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This book explains a very technical subject in a not-so-technical manner, putting the
concepts of operating systems into a format that students can quickly grasp.


For those new to the subject, this text demonstrates what operating systems are, what
they do, how they do it, how their performance can be evaluated, and how they com-
pare with each other. Throughout the text we describe the overall function and tell
readers where to find more detailed information, if they so desire.


For those with more technical backgrounds, this text introduces the subject concisely,
describing the complexities of operating systems without going into intricate detail.
One might say this book leaves off where other operating system textbooks begin.


To do so, we’ve made some assumptions about our audiences. First, we assume the
readers have some familiarity with computing systems. Second, we assume they
have a working knowledge of an operating system and how it interacts with them.
We recommend (although we don’t require) that readers be familiar with at least
one operating system. In a few places, we found it necessary to include examples
using Java or pseudocode to illustrate the inner workings of the operating systems;
but, for readers who are unfamiliar with computer languages, we’ve added a prose
description to each example that explains the events in more familiar terms.


Organization and Features


This book is structured to explain the functions of an operating system regardless of the
hardware that houses it. The organization addresses a recurring problem with textbooks
about technologies that continue to change—that is, the constant advances in evolving
subject matter can make textbooks immediately outdated. To address this problem,
we’ve divided the material into two parts: first, the concepts—which do not change
quickly—and second, the specifics of operating systems—which change dramatically
over the course of years and even months. Our goal is to give readers the ability to apply
the topics intelligently, realizing that, although a command, or series of commands, used
by one operating system may be different from another, their goals are the same and the
functions of the operating systems are also the same.


Although it is more difficult to understand how operating systems work than to memo-
rize the details of a single operating system, understanding general operating system
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concepts is a longer-lasting achievement. Such understanding also pays off in the long run
because it allows one to adapt as technology changes—as, inevitably, it does. Therefore,
the purpose of this book is to give computer users a solid background in the basics of
operating systems, their functions and goals, and how they interact and interrelate.


Part One, the first 12 chapters, describes the theory of operating systems. It concentrates
on each of the “managers” in turn and shows how they work together. Then it intro-
duces network organization concepts, security, ethics, and management of network
functions. Part Two examines actual operating systems, how they apply the theories pre-
sented in Part One, and how they compare with each other.


Chapter 1 gives a brief introduction to the subject. The meat of the text begins in
Chapters 2 and 3 with memory management because it is the simplest component of the
operating system to explain and has historically been tied to the advances from one
operating system to the next. We explain the role of the Processor Manager in Chapters
4, 5, and 6, first discussing simple systems and then expanding the discussion to include
multiprocessing systems. By the time we reach device management in Chapter 7 and file
management in Chapter 8, readers will have been introduced to the four main managers
found in every operating system. Chapters 9 and 10 introduce basic concepts related to
networking, and Chapters 11 and 12 discuss security, ethics, and some of the tradeoffs
that designers consider when attempting to satisfy the needs of their user population.


Each chapter includes learning objectives, key terms, and research topics. For techni-
cally oriented readers, the exercises at the end of each chapter include problems for
advanced students. Please note that some advanced exercises assume knowledge of
matters not presented in the book, but they’re good for those who enjoy a challenge.
We expect some readers from a more general background will cheerfully pass them by.


In an attempt to bring the concepts closer to home, throughout the book we’ve added
real-life examples to illustrate abstract concepts. However, let no one confuse our con-
versational style with our considerable respect for the subject matter. The subject of
operating systems is a complex one and it cannot be covered completely in these few
pages. Therefore, this textbook does not attempt to give an in-depth treatise of operat-
ing systems theory and applications. This is the overall view.


Part Two introduces four operating systems in the order of their first release: UNIX,
MS-DOS, Windows, and Linux. Here, each chapter discusses how one operating sys-
tem applies the concepts discussed in Part One and how it compares with the others.
Again, we must stress that this is a general discussion—an in-depth examination of an
operating system would require details based on its current standard version, which
can’t be done here. We strongly suggest that readers use our discussion as a guide, a
base to work from, when comparing the pros and cons of a specific operating system
and supplement our work with research that’s as current as possible.


The text concludes with several reference aids. Terms that are important within a
chapter are listed at its conclusion as key terms. The extensive end-of-book Glossary
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includes brief definitions for hundreds of terms used in these pages. The Bibliography
can guide the reader to basic research on the subject. Finally, the Appendix features
the ACM Code of Ethics.


Not included in this text is a discussion of databases and data structures, except as
examples of process synchronization problems, because they only tangentially relate
to operating systems and are frequently the subject of other courses. We suggest that
readers begin by learning the basics as presented in the following pages before pursu-
ing these complex subjects.


Changes to the Sixth Edition


This edition has been thoroughly updated and features many improvements over the
fifth edition:


• New references to Macintosh OS X, which is based on UNIX


• Numerous new homework exercises in every chapter


• Updated references to the expanding influence of wireless technology


• More networking information throughout the text 


• Continuing emphasis on system security and patch management


• More discussion describing the management of multiple processors 


• Updated detail in the chapters that discuss UNIX, Windows, and Linux


• New research topics and student exercises for the chapters on UNIX, 
MS-DOS, Windows, and Linux


Other changes throughout the text are editorial clarifications, expanded captions, and
improved illustrations.


A Note for Instructors


The following supplements are available when this text is used in a classroom setting:


Electronic Instructor’s Manual. The Instructor’s Manual that accompanies this text-
book includes additional instructional material to assist in class preparation, including
Sample Syllabi, Chapter Outlines, Technical Notes, Lecture Notes, Quick Quizzes,
Teaching Tips, and Discussion Topics.


Distance Learning. Course Technology is proud to present online test banks in WebCT
and Blackboard to provide the most complete and dynamic learning experience possible.
Instructors are encouraged to make the most of the course, both online and offline. For
more information on how to access the online test bank, contact your local Course
Technology sales representative.
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PowerPoint Presentations. This book comes with Microsoft PowerPoint slides for each
chapter. These are included as a teaching aid for classroom presentations, either to
make available to students on the network for chapter review, or to be printed for
classroom distribution. Instructors can add their own slides for additional topics that
they introduce to the class.


Solutions. Selected solutions to Review Questions and Exercises are provided on the
Instructor Resources CD-ROM and may also be found on the Cengage Course
Technology Web site at www.cengage.com/coursetechnology. The solutions are pass-
word protected.


Order of Presentation. We have built this text with a modular construction to accom-
modate several presentation options, depending on the instructor’s preference. For
example, the syllabus can follow the chapters as listed in Chapter 1 through Chapter
12 to present the core concepts that all operating systems have in common. Using this
path, students will learn about the management of memory, processors, devices, files,
and networks, in that order. An alternative path might begin with Chapter 1, move next
to processor management in Chapters 4 through 6, then to memory management in
Chapters 2 and 3, touch on systems security and management in Chapters 11 and 12,
and finally move to device and file management in Chapters 7 and 8. Because network-
ing is often the subject of another course, instructors may choose to bypass Chapters 9
and 10, or include them for a more thorough treatment of operating systems. 


We hope you find our discussion of ethics helpful in Chapter 11, which is included in
response to requests by university adopters of the text who want to discuss this sub-
ject in their lectures.


In Part Two, we examine details about four specific operating systems in an attempt to
show how the concepts in the first 12 chapters are applied by a specific operating system.
In each case, the chapter is structured in a similar manner as the chapters in Part One.
That is, they discuss the management of memory, processors, files, devices, networks, and
systems. In addition, each includes an introduction to one or more user interfaces for that
operating system. With this edition, we added exercises and research topics to each of
these chapters to help students explore issues discussed in the preceding pages.


For the first time, we included references to the Macintosh OS X operating system in
the UNIX chapter. 


We continue to include MS-DOS in spite of its age because faculty reviewers and
adopters have specifically requested it, presumably so students can learn the basics of
this command-driven interface using a Windows emulator. 


If you have suggestions for inclusion in this text, please send them along. Although we
are squeezed for space, we are pleased to consider all possibilities. 
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“So work the honey-bees,
Creatures that by a rule in nature teach


The act of order to a peopled kingdom.”
—William Shakespeare (1564–1616; in Henry V)


All operating systems have certain core items in common: each must manage memory,
processing capability, devices and peripherals, files, and networks. In Part One of this
text we present an overview of these operating systems essentials. 


• Chapter 1 introduces the subject.


• Chapters 2–3 discuss main memory management. 


• Chapters 4–6 cover processor management. 


• Chapter 7 concentrates on device management. 


• Chapter 8 is devoted to file management. 


• Chapters 9–10 briefly review networks. 


• Chapter 11 discusses system security issues. 


• Chapter 12 explores system management and the interaction of the operating
system’s components. 


Then, in Part Two of the text (Chapters 13–16), we look at specific operating systems
and how they apply the theory presented here in Part One.


1


Part One


Operating Systems
Concepts
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Throughout our discussion of this very technical subject, we try to include definitions
of terms that might be unfamiliar to you. However, it isn’t always possible to describe
a function and define the technical terms while keeping the explanation clear.
Therefore, we’ve put the key terms with definitions at the end of each chapter, and at
the end of the text is an extensive glossary for your reference. Items listed in the Key
Terms are shown in boldface the first time they appear.


Throughout the book we keep our descriptions and examples as simple as possible to
introduce you to the system’s complexities without getting bogged down in technical
detail. Therefore, be aware that for almost every topic explained in the following
pages, there’s much more information that can be studied. Our goal is to introduce
you to the subject, and to encourage you to pursue your interest using other texts or
primary sources if you need more detail.
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“I think there is a world market for maybe five computers.”
—Thomas J. Watson (1874–1956; chairman of IBM 1949–1956)


Learning Objectives


After completing this chapter, you should be able to describe:


• Innovations in operating system development


• The basic role of an operating system


• The major operating system software subsystem managers and their functions


• The types of machine hardware on which operating systems run


• The differences among batch, interactive, real-time, hybrid, and embedded 
operating systems


• Multiprocessing and its impact on the evolution of operating system software


• Virtualization and core architecture trends in new operating systems


3


Software Components
Developed


Hardware Components
Developed


Operating Systems
Developed


Chapter 1 Introducing Operating
Systems


OPERATING SYSTEMS
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Introduction


To understand an operating system is to understand the workings of an entire computer
system, because the operating system manages each and every piece of hardware and
software. This text explores what operating systems are, how they work, what they do,
and why.


This chapter briefly describes how simple operating systems work and how, in general,
they’ve evolved. The following chapters explore each component in more depth and show
how its function relates to the other parts of the operating system. In other words, you
see how the pieces work harmoniously to keep the computer system working smoothly.


What Is an Operating System?


A computer system consists of software (programs) and hardware (the physical
machine and its electronic components). The operating system software is the chief
piece of software, the portion of the computing system that manages all of the hard-
ware and all of the other software. To be specific, it controls every file, every device,
every section of main memory, and every nanosecond of processing time. It controls
who can use the system and how. In short, it’s the boss.


Therefore, each time the user sends a command, the operating system must make sure
that the command is executed; or, if it’s not executed, it must arrange for the user to
get a message explaining the error. Remember: This doesn’t necessarily mean that the
operating system executes the command or sends the error message—but it does
control the parts of the system that do.


Operating System Software


The pyramid shown in Figure 1.1 is an abstract representation of an operating system
and demonstrates how its major components work together.


At the base of the pyramid are the four essential managers of every operating system:
the Memory Manager, the Processor Manager, the Device Manager, and the File
Manager. In fact, these managers are the basis of all operating systems and each is
discussed in detail throughout the first part of this book. Each manager works closely
with the other managers and performs its unique role regardless of which specific
operating system is being discussed. At the top of the pyramid is the User Interface,
from which users issue commands to the operating system. This is the component
that’s unique to each operating system—sometimes even between different versions of
the same operating system.


4


Ch
ap


te
r 
1 
|I


nt
ro


du
ci


ng
 O


pe
ra


tin
g 


Sy
st


em
s


✔
Unless we mention
networking or the
Internet, our
discussions apply
to the most basic
elements of
operating systems.
Chapters 9 and 10
are dedicated to
networking. 


C7047_01_Ch01.qxd  1/12/10  4:04 PM  Page 4








A network was not always an integral part of operating systems; early systems were
self-contained with all network capability added on top of existing operating systems.
Now most operating systems routinely incorporate a Network Manager. The base of
a pyramid for a networked operating system is shown in Figure 1.2.


Regardless of the size or configuration of the system, each of the subsystem managers,
shown in Figure 1.3, must perform the following tasks:


• Monitor its resources continuously


• Enforce the policies that determine who gets what, when, and how much


• Allocate the resource when appropriate


• Deallocate the resource when appropriate
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Main Memory Management


The Memory Manager (the subject of Chapters 2–3) is in charge of main memory, also
known as RAM, short for Random Access Memory. The Memory Manager checks the
validity of each request for memory space and, if it is a legal request, it allocates a portion
of memory that isn’t already in use. In a multiuser environment, the Memory Manager
sets up a table to keep track of who is using which section of memory. Finally, when the
time comes to reclaim the memory, the Memory Manager deallocates memory.


A primary responsibility of the Memory Manager is to protect the space in main memory
occupied by the operating system itself—it can’t allow any part of it to be accidentally or
intentionally altered.


Processor Management


The Processor Manager (the subject of Chapters 4–6) decides how to allocate the cen-
tral processing unit (CPU). An important function of the Processor Manager is to keep
track of the status of each process. A process is defined here as an instance of execu-
tion of a program.


The Processor Manager monitors whether the CPU is executing a process or waiting
for a READ or WRITE command to finish execution. Because it handles the processes’
transitions from one state of execution to another, it can be compared to a traffic con-
troller. Once the Processor Manager allocates the processor, it sets up the necessary
registers and tables and, when the job is finished or the maximum amount of time has
expired, it reclaims the processor.


Think of it this way: The Processor Manager has two levels of responsibility. One is to
handle jobs as they enter the system and the other is to manage each process within
those jobs. The first part is handled by the Job Scheduler, the high-level portion of the
Processor Manager, which accepts or rejects the incoming jobs. The second part is


6


Ch
ap


te
r 
1 
|I


nt
ro


du
ci


ng
 O


pe
ra


tin
g 


Sy
st


em
s


(figure 1.3)


Each subsystem manager


at the base of the pyramid


takes responsibility for its


own tasks while working


harmoniously with every


other manager.


Device Manager
(keyboard, printer,
disk drives, modem,


monitor, etc.)
File Manager


(program files, data files, 
compilers, etc.)


Memory Manager
(main memory, also called 


random access memory, RAM)


Processor Manager
(CPU)


✔
RAM is the
computer’s main
memory and was
called “primary
storage” in early
systems. 


C7047_01_Ch01.qxd  1/12/10  4:04 PM  Page 6








handled by the Process Scheduler, the low-level portion of the Processor Manager,
which is responsible for deciding which process gets the CPU and for how long.


Device Management


The Device Manager (the subject of Chapter 7) monitors every device, channel, and
control unit. Its job is to choose the most efficient way to allocate all of the system’s
devices, printers, ports, disk drives, and so forth, based on a scheduling policy chosen
by the system’s designers.


The Device Manager does this by allocating each resource, starting its operation, and,
finally, deallocating the device, making it available to the next process or job.


File Management


The File Manager (the subject of Chapter 8) keeps track of every file in the system,
including data files, program files, compilers, and applications. By using predeter-
mined access policies, it enforces restrictions on who has access to which files. The
File Manager also controls what users are allowed to do with files once they access
them. For example, a user might have read-only access, read-and-write access, or the
authority to create and delete files. Managing access control is a key part of file
management. Finally, the File Manager allocates the necessary resources and later
deallocates them.


Network Management


Operating systems with Internet or networking capability have a fifth essential man-
ager called the Network Manager (the subject of Chapters 9–10) that provides a con-
venient way for users to share resources while controlling users’ access to them. These
resources include hardware (such as CPUs, memory areas, printers, tape drives,
modems, and disk drives) and software (such as compilers, application programs, and
data files).


User Interface


The user interface is the portion of the operating system that users interact with
directly. In the old days, the user interface consisted of commands typed on a keyboard
and displayed on a monitor, as shown in Figure 1.4. Now most systems allow users to
choose a menu option from a list. The user interface, desktops, and formats vary
widely from one operating system to another, as shown in Chapters 13–16 in Part Two
of this text.
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Cooperation Issues


However, it is not enough for each manager to perform its individual tasks. It must
also be able to work harmoniously with every other manager. Here is a simplified
example. Let’s say someone chooses an option from a menu to execute a program. The
following major steps must occur in sequence:


1. The Device Manager must receive the electrical impulses from the mouse or
keyboard, form the command, and send the command to the User Interface,
where the Processor Manager validates the command.


2. The Processor Manager then sends an acknowledgment message to be dis-
played on the monitor so the user realizes the command has been sent.


3. When the Processor Manager receives the command, it determines whether the
program must be retrieved from storage or is already in memory, and then
notifies the appropriate manager.


4. If the program is in storage, the File Manager must calculate its exact location
on the disk and pass this information to the Device Manager, which retrieves
the program and sends it to the Memory Manager.


5. The Memory Manager then finds space for it and records its exact location in
memory. Once the program is in memory, the Memory Manager must track its
location in memory (even if it’s moved) as well as its progress as it’s executed
by the Processor Manager.


