
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

5 homeworks in EET2410 Programmable Controller Fmtl
[image: profile]
mustafa88
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

chap5_s.pdf

Home>Engineering homework help>Electrical Engineering homework help>5 homeworks in EET2410 Programmable Controller Fmtl

 Ch. 5 Control Task Basics 1

Chapter 5 Control Task Basics

Modeling the Control Task

Most verbal descriptions of a technical task are not effective in their scope and are unreliable and

not clear-cut. A technical sketch, on the other hand, is reliable but lacks description of the

human and therefore may miss important details. Several approaches are the usual best approach

to describing a process to be programmed. All these types of charts, descriptions, sketches, etc

are best in describing the engineering model. Even a mathematical equation is acceptable to help

the process.

The engineering model must be complete and exact. What is described must work in all

circumstances and under all conditions and produce a safe result (that also, in this world, must

make a profit).

A description of the engineering process may be described as follows:

Input (from customer) Phases Activities Output (to customer)

Inquiry Analysis
Problem Analysis

Requirement Analysis
Cost Calculation

Quotation

Order Design
Requirements

Definition/Design
Construction
Documents

Approval of Design
Documents

Implementation
Realization,

Production including
testing

Product

Delivery/Commissioning Installation
Erection in
operational

environment
Useable Facility

Acceptance
Commitment

Operation Service Customer benefits

 Table 5-1 The Engineering Process

General steps in Logic/Control Engineering

1. Analysis of problem – getting a thorough understanding of the task, analyze the
behavior/function of the system

2. Design the Solution
a. Hardware
b. Software – construct a model of the system which should be more precise as

verbal description (formal), a graphical representation of system solution,

independent from any technical implementation, allowing communication

between control and mechanical engineers

3. Implementation – just work, no creativity required (programmer shouldn’t be artist)
4. Test
5. Start up in Operational Environment

 Ch. 5 Control Task Basics 2

Several methods exist to describe a technical task. Some are more closely linked to the technical

implementation such as Ladder Logic, Function Block Diagram, and a procedural language such

as C or C++. It is always advisable to start with a drawing of the process with the inputs and

outputs shown. A formal drawing may be prepared - referred to as a P&ID - to describe a

process or an informal drawing such as the one below may be used.

The Juice Condenser

V-2

High Level

Half Level

V-1

Temperature Sw

Agitator

Heat

Start

Done/Ready

Fig. 5-1 The Juice Maker

A description of the above process is as follows:

For saving transportation cost for apple juice, the juice is condensed in a process of evaporation.

The water is evaporated in the tank using heat. The process of the process includes the following

steps:

1. Operator pushes the start pushbutton.

2. Valve V-2 opens and fills to the high level switch and then closes.
3. Heating occurs with the heat element on and stays on until the level reaches the half level

or the temperature rises above 80
o
C. The temperature switch turns on when the temp

reaches 80
o
C and turns off when the switch falls below 80

o
C.

4. Heating is enabled by the high level switch on and the agitator is always on as long as the
half level switch is satisfied.

5. When the half level switch is not satisfied, the condensing process terminates and the
tank empties through V-1. After the tank starts emptying, 30 seconds is timed and the

tank is assumed to be emptied. The Done/Ready light is turned on and the next cycle is

allowed via the Start button.

 Ch. 5 Control Task Basics 3

Timing diagrams may be used to describe the process. The drawing below is of the heat cycle

once the vessel has been filled to high level until the condensate has been reduced to the middle

level.

Heat

Heat On

Heat Off

time
Level higher

than Half

Level Sw

Temp less

than 80
o
C

 Fig. 5-2 Use of Timing Diagrams

Out of the verbal description, it is not clear whether the start button should be allowed to start an

operation even though the tank is not empty. This is an error in the program if the condensed or

partially condensed juice is not to be allowed to mix with fresh juice.

The use of Boolean or ladder logic expressions may aid or visualization of the process. For

example, to fill the tank, V-2 must turn on. An expression for V-2 is:

V-2 = Start * “Done/Ready” * not High Level + (V-2 * not High Level)

Analysis of the switches must also occur. If a wire were to break, what would happen? Would

the vessel overflow? Would the vessel “boil dry”? Questions such as these should be asked and

the type of switch or control element specified accordingly.

A table for inputs and outputs should be created identifying each input (sensor) and output

(actuator). The Function/State of each should be defined and a Signal Assignment must be

given. The assignment is usually “1” unless the device is a device that is a device primarily

concerned with stopping the process. Usually these devices are normally closed and open when

exceeded. This may pertain to level, process/run or other stopping criterion. These tables are

shown below:

Sensor Function/State Signal Assignment

Start Button Start 1

High Level Switch Level exceeded 0

Half Level Switch Level exceeded 1

Temperature Switch 80
o

C exceeded 0

 Table 5-2a Input Definitions

 Ch. 5 Control Task Basics 4

Actuator Function/State Signal Assignment

Agitator motor Stirring/running 1

Fill Valve V-2 Fill tank 1

Flush Valve V-1 Empty tank 1

Heat Heat juice 1

Done/Ready Indicator Illuminated 1

 Table 5-2b Output Definitions

After designing the states for the inputs and outputs, care must be taken to properly implement

the switch and control actuator properly. Programs and wiring must be implemented with the

correct condition to turn on or off each device.

Turning our attention to the various devices to be programmed, look first at the “Done/Ready”

light (L1).

