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Paris’s EuroDisncy, Tokyo’s Disncy Japan, and the U.S.’s Disncy World and Disneyland all have one feature in common—Ilong lines
and scemingly cndless waits. However, Disncy is onc of the world’s Icading companics in the scicntific analysis of queuing theory. It
analyzes queuing behaviors and can predict which rides will draw what length crowds. To keep visitors happy, Disney makes lines
appear to be constantly moving forward, entertains people while they wait, and posts signs telling visitors how many minutes until they
reach each ride.

Queuing Theory

Quening theory

A body of knowledge about waiting lines.

‘Waiting line (queue)

Ttems or people in a line awaiting scrvice.

The body of knowledge about waiting lines, often called gueuing theory, is an important part of operations and a valuable tool for the
opcrations manager. Waiting lines arc a common situation—they may, for cxample, take the form of cars waiting for repair at a Midas

Muffler Shop, copying jobs waiting to be completed at a Kinko’s print shop, or vacationers waiting to enter the Space Mountain ride at
Disney. Table D.1 lists just a few OM uses of waiting-line models.

TABLE D.1 Common Queuing Situations

SITUATION ARRIVALS IN QUEUE|SE

Supermarket Grocery shoppers Checkour clerks at cash register
Highway toll booth  Automobiles Collection of tolls at booth
Doctor’s office Patients Treatment by doctors and nurses
Computer system Programs to be run Computer processes jobs

Telephone company  Callers Switching cquipment forwards calls



Bank Customers Transaclions handled by teller
Machinc maintenance Broken machines Repair people (ix machines
Harbor Ships and barges Dock workers load and unload

Waiting-line modzls are usetul in both manufacturing and service areas. Analysis of queues in terms of waiting-line length, average
waiting time, and other tactors helps us to understand scrvice systems (such as bank teller stations), maintenance activitics (that might
repair broken machinery), and shop-floor control activitics. Indeed, paticnts waiting in a doctor’s office and broken drill presses
waiting in a repair facility have a lot in common from an OM perspective. Both usce human and cquipment resources to restore valuable
production assets {(people and machines) to good condition.

Characteristics of a Waiting-Line System

In this scetion, we take a look at the daree parts of a waiting-line, or queuing, system {(as shown in Figure D.1):

w 1. Arrivals or inputs to the system: These have characteristics such as population size, behavior, and a statistical distribution.

= 2, Queue discipline, or the waiting line itself: Characteristics of the gueue include whether it is limited or unlimited in Tength and
the discipline of people or items in it.

s 3. The service facilitv: Its characteristics include its design and the statistical distribution of service times.

We now examine cach of these three parts.

LOI1 Describe the characteristics of arrivals, waiting lincs, and service systems.
Arrival Characteristics

The inpul spurce that gencrales arrivals or customers for a service system has theee major characteristics:

= 1. Size of the arrival population
s 2. Behavior of arrivals
s 3. Pautern of arrivals (statistical distribution)

Size of the Arrival (Source) Population

Populalion sizes are considered cither unlimited {csscntially inlinite) or limited {[initc). When the number of cuslomers or artivals on
hand at any given moment i8 just a small portion of all potential arrivals, the arrival populalion is considercd nnlimited. or infinite.
Examples of unlimited populations include cars arriving at a big-city car wash, shoppers arriving at a supermarket, and students
arriving to register for classes at a large university. Most queuing models assume such an infinite arrival population. An example of a
limited, ot finite, population is found in a copying shop that has, say, eight copying machines. Each of the copiers is a potential
“customer” that may break down and tequire service.

Unlimited, or infinite, population

A gueue in which a virtually unlimited number of people or items could request the services, or in which the number of customers or
arrivals on hand at any given moment is a very small portion of potential arrivals.

Limited, or finite, population

A gueue in which there are only a limited number of potential users of the service.
Pattern of Arrivals at the System

Figure D.1 Three Parts of a Waiting Line, or Queuing System, at Dave’s Car Wash
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Customers arrive at a service facility either according to some known schedule {for example, one patient every 15 minutes or one
student every half hour) or else they arrive randomly. Arrivals are considered random when they are independent of one another and
their occurrence cannot be predicted exactly. Frequently in quening problems, the number of arrivals per unit of time can be estimated

by a probability distribution kinown as the Poisson distribution For any given arrival time (such as 2 eustomers per hour or 4 trucks
per minute), a discrete Poisson distribution can be cstablished by using the formula:

Poisson distribution

A discrete probability distribution that often describes the arrival rate in queuing theory.
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where

P(x) = probability of x arrivals

x = numbecr of arrivals per unit of time

% = average arrival rale

e 2.7183 {(which is the basc of the natral logarithms)

With the help of the table in Appendix 1T, which gives the value of & for use in the Poisson distribution, these values are easy to
compute. Figare D.2 illustrates the Poisson distribution for L = 2 and % = 4. This means that it the average arrival rate is L= 2
customers per hour, the probability of 0 customers arriving in any random hour is about [3%, probability of | customer is about 27%, 2
customers about 27%, 3 customers about 18%, 4 customers about 9%, and so on. The chances that 9 or more will arrive are virtually
nil. Arrivals, of course, are not always Poisson distributed {they may tollow some other distribution). Patterns, therefore, should be
examined to make certain that they are well approximated by Poisson before that disteibution is applicd.