6. When the program has finished executing, it must send a finished message to
the Processor Manager so that the processor can be assigned to the next pro-
gram waiting in line.


7. Finally, the Processor Manager must forward the finished message to the
Device Manager, so that it can notify the user and refresh the screen.


Although this is a vastly oversimplified demonstration of a complex operation, it illus-
trates some of the incredible precision required for the operating system to work smoothly.
So although we’ll be discussing each manager in isolation for much of this text, no single
manager could perform its tasks without the active cooperation of every other part.
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(figure 1.4)


Two user interfaces from Linux: a command-driven interface (left) and a menu-driven interface (right).
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A Brief History of Machine Hardware


To appreciate the role of the operating system (which is software), we need to discuss
the essential aspects of the computer system’s hardware, the physical machine and its
electronic components, including memory chips, input/output devices, storage devices,
and the central processing unit (CPU).


• Main memory (random access memory, RAM) is where the data and instructions
must reside to be processed.


• I/O devices, short for input/output devices, include every peripheral unit in the system
such as printers, disk drives, CD/DVD drives, flash memory, keyboards, and so on.


• The central processing unit (CPU) is the brains with the circuitry (sometimes called
the chip) to control the interpretation and execution of instructions. In essence, it
controls the operation of the entire computer system, as illustrated in Figure 1.5.
All storage references, data manipulations, and I/O operations are initiated or
performed by the CPU.


Until the mid-1970s, computers were classified by capacity and price. A mainframe was
a large machine—in size and in internal memory capacity. The IBM 360, introduced in
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1964, is a classic example of an early mainframe. The IBM 360 model 30 required an
air-conditioned room about 18 feet square to house the CPU, the operator’s console, a
printer, a card reader, and a keypunch machine. The CPU was 5 feet high and 6 feet
wide, had an internal memory of 64K (considered large at that time), and a price tag of
$200,000 in 1964 dollars. Because of its size and price at the time, its applications were
generally limited to large computer centers belonging to the federal government,
universities, and very large businesses.


The minicomputer was developed to meet the needs of smaller institutions, those with
only a few dozen users. One of the early minicomputers was marketed by Digital
Equipment Corporation to satisfy the needs of large schools and small colleges that
began offering computer science courses in the early 1970s. (The price of its PDP-8
was less than $18,000.) Minicomputers are smaller in size and memory capacity and
cheaper than mainframes. Today, computers that fall between microcomputers and
mainframes in capacity are often called midrange computers.


The supercomputer was developed primarily for government applications needing
massive and fast number-crunching ability to carry out military operations and
weather forecasting. Business and industry became interested in the technology when
the massive computers became faster and less expensive. A Cray supercomputer is a
typical example with six to thousands of processors performing up to 2.4 trillion float-
ing point operations per second (2.4 teraflops). Supercomputers are used for a wide
range of tasks from scientific research to customer support and product development.
They’re often used to perform the intricate calculations required to create animated
motion pictures. And they help oil companies in their search for oil by analyzing
massive amounts of data (Stair, 1999).


The microcomputer was developed to offer inexpensive computation capability to
individual users in the late 1970s. Early models featured a revolutionary amount of
memory: 64K. Their physical size was smaller than the minicomputers of that time,
though larger than the microcomputers of today. Eventually, microcomputers grew to
accommodate software with larger capacity and greater speed. The distinguishing
characteristic of the first microcomputer was its single-user status.


Powerful microcomputers developed for use by commercial, educational, and govern-
ment enterprises are called workstations. Typically, workstations are networked
together and are used to support engineering and technical users who perform massive
mathematical computations or computer-aided design (CAD), or use other applica-
tions requiring very powerful CPUs, large amounts of main memory, and extremely
high-resolution graphic displays to meet their needs.


Servers are powerful computers that provide specialized services to other computers
on client/server networks. Examples can include print servers, Internet servers, e-mail
servers, etc. Each performs critical network tasks. For instance, a file server, usually a
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powerful computer with substantial file storage capacity (such as a large collection of
hard drives), manages file storage and retrieval for other computers, called clients, on
the network.


Platform Operating System


Microcomputers Linux, UNIX (includes Mac), Windows


Mainframe computers IBM z/390, Linux, UNIX


Supercomputers IRIX, Linux, UNICOS


Workstations, servers Linux, UNIX, Windows


Networks Linux, NetWare, UNIX, Windows


Personal digital assistants BlackBerry, Linux, Palm OS, Windows Mobile


Some typical operating systems for a wide variety of platforms are shown in Table 1.1.
Since the mid-1970s, rapid advances in computer technology have blurred the distin-
guishing characteristics of early machines: physical size, cost, and memory capacity.
The most powerful mainframes today have multiple processors coordinated by the
Processor Manager. Simple mainframes still have a large main memory, but now
they’re available in desk-sized cabinets.


Networking is an integral part of modern computer systems because it can connect
workstations, servers, and peripheral devices into integrated computing systems.
Networking capability has become a standard feature in many computing devices:
personal organizers, personal digital assistants (PDAs), cell phones, and handheld Web
browsers.


At one time, computers were classified by memory capacity; now they’re distin-
guished by processor capacity. We must emphasize that these are relative categories
and what is large today will become medium-sized and then small sometime in the
near future.


In 1965, Intel executive Gordon Moore observed that each new processor chip con-
tained roughly twice as much capacity as its predecessor, and each chip was released
within 18–24 months of the previous chip. He predicted that the trend would cause
computing power to rise exponentially over relatively brief periods of time. Now
known as Moore’s Law, shown in Figure 1.6, the trend has continued and is still
remarkably accurate. The Intel 4004 chip in 1971 had 2,300 transistors while the
Pentium II chip 20 years later had 7.5 million, and the Pentium 4 Extreme Edition
processor introduced in 2004 had 178 million transistors. Moore’s Law is often used
by industry observers to make their chip capacity forecasts.
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Types of Operating Systems


Operating systems for computers large and small fall into five categories distinguished
by response time and how data is entered into the system: batch, interactive, real-time,
hybrid, and embedded systems.


Batch systems date from the earliest computers, when they relied on stacks of punched
cards or reels of magnetic tape for input. Jobs were entered by assembling the cards
into a deck and running the entire deck of cards through a card reader as a group—a
batch. The efficiency of a batch system is measured in throughput—the number of jobs
completed in a given amount of time (for example, 550 jobs per hour).


Interactive systems give a faster turnaround than batch systems but are slower than
the real-time systems we talk about next. They were introduced to satisfy the demands
of users who needed fast turnaround when debugging their programs. The operating
system required the development of time-sharing software, which would allow each
user to interact directly with the computer system via commands entered from a type-
writer-like terminal. The operating system provides immediate feedback to the user
and response time can be measured in fractions of a second.


Real-time systems are used in time-critical environments where reliability is key and
data must be processed within a strict time limit. The time limit need not be ultra-fast
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(though it often is), but system response time must meet the deadline or risk signifi-
cant consequences. These systems also need to provide contingencies to fail grace-
fully—that is, preserve as much of the system’s capabilities and data as possible to
facilitate recovery. For example, real-time systems are used for space flights (as shown
in Figure 1.7), airport traffic control, fly-by-wire aircraft, critical industrial processes,
certain medical equipment, and telephone switching, to name a few.


There are two types of real-time systems depending on the consequences of missing the
deadline:


• Hard real-time systems risk total system failure if the predicted time deadline is
missed.


• Soft real-time systems suffer performance degradation, but not total system failure,
as a consequence of a missed deadline.


Although it’s theoretically possible to convert a general-purpose operating system
into a real-time system by merely establishing a deadline, the unpredictability of
these systems can’t provide the guaranteed response times that real-time perfor-
mance requires (Dougherty, 1995). Therefore, most embedded systems and real-
time environments require operating systems that are specially designed to meet
real-time needs.


Hybrid systems are a combination of batch and interactive. They appear to be
interactive because individual users can access the system and get fast responses, but
such a system actually accepts and runs batch programs in the background when the
interactive load is light. A hybrid system takes advantage of the free time between
high-demand usage of the system and low-demand times. Many large computer sys-
tems are hybrids.
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Embedded systems are computers placed inside other products to add features and
capabilities. For example, you find embedded computers in household appliances,
automobiles, digital music players, elevators, and pacemakers. In the case of automo-
biles, embedded computers can help with engine performance, braking, and naviga-
tion. For example, several projects are under way to implement “smart roads,” which
would alert drivers in cars equipped with embedded computers to choose alternate
routes when traffic becomes congested.


Operating systems for embedded computers are very different from those for general
computer systems. Each one is designed to perform a set of specific programs, which
are not interchangeable among systems. This permits the designers to make the oper-
ating system more efficient and take advantage of the computer’s limited resources,
such as memory, to their maximum.


Before a general-purpose operating system, such as Linux, UNIX, or Windows, can
be used in an embedded system, the system designers must select which components,
from the entire operating system, are needed in that particular environment. The
final version of this operating system will include only the necessary elements; any
unneeded features or functions will be dropped. Therefore, operating systems with a
small kernel (the core portion of the software) and other functions that can be mixed
and matched to meet the embedded system requirements will have potential in this
market.


Brief History of Operating System Development


The evolution of operating system software parallels the evolution of the computer
hardware it was designed to control. Here’s a very brief overview of this evolution.


1940s


The first generation of computers (1940–1955) was a time of vacuum tube technology
and computers the size of classrooms. Each computer was unique in structure and
purpose. There was little need for standard operating system software because each
computer’s use was restricted to a few professionals working on mathematical, scien-
tific, or military applications, all of whom were familiar with the idiosyncrasies of
their hardware.


A typical program would include every instruction needed by the computer to perform
the tasks requested. It would give explicit directions to the card reader (when to begin,
how to interpret the data on the cards, when to end), the CPU (how and where to store
the instructions in memory, what to calculate, where to find the data, where to send
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the output), and the output device (when to begin, how to print out the finished prod-
uct, how to format the page, and when to end).


The machines were operated by the programmers from the main console—it was a
hands-on process. In fact, to debug a program, the programmer would stop the
processor, read the contents of each register, make the corrections in memory
locations, and then resume operation. The first bug was a moth trapped in a Harvard
computer that caused it to fail, as shown in Figure 1.8.


To run programs, the programmers would have to reserve the machine for the length
of time they estimated it would take the computer to execute the program. As a result,
the machine was poorly utilized. The CPU processed data and made calculations for
only a fraction of the available time and, in fact, the entire system sat idle between
reservations.


In time, computer hardware and software became more standard and the execution of
a program required fewer steps and less knowledge of the internal workings of the
computer. Compilers and assemblers were developed to translate into binary code the
English-like commands of the evolving high-level languages.


Rudimentary operating systems started to take shape with the creation of macros,
library programs, standard subroutines, and utility programs. And they included
device driver subroutines—prewritten programs that standardized the way input and
output devices were used.


These early programs were at a significant disadvantage because they were designed
to use their resources conservatively at the expense of understandability. That meant
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that many programs used convoluted logic that only the original programmer could
understand, so it was nearly impossible for anyone else to debug or change the
program later on.


1950s


Second-generation computers (1955–1965) were developed to meet the needs of new
markets—government and business researchers. The business environment placed
much more importance on the cost effectiveness of the system. Computers were still
very expensive, especially when compared to other office equipment (the IBM 7094
was priced at $200,000). Therefore, throughput had to be maximized to make such
an investment worthwhile for business use, which meant dramatically increasing the
usage of the system.


Two improvements were widely adopted: Computer operators were hired to facilitate
each machine’s operation, and job scheduling was instituted. Job scheduling is a produc-
tivity improvement scheme that groups together programs with similar requirements.
For example, several FORTRAN programs would be run together while the FORTRAN
compiler was still resident in memory. Or all of the jobs using the card reader for input
might be run together, and those using the tape drive would be run later. Some operators
found that a mix of I/O device requirements was the most efficient combination. That is,
by mixing tape-input programs with card-input programs, the tapes could be mounted
or rewound while the card reader was busy. A typical punch card is shown in Figure 1.9.


Job scheduling introduced the need for control cards, which defined the exact nature
of each program and its requirements, illustrated in Figure 1.10. This was one of the
first uses of a job control language, which helped the operating system coordinate and
manage the system resources by identifying the users and their jobs and specifying the
resources required to execute each job.
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But even with batching techniques, the faster second-generation computers allowed
expensive time lags between the CPU and the I/O devices. For example, a job with
1600 cards could take 79 seconds to be read by the card reader and only 5 seconds of
CPU time to assemble or compile. That meant the CPU was idle 94 percent of the time
and busy only 6 percent of the time it was dedicated to that job—an inefficiency that
resulted in poor overall system use.


Eventually, several factors helped improve the performance of the CPU:


• First, the speeds of I/O devices such as drums, tape drives, and disks gradually
increased.


• Second, to use more of the available storage area in these devices, records were
grouped into blocks before they were retrieved or stored. (This is called blocking,
meaning that several logical records are grouped within one physical record, and is
discussed in detail in Chapter 7.)


• Third, to reduce the discrepancy in speed between the I/O and the CPU, an interface
called the control unit was placed between them to act as a buffer. A buffer is an
interim storage area that works as a temporary holding place. As the slow input
device reads one record, the control unit places each character of the record into the
buffer. When the buffer is full, the entire record is quickly transmitted to the CPU.
The process is just the opposite for output devices: The CPU places the entire record
into the buffer, which is then passed on by the control unit at the slower rate
required by the output device.


The buffers of this generation were conceptually similar to those now used routinely by
Internet browsers to make video and audio playback smoother, as shown in Figure 1.11.


If a control unit had more than one buffer, the I/O process could be made even faster.
For example, if the control unit had two buffers, the second buffer could be loaded
while the first buffer was transmitting its contents to or from the CPU. Ideally, by
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• Fourth, in addition to buffering, an early form of spooling was developed by mov-
ing offline the operations of card reading, printing, and “punching.” For example,
incoming jobs would be transferred from card decks to reels of magnetic tape
offline. Then they could be read into the CPU from the tape at a speed much faster
than that of the card reader. The spooler worked the same way as a buffer but, in
this example, it was a separate offline device while a buffer was part of the main
computer hardware.


Also during the second generation, techniques were developed to manage program
libraries, create and maintain each data direct access address, and create and check file
labels. Timer interrupts were developed to allow job sharing and to prevent infinite
loops on programs that were mistakenly instructed to execute a single series of com-
mands forever. Because a fixed amount of execution time was allocated to each pro-
gram when it entered the system, and was monitored by the operating system,
programs that were still running when the time expired were terminated.


During the second generation, programs were still assigned to the processor one at a
time. The next step toward better use of the system’s resources was the move to shared
processing.


1960s


Third-generation computers date from the mid-1960s. They were designed with faster
CPUs, but their speed still caused problems when they interacted with printers and
other I/O devices that ran at slower speeds. The solution was multiprogramming,
which introduced the concept of loading many programs at one time and sharing the
attention of a single CPU.


The first multiprogramming systems allowed each program to be serviced in turn, one
after another. The most common mechanism for implementing multiprogramming was
the introduction of the concept of the interrupt, whereby the CPU was notified of
events needing operating system services. For example, when a program issued a print
command (called an input/output command or an I/O command), it generated an
interrupt requesting the services of the I/O processor and the CPU was released to
begin execution of the next job. This was called passive multiprogramming because
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Three typical browser


buffering progress


indicators.


the time the first was transmitted, the second was ready to go, and so on. In this way,
input or output time was cut in half.


C7047_01_Ch01.qxd  1/12/10  4:04 PM  Page 18








the operating system didn’t control the interrupts but waited for each job to end an
execution sequence. It was less than ideal because if a job was CPU-bound (meaning
that it performed a great deal of nonstop CPU processing before issuing an interrupt),
it could tie up the CPU for a long time while all other jobs had to wait.


To counteract this effect, the operating system was soon given a more active role with
the advent of active multiprogramming, which allowed each program to use only a
preset slice of CPU time, which is discussed in Chapter 4. When time expired, the job
was interrupted and another job was allowed to begin execution. The interrupted job
had to wait until it was allowed to resume execution later. The idea of time slicing
soon became common in many time-sharing systems.


Program scheduling, which was begun with second-generation systems, continued at this
time but was complicated by the fact that main memory was occupied by many jobs. To
solve this problem, the jobs were sorted into groups and then loaded into memory
according to a preset rotation formula. The sorting was often determined by priority or
memory requirements—whichever was found to be the most efficient use of the avail-
able resources. In addition to scheduling jobs, handling interrupts, and allocating
memory, the operating systems also had to resolve conflicts whenever two jobs requested
the same device at the same time, something we will explore in Chapter 5.


Even though there was progress in processor management, few major advances were
made in data management.


1970s


After the third generation, during the late 1970s, computers had faster CPUs, creating
an even greater disparity between their rapid processing speed and slower I/O access
time. The first Cray supercomputer was released in 1976. Multiprogramming schemes
to increase CPU use were limited by the physical capacity of the main memory, which
was a limited resource and very expensive.


A solution to this physical limitation was the development of virtual memory, which
took advantage of the fact that the CPU could process only one instruction at a time.
With virtual memory, the entire program didn’t need to reside in memory before exe-
cution could begin. A system with virtual memory would divide the programs into
parts and keep them in secondary storage, bringing each part into memory only as it
was needed. (Programmers of second-generation computers had used this concept
with the roll in/roll out programming method, also called overlay, to execute programs
that exceeded the physical memory of those computers.)


