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What Is Forecasting?

Every day, managers like those at Disney make decisions without knowing what will happen in the future. They order
inventory without knowing what sales will be, purchase new equipment despite uncertainty about demand for products, and
make mvestments without knowimg what profits will be. Managers are always wying to make better estimates of what will
happen in the tuture in the face of uncertainty. Making good estimates 1s the main purpose of forecasting.

X Student tip
An increasingly complex world sconomy makes forecasting challenging.

In this chapter, we examine different types of forecasts and present a variety of forecasting models. Our purpose 15 to show
that there are many ways for managers to forecast. We also provide an overview of business sales torecasting and describe
how to prepare, monitor, and judge the accuracy of a forecast. Good forecasts are an essensial part of efficient service and
manufacturing operations.

Forecasting is the art and science of predicting future events. Forecasting may involve taking historical data (such as past
sales) and projecting them into the future with a mathematical model. It may be a subjective or an intitive prediction (e.g.,
“this is a great new product and will sell 20% more than the old one™). It may be based on demand-driven data, such as
customer plans to purchase, and projecting them into the future. Or the forecast may involve a combination of these, that is, a
mathematical model adjusted by a manager’s good judgment,

Forecasting
The art and science of predicting future events.

As we introduce different forecasting techniques in this chapter, you will see that there is seldom one superior method.
Forecasts may be intluenced by a product’s position in its life cycle—whether sales are in an introduction, growth, maturity,
or decline stage. Other products can be influenced by the demand for a related product—tor example, navigation systems
may track with new car sales. Because there are limits as to what can be expected from forecasts, we develop error measures.
Preparing and monitoring forecasts can also be costly and time-consuming.

Few businesses, however, can afford to avold the process of forecasting by just waiting to see what happens and then taking

their chances. Effective planning in both the short run and long run depends on a forecast of demand for the company’s
products.

Forecasting Time Horizons

A forecast is usually classified by the firture time horizon that it covers. Time horizons fall into three categories:
LO1
Understand the three time horizons and which models apply for each

o 1. Short-range forecast: This forecast has a time span of up to 1 year but is generally less than 3 months. It is used for
planning purchasing, job scheduling, worktorce levels, job assignments, and production levels.

o 2, Medium-range forecast: A medium-range, or intermediate, forecast generally spans from 3 months to 3 years. It is
useful in sales planning, production planning and budgeting, cash budgeting, and analysis of various operating plans.

e 3. Long-range forecast: Generally 3 years or more in time span, long-range forecasts are used in planning for new



products, capital expenditures, facility location ot expansion, and research and development.
Medium and long-range forecasts are distinguished from short-range forecasts by three features:

e 1. First, intermediate and long-range forecasts deal/ with more comprehensive issues supporting management decisions
regarding planning and products, plants, and processes. Implementing some facility decisions, such as GM’s decision
to open a new Brazilian manufacturing plant, can take 5 to 8 years from inception to completion.

e 2. Second, short-term forccasting usually emplovs different methodologics than longer-term forccasting. Mathematical
technigues, such as moving averages, exponential smoothing, and trend extrapolation (all of which we shall examine
shortly), are common to short-run projections. Broader, /less quantitative methods are usetul in predicting such issues
as whether a new product, like the optical disk recorder, should be introduced into a company’s product line.

« 3. Finally, as you would expect, short-range torecasts tend to be more accurate than longer-range torecasts. Factors
that influence demand change every day. Thus, as the time horizon lengthens, it is likely that forecast accuracy will
diminish. It almost goes without saying, then, that sales forecasts must be updated regularly to maintain their value and
integrity. Atter cach sales period, forecasts should be reviewed and revised.

Types of Forecasts
Organizations use three major types of forecasts in planning future operations:

« 1, Economic forecasts address the business cycle by predicting inflation rates, money supplies, housing starts, and
other planning indicators.

Economic furecasts
Planning indicators that arc valuable in helping organizations prepare medium- to long-range torecasts.

e 2. Technological forecasts are concermned with rates of technological progress, which can result in the birth of exciting
new products, requiring new plants and equipment.

Technological forecasts
Long-term forecasts concerned with the rates of technological progress.

« 3. Demand forecasts are projections of demand for a company’s products or services. Forecasts drive decisions, so
managers heed immediate and accurate information about real demand. They heed demand-driven forecasts, where the
focus is on rapidly identifying and tracking customer desires. These forecasts may usc recent point-of-sale (POS) data,
retailer-generated reports of customer preferences, and any other information that will help to forecast with the most
current data possible. Demand-driven forecasts drive a company’s production, capacity, and scheduling systems and
serve as inputs to financial, marketing, and personnel planning. In addition, the payoff in reduced inventory and
obsolescence can be huge.

Demand forecasts
Projections of a company's sales for cach time period in the planning horizon.

Economic and technological forecasting are specialized technigues that may fall outside the role of the operations manager.
The emphasis in this chapter will theretore be on demand forecasting.

The Strategic Importance of Forecasting

Good forecasts are of critical importance in all aspects of a business: The forecast is the only estimate of demand unfif actual
demuand becomes known. Forecasts of demand therefore drive decisions in many areas. Let’s look at the impact of product
demand forecast on three activities: (1) supply-cham management, (2) human resources, and (3) capacity.

Supply-Chain Management

Good supplier relations and the ensuing advantages in product innovation, cost, and speed to market depend on accurate
forecasts. Here are just three examples:

« +» Apple has built an effective global system where it controls nearly every picce of the supply chain, from product
design to retail store. With rapid communication and accurate data shared up and down the supply chain, innovation is
enhanced, inventory costs are reduced, and speed to market is improved. Once a product goes on sale, Apple tracks
demand by the hour for each store and adjusts production forecasts daily. At Apple, forecasts for 1ts supply chain are a



strategic weapon.

+ > Toyota develops sophisticated car forecasts with input from a variety of sources, including dealers. But forecasting
the demand tor accessories such as navigation systems, custorn wheels, spoilers, and so on is particularly difticult. And
there are over 1,000 items that vary by model and color. As a result, Toyota not only reviews reams of data with regard
to vehicles that have been built and wholesaled but also looks in detail at vehicle forceasts before it makes judgments
about the future accessory demand. When this is done correctly, the result is an efficient supply chain and satisfied
customers.

« » Walmart collaborates with suppliers such as Sara Lee and Procter & Gamble to make sure the right item is available
at the right time in the right place and at the right price. For instance, in hurricane season, Walmart’s ability to analyze
700 million storc—item combinations mcans it can forccast that not only flashlights but Pop-Tarts and beer scll at seven
times the normal demand rate. These forecasting systems are known as eollaborative planning, forecasting, and
replenishment (CPFR). They combine the intelligence of multiple supply-chain partners. The goal of CPFR is to create
signiticantly more accurate intormation that can power the supply chain to greater sales and profits.

Human Resources

Hiring, training, and laying oft workers all depend on anticipated demand. If the human resources department must hire
additional workers without warning, the amount of training declines and the quality of the workforce sutfers. A large
Louisiana chemical firm almost lost its biggest customer when a quick expansion to around-the-clock shifts led to a total
breakdown in quality control on the second and third shifts.

Capacity

When capacity is inadequate, the resulting shortages can lead to loss of customers and market share. This is cxactly what
happened to Nabisco when it underestimated the huge demand for its new Snackwell Devil’s Food Cookies. Even with
production lines working overtime, Nabisco could not keep up with demand, and it lost customers. Nintendo taced this
problem when its Wii was introduced in 2007 and exceeded all forecasts for demand. And as the photo below shows,
Amazon made the same error with its Kindle. On the other hand, when excess capacity exists, costs can skyrocket.

Seven Steps in the Forecasting System

Forecasting tollows seven basic steps. We use Disney World, the tocus of this chapter’s Global Company Profile, as an
example of each step:

o 1, Determine the use of the forecast: Disncy uscs park attendance forecasts to drive decisions about staffing, opening
times, ride availability, and food supplies.

o 2. Select the items to be forecasted: For Disney World, there are six main parks. A forecast of daily attendance at each
is the main number that determines labor, maintenance, and scheduling.
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Even vaunted Amazon can make a major forecasting error, as it did in the case of its much-hyped Kindle e-book
reader. With the holiday shopping season at hand, Amazon’s Web page anmounced “Due to heavy customer demand,
Kindle 1s sold out ... shipsin | to |3 weeks.” Underforecasting demand for the product was the culprit, according to
the Taiwanese manufacturer Prime View, which has since ramped up production.

e 3. Determine the time horizon of the forecast: Is it short, medium, or long term? Disney develops daily, weekly,
monthly, annual, and 5-year forecasts.

e 4, Sclect the forecasting model(s): Disney uses a variety of statistical models that we shall discuss, including moving
averages, econometrics, and regression analysis. It also employs judgmental, or nonguantitative, models.

e 5. Gather the data needed to make the forecast: Disney’s torecasting team employs 35 analysts and 70 field personnel



to survey 1 million people/businesses every year. Disney also uses a firm called Global Insights for travel industry
forecasts and gathers data on exchange rates, arrivals into the U.S., airline specials, Wall Street trends, and school
vacation schedulcs.

o 6. Make the forecast.

e 7. Validate and implement the results: At Disney, forecasts are reviewed daily at the highest levels to make sure that
the model, assumptions, and data are valid. Error measures are applied; then the forecasts are used to schedule
personnel down to 15-minute intervals.

These seven steps present a systematic way of initiating, designing, and implementing a forecasting system. When the system
is to be used to generate forecasts regularly over time, data must be routinely collected. Then actual computations are usually
made by computer.

Regardless of the system that firms like Disney use, cach company faces several realities:

o = Dutside factors that we canmot predict or control often impact the forecast.

* * Most forecasting techniques assume that there 13 some underlying stability in the system. Consequently, some firms
automate their predictions using computerized forecasting software, then closely monitor only the product items whose
demand is erratic.