Behavior of Arrivals

Mast quening models assume that an arriving customer is a patient customer. Patient customers are people or machines that wait in the
queue until they are served and do not switch between lines. Unfortunately, life 15 complicated by the fact that people have been known
to balk or to renege. Customers who balk refuse to join the waiting line because it is too long to suit their needs or interests. Reneging
customers are those who enter the queue but then become impatient and leave without completing their transaction. Actmally, both of
these situations just serve o highlight the need for gueuing theory and wailing-line analysis.

Waiting-Line Characteristics
The waiting line itsslf is the second component of a quening system. The length of a line can be either limited or unlimited. A queus is
fimited when it cannot, either by law or because of physical resorictions, increase to an infinite length. A small barbershop, for example,

will have only a limited numbesr of waiting chairs. Quening models are treated in this module under an assumption of pnlimited queue
length. A queue is unlimited when its size is unrestricted, as in the case of the toll booth serving arriving automobiles.

Figure D.2 Two Examples of the Poisson Distribution for Arrival Times
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Probability = P(x) = —
X

ﬁ STUDENT TIP

Notice that even though the mean arrival rate might be 2 =2 per hour, thers is still & small chance that as many as 9 customers artive in
an hour,

When Lhe artival rates follow a Poisson process with mean arrival rale, 2, the time between amivals follows a negative exponential distribution with mean time
between arrivals ol | /A The negalive exponential distribution, then, is also representative ola Poisson process bul deseribes Lhe lime between arrivals and
specifies that these time intervals are completely randoim.

A second waiting-line characteristic deals with gueue discipline. This refers to the rule by which customers in the line are to receive
scrvice. Most systems Use a queue discipline known as the first-in, first-out (FIFO) rule. In a hospital cmergency room or an cXpress
checkout line at a supermarket, however, various assigned priorities may presmpt FIFO. Patients who are critically injured will move
ahead in treatment priority over patients with broken fingers or noses. Shoppers with fewer than 10 items may be allowed to enter the
express checkout queus (but are then treated as first-come, first-served). Computer-programming runs also operate under priority
scheduling. In most large companies, when computer-produced paychecks are due on a specific date, the payroll program gets highest
priority 2

First-in, first-out (FIFQ) rule

A queue discipline in which the first customers in line receive the first service.

Service Characteristics

The third part of any quening system is the service characteristics. Two basic properties are important: { 1) design ot the service system
and (2) the distribution of scrvice times.

Basic Queuing System Designs

Figure D.3 Basic Queuing System Designs
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“The term FIFS (first-in, fistscrved) is often used in place of FIFO. Another discipling, LTFS (last-in, first-served), also called last<in, first-out (LTFO), is common
when material is stacked or piled so that the items on Lop are used Grst.

Service systems are usually classitied in terms of their number of servers (number of channels) and mumber of phases (number of
service stops that must be made). Sce Figure D.3. A single-server (or single-channel) queuing system, with onc server, is typiticd by
the drive-in bank with only onc open teller. If, on the other hand, the bank has several tellers on duty, with cach customer waiting in
onc common linc for the first available teller, then we would have a multiple=server (or multiple channcl) queuing system. Most
banks today are multiple-server systems, as are most large barbershops, aitline ticket counters, and post offices.

Multiple-server queuing system



A service system with one waiting line but with several servers.

Tn a single-phase svstem, the customer receives service from only one station and then exits the system. A fast-food restaurant in
which the person who takes your order also brings your food and takes your money is a single-phase system. So is a driver’s license
agency in which the person taking your application also grades your test and collects your license fee. However, say the restaurant
requires you to place your order at one station, pay at a second, and pick up your food at a third. In this case, it is a multiphase system.
Likewise, if the driver’s license agency is large or busy, you will probably have to wait in one line to complete your application (the
first service stop), quene again to have your test graded, and finally go to a third counter to pay your fee. To help you relate the
coneepls of scrvers and phases, Figure D.3 presents these four possible conligurations.

Single-server quening system

A service system with one line and one server.

Single-phase system

A system in which the customer receives service from only one station and then exits the system.
Multiphase system

A system: in which the customer receives services from several stations before exiting the system.

Service Time Distribution

Service patterns are like aurival patterns in that they may be cither constant or random. If service time is constant, it takes the same
amount of time to take carc of cach customer. This is the casc in a machine-performed service operation such as an automatic car wash,
Mare often, serviee times are randomly distributed. In many cascs, we can assumc that random scrvice times arc described by the

negative exponential probability distribution.
Negative exponential probabilicy distribution
A continuous probability distribution often used to describe the scrvice time in a queuing systen.

Figure D4 shows that if service fimes follow a negative exponential distribution, the probability of any very long service time is low.
For example, when an average service time is 20 minutes (or three customers per hour), seldom if ever will a customer require more
than 1.5 hours in the service facilicy. If the mean service time is [ hour, the probability of spending more than 3 hours in service is quite
low.

Measuring a Queue’s Performance

Queuing models help managers make decisions that balance service costs with waiting-line costs. Qucuing analysis can obtain many
measures of a waiting-line system’s performance, including the following:

= 1. Average time that sach customer or abject spends in the queue

= 2. Average queue length

= 3. Average time that each customer spends in the system {(waiting time plus service time)
= 4. Average number of customers in the system

= 3. Probability that the service facility will be idle

= 6. Utilization factor for the system

= 7. Probability of a specific number of customers in the system

Figure D.4 Two Examples of the Negative Exponential Distribution for Service
Times
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tﬁ? STUDENT TIP

Although Poisson and cxponential distributions arc commmonly used to describe arrival rates and scrvice times, other probability
distributions arc valid in some cascs.