At this time there was also growing attention to the need for data resource conserva-
tion. Database management software became a popular tool because it organized
data in an integrated manner, minimized redundancy, and simplified updating and
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access of data. A number of query systems were introduced that allowed even the
novice user to retrieve specific pieces of the database. These queries were usually
made via a terminal, which in turn mandated a growth in terminal support and data
communication software.


Programmers soon became more removed from the intricacies of the computer, and
application programs started using English-like words, modular structures, and stan-
dard operations. This trend toward the use of standards improved program manage-
ment because program maintenance became faster and easier.


1980s


Development in the 1980s dramatically improved the cost/performance ratio of com-
puter components. Hardware was more flexible, with logical functions built on easily
replaceable circuit boards. And because it was less costly to create these circuit boards,
more operating system functions were made part of the hardware itself, giving rise to
a new concept—firmware, a word used to indicate that a program is permanently held
in read-only memory (ROM), as opposed to being held in secondary storage. The job
of the programmer, as it had been defined in previous years, changed dramatically
because many programming functions were being carried out by the system’s software,
hence making the programmer’s task simpler and less hardware dependent.


Eventually the industry moved to multiprocessing (having more than one processor),
and more complex languages were designed to coordinate the activities of the multiple
processors servicing a single job. As a result, it became possible to execute programs
in parallel, and eventually operating systems for computers of every size were
routinely expected to accommodate multiprocessing.


The evolution of personal computers and high-speed communications sparked the
move to networked systems and distributed processing, enabling users in remote loca-
tions to share hardware and software resources. These systems required a new kind of
operating system—one capable of managing multiple sets of subsystem managers, as
well as hardware that might reside half a world away.


With network operating systems, users generally became aware of the existence of
many networked resources, could log in to remote locations, and could manipulate
files on networked computers distributed over a wide geographical area. Network
operating systems were similar to single-processor operating systems in that each
machine ran its own local operating system and had its own users. The difference was
in the addition of a network interface controller with low-level software to drive the
local operating system, as well as programs to allow remote login and remote file
access. Still, even with these additions, the basic structure of the network operating
system was quite close to that of a standalone system.
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On the other hand, with distributed operating systems, users could think they were
working with a typical uniprocessor system when in fact they were connected to a
cluster of many processors working closely together. With these systems, users didn’t
need to know which processor was running their applications or which devices were
storing their files. These details were all handled transparently by the operating
system—something that required more than just adding a few lines of code to a
uniprocessor operating system. The disadvantage of such a complex operating system
was the requirement for more complex processor-scheduling algorithms. In addition,
communications delays within the network sometimes meant that scheduling algo-
rithms had to operate with incomplete or outdated information.


1990s


The overwhelming demand for Internet capability in the mid-1990s sparked the pro-
liferation of networking capability. The World Wide Web, conceived in a paper, shown
in Figure 1.12, by Tim Berners-Lee made the Internet accessible by computer users
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worldwide, not just the researchers who had come to depend on it for global commu-
nications. Web accessibility and e-mail became standard features of almost every oper-
ating system. However, increased networking also sparked increased demand for
tighter security to protect hardware and software.


The decade also introduced a proliferation of multimedia applications demanding
additional power, flexibility, and device compatibility for most operating systems. A
typical multimedia computer houses devices to perform audio, video, and graphic
creation and editing. Those functions can require many specialized devices such as a
microphone, digital piano, Musical Instrument Digital Interface (MIDI), digital
camera, digital video disc (DVD) drive, optical disc (CD) drives, speakers, additional
monitors, projection devices, color printers, and high-speed Internet connections.
These computers also require specialized hardware (such as controllers, cards, busses)
and software to make them work together properly.


Multimedia applications need large amounts of storage capability that must be man-
aged gracefully by the operating system. For example, each second of a 30-frame-per-
minute full-screen video requires 27MB of storage unless the data is compressed in
some way. To meet the demand for compressed video, special-purpose chips and video
boards have been developed by hardware companies.


What’s the effect of these technological advances on the operating system? Each
advance requires a parallel advance in the software’s management capabilities.


2000s


The new century emphasized the need for operating systems to offer improved
flexibility, reliability, and speed. To meet the need for computers that could accommo-
date multiple operating systems running at the same time and sharing resources, the
concept of virtual machines, shown in Figure 1.13, was developed and became
commercially viable.


Virtualization is the creation of partitions on a single server, with each partition
supporting a different operating system. In other words, it turns a single physical
server into multiple virtual servers, often with multiple operating systems.
Virtualization requires the operating system to have an intermediate manager to over-
see each operating system’s access to the server’s physical resources. For example, with
virtualization, a single processor can run 64 independent operating systems on work-
stations using a processor capable of allowing 64 separate threads (instruction
sequences) to run at the same time.
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Processing speed has enjoyed a similar advancement with the development of multi-
core processors, shown in Figure 1.14. Until recent years, the silicon wafer that forms
the base of the computer chip circuitry held only a single CPU. However, with the
introduction of dual-core processors, a single chip can hold multiple processor cores.
Thus, a dual-core chip allows two sets of calculations to run at the same time, which
sometimes leads to faster completion of the job. It’s as if the user has two separate
computers, and two processors, cooperating on a single task. As of this writing,
designers have created chips that can hold 80 simple cores.


Does this hardware innovation affect the operating system software? Absolutely,
because it must now manage the work of these multiple processors and be able to
schedule and manage the processing of their multiple tasks. We’ll explore some of the
complexities of this in Chapter 6.


23


Brief H
istory of O


perating System
 D


evelopm
ent


(figure 1.13)


With virtualization,


different operating


systems can run on a


single computer.


Courtesy of Parallels, Inc.


C7047_01_Ch01.qxd  1/12/10  4:04 PM  Page 23








Threads


Multi-core technology helps the operating system handle threads, multiple actions that
can be executed at the same time. First, an explanation: The Processor Manager is
responsible for processing each job submitted by a user. Jobs are made up of processes
(sometimes called tasks in other textbooks), and processes consist of multiple threads.


A process has two characteristics:


• It requires space in main memory where it resides during its execution; although,
from time to time, it requires other resources such as data files or I/O devices.


• It passes through several states (such as running, waiting, ready) from its initial
arrival into the computer system to its completion.


Multiprogramming and virtual memory dictate that processes be swapped between
main memory and secondary storage during their execution. With conventional
processes (also known as heavyweight processes), this swapping results in a lot of
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overhead. That’s because each time a swap takes place, all process information must
be saved to preserve the process’s integrity.


A thread (or lightweight process) can be defined as a unit smaller than a process,
which can be scheduled and executed. Using this technique, the heavyweight process,
which owns the resources, becomes a more passive element, while a thread becomes
the element that uses the CPU and is scheduled for execution. Manipulating threads is
less time consuming than manipulating processes, which are more complex. Some
operating systems support multiple processes with a single thread, while others
support multiple processes with multiple threads.


Multithreading allows applications to manage a separate process with several threads
of control. Web browsers use multithreading routinely. For instance, one thread can
retrieve images while another sends and retrieves e-mail. Multithreading is also used
to increase responsiveness in a time-sharing system to increase resource sharing and
decrease overhead.


Object-Oriented Design


An important area of research that resulted in substantial efficiencies was that of the
system architecture of operating systems—the way their components are programmed
and organized, specifically the use of object-oriented design and the reorganization of
the operating system’s nucleus, the kernel. The kernel is the part of the operating
system that resides in memory at all times, performs the most essential operating
system tasks, and is protected by hardware from user tampering.


The first operating systems were designed as a comprehensive single unit, as shown
in Figure 1.15 (a). They stored all required elements of the operating system in
memory such as memory allocation, process scheduling, device allocation, and file
management. This type of architecture made it cumbersome and time consuming
for programmers to add new components to the operating system, or to modify
existing ones.


Most recently, the part of the operating system that resides in memory has been lim-
ited to a few essential functions, such as process scheduling and memory allocation,
while all other functions, such as device allocation, are provided by special modules,
which are treated as regular applications, as shown in Figure 1.15 (b). This approach
makes it easier to add new components or modify existing ones.


Object-oriented design was the driving force behind this new organization. Objects are
self-contained modules (units of software) that provide models of the real world and
can be reused in different applications. By working on objects, programmers can mod-
ify and customize pieces of an operating system without disrupting the integrity of the
remainder of the system. In addition, using a modular, object-oriented approach can
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make software development groups more productive than was possible with proce-
dural structured programming.


Conclusion


In this chapter, we looked at the overall function of operating systems and how they
have evolved to run increasingly complex computers and computer systems; but
like any complex subject, there’s much more detail to explore. As we’ll see in the
remainder of this text, there are many ways to perform every task and it’s up to the
designer of the operating system to choose the policies that best match the system’s
environment.


In the following chapters, we’ll explore in detail how each portion of the operating
system works, as well as its features, functions, benefits, and costs. We’ll begin with
the part of the operating system that’s the heart of every computer: the module that
manages main memory.
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Key Terms


batch system: a type of system developed for the earliest computers that used punched
cards or tape for input, which were entered in a batch.


central processing unit (CPU): the component with the circuitry, the “chips,” to
control the interpretation and execution of instructions.


core: the processing part of a CPU chip made up of the control unit and the arithmetic
logic unit (ALU).


Device Manager: the section of the operating system responsible for controlling the
use of devices. It monitors every device, channel, and control unit and chooses
the most efficient way to allocate all of the system’s devices.


embedded system: a dedicated computer system, often small and fast, that resides in a
larger physical system such as jet aircraft or ships.


File Manager: the section of the operating system responsible for controlling the use of
files.


firmware: software instructions or data that are stored in a fixed or “firm” way,
usually implemented on read-only memory (ROM).


hardware: the physical machine and its components, including main memory, I/O
devices, I/O channels, direct access storage devices, and the central processing unit.


hybrid system: a computer system that supports both batch and interactive processes.


interactive system: a system that allows each user to interact directly with the operating
system via commands entered from a keyboard.


kernel: the primary part of the operating system that remains in random access memory
(RAM) and is charged with performing the system’s most essential tasks, such as
managing main memory and disk access.


main memory: the memory unit that works directly with the CPU and in which the
data and instructions must reside in order to be processed. Also called primary storage
or internal memory.


mainframe: the historical name given to a large computer system characterized by its
large size, high cost, and high performance.


Memory Manager: the section of the operating system responsible for controlling the
use of memory. It checks the validity of each request for memory space and, if it’s a
legal request, allocates the amount needed to execute the job.


microcomputer: a small computer equipped with all the hardware and software
necessary to perform one or more tasks.
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minicomputer: a small to medium-sized computer system, also called a midrange
computer.


multiprocessing: when two or more CPUs share the same main memory, most I/O
devices, and the same control program routines. They service the same job stream and
execute distinct processing programs concurrently.


multiprogramming: a technique that allows a single processor to process several
programs residing simultaneously in main memory and interleaving their execution by
overlapping I/O requests with CPU requests.


network: a system of interconnected computer systems and peripheral devices that
exchange information with one another.


Network Manager: the section of the operating system responsible for controlling
access to and the use of networked resources.


object-oriented: a programming philosophy whereby programs consist of self-
contained, reusable modules called objects, each of which supports a specific function,
but which are categorized into classes of objects that share the same function.


operating system: the software that manages all the resources of a computer system.


Processor Manager: a composite of two submanagers, the Job Scheduler and the
Process Scheduler, which decides how to allocate the CPU.


real-time system: a computing system used in time-critical environments that require
guaranteed response times, such as navigation systems, rapid transit systems, and
industrial control systems.


server: a node that provides to clients various network services, such as file retrieval,
printing, or database access services.


software: a collection of programs used to perform certain tasks. Software falls into
three main categories: operating system programs, compilers and assemblers, and
application programs.


storage: a place where data is stored in the computer system. Primary storage is main
memory and secondary storage is nonvolatile media.


supercomputer: the fastest, most sophisticated computers made, used for complex
calculations.


thread: a portion of a program that can run independently of other portions.
Multithreaded application programs can have several threads running at one time with
the same or different priorities.


throughput: a composite measure of a system’s efficiency that counts the number of
jobs served in a given unit of time.
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virtualization: the creation of a virtual version of hardware or software. Operating system
virtualization allows a single CPU to run multiple operating system images at the same time.


workstation: a desktop computer attached to a local area network that serves as an
access point to that network.


Interesting Searches
For more background on a few of the topics discussed in this chapter, begin a search
with these terms:


• Computer History Museum


• NASA - Computers Aboard the Space Shuttle


• IBM Computer History Archive


• History of the UNIX Operating System


• History of Microsoft Windows Products


Exercises


Research Topics


Whenever you research computer technology, make sure your resources are timely.
Notice the date when the research was published. Also be sure to validate the authen-
ticity of your sources. Avoid any that might be questionable, such as blogs and
publicly edited online (wiki) sources.


A. Write a one-page review of an article about operating systems that appeared in
a recent computing magazine or academic journal. Be sure to cite your source.
Give a summary of the article, including the primary topic, the information pre-
sented, and the author’s conclusion. Give your personal evaluation of the article,
including the author’s writing style, inappropriate use of jargon, topics that
made the article interesting to you, and its relevance to your own experiences.


B. Research the Internet or current literature to identify an operating system that
runs a cell phone or handheld computer. (These are generally known as mobile
operating systems.) List the key features of the operating system and the hard-
ware it is designed to run. Cite your sources.


Exercises


1. Name five current operating systems (not mentioned in this chapter) and the
computers or configurations each operates.


2. Name the five key concepts about an operating system that you think a novice
user needs to know and understand.


29


Exercises


C7047_01_Ch01.qxd  1/12/10  4:05 PM  Page 29








3. Explain the impact of the evolution of computer hardware and the
accompanying evolution of operating system software.


4. In your opinion, has Moore’s Law been a mere predictor of chip design, or
a motivator for chip designers? Explain your answer.


5. Explain the fundamental differences between interactive, batch, real-time,
and embedded systems.


6. List three situations that might demand a real-time operating system and
explain why.


7. Give an example of an organization that might find batch-mode processing
useful and explain why.


8. List three tangible (physical) data storage resources of a typical computer
system. Explain the advantages and disadvantages of each.


9. Briefly compare active and passive multiprogramming.


10. Give at least two reasons why a multi-state bank might decide to buy six server
computers instead of one more powerful computer. Explain your answer.


11. Select one of the following professionals: an insurance adjuster, a delivery
person for a courier service, a newspaper reporter, a doctor (general practi-
tioner), or a manager in a supermarket. Suggest at least two ways that such a
person might use a handheld computer to work more efficiently.


Advanced Exercises


12. Compare the design goals and evolution of two operating systems described in
Chapters 13–16 of this text.


13. Draw a system flowchart illustrating the steps performed by an operating system
as it executes the instruction to back up a disk on a single-user computer system.
Begin with the user typing the command on the keyboard or clicking the mouse
and conclude with the display of the result on the monitor.


14. Identify the clock rates of processors that use (or used) 8 bits, 16 bits, 32 bits,
and 64 bits. Discuss several implications involved in scheduling the CPU in a
multiprocessing system using these processors.


15. In a multiprogramming and time-sharing environment, several users share the
system simultaneously. This situation can result in various security problems.
Name two such problems. Can we ensure the same degree of security in a 
time-share machine as we can in a dedicated machine? Explain your answers.


16. Give an example of an application where multithreading gives improved
performance over single-threading.


17. If a process terminates, will its threads also terminate or will they continue to
run? Explain your answer.


18. If a process is suspended (put into the “wait” state by an interrupt), will its
threads also be suspended? Explain your answer and give an example. 
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“Memory is the primary and fundamental power, without which
there could be no other intellectual operation.”


—Samuel Johnson (1709–1784)


Learning Objectives


After completing this chapter, you should be able to describe:


• The basic functionality of the three memory allocation schemes presented in this
chapter: fixed partitions, dynamic partitions, relocatable dynamic partitions


• Best-fit memory allocation as well as first-fit memory allocation schemes


• How a memory list keeps track of available memory 


• The importance of deallocation of memory in a dynamic partition system


• The importance of the bounds register in memory allocation schemes


• The role of compaction and how it improves memory allocation efficiency
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The management of main memory is critical. In fact, from a historical perspective, the
performance of the entire system has been directly dependent on two things: How much
memory is available and how it is optimized while jobs are being processed. Pictured in
Figure 2.1 is a main memory circuit from 1961. Since then, the physical size of memory
units has become increasingly small and they are now available on small boards.


This chapter introduces the Memory Manager (also known as random access memory
or RAM, core memory, or primary storage) and four types of memory allocation
schemes: single-user systems, fixed partitions, dynamic partitions, and relocatable
dynamic partitions.


These early memory management schemes are seldom used by today’s operating sys-
tems, but they are important to study because each one introduced fundamental con-
cepts that helped memory management evolve, as shown in Chapter 3, “Memory
Management: Virtual Memory,” which discusses memory allocation strategies for
Linux. Information on how other operating systems manage memory is presented in
the memory management sections in Part Two of the text. 


Let’s start with the simplest memory management scheme—the one used in the earliest
generations of computer systems.