» * Both product family and aggregated forecasts are more accurate than mdrvidual product forecasts. Disney, for
example, aggregates daily attendance forecasts by park. This approach helps balance the over- and underpredictions for
each of the six attractions.

Forecasting Approaches

There are two general approaches to forecasting, just as there are two ways to tackle all decision modeling. One is a
guantitative analysis; the other is a gqualitative approach. Quantitative forecasts use a variety of mathematical models that
rely on historical data and/or associative variables to forecast demand. Subjective or gualitative forecasts incorporate such
tactors as the decision maker’s intuition, emotions, personal experiences, and value system in reaching a torecast, Some
firms use one approach and some use the other. In practice, a combination of the two 1s usually most effective.

Quantitative forecasts
Forecasts that employ mathematical modeling to forecast demand.
Qualicative forecasts

Forecasts that incorporate such factors as the decision maker’s intuition, emotions, personal experiences, and value system.

Overview of Qualitative Methods

In this section, we consider four different gualitative forecasting techmques:

o 1. Jury of executive ppinion: Under this incthod, the opinions of a group of high-level cxperts or managers, often in
combination with statistical models, are pooled to arrive at a group estimate of demand. Bristol-Myers Squibb
Company, tor example, uses 220 well-known research scientists as its jury ot executive opinion to get a grasp on future
trends in the world of medical research.

Jury of executive opinion

A forceasting technigue that uscs the opinion of a small group of high-level managers to form a group cstimate of
demand.

o 2, Delphi method: There arc three different types of participants in the Delphi method: decision makers, staff
personnel, and respondents. Decision makers usually congist of a group ot 5 to 10 experts who will be making the
actual forecast. Staft personnel assist decision makers by preparing, distributing, collecting, and summarizing a series
of questionnaires and survey results. The respondents are a group of people, often located in different places, whose
Jjudgments are valued. This group provides inputs to the decision makers before the forecast s made.

Delphi method
A forecasting technique using a group process that allows experts to make forecasts.
The state of Alaska, for example, has used the Delpht method to develop its long-range economic forecast. A large part

of the state’s budget is derived from the million-plus barrels of oil pumped daily through a pipeline at Prudhoe Bay.
The large Delphi panel of experts had to represent all zroups and opinions in the state and all geographic arcas.
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Faxplain when to use each of the four gqualitative models

» 3, Sales force compasite: In this approach, gach salesperson estimates what sales will be in his or her region. These
forecasts are then reviewed to ensure that they are realistic. Then they are combined at the district and national levels
to reach an overall forecast. A variation of this approach occurs at Lexus, where every quarter Lexus dealers have a
“make meeting.” At this meeting, they talk about what is selling, in what colors, and with what options, so the factory
knows what to build.

Sales force composite
A forecasting technique based on salespersons’ estimates of expected sales.

¢ 4. Market survey: This method solicits input from customers or potential customers regarding future purchasing
plans. It can help not only in preparing a forecast but also in improving product design and planning for new products.
The consumer market survey and sales force composite methods can, however, suffer from overly optimistic forecasts
that arise from customer input.

Market survey

A forecasting method that solicits input from customers or potential customers regarding future purchasing plans.

Overview of Quantitative Methodst

Five gquantitative forecasting methods, all of which use historical data, are described in this chapter. They fall into two
categories:

1. Naive approach
1, Moving averages Time-series models

3. Exponential smoothing

4. Trend projection o
) ) Associative model
5. Linear regression

Time-Series Models

Time-series models predict on the assumption that the future is a function of the past. In other words, they look at what has
happened over a period of time and use a series of past data to make a torecast. [f we are predicting sales of [awn mowers, we
use the past sales for lawn mowers to make the forecasts.

Time series
A Torecasting technique that uses a serics of past data points to make a forecast.

Associative Models

Associative models, such as linear regression, incorporate the variables or factors that might influence the quantity being
forecast. For example, an associative model for lawn mower sales might use factors such as new housing starts, advertising
budget, and competitors® prices.

W Student tip

Here 1s the meat of this chapter. We now show you a wide variety of models that use time-series data.

Time-Series Forecasting

A time series 1s based on a sequence of evenly spaced (weekly, monthly, quarterly, and so on) data points. Examples include



weekly sales of Nike Air Jordans, quarterly earnings reports of Microsoft stock, daily shipments of Coors beer, and annual
consumer price indices. Forecasting time-series data implies that future values are predicted only from past values and that
other vanables, no mater how potentially valuable, may be ignored.

Decomposition of a Time Series

Analyzing time series means breaking down past data into components and then projecting them forward. A time series has
four components:

‘ﬁ? Student tip

The peak “seasons” for sales of Frito-Lay chips are the Super Bowl, Memorial Day, Labor Day, and the Fourth of July.

o 1. Trend is the gradual upward or downward movement of the data over time. Changes in income, population, age
distribution, or cultural views may account for movement in trend.

= 2, Seasonality is a data pattern that repeats itself after a period of days, weeks, months, or quarters. There are six

common seasonality patterns:

PERIOD LENGTH[*SEASON” LENGTH|NUMBER OF “SEASONS” IN PATTERN

Week Day 7
1
Month Week -
4-42
Month Day 28-31
Year Quarter 4
Year Month 12
Year Week 52

! For a good review of statistical terms, refer to Tutorial 1, *Statistical Review for Managers,” at our Web site,
www.pearsonhighered.com/heizer.

OM in Action Forecasting at Olive Garden and Red Lobster

It’s Friday night in the college town of Gainesville, Florida, and the local Olive Garden restaurant is humming.
Customers may wait an average of 30 minuces for a table, but they can sample new wines and cheeses and admire
scenic paintings of Italian villages on the Tuscan-style restaurant’s walls. Then comes dinner with portions so huge
that many people take home a doggie bag. The typical bill: under $15 per person.

Crowds flock to the Darden restaurant chain’s Olive Garden, Red Lobster, Seasons 52, and Bahama Breeze for value
and consistency—and they get it.

Every night, Darden’s computers crank out forccasts that tell store managers what demand to anticipate the next day.
The forecasting software generates a total meal forecast and breaks that down into specitic menu items. The systemn
tells a manager, for instance, that if 625 meals will be served the next day, “you will serve these items in these
quantities. So betore you go home, pull 25 pounds of shrimp and 30 pounds of crab out, and tell your operations
people to prepare 42 portion packs of chicken, 75 scampi dishes, 8 stutted tlounders, and so on.” Managers often fine-
tune the quantities based on local conditions, such as weather or a convention, but they know what their customers are
going to order.



By relying on demand history, the forecasting system has cut millions ot dollars of waste out ot the system. The
torecast also reduces labor costs by providing the necessary information for improved scheduling. Labor costs
decreased almost a full percent in the first year, translating into additional millions in savings for the Darden chain. In
the low-margin restaurant business, every dollar counts.

Source: Interviews with Darden executives.

Restaurants and barber shops, for example, experience weekly seasons, with Saturday being the peak of business. See
the OM in Action box “Forecasting at Olive Garden and Red Lobster.” Beer distributors forecast yearly patterns, with
monthly seasons. Three “seasons”™—May, July, and September—each contain a big beer-drinking holiday.

e 3. Cycles are patterns in the data that occur every several years. They are usually tied into the business cycle and are of
major importance in short-term business analysis and planning. Predicting business cycles is difficult because they
may be affected by political events or by international turmoil.

e 4, Random variations are “blips” in the data caused by chance and unusual situations. They follow no discernible
pattern, so they cannot be predicted.

Figure 4.1 illustrates a demand over a 4-year period. It shows the average, trend, seasonal components, and random
variations around the demand curve. The average demand is the sum of the demand for each period divided by the number of
data periods.

LO3

Apply the naive, moving-average, exponential smoothing, and trend methods

Figure 4.1 Demand Charted over 4 Years, with a Growth Trend and
Seasonality Indicated
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Forecasting is easy when demand is stable. But with trend, seasonality, and cycles considered, the job is a lot more
mteresting,

Naive Approach



The simplest way to forccast is to assume that demand in the next period will be cqual to demand in the most recent period.
In other words, it sales of a product—say, Nokia cell phones—were 68 units in January, we can forecast that February’s sales
will also be 68 phones. Does this make any sense? It turns out that for some product lines, this naive approach is the most
cost-effective and efficient objective forecasting model. At least it provides a starting point against which more sophisticated
models that follow can be compared.

Naive approach

A forecasting technique which assumes that demand in the next period is equal to demand in the most recent period.

Moving Averages

A moving-average forscast uses a number of historical actual data values to generate a forecast. Moving averages are useful
if we can assume that market demands will stay foirly steady over time. A 4-month moving average is found by simply
summing the demand during the past 4 months and dividing by 4. With each passing month, the most recent month’s data are
added to the sum of the previous 3 months’ data, and the earliest month is dropped. This practice tends to smooth out short-
term irregularities in the data series.

Moving averages

A forecasting method that uses an average of the n most recent periods of data to forecast the next period.

Mathematically, the simple moving average {which serves as an estimate of the next period’s demand) is expressed as:
2+ demand in previous n periods

Moving average = i4=11
W A=l

where # is the number of periods in the moving average—for example, 4, 5, or 6 months, respectively, for a 4-, 5-, or 6-
period moving average.

Example | shows how moving averages are calculated.

Example 1 DETERMINING THE MOVING AVERAGE

Donna’s Garden Supply wants a 3-month moving-average forecast, including a forecast for next January, for shed sales.

