. Convert the following to an on-dominant seal circuit: 


A B C D


E


E


 
 


4. Convert the following seal circuit to a latch/unlatch circuit, to an S/R circuit. 


A B C D


E


E


F


 
 


5. Convert the following seal circuit to a latch/unlatch circuit, to an S/R circuit. 


A B C D


G


E
G


F


 
 


6. Convert problem 4 to an on-dominant circuit. 
 


7. Name an action in real-life that requires the unconditional start seal circuit instead of the 
unconditional stop seal circuit. 


 
8. Write an on-dominant seal circuit with Input1 on turning the circuit on and Input2 on turning 


the circuit off. 


 
9. Write an off-dominant seal circuit with Input1 off turning the circuit on and Input2 on turning 


the circuit off. 


 


10. For the Conveyor Belt System, convert to seal circuits.  This is a real-world problem from 
Siemens’ literature in which the program is stated as a written description, I/O list and 


program.  All that is required by this problem is to re-write the rung logic to convert the 


various rungs from S/R logic to seal circuits.  (Ignore one-shots on Reset branch logic.) 
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 Ch 6 Basic Memory Circuits 47 


 


 
 


11. Convert the following to Ladder Logic.  First convert to Siemens S/R logic, then A-B seal 


logic: 


Input1


Input2


&


Input3


Input4


&


Input5


Input6


>=1


S


R Q


Input7 Output1


>=1
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12. Convert the following to Ladder Logic.  First convert to Siemens, then A-B.  


  >=1
Input 1


Input 2
  P   &


  S


 R   Q


Input 3


  NInput 4 Output


 


13. Write the program in the PLC to turn on lights H1 and H2 to satisfy the following timing 


diagram.  By activating switch S1, the light H1 is switched on.  If S1 is activated again, a 


second light H2 becomes switched on.  By activating S1 the next time, both lights are 
switched off.  Use one-shot logic to complete.  The pattern repeats… 


 


t


S1


t


H1


t


H2


 
 


14. Write the logic in Ladder to satisfy the following control problem.  Drain Valve V1 operates 
independently. When the tank level reaches Low Level L0, turn on Fill Pump P1 to fill the vessel. 
 


 


High Level L1


Low Level L0


Drain Valve V1


Fill Pump P1
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15. Write the logic in Ladder to satisfy the following control problem.  Fill Valve V1 operates 
independently.  When the tank reaches High Level L1, turn on Drain Pump P1 to empty the 


vessel.  


 
 


High Level L1


Low Level L0


Fill Valve V1


Drain Pump P1
 


 


16. Write the logic in Ladder to satisfy the following control problem:  
 


Start Button PB1


Conveyor  C1 Conveyor  C2


Photoeye PE1
Box


 


 


A box is placed on the first conveyor (C1).  Then the operator pulls the pull-cord and the 


conveyor starts if C2, the second conveyor, is also running.  If not, the conveyor C1 waits 


until C2 starts and then turns on.  The box moves on C1 until the trailing edge passes a 


photo-eye between the two conveyors.  Then C1 stops and waits for another box.  For this 


problem, the programmer does not control conveyor C2 but only has a contact from the 


conveyor C2 reporting its run status. 
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17. Write the logic in Ladder to satisfy the following control problem:  


 


High Level L3


Low Level L2


High Level L5


Low Level L4


Conv C1
High Level L1


Low Level L0


Screw Conv SC1


Conv C2 Left Conv C2 Right


Storage Bin 1


Bin 1 Bin 2


 


 


The process depends on a level switch in the two bins at the bottom (Bin 1 and Bin 2).  For 


either bin to fill, it must be at a low level.  Then the conveyor C2 will turn on and Storage 


Bin 1 will run until the high level is met for the bin being filled at bottom.  The direction of 


C2 must be correct as well (forward or reverse).  Also, Storage Bin 1 has a high and low 


level switch and will be filled from above by conveyor C1 as needed.   
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18. Write the logic in Ladder to satisfy the following control problem: 


Low Level L0


Bucket BE1


Screw Conv SC1


Pump P1


Pump P2


Agitator A1


High Level L4


Bin 1


Screw Conv SC2


Level L1


Level L2


Level L3


 
 


The main tank will fill with conveyor SC1 and bucket elevator BE1 as well as liquid from 


pumps P1 and P2.  To make a batch, fill to a level with L1.  Then fill to a second level with 


L2.  Then turn on the agitator and fill to a final level with L3.  When done, agitate for a time 


and dump using SC2. 


 


 


19. Write the logic in Ladder to satisfy the following control problem:  


 


High Level L1


Low Level L2


Conv C1


Bin 1


Conv C2


Conv C3


High Level L3


High Level L4
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20. Write the logic to satisfy the following control problem: 


The Juice Condenser 


 


V-2


High Level


Half Level


 


V-1


Temperature Sw


Agitator


Heat


Start


Done/Ready


Fig. 5-1   The Juice Maker
 


 


 


A description of the above process is as follows: 


 


For saving transportation cost for apple juice, the juice is condensed in a process of evaporation.  


The water is evaporated in the tank using heat.  The process of the process includes the following 


steps: 


 


1. Operator pushes the start pushbutton. 
2. Valve V-2 opens and fills to the high level switch and then closes. 
3. Heating occurs with the heat element on and stays on until the level reaches the half level 


or the temperature rises above 80
o 
C.  The temperature switch turns on when the temp 


reaches 80
o 
C and turns off when the switch falls below 80


o 
C. 


4. Heating is enabled by the high level switch on and the agitator is always on as long as the 
half level switch is satisfied. 