Single-User Contiguous Scheme


The first memory allocation scheme worked like this: Each program to be processed was
loaded in its entirety into memory and allocated as much contiguous space in memory
as it needed, as shown in Figure 2.2. The key words here are entirety and contiguous. If
the program was too large and didn’t fit the available memory space, it couldn’t be exe-
cuted. And, although early computers were physically large, they had very little memory.
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This demonstrates a significant limiting factor of all computers—they have only a
finite amount of memory and if a program doesn’t fit, then either the size of the main
memory must be increased or the program must be modified. It’s usually modified by
making it smaller or by using methods that allow program segments (partitions made
to the program) to be overlaid. (To overlay is to transfer segments of a program from
secondary storage into main memory for execution, so that two or more segments take
turns occupying the same memory locations.)


Single-user systems in a nonnetworked environment work the same way. Each user is
given access to all available main memory for each job, and jobs are processed sequen-
tially, one after the other. To allocate memory, the operating system uses a simple algo-
rithm (step-by-step procedure to solve a problem):


Algorithm to Load a Job in a Single-User System


1 Store first memory location of program into base register (for memory


protection)


2 Set program counter (it keeps track of memory space used by the


program) equal to address of first memory location 


3 Read first instruction of program


4 Increment program counter by number of bytes in instruction


5 Has the last instruction been reached?


if yes, then stop loading program


if no, then continue with step 6


6 Is program counter greater than memory size?


if yes, then stop loading program


if no, then continue with step 7


7 Load instruction in memory


8 Read next instruction of program


9 Go to step 4
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Notice that the amount of work done by the operating system’s Memory Manager is
minimal, the code to perform the functions is straightforward, and the logic is quite sim-
ple. Only two hardware items are needed: a register to store the base address and an
accumulator to keep track of the size of the program as it’s being read into memory.
Once the program is entirely loaded into memory, it remains there until execution is
complete, either through normal termination or by intervention of the operating system.


One major problem with this type of memory allocation scheme is that it doesn’t
support multiprogramming or networking (both are discussed later in this text); it can
handle only one job at a time. When these single-user configurations were first made
available commercially in the late 1940s and early 1950s, they were used in research
institutions but proved unacceptable for the business community—it wasn’t cost
effective to spend almost $200,000 for a piece of equipment that could be used by only
one person at a time. Therefore, in the late 1950s and early 1960s a new scheme was
needed to manage memory, which used partitions to take advantage of the computer
system’s resources by overlapping independent operations.


Fixed Partitions


The first attempt to allow for multiprogramming used fixed partitions (also called
static partitions) within the main memory—one partition for each job. Because the
size of each partition was designated when the system was powered on, each parti-
tion could only be reconfigured when the computer system was shut down, reconfig-
ured, and restarted. Thus, once the system was in operation the partition sizes
remained static.


A critical factor was introduced with this scheme: protection of the job’s memory space.
Once a partition was assigned to a job, no other job could be allowed to enter its
boundaries, either accidentally or intentionally. This problem of partition intrusion did-
n’t exist in single-user contiguous allocation schemes because only one job was present
in main memory at any given time so only the portion of the operating system residing
in main memory had to be protected. However, for the fixed partition allocation
schemes, protection was mandatory for each partition present in main memory.
Typically this was the joint responsibility of the hardware of the computer and the
operating system.


The algorithm used to store jobs in memory requires a few more steps than the one
used for a single-user system because the size of the job must be matched with the size
of the partition to make sure it fits completely. Then, when a block of sufficient size
is located, the status of the partition must be checked to see if it’s available.
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✔
Each partition
could be used by
only one program.
The size of each
partition was set
in advance by the
computer operator
so sizes couldn't
be changed
without restarting
the system.
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Single-User Contiguous Schem
e


Algorithm to Load a Job in a Fixed Partition


1 Determine job’s requested memory size
2 If job_size > size of largest partition


Then reject the job
print appropriate message to operator
go to step 1 to handle next job in line


Else 
continue with step 3


3 Set counter to 1
4 Do while counter <= number of partitions in memory


If job_size > memory_partition_size(counter)
Then counter = counter + 1
Else
If memory_partition_size(counter) = “free”
Then load job into memory_partition(counter)


change memory_partition_status(counter) to “busy”
go to step 1 to handle next job in line


Else 
counter = counter + 1


End do
5 No partition available at this time, put job in waiting queue
6 Go to step 1 to handle next job in line


This partition scheme is more flexible than the single-user scheme because it allows
several programs to be in memory at the same time. However, it still requires that the
entire program be stored contiguously and in memory from the beginning to the end
of its execution. In order to allocate memory spaces to jobs, the operating system’s
Memory Manager must keep a table, such as Table 2.1, which shows each memory
partition size, its address, its access restrictions, and its current status (free or busy)
for the system illustrated in Figure 2.3. (In Table 2.1 and the other tables in this chap-
ter, K stands for kilobyte, which is 1,024 bytes. A more in-depth discussion of mem-
ory map tables is presented in Chapter 8, “File Management.”)


(table 2.1)


A simplified fixed-


partition memory table


with the free partition


shaded. 


Partition Size Memory Address Access Partition 
Status


100K 200K Job 1 Busy


25K 300K Job 4 Busy


25K 325K Free


50K 350K Job 2 Busy


As each job terminates, the status of its memory partition is changed from busy to free
so an incoming job can be assigned to that partition.
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✔
There are two
types of
fragmentation:
internal and
external. The type
depends on the
location of the
wasted space.


Job List:


Job 1 = 30K


Job 2 = 50K


Job 3 = 30K (waiting)


Job 4 = 25K


Main Memory


200K
available


Partition 1 = 100K


Partition 2 = 25K


Partition 3 = 25K


Partition 4 = 50K


(a)


Main Memory


Job 1 (30K)
in Partition 1


Job 4 (25K)
in Partition 2


Job 2 (50K)
in Partition 4


(b)


Internal
Fragmentation


Empty Partition


(figure 2.3)


Main memory use during


fixed partition allocation


of Table 2.1. Job 3 must


wait even though 70K of


free space is available in


Partition 1, where Job 1


only occupies 30K of the


100K available. The jobs


are allocated space 


on the basis of “first


available partition of 


required size.”


The fixed partition scheme works well if all of the jobs run on the system are of the
same size or if the sizes are known ahead of time and don’t vary between reconfigura-
tions. Ideally, that would require accurate advance knowledge of all the jobs to be run
on the system in the coming hours, days, or weeks. However, unless the operator can
accurately predict the future, the sizes of the partitions are determined in an arbitrary
fashion and they might be too small or too large for the jobs coming in.


There are significant consequences if the partition sizes are too small; larger jobs will
be rejected if they’re too big to fit into the largest partitions or will wait if the large
partitions are busy. As a result, large jobs may have a longer turnaround time as they
wait for free partitions of sufficient size or may never run.


On the other hand, if the partition sizes are too big, memory is wasted. If a job does
not occupy the entire partition, the unused memory in the partition will remain idle; it
can’t be given to another job because each partition is allocated to only one job at a
time. It’s an indivisible unit. Figure 2.3 demonstrates one such circumstance.


This phenomenon of partial usage of fixed partitions and the coinciding creation of
unused spaces within the partition is called internal fragmentation, and is a major
drawback to the fixed partition memory allocation scheme.


Dynamic Partitions


With dynamic partitions, available memory is still kept in contiguous blocks but jobs
are given only as much memory as they request when they are loaded for processing.
Although this is a significant improvement over fixed partitions because memory isn’t
wasted within the partition, it doesn’t entirely eliminate the problem.


As shown in Figure 2.4, a dynamic partition scheme fully utilizes memory when the first
jobs are loaded. But as new jobs enter the system that are not the same size as those that
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D
ynam


ic Partitions


Initial job entry
memory allocation


(a)


After Job 1 and Job 4
have finished


(b)


After Job 5 and Job 6
have entered


(c)


After Job 3
has finished


(d)


After Job 7
has entered


(e)


Operating System


Operating System Operating System Operating System


Operating System


(figure 2.4)


Main memory use during dynamic partition allocation. Five snapshots (a-e) of main memory as eight jobs


are submitted for processing and allocated space on the basis of “first come, first served.” Job 8 has to


wait (e) even though there’s enough free memory between partitions to accommodate it.
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just vacated memory, they are fit into the available spaces on a priority basis. Figure 2.4
demonstrates first-come, first-served priority. Therefore, the subsequent allocation of
memory creates fragments of free memory between blocks of allocated memory. This
problem is called external fragmentation and, like internal fragmentation, lets memory
go to waste.


In the last snapshot, (e) in Figure 2.4, there are three free partitions of 5K, 10K, and
20K—35K in all—enough to accommodate Job 8, which only requires 30K. However
they are not contiguous and, because the jobs are loaded in a contiguous manner, this
scheme forces Job 8 to wait.


Before we go to the next allocation scheme, let’s examine how the operating system
keeps track of the free sections of memory.


Best-Fit Versus First-Fit Allocation


For both fixed and dynamic memory allocation schemes, the operating system must
keep lists of each memory location noting which are free and which are busy. Then as
new jobs come into the system, the free partitions must be allocated.


These partitions may be allocated on the basis of first-fit memory allocation (first
partition fitting the requirements) or best-fit memory allocation (least wasted space,
the smallest partition fitting the requirements). For both schemes, the Memory
Manager organizes the memory lists of the free and used partitions (free/busy)
either by size or by location. The best-fit allocation method keeps the free/busy lists
in order by size, smallest to largest. The first-fit method keeps the free/busy
lists organized by memory locations, low-order memory to high-order memory.
Each has advantages depending on the needs of the particular allocation scheme—
best-fit usually makes the best use of memory space; first-fit is faster in making the
allocation.


To understand the trade-offs, imagine that you’ve turned your collection of books into
a lending library. Let’s say you have books of all shapes and sizes, and let’s also say
that there’s a continuous stream of people taking books out and bringing them back—
someone’s always waiting. It’s clear that you’ll always be busy, and that’s good, but
you never have time to rearrange the bookshelves.


You need a system. Your shelves have fixed partitions with a few tall spaces for over-
sized books, several shelves for paperbacks, and lots of room for textbooks. You’ll
need to keep track of which spaces on the shelves are full and where you have spaces
for more. For the purposes of our example, we’ll keep two lists: a free list showing all
the available spaces, and a busy list showing all the occupied spaces. Each list will
include the size and location of each space.
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So as each book is removed from its shelf, you’ll update both lists by removing the
space from the busy list and adding it to the free list. Then as your books are returned
and placed back on a shelf, the two lists will be updated again. 


There are two ways to organize your lists: by size or by location. If they’re organized
by size, the spaces for the smallest books are at the top of the list and those for the
largest are at the bottom. When they’re organized by location, the spaces closest to
your lending desk are at the top of the list and the areas farthest away are at the bot-
tom. Which option is best? It depends on what you want to optimize: space or speed
of allocation.


If the lists are organized by size, you’re optimizing your shelf space—as books arrive,
you’ll be able to put them in the spaces that fit them best. This is a best-fit scheme. If a
paperback is returned, you’ll place it on a shelf with the other paperbacks or at least
with other small books. Similarly, oversized books will be shelved with other large
books. Your lists make it easy to find the smallest available empty space where the
book can fit. The disadvantage of this system is that you’re wasting time looking for
the best space. Your other customers have to wait for you to put each book away, so
you won’t be able to process as many customers as you could with the other kind
of list.


In the second case, a list organized by shelf location, you’re optimizing the time it
takes you to put books back on the shelves. This is a first-fit scheme. This system
ignores the size of the book that you’re trying to put away. If the same paperback
book arrives, you can quickly find it an empty space. In fact, any nearby empty
space will suffice if it’s large enough—even an encyclopedia rack can be used if it’s
close to your desk because you are optimizing the time it takes you to reshelve the
books.


Of course, this is a fast method of shelving books, and if speed is important it’s the
best of the two alternatives. However, it isn’t a good choice if your shelf space is
limited or if many large books are returned, because large books must wait for the
large spaces. If all of your large spaces are filled with small books, the customers
returning large books must wait until a suitable space becomes available. (Eventually
you’ll need time to rearrange the books and compact your collection.)


Figure 2.5 shows how a large job can have problems with a first-fit memory allocation
list. Jobs 1, 2, and 4 are able to enter the system and begin execution; Job 3 has to wait
even though, if all of the fragments of memory were added together, there would be
more than enough room to accommodate it. First-fit offers fast allocation, but it isn’t
always efficient.


On the other hand, the same job list using a best-fit scheme would use memory more
efficiently, as shown in Figure 2.6. In this particular case, a best-fit scheme would yield
better memory utilization.
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Best-Fit Versus First-Fit Allocation


✔
If you optimize
speed, you may
be wasting space.
But if you optimize
space, it may take
longer.
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Job 
number


Memory
requested


J1


Job List:


10K
J2 20K
J3 30K*
J4 10K


Memory
location


Memory
block size


10240


Memory List:


30K
40960 15K
56320 50K
107520 20K


Job
number


J1
J4
J2


Job
size


10K
10K
20K


Status


Busy
Busy
Busy
Free


Internal
fragmentation


20K
5K
30K


Total Available: 115K Total Used: 40K


(figure 2.5)


Using a first-fit scheme,


Job 1 claims the first


available space. Job 2 then


claims the first partition


large enough to


accommodate it, but by


doing so it takes the last


block large enough to 


accommodate Job 3.


Therefore, Job 3 (indicated


by the asterisk) must wait


until a large block


becomes available, even


though there’s 75K of


unused memory space


(internal fragmentation).


Notice that the memory


list is ordered according to


memory location.


Job 
number


Memory
requested


J1


Job List:


10K
J2 20K
J3 30K
J4 10K


Memory
location


Memory
block size


40960


Memory List:


15K
107520 20K
10240 30K
56320 50K


Job
number


J1
J2
J3
J4


Job
size


10K
20K
30K
10K


Status


Busy
Busy
Busy
Busy


Internal
fragmentation


5K
None
None
40K


Total Available: 115K Total Used: 70K


(figure 2.6)


Best-fit free scheme. Job 1


is allocated to the closest-


fitting free partition, as are


Job 2 and Job 3. Job 4 is


allocated to the only


available partition


although it isn’t the 


best-fitting one. In this


scheme, all four jobs are


served without waiting.


Notice that the memory


list is ordered according to


memory size. This scheme


uses memory more


efficiently but it’s slower to


implement.


Memory use has been increased but the memory allocation process takes more
time. What’s more, while internal fragmentation has been diminished, it hasn’t been
completely eliminated.


The first-fit algorithm assumes that the Memory Manager keeps two lists, one for free
memory blocks and one for busy memory blocks. The operation consists of a simple
loop that compares the size of each job to the size of each memory block until a block
is found that’s large enough to fit the job. Then the job is stored into that block of
memory, and the Memory Manager moves out of the loop to fetch the next job from
the entry queue. If the entire list is searched in vain, then the job is placed into a wait-
ing queue. The Memory Manager then fetches the next job and repeats the process.
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The algorithms for best-fit and first-fit are very different. Here’s how first-fit is 
implemented:


First-Fit Algorithm


1 Set counter to 1


2 Do while counter <= number of blocks in memory


If job_size > memory_size(counter)


Then counter = counter + 1


Else


load job into memory_size(counter)


adjust free/busy memory lists


go to step 4


End do


3 Put job in waiting queue


4 Go fetch next job


In Table 2.2, a request for a block of 200 spaces has just been given to the Memory
Manager. (The spaces may be words, bytes, or any other unit the system handles.) Using
the first-fit algorithm and starting from the top of the list, the Memory Manager locates
the first block of memory large enough to accommodate the job, which is at location
6785. The job is then loaded, starting at location 6785 and occupying the next 200
spaces. The next step is to adjust the free list to indicate that the block of free memory
now starts at location 6985 (not 6785 as before) and that it contains only 400 spaces (not
600 as before).
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Best-Fit Versus First-Fit Allocation


Before Request After Request
Beginning Address Memory Block Size Beginning Address Memory Block Size


4075 105 4075 105


5225 5 5225 5


6785 600 *6985 400


7560 20 7560 20


7600 205 7600 205


10250 4050 10250 4050


15125 230 15125 230


24500 1000 24500 1000


(table 2.2)


These two snapshots of


memory show the status


of each memory block


before and after a 


request is made using the


first-fit algorithm. 


(Note: All values are in


decimal notation unless


otherwise indicated.)
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The algorithm for best-fit is slightly more complex because the goal is to find the
smallest memory block into which the job will fit:


Best-Fit Algorithm


1 Initialize memory_block(0) = 99999


2 Compute initial_memory_waste = memory_block(0) – job_size


3 Initialize subscript = 0


4 Set counter to 1


5 Do while counter <= number of blocks in memory


If job_size > memory_size(counter)


Then counter = counter + 1


Else


memory_waste = memory_size(counter) – job_size


If initial_memory_waste > memory_waste


Then subscript = counter


initial_memory_waste = memory_waste


counter = counter + 1


End do


6 If subscript = 0


Then put job in waiting queue


Else


load job into memory_size(subscript)


adjust free/busy memory lists


7 Go fetch next job


One of the problems with the best-fit algorithm is that the entire table must be
searched before the allocation can be made because the memory blocks are physi-
cally stored in sequence according to their location in memory (and not by memory
block sizes as shown in Figure 2.6). The system could execute an algorithm to con-
tinuously rearrange the list in ascending order by memory block size, but that
would add more overhead and might not be an efficient use of processing time in
the long run.