APPROACH Storage shed sales are shown in the middle column of the table below. A 3-month moving average appears on

the right.
MONTH ACTUAL SHED SALES | 3-MONTH MOVING AVERAGE
January 0 ——
February 2 \ N
March 13 r——
April 16 (10 + 12 + 13¥3 = 115
May 19 (12 + 13 + 163 — 13%
June 23 (13 + 16 + 19¥3 = 16
July 26 (16 + 19 + 23)3 = 19}
August 30 (19 + 23 + 26)3 — 22%
September 28 (23 + 26 + 30/3 ~ 26}
Oclober 18 (26 + 30 + 28)/3 = 28
November 16 (3C + 28 + 18¥/3 = 25}
December 14 28 + 18 + 16)3 ~ 20%

2

FA

SOLUTION The forecast for December is 20° . To project the demand for sheds in the coming January, we sum the
October, November, and December sales and divide by 3: January forecast = (18 + 16+ 14)/3 = 16.

INSIGHT Management now has a forecast that averages sales tor the last 3 months. It is easy to use and understand.

LEARNING EXERCISE If actual salcs in December were 18 (rather than 14), what 1s the new January forccast? [ Answer:
1

173 ]



RELATED PROBLEMS 4.1a, 4.2b, 4.5a,4.6,4.8a, b, 4.10a, 4.13b, 4.15, 4.47
EXCEL OM Data File Ch04Ex1.x1s can be found at www.pearsonhighered.com/heizer.

ACTIVE MODEL 4.1 This example is further illustrated in Active Model 4.1 at www.pearsonhighered.com/heizer.

When a detectable trend or pattern 1s present, weighis can be used to place more emphasis on recent values. This practice
makes forecasting techniques mote responsive to changes because more recent periods may be more heavily weighted.
Choice of weights is somewhat arbitrary because there is no set formula to determine them. Therefore, deciding which
weights to use requires some experience. For example, if the latest month or period is weighted too heavily, the forecast may
reflect a large unusual change in the demand or sales pattern too quickly.

A weighted moving average may be expressed mathematically as:

> ((Weight for period n )( Demand in period n)) )
> Weights o

Weighted moving average =

Example 2 shows how to calculate a weighted moving average.

Example 2 DETERMINING THE WEIGHTED MOVING AVERAGE

Donna’s Garden Supply (see Example 1) wants to forecast storage shed sales by weighting the past 3 months, with more
weight given to recent data to make them more significant.

APPROACH Assign more weight to rccent data, as follows:

3 Last month

2 Two months ago
1 Three months ago
6

Sum of weights

3 X Sales last mo. + 2 X Sales 2 mos. ago + | X Sales 3 mos. ago

Sum of the weights

SOLUTION The results of this weighted-average forecast are as follows:

January 10

February 12

Warch 13— ™~

- A+

April 16 [3%13) + @ % 12) + (106 =12}
May 19 [(3 %16+ 2 % 13) + (12)16 = 14}
Jlune 23 [(3 %19+ 2 x16) + (13)k6 = 17
luly 26 [(3 %2+ 2 %19 + (1616 — 205
August 30 [(3 % 26) + (2 % 23) + (19)1%6 = 232
September 8 [(3 % 30) + (2 % 26) + (23)6 = 27
October 8 [(3 % 28) + (2 3 30) + (26)16 = 28}
November 16 I3 % 18) + (2 X 28) + (30)M6 = 23}
December 14 [(3 % 16) + (2 % 18) + (28))6 = 184

INSIGHT In this particular forecasting situation, you can see that more heavily weighting the latest month provides a much
more accurate projection.

LEARNING EXERCISE If the assigned weights were .50, 0.33, and 0.17 {instead of 3, 2, and 1), what 1s the forecast for
January’s weighted moving average? Why? [Answer: There is no change. These arc the same relative weights. Note that X
weights = 1 now, so there 18 no need for a denominator. When the weights sum to 1, calculations tend to be simpler.]

RELATED PROBLEMS 4.1b, 4.2¢, 4.5¢, 4.6, 4.7, 4.10b

EXCEL OM Data File Chi4Ex2.xls can be tound at www.pearsonhighered.com/heizer.

Figure 4.2 Actual Demand vs. Moving Average and Weighted-Moving-



Average Methods for Donna’s Garden Supply
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Moving average methods always lag behind when there is a trend present, as shown by the blue line {actual sales) for January
through August.

Both simple and weighted moving averages are effective in smoothing out sudden fluctuations in the demand pattern to
provide stable estimates. Moving averages do, however, present three problems:

= 1, Tnereasing the size of 1 (the number of periods averaged) does smooth out flucuations better, but it makes the
method less sensitive to changes in the data.
« 2. Moving averages cannot pick up trends very well. Because they are averages, they will always stay within past
levels and will not predict changes to either higher or lower levels. That is, they /ag the actual values.
s 3. Moving averages require extensive records of past data.
Figure 4.2, a plot of the data in Examples | and 2, illustrates the lag effect of the moving-average models. Note that both the
moving-average and weighted-moving-average lines lag the actual demand. The weighted moving average, however, usually
reacts more quickly to demand changes. Even in periods of downtum (see Naovember and December), it more closely tracks
the demand.

Exponential Smoothing

Exponential smoothing is another weighted-moving-average forecasting method. It involves very file record keeping of
past data and is fairly easy to use. The basic exponential smoothing formula can be shown as tollows:

Exponential smoothing

A weighted-moving-average forecasting technique in which data points are weighted by an exponential function.
New forecast = Last period’s forecast + o (Last period’s actual demand — Last period’s forecast) (4-3)

where o is a weight, or smoothing constant, chosen by the forecaster, that has a value greater than or equal to 0 and less than
or equal to 1. Equation (4-3) can also be written mathematically as:

Smoothing constant

The weighting factor used in an exponential smoothing forecast, a number greater than or equal to 0 and less than or equal to

L.

Fi=F tald — Foy) (44)



where

F,  =new forecast

F 11 = previous period’s forecast

¢ =smoothing (or weighting) constant (0 <a < 1)
A, | =previous period’s actual demand

The concept is not eomplex. The latest estimate of demand is equal to the old forecast adjusted by a fraction of the difference
between the last period’s actual demand and last period’s forecast. Example 3 shows how to use exponential smoothing to
derive a forecast.

Example 3 DETERMINING A FORECAST VIA EXPONENTIAL
SMOOTHING

In January, a car dealer predicted February demand tor 142 Ford Mustangs. Actual February demand was 153 autos. Using a
smoothing constant chosen by management of @ = .20, the dealer wants to forecast March demand using the exponential
smoothing model.

APPROACH The exponential smoothing model in Eguations {4-3) and (4-4) can be applied.

SOLUTION Substituting the sample data into the formula, we obtain:
New forecast (for March demand) = 142+ 2(153 — 142)=142+22
=144.2

Thus, the March demand forecast for Ford Mustangs 15 rounded to 144,

INSIGHT Using just two pieces of data, the forecast and the acmal demand, plus a smoothing constant, we developed a
forecast of 144 Ford Mustangs for March.

LEARNING EXERCISE If the smoothing constant is changed to .30, what is the new forecast? [Answer: 145.3]
RELATED PROBLEMS 4.1¢c,4.3,4.4,45d,4.6,4.9d,4.11,4.12,4.13a,4.17, 4.18,4.37, 443, 4.47, 4 49

The smoothing constant, , is generally in the range from .05 to .50 for business applications. It can be changed to give more
weight to recent data (when a is high) or more weight to past data (when o is low). When o reaches the extreme of 1.0, then
in Equation (4-4), ;= 1.0 4,_y. All the older values drop out, and the forceast becomes identical to the naive model

mentioned earlier m this chapter. That1s, the forecast for the next period 15 just the same as this period’s demand.

The following table helps illustrate this concept. For example, when o = .5, we can see that the new forecast is based almost
entirely on demand in the last three or four periods. When a =1, the forecast places little weight on recent demand and takes
many periods (about 19) of historical values into account.
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Selecting the Smoothing Constant

Exponential smoothing has been successtully applied in virtually every type of business. However, the appropriate value of
the smoothing constant, g, can make the difference between an accurate forecast and an inaccurate forecast. High values of o
are chosen when the underlying average is likely to change. Low values of o are used when the underlying average s fairly
stable. In picking a value for the smoothing constant, the objective is to obtain the most accurate forecast.

W Student tip

Forecasts tend to be more accurate as they become shorter. Therefore, forecast error also tends to drop with shorter forecasts.

Measuring Forecast Error

The overall accuracy of any torecasting model—moving average, exponential smoothing, or other—can be determined by
comparing the forecasted values with the actual or observed values. If F; denotes the forecast in period ¢, and 4, denotes the

actual demand i period 2, the forecast error {or deviation) 15 defined as:
Forecast ertor = Actual demand — Forecast value
=4, - F,

Several measures are used in practice to calculate the overall tforecast error. These measures can be used to compare difterent
forecasting models, as well as to monitor forecasts to ensure they are performing well. Three of the most popular measures
are mean absolute deviation (MAD), mean squared error {MSE), and mean absolute percent error (MAPE). We now describe
and give an example of each.

Mean Absolute Deviation

The first measure of the overall forecast error for a model is the mean absolute deviation (MAD). This value is computed
by taking the sum of the absolute values of the individual forecast errors (deviations) and dividing by the number of periods
of data (n):

Y | Actual —Forecast |
MAD = {d=])
n '

Mean absolutedeviation (MAD)

A measure of the overall forecast error for a model.

Example 4 applies MAD, as a measure of overall forecast error, by testing two values of .
1L.O4

Compute three measures of forecast accuracy

Example 4 DETERMINING THE MEAN ABSOLUTE DEVIATION (MAD)

During the past 8 quarters, the Port of Baltimore has unloaded large quantitics of grain from ships. The port’s operations
manager wants to test the use ot exponential smoothing to see how well the technique works in predicting tonnage unloaded.



He guesses that the forecast of grain unloaded in the first quarter was 175 tons. Two values of o are to be examined: o =.10
and = .50.

APPROACH Compare the actual data with the data we forecast {using each of the two o values) and then find the absolute
deviation and MADs.