A boolean equation for this light could be:

not L1 = V-1 + Half + V-2

Using Boolean logic transfer function, DeMorgan’s theorem,

L1 = not V-1 * not Half Level * not V-2

Timing Chart for various functions of Juice Condenser:

Done/Ready

time

V-1
Empty Valve

V-2
Fill Valve

Half Level

Tank full

Tank empty

30 sec

level at full

level half full

Fig. 5-3 Analyzing the Timing Diagram

 Ch. 5 Control Task Basics 5

An expression for the Done/Ready indicator is as follows (in FBD):

&

V-2 Fill Valve

Half Level

V-1 Empty Valve

Done/Ready

indicator

The heater can be expressed as follows:

&
Half level

Temp < 80

Heat

and the agitator motor as:

Agitator1Half level

For the heat contactor, the hysteresis of the temperature sensor can be exploited. If this is not the

case, a time delay would be needed to turn on and off the heat and avoid an on-off-on-off chatter

that would pre-maturely fatigue the contactor and cause a fault.

The fill function can be programmed as follows:

V-2 = Start PB * Done/Ready* not High Level + (V-2 * not High Level)

&

Start

Done/

Ready

High

Level

>=

&
High

Level

V-2 Fill Valve

 Fig. 5-4 FBD Logic for Fill Valve

Care must be taken when plotting timing diagrams to not imply a signal that can feed back on

itself. While hard to understand, when such a circuit is implemented, it tends to not ever turn off

but perpetually turn on and off at will. Every means should be used to eliminate such circuits.

 Ch. 5 Control Task Basics 6

Time delays are a good way to circumvent such bad design.

Diagnostics and Error Handling

Diagnostics and error handling may be programmed in conjunction with the logic controlling the

action of the process. For example, the level can never be above the high level switch but not at

the middle level. This is not possible. But, the switches in fact may be in this position. The

programmer may choose to add this logic to the control program and if a failure occurs, shut

down other control logic.

Error monitoring methods can be categorized. Two main categories of diagnostic monitoring

are:

Pair Monitoring

Time Monitoring

Pair monitoring has to do with combinations that are impossible to naturally occur but should be

monitored. Time monitoring gives the process enough time for an action to occur and then shut

off. The period of time should exceed any normal time for a particular action but should not be

so long that a great deal of damage could occur. Judgment should be used for these times.

For the process above, the following table lists several diagnostic examples:

Fault Indicator Realization of Monitoring Monitoring Category Possible Faults

Level above
high but not at

middle level
Logic statement for: Pair Monitoring

Broken wire at middle
level, hanging sensor

at high level

Fill valve V1 too
long open

Timer Time Monitoring

Broken wire at V1,
V1 damaged,

High level fault
No juice

Temp too long
below 80

Timer Time Monitoring
Heater fault,

Wire fault

Temp too long
above 80

Timer Time Monitoring
Wire fault, welded
contacts on heater

relay

 Table 5-3 Types of Diagnostics

Later in the text, more examples of diagnostic programming will be introduced. Safety circuits

will be discussed as well and methods for programming safe circuits will be introduced, both

from an Allen-Bradley point of view as well as from Siemens.

We need to also discuss the various addressing methods used by the PLC manufacturers. Some

of the addressing for Siemens as well as Allen- Bradley will be described.

 Ch. 5 Control Task Basics 7

Siemens Step 7 Basic Addressing

Memory Management:

The CPU provides the following memory areas to store the user program, data and configuration:

 Load memory is non-volatile storage for the user program, data and configuration.
When a project is downloaded to the CPU, it is first stored in the Load memory area.

This area is located either in a memory card (if present) or in the CPU. This non-volatile

memory area is maintained through a power loss. The memory card supports a larger

storage space than that built-in to the CPU.

 Work memory RAM is volatile storage for some elements of the user project while
executing the user program. To improve system performance, the CPU copies some

elements of the project from load memory into work memory. This volatile area is lost

when power is removed, and is restored by the CPU when power is restored.

 Retentive memory is non-volatile storage for a limited quantity of work memory values.
The retentive memory area is used to store the values of selected user memory locations

during power loss. When a power down occurs, the CPU by design has enough hold-up

time to retain the values of a limited number of specified locations. These retentive

values are then restored upon power-up.

To view the memory usage for the current project, right-click on the CPU and choose

“Resources”. To view the memory usage for the current PLC, double-click “Online and

diagnostics” in the tree, expand “Diagnostics” and choose “Memory”.

Several options are available for storing data during execution of the user program:

1. Memory locations including (I), outputs (Q), bit memory (M), data block (DB), and local
or temporary memory (L). User programs may read or write to any of these locations.

2. Data block (DB) locations store data for code blocks. Data stored in a DB is not deleted
when execution of the associated program block ends. Two categories exist:

a. Global DB: data usable by other blocks

b. Instance DB: data usable only by a specific FB

3. Temporary memory: This is local memory (L) that is allocated when a code block is
called and is lost after the block ends. This memory is reallocated to other blocks as

needed.

4. Referenced addresses such as I and Q which access specific addresses in the processor’s
image. To access the input for an immediate read, include :P with the address. For

example, I0.3 is read at the beginning of the scan while I0.3:P is read immediately.

 Ch. 5 Control Task Basics 8

Siemens Byte Address Format

Word and bit address can be used for addresses in Siemens’ processors. With the new 1200

processor, the TIA portal supports symbolic programming. The following addressing scheme is

used only if desired for a specific reason. Data can be accessed in any of the memory areas (I, Q,

M, DB and L) as byte, word or double word using this format. If a symbol uses 8 bits, use the B

format. If two bytes are used, use the W format. If 4 bytes are used, use the D format.