The best-fit algorithm is illustrated showing only the list of free memory blocks. Table
2.3 shows the free list before and after the best-fit block has been allocated to the same
request presented in Table 2.2.
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Best-Fit Versus First-Fit Allocation


(table 2.3)


These two snapshots of


memory show the status


of each memory block


before and after a 


request is made using the


best-fit algorithm.


In Table 2.3, a request for a block of 200 spaces has just been given to the Memory
Manager. Using the best-fit algorithm and starting from the top of the list, the Memory
Manager searches the entire list and locates a block of memory starting at location
7600, which is the smallest block that’s large enough to accommodate the job. The
choice of this block minimizes the wasted space (only 5 spaces are wasted, which is
less than in the four alternative blocks). The job is then stored, starting at location
7600 and occupying the next 200 spaces. Now the free list must be adjusted to show
that the block of free memory starts at location 7800 (not 7600 as before) and that it
contains only 5 spaces (not 205 as before).


Which is best—first-fit or best-fit? For many years there was no way to answer such a
general question because performance depends on the job mix. Note that while the
best-fit resulted in a better fit, it also resulted (and does so in the general case) in a
smaller free space (5 spaces), which is known as a sliver.


In the exercises at the end of this chapter, two other hypothetical allocation schemes are
explored: next-fit, which starts searching from the last allocated block for the next avail-
able block when a new job arrives; and worst-fit, which allocates the largest free avail-
able block to the new job. Worst-fit is the opposite of best-fit. Although it’s a good way
to explore the theory of memory allocation, it might not be the best choice for an actual
system.


In recent years, access times have become so fast that the scheme that saves the more
valuable resource, memory space, may be the best in some cases. Research continues
to focus on finding the optimum allocation scheme. This includes optimum page size—
a fixed allocation scheme we will cover in the next chapter, which is the key to improv-
ing the performance of the best-fit allocation scheme.


Before Request After Request
Beginning Address Memory Block Size Beginning Address Memory Block Size


4075 105 4075 105


5225 5 5225 5


6785 600 6785 600


7560 20 7560 20


7600 205 *7800 5


10250 4050 10250 4050


15125 230 15125 230


24500 1000 24500 1000
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Deallocation


Until now, we’ve considered only the problem of how memory blocks are allocated,
but eventually there comes a time when memory space must be released, or 
deallocated.


For a fixed partition system, the process is quite straightforward. When the job is com-
pleted, the Memory Manager resets the status of the memory block where the job was
stored to “free.” Any code—for example, binary values with 0 indicating free and 1
indicating busy—may be used so the mechanical task of deallocating a block of mem-
ory is relatively simple.


A dynamic partition system uses a more complex algorithm because the algorithm tries
to combine free areas of memory whenever possible. Therefore, the system must be
prepared for three alternative situations:


• Case 1. When the block to be deallocated is adjacent to another free block


• Case 2. When the block to be deallocated is between two free blocks


• Case 3. When the block to be deallocated is isolated from other free blocks


The deallocation algorithm must be prepared for all three eventualities with a set of
nested conditionals. The following algorithm is based on the fact that memory
locations are listed using a lowest-to-highest address scheme. The algorithm would
have to be modified to accommodate a different organization of memory locations.
In this algorithm, job_size is the amount of memory being released by the terminating
job, and beginning_address is the location of the first instruction for the job.


Algorithm to Deallocate Memory Blocks


If job_location is adjacent to one or more free blocks


Then


If job_location is between two free blocks


Then merge all three blocks into one block


memory_size(counter-1) = memory_size(counter-1) + job_size 


+ memory_size(counter+1)


set status of memory_size(counter+1) to null entry


Else


merge both blocks into one


memory_size(counter-1) = memory_size(counter-1) + job_size


Else


search for null entry in free memory list


enter job_size and beginning_address in the entry slot


set its status to “free”
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✔
Whenever memory
is deallocated,
it creates an
opportunity
for external
fragmentation.
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(table 2.4)


This is the original free list


before deallocation for


Case 1. The asterisk


indicates the free 


memory block that’s


adjacent to the 


soon-to-be-free 


memory block. 


(table 2.5)


Case 1. This is the free list


after deallocation. The


asterisk indicates the


location where changes


were made to the free


memory block.


Case 1: Joining Two Free Blocks 


Table 2.4 shows how deallocation occurs in a dynamic memory allocation system
when the job to be deallocated is next to one free memory block.


Beginning Address Memory Block Size Status


4075 105 Free


5225 5 Free


6785 600 Free


7560 20 Free


(7600) (200) (Busy)1


*7800 5 Free


10250 4050 Free


15125 230 Free


24500 1000 Free


1Although the numbers in parentheses don’t appear in the free 


list, they’ve been inserted here for clarity. The job size is 200 


and its beginning location is 7600.


After deallocation the free list looks like the one shown in Table 2.5.


Beginning Address Memory Block Size Status


4075 105 Free


5225 5 Free


6785 600 Free


7560 20 Free


*7600 205 Free


10250 4050 Free


15125 230 Free


24500 1000 Free


Using the deallocation algorithm, the system sees that the memory to be released
is next to a free memory block, which starts at location 7800. Therefore, the list
must be changed to reflect the starting address of the new free block, 7600, which
was the address of the first instruction of the job that just released this block. In
addition, the memory block size for this new free space must be changed to show
its new size, which is the combined total of the two free partitions (200 + 5).
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(table 2.6)


Case 2. This is the


original free list before


deallocation. The asterisks


indicate the two free


memory blocks that are


adjacent to the 


soon-to-be-free 


memory block. 


(table 2.7)


Case 2. The free list after a


job has released memory.


Case 2: Joining Three Free Blocks 


When the deallocated memory space is between two free memory blocks, the process
is similar, as shown in Table 2.6.


Using the deallocation algorithm, the system learns that the memory to be deallocated
is between two free blocks of memory. Therefore, the sizes of the three free partitions
(20 + 20 + 205) must be combined and the total stored with the smallest beginning
address, 7560.


Beginning Address Memory Block Size Status


4075 105 Free


5225 5 Free


6785 600 Free


*7560 20 Free


(7580) (20) (Busy)1


*7600 205 Free


10250 4050 Free


15125 230 Free


24500 1000 Free


1 Although the numbers in parentheses don’t appear in the free 


list, they have been inserted here for clarity.


Because the entry at location 7600 has been combined with the previous entry, we
must empty out this entry. We do that by changing the status to null entry, with no
beginning address and no memory block size as indicated by an asterisk in Table 2.7.
This negates the need to rearrange the list at the expense of memory.


Beginning Address Memory Block Size Status


4075 105 Free


5225 5 Free


6785 600 Free


7560 245 Free


* (null entry)


10250 4050 Free


15125 230 Free


24500 1000 Free
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Case 3: Deallocating an Isolated Block 


The third alternative is when the space to be deallocated is isolated from all other
free areas.


For this example, we need to know more about how the busy memory list is config-
ured. To simplify matters, let’s look at the busy list for the memory area between loca-
tions 7560 and 10250. Remember that, starting at 7560, there’s a free memory block
of 245, so the busy memory area includes everything from location 7805 (7560 + 245)
to 10250, which is the address of the next free block. The free list and busy list are
shown in Table 2.8 and Table 2.9.


Beginning Address Memory Block Size Status


4075 105 Free


5225 5 Free


6785 600 Free


7560 245 Free


(null entry)


10250 4050 Free


15125 230 Free


24500 1000 Free


Beginning Address Memory Block Size Status


7805 1000 Busy


*8805 445 Busy


9250 1000 Busy


Using the deallocation algorithm, the system learns that the memory block to be
released is not adjacent to any free blocks of memory; instead it is between two other
busy areas. Therefore, the system must search the table for a null entry.


The scheme presented in this example creates null entries in both the busy and the free
lists during the process of allocation or deallocation of memory. An example of a null
entry occurring as a result of deallocation was presented in Case 2. A null entry in the
busy list occurs when a memory block between two other busy memory blocks is
returned to the free list, as shown in Table 2.10. This mechanism ensures that all
blocks are entered in the lists according to the beginning address of their memory loca-
tion from smallest to largest.
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eallocation


(table 2.8)


Case 3. Original free list


before deallocation. The


soon-to-be-free memory


block is not adjacent to


any blocks that are 


already free.


(table 2.9)


Case 3. Busy memory list


before deallocation. The


job to be deallocated is of


size 445 and begins at


location 8805. The


asterisk indicates


the soon-to-be-free


memory block.
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Beginning Address Memory Block Size Status


7805 1000 Busy


* (null entry)


9250 1000 Busy


When the null entry is found, the beginning memory location of the terminating job is
entered in the beginning address column, the job size is entered under the memory
block size column, and the status is changed from a null entry to free to indicate that a
new block of memory is available, as shown in Table 2.11.


Beginning Address Memory Block Size Status


4075 105 Free


5225 5 Free


6785 600 Free


7560 245 Free


*8805 445 Free


10250 4050 Free


15125 230 Free


24500 1000 Free


Relocatable Dynamic Partitions


Both of the fixed and dynamic memory allocation schemes described thus far shared
some unacceptable fragmentation characteristics that had to be resolved before the
number of jobs waiting to be accepted became unwieldy. In addition, there was a
growing need to use all the slivers of memory often left over.


The solution to both problems was the development of relocatable dynamic partitions.
With this memory allocation scheme, the Memory Manager relocates programs to
gather together all of the empty blocks and compact them to make one block of mem-
ory large enough to accommodate some or all of the jobs waiting to get in.


The compaction of memory, sometimes referred to as garbage collection or defragmen-
tation, is performed by the operating system to reclaim fragmented sections of the
memory space. Remember our earlier example of the makeshift lending library? If you
stopped lending books for a few moments and rearranged the books in the most effec-
tive order, you would be compacting your collection. But this demonstrates its disad-
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(table 2.10)


Case 3. This is the busy list


after the job has released


its memory. The asterisk


indicates the new null


entry in the busy list.


(table 2.11)


Case 3. This is the free list


after the job has released


its memory. The asterisk


indicates the new free


block entry replacing the


null entry.


✔
When you use a
defragmentation
utility, you are
compacting
memory and
relocating file
segments so
they can be
retrieved faster.
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vantage—it’s an overhead process, so that while compaction is being done everything
else must wait.


Compaction isn’t an easy task. First, every program in memory must be relocated so
they’re contiguous, and then every address, and every reference to an address, within
each program must be adjusted to account for the program’s new location in memory.
However, all other values within the program (such as data values) must be left alone. In
other words, the operating system must distinguish between addresses and data values,
and the distinctions are not obvious once the program has been loaded into memory.


To appreciate the complexity of relocation, let’s look at a typical program. Remember,
all numbers are stored in memory as binary values, and in any given program instruc-
tion it’s not uncommon to find addresses as well as data values. For example, an
assembly language program might include the instruction to add the integer 1 to I. The
source code instruction looks like this:


ADDI I, 1


However, after it has been translated into actual code it could look like this (for read-
ability purposes the values are represented here in octal code, not binary code):


000007 271 01 0 00 000001


It’s not immediately obvious which elements are addresses and which are instruction
codes or data values. In fact, the address is the number on the left (000007). The
instruction code is next (271), and the data value is on the right (000001).


The operating system can tell the function of each group of digits by its location in the
line and the operation code. However, if the program is to be moved to another place
in memory, each address must be identified, or flagged. So later the amount of mem-
ory locations by which the program has been displaced must be added to (or sub-
tracted from) all of the original addresses in the program.


This becomes particularly important when the program includes loop sequences, deci-
sion sequences, and branching sequences, as well as data references. If, by chance,
every address was not adjusted by the same value, the program would branch to the
wrong section of the program or to a section of another program, or it would refer-
ence the wrong data.


The program in Figure 2.7 and Figure 2.8 shows how the operating system flags the
addresses so that they can be adjusted if and when a program is relocated.


Internally, the addresses are marked with a special symbol (indicated in Figure 2.8 by
apostrophes) so the Memory Manager will know to adjust them by the value stored in
the relocation register. All of the other values (data values) are not marked and won’t
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A EXP 132, 144, 125, 110 ;the data values


BEGIN: MOVEI 1,0 ;initialize register 1


MOVEI 2,0 ;initialize register 2


LOOP: ADD 2,A(1) ;add (A + reg 1) to reg 2


ADDI 1,1 ;add 1 to reg 1


CAIG 1,4–1 ;is register 1 > 4–1?


JUMPA LOOP ;if not, go to Loop 


MOVE 3,2 ;if so, move reg 2 to reg 3


IDIVI 3,4 ;divide reg 3 by 4, 


;remainder to register 4


EXIT ;end


END


(figure 2.7)


An assembly language


program that performs a


simple incremental


operation. This is what the


programmer submits to


the assembler. The


commands are shown on


the left and the comments


explaining each command


are shown on the right


after the semicolons.


(figure 2.8)


The original assembly


language program after it


has been processed by the


assembler, shown on the


right (a). To run the


program, the assembler


translates it into machine


readable code (b) with all


addresses marked by a


special symbol (shown


here as an apostrophe) to


distinguish addresses


from data values. All


addresses (and no data


values) must be adjusted


after relocation. 


be changed after relocation. Other numbers in the program, those indicating instruc-
tions, registers, or constants used in the instruction, are also left alone.


Figure 2.9 illustrates what happens to a program in memory during compaction and
relocation.


(addresses to be adjusted after relocation)


A: EXP132, 144, 125, 11


BEGIN: MOVEI 1,


2,MOVEI
2,A(1)ADD
1,1ADDI
1,4–1CAIG
LOOPJUMPA
3,2MOVE
3,4IDIVI


EXIT


END


(b)(a)


LOOP:27 01
271


324
2
231 3
47


3


1
1
2
2
1


'
1'
2'
3'


4'
5'
6'
7'
8'
9'


10'
11'
12'


132
144
125
110


1
3


2
4


6'


12


12
12


73


'
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This discussion of compaction raises three questions:


1. What goes on behind the scenes when relocation and compaction take place?


2. What keeps track of how far each job has moved from its original storage area?


3. What lists have to be updated?


The last question is easiest to answer. After relocation and compaction, both the free
list and the busy list are updated. The free list is changed to show the partition for the
new block of free memory: the one formed as a result of compaction that will be
located in memory starting after the last location used by the last job. The busy list is
changed to show the new locations for all of the jobs already in progress that were
relocated. Each job will have a new address except for those that were already resid-
ing at the lowest memory locations.


To answer the other two questions we must learn more about the hardware compo-
nents of a computer, specifically the registers. Special-purpose registers are used to
help with the relocation. In some computers, two special registers are set aside for this
purpose: the bounds register and the relocation register.


The bounds register is used to store the highest (or lowest, depending on the spe-
cific system) location in memory accessible by each program. This ensures that
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(figure 2.9)


Three snapshots of memory before and after compaction with the operating system occupying the first


10K of memory. When Job 6 arrives requiring 84K, the initial memory layout in (a) shows external


fragmentation totaling 96K of space. Immediately after compaction (b), external fragmentation has been


eliminated, making room for Job 6 which, after loading, is shown in (c).


Main Memory
Job 1 (8K)


Job 4 (32K)


Job 2 (16K)


(a)


Main Memory


(b)


Main Memory


(c)


Job 5 (48K)


External
Fragmentation


Job List:


Job 1 = 8K


Job 2 = 16K


Job 4 = 32K


Job 5 = 48K


Job 6 = 84K (waiting)


10K
18K


30K


62K


92K


108K


156K


Job 1 (8K)


Job 4 (32K)


Job 2 (16K)


Job 5 (48K)


Job 1 (8K)


Job 4 (32K)


Job 2 (16K)


Job 5 (48K)


Job 6 (84K)
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during execution, a program won’t try to access memory locations that don’t
belong to it—that is, those that are out of bounds. The relocation register con-
tains the value that must be added to each address referenced in the program so
that the system will be able to access the correct memory addresses after reloca-
tion. If the program isn’t relocated, the value stored in the program’s relocation
register is zero.


Figure 2.10 illustrates what happens during relocation by using the relocation register
(all values are shown in decimal form).


Originally, Job 4 was loaded into memory starting at memory location 30K. (1K
equals 1,024 bytes. Therefore, the exact starting address is: 30 * 1024 = 30,720.) It
required a block of memory of 32K (or 32 * 1024 = 32,768) addressable locations.
Therefore, when it was originally loaded, the job occupied the space from memory
location 30720 to memory location 63488-1. Now, suppose that within the program,
at memory location 31744, there’s an instruction that looks like this:


LOAD 4, ANSWER


This assembly language command asks that the data value known as ANSWER be
loaded into Register 4 for later computation. ANSWER, the value 37, is stored at
memory location 53248. (In this example, Register 4 is a working/computation regis-
ter, which is distinct from either the relocation or the bounds register.)
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(a)


Operating System


(b)


Operating System


(figure 2.10)


Contents of relocation register and close-up of Job 4 memory area (a) before relocation and (b) after


relocation and compaction.
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After relocation, Job 4 has been moved to a new starting memory address of 18K
(actually 18 * 1024 = 18,432). Of course, the job still has its 32K addressable
locations, so it now occupies memory from location 18432 to location 51200-1 and,
thanks to the relocation register, all of the addresses will be adjusted accordingly.