SOLUTION The following table shows the detailed calculations for o = .10 only:

QUARTER|ACTUAL TONNAGE UNLOADED FORECAST WITH ¢ =.10 FORECAST WITH o= .50

| 180 175 175
2 168 175,50 = 175.00+.10(180— 175)  177.50
3 59 174,75 = 175,50 + .10(168 — 175.50) 172.75

4 175 17318 = 17475 + . 10(159 — 174.75) 165.88

N
o
<

173.36 = 173.18 + .10(175 — 173.18) 170.44

6 205 175.02= 17336 + .10(190 — 173.36) 180.22
7 180 178.02 = 175.02 +.10(205 — 175.02) 192.61
8 182 178.22 = 178.02 + . 10(180 — 178.02) 186.30
9 ? 178.50 = 178.22 + 10(182 — 178.22) 184.15

To evaluate the accuracy ot each smoothing constant, we can compute forecast errors in terins of absolute deviations and
MADs:

QUARTER|  TONNAGE st Al DEVIATION FOR « bt DEVIATION FOR o=
UNLOADED 10 50

1 180 175 5.00 175 5.00

> 168 175.50 750 17750 950

3 159 17475 15.75 17275 13.75

4 175 173.18 1.82 165.88 9.12

5 190 17336 16.64 170.44 19.56

6 205 175.02 29.98 180.22 24.78



7 180 178.02 1.98 192.61 12.61
8 182 178.22 3.78 186.30 4.30

Sum of absolute deviations:
82.45

2 | Deviation | 10.31

MAD 98.62 12.33

n

INSIGHT On the basis of this comparison of the two MADs, a smoothing constant of @ = .10 is preferred to ¢ = .30 because
its MAD is smaller.

LEARNING EXERCISE It the smoothing constant is changed trom o =.10 to a = .20, what is the new MAD? [Answer;
10.21.]

RELATED PROBLEMS 4.5b, 4.8¢,4.9¢c,4.14, 423, 4.37a
EXCEL OM Data File Ch04Ex4a.xls and Ch04Ex4b.xls can be found at www.pearsonhighered.com/heizer.
ACTIVE MODEL 4.2 This example is further illustrated in Aclive Model 4.2 at www.pearsonhighered.com/heizer.

Most computerized forecasting software includes a feature that automatically finds the smoothing constant with the lowest
forecast error. Some software modities the o value if errors become larger than acceptable.

Mean Squared Error

The mean squared error (MSE) is a second way of measuring overall forecast error. MSE is the average ot the squared
differences between the forecasted and observed values. Tts formula is:

Mean squared error (MSE)

The average of the squared differences between the forecasted and observed values.

2
z ( Forecast errors )

MSE = =0

"

Example 5 finds the MSE for the Port of Baltimore mmtroduced in Example 4.

Example S DETERMINING THE MEAN SQUARED ERROR (MSE)

The operations manager for the Port of Baltimore now wants to compute MSE for a = .10.

APPROACH Using the same forecast data for ¢ = .10 from Example 4, compute the MSE with Equation (4-6).

SOLUTION

1 180 175 52=125

[\

168 175.50 (—7.5)% = 56.25



3 139 174.75 (—15.75)% = 248.06
4 175 173.18 (1.82)> =3.31

5 190 173.36 (16.64)% = 276.89
6 205 175.02 (29.98)% = 898.80
7 180 178.02 (1.98)>=3.92

8 182 178.22 (3.78)2 = 14.29

Sum of errors squared = 1,526.52

-

Z ( Forecast errors )

MSE = =1,52652 | 8 =190.8
n

INSIGHT Ts this MSE = 190.8 good or bad? It all depends on the MSEs for other forecasting approaches. A low MSE is
betler because we want to minimize MSE. MSE exaggerates errors because it squares them.

LEARNING EXERCISE Find the MSE for o= .50. [Answer: MSE = [95.24. The result indicates that &= .10 is a better
choice because we seek a lower MSE. Coincidentally, this is the same conclusion we reached using MAD in Example 4]

RELATED PROBLEMS 4.8d, 4.11¢, 4.14, 4.15¢, 4.16¢, 4.20

A drawback of using the MSE is that it tends to accentuate large deviations due to the squared term. For example, it the
forecast error tor period 1 is twice as large as the error for period 2, the squared error in period 1 is four times as large as that
for period 2. Hence, using MSE as the measure of forecast etror typically indicates that we prefer to have several smaller
deviations rather than even one large deviation.

Mean Absolute Percent Error

A problem with both the MAD and MSE is that their values depend on the magnitude ot the item being forecast. If the
torecast item is measured in thousands, the MAD and MSE values can be very large. To avoid this problem, we can use the
mean absolute percent error (MAPE). This 1s computed as the average of the absolute difference between the forecasted
and actual values, expressed as a percentage of the actual values. That is, if we have forecasted and actual values for #
periods, the MAPE is calculated as:

Mean absolute percenterror (MAPE)
The average of the absolutedifterences between the forecast and actual values, expressed as a percent of actual values,

n

Actual , - Fm‘cc‘astl J." Actual

100
i A=7)
MAPE =

Example 6 illustrates the calculations using the data from Examples 4 and 5.



Example 6 DETERMINING THE MEAN ABSOLUTE PERCENT ERROR
(MAPE)

The Port of Baltimore wants to now calculate the MAPE when ¢ = .10.

APPROACH Eguation (4-7) is applied to the forecast data computed in Example 4.

SOLUTTON
ACTUAL TONNAGE FORECAST FOR ¢ ABSOLUTE PERCENT ERROR100
UNLOADED =.10 (ERROR|/ACTUAL)
1 180 175.00 100(5/180) = 2.78%
2 L8 175.50 100(7.5/168) = 4.46%
3 156 174.75 100(15.75/159) = 9.90%
4 175 173.18 100(1.82/175) = 1.05%
5 190 173.36 100(16.64/190) = 8.76%
6 205 175.02 100(29.98/205) = 14.62%
7 180 178.02 100(1.98/180) =1.10%
8 182 178.22 100(3.78/182) = 2.08%

Sum of % crrors = 44.75%

¥ absolute percent error 4475 %
MAPE = = 3 =559 %
H

INSIGHT MAPE expresses the ervor as a percent of the actual values, undistorted by a single large value.

LEARNING EXERCISE What is MAPE when « is .507 [Answer: MAPE = 6.75%. As was the case with MAD and MSE,
the o= .1 was preterable tor this series of data.]

RELATED PROBLEMS 4.8¢, 4.33¢

The MAPE is perhaps the easiest measure to interpret. For example, a result that the MAPE 15 6% s a clear statement that 1s
not dependent on issues such as the magnitude of the input data.

Exponential Smoothing with Trend Adjustment

Simple exponential smoothing, the technigque we Just illustrated in Examples 3 to 6, 18 like any other moving-average
technique: Tt fails to respond to trends. Other forecasting techniques that can deal with wends are certainly available.
However, because exponential smoothing is such a popular modeling approach in business, let us look at it in more detail.

Here is why exponential smoothing must be modified when a trend is present. Assume that demand for our product or service
has been increasing by 100 units per month and that we have been forecasting with o = 0.4 in our exponential smoothing
model. The following table shows a severe lag in the second, third, fourth, and fitth months, even when our imitial estimate



for month 1 15 perfect:

MONTH|ACTUAL DEMAND FORECAST (F ;) FOR MONTHS 1-5

1 100 Fy =100 {(given)

2 200 Fy=F + o4, — Fy)= 100+ .4(100 - 100) =100
3 300 Fy=F+ afd> — F5) = 100 + .4(200 — 100) = 140
4 400 Fy=Fy+o{dy — F3) =140 + .4(300 — 140) = 204
5 500 Fs=F4+o(dy — F4) =204 + 4(400 — 204) = 282

To improve our torecast, let us illustrate a more complex exponential smoothing model, one that adjusts for trend. The 1dea 1s
to compute an exponentially smoothed average of the data and then adjust for positive or negative lag in trend. The new
formula is:

Forecast including trend (F77,) = Exponentially smoothed forecast average (Fy) + Exponentially smoothed trend (7;) (4-8)

With trend-adjusted exponential smoothing, estimates for both the average and the trend are smoothed. This procedure
requites two smoothing constants: o for the average and p for the trend. We then compute the average and trend each period:

F, = alActal demand last period) + {1 — o) Forecast last period + Trend estimate last period) or:

Fe=a(d; )Y (I —a)(Fy—  + T, 1) (4-9)

T, = p(Forecast this period — Forecast last period) + (1 — p){Trend estimate last period) or:

T,=pF - F_ D+t -PT_ (4-10)

where F; = exponentially smoothed forecast average of the data series in period ¢

7, = exponentially smoothed trend in period ¢

A, = actual demand in period 7

o = smoothing constant for the average (0 =a = 1)

[} = smoothing constant for the trend (0 << 1)

So the three steps to compute a trend-adjusted forecast are:



STEP 1: Compute £, the exponentially smoothed forecast average for period 1, using Equation (4-9).

STEP 2: Compute the smoothed trend, 7}, using Equation (4-10).
STEP 3: Calculate the forecast including trend, FIT,, by the formula FIT,= F, + T, [from Equation (4-8)].

Example 7 shows how to use trend-adjusted exponential smoothing.

Example 7 COMPUTING A TREND-ADJUSTED EXPONENTITAL
SMOOTHING FORECAST

A large Portland manufacturer wants to forecast demand for a piece of pollution-control equipment. A review of past sales,
as shown below, indicates that an increasing trend is present:

MONTH ()|ACTUAL DEMAND (4 ,)MONTH (/)| ACTUAL DEMAND (41 ;)

]
—
~1
~1
%]
—

3 20 8 28
4 19 9 36
5 24 10 ?

Smoothing constants are assigned the values of & = .2 and [} = 4. The firm assumes the initial forecast average for month |
(+) was 11 units and the trend over that period (') was 2 units.