OM in Action Zero Wait Time Guarantee at This Michigan Hospital’s ER

Red Zone

Associated Press

Other hospitals smirked a tew years ago when Michigan’s Oakwood Healtheare chain rolled out an emergency room (ER) guarantee
that promiscd a written apology and movie tickets to paticnts not scen by a doctor within 30 minutes. Even employees cringed at what
sounded like a cheap marketing ploy.

But it you have visited an ER lately and watched some patients wait for hours on end—the official average wait 1s 47 minutes—you
can understand why Oakwood’s patient satisfaction levels have soared. The 30-minute guarantee was such a huge success that fewer
than 1% of the 191,000 ER patients asked for free tickets. The following year, Oakwood upped the stakes again, offering a | 5-minute
guarantee. Then Oakwood started its Zero Wait Program in the ERs. Patients who enter any Oakwood emergency department are
immediately cared for by a healtheare professional.

Oakwood’s CEO cven extended the ER guarantee to on-time surgery, 45-minute meal serviee orders, and other custom room services.
“Medicine is a service business,” says Larry Alexander, the head of an ER in Sanford, Florida. “And people arc in the mindsct of the
fast-food industry.”

How did Oakwood make good on its promise to eliminate the ER queue? It first studied quening theory, then reengineered its billing,
records, and lab operations to drive down service time. Then, to improve service capability, Oakwood upgraded its technical staff.

Finally, it replaced its ER physicians with a crew willing to work longer houss.

Sowrces: Wall Street Jownal (October 19, 2010); Time (January 26, 201 1); and Crain’s Dezroir Business March 4, 2002).

Queuing Costs

As described in the OM in Action box “Zero Wait Time Guarantee at This Michigan Hospital’s ER,” operations managers must
recognize the trade-oft that takes place between two costs: the cost of providing good service and the cost of customer or machine
waiting time. Managers want queues that are short enough so that customers do not become unhappy and either lsave without buying,
or buy, but never retum. However, managers may be willing to allow some waiting if'it is balanced by a significant savings in service
costs.

ﬁ STUDENT TIP

The two costs we consider hete are cost of servers and cost of lost time waiting.

One means of cvaluating a scrvice facility is to look at total expected cost. Total cost is the sum of cxpected serviee costs plus expected
waiting costs.

Figure D.5 The Trade-off Between Waiting Costs and Service Costs
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As you can see in Figure D.5, service costs increase as a firm attempts to raise its level of service. Managers in some service centers
can vary capacity by having standby personmel and machines that they can assign to specific service stations to prevent or shorten
excessively long lines, In grocery stores, for example, managers and stock clerks can open extra checkout counters. In bunks and
airport check-in points, part-time workers may be called in to help. As the level of service improves (that 15, speeds up), however, the
cost of time spent waiting in lines decreasss. {(Refer to Figure 13.5.) Waiting cost may reflect lost productivity of workers while tools or
machines await repairs or may simply be an estimate of the cost of customers lost because of poor service and long queues. In some
service systems (for example, an emergency ambulance service), the cost of long waiting lines may be intolerably high.

The Variety of Queuing Models

A wide varicty of queuing models may be applicd in operations management. We will introduce you to four of the most widely used
modcls. These are outlined in Table D.2, and ¢xamples of cach follow in the next fow scetions. More complex models arc described in
queuning theory textbooks? or can be developed through the use of simulation (the topic of Module F). Note that all four queuing
models listed in Table D.2 have three charactetistics in common. They all assume:

» 1. Poisson distwribution arrivals

» 2, FIFO discipline
= 3. A single-service phase

‘ﬁ? STUDENT TIP

This is the main section of Module D. We illustrate four impaortant queuing models.

In addition, they all describe service systems that operate under steady, ongoing conditions. This means that arrival and service rates
remain stable during the analysis.

Model A (M/M/1): Single-Server Queuing Model with Poisson Arrivals and
Exponential Service Times

The most common case of queuing problems involves the single-server, or single-channel, waiting line. In this situation, arrivals form a

single line to be serviced by a single station (see Figure D.3 on p. 739). We assume that the following conditions exist in this type of
system:

» 1. Arrivals are served on a first-in, first-out (FIFO) basis, and every arrival waits to be served, regardless of the length of the line
or quene.

= 2. Arrivals are independent of preceding arrivals, but the average number of arrivals (arrival rate) does not change over time.

» 3. Arrivals are described by a Poisson probability distribution and come from an infinite {or very, very large) population.

» 4. Scrvice times vary from onc customer to the next and are independent of one another, but their averags rate 1s known.,

L.O2 Apphy the single-server queuing model equations

TABLE D.2 Queuing Models Described in This Chapter

NAME
L (TECTHINICAL

MODEL v\ MF IN

PARENTHESES)

Information
Single-server counter at



A system {M/M/1)  depattment Single Single Poisson Exponential Unlimited FIFO

store
Multiple-server Airline
B P ticket Multi-server  Single Poisson Exponential Unlimited FIFO
(M/M/S) _
: counter
Constant service  Automated . 4 - .~ e
C (M/D/1) carwash | Dmgle Single Poisson Constant  Unlimited FIFO
Shop with
Limited 32123:'1?
D population {finite e Single Single Poisson Exponential Limited FIFO
opulation) fiiachifign
P that might
break

3See, for example, Donald Gross, et al. Fundamenials of Queuing Theory, 4th ed. New York: Wiley, 2008.