What does the relocation register contain? In this example, it contains the value
–12288. As calculated previously, 12288 is the size of the free block that has been
moved forward toward the high addressable end of memory. The sign is negative
because Job 4 has been moved back, closer to the low addressable end of memory, as
shown at the top of Figure 2.10(b).


However, the program instruction (LOAD 4, ANSWER) has not been changed. The
original address 53248 where ANSWER had been stored remains the same in the pro-
gram no matter how many times it is relocated. Before the instruction is executed, how-
ever, the true address must be computed by adding the value stored in the relocation
register to the address found at that instruction. If the addresses are not adjusted by the
value stored in the relocation register, then even though memory location 31744 is still
part of the job’s accessible set of memory locations, it would not contain the LOAD
command. Not only that, but location 53248 is now out of bounds. The instruction
that was originally at 31744 has been moved to location 19456. That’s because all of
the instructions in this program have been moved back by 12K (12 * 1024 = 12,288),
which is the size of the free block. Therefore, location 53248 has been displaced by
–12288 and ANSWER, the data value 37, is now located at address 40960.


In effect, by compacting and relocating, the Memory Manager optimizes the use of
memory and thus improves throughput—one of the measures of system performance.
An unfortunate side effect is that more overhead is incurred than with the two previ-
ous memory allocation schemes. The crucial factor here is the timing of the com-
paction—when and how often it should be done. There are three options.


One approach is to do it when a certain percentage of memory becomes busy, say
75 percent. The disadvantage of this approach is that the system would incur unneces-
sary overhead if no jobs were waiting to use the remaining 25 percent.


A second approach is to compact memory only when there are jobs waiting to get in.
This would entail constant checking of the entry queue, which might result in unnec-
essary overhead and slow down the processing of jobs already in the system.


A third approach is to do it after a prescribed amount of time has elapsed. If the
amount of time chosen is too small, however, then the system will spend more time on
compaction than on processing. If it’s too large, too many jobs will congregate in the
waiting queue and the advantages of compaction are lost.


As you can see, each option has its good and bad points. The best choice for any sys-
tem is decided by the operating system designer who, based on the job mix and other
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factors, tries to optimize both processing time and memory use while keeping over-
head as low as possible.


Conclusion


Four memory management techniques were presented in this chapter: single-user sys-
tems, fixed partitions, dynamic partitions, and relocatable dynamic partitions. They
have three things in common: They all require that the entire program (1) be loaded
into memory, (2) be stored contiguously, and (3) remain in memory until the job is
completed.


Consequently, each puts severe restrictions on the size of the jobs because they can
only be as large as the biggest partitions in memory.


These schemes were sufficient for the first three generations of computers, which
processed jobs in batch mode. Turnaround time was measured in hours, or sometimes
days, but that was a period when users expected such delays between the submission
of their jobs and pick up of output. As you’ll see in the next chapter, a new trend
emerged during the third-generation computers of the late 1960s and early 1970s:
Users were able to connect directly with the central processing unit via remote job
entry stations, loading their jobs from online terminals that could interact more
directly with the system. New methods of memory management were needed to
accommodate them.


We’ll see that the memory allocation schemes that followed had two new things in
common. First, programs didn’t have to be stored in contiguous memory locations—
they could be divided into segments of variable sizes or pages of equal size. Each
page, or segment, could be stored wherever there was an empty block big enough to
hold it. Second, not all the pages, or segments, had to reside in memory during the
execution of the job. These were significant advances for system designers, operators,
and users alike.


Key Terms


address: a number that designates a particular memory location.


best-fit memory allocation: a main memory allocation scheme that considers all free
blocks and selects for allocation the one that will result in the least amount of wasted
space.


bounds register: a register used to store the highest location in memory legally accessi-
ble by each program.
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compaction: the process of collecting fragments of available memory space into con-
tiguous blocks by moving programs and data in a computer’s memory or disk. Also
called garbage collection.


deallocation: the process of freeing an allocated resource, whether memory space, a
device, a file, or a CPU.


dynamic partitions: a memory allocation scheme in which jobs are given as much
memory as they request when they are loaded for processing, thus creating their own
partitions in main memory.


external fragmentation: a situation in which the dynamic allocation of memory cre-
ates unusable fragments of free memory between blocks of busy, or allocated, memory. 


first come first served (FCFS): a nonpreemptive process scheduling policy that handles
jobs according to their arrival time; the first job in the READY queue is processed first.


first-fit memory allocation: a main memory allocation scheme that searches from the
beginning of the free block list and selects for allocation the first block of memory
large enough to fulfill the request.


fixed partitions: a memory allocation scheme in which main memory is sectioned off,
with portions assigned to each job.


internal fragmentation: a situation in which a fixed partition is only partially used by
the program; the remaining space within the partition is unavailable to any other job
and is therefore wasted. 


kilobyte (K): a unit of memory or storage space equal to 1,024 bytes or 210 bytes.


main memory: the unit that works directly with the CPU and in which the data and
instructions must reside in order to be processed. Also called random access memory
(RAM), primary storage, or internal memory.


null entry: an empty entry in a list.


relocatable dynamic partitions: a memory allocation scheme in which the system relo-
cates programs in memory to gather together all of the empty blocks and compact
them to make one block of memory that’s large enough to accommodate some or all
of the jobs waiting for memory.


relocation: (1) the process of moving a program from one area of memory to another;
or (2) the process of adjusting address references in a program, by either software or
hardware means, to allow the program to execute correctly when loaded in different
sections of memory.


relocation register: a register that contains the value that must be added to each
address referenced in the program so that it will be able to access the correct memory
addresses after relocation.


static partitions: another term for fixed partitions.
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Interesting Searches
• Core Memory Technology 


• technikum29 Museum of Computer and Communication Technology


• How RAM Memory Works


• First Come First Served Algorithm


• Static vs. Dynamic Partitions


• Internal vs. External Fragmentation


Exercises


Research Topics


A. Three different number systems (in addition to the familiar base-10 system) are
commonly used in computer science. Create a column of integers 1 through 30.
In the next three columns show how each value is represented using the binary,
octal, and hex number systems. Identify when and why each of the each three
numbering systems is used. Cite your sources. 


B. For a platform of your choice, investigate the growth in the size of main mem-
ory (RAM) from the time the platform was developed to the present day.
Create a chart showing milestones in memory growth and the approximate
date. Choose from microcomputers, midrange computers, and mainframes. Be
sure to mention the organization that performed the RAM research and devel-
opment and cite your sources.


Exercises


1. Explain the fundamental differences between internal fragmentation and
external fragmentation. For each of the four memory management systems
explained in this chapter (single user, fixed, dynamic, and relocatable dynamic),
identify which one causes each type of fragmentation.


2. Which type of fragmentation is reduced by compaction? Explain your answer.


3. How often should relocation be performed? Explain your answer.


4. Imagine an operating system that does not perform memory deallocation. Name
at least three unfortunate outcomes that would result and explain your answer.


5. Compare and contrast a fixed partition system and a dynamic partition system.


6. Compare and contrast a dynamic partition system and a relocatable dynamic
partition system.
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7. Given the following information:


Job list:
Job Number Memory Requested Memory Block Memory Block Size


Job 1 690 K Block 1 900 K (low-order memory)


Job 2 275 K Block 2 910 K


Job 3 760 K Block 3 300 K (high-order memory)


a. Use the best-fit algorithm to indicate which memory blocks are allocated to
each of the three arriving jobs.


b. Use the first-fit algorithm to indicate which memory blocks are allocated to
each of the three arriving jobs.


8. Given the following information:


Job list:
Job Number Memory Requested Memory Block Memory Block Size


Job 1 275 K Block 1 900 K (low-order memory)


Job 2 920 K Block 2 910 K


Job 3 690 K Block 3 300 K (high-order memory)


a. Use the best-fit algorithm to indicate which memory blocks are allocated to
each of the three arriving jobs.


b. Use the first-fit algorithm to indicate which memory blocks are allocated to
each of the three arriving jobs.


9. Next-fit is an allocation algorithm that keeps track of the partition that was
allocated previously (last) and starts searching from that point on when a new
job arrives.


a. Are there any advantages of the next-fit algorithm? If so, what are they?


b. How would it compare to best-fit and first-fit for the conditions given in
Exercise 7?


c. How would it compare to best-fit and first-fit for the conditions given in
Exercise 8?


10. Worst-fit is an allocation algorithm that allocates the largest free block to a
new job. This is the opposite of the best-fit algorithm.


a. Are there any advantages of the worst-fit algorithm? If so, what are they?


b. How would it compare to best-fit and first-fit for the conditions given in
Exercise 7?


c. How would it compare to best-fit and first-fit for the conditions given in
Exercise 8?
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Advanced Exercises


11. The relocation example presented in the chapter implies that compaction is
done entirely in memory, without secondary storage. Can all free sections of
memory be merged into one contiguous block using this approach? Why or
why not?


12. To compact memory in some systems, some people suggest that all jobs in
memory be copied to a secondary storage device and then reloaded (and
relocated) contiguously into main memory, thus creating one free block
after all jobs have been recopied into memory. Is this viable? Could you
devise a better way to compact memory? Write your algorithm and explain
why it is better.


13. Given the memory configuration in Figure 2.11, answer the following ques-
tions. At this point, Job 4 arrives requesting a block of 100K.


a. Can Job 4 be accommodated? Why or why not?


b. If relocation is used, what are the contents of the
relocation registers for Job 1, Job 2, and Job 3
after compaction?


c. What are the contents of the relocation register
for Job 4 after it has been loaded into memory?


d. An instruction that is part of Job 1 was origi-
nally loaded into memory location 22K. What is
its new location after compaction?


e. An instruction that is part of Job 2 was origi-
nally loaded into memory location 55K. What is
its new location after compaction?


f. An instruction that is part of Job 3 was origi-
nally loaded into memory location 80K. What is
its new location after compaction?


g. If an instruction was originally loaded into mem-
ory location 110K, what is its new location after
compaction?
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(figure 2.11)


Memory configuration for


Exercise 13.


Operating System
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Job List Memory List


Job Stream Number Time Job Size Memory Block Size


1 5 5760 1 9500


2 4 4190 2 7000


3 8 3290 3 4500


4 2 2030 4 8500


5 2 2550 5 3000


6 6 6990 6 9000


7 8 8940 7 1000


8 10 740 8 5500


9 7 3930 9 1500


10 6 6890 10 500


11 5 6580


12 8 3820


13 9 9140


14 10 420


15 10 220


16 7 7540


17 3 3210


18 1 1380


19 9 9850


20 3 3610


21 7 7540


22 2 2710


23 8 8390


24 5 5950


25 10 760


59


Exercises


Programming Exercises


14. Here is a long-term programming project. Use the information that follows to
complete this exercise.
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At one large batch-processing computer installation, the management wants to decide
what storage placement strategy will yield the best possible performance. The installa-
tion runs a large real storage (as opposed to “virtual” storage, which will be covered
in the following chapter) computer under fixed partition multiprogramming. Each
user program runs in a single group of contiguous storage locations. Users state their
storage requirements and time units for CPU usage on their Job Control Card (it used
to, and still does, work this way, although cards may not be used). The operating sys-
tem allocates to each user the appropriate partition and starts up the user’s job. The
job remains in memory until completion. A total of 50,000 memory locations are
available, divided into blocks as indicated in the table on the previous page.


a. Write (or calculate) an event-driven simulation to help you decide which
storage placement strategy should be used at this installation. Your program
would use the job stream and memory partitioning as indicated previously.
Run the program until all jobs have been executed with the memory as is (in
order by address). This will give you the first-fit type performance results.


b. Sort the memory partitions by size and run the program a second time; this
will give you the best-fit performance results. For both parts a. and b., you
are investigating the performance of the system using a typical job stream
by measuring:


1. Throughput (how many jobs are processed per given time unit)
2. Storage utilization (percentage of partitions never used, percentage of


partitions heavily used, etc.)
3. Waiting queue length
4. Waiting time in queue
5. Internal fragmentation


Given that jobs are served on a first-come, first-served basis:


c. Explain how the system handles conflicts when jobs are put into a waiting
queue and there are still jobs entering the system—who goes first?


d. Explain how the system handles the “job clocks,” which keep track of the
amount of time each job has run, and the “wait clocks,” which keep track
of how long each job in the waiting queue has to wait.


e. Since this is an event-driven system, explain how you define “event” and
what happens in your system when the event occurs.


f. Look at the results from the best-fit run and compare them with the
results from the first-fit run. Explain what the results indicate about the
performance of the system for this job mix and memory organization. Is
one method of partitioning better than the other? Why or why not? Could
you recommend one method over the other given your sample run? Would
this hold in all cases? Write some conclusions and recommendations.
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15. Suppose your system (as explained in Exercise 14) now has a “spooler” (storage
area in which to temporarily hold jobs) and the job scheduler can choose which
will be served from among 25 resident jobs. Suppose also that the first-come,
first-served policy is replaced with a “faster-job, first-served” policy. This would
require that a sort by time be performed on the job list before running the pro-
gram. Does this make a difference in the results? Does it make a difference in
your analysis? Does it make a difference in your conclusions and recommenda-
tions? The program should be run twice to test this new policy with both best-
fit and first-fit.


16. Suppose your spooler (as described in Exercise 14) replaces the previous pol-
icy with one of “smallest-job, first-served.” This would require that a sort by
job size be performed on the job list before running the program. How do the
results compare to the previous two sets of results? Will your analysis
change? Will your conclusions change? The program should be run twice to
test this new policy with both best-fit and first-fit.
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“Nothing is so much strengthened by practice, or weakened by
neglect, as memory.”


—Quintillian (A.D. 35–100) 


Learning Objectives


After completing this chapter, you should be able to describe:


• The basic functionality of the memory allocation methods covered in this chapter:
paged, demand paging, segmented, and segmented/demand paged memory allocation


• The influence that these page allocation methods have had on virtual memory


• The difference between a first-in first-out page replacement policy, a least-recently-
used page replacement policy, and a clock page replacement policy


• The mechanics of paging and how a memory allocation scheme determines which
pages should be swapped out of memory


• The concept of the working set and how it is used in memory allocation schemes


• The impact that virtual memory had on multiprogramming


• Cache memory and its role in improving system response time


63


Chapter 3 Memory Management:
Virtual Memory


Paged Memory Allocation


Demand Paging
Memory Allocation


Segmented Memory
Allocation


Segmented/
Demand Paging


Memory Allocation


MEMORY MANAGER
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In the previous chapter we looked at simple memory allocation schemes. Each one
required that the Memory Manager store the entire program in main memory in con-
tiguous locations; and as we pointed out, each scheme solved some problems but cre-
ated others, such as fragmentation or the overhead of relocation.


In this chapter we’ll follow the evolution of virtual memory with four memory alloca-
tion schemes that first remove the restriction of storing the programs contiguously,
and then eliminate the requirement that the entire program reside in memory during
its execution. These schemes are paged, demand paging, segmented, and
segmented/demand paged allocation, which form the foundation for our current vir-
tual memory methods. Our discussion of cache memory will show how its use
improves the performance of the Memory Manager. 


Paged Memory Allocation


Before a job is loaded into memory, it is divided into parts called pages that will be
loaded into memory locations called page frames. Paged memory allocation is based
on the concept of dividing each incoming job into pages of equal size. Some operating
systems choose a page size that is the same as the memory block size and that is also
the same size as the sections of the disk on which the job is stored.


The sections of a disk are called sectors (or sometimes blocks), and the sections of main
memory are called page frames. The scheme works quite efficiently when the pages, sec-
tors, and page frames are all the same size. The exact size (the number of bytes that can
be stored in each of them) is usually determined by the disk’s sector size. Therefore, one
sector will hold one page of job instructions and fit into one page frame of memory.


Before executing a program, the Memory Manager prepares it by:


1. Determining the number of pages in the program


2. Locating enough empty page frames in main memory


3. Loading all of the program’s pages into them


When the program is initially prepared for loading, its pages are in logical sequence—
the first pages contain the first instructions of the program and the last page has the
last instructions. We’ll refer to the program’s instructions as bytes or words.


The loading process is different from the schemes we studied in Chapter 2 because the
pages do not have to be loaded in adjacent memory blocks. In fact, each page can be
stored in any available page frame anywhere in main memory.
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By working with
page-sized pieces
of the incoming
job, memory can
be used more
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The primary advantage of storing programs in noncontiguous locations is that main
memory is used more efficiently because an empty page frame can be used by any page
of any job. In addition, the compaction scheme used for relocatable partitions is elimi-
nated because there is no external fragmentation between page frames (and no inter-
nal fragmentation in most pages).


However, with every new solution comes a new problem. Because a job’s pages can be
located anywhere in main memory, the Memory Manager now needs a mechanism to
keep track of them—and that means enlarging the size and complexity of the operat-
ing system software, which increases overhead.


The simplified example in Figure 3.1 shows how the Memory Manager keeps track of a pro-
gram that is four pages long. To simplify the arithmetic, we’ve arbitrarily set the page size at
100 bytes. Job 1 is 350 bytes long and is being readied for execution.