APPROACH A trend-adjusted exponential smoothing model, using Equations (4-9), (4-10), and (4-8) and the three steps
above, is employed.

SOLUTION
» Step 1: Forecast average for month 2:

Fa=(2)(12)+(1 —.2)(11 +2)

=24+ (8)13)=2.4 + 10.4 = 12.8 units
¢ Step 2: Compute the trend in period 2:

Tr=Bry—F)+ UL -PT,

= 4128 - 1)+ (1 — 4)2)



={(A1B+(6)2H=.72+12=1.92
* Step 3: Compute the forecast including trend (FI7:

F]TZ :FZ + Tz
=12.8+192
= 14.72 units

We will also do the same caleulations tor the third month:
* Step 1:

Fy=ady+ (1 —a)(Fy+ 1) = (217 + (1 —.2)(12.8 +1.92)

=34+ (8)(14.72)=34+11.78=15.18
* Step 2:

T3=B(Fy—Fy) + (1 —P)Ty = (A)(15.18 — 12.8) + (1 —.4)(1.92)

=(A238)+(6)(1.92)= 952+ 1.152=2.10
* Step 3:

FI 3:F3+T3
=1518+2.10=17.25.

Table 4.1 completes the forecasts for the 10-month period.

TABLE 4.1 Forecast with o =.2 and p = .4

FORECAST INCLUDING

TREND, FIT ,

ACTUAL SMOOTHED FORECAST SMOOTHED
DEMAND AVERAGE, F, TREND, T ,

1 12 Il 2

2 17 12.80 1.92

3 20 15.18 2.10

4 19 17.82 232

5 24 19.91 223

6 21 2251 238

13.00

14.72

17.28

20.14



7 31 2411 2.07 26.18

3 23 27.14 245 29.56
9 36 29.28 2.32 31.60
10 — 32.48 2.68 35.16

INSIGHT Figure 4.3 compates actual demand (4,) to an eXponential smoothing forecast that includes twend {FIT}). FIT picks
up the trend 1n actal demand. A simple exponential smoothing model (as we saw in Examples 3 and 4) trails far behind.

LEARNING EXERCISE Using the data for actual demand tor the 9 months, compute the exponentially smoothed forecast
average without trend [using Equation {4-4) as we did earlier in Examples 3 and 4]. Apply ¢ = .2 and assume an initial
forecast average for month 1 of 11 units. Then plot the months 2-10 forecast values on Figure 4.3. What do you notice?
[Answer: Month 10 forecast = 24.65. All the points are below and lag the trend-adjusted forecast. |

RELATED PROBLEMS 4.19, 4.20, 4.21,4.22, 4.44

ACTIVE MODEL 4.3 This example is turther illustrated in Active Model 4.3 at www.pearsonhighered.com/heizer.

EXCEL OM Data File Ch04Ex7.xis can be found at www.pearsonhighered.com/heizer.

Figure 4.3 Exponential Smoothing with Trend-Adjustment Forecasts
Compared to Actual Demand Data
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The value of the trend-smoothing constant, p, resembles the ¢ constant because a high 5 is more responsive to recent changes
in trend. A low B gives less weight to the most recent trends and tends to smooth out the present trend. Values of ff can be
tound by the trial-and-error approach or by using sophisticated commercial forecasting software, with the MAD used as a
measure of comparison.

Simple exponential smoothing is often referred o as first-order smoothing, and trend-adjusted smoothing is called second-
order, or double smoothing. Other advanced exponential-smoothing models are also used, including seasonal-adjusted and
friple smoothing.

Trend Projections

The last time-series forecasting method we will discuss is trend projection. This technique fits a trend line to a series of



historical data points and then projects the slope of the line into the future for medium to long-range forecasts. Several
mathematical trend equations can be developed (for example, exponential and quadratic), but in this section, we will look at
linear (straight-ling) trends only,

Trend projection

A time-scries torecasting method that fits a trend line to a series of historical data points and then projects the line into the
future for forecasts.

If we decide to develop a linear trend line by a precise statistical method, we can apply the [east-squares method. This
approach results in a straight line that minimizes the sum of the squares of the vertical differences or deviations from the line
1o each of the actual observations. Figure 4.4 illustrates the least-squares approach.

A least-squares line 15 described in termis of its y-intercept {the height at which it intercepts the y-axis) and its expected
change (slope). Tf we can compute the p-intercept and slope, we can express the line with the followimg equation:

y =a+hr i4.11)

whete I (called 'y hat™) = computed value of the variable to be predicted (called the dependent variahle)

a = y-axis intercept
b = slope of the regression line (or the rate of change in y for given changes in x)
X = the independent variable {(which in this case is time)

Statisticians have developed equations that we can use to find the values of « and b for any regression line. The slope b is
found by:

Yxy -nxy

b= - 413
Z_\'_ -nx ' 2)

Figure 4.4 The Least-Squares Method for Finding the Best-Fitting Straight
line, Where the Asterisks Are the Locations of the Seven Actual Observations
or Data points
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where b = slope of the regression line
Y = summation sign
x = known values of the independent variable
v = known values of the dependent variable
X - average of the x-values

¥ = average of the y-values

n =number of data points or observations
We can compute the y-intercept a as tollows;
a=y —bx i4.13)

Example & shows how to apply these concepts.

Example § FORECASTING WITH LEAST SQUARES

The demand for clectric power at N.Y. Edison over the past 7 years is shown in the following table, in megawatts. The firm
want(s o torecast next year’s demand by titting a straight-line trend to these data.

ELECTRICAL POWER DEMAND|YEAR|ELECTRICAL POWER DEMAND

1 74 5 105
2 79 6 142
3 80 7 122
4 9

APPROACH Eguations (4-12) and (4-13) can be used to create the trend projection model.

SOLUTION

YEAR (x) [ELECTRIC POWER DEMAND (3)

[

79 4 15%



80 9 240

(%)

4 90 16 360
5 105 25 525
6 142 36 852
7 122 49 854
Xx =28 Xy =692 2= 140 Yy = 3,063
¥ iz =4y LIy 2 = 08.86
] 7 n 7

Sxy —nxy _ 3,003 — (7)(4)98.86) 295
Z.rz ny’ 140 — (7)(42) 28

a= 7 —bY =9886 — 10.54(4) =56.70

b= = 10.54

Thus, the least-squares trend equation is ¥ = 56.70 + 10.54x. To project demand next year, x = &:
Demand in year 8 = 56.70 + 10.54(8)
=141.02, or 141 megawatts

INSIGHT To evaluate the model, we plot both the historical demand and the trend line in Figure 4.5. In this case, we may
wish to be cautious and try to understand the year 6 to year 7 swing in demand.

Figure 4.5 Electrical Power and the Computed Trend Line
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LEARNING EXERCISE Estumate demand for year 9. [Answer: 151.56, or 152 megawatts. ]
RELATED PROBLEMS 4.6, 4.13¢,4.16,4.25,4.39, 449

EXCEL OM Data File ChO04Ex8.xls can be [ound at www.pearsonhighered.com/heizey,

ACTIVE MODEL 4.4 This example is turtherillustrated in Active Model 4.4 at www.pearsonhighered.com/heizer.

Notes on the Use of the Least-Squares Method

Using the least-squares method implies that we have met three requirements:

e 1. We always plot the data because least-squares data assume a linear relationship. If a curve appears to be present,
curvilinear analysis is probably needed.

s 2, We do not predict time periods far beyond our given database. For example, if we have 20 months® worth of average
prices of Microsoft stock, we can forccast only 3 or 4 months into the futurc. Forecasts beyond that have little
statistical validity. Thus, you cannot take 5 years” worth of sales data and project 10 years into the tuture. The wotld is
too uncertain.

* 3. Deviations around the least-squares line {see Figure 4.4) are assumed to be random and normally distributed, with
most observations close to the line and only a smaller number farther out.

Seasonal Variations in Data

Seasonal variations in data are regular movements in a time series that relate to recurring events such as weather or
holidays. Demand for coal and fuel oil, for example, peaks during cold winter months. Demand for golf clubs or sunscreen
may be highest in summer.

Seasonal variations

Regular apward o doswniward movements in a timse secies that te to tecacing events.

Demand for many products is seasonal. Yamaha, the manufacturer of this jet ski and snowmobile, produces products with
complementary demands to address scasonal fluctuations.

Seasonality may be applied to hourly, daily, weekly, monthly, or other recurring patterns. Fast-food restaurants experience
doily surges at noon and agam at 5 p.m. Movie theaters see higher demand on Friday and Saturday evenings. The post office,
Toys “5” Us, The Christmas Store, and Hallmark Card Shops also exhibit seasonal variation in customer traffic and sales.

Similarly, understanding seasonal variations is important for capacity planning in organizations that handle peak loads. These
include electric power companies during extreme cold and warm periods, banks on Friday afternoons, and buses and
subways during the morning and evening rush hours.

X Student tip

John Deere understands scasonal variations: Tt has been able to obtain 70% of its orders in advance of seasonal useso it can
smooth production.

Time-series Torecasts like those in Example 8 involve reviewing the trend of data over a series of time periods. The presence
of seasonality makes adjustments in trend-line forecasts necessary. Seasonality is expressed in terms of the amount that
actual values differ from average values in the time series. Analyzing data in monthly or quarterly terms usually makes it
easy for a statistician to spot seasonal patterns. Seasonal indices can then be developed by several common methods.

In what is called a muluplicative seasonal model, seasonal factors are multiplied by an estimate of average demand to
produce a seasonal forecast. Our assumption in this section 1s that trend has been removed from the data. Otherwise, the
magnitude of the scasonal data will be distorted by the trend.



Here are the steps we will follow for a company that has “seasons™ of 1 month:

» 1. Find the average historical demand each season (or month in this case) by surnming the demand for that month in
each year and dividing by the number of years of data available. For example, it, in January, we have seen sales of 8, 6,
and 10 over the past 3 years, average January demand equals (8 + 6+ 10)/3 = 8 units.

s 2. Compute the averuge demand over all months by dividing the total average annual demand by the mumber of
seasons. For example, if the total average demand for a year 15 120 umits and there are 12 seasons (each month), the
average monthly demand is 120/12 = 10 units.