J, | ‘ - J, i

The giant Moscow McDonald’s boasts 900 seats, 800 workers, and $80 million in annual sales {vs. less than $2 million in a U.S.
putlet). Americans would balk at the average waiting time of 45 minutes, but Russians are used to such long lines. McDonald’s
represents good service in Moscow.

» 5. Service times occur according to the negative exponential probability distribution.

5.
o 6. The service rate is taster than the arrival rate.

When these conditions are met, the series of equations shown in Table D.3 can be developed. Examples D1 and D2 illustrate how
Model A (which in teehnical journals is known as the M/M/1 model) may be used *

TABLE D.3 Queuing Formulas for Model a: Single-Server System, also Called
M/M/1

% = mean number of arrivals per time period
il = mean number of people or items served per time period (average service rate)
L, = average number of units {customers) in the system (waiting and being served)
B A
- -4
W, = average time a unit spends in the system (waiting time plus service time)
1




L = average number of units waiting in the queue

2

A
- o 1 —1)
W, = average time a unit spends waiting in the queue
A £

.u-[ 1 ‘Jl} A

p = unlization factor for the system
A
H
Pgo = probability of 0 units in the system (that is, the service unit is idle)
A
=1 -=
u

4In queuing notation, the first letter refers to the arrivals (where M stands for Poisson distribution); the sceond Totter refirs to serviee (where M is again a Poisson
queuing ; ; g
distribution, which is thc same as an exponential rate for service—and a D is a constant service rate); the thivd symbol reters to the number of servers. So an
M/D/1 system (our Model C) has Poisson arrivals, constant servicee, and one server.

Example D1 A SINGLE-SERVER QUEUE

Tom Jones, the mechanic at Golden Muffler Shop, is able to install new mufflers at an average rate of 3 per hour (or about 1 every 20
minutes), according to a negative exponential distribution, Customers seeking this service arrive at the shop on the average of 2 per
hour, following a Poisson distribution. They are served on a first-in, first-out basis and come from a very large (almost infinite)
population of possible buyers.

We would like to obtain the operating characteristics of Golden Muffler’s queuing system.

APPROACH This is a single-scrver (M/M/1) system, and we apply the formulas in Table D.3.

SOLUTION
A = 2 cars arriving per hour

p =3 cars serviced per hour




= 2 cars in the system, on average

= 1-hour average time in the system

2 2

s A2 4 4
e -A) 43 -2 3(1) 3

= 1.33 cars waiting in line, on average

A 2 2

H’r _ = ] Our
TR REEEEE

= 40-minute average waiting time per car

1 2
p - a3
= 66.6% of time machanic is busy
A 2
Pei-1-—=1--
U

= .33 probability there arc 0 cats in the system

Probability of More Than & Cars in the System

0 .667 « Note that this is equal to | — Py =1 — .33 = .667.

| 444

2 .296

3 .198 « Implies that there is a 19.8% chance that more than 3 cars are in the system.

4132

5.088

6 .058



7.039
INSTGHT Recognize that arrival and service times are converted to the same rate. For example, a service time ot 20 minutes is stated
as an average rafe of 3 muttlers per hour. 10°s also important to differentiate between time in the guene and time in the system.

LEARNING EXERCISE If p = 4 cars’hour instead of the current 3 arrivals, what are the new values of L, W, L,, W, and Py?
[Answer: | car, 30 min., .5 cars, 15 min., 50%, .50.]

RELATED PROBLEMS D.1,D.2, D.3, D4, D.6,D.7, D.8, D.9a ¢, D.10, D.1 la—¢, D.12ad

EXCEL OM Data File ModDExD1.xls can be found at www.pearsonhighered.com/heizer.

ACTIVE MODEL D.1 This example is further illustrated in Active Model D.1 al www.pearsonhighered.com/heizer.

Once we have computed the operating characteristics of a queuing system, it is often important to do an economic analysis of their
impact. Although the waiting-line model described above is valuable in predicting potential waiting times, queue lengths, idle times,
and so on, it does not identify optimal decisions or consider cost factors. As we saw carlier, the solution to a queuing problem may
require management to make a trade-off between the increased cost of providing better service and the decreased waiting costs derived
from providing that service.

Example D2 examines the costs involved in Example D1.

Example D2 ECONOMIC ANALYySIS OF ExAMPLE D1

Golden Muffler Shop’s owner is interested in cost factors as well as the queuning parameters computed in Example D1, He estimates
that the cost of customer waiting time, in terms of customer dissatisfaction and lost goodwill, is $135 per hour spent wairing in line.
Jones, the mechanic, is paid $11 per hour.

APPROACH First compute the average daily customer waiting time, then the daily salary for Jones, and finally the total expected
cost.

2
SOLUTION Because the average car has a 3 hour wait (W,) and because there are approximately 16 cars serviced per day (2 arrivals
per hour times 8 working hours per day), the total number of hours that customers spend waiting each day for mufilers to be installed
18:

2 32 2
—{ 16} =— =10 —hour
3( ) 3 3

Henge, in this case:
2
515( 10 g) = ¥ 160 per day
Customer waiting-tims ¢ost =
LO3
Conduct a cost analysis for a waiting line
The only other major cost that Golden’s owner can identify in the quening situation is the salary of Jones, the mechanic, who carns $11
per hour, or $88 per day. Thus:
Total expected costs = $160 + $88

= 3248 per day

This approach will be usetul in Solved Problem D.2 on page 736.



