Student: Date: Time:	Instructor: Linda Gater Course: College Algebra-Gater XA Book: MML-CoCo: Martin-Gay	Assignment: Week 9 Chapter 9 Homework
1 line:	Prealgebra & Introductory Algebra, 3e	

- 1. If $f(x) = \sqrt{x}$ and g(x) = x + 8, find
 - **a.** (f+g)(x)

b. (f - g)(x)

 $\mathbf{c.} (\mathbf{f} \cdot \mathbf{g})(\mathbf{x})$

- $\mathbf{d.} \left(\frac{f}{g}\right)(x)$
- **a.** (f+g)(x) = [(Type an exact answer, using radicals as needed.)
- **b.** $(f-g)(x) = \bigcap$ (Type an exact answer, using radicals as needed.)
- **c.** $(f \cdot g)(x) = \bigcap$ (Type an exact answer, using radicals as needed.)
- **d.** $\left(\frac{f}{g}\right)(x) = \square$ (Type an exact answer, using radicals as needed.)
- 2. If $f(x) = x^2 6x + 2$ and g(x) = -2x, find the following composition.

$$(g \circ f)(-3)$$

$$(g \circ f)(-3) = \square$$

3. Determine whether the function is a one-to-one function. If it is one-to-one, list the inverse function by switching coordinates, or inputs and outputs.

$$f = \{(9,10), (4,6), (3,4), (8,7)\}$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

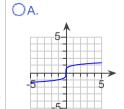
- \bigcirc A. The function f is one-to-one. The inverse $f^{-1} = \{ \bigcirc \}$. (Type ordered pairs. Use a comma to separate answers as needed.)
- OB. The function f is not one-to-one.

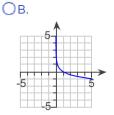
Studen	t:
Date:	
Time:	

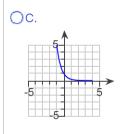
Instructor: Linda Gater Course: College Algebra-Gater XA Book: MML-CoCo: Martin-Gay

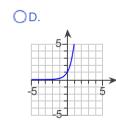
Prealgebra & Introductory Algebra, 3e

Assignment: Week 9 Chapter 9 Homework

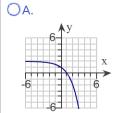

Given the one-to-one function $f(x) = x^3 + 3$, find the following. (Hint: You do not need to 4. find the equation for f^{-1} .)

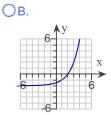

- **a.** f(1) **b.** $f^{-1}(4)$
- (Type an integer or a decimal.) a. f(1) =
- **b.** $f^{-1}(4) =$ (Type an integer or a decimal.)

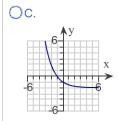

Graph the equation on paper, and then choose 5. the correct graph.

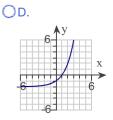

$$y = \left(\frac{1}{5}\right)^x$$

Choose the correct graph.






6. Graph the exponential function.


$$y = 2^x - 2$$

Choose the correct graph on the right.

T. (Instructor: Linda Gater Course: College Algebra-Gater XA Book: MML-CoCo: Martin-Gay Prealgebra & Introductory Algebra, 36		Assignment: Week 9 Chapter 9 Homework			
7.	Complete the table below using the exponential growth formula.					
	Original Amount	Growth Rate per Year	Number of Years,	Final Amount after x Years of Growth		
	12	35%	30			
	Original Amount	Growth Rate per Year	Number of Years,	Final Amount after x Years of Growth		
	12	35%	30			
	(Round to the	ne nearest whole num	ber as needed.)			
8.	Original	Decay Rate per	he exponential decay for Number of Years,	Final Amount after x		
	Amount	Year	X	Years of Decay		
	263,000	27%	24			
	Original Amount	Decay Rate per Year	Number of Years,	Final Amount after x Years of Decay		
	263,000	27%	24			
	(Round to the nearest whole number as needed.)					
9.	Write as an exponential equation. $\log_{10} 10,000 = 4$					
	The logarithm $log_{10}10,000 = 4$ written as an exponential equation is (Type an equation. Type your answer using exponential notation.)					
	(Type an eq	uation. Type your ans	swer using exponential	notation.)		
10.	Write as an exponential equation.					
	$\log_{5} \sqrt[5]{5} = \frac{1}{5}$					
	The logarithm $\log_5 \sqrt[5]{5} = \frac{1}{5}$ written as an exponential equation is					
	(TC	uation. Type your ans				

T - 4	Cour Book	uctor: Linda Gater se: College Algebra-Gater XA : MML-CoCo: Martin-Gay gebra & Introductory Algebra, 3e	Assignment: Week 9 Chapter 9 Homework		
11.	Write the sum as a single logarithm. Assume that variables represent positive numbers.				
	$\log_{4}x + \log_{4}(x+2)$				
	$\log_4 x + \log_4 (x+2) =$ (Simplify your answer.)				
12.	Write the difference as a single logarithm.				
	$\log_{3} 30 - \log_{3} 5$				
	$\log_3 30 - \log_3 5 = $ (Simplify your answer.)				
13.	Use a calculator to find the r	natural logarithm.			
	ln 57				
	In 57 ≈ (Simplify your answer. Type needed.)	e an integer or a decimal roun	ded to four decimal places as		
14.	Use a calculator to find the r	natural logarithm.			
	ln 18				
	In 18 ≈ (Simplify your answer. Type needed.)	e an integer or a decimal roun	ded to four decimal places as		
15.	Solve the equation. Give an	exact solution and a four-deci	mal-place approximation.		
	$3^{2x} = 26.7$				
	The exact solution set is {	}.			
	The approximate solution set is { }. (Round to four decimal places as needed.)				