7 6 5 4 3 2 1 0

0

1

2

3

4

5

M2.5

x

Memory

area

identifier

Byte

Bit

MB0

MW2
MD2

A review of addresses for the S7-1200:

Type Description Notation Example

Process Image output The program writes values from the
process image output table to output
modules at the beginning of scan

Q
QB
QW
QD

Q0.0
QB2

Process Image Input The program writes input values from
the input modules and saves them in a
process image input table at beginning
of scan

I
IB
IW
ID

I0.0

Bit Memory This is storage for internal memory M
MB
MW
MD

M0.0

Data Block Data block storage DBX
DBB
DBW
DBD

Local Data Temporary storage of block L
LB
LW
LD

I/O Immediate Direct access/immediate read or write <tag>:P

 Table 5-4 S7-1200 Memory Table Types

 Ch. 5 Control Task Basics 9

Addressing the I/O of the Siemens 1214C Processor

1. CPU input bits are addressed from I0.0 to I0.7 and I1.0 to I1.5 (14 points total)

2. CPU output bits are addressed from Q0.0 to Q0.7 and Q1.0 to Q1.1 (10 total points)
3. CPU analog inputs are addressed by words IW64 and IW66 (two analog points).

Data Types for the S7-1200:

Data type Size

Bool 1 bit

Byte 8 bits

Word 16 bits

DWord 32 bits

Char 8 bits

Sint (short integer) 8 bits (-128 to 127)

USInt (unsigned short integer) 8 bits (0 to 255)

Int (integer) 16 bits (-32768 to 32767)

UInt (unsigned integer) 16 bits (0 to 65535

Dint (double integer) 32 bit (-2,147,483,68 to 2,147,483,647)

UDInt (unsigned double integer) 32 bit (0 to 4,294,967,295)

Real (real) 32 bit (+/- 1.18 x 10
-38

 to +/- 3.40x 10
38

)

LReal (long real) 64 bits (+/- 2.23 x 10
-308

 to +/- 1.79x 10
308

)

Time (time) Defined later

String (character string) Variable

DTL (data and time long) Defined later

 Table 5-5 S7-1200 Data Types

For example, the addresses for inputs on the S7-1200 are shown below. Typical addresses are

included. Fourteen points in all are addressable:

1M .0 .1 .2 .3 .4 .5 .6 .7 .0 .1 .2 .3 .4 .5

24

VDC

I0.0 I0.4 I1.0 I1.5

Outputs are shown in a similar fashion:

 3L 3M .0 .1 .2 .3 .4 .5 .6 .7 .0 .1

Q0.0 Q0.4 Q1.0

24

VDC

Fig. 5-5a Input Wiring

Fig. 5-5b Output Wiring

 Ch. 5 Control Task Basics 10

Configuration of tags is required. To configure a Boolean input, choose Bool and I. For address,

allow the program to assign the next address or you may choose a specific address manually:

 Fig. 5-6 Addressing a Bool

The address can be changed in the Operand type box. I represents Input, Q represents Output,

and M represents internal memory. Internal memory may be designated as Bool, Byte, Word,

etc.

Fig. 5-7 Choosing the Operand Identifier

 Ch. 5 Control Task Basics 11

The contact can be addressed by right-click access to the contact when being programmed. An

internal tag address is obtained by accessing M0.0, M0.1, M0.2 through the first byte, then M1.0,

M1.1, etc.

 Fig. 5-8 Defining the Tag

The address is automatically assigned if not chosen by the programmer.

 Fig. 5-9 Completing a Tag’s Address

Addition of a second contact automatically allocates the next bit in Word 0, M0.1.

 Ch. 5 Control Task Basics 12

Fig. 5-10 Bit Addresses

Addition of an instruction requiring byte-length instructions shows the address assignment. Byte

and word assignment starts with an even byte address. The following instruction shows a

compare statement with the byte MB2 compared with MB3.

Fig. 5-11a Addition of Byte and Word

Addressing

 Programming of the instruction shows the designation of Data type as SInt and the Section as

Global Memory.

Fig. 5-11b Global Memory

Other Siemens address examples will be examined later in the text.

 Ch. 5 Control Task Basics 13

Allen-Bradley Addressing

Next we examine the addressing of Allen-Bradley. The SLC PLC as well as the PLC-5 shared a

common addressing structure that will be explained next. The addressing grouped a type of data

in a ‘File’. These files were then accessed by program statements similar to Siemens. The bytes

of logic could be addressed in various ways but programmers were ‘encouraged’ to address a

type of data for a particular instruction. For example, a byte or word could be addressed as a

complete entity or individually as bits. This architecture still carries over with the newer Allen-

Bradley architecture as well as with the Siemens architecture. A common feature is the ability to

access a word of data as either an entire word or as individual bits. The RSLogix 5000 family of

processors will be discussed in a later section.

A-B’s RSLogix500 Addressing

Data Table Layout of the SLC Processors is shown below:

 Fig. 5-12 Data Table Lay-out

Identifies Data Files for SLC

Processors

 Ch. 5 Control Task Basics 14

Data Files in the System Tree lists files available for the MicroLogix controller.

 O0 - Output
 I1 - Input
 S2 - Status
 B3 - Binary
 T4 - Timer
 C5 - Counter
 R6 - Control
 N7 - Integer
 F8 - Floating Point
 ST

Each of the file types may be displayed by double-clicking on the file icon.

 Fig. 5-13 Example of Output Data File

Double click on the O0 – Output icon. The output file for the MicroLogix 1000 is displayed.

Notice the addresses:

 O:0.0/0 first output (Output 0)
 O:0.0/1 second output (Output 1)
 … …
 … …
 O:0.0/15 last output (Output 15)

When referencing an output in a program, set the appropriate bit in this table by turning on either

a coil using the OTE coil or OTL latch coil.

Double-clicking the Input file yields similar results with the Input file. Notice addresses are

displayed on the MicroLogix controller for the appropriate input and output.

 Ch. 5 Control Task Basics 15

O:0/0

 Fig. 5-14 Coil in Program Energized

 Fig. 5-15 Example of Status Data File

Double click on S2 – Status File Icon. The Status File for the MicroLogix 1000 is displayed.

Notice the Errors Tab. If the processor faults, the error tab shows the reason for the fault.