INSIGHT L, and W, are the two most important quening parameters when it comes to cost analysis. Caleulating customer wait times,
we note, is based on average time waiting in the queue () times the number of arrivals per hour (1) times the number of hours per
day. This is because this example is set on a daily basis. This is the same as using 4,. since L, = W, 4.

LEARNING EXERCISE Tt the customer waiting time is actually $20 per hour and Jones gets a salary increase to $15 per hour, what
arc the total daily expected costs? [Answer: $333.33.]

RELATED PROBLEMS D. 12—, D.13, D.22, D.23, D.24

Model B (M/M/S): Multiple-Server Queuing Model

Now lat"s turn to a multiple-server (multiple-channel) queuing system in which two or more servers arg available to handle arriving
customers. We sull assume that customers awaiting service form one single ling and then proceed to the first available server. Multiple-
server, single-phase waiting lings are found in many banks today: a common ling is formed, and the customer at the head ot the lineg
proceeds to the first free teller. (Refer to Figure D.3 on p. 739 for a typical multiple-server configuration.)

LO4 Apply the multiple-server queuing model formulas

The multiple-server system presented in Example D3 again assumes that arrivals follow a Poisson probability distribution and that
service times are exponentially distributed. Service is first-come, first-served, and all servers are assumed to perform at the same rate.
Other assumplions listed carlicr for the single-server modcl also apply.

The queuing cquations for Model B (which also has the technical name M/M/S) arc shown in Table D.4. These cquations arc obviously
more complex than those used in the single-server model, yet they are used in exactly the same fashion and provide the same type of
information as the simpler model. (Nnte: The POM for Windows and Excel OM software described later in this chapter can prove very
useful in solving multiple-server and other queuing problems.)

Photo courtesy of Costco Wholeselz, 2012

To shorten lines (or wait times), each Costeo register 15 staffed with two employees. This approach has improved efficiency by 20—
30%.

TABLE D.4 Queuing Formulas for Model b: Multiple-Server System, also Called
M/M/S

M = number of servers (channels) open
A = average arrival rate
[t = average service rate at each server (channel)

The probability that there are zero people or units in the system is:

P, == forMpy =4

a
n M

1 /1 1[4 My
ni\ u Mty Mp -2

n =10



The average mumber of people or units in the system is:

oW
.-'.ll.l{zlfluj ,-‘:l

(_.u = 1)!;;1;;; -1°

5

The average time a unit spends in the waiting line and being scrviced (nhamely, in the systom) is:

M
(A )
W= Po ¥—=—"

(_.w—l]!m-m _nt K

The average number of people or units in line waiting for service is:

Example D3 A MULTIPLE-SERVER QUEUE

The Golden Muffler Shop has decided to open a second garage bay and hire a second mechanic to handle installations. Customers, who
arrive at the rate of about & = 2 per hour, will wait in a single line until | of the 2 mechanics is free. Each mechanic installs muttlers at
the rate of about p. = 3 per hour.

The company wants to find out how this system compares with the old single-server waiting-line system.

APPROACH Compute several operating characteristics for the A = 2 server system, using the equations in Table D.4, and compatc
the results with those found in Example D1.

SOLUTION

5

102y L(2) 2
n!(a] ‘21(3) 2(3) -2

L

= .5 probability of zero cars in the system

2

| ba

1
3

Then:



(3)(3)= »’ 1 2 B/3£1y 2 3
L = ——— -} +—= - +===
! l!rzm-z|2( 2) 3 16 (Z) 3 4

= 75average number of cars in the system

L, 314
W= —=—=—hour
* A 2 8
= 22.5minutes average time a car spends in the system

A 3 2 9 5 1

L = = o= — =
g a4 3 12 12 12
= 083 average number ol cars in the queue { wailing )
g 083
W= =—— = 0415 hour
% i 2

= 2.5 minutes average time a car spends in the queue ( waiting )

INSIGHT Tt is very interesting to see the big differences in service performance when an additional server is added.

LEARNING EXERCISE If p= 4 per hout, instead ot . = 3, what are the new values for Py, L, W, Lg, and ﬂ"q‘? [Answers: 0.6, .53
cars, 16 min, .033 cars, 1 min.]

RELATED PROBLEMS D.7h, D.91, D.114, D.13, D.20
EXCEL OM Data File ModDExD3.xls can be found at www.pearsonhighered.com/heizer,
ACTIVE MODEL 1.2 This example is further illustrated in Active Model 1.2 at www.pearsonhighered.com/heizer.

We can summarize the characteristics of the two=server model in Example D3 and compare them to those ot the single=server model in
Example D1 as follows:

SINGLE SERVER|TWO SERVERS (CHANNELS)

Py 33 )

Ly 2 cars 75 car

W, 60 minutes 22.5 minutes
Ly 1.33 cars 083 car

W, 40 minutes 2.5 minutes

The increased service has a dramatic effect on almost all characteristics. For instance, note that the time spent waiting in line drops
from 40 minutes to only 2.5 minutes.

Use of Waiting-Line Tables

Imagine the work a manager would fuce in dealing with A/ = 3, 4, or 5 server waiting-line models if a computer was not readily
available. The arithmetic becomes increasingly troublesome. Fortunately, much of the burden of manually examining multiple-server
queuss can be avoided by using Table ID.3. This tahls, the result of hundreds of computations, represents the relationship between three
things: (1) a ratio, 2/p, (2) number of servers open, and (3) the average number of customers in the queue, L, (which is what we’d like
to tind). For any combination of the ratio 2/pand M= 1, 2, 3, 4, or 3 servers, you can quickly look in the body of the table to read off
the appropriate value for L.