Notice in Figure 3.1 that the last page (Page 3) is not fully utilized because the job is
less than 400 bytes—the last page uses only 50 of the 100 bytes available. In fact, very
few jobs perfectly fill all of the pages, so internal fragmentation is still a problem (but
only in the last page of a job).


In Figure 3.1 (with seven free page frames), the operating system can accommodate jobs
that vary in size from 1 to 700 bytes because they can be stored in the seven empty page
frames. But a job that is larger than 700 bytes can’t be accommodated until Job 1 ends its
execution and releases the four page frames it occupies. And a job that is larger than
1100 bytes will never fit into the memory of this tiny system. Therefore, although
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Job 1–Page 2


Job 1–Page 0


Job 1–Page 1


Job 1–Page 3


Job 1


First 100 bytes Page 0


Main Memory Page frame no.


0
1
2
3
4
5
6
7
8
9


10
11
12


Page 1


Page 2


Page 3


Second 100 bytes


Third 100 bytes


Remaining 50 bytes


Wasted space


(figure 3.1)


Programs that are too long


to fit on a single page are


split into equal-sized


pages that can be stored


in free page frames. In this


example, each page frame


can hold 100 bytes. Job 1 is


350 bytes long and is


divided among four page


frames, leaving internal


fragmentation in the last


page frame. (The Page


Map Table for this job is


shown later in Table 3.2.)


✔
In our examples,
the first page is
Page 0 and the
second is Page 1,
etc. Page frames
are numbered the
same way. 
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paged memory allocation offers the advantage of noncontiguous storage, it still requires
that the entire job be stored in memory during its execution.


Figure 3.1 uses arrows and lines to show how a job’s pages fit into page frames in
memory, but the Memory Manager uses tables to keep track of them. There are
essentially three tables that perform this function: the Job Table, Page Map Table,
and Memory Map Table. Although different operating systems may have different
names for them, the tables provide the same service regardless of the names they are
given. All three tables reside in the part of main memory that is reserved for the
operating system.


As shown in Table 3.1, the Job Table (JT) contains two values for each active job: the
size of the job (shown on the left) and the memory location where its Page Map Table
is stored (on the right). For example, the first job has a job size of 400 located at 3096
in memory. The Job Table is a dynamic list that grows as jobs are loaded into the sys-
tem and shrinks, as shown in (b) in Table 3.1, as they are later completed.
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(table 3.1)


This section of the Job


Table (a) initially has three


entries, one for each job 


in progress. When the 


second job ends (b), its


entry in the table is


released and it is replaced


(c) by information about


the next job that is to be


processed.


Job Table Job Table Job Table
Job Size PMT Location Job Size PMT Location Job Size PMT Location


400 3096 400 3096 400 3096


200 3100 700 3100


500 3150 500 3150 500 3150


(a) (b) (c)


Each active job has its own Page Map Table (PMT), which contains the vital information
for each page—the page number and its corresponding page frame memory address.
Actually, the PMT includes only one entry per page. The page numbers are sequential
(Page 0, Page 1, Page 2, through the last page), so it isn’t necessary to list each page
number in the PMT. The first entry in the PMT lists the page frame memory address
for Page 0, the second entry is the address for Page 1, and so on.


The Memory Map Table (MMT) has one entry for each page frame listing its location
and free/busy status.


At compilation time, every job is divided into pages. Using Job 1 from Figure 3.1, we
can see how this works:


• Page 0 contains the first hundred bytes.


• Page 1 contains the second hundred bytes.
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• Page 2 contains the third hundred bytes.


• Page 3 contains the last 50 bytes.


As you can see, the program has 350 bytes; but when they are stored, the system
numbers them starting from 0 through 349. Therefore, the system refers to them as
byte 0 through 349.


The displacement, or offset, of a byte (that is, how far away a byte is from the begin-
ning of its page) is the factor used to locate that byte within its page frame. It is a
relative factor.


In the simplified example shown in Figure 3.2, bytes 0, 100, 200, and 300 are the first
bytes for pages 0, 1, 2, and 3, respectively, so each has a displacement of zero.
Likewise, if the operating system needs to access byte 214, it can first go to page 2 and
then go to byte 14 (the fifteenth line).


The first byte of each page has a displacement of zero, and the last byte, has a dis-
placement of 99. So once the operating system finds the right page, it can access the
correct bytes using its relative position within its page.


67


Paged M
em


ory Allocation


(figure 3.2)


Job 1 is 350 bytes long and


is divided into four pages


of 100 lines each.
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In this example, it is easy for us to see intuitively that all numbers less than 100 will be
on Page 0, all numbers greater than or equal to 100 but less than 200 will be on Page
1, and so on. (That is the advantage of choosing a fixed page size, such as 100 bytes.)
The operating system uses an algorithm to calculate the page and displacement; it is a
simple arithmetic calculation.


To find the address of a given program instruction, the byte number is divided by the
page size, keeping the remainder as an integer. The resulting quotient is the page num-
ber, and the remainder is the displacement within that page. When it is set up as a long
division problem, it looks like this:


For example, if we use 100 bytes as the page size, the page number and the displacement
(the location within that page) of byte 214 can be calculated using long division like this:


The quotient (2) is the page number, and the remainder (14) is the displacement. So
the byte is located on Page 2, 15 lines (Line 14) from the top of the page.


Let’s try another example with a more common page size of 256 bytes. Say we are
seeking the location of byte 384. When we divide 384 by 256, the result is 1.5.
Therefore, the byte is located at the midpoint on the second page (Page 1).


To find the line’s exact location, multiply the page size (256) by the decimal (0.5) to
discover that the line we’re seeking is located on Line 129 of Page 1.


Using the concepts just presented, and using the same parameters from the first exam-
ple, answer these questions:


1. Could the operating system (or the hardware) get a page number that is greater
than 3 if the program was searching for byte 214?


2. If it did, what should the operating system do?


3. Could the operating system get a remainder of more than 99?


4. What is the smallest remainder possible?


256 384
1.5


100 214
2


200
14


page size byte number to be located
page number


xxx
xxx
xxx


displacement
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Here are the answers:


1. No, not if the application program was written correctly. 


2. Send an error message and stop processing the program (because the page is
out of bounds).


3. No, not if it divides correctly. 


4. Zero.


This procedure gives the location of an instruction with respect to the job’s pages.
However, these pages are only relative; each page is actually stored in a page frame that
can be located anywhere in available main memory. Therefore, the algorithm needs to
be expanded to find the exact location of the byte in main memory. To do so, we need to
correlate each of the job’s pages with its page frame number using the Page Map Table.


For example, if we look at the PMT for Job 1 from Figure 3.1, we see that it looks like
the data in Table 3.2.


Job Page Number Page Frame Number


0 8


1 10


2 5


3 11


In the first division example, we were looking for an instruction with a displacement
of 14 on Page 2. To find its exact location in memory, the operating system (or the
hardware) has to perform the following four steps. (In actuality, the operating system
identifies the lines, or data values and instructions, as addresses [bytes or words]. We
refer to them here as lines to make it easier to explain.)


STEP 1 Do the arithmetic computation just described to determine the page number
and displacement of the requested byte.


• Page number = the integer quotient from the division of the job space address by the
page size


• Displacement = the remainder from the page number division 


In this example, the computation shows that the page number is 2 and the displacement
is 14.


STEP 2 Refer to this job’s PMT (shown in Table 3.2) and find out which page frame
contains Page 2. Page 2 is located in Page Frame 5.
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Page Map Table for Job 1


in Figure 3.1.


✔
The computer
hardware performs
the division, but
the operating
system is
responsible for
maintaining the
tables that track
the allocation and
de-allocation of
storage.
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STEP 3 Get the address of the beginning of the page frame by multiplying the page
frame number (5) by the page frame size (100).


ADDR_PAGE_FRAME = PAGE_FRAME_NUM * PAGE_SIZE
ADDR_PAGE_FRAME = 5(100)


STEP 4 Now add the displacement (calculated in step 1) to the starting address of
the page frame to compute the precise location in memory of the instruction:


INSTR_ADDR_IN_MEM = ADDR_PAGE_FRAME + DISPL
INSTR_ADDR_IN_MEM = 500 + 14


The result of this maneuver tells us exactly where byte 14 is located in main memory.


Figure 3.3 shows another example and follows the hardware (and the operating sys-
tem) as it runs an assembly language program that instructs the system to load into
Register 1 the value found at byte 518.


In Figure 3.3, the page frame sizes in main memory are set at 512 bytes each and the
page size is 512 bytes for this system. From the PMT we can see that this job has been
divided into two pages. To find the exact location of byte 518 (where the system will
find the value to load into Register 1), the system will do the following:


1. Compute the page number and displacement—the page number is 1, and the
displacement is 6.


2. Go to the Page Map Table and retrieve the appropriate page frame number for
Page 1. It is Page Frame 3.


3. Compute the starting address of the page frame by multiplying the page frame
number by the page frame size: (3 * 512 = 1536).


4. Calculate the exact address of the instruction in main memory by adding the
displacement to the starting address: (1536 + 6 = 1542). Therefore, memory
address 1542 holds the value that should be loaded into Register 1.
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(figure 3.3)


Job 1 with its Page Map


Table. This snapshot of


main memory shows the


allocation of page frames


to Job 1.


Job 1


Byte no. Instruction/Data


PMT for Job 1


Page frame numberPage no.


000 BEGIN


025


518 3792


LOAD R1, 518


Main Memory Page frame no.


0
512


1024
1536
2048
2560
3072
3584


0
1
2
3
4
5
6
7
8


Job 1 - Page 1Job 1 - Page 1


Job 1 - Page 0


0
1 3


5
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As you can see, this is a lengthy operation. Every time an instruction is executed, or a
data value is used, the operating system (or the hardware) must translate the job
space address, which is relative, into its physical address, which is absolute. This is
called resolving the address, also called address resolution, or address translation. Of
course, all of this processing is overhead, which takes processing capability away
from the jobs waiting to be completed. However, in most systems the hardware does
the paging, although the operating system is involved in dynamic paging, which will
be covered later.


The advantage of a paging scheme is that it allows jobs to be allocated in noncontigu-
ous memory locations so that memory is used more efficiently and more jobs can fit in
the main memory (which is synonymous). However, there are disadvantages—
overhead is increased and internal fragmentation is still a problem, although only in
the last page of each job. The key to the success of this scheme is the size of the page.
A page size that is too small will generate very long PMTs while a page size that is too
large will result in excessive internal fragmentation. Determining the best page size is
an important policy decision—there are no hard and fast rules that will guarantee
optimal use of resources—and it is a problem we’ll see again as we examine other pag-
ing alternatives. The best size depends on the actual job environment, the nature of the
jobs being processed, and the constraints placed on the system.


Demand Paging


Demand paging introduced the concept of loading only a part of the program into
memory for processing. It was the first widely used scheme that removed the restric-
tion of having the entire job in memory from the beginning to the end of its process-
ing. With demand paging, jobs are still divided into equally sized pages that initially
reside in secondary storage. When the job begins to run, its pages are brought into
memory only as they are needed.


Demand paging takes advantage of the fact that programs are written sequentially so
that while one section, or module, is processed all of the other modules are idle. Not
all the pages are accessed at the same time, or even sequentially. For example:


• User-written error handling modules are processed only when a specific error is
detected during execution. (For instance, they can be used to indicate to the operator
that input data was incorrect or that a computation resulted in an invalid answer). If
no error occurs, and we hope this is generally the case, these instructions are never
processed and never need to be loaded into memory.
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• Many modules are mutually exclusive. For example, if the input module is active
(such as while a worksheet is being loaded) then the processing module is inactive.
Similarly, if the processing module is active then the output module (such as print-
ing) is idle.


• Certain program options are either mutually exclusive or not always accessible. This
is easiest to visualize in menu-driven programs. For example, an application pro-
gram may give the user several menu choices as shown in Figure 3.4. The system
allows the operator to make only one selection at a time. If the user selects the first
option then the module with the program instructions to move records to the file is
the only one that is being used, so that is the only module that needs to be in mem-
ory at this time. The other modules all remain in secondary storage until they are
called from the menu.


• Many tables are assigned a large fixed amount of address space even though only a
fraction of the table is actually used. For example, a symbol table for an assembler
might be prepared to handle 100 symbols. If only 10 symbols are used then 90 per-
cent of the table remains unused.
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(figure 3.4)


When you choose one option from the menu of an application program such as this one, the other modules


that aren’t currently required (such as Help) don’t need to be moved into memory immediately.


One of the most important innovations of demand paging was that it made virtual mem-
ory feasible. (Virtual memory will be discussed later in this chapter.) The demand paging
scheme allows the user to run jobs with less main memory than is required if the operat-
ing system is using the paged memory allocation scheme described earlier. In fact, a
demand paging scheme can give the appearance of an almost-infinite or nonfinite amount
of physical memory when, in reality, physical memory is significantly less than infinite.


The key to the successful implementation of this scheme is the use of a high-speed
direct access storage device (such as hard drives or flash memory) that can work
directly with the CPU. That is vital because pages must be passed quickly from
secondary storage to main memory and back again.


How and when the pages are passed (also called swapped) depends on predefined poli-
cies that determine when to make room for needed pages and how to do so. The oper-
ating system relies on tables (such as the Job Table, the Page Map Table, and the
Memory Map Table) to implement the algorithm. These tables are basically the same
as for paged memory allocation but with the addition of three new fields for each page
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in the PMT: one to determine if the page being requested is already in memory; a sec-
ond to determine if the page contents have been modified; and a third to determine if
the page has been referenced recently, as shown at the top of Figure 3.5.


The first field tells the system where to find each page. If it is already in memory, the
system will be spared the time required to bring it from secondary storage. It is faster
for the operating system to scan a table located in main memory than it is to retrieve a
page from a disk.


The second field, noting if the page has been modified, is used to save time when pages
are removed from main memory and returned to secondary storage. If the contents of
the page haven’t been modified then the page doesn’t need to be rewritten to secondary
storage. The original, already there, is correct.


The third field, which indicates any recent activity, is used to determine which pages
show the most processing activity, and which are relatively inactive. This information
is used by several page-swapping policy schemes to determine which pages should
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(figure 3.5)


Demand paging requires


that the Page Map Table


for each job keep track of


each page as it is loaded


or removed from main


memory. Each PMT tracks


the status of the page,


whether it has been


modified, whether it has


been recently referenced,


and the page frame


number for each page


currently in main memory.


(Note: For this illustration,


the Page Map Tables have


been simplified. See Table


3.3 for more detail.)
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remain in main memory and which should be swapped out when the system needs to
make room for other pages being requested.


For example, in Figure 3.5 the number of total job pages is 15, and the number of total
available page frames is 12. (The operating system occupies the first four of the
16 page frames in main memory.)


Assuming the processing status illustrated in Figure 3.5, what happens when Job 4
requests that Page 3 be brought into memory if there are no empty page frames
available?


To move in a new page, a resident page must be swapped back into secondary stor-
age. Specifically, that includes copying the resident page to the disk (if it was modi-
fied), and writing the new page into the empty page frame.


The hardware components generate the address of the required page, find the page
number, and determine whether it is already in memory. The following algorithm
makes up the hardware instruction processing cycle.


Hardware Instruction Processing Algorithm


1 Start processing instruction


2 Generate data address


3 Compute page number


4 If page is in memory


Then


get data and finish instruction


advance to next instruction


return to step 1


Else


generate page interrupt


call page fault handler


End if


The same process is followed when fetching an instruction.


When the test fails (meaning that the page is in secondary storage but not in memory),
the operating system software takes over. The section of the operating system that
resolves these problems is called the page fault handler. It determines whether there
are empty page frames in memory so the requested page can be immediately copied
from secondary storage. If all page frames are busy, the page fault handler must decide
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A swap requires
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between hardware
components,
software 
algorithms, and
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which page will be swapped out. (This decision is directly dependent on the predefined
policy for page removal.) Then the swap is made.


Page Fault Handler Algorithm


1 If there is no free page frame


Then


select page to be swapped out using page removal algorithm


update job’s Page Map Table


If content of page had been changed then


write page to disk


End if


End if


2 Use page number from step 3 from the Hardware Instruction


Processing Algorithm to get disk address where the requested page is


stored (the File Manager, to be discussed in Chapter 8, uses the page


number to get the disk address)


3 Read page into memory


4 Update job’s Page Map Table


5 Update Memory Map Table


6 Restart interrupted instruction


Before continuing, three tables must be updated: the Page Map Tables for both jobs
(the PMT with the page that was swapped out and the PMT with the page that was
swapped in) and the Memory Map Table. Finally, the instruction that was interrupted
is resumed and processing continues.


Although demand paging is a solution to inefficient memory utilization, it is not free
of problems. When there is an excessive amount of page swapping between main
memory and secondary storage, the operation becomes inefficient. This phenomenon
is called thrashing. It uses a great deal of the computer’s energy but accomplishes very
little, and it is caused when a page is removed from memory but is called back shortly
thereafter. Thrashing can occur across jobs, when a large number of jobs are vying for
a relatively low number of free pages (the ratio of job pages to free memory page
frames is high), or it can happen within a job—for example, in loops that cross
page boundaries. We can demonstrate this with a simple example. Suppose the begin-
ning of a loop falls at the bottom of a page and is completed at the top of the next
page, as in the C program in Figure 3.6.
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The situation in Figure 3.6 assumes there is only one empty page frame available. The
first page is loaded into memory and execution begins, but after executing the last
command on Page 0, the page is swapped out to make room for Page 1. Now execu-
tion can continue with the first command on Page 1, but at the “}” symbol Page 1
must be swapped out so Page 0 can be brought back in to continue the loop. Before
this program is completed, swapping will have occurred 100 times (unless another
page frame becomes free so both pages can reside in memory at the same time). A fail-
ure to find a page in memory is often called a page fault and this example would gen-
erate 100 page faults (and swaps).