The Status File is laid out using addresses starting with “S”. For example, S:1/15 is the address

of the first pass bit. The first pass bit may be used in program control to initialize programs that

need to be set to a particular condition as the processor first turns on (to run mode) or as the

processor recovers after a power interruption.

The index register is accessed using the word S:24. Indexing will be discussed in a later chapter.

Other words and bits may also be accessed using the ‘S’ table. A complete list is found in one of

the appendices of the AB SLC Reference Manual. Status tables vary from processor to

processor, with the more powerful processors having the more sophisticated status table layouts.

When output coil O:0/0 is on, turns
on bit in Output Table above

 Ch. 5 Control Task Basics 16

 Fig. 5-16 Example of Binary Data File

Double click on B3 – Binary File Icon. The Binary File for the MicroLogix 1000 is displayed.

The Binary File is one of two files storing integers or bits. The other table is the Integer (N7)

File. Binary Files are to be used primarily as bit storage tables. They may, however, be used to

store numbers. Integer Files are to be used primarily as integer storage tables. Integer files may,

however, be used to store bit information.

To enter bit information as an address in an instruction, enter:

 B3:0/0 or B3/0

The bits are numbered sequentially starting with 0 and ranging the entire length of the table.

Enter bits in either format for the B3 file:

 B3:0/0 or B3/0
 B3:0/15 or B3/15
 B3:1/0 or B3/16
 B3:1/15 or B3/31
 B3:2/0 or B3/32
 B3:2/15 or B3/47

 Ch. 5 Control Task Basics 17

Example of Word/Bit and /Bit addressing in B3:

B3:x/x:

B3:0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B3:1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B3:2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 B3:2/11 (word/bit format)

equal to:

B3/

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

 B3/43 (/bit format)

The example of B3:2/11 is equivalent to B3/43. As can be seen, the word/bit address is equal to

the bit address for the first word. Then the bit address adds 16 for each word down the table.

Example exercise of finding a Word/bit or /bit address:

Find the bit address equivalent to B3:4/12

 Solution:

Notice that for each 16 bit word, the displacement increases by 16 for the bit address. So,

for word 4, add 4*16 (=64) to the bit address (12). The result is 4*16 + 12 or 64 + 12 =

B3/76

 Ch. 5 Control Task Basics 18

 Fig. 5-17 Example of Timer Data File

Double click on T4 – Timer File Icon. The Timer File for the MicroLogix 1000 is displayed.

Timers, Counters, and Control Files are similar in that each is used to hold the information

pertaining to the function it supports. For instance T4:0 is the table of information used to

support the timer entered in the program using the T4:0 address. Only one timer may be used for

each address.

Data useful to timers are the pre-set time, accumulated time, and coils reporting the status of the

timer enabled, timer timing, or timing done.

Bits used in the timer may be used in programming. For instance,

T4:0/TT

will conduct when the timer T4:0 is timing but not at preset. Contacts from timers are used to

control functions in which timing functions are needed. Presets and Accumulated values may be

accessed using the format: T4:0.ACC, T4:0.PRE

 Ch. 5 Control Task Basics 19

 Fig. 5-18 Example of Counter Data File

Double click on C5 – Counter File Icon. The Counter File for the MicroLogix 1000 is displayed.

Timers, Counters, and Control Files are similar in that each is used to hold the information

pertaining to the function it supports. For instance C5:0 is the table of information used to

support the counter entered in the program using the C5:0 address. While only one timer may be

used for each address, both an up-counter and a down-counter may be used by one C5 address.

Data useful to counters are the preset count, the accumulated count, and coils reporting the status

of the counter counting up, counting down, done, overflow, underflow or update accumulator

(used in high speed counter applications only).

Bits used in the counter may be used in programming. For instance,

C5:0/DN

will conduct when the counter C5:0 is counted to preset. Contacts from counters are used to

control functions in which counting functions are needed. Presets and Accumulated values may

be accessed using the format: C5:0.ACC, C5:0.PRE

 Ch. 5 Control Task Basics 20

 Fig. 5-19 Example of Control Data File

Double click on R6 – Control File Icon. The Control File for the MicroLogix 1000 is displayed.

Timers, Counters, and Control Files are similar in that each is used to hold the information

pertaining to the function it supports. For instance R6:0 is the table of information used to

support the Control entered in the program using the R6:0 address. Control functions are used in

a number of different instructions. Most instructions are advanced instructions and are not used

in the lower level course.

Data useful to control blocks includes length, pointer position and status bits for instructions

such as shift registers, sequencers, and ASCII write.

Bits used in the counter may be used in programming. For instance,

R6:0/EN

will conduct when the Control R6:0 is enabled. Contacts from Control Blocks are used to

control instructions in which the Control function is required.

 Ch. 5 Control Task Basics 21

 Fig. 5-20 Example of Integer Data File

Double click on N7 – Integer File Icon. The Integer File for the MicroLogix 1000 is displayed.

The Integer File is one of two files storing integers or bits. The other file is the Binary (B3) File.

Integer Files are to be used primarily as word storage tables. It may, however, be used to store

individual bits. Binary files are to be used primarily as bit storage tables. Binary files may,

however, be used to store integer information.

To enter bit information as an address in an instruction, enter:

 N7:0/0 (N7/0 is not allowed in bit only mode as is B3 bit information.)

To enter word length information as an address in an instruction, enter:

 N7:0

Addresses range from N7:0 to N7:105 in the table above. Notice the Radix in the lower right-

hand corner of the display. To view the table in binary format, change the radix to binary. Other

choices are hexadecimal/BCD, octal, decimal and ASCII.

Word length for N7 and B3 files is 16 bit length.

 Ch. 5 Control Task Basics 22

 Fig. 5-21 Example of Creation Screen for New Data File

While the MicroLogix 1000 does not allow the addition of other data files, larger processors do

allow the addition of data files and the expansion of existing data files. For instance, with the

SLC 5/03, by right-clicking on Data Files, and selecting New, the table in Fig. 5-21 appears.