LO5
Develop seasonal indices

= 3. Compute a seasonal index for each season by dividing that maonth’s historical average demand {from Step 1) by the
average demand over all months {from Step 2). For example, if the average historical January demand over the past 3
years is 8 units and the average demand over all months is 10 units, the seasonal index for January is 8/10 = .80,
Likewise, a scasonal index of 1.20 for Fehruary would mean that February’s demand 1s 20% larger than the average
demand over all months.

* 4. Estimate next year’s total annual demand.

s 5. Divide this estimate of total annual demand by the number of seasons, then multiply it by the seasonal index for
cach month. This provides the seasonal forecast.

Example 9 illustrates this procedure as it computes scasonal indices from historical data.
Example 9 DETERMINING SEASONAL INDICES

A Des Moines distributor of Sony laptop computers wants to develop monthly indices for sales. Data from the past 3 years,
by month, are available.

APPROACH Follow the five steps listed above.

SOLUTION
I
AVERAGE YEARLY AVERAGE MONTHLY SEASONAL
DEMAND DEMAND 2 INDEX P
Jan. 80 85 105 90 94 957 (= 90/94)
Feb. 70 85 85 80 94 957 (= 90/94)
Mar. 80 93 82 85 04 851 (= 80/94)
Apr. 90 95 115 100 94 904 (= 85/94)
May 113125 131 123 04 1.064 (= 100/94)
June 110 115 120 115 94 1.309 (= 123/94)
July 100 102 113 105 94 1.223 (= 115/94)

Aug. 88 102 110 100 94 1.117 (= 105/94)



Sept. 85 90 95 90 94 1.064 (= 100/94)

Oct. 7778 85 80 94 937 (= 90/94)
Nov. 75 82 83 80 94 851 (= 80/94)
Dec. 82 78 80 80 94 831 (= 80/94)

Total average annual demand = 1,128

1, 128
12 month

Aaverage monthly demand =

Average monthly demand for past 3 years

Average monthly demand

lan

SRedantal mley —

If we expect the annual demand Tor computers to be 1,200 units next year, we would use these seasonal indices to forecast
the monthly demand as follows:

MONTH DEMAND

1, 200

Tun. ——— % 957 =95
Hil 12
L 200 851 =85
Fzh. — x, =
' 12
1. 200 S
Mar. _ =
Hiy 12
L 20 1.064 = 106
Apr. — x 1. =
m 12
L, 20 1.309 =131
My —_ x 1, =
E 12
1, 200
Tunz — % 1,223 =122
12
1, 200
Tuly — x 1117 =112

12



Aug. 1, 200

—— x 1.064 = 106
12
1,200 057 =96
Yenl. — %, =
n 12
1, 200 —
Dl — x 851 =
L 12
1, 200 )
oy T = 851 =85
1, 200
Do, T % .851 =85

INSIGHT Think of these indices as percentages of average sales. The average sales (without seasonality) would be 94, but
with seasonality, sales fluctuate from 5% to 131% of average.

LEARNING EXERCISE If next year’s annual demand is 1,150 laptops (instead of 1,200), what will the January, February,
and March torecasts be? [Answer: 91.7, 81.5, and 86.6, which can be rounded to 92, 82, and 87.]

RELATED PROBLEMS 4.27, 4.28

EXCEL OM Data File Ch04Ex9.xls can be found at www.pearsonhighered.com/heizer.

For simplicity, only 3 periods (years) are used for each monthly index in the preceding example, Example 10 illustrates how
indices that have already been prepared can be applied to adjust trend-line forecasts for seasonality.

Example 10 APPLYING BOTH TREND AND SEASONAL INDICES

San Diego Hospital wants to improve its forecasting by applying both trend and seasonal indices to 66 months of data it has
collected. It will then forecast “patient-days™ over the coming year.

APPROACH A trend line is created; then monthly seasonal indices are computed. Finally, a multiplicative seasonal model
is used to forecast months 67 to 78.

SOLUTION Using 66 months of adult inpatient hospital days, the following equation was computed:
p =8 000 +21.5x
where
y = paticnt days

x = time, in months

Based on this model, which reflects only trend data, the hospital forecasts patient days for the next month (period 67) to be:
Patient days = 8,090 + (21.5)(67) = 9,530 (wend only)

While this model, as plotted in Figure 4.6, recognized the upward trend line in the demand for inpatient services, it ignored
the seasonality that the admimistration knew to be present.

Figure 4.6 Trend Data for San Diego Hospital
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The following table provides seasonal indices based on the same 66 months. Such seasonal data, by the way, were found to
be typical of hospitals nationwide.

Seasonality Indices for Adult Inpatient Days at San Diego Hospital

MONTH[SEASONALITY INDEX| MONTH [SEASONALITY INDEX
04 1.03

January 1. July 03

February 0.97 August  1.04
March  1.02 September 0.97
April 1.01 October  1.00
May 0.99 November 0.96
June 0.99 December 0.98

These seasonal indices are graphed in Figure 4.7. Note that January, March, July, and August seem to exhibit significantly
higher patient days on average, while February, September, November, and December experience lower patient days.

However, neither the trend data nor the seasonal data alone provide a reasonable forecast for the hospital. Only when the
hospital multiplied the trend-adjusted data by the appropriate seasonal index did it obtain good forecasts. Thus, for period 67
(January):

« Patient days = (Trend-adjusted forecast)(Monthly seasonal index) = (9,530)(1.04) = 9,911

Figure 4.7 Seasonal Index for San Diego Hospital
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The patient-days for each manth are:

Period €7 68 69 70 71 72 73 74 75 76 77 78
Month lan.  Feb. March Apgrl  May | June | luly Aug. | Sept. | Qct MNav. | Dec.
Forecast with 9911 9,265 9,764 9,691 9,520 9,542 9,949 10,068 9,411 ©,724 9,355 9572
Trend &

Seasonality

A graph showing the forecast that combines both trend and seasonality appears in Figure 4.8.

Figure 4.8 Combined Trend and Seasonal Forecast
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INSIGHT Notice that with trend only, the September forecast 1s 9,702, but with both trend and seasonal adjustments, the
forecast is 9,411. By combining trend and seasonal data, the hospital was better able to forecast inpatient days and the related
staffing and budgeting vital to effective operations.

LEARNING EXERCISE If the slope of the trend line for patient-days is 22.0 (rather than 21.5) and the index for December
15 .99 (instead of .98), whal is the new forecast for December inpatient days? [Answer: 9,708.]

RELATED PROBLEMS 4.26,4.29

Example 11 further illustrates seasonality for quarterly data at a wholesaler.

Example 11 ADJUSTING TREND DATA WITH SEASONAL INDICES

Management at Jagoda Wholesalers, in Calgary, Canada, has used time-series regression based on point-of-sale data to
forecast sales tor the next 4 quarters. Sales estimates are $100,000, $120,000, $140,000, and $160,000 for the respective
quatters. Seasonal indices for the four quarters have been found to be 1.30, .90, .70, and 1.10, respectively.

APPROACH To compute a scasonalized or adjusted sales forecast, we just multiply cach seasonal index by the appropriate
trend forecast:

=Index  y

seasonal trend forecast

SOLUTION

o Quarter I: Y'; = (1.30)($100,000) = $130,000 Quarter II: ¥ ; = (.90)($120,000) = $108,000 Quarter I1I: ¥ ;;; = (.70)
($140,000) = $98,000 Quarter IV: ¥ vy = (1. 10)($160,000) = $176,000



INSIGHT The straight-ling trend forecast is now adjusted to reflect the seasonal changes.

LEARNING EXERCISE Tf the sales forecast for Quarter TV was $180,000 (rather than $160,000), what would be the
scasonally adjusted forecast? [Answer: $198,000.]

RELATED PROBLEMS 4.26, 4.29

Cyclical Variations in Data

Cvecles are like seasonal varations in data but oceur every several vears, not weeks, months, or quarters. Forecasting cyclical
variations in a time series is difficult. This is because cycles include a wide variety of factors that cause the economy to go
from recession to expansion to recession over a period of years. These factors include national or industrywide
overexpansion in times of euphoria and contraction in times of concern. Forecasting demand for individual products can also
be driven by product life cycles—the stages products go through from introduction through decline. Life cycles exist for
virtually all products; striking examples include floppy disks, video recorders, and the original Game Boy. We leave cyclical
analysis to forecasting texts.

Cyeles
Patterns in the data that occur every several years.

Developing associative techniques of variables that affect one another is our next topic.

W Student tip

We now deal with the same mathematical model that we saw earlier, the least-squares method. But we use any potential
*cause-and-effect” variable as x.

Associative Forecasting Methods: Regression and Correlation Analysis

Unlike time-series forecasting, associative forecasting models usually consider several variables that are related to the
guantity being predicted. Once these related variables have been found, a statistical model is built and used to forecast the
item of interest. This approach is more powerful than the time-series methods that use only the historical values for the
forecast variable.

Many factors can be considered in an associative analysis. For cxample, the sales of Dell PCs may be related to Dell’s
advertising budget, the company’s prices, competitors’ priees and promotional strategies, and even the nation’s economy and
unemployment rates. In this case, PC sales would be called the dependent variable, and the other variables would be called
independent variables. The manager’s job is to develop the best staiistical relationship between PC sales and the
independent variables. The most common quantitative associative forecasting model is linear-regression analysis.