TABLE D.5 Values of L, for M =1 —5 Servers (channels) and Selected Values of A/p



POISSON ARRIVALS, EXPONENTIAL SERVICE TIMES|

NUMBER OF SERVERS (CHANNELS), M

1000111

A5 0264 0008
200 0500 0020
25 0833 0039

3001283 0069

35 18R4 A110

402666 Aloo

A5 3681 0239 0019
5005000 0333 0030
55 .6722 0449 0043

60 9000 0593 0061

65 1.2071 0767 0084

700 1.6333 0976 0112

15 2.2500 1227 0147

.80 3.2000 1523 0189

.85 4.8166 1873 0239 0031

90 8.1000 2285 0300 0041
95 18.0500 2767 0371 0053
1.0 3333 0454 0067

1.2 5748 0904 0158



1.4 1.3449 1778 0324 0059

1.6 28444 3128 0604 0121
1.8 7.6734 5320 1051 0227
20 .BB88 1739 0398
2.2 1.4907 2770 0639
2.4 2.1261 4305 .1047
26 4.9322 6581 1609
2.8 12.2724 1.0000 2411
3.0 1.5282 3541
3.2 2.3856 5128
34 3.9060 7365
3.6 7.0893 1.0550
38 16.9366 1.5184
4.0 2.2164
4.2 3.3269
4.4 5.2675
4.6 9.2885
4.8 21.6384

Example D4 illustrates the use of Table D.5.

Example D4 USE OF WAITING-LINE TABLES

Alaska National Bank is trying to decide how many drive-in teller windows to open on a busy Saturday. CEO Ted Eschenbach
estimales that customers arrive at a rale ol about 2= 18 per hour, and that cach teller can service aboul w= 20 customers per hour.

APPROACH Ted deeides to use Table D.5 to compute L, and W,

18
Afu= ﬁ =90, _
SOLUTION The ratio is Turning to the table, under * ' # = .90, , Ted sees that if only M =1 service window 18
open, the average number of customers in line will be 8.1. [f two windows are open, L, drops to .2285 customers, to .03 for 4/ =3
tellers, and to 0041 for M = 4 tellers. Adding more open windows at this point will result in an average queus length of 0.



Tt is also a simple matter to compute the average waiting time in the queue, W, since W, = L, /4. When one service window is open,
Wy = 8.1 customers/(18 customets per hour) = .43 hours = 27 minutes waiting time; when rwo tellers are open, w,= 2285

3

S

customers/(18 customers per hour) = 0127 hours 4 minute; and 8o on.

INSIGHT If a computer is not readily available, Table D.5 makes it casy to find L, and to then compute W,. Table D.5 is cspecially
handy to compare L, for different numbers of servers (M).

LEARNING EXERCISE The number of customers arriving on a Thursday afternoon at Alaska National is 1 5/hour. The service rate
is still 20 customers/hour. How many people are in the queue if there are 1, 2, or 3 scrvers? [Answer: 2.25, 11227, .0147.]

RELATED PROBLEM D.5

You might also wish to check the caleulations in Example D3 against tabled values just to practice the use of Table D.5. You may need
to interpolate if your exact value is not found in the first column. Other common operating characteristics besides L are published in
tabular form in gqueuing theory textbooks.

Long check-in lines {left photo) such as at Los Angeles International {LAX) are a common airport sight. This is an M/M/S model—
passengers wait in a single queue for one of several agents. But at Anchorage International Airport (right photo), Alaska Air has
jettisoned the traditional wall of ticket counters. [nstead, 1.2 million passengers per year use self-service check-in machines and staffed
“bayg drop™ stations. Looking nothing like a typical airport, the new system doubled the airline’s check-in capacity and cut staff needs
in half, all while speeding travelers through in less than 15 minutes, even during peak hours.

Model C (M/D/1): Constant-Service-Time Model

LOS5 Apply the constant-service-time model equations

Some scrvice systems have constant, instead of cxponentially distributed, service times. When customers or cquipment are processed
according to a fixed cycle, as in the case of an automatic car wash or an amusement park ride, constant scrvice times arc appropriate.
Because constant rates are certain, the values for L, W, L, and W, are always less than they would be in Model A, which has variable
service rates. As a matter of fact, both the average queue length and the average waiting time in the gueue are halved with Model C.
Constant-service-model formulas are given in Table D.6. Model C also has the technical name M/D/1 in the literature of queuing
theory.

TABLE D.6 Queuing Formulas for Model C: Constant Service, also Called M/D/1

-

i
Average length of queue: ‘u(n —4)
A
w, =3 "
Average waiting time in gqueue: Ju(p —4)
A
L =L +—
Average number of customers in system: H
: 1
W =W +—
% q

Average time in system: H



Example D3 gives a constant-service-time analysis.

Example D5 A CONSTANT-SERVICE-TIME MODEL

[nman Recycling, Inc., collects and compacts aluminum cans and glass bottles in Reston, Louisiana. [ts truck drivers currently wait an
average of 15 minutes before emptying their loads for recyeling. The cost of driver and truck time while they arc in queucs is valued at
$60 per hour. A new automated compactor can be purchased to process truckloads at a constant rate of 12 trucks per hour {that is, 5
minutes per truck). Trucks arrive according to a Poisson distribution at an average rate of 8 per hour. If the new compactor is put in usc,
the cost will be amortized at a rate of $3 per truck unloaded.