With it, the user is prompted to enter the name and type of a new data file. With the SLC

processors, 255 data files is the upper limit.

 Ch. 5 Control Task Basics 23

A-B’s RSLogix5000 Addressing

RSLogix 5000 gives a view of the processor similar to RSLogix or RSLoigx 500. The view of

the ladder programming area is similar as well as the general layout of the system tree at left.

 Fig. 5-22 Example RSLogix 5000 Screen

Notice that data files are not saved by type as in RSLogix 500 but by scope. They may be stored

as Controller Tags or as Program Tags. Program tags are used only in the program MainRoutine

or one of its subroutines. If only one program is created under Tasks, then the program tags

become the database for the entire project except for data tags associated with inputs and outputs

(I/O).

 Ch. 5 Control Task Basics 24

Creation of program tags is accomplished by typing a name for each tag. Tags are entered in the

Program Tags menu under the MainProgram header.

 Fig. 5-23 Creation in Main Program

In the example above, tags test1, test2, and test3 are being created for use in the MainProgram tag

database. These tags must be created before being used in the logic of MainRoutine or a

subroutine of MainRoutine. Names may have alpha or numeric content. No spaces are allowed.

Very long names may be created. However, consideration must be taken of the HMI program to

be interfaced to the processor. If the HMI program limits length to 30 characters, the program

tags should also be limited to 30 characters. Some popular brands of HMI limit the tag to

approximately 30 characters.

The task of entering database points takes time and should be planned before starting. A popular

approach to tag generation incorporates using Excel to generate tags and then import the tags

from a CSV (comma-separated-variable) file. Tags may also be exported from RSLogix 5000 to

Excel for modification and editing.

 Ch. 5 Control Task Basics 25

Creation of programs is similar to RSLogix 500 (SLC) or RSLogix (PLC-5). The program

below shows a simple seal circuit using the three Boolean tags created earlier.

 Fig. 5-24 Program Creation in MainRoutine

Once tags are created, they may be used in a program. From the figure above, tags test1, test2,

and test3 were configured as boolean tags and can be used as discrete bits in logic. This program

shows a simple seal circuit using the three bits. The three bits are similar to the SLC architecture

except that names in RSLogix and RSLogix 500 included a fixed name such as B3:x/y and an

attached comment (if desired). Naming of bits as shown above is left to the creativity of the

programmer. If it is desired that the name to be used is B3_3_4, then that tag must be created

and programmed. It is better, however, to use names that have meaning to the process. The

naming of bits to use in a ladder program should be done carefully since others will probably be

reading and troubleshooting the program at some future date.

 Ch. 5 Control Task Basics 26

A great variety exists in the new data selection table. As can be seen in Fig. 5-25 below, the

number of data types has been greatly expanded.

 Fig. 5-25 Selection Table for Tag Name

Data selection is not limited to a few common data types. From the manuals listed for

ControlLogix and CompactLogix processors is a new area for PLC involvement - Motion

Instructions. Data types for motion instructions plus a more advanced set of process control

instructions are available.

 Ch. 5 Control Task Basics 27

Timers and counters are similar to the SLC architecture. The figure shown below shows an

expanded view of the timer variable time1.

 Fig. 5-26 Timer Data Type Expanded

For timers and counters, all addresses are created with the original entry. The timer time1 was

created as a timer variable. Variables created in the database with the creation of time1 include:

time1.PRE time1 preset value

time1.ACC time1accumulated value

time1.EN time1 Enable bit

time1.TT time1 Timer Timing bit

time1.DN time1 Done bit

Other bits are used in non-ladder programming routines. Other languages such as Function

Block Diagram (FBD) use the other bits listed (.FS, .LS, .OV, and .ER).

 Ch. 5 Control Task Basics 28

Integers are created in similar fashion to boolean and other data types. The figure below shows

an integer variable created as integ1 and displayed as both an integer (int datatype) and as 16

discrete boolean bits. The data can be used in either form.

 Fig. 5-27 Expanded Integer Word

Addressing is either in word or bit format. The table above displays an integer integ1 as either a

word or as 16 discrete bits. The bits may be used to turn on contact closures if required. For

example:

integ1.10

Or the word integ1 may be used in a math statement:

ADD

Integ1

+ 1

=

Integ1

This statement adds 1 to the integer integ1 each time the block is executed.

 Ch. 5 Control Task Basics 29

Floating point or REAL numbers may also be specified. The window below shows the creation

of a real variable real1.

 Fig. 5-28a Real/Floating Point Number

Real or floating point variables are used to represent signed numbers in most math calculations.

They are useful in calculations in that overflow is very rare and accuracy is very good. Notice

that the choice INT or REAL allows the use of non-zero dimensioned arrays. This choice allows

the use of tables and instructions that store numbers based on an index.

 Fig. 5-28b Table of Real Numbers

This table shows the array of real numbers stored as real1[0] through real1[19]. Data may be

manipulated using a double integer as the pointer to reference a specific entry in the table.

 Ch. 5 Control Task Basics 30

The window below shows the creation of a subroutine. Notice that two subroutines (sub1 and

sub2) exist and that a new subroutine (sub3) is being created in this screen. Notice that with the

SLC architecture, ladder programs were referenced as Lad2, Lad3, etc.

 Fig. 5-29 Creating Subroutines

In the program MainProgram, two subroutines are already created and a third routine sub3 is

presently being added. Notice the box Type. There may be only one choice, Ladder Diagram, or

a number of different choices if the software is enabled to allow programming in another

language.

Total programming languages for the PLC portion of the Logix 5000 family include:

- Relay Ladder
- Structured Text
- Function Block
- Sequential Function Chart

Each language has advantages that may be exploited in programming a subroutine. The relay

ladder subroutines must include a return block to end the subroutine and return to the calling

program. Other languages such as Function Block do not require the return block.