5. When the half level switch is not satisfied, the condensing process terminates and the 
tank empties through V-1.   After the tank starts emptying, 30 seconds is timed and the 


tank is assumed to be emptied.  The Done/Ready light is turned on and the next cycle is 


allowed via the Start button. 
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21. Read the following description and design a start/stop circuit to satisfy the requirement: 


What the ability to design or program a simple start/stop circuit says about you 


The ability to design or program a simple start/stop circuit says much about both the 


individual and our educational system. Here's why. 


By Dave Perkon, technical editor 


Jun 30, 2015 


About the author 


 


Dave Perkon is technical editor for Control Design. He has engineered and managed automation 


projects for Fortune 500 companies in the medical, automotive semiconductor, defense and solar 


industries. 


There are many experienced and productive control designers and programmers in industry 


today. The companies they work for know the value of a good controls engineer. Unfortunately, 


there are many inexperienced engineers, such as recent college graduates or maybe the seasoned 


engineer who likes to hide in the corner and just do what's necessary. Some are excited to learn, 


and others not so much. The point is, engineers come in all types—some great, some good and 


some bad, as in life. At no point is this less obvious than in a job interview or more obvious than 


while working on a project. 


As an engineer and manager, I've interviewed many controls engineers, electrical designers, 


programmers and CAD operators throughout my 27 years in industry to design and program 


automated equipment. Along with all the typical interview questions, I had what I consider a 


basic interview task: draw a start/stop circuit. Unfortunately, only about 20% of the 


"experienced" control-design and programming applicants could do it. Clearly, industrial, hands-


on experience is all relative, and each interview was quite the learning experience for both me 


and interviewee. 


“Perhaps I'm asking too much and shouldn't expect an experienced control designer or recent EE 


graduate to draw a hardwired start/stop circuit.” 


During the interview I simply asked, in writing, that the applicant draw a start/stop circuit ladder 


diagram using the following hardware: a normally open pushbutton, a normally closed 


pushbutton, a pilot light and a DPDT relay. I also noted the requirement was to turn on the green 


pilot light when the momentary start button was pressed and turn off the light when the 


momentary stop button was pressed. I also asked the applicant to add wire numbers, device 


designators and relay contact cross references. 




http://www.controldesign.com/category/?categoryid=37
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If you want to see the circuit, let me know as it was a great test. It clearly showed experience 


with control design and the applicant’s attention to detail—just not many applicants showed 


much of either. The experienced designer forgot the wire numbers or cross references and the 


inexperienced designer used the eraser quite a bit, along with many other issues. 


Perhaps I'm asking too much and shouldn't expect an experienced control designer or recent EE 


graduate to draw a hardwired start/stop circuit. If they could not draw a simple hardwired 


start/stop circuit, I didn't think they could program one either. However, many of the applicants, 


who couldn't draw it, stated on their resumes that they were experienced PLC programmers, as 


well. This highlighted concerns about the applicant’s ability to program a PLC step sequence. 


In many cases they didn't make the connection that they were the same logical circuit—one was 


just hardwired and the other programmed. If they didn't know the answer, I showed them how to 


do it with the thought that I could develop the engineer as needed, if the candidate was interested 


in learning. It's clear that even with a four-year degree in engineering, the interviewees didn't 


have any practical experience. Examples of the problems this causes are endless, so engineering 


talent must be developed. 


"Developing and training an engineer is a good thing although the results will vary," notes Otto 


Fest, president at Otek. Fest thinks the real technical education starts after graduation. "College 


graduates are expecting $60,000 to $100,000 per year but are not worth that without experience. 


Industry needs to invest two or three years’ time and effort to teach them what schools don't. 


And then, once trained in this hands-on work, the engineer may leave for greener pastures." 


Fest does offer up what I think is an excellent solution—mandatory internships. "It works great 


for doctors, and it works great for German college students,” says Fest. “Maybe we can learn 


from that. From my experience, we need to improve the technical education of graduates. 


Although college is a great start, it is not enough, as real life doesn't happen in college." 


Colleges in Germany, arguably the world’s top technical source, have mandatory internships. In 


the United States, college has more to do with the “college experience,” but in Germany it's more 


about the classroom and hands-on experience. Forget the dorm room, student union and the 


parties. To graduate in Germany, you must read, write, understand and express yourself in three 


languages and have three or more six-month internships in foreign countries related to your 


major. That sounds like an excellent way to get the technical education needed for industry. 


If you don't agree, I'm good with that. However, consider the mechanical engineer who 


graduated at the top of his class from a leading engineering university but had no practical, 


hands-on experience. This intelligent engineer climbed a cooling tower under construction, in the 


hot sun, and spent several hours removing bolts, turning over a split washer and re-tightening the 


bolts because he was told the split lock washers, located under the bolts we marked, were upside 


down. Yes, we probably shouldn't have done this on-the-job training, but we did stop him after a 


few hours of hard work and he now knows what a split lock washer is, in addition to the thermal 


dynamics he aced in college. 


Nothing beats experience. If you are an engineer and don't have the experience, go get it. Wire 


some control panels and design some electrical schematics. It also pays to find a mentor to help 


you get there. 




http://www.controldesign.com/category/?categoryid=30



http://www.otekcorp.com/
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This brings me to a future article I’ll be writing on mentoring and the mentored. A mentor 


benefits both young and old. As a young engineer, working with a mentor is a great opportunity 


to improve productivity and the results of your next control-design project. I've done both, but I 


would love to hear some of your comments on that subject. 


None of these comments are about politics. Let’s stay away from that; they are about control 


design for machine builders and include a few of the many ways to "re-manufacture America." 


I'd like to help re-manufacture America and hope industry does, also. If you cannot get it built in 


the United States, where are you going to go? My least favorite, but a popular option for others, 


is to go to China. They happen to be copying, which they are good at, the German educational 


requirements and flooding the world with technical students. Seems like the smart thing to do. 


Do you know how to start/stop? 
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