APPROACH CEO Tony Inman hires a summer college intern to conduct an analysis to svaluats the costs versus benefits of the
purchase, The intern uses the equation for W, in Table D.6.

SOLUTION
Current waiting cost/trip = (1/4 hr waiting now){$60/hr cost) = $15/trip

New systeni A= 8 rucks/hr arriving = 12 trucks/hr served

A 8 1

W= =— = r
9 2uip -4y 21212 -8) 12

Average walting time 1n queue =

Waiting cost/trip with new compactor = (1/12 hr wait)(S60/hr cost) = $5/rip

Savings with new equipment = $15(current system) — $5{new system) = $10/trip

Cost of new equipment amaortized: = $3/trip
Net savings = $7/rip

INSIGHT Constant service times, usually attained through automation, help control the variability inherent in service systems. This
can lower average queue length and average waiting time. Note the 2 in the denominator of the equations for L, and W, in Table D.6.

LEARNING EXERCISE With the new constant-service-time system, what are the average waiting time in the queue, average number
of trucks in the system, and average wailing timge in the system? [Answer: 0.0833 howrs, 1.33, 0.1667 hours.]

RELATED PROBLEMS D.14, D.16, D.21

EXCEL OM Data File ModDExD5.xls can be found at www.pearsonhighered.com/heizer.

ACTIVE MODEL D.3 This example is further illustrated in Active Model D.3 at www.pearsonhighered.com/heizer.

Lictle’s Law

A practical and useful relationship in queuing for any system in a steady state is called Little’s Law. A steady state exists when a
queuing system is in its nhormal operating condition {e.g., after customers waiting at the door when a business opens in the morning are
taken care of). Little’s Law can be written as either:

L=73%W (which is the same as W=L/}) (D-2)

or:

Ly =2W (which is the same as W, = L,/2) (D-3)

The advantage of these formulas is that once two of the parameters are known, the other one can easily be found. Thig is important

beeausce in cerlain waiting-line situations, one ol these might be casicr Lo determine than the other.

Little’s Law is also important becausc it makes no assumptions about the probability distributions for atrivals and scrvice times, the
number of servers, or service priority rules. The law applies to all the quening systems discussed in this module, except the limited-



population model, which we discuss next.

Model D: Limited-Population Model

When there is a limited population of potential customers for a service facility, we must consider a different queuing model. This
model would be used, for example, if we were considering equipment repairs in a factory that has 5 machines, if we were in charge of
maintenance for a tleet of 10 commuter airplanes, or if we ran a hospital ward that has 20 beds. The limited-population model allows
any number of repair people (servers) to be considered.

LO6 Perform a limitcd-population model analysis
This model ditfers from the three garlier queuing models because there is now a dependent relationship between the length of the queus
and the arrival rate. Let’s illustrate the extreme situation: If your factory had five machines and all were broken and awaiting repair, the

arrival rate would drop to zero. In gencral, then, as the waiting Iine becomes longer in the limited population model, the arvival rate of
customers or machines drops.

TABLE D.7 Queuing Formulas and Notation for Model D: Limited-Population
Formulas

T
_ X = U Average number of units running: J= NF(1 — X)
Service factor:
Average humber waiting: Lo M=) Average number being serviced: H= FNX
o LTHU) 10 -F) _ _
W =— = ; Number in population: N=J + L, + H=FNX
o E N -L AF

Average waiting time: 4
Notation
D = probability that a unit will have to wait in queue N =number of potential customers
F = efficiency factor T'=average service fime
H = average number of units being served {/ = average time between unit service requirements
J= average number of units in working order W, = average time a unit waits in line
Lq = average number of units waiting for service X = service factor

M = number of servers {channels)

Table D.7 displays the queuing formulas for the limited-population model. Note that they employ a different notation than Models A,
B, and C. To simplify what can become time-consuming calculations, finite queuing tables have been developed that determine 2 and
F. D represents the probability that a machine needing repair will have to wait in line. /15 a waiting-time etficiency factor. 2 and Fare
needed to compute most of the other finite model formulas.

[

A small part of the published finite quening tables is illustrated in this section. Table D.8 provides data for a population of N=5.
To use Table D8, we follow Tour steps:

» 1. Compute X (the service factor), where X = THT+ ).
» 2. Find the value of X in the table and then find the line for M/ (where A is the mumber of servers).
» 3, Note the corresponding values for I and F,

» 4. Compute Lq, Wq, J, 71, or whichever are needed to measure the service system’s performance.



Example D6 illustrates these steps.

Example D6 A LIMITED-POPULATION MODEL

Past records indicale that cach of the 5 massive lascr computer printers at the U.S. Department of Energy (DOE), in Washington, DC,
nceds repair after about 20 hours of usc. Breakdowns have been determined to be Poisson distributed. The once technician on duty can
scrvice a printer in an average of 2 hours, following an cxponential distribution. Printer downtime costs $120 per hour. Technicians arc
paid $25 per hour. Should the DOE hire a second technician?

APPROACH Assuming the second technician can also repair a printer in an average of 2 howrs, we can use Table D.8 (because there
are N =5 machines in this limited population) to compare the costs of 1 vs. 2 technicians.