 Ch. 5 Control Task Basics 31

Inputs and outputs are added to the ControlLogix or CompactLogix processors by building the

table under I/O Configuration. Each card is either recognized by the software or added by hand.

The 16 point input card, 1769-IA16/A, has been added in slot [1] to the processor. Addressing

for the input is shown in the controller tags list at right in the figure.

 Fig. 5-30a Adding Inputs and Outputs

 Fig. 5-30b Programming I/O

 Fig. 5-30c Input Referenced

 Ch. 5 Control Task Basics 32

DeMorgan’s Theorem

We must continue development of the logic side of programming. From Digital Logic,

DeMorgan’s Theorem is studied and found useful to negate or invert Boolean and now ladder

logic. The three basic functions of DeMorgan’s Theorem are:

 a) Not(Not(X)) = X

 b) Not(X or Y) = Not(X) and Not(Y)

 c) Not(X and Y) = Not(X) or Not(Y)

These three functions relate directly to ladder logic in that the following apply in ladder logic:

 a)

A B

B C

 b)

A C

C D

B

A EB

A = C since Not(Not(A)) = A

Since Not((A or B)) = (Not A and Not B),
(D = E)

Fig. 5-31a DeMorgan Negation

Fig. 5-31b DeMorgan NOR

 Ch. 5 Control Task Basics 33

 c)

A E

C D

B

A CB

DeMorgan's Inversion Theorem is useful in relay logic when inverting logic without using a

relay coil. It is used especially when negative logic is desired for a program but the logic

becomes very complicated. It may be easier for the programmer to visualize positive logic and

invert the logic rather than working only with negative logic.

The following example shows the inversion principle at work. Notice the piecewise approach to

solving the problem left-to-right

Example: Invert the following ladder logic.

A

B

C

E

D F

 Fig. 5-32a Combination Ladder Diagram

Since Not((A or B)) = (Not A and
Not B),
(D = E)

Fig. 5-31c DeMorgan NAND

 Ch. 5 Control Task Basics 34

First notice that the circuit can be broken into two separate ‘and’ functions:

A

B

C

E

D F

and equals

Fig. 5-32b Using

DeMorgan Theorem

The negative of the left three contacts is:

Fig. 5-32c Using DeMorgan

Theorem

A

B

C

A B C

The negative of the two right contacts is:

Fig. 5-32d Using

DeMorgan Theorem

E

D D E

 Ch. 5 Control Task Basics 35

The two parts are combined as an or combination since the original function was anded together.

Fig. 5-32e Using DeMorgan

Theorem

A B C

D E

Thus the inverse of the original function may be found. Function inversion is an important

concept to practice and will help give experience writing ladder logic. Of course, the same

principles developed in Digital Logic can be applied, that is, convert the Ladder program to

Boolean, find the inverse using Boolean DeMorgan rules and then convert back to Ladder.

Either approach is acceptable.

Combination Ladder Logic

Examples of branches of ladder logic can be used to practice writing ladder logic. Combinations

of normally open and normally closed contacts in various configurations are shown.

Fig. 5-33 Converting Ladder

to Boolean

A B C

D

This is read: ((Not A and B) or D) and (Not C)

Another example of converting Ladder to Boolean:

Fig. 5-34 Converting Ladder

to Boolean

A

B

D

C

This is read: ((A or B) and (Not C)) or D:

 Ch. 5 Control Task Basics 36

If A, B, C, and D are used to represent real-life components, it could be read :

((Limit Switch 1 (A) or Limit Switch 2 (B)) and (Not Limit Switch3 (C)) or PushButton 4 (D))

Example: Converting Boolean to ladder logic:

Write the following Boolean statement in ladder logic:

A and (Not B) equal output C

Solution:

Fig. 5-35 Converting

Boolean to Ladder

A CB

Example:

Write the following Ladder logic in Boolean:

Fig. 5-36 Converting Ladder

to Boolean

B

D

A C E

Solution:

(Not A and (B or D) and Not C) equals output E

 Ch. 5 Control Task Basics 37

Evaluating State Tables

State tables are also an important concept in Boolean Logic. We evaluate the following rung of

logic for the state of output G for every state of the inputs A – F.

Fig. 5-37 Evaluating Truth

or State Table

B

E

A C G

D

F

Since there are six different input elements in this diagram, there are 2
6
 or 64 different states for

the inputs. The objective is to find the state of the output G for each condition of A through F.

Notice that large groups of outputs can be filled in with the knowledge that the output G will be

off as long as B is on.

 A B C D E F Output G

0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 0
3 0 0 0 0 1 1
4 0 0 0 1 0 0
5 0 0 0 1 0 1
6 0 0 0 1 1 0
7 0 0 0 1 1 1
8 0 0 1 0 0 0
9 0 0 1 0 0 1

10 0 0 1 0 1 0
11 0 0 1 0 1 1
12 0 0 1 1 0 0
13 0 0 1 1 0 1
14 0 0 1 1 1 0
15 0 0 1 1 1 1
16 0 1 0 0 0 0
17 0 1 0 0 0 1
18 0 1 0 0 1 0
19 0 1 0 0 1 1
20 0 1 0 1 0 0
21 0 1 0 1 0 1
22 0 1 0 1 1 0
23 0 1 0 1 1 1
24 0 1 1 0 0 0
25 0 1 1 0 0 1
26 0 1 1 0 1 0
27 0 1 1 0 1 1
28 0 1 1 1 0 0
29 0 1 1 1 0 1
30 0 1 1 1 1 0
… …
60 1 1 1 1 0 0
61 1 1 1 1 0 1
62 1 1 1 1 1 0
63 1 1 1 1 1 1

Table 5-5 Example of

Truth or State Table

 Ch. 5 Control Task Basics 38

Solution of State Table Row 0:

Starting at row or state 0, all inputs are off:

Solution for row 0:

Since both A and D are 0 and A and D are normally open, the circuit does not conduct through

either A or D. If the circuit conducts past either A or D, however, the circuit would work since B

would conduct with B = 0 or off and C or F would conduct allowing G to turn on.