Lingar-regression analysis

A straight-ling mathematical model to describe the functional relationships between independent and dependent variables,

Using Regression Analysis for Forecasting

We can use the same mathematical model that we employed in the least-squares method of trend projection to perform a

linear-regression analysis. The dependent variables that we want to forecast will still be V' . But now the independent variable,
x, need no longer be time. We use the equation:

y =a+hx

LO6

Conduct a regression and correlation analysis

where V = valye of the dependent variable (in our example, sales)



a = y-axis intercept
b = slope of the regression line

x = independent variable Example 12 shows how to use lingar regression.

Example 12 COMPUTING A LINEAR REGRESSION EQUATION

Nodel Construction Company renovates old homes in West Bloomfield, Michigan. Over time, the company has found that its
dollar volume of renovation work 1s dependent on the West Bloomfield area payroll. Management wants to establish a
mathematical relationship to help predict sales.

APPROACH Nodel’s VP of operations has prepared the following table, which lists company revenues and the amount of
money earned by wage earners in West Bloomfield during the past 6 years:

NODEL’S SALES(IN $ AREA PAYROLL (IN $ NODEL’S SALES (IN $ AREA PAYROLL (IN §

MILLIONS), y BILLIONS), x MILLIONS), y BILLIONS), x
2.0 1 2.0 2
3.0 3 2.0 1
25 4 35 7

The VP needs to determine whether there is a straight-line {linear) relationship between area payroll and sales. He plots the
known data on a scatter diagram:

L

4.0
N = [ ]
22 30 .
h = °
—m-—.
EHE} 20 F ee N
O c
2= 10t

| 1 | 1 1 | 1 o

0 1 2 3 4 5 6 7
Area payroll (in $ billions)

ﬁ? Student tip

A scatter diagram is a powerful data analysis tool. It helps guickly size up the relationship between two variables.

From the six data points, there appears to be a slight positive relationship between the independent variable {payroll) and the
dependent variable (sales): As payroll increases, Nodel’s sales tend to be higher,

SOLUTION We can find a mathematical equation by using the lecast-squares regression approach:

VideO 4.1

Forecasting Ticket Revenue for Orlando Magic Basketball Games
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& Pn

3.0 3 9 9.0
25 4 16 10.0
2.0 2 4 4.0
2.0 1 1 2.0
3.5 7 49 24.5
Tp=15.0 Yx =18 ¥l =80 Yxp =515
_ Yx 18
x = —=—2=3
6 6
— Yy 15
) = ——=—=125
Y 6 6
2 -nXy 515 - (6)(3)2.5) _
b = ; = N =.25
Zx -nx 80 —6(3_)
a= Yy —-bx =25 -(25)(3) =175

The estimated regression equation, therctore, is:

)

Y =175+ 25«
or:
Sales = 1.75 + .25 (payroll)

Tf the local chamber of commerce predicts that the West Bloomfield area payroll will be $6 billion next year, we can estimate
sales for Nodel with the regression equation:

Sales (in + millions) = 1.75 + .25(6)
=175+ 1.50=3.25

or.
Sales = +3,250,000

INSIGHT Given our assumptions of a straight-line relationship between payroll and sales, we now have an indication of the

1

slope of that relationship: on average, sales increase at the rate of 4 million dollars for every billion dollars in the local area
payroll. This is because 5 = .23.



LEARNING EXERCISE What are Nodel’s sales when the local payroll is $8 billion? [Answer:S3.75 million.]
RELATED PROBLEMS 4.24, 4.30,4.31,4.32, 433,435,438, 4.40,4.41,4.46,4.48, 4.49

EXCEL OM Dala File Ch04F.x12.xl1s can be lound al www.pearsonhighered.com/heizer.

The tinal part of Example 12 shows a central weakness of associative forecasting methods like regression. Even when we
have computed a regression equation, we must provide a forecast of the independent variable x—in this case, payroll—before
estimating the dependent variable y tor the next time period. Although this is not a problem tor all forecasts, you can irnagine
the difficulty of determining future values of some common independent variables (e.g., unemployment rates, gross national
product, price indices, and 50 on).

Standard Error of the Estimate

The forecast of $3,250,000 for Nodel’s sales in Example 12 is called a point estimate of y. The point estimate is really the
mean, or expected value, of a distribution of possible values of sales. Figure 4.9 illustrates this concept.

To measure the accuracy of the regression estimates, we must compute the standard error of the estimate, S),, 4 This
computation is called the standard deviation of the regression: It measures the ervor from the dependent variable, y, to the
regression line, rather than to the mean. Equation (4-14) 15 4 simmlar expression to that found m most statistics books for
computing the standard deviation of an arithmetic mean:

Standard error of the estimate

A measure of variability around the regression line—its standard deviation.

Z ( -l!ll i -.LI‘. } :
- (4143

where y = y-value of each data point

¥, = computed value of the dependent variable, from the regression equation

# = number of data points

Figure 4.9 Distribution about the Point Estimate of $3.25 Million Sales
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Glhidden Paints™ assembly lincs require thousands of gallons cvery hour. To predict demand, the firm uses associative
forecasting methods such as linear regression, with independent variables such as disposable personal income and GNP.
Although housing starts would be a natural variable, Glidden tound that it correlated poorly with past sales. It turns out that
most Glidden paint is sold through retailers to customers who already own homes or businesses.

Equation {4-15) may look more complex, but it is actually an easier-to-use version of Equation {(4-14). Both formulas provide
the same answer and can be used in sctting up prediction intervals around the point cstimate:?

\/ZL’ - v—be} (4-15)
n-2

Example 13 shows how we would calculate the standard error of the estimate in Example 12,

Example 13 COMPUTING THE STANDARD ERROR OF THE ESTIMATE

Nodel’s VP of operations now wants to know the error associated with the regression line computed in Example 12.

APPROACH Compute the standard error of the estimate, S, , using Equation (4-15).

SOLUTION The only number we need that is not available to solve for §,, , is ¥)2. Some quick addition reveals T)% = 39.5.

Therefore:

17 ey

¥ n -2

) qu.s ~1.75(15.0) - 25(51.5)

& —2
=_/.09375 = .306(in § million )

The standard error of the estimate is then $306,000 in sales.

INSIGHT The interpretation of the standard error of the estimate is similar to the standard deviation; namely, =1 standard
deviation = .6827. So there is a 68.27% chance of sales being £$306,000 from the point estimate of $3,250,000.



LEARNING EXERCISE What is the probability sales will exceed $3,556,0007 [Answer: About 16%.]

RELATED PROBLEMS 4.41¢, 4.48b

Correlation Coefficients for Regression Lines

The regression equation 1s one way of expressing the nature of the relationship between two variables. Regression lines are
not “cause-and-effect” relationships. They merely describe the relationships among variables. The regression equation shows
how one variable relates to the value and changes in another variable.

2Whon the sample size s latge (1 > 30), the prediction interval value ofy can be computed using normal tables. When the number of obscrvations is
small, the -distribution is appropriate. see D. Groebner o al., Business Statistics, 9th ed. (Upper saddle River, NJ: Prentice Hall, 2014).

Another way to evaluate the relationship between two variables is to compute the coefficient of correlation. This measure
expresses the degree or strength of the linear relationship (but note that correlation does not necessarily imply causality).
Usually identified as , the coefficient of correlation can be any number between +1 and —1. Figure 4.10 illustrates what
different values of » might look like.

Coefficient of correlation

A measure of the strength of the relationship between two variables.

Figure 4.10 Five Values of the Correlation Coefficient
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To compute », we use much ot the same data needed earlier to calculate 2 and b for the regression line. The rather lengthy
equation tor » 1s:

nExy - 2, x2.v
. .
JoT e L]

Example 14 shows how to calculate the cocfficient of correlation for the data given in Examples 12 and 13.

Example 14 DETERMINING THE COEFFICIENT OF CORRELATION

In Example 12, we looked at the velationship between Nodel Constiuction Company’s renovation sales and payroll in its
hometown of West Bloomficld. The VP now wants to know the strength of the association between arca payroll and sales.

APPROACH We compute the » value using Equation (4-16). We need to first add one more column of calculations—for yz.

SOLUTION The data, including the column for y* and the calculations, are shown here:



3.0 3 9 9.0 9.0

2.5 4 16 10.0 6.25

2.0 2 4 4.0 4.0

2.0 1 1 2.0 4.0

3.5 7 49 24.5 12.25
Ty =15.0 Yx =18 ¥x? =80 Txp =515 72 =395

(6)(51.5) — (18)(15.0)

\/[(5)(3{1) - {18)2][(6)(39.5) = (15_0}2]

309 -270 39
Jasey12)  Lf1,872
39
- —— = 901
433

INSIGHT This » ot .901 appears to be a significant correlation and helps contirm the closeness ot the relationship between
the two variables.

LEARNING EXERCISE If the coetficient of correlation was —.901 rather than +.901, what would this tell you? [Answer:
The negative correlation would tell you that as payroll went up, Nodel’s sales went down—a rather unlikely occurrence that
would suggest you recheck your math. ]

RELATED PROBLEMS 4.24d, 4.35d, 4.38¢, 4.41t, 4.48b

Although the coefficient of carrelation is the measure most commonly used to describe the relationship between twa
variables, another measure does exist. It is called the goefficient of determination and is simply the square of the coefficient
of corrclation—namely, . The value of »” will always be a positive number in the range 0 < #* < 1. The cocfficient of
determination is the percent of variation in the dependent variable () that is explained by the regression equation. In Nodel’s

case, the value of »* is .81, indicating that 81% of the total variation is explained by the regression equation.
Coefficient of determination

A measure of the amount of variation in the dependent variable about its mean that is explained by the regression equation.

Multiple-Regression Analysis

Multiple regression is a practical extension of the simple regression model we just explored. [t allows us to build a model
with several independent variables instead of just one variable. For example, if Nodel Construction wanted to include
average annual interest rates in its model for forecasting renovation sales, the proper equation would be:

Multiple regression

An associative torecasting method with more than one independent variable.



y =a-+ hl_rl +J'J'3.\'3 4-17

where v = dependent vanable, sales
= a constant, the y intercept
x1 and xy = values of the two independent variables, area payroll and mterest rates, respectively
by and by = coefficients tor the two independent variables

The mathematics of multiple regression becomes quite complex (and is usually tackled by computer), so we leave the
formulas for a, b, and b5 to statistics textbooks. However, Example 15 shows how to interpret Equation (4-17) in
forgcasting Nodel's sales.