SOLUTION

= 1. First, we note that 7= 2 hours and /= 20 hours.
T 2 2

= = =— =091
= 2. Then, r+v 2+20 2 {close to 090 [to use for determining 2 and F]).
s 3, For M =1 server, D= 330 and F= .960.
s 4. For M =2 servers, D= 044 and F = 998.
s 3. The average number of printers working is J= NF(1 — X). For M= 1, thisis J = (5)(.960)1 —.091) =436, For =12 itis J=

{(3).998K 1 —.091) =454,
= 6. The cost analysis follows:

AVERAGE NUMBER  [AVERAGE COST/HR FOR  [COSER FOR
TECHNICIANS [PRINTERS DOWN (N —J) [DOWNTIME (N —I)($120/HR) |y b HEHATS ¢
1 64 $76.50 §25.00 §101.80
2 46 $55.20 $50.00 $105.20

INSIGHT This analysis suggests that having only one technician on duty will save a few dollars per hour ($105.20 — S101.80 =
$3.40). This may seem like a small amount, but it adds up to over $7,000 per year.

LEARNING EXERCISE DOE has just replaced ils printers with a new model thal secms Lo break down afler about 18 hours of use.
Recompute the costs. [Answer: For A= 1, F=.95,.J=4.275, and total cost/he = $112.00. For M =2, F'= 997, J=4.487, and total
cost/hr=3%111.36.]

RELATED PROBLEMS D.17,D.13,D.19

EXCEL OM Data File ModDExD6.xls can be found at www.pearsonhighered.com/heizer.

*Limited, or finite, queting tables ar available to handle arrival populations ofup to 230. Although there is no definite number that we can usc as a dividing
point between limited and unlimited populations, the general rule althumb is this: TMithe humber in the queue is a significant proportian of the arrival

population, use a limiled population gueuing model. Fora complete sel of N=values, see L. G. Peck and R N. Hazelwood, Finite Quening Tables. New York:
Wiley, 1958.

TABLE D.8 Finite Queuing Tables for a Population of N=5*



*s2notaton in fase 3.2,

*See notation in Table D.7.

Other Queuing Approaches

ﬁ STUDENT TIP

When the assumptions of the 4 modcls we just introduced do not hold true, there are other approaches still available to us.

Many practical waiting-line problems that occur in service systems have charactetistics like those of the four mathematical models
already desenbed. Often, however, variations of these specific cases are present in an analysis. Service times 1 an automobile repair
shop, tor example, tend to tollow the normal probability distribution instead of the exponential. A college registration system in which
seniors have first choice of courses and hours over other students is an example of a first-come, first-served model with a preemptive
priority queue discipline. A physical cxamination tor military reeruits is an cxample of a multiphase system, one that difters from the
single-phase models discussed earlier in this module. A recruit first lines up to have blood drawn at one station, then waits for an eye
exam at the next station, talks to a psychiatrist at the third, and is examined by a doctor for medical problems at the tourth. At each
phase, the recruit must enter another queue and wait his or her turn. Many madels, some very comiplex, have been developed to deal
with situations such as these.

Summary

Queues are an important patt of the world of operations management. In this module, we describe several common queuing systems
and present mathematical models for analyzing them.

The most widely used gqueuing models include Model A, the basic single-server, single-phase system with Poisson arrivals and
exponential service times; Model B, the multiple-server equivalent of Model A; Model C, a constant-service-rate model; and Model D,
a limited-population system. All tour models allow for Poisson arrivals; first-in, first-out service; and a single-service phase. Typical
operating characteristics we examine include average time spent waiting in the queue and system, average number of customets in the
queuc and system, idle time, and utilization rate.

A variety of quening models exists for which all the assumptions of the traditional models need not be met. In these cases, we use more

complex mathematical models or turn to a technigue called simuw/adion. The application of simulation to problems of quewing systems is
addressed in Module F.

Key Terms

s Queuing theory {p. 736) Wailing line {queue) {p. 736) Unlimited, or infinite, population (p. 737) Limited, or finite, population {p.
737) Poisson distribution {p. 738) First-in, first-out (FIFO) rule (p. 739) Single-server queuing system (p._739) Multiple-server
guewing system (p. 740) Single-phasc system (p. 740) Multiphase system {p. 740) Negative cxponential probability distribution
(p. 740)

Discussion Questions

1.



Name the three parts of a typical queuing system.

2.

When designing a waiting line system, what “gualitative” concerns need to be considered?

3.

Name the three factors that govern the structure of “arrivals” in a queuing system.

4.

State the seven commen measures of gueuing system performance.

5.

State the assumptions of the “basic” single-server queuing model (Model A, or M/M/1).

6.

Is it good or bad to operate a supermarket bakery system on a strict first-come, first-served basis? Why?

7.

Deseribe what is meant by the wailing-linc terms balk and renege. Provide an example of cach.

8.

Which is larger, W, or W,? Explain.

9.

Brietly describe three situations in which the first-in, first-out (FIFO) discipline rule is not applicable in queuing analysis.

10.

Describe the behavior of a waiting line where A > [l Use both analysis and intuition.

11.

Discuss the likely outcome of a waiting line system where p > X but only by a tiny amount {e.g., n =4.1, L = 4).

12.

Provide examples of four situations in which there is a limited, or finite, waiting line.

13.

What arc the components of the following qucuing systems? Draw and cxplain the configuration of cach.
= a) Barbershop
s b) Car wash

s ) Laundromat
= d) Small grocery store