Fig. 5-38 Evaluation of

Ladder Rung

B

E

A C G

D

F

 A B C D E F Output G

0 0 0 0 0 0 0 0

As an exercise, fill in all 63 remaining entries of the table.

It is accepted practice that not all states are analyzed, especially when programming the Boolean

equation in Ladder or FBD.

Just a few states of a logic rung are usually all that are needed to correctly analyze a

circuit.

Save time by not constructing a State Table as an analysis tool. It is almost never done in the

analysis or troubleshooting of a program.

 Ch. 5 Control Task Basics 39

A Common Programming Error

Early programming efforts may lead to the following error:

 Fig. 5-39 Double Use of Coils

First the programmer enters the first rung to turn on the coil O:0/0. Then later the second rung is

also entered to turn on the same output O:0/0. This does not work! The scanning nature of the

program will turn on the first output as set by the conditions of rung 0. Then rung 1 is solved

and the same output is written over with conditions set by rung 1.

The general rule is: Last coil wins!

 Fig. 5-40 Solution of Double Coil Problem

The combination of the two rungs into one is required to allow both earlier rungs to work

properly. The concept of double-use of a coil will be discussed later and exceptions will appear

that allow its use. However, be careful! The concept of not double-using a coil is important in

all PLC programming including Allen-Bradley as well as Siemens.

 Ch. 5 Control Task Basics 40

An example problem will help with development of combinational logic. There are no memory

circuits in the problem. Design logic to control the process:

Problem Statement:

A car wash with two bays has a pump supplying water pressure to the spray heads. If both bays

are in use or if one bay requires a second set of heads for a tall truck, a second pump is required.

The Tall truck request is made via a selector switch for each bay. If both bays are in use with a

tall truck in one or both bays, a third pump is required.

Bay 1 Bay 2

Bay 1

in use

Bay 2

in use

 Tall

_Truck

Y N

Primary Pump

Second Pump

 Tall

_Truck

Y N

xo xo
Third Pump

Fig. 5-41 Car Wash

First to be completed are the definition tables:

Definition of Inputs: Table 5-6a

Sensor Function/State Signal Assignment

contact Bay 1 in use 1 (NO)

contact Bay 2 in use 1 (NO)

selector switch Tall Truck in Bay 1 1 (NO)

selector switch Tall Truck in Bay 2

 Ch. 5 Control Task Basics 41

Definition of Outputs: Table 5-6b

Actuator Function/State Signal Assignment

motor starter run pump 1 1

motor starter run pump 2 1

motor starter run pump 3 1

Write Boolean equations for the above:

(left as exercise)

Convert the Boolean equations to Ladder Logic:

First, picture the logic from what needs to be accomplished:

run pump 1

run pump 2

run pump 3

Then begin to formulate what is necessary to turn on each pump. If you can say the function,

then writing it is easy.

Say “to run pump 1, either bay 1 is in use or bay 2 is in use”. If you agree that this is what is

necessary to run the first pump, then picture the function in boolean or ladder:

(Bay 1 in use) + (Bay 2 in use) = run pump 1

Here “+” is read “or”. Next convert the Boolean statement to ladder logic as the following:

 Ch. 5 Control Task Basics 42

run pump 1Bay 1 in use

Bay 2 in use

Then, concentrate on pump 2 and describe all conditions necessary to turn on this pump. Go

back to the original problem statement to draw from:

“If both bays are in use or if one bay requires a second set of heads for a tall truck, a second

pump is required.”

Describe this statement in boolean and ladder:

((Bay 1 in use) * (Bay 2 in use)) + (Bay 1 in use)*(Tall truck in bay 1)+ (Bay 2 in use)*(Tall truck in
bay 2) = run pump 2

run pump 2Bay 1 in use Bay 2 in use

Bay 1 in use

Bay 2 in use

Tall Trk Bay 1

Tall Trk Bay 2

The third pump will be left as an exercise. Each input must be properly identified and addressed

as either an input from the wired input list or from the logic developed in the program. A-B and

Siemens require the addressing follow their convention for this. Internal logic may use names

that are may be the same as the other since a tag may be used with the user’s designation.

Programs may look very similar with internal logic used since the tags may be the same. It is up

to the programmer to choose names that are descriptive for the eventual user to be able to

understand quickly the logic.

 Ch. 5 Control Task Basics 43

Summary

This chapter begins the programming process. First, the decision as to an I/O list must be

defined. Then various statements are made that define the logic. If Boolean logic is used in the

process, the result is a program that eventually is translated to Ladder or FBD to incorporate into

the program. Addresses are assigned to the inputs, outputs and internal logic. If bit logic is used,

the tags are assigned “bool” as the type. Other types are discussed in later chapters.

The addressing of Siemens S7-1200, A-B SLC (RSLogix 500) and A-B Compact (RSLogix

5000) are discussed. The two that are used in the labs are S7-1200 and A-B Compact. The older

SLC architecture is used as a reference for those who may still need to maintain this system.

Logic statements are designed in ladder and analyzed. The analysis includes DeMorgan

negation. This method is used primarily to familiarize the student with ladder statements and

require the student to analyze the ladder statement in a logical manner. The student may first

convert the ladder to Boolean, negate the Boolean and then convert back or they may opt to

convert the ladder directly. Either approach is accepted.

Other examples show the conversion from Boolean to ladder and from ladder to Boolean. Truth

tables are also introduced but not encouraged. All these examples are designed to show the

student similarities between the Ladder (and FBD) logic developed in the PLC and the logic

from the student’s digital experiences.