Example 15 USING A MULTIPLE-REGRESSION EQUATION

Nodel Construction wants to see the impact of a second independent variable, interest rates, on its sales.

APPROACH The new multiple-regression line for Nodel Construction, calculated by computer software, is:

Y =180+ 30x; — 5.0x,

We also find that the new coefficient of correlation is .96, implying the inclusion of the variable x,, interest rates, adds even
more strength to the linear relationship.

SOLUTTON We can now estimate Nodel’s sales 1f we substitute values for next year’s payroll and interest vate. Tf West
Bloomfield's payroll will be $6 billion and the interest rate will be .12 {12%), sales will be forecast as:
Sales($ millions) = 1.80 + .30(6) — 5.0(.12)

=18+1.8-.6

=3.00

o1
Sales = $3,000,000

INSIGHT By using both variables, payroll and intersst rates, Nodel now has a sales forecast of' 83 million and a higher
coefficient of correlation. This suggests a stronger relationship between the two variables and a more accurate estimate of
sales.

LEARNING EXERCISE If interest rates were only 6%, what would be the sales forecast? [Answer: 1.8 + 1.8 — 5.0(.00) =
3.3, or $3,300,000.]

RELATED PROBLEMS 4.34, 4.36

Monitoring and Controlling Forecasts

Once a forecast has been completed, it should not be forgotten. No manager wants to be reminded that his or her forecast is
horribly inaccurate, but a firm needs to determine why actual demand (or whatever variable is being examined) ditfered
signiticantly from that projected. It the forecaster is accurate, that individual usually makes sure that everyone is aware of his



or her talents. Very seldom does one read articles in Fortune, Forbes, or The Wall Street Journal, however, about money
managers who are consistently off by 25% in their stock market forecasts.

One way to monitor forecasts to ensure that they are performimg well 15 to use a tracking signal. A tracking signalis a
measurement of how well a forecast is predicting actual values. As forecasts are updated every week, month, or quarter, the
newly available demand data are compared to the forecast values.

The tracking signal is computed as the cumulative error divided by the mean absolute deviation (MAD):

Tracking signal

A measurenent of how well a forecast is predicting actual values.

Cumulative error
MAD

Tracking singal =

=18
2 ( Actual demand in period / — Forecast demand in period /) )

MAD

2 | Actual - Forecast |

whers MAD =
n

as seen earlier, in Equation (4-3).

W Student tip

Using a tracking signal 1s a good way to make sure the forecasting system 1s continuing to do a good joh.

Puositive tracking signals indicate that demand is greater than forecast. Negarive signals mean that demand is Jess than
forccast. A good tracking signal—that is, onc with a low cumulative crror—has about as much positive crror as it has
negative error, In other words, small deviations are okay, but positive and negative errors should balance one another so that
the tracking signal centers clossly around zero. A consistent tendency tor torecasts to be greater or less than the actual values
{that is, for a high absolute cumulative error) is called a bias error. Bias can occur if, for example, the wrong variables or
trend line are used or if 2 seasonal index is misapplied.

Bias
A forecast that is consistently higher or consistently lower than actual values of a time series.

Once tracking signals are calculated, they are compared with predetermined control limits. When a tracking signal exceeds
an upper or lower limit, there is a problem with the forecasting method, and management may want to reevaluate the way it
forecasts demand. Figure 4.11 shows the graph of a tracking signal that is exceeding the range of acceptable variation. If the
model being used is exponential smoothing, perhaps the smoothing constant needs to be readjusted.

Figure 4.11 A Plot of Tracking Signals
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How do firms decide what the upper and lower tracking limits should be? There 1s no single answer, but they try to find
reasonable values—in other words, limits not so low as to be triggered with every small forecast error and not so high as to



allow bad forecasts to be regularly overlooked. One MAD is equivalent to approximately .8 standard deviation, £2 MADs =
+1.6 standard deviations, £3 MADs = +2.4 standard deviations, and =4 MADs = £3.2 standard deviations. This fact suggests
that for a forecast to be “in control,”” 89% of the errors are expected to fall within £2 MADs, 98% within £3 MADs, or 99.9%

within +4 MADs.2

LO7

Use a racking signal

Example 16 shows how the tracking signal and cumulative error can be computed.

Example 16 COMPUTING THE TRACKING SIGNAL AT CARLSON’S
BAKERY

Carlson’s Bakery wants to evaluate performance of its croissant forecast.

APPROACH Develop a tracking signal for the forecast and see if it stays within acceptable limits, which we define as =4
MADs.

SOLUTION Using the forecast and demand data for the past 6 quarters for croissant sales, we develop a tracking signal in
the table below:

, CUMULATIVE TRACKING
QUARTER / / CUMULATIVE|, ABSOLUTE |, SIGNAL
DEMAND| DEMAND ERROR : FORECAST " {CUMULATIVE
ERROR ERROR/MAD)
1 90 100 -10 —10 10 10 100 —-10/10=-1
2 95 100 -5 —15 5 15 7.5 —1815=-2
3 115 100 +15 0 15 30 10,0 0/10=0
4 100 110 -10 =10 190 40 100 —10/10=—1
5 125 110 +15 +35 15 55 11.0 +5/11 = +0.5

6 140 110 +30 +35 30 85 142 +35/142=+2.5
> |Forecasterrors | 85
MAD = =— =142
AL the endd 0f quartar 6, i b
Cumulativeerror 35 5 5 FED
MAD 142 - ;

and "I'razking signal —

INSIGHT Because the tracking signal drifted from —2 MAD to +2.5 MAD {(between 1.6 and 2.0 standard deviations), we
can conclude that it is within acceptable limits.

LEARNING EXERCISE If actual demand in guarter 6 was 130 (rather than 140), what would be the MAD and resulting
tracking signal? [Answer: MAD for quarter 6 would be 12.5, and the tracking signal for period 6 would be 2 MADs. |

RELATED PROBLEMS 4.37, 4.45

3To prove these threc percontages to yourself just sct up a normal curve for £1.6 standard deviations (z-valucs). Using tho nomal tablc in Appendix
L you lind that the area under the curve is .8Y. This represents £2 MADs. Likswise, £3 MADs = £2 4 slandard deviations encompass Y8% ol the area,



and so on lor+4 MADs.

Adaptive Smoothing

Adaptive forecasting refers to computer monitoring of tracking signals and self-adjustment if a signal passes a preset limit.
For example, when applied to exponential smoothing, the a and [ coefficients are first selected on the basis of values that
minimize error forecasts and then adjusted accordingly whenever the computer notes an errant tracking signal. This process
is called adaptive smoothing.

Adaptive smoothing

An approach to exponential smoothing forecasting in which the smoothing constant is automatically changed to keep errors
[0 & minimum,

Focus Forecasting

Rather than adapt by choosing a smoothing constant, computers allow us to try a variety of forecasting models. Such an
approach is called focus forecasting. Focus forecasting is based on two principles:

Focus forecasting
Forecasting that tries a variety of computer models and selects the best one for a particular application.

+ 1. Sophisticated forecasting models are not always better than simple ones.
e 2. There is no single technique that should be used for all products or services.

Bernard Smith, inventory manager for American Hardware Supply, coined the term focus forecasting. Smith’s job was to
forecast quantities for 100,000 hardware products purchased by American’s 21 l:vuyf:rs..i He found that buyers neither trusted
not understood the exponential smoothing model then in use. Tnstead, they used very simple approaches of their own. So
Smith developed his new computerized system for selecting forecasting methods.

Smith chose to test seven torecasting methods. They ranged from the simple ones that buyers used {such as the naive
approach) to statistical models. Every month, Smith applied the forecasts of all seven models to each item in stock. In these
simulated trials, the forecast values were subtracted from the most recent actual demands, giving a simulated forecast error.
The forecast method yielding the least error is selected by the computer, which then uses it to make next month’s forecast.
Although buyers still have an override capability, American Hardware finds that focus forecasting provides excellent results.

Forecasting in the Service Sector

Forecasting in the service sector presents some unusual challenges. A major technique in the retail sector is tracking demand
by maintaining good short-term records. For instance, a barbershop catering to men expects peak flows on Fridays and
Saturdays. Indeed, most barbershops are closed on Sunday and Monday, and many call in extra help on Friday and Saturday.
A downtown restaurant, on the other hand, may need to track conventions and holidays for effective short-term forecasting.
The OM in Action box “Forecasting at FedEx’s Customer Service Centers” provides an example of a major service-sector
mdustry, the call center.

W Student tip

Forecasting at McDonald’s, FedEx, and Walmart is as important and complex as it is for manufacturers such as Toyota and
Dell.

Specialty Retail Shops

Specialty retail facilities, such as flower shops, may have other unusual demand patterns, and those patterns will differ
depending on the holiday. When Valentine’s Day falls on a weckend, for example, flowers can’t be delivered to offices, and
those romantically inclined are likely to celebrate with outings rather than flowers. It a holiday falls on a Monday, some of
the celebration may also take place on the weekend, reducing flower sales. However, when Valentine’s Day falls in
midweek, busy midweek schedules often make flowers the optimal way to celebrate. Because flowers for Mother’s Day are
to be delivered on Saturday or Sunday, this holiday forecast vanes less. Due to special demand patterns, many service firms
maintain records of sales, noting not only the day of the week but also unusual events, including the weather, so that patterns
and correlations that influence demand can be developed.



VideO 4.2

Forecasting at Hard Rock Cafe

‘Bemard T. smith, Focus Forecasting: Compuier Technigues for Inventory Condrol (Boston: CBI Publishing, 1978).