This chapter began with an example of a juice maker. While the logic can be developed in this

chapter, it will emerge that the logic for the juice maker requires additional understanding of

memory circuits to complete the logic for this problem. That logic awaits the student in the next

chapter.

 Ch. 5 Control Task Basics 44

Exercises

1. A car wash with two bays has a pump supplying water pressure to the spray heads. If both
bays are in use or if one bay requires a second set of heads for a tall truck, a second pump is

required. The Tall truck request is made via a selector switch for each bay. If both bays are

in use with a tall truck in one or both bays, a third pump is required.

Bay 1 Bay 2

Bay 1

in use

Bay 2

in use

 Tall

_Truck

Y N

Primary Pump

Second Pump

 Tall

_Truck

Y N

xo xo
Third Pump

Fig. 5-41 Car Wash

Definition of Inputs: Table 5-6a

Sensor Function/State Signal Assignment

 Definition of Outputs: Table 5-6b

Actuator Function/State Signal Assignment

 Ch. 5 Control Task Basics 45

Write Boolean equations for the above:

Convert the Boolean equations to Ladder Logic:

2. A design change was noticed by the engineer who saw that the xo on the selector switch for

Bay 2’s Tall Truck Selector switch was really wired ox. Would this change affect the Input

Signal Assignment, Boolean equations, or ladder logic? If so, how?

3. Which pump of problem #1 will be on the most? Is this a good design? Describe how you
would change the design if you do not agree that this is a good design.

4. Develop a logic statement in Boolean, FBD and Ladder to turn on an output when switch X

and switch Y are energized or when switch Z is energized:

5. Develop a logic statement in Boolean, FBD and Ladder to turn on an output when switch U is

on or when only one of the two following is on: V energized, W energized.

6. Develop a logic statement in Boolean, FBD and Ladder to energize the engine start circuit
when the key is in the ignition, all (3) front-passenger seat belts are engaged (in which a

person is sitting), and all doors are closed (assume a 4-door car).

7. Use the following ladder rung to answer the following three questions:

B

E

A

C D

F

Fig. 5-42

a. Write the DeMorgan of the circuit above using ladder format.
b. Write the Boolean equivalent of the circuit above.
c. Create a truth table and find the state of F for each condition of A-E.

 Ch. 5 Control Task Basics 46

8. Use the following ladder rung to answer questions a and b of #7, above:

B

E

A

C D

F

Fig. 5-43

9. Use the following ladder rung to answer questions a and b of #5, above:

B

EA

C

D F

Fig. 5-44

Write as ladder logic the following Boolean expressions:

10. (a and not b and not c) equal output d

11. (a or not b) and (c or not d or not e) equal output f

12. (a or not b or not c or not d) and (not e or not f) and (not g or h) equal output j

13. (a or b) and c equal output d

14. Convert the following Allen-Bradley’s RSLogix 500’s B3: addresses from word/bit format to

bit format:

a. B3:0/2
b. B3:2/5
c. B3:10/9
d. B3:6/15

 Ch. 5 Control Task Basics 47

15. Convert the following B: addresses from bit format to word/bit format:

a. B3/20
b. B3/8
c. B3/56
d. B3/211

16. The attached buttons and coin slot sensors are part of an arcade game. Two games are in the

same arcade box. One is a cheap game and one is a good game. If the player inserts quarters

in any three of the four slots marked quarter 1 through quarter 4, and pushes the Request

Cheap button, the cheap game starts. If the player puts quarters in all four of the quarter

slots and pushes the Request Good button, the good game starts. Program rungs to energize

a coil for starting the cheap game and a coil for starting the good game. The cheap game

does not start if all four quarter slots are filled. Assume all state assignments for the slot

sensors and buttons are equal to 1.

Quarter 1

Quarter 2

Request

Cheap

Quarter 3

Quarter 4

Request

Good

(Qr_1)

(Qr_2)

(Qr_3)

(Qr_4)

(Req_C)

(Req_G)

Slot

Sensors

Push

Buttons

Start

Cheap

Game

Start

Good

Game

 Ch. 5 Control Task Basics 48

17. Write the logic necessary to turn on the Change light if 55 cents is required for a candy bar
and the rules similar to those of the lab are adhered to, that is, that 1, 2 or 3 coins can be ‘on’

when the request is pushed with the first is on before the second which is on before the third.

Be as complete as possible:

Quarter 1

Dime 2

Dime 3

Dime 1

Quarter 2

Request Change

 Ch. 5 Control Task Basics 49

Lab 5.1 The Coin Changer

Implement a program to control a coin changer. A coin changer is built to return change plus

dispense a $.35 candy bar. No more than three coins are to ever be used (There is no need to

count the number of coins entered). Coins to be used are dimes and quarters. Write a program

to accept or reject the sale based on the coins rendered. Coins rendered are checked by inputs on

using push buttons or selector switches when the Request Candy Bar button is pushed.

Assume dime 2 is not allowed until dime 1 is on. Assume dime 3 is not allowed until dime 2 is

on. That is, dimes enter by filling the slot for dime 1, then dime 2 and finally dime 3.

The same sequence is used for quarters.

Inputs are as follows:

Dime 1 Quarter 1

Dime 2 Quarter 2

 Fig. 5-45 Layout

 of I/O for Lab
Dime 3 Request

 Candy Bar

Outputs are as follows:

 Accept Change Reject

Accept turns on with the Request Candy Bar input and enough money entered.

Change turns on with the Request Candy Bar input and an excess of money.

Reject turns on with the Request Candy Bar input when no money or not enough money is entered.

Option 1: Change the price to $.45 for the candy bar.

Option 2: Change the price to $.55 for the candy bar. Here 4 coins may be used. (including 1

nickel)

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