In such extreme cases, the rate of useful computation could be degraded by a factor of
100. Ideally, a demand paging scheme is most efficient when programmers are aware
of the page size used by their operating system and are careful to design their programs
to keep page faults to a minimum; but in reality, this is not often feasible.


Page Replacement Policies and Concepts


As we just learned, the policy that selects the page to be removed, the page replace-
ment policy, is crucial to the efficiency of the system, and the algorithm to do that
must be carefully selected.


Several such algorithms exist and it is a subject that enjoys a great deal of theoretical
attention and research. Two of the most well-known are first-in first-out and least
recently used. The first-in first-out (FIFO) policy is based on the theory that the best
page to remove is the one that has been in memory the longest. The least recently used
(LRU) policy chooses the page least recently accessed to be swapped out.


To illustrate the difference between FIFO and LRU, let us imagine a dresser drawer
filled with your favorite sweaters. The drawer is full, but that didn’t stop you from
buying a new sweater. Now you have to put it away. Obviously it won’t fit in your
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for( j = 1; j < 100; ++j)
  {
            k = j * j;


Page 0


           m = a * j;
           printf(“\n%d %d %d”, j, k, m);
  }
printf(“\n”);


Page 1


(figure 3.6)


An example of demand


paging that causes a page


swap each time the loop is


executed and results in


thrashing. If only a single


page frame is available,


this program will have one


page fault each time the


loop is executed.


✔
Thrashing
increases wear
and tear on the
hardware and
slows data access.


C7047_03_Ch03.qxd  1/12/10  4:12 PM  Page 76








sweater drawer unless you take something out, but which sweater should you move to
the storage closet? Your decision will be based on a sweater removal policy.


You could take out your oldest sweater (the one that was first in), figuring that you
probably won’t use it again—hoping you won’t discover in the following days that it
is your most used, most treasured possession. Or, you could remove the sweater that
you haven’t worn recently and has been idle for the longest amount of time (the one
that was least recently used). It is readily identifiable because it is at the bottom of the
drawer. But just because it hasn’t been used recently doesn’t mean that a once-a-year
occasion won’t demand its appearance soon.


What guarantee do you have that once you have made your choice you won’t be
trekking to the storage closet to retrieve the sweater you stored yesterday? You could
become a victim of thrashing.


Which is the best policy? It depends on the weather, the wearer, and the wardrobe. Of
course, one option is to get another drawer. For an operating system (or a computer),
this is the equivalent of adding more accessible memory, and we will explore that
option after we discover how to more effectively use the memory we already have.


First-In First-Out


The first-in first-out (FIFO) page replacement policy will remove the pages that have
been in memory the longest. The process of swapping pages is illustrated in Figure 3.7.
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Swapped Pages
Page A


Page Frame 1


Page Frame 2


Page B


Page A


Requested Pages
Page A
Page B
Page C
Page A
Page B
Page D
Page B
Page A
Page C
Page D


(figure 3.7)


The FIFO policy in action


with only two page frames


available. When the pro-


gram calls for Page C,


Page A must be moved


out of the first page frame


to make room for it, as


shown by the solid lines.


When Page A is needed


again, it will replace Page


B in the second page


frame, as shown by the


dotted lines. The entire


sequence is shown in


Figure 3.8.
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Figure 3.8 shows how the FIFO algorithm works by following a job with four pages (A,
B, C, D) as it is processed by a system with only two available page frames. Figure 3.8
displays how each page is swapped into and out of memory and marks each interrupt
with an asterisk. We then count the number of page interrupts and compute the failure
rate and the success rate. The job to be processed needs its pages in the following order:
A, B, A, C, A, B, D, B, A, C, D. 


When both page frames are occupied, each new page brought into memory will cause
an existing one to be swapped out to secondary storage. A page interrupt, which we
identify with an asterisk (*), is generated when a new page needs to be loaded into
memory, whether a page is swapped out or not.


The efficiency of this configuration is dismal—there are 9 page interrupts out of 11
page requests due to the limited number of page frames available and the need for
many new pages. To calculate the failure rate, we divide the number of interrupts by
the number of page requests. The failure rate of this system is 9/11, which is 82 per-
cent. Stated another way, the success rate is 2/11, or 18 percent. A failure rate this high
is usually unacceptable.
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Page
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(empty)


(figure 3.8)


Using a FIFO policy, this page trace analysis shows how each page requested is swapped into the two


available page frames. When the program is ready to be processed, all four pages are in secondary


storage. When the program calls a page that isn’t already in memory, a page interrupt is issued, as


shown by the gray boxes and asterisks. This program resulted in nine page interrupts.


✔
In Figure 3.8,
using FIFO, Page A
is swapped out
when a newer
page arrives even
though it is used
the most often.
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We are not saying FIFO is bad. We chose this example to show how FIFO works, not
to diminish its appeal as a swapping policy. The high failure rate here is caused by
both the limited amount of memory available and the order in which pages are
requested by the program. The page order can’t be changed by the system, although
the size of main memory can be changed; but buying more memory may not always
be the best solution—especially when you have many users and each one wants an
unlimited amount of memory. There is no guarantee that buying more memory will
always result in better performance; this is known as the FIFO anomaly, which is
explained later in this chapter.


Least Recently Used


The least recently used (LRU) page replacement policy swaps out the pages that show
the least amount of recent activity, figuring that these pages are the least likely to be used
again in the immediate future. Conversely, if a page is used, it is likely to be used again
soon; this is based on the theory of locality, which will be explained later in this chapter.


To see how it works, let us follow the same job in Figure 3.8 but using the LRU policy.
The results are shown in Figure 3.9. To implement this policy, a queue of the requests
is kept in FIFO order, a time stamp of when the job entered the system is saved, or a
mark in the job’s PMT is made periodically.
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A A A A A D D A A D
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2Time: 3 4 5 6 7 8 9 10 11
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*Interrupt: * * * * * *


Page
Requested:  A


Page
Frame 1


Page A


Page
Frame 2


(empty)


(figure 3.9)


Memory management using an LRU page removal policy for the program shown in Figure 3.8. Throughout


the program, 11 page requests are issued, but they cause only 8 page interrupts.


✔
Using LRU in
Figure 3.9, Page A
stays in memory
longer because it
is used most often.
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The efficiency of this configuration is only slightly better than with FIFO. Here, there are
8 page interrupts out of 11 page requests, so the failure rate is 8/11, or 73 percent. In this
example, an increase in main memory by one page frame would increase the success rate
of both FIFO and LRU. However, we can’t conclude on the basis of only one example
that one policy is better than the others. In fact, LRU is a stack algorithm removal policy,
which means that an increase in memory will never cause an increase in the number of
page interrupts.


On the other hand, it has been shown that under certain circumstances adding more
memory can, in rare cases, actually cause an increase in page interrupts when using a
FIFO policy. As noted before, it is called the FIFO anomaly. But although it is an
unusual occurrence, the fact that it exists coupled with the fact that pages are removed
regardless of their activity (as was the case in Figure 3.8) has removed FIFO from the
most favored policy position it held in some cases.


A variation of the LRU page replacement algorithm is known as the clock page
replacement policy because it is implemented with a circular queue and uses a pointer
to step through the reference bits of the active pages, simulating a clockwise motion.
The algorithm is paced according to the computer’s clock cycle, which is the time span
between two ticks in its system clock. The algorithm checks the reference bit for each
page. If the bit is one (indicating that it was recently referenced), the bit is reset to zero
and the bit for the next page is checked. However, if the reference bit is zero (indicat-
ing that the page has not recently been referenced), that page is targeted for removal.
If all the reference bits are set to one, then the pointer must cycle through the entire
circular queue again giving each page a second and perhaps a third or fourth chance.
Figure 3.10 shows a circular queue containing the reference bits for eight pages cur-
rently in memory. The pointer indicates the page that would be considered next for
removal. Figure 3.10 shows what happens to the reference bits of the pages that have
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(figure 3.10)


A circular queue, which


contains the page number


and its reference bit. The


pointer seeks the next


candidate for removal and


replaces page 210 with a


new page, 146.
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been given a second chance. When a new page, 146, has to be allocated to a page
frame, it is assigned to the space that has a reference bit of zero, the space previously
occupied by page 210.


A second variation of LRU uses an 8-bit reference byte and a bit-shifting technique to
track the usage of each page currently in memory. When the page is first copied into
memory, the leftmost bit of its reference byte is set to 1; and all bits to the right of the
one are set to zero, as shown in Figure 3.11. At specific time intervals of the clock
cycle, the Memory Manager shifts every page’s reference bytes to the right by one bit,
dropping their rightmost bit. Meanwhile, each time a page is referenced, the leftmost
bit of its reference byte is set to 1.


This process of shifting bits to the right and resetting the leftmost bit to 1 when a page is
referenced gives a history of each page’s usage. For example, a page that has not been
used for the last eight time ticks would have a reference byte of 00000000, while one
that has been referenced once every time tick will have a reference byte of 11111111.


When a page fault occurs, the LRU policy selects the page with the smallest value in
its reference byte because that would be the one least recently used. Figure 3.11 shows
how the reference bytes for six active pages change during four snapshots of usage. In
(a), the six pages have been initialized; this indicates that all of them have been refer-
enced once. In (b), pages 1, 3, 5, and 6 have been referenced again (marked with 1),
but pages 2 and 4 have not (now marked with 0 in the leftmost position). In (c), pages
1, 2, and 4 have been referenced. In (d), pages 1, 2, 4, and 6 have been referenced. In
(e), pages 1 and 4 have been referenced.


As shown in Figure 3.11, the values stored in the reference bytes are not unique: page 3
and page 5 have the same value. In this case, the LRU policy may opt to swap out all
of the pages with the smallest value, or may select one among them based on other cri-
teria such as FIFO, priority, or whether the contents of the page have been modified.


Other page removal algorithms, MRU (most recently used) and LFU (least frequently
used), are discussed in exercises at the end of this chapter.
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(figure 3.11)


Notice how the reference


bit for each page is


updated with every time


tick. Arrows (a) through


(e) show how the initial bit


shifts to the right with


every tick of the clock.


Page Number


1
2
3
4
5
6


(a) (b) (c) (d) (e)


Time
Snapshot 0


10000000
10000000
10000000
10000000
10000000
10000000


Time
Snapshot 1


11000000
01000000
11000000
01000000
11000000
11000000


Time
Snapshot 2


11100000
10100000
01100000
10100000
01100000
01100000


Time
Snapshot 3


11110000
11010000
00110000
11010000
00110000
10110000


Time
Snapshot 4


11111000
01101000
00011000
11101000
00011000
01011000
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The Mechanics of Paging


Before the Memory Manager can determine which pages will be swapped out, it needs
specific information about each page in memory—information included in the Page
Map Tables.


For example, in Figure 3.5, the Page Map Table for Job 1 included three bits: the sta-
tus bit, the referenced bit, and the modified bit (these were the three middle columns:
the two empty columns and the Y/N column representing “in memory”). But the rep-
resentation of the table shown in Figure 3.5 was simplified for illustration purposes. It
actually looks something like the one shown in Table 3.3.


Page Status Bit Referenced Bit Modified Bit Page Frame


0 1 1 1 5


1 1 0 0 9


2 1 0 0 7


3 1 1 0 12


As we said before, the status bit indicates whether the page is currently in memory.
The referenced bit indicates whether the page has been called (referenced) recently.
This bit is important because it is used by the LRU algorithm to determine which
pages should be swapped out.


The modified bit indicates whether the contents of the page have been altered and, if so,
the page must be rewritten to secondary storage when it is swapped out before its page
frame is released. (A page frame with contents that have not been modified can be over-
written directly, thereby saving a step.) That is because when a page is swapped into
memory it isn’t removed from secondary storage. The page is merely copied—the origi-
nal remains intact in secondary storage. Therefore, if the page isn’t altered while it is in
main memory (in which case the modified bit remains unchanged, zero), the page need-
n’t be copied back to secondary storage when it is swapped out of memory—the page
that is already there is correct. However, if modifications were made to the page, the new
version of the page must be written over the older version—and that takes time.
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(table 3.3)


Page Map Table for Job 1


shown in Figure 3.5.


✔
Each PMT must
track each
page’s status,
modifications, and
references. It does
so with three bits,
each of which can
be either 0 or 1.
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Each bit can be either 0 or 1 as shown in Table 3.4.


Status Bit Modified Bit Referenced Bit
Value Meaning Value Meaning Value Meaning


0 not in memory 0 not modified 0 not called


1 resides in memory 1 was modified 1 was called
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(table 3.4)


The meaning of the bits


used in the Page


Map Table.


(table 3.5)


Four possible combina-


tions of modified and ref-


erenced bits and the


meaning of each.


The status bit for all pages in memory is 1. A page must be in memory before it can be
swapped out so all of the candidates for swapping have a 1 in this column. The other
two bits can be either 0 or 1, so there are four possible combinations of the referenced
and modified bits as shown in Table 3.5.


Modified Referenced Meaning


Case 1 0 0 Not modified AND not referenced


Case 2 0 1 Not modified BUT was referenced


Case 3 1 0 Was modified BUT not referenced [impossible?]


Case 4 1 1 Was modified AND was referenced


The FIFO algorithm uses only the modified and status bits when swapping pages, but
the LRU looks at all three before deciding which pages to swap out.


Which page would the LRU policy choose first to swap? Of the four cases described in
Table 3.5, it would choose pages in Case 1 as the ideal candidates for removal because
they’ve been neither modified nor referenced. That means they wouldn’t need to be
rewritten to secondary storage, and they haven’t been referenced recently. So the pages
with zeros for these two bits would be the first to be swapped out.


What is the next most likely candidate? The LRU policy would choose Case 3 next
because the other two, Case 2 and Case 4, were recently referenced. The bad news is
that Case 3 pages have been modified, so it will take more time to swap them out. By
process of elimination, then we can say that Case 2 is the third choice and Case 4
would be the pages least likely to be removed.
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You may have noticed that Case 3 presents an interesting situation: apparently these
pages have been modified without being referenced. How is that possible? The key lies
in how the referenced bit is manipulated by the operating system. When the pages are
brought into memory, they are all usually referenced at least once and that means that
all of the pages soon have a referenced bit of 1. Of course the LRU algorithm would
be defeated if every page indicated that it had been referenced. Therefore, to make sure
the referenced bit actually indicates recently referenced, the operating system periodi-
cally resets it to 0. Then, as the pages are referenced during processing, the bit is
changed from 0 to 1 and the LRU policy is able to identify which pages actually are
frequently referenced. As you can imagine, there is one brief instant, just after the bits
are reset, in which all of the pages (even the active pages) have reference bits of 0 and
are vulnerable. But as processing continues, the most-referenced pages soon have their
bits reset to 1, so the risk is minimized.


The Working Set


One innovation that improved the performance of demand paging schemes was the
concept of the working set. A job’s working set is the set of pages residing in memory
that can be accessed directly without incurring a page fault.


When a user requests execution of a program, the first page is loaded into memory and
execution continues as more pages are loaded: those containing variable declarations,
others containing instructions, others containing data, and so on. After a while, most
programs reach a fairly stable state and processing continues smoothly with very few
additional page faults. At this point the job’s working set is in memory, and the pro-
gram won’t generate many page faults until it gets to another phase requiring a differ-
ent set of pages to do the work—a different working set.


Of course, it is possible that a poorly structured program could require that every one
of its pages be in memory before processing can begin.


Fortunately, most programs are structured, and this leads to a locality of reference dur-
ing the program’s execution, meaning that during any phase of its execution the pro-
gram references only a small fraction of its pages. For example, if a job is executing a
loop then the instructions within the loop are referenced extensively while those out-
side the loop aren’t used at all until the loop is completed—that is locality of reference.
The same applies to sequential instructions, subroutine calls (within the subroutine),
stack implementations, access to variables acting as counters or sums, or multidimen-
sional variables such as arrays and tables (only a few of the pages are needed to han-
dle the references).


It would be convenient if all of the pages in a job’s working set were loaded into mem-
ory at one time to minimize the number of page faults and to speed up processing, but
that is easier said than done. To do so, the system needs definitive answers to some
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difficult questions: How many pages comprise the working set? What is the maximum
number of pages the operating system will allow for a working set?


The second question is particularly important in networked or time-sharing systems,
which regularly swap jobs (or pages of jobs) into memory and back to secondary stor-
age to accommodate the needs of many users. The problem is this: every time a job is
reloaded back into memory (or has pages swapped), it has to generate several page
faults until its working set is back in memory and processing can continue. It is a time-
consuming task for the CPU, which can’t be processing jobs during the time it takes to
process each page fault, as shown in Figure 3.12.


One solution adopted by many paging systems is to begin by identifying each job’s
working set and then loading it into memory in its entirety before allowing execution
to begin. This is difficult to do before a job is executed but can be identified as its exe-
cution proceeds.


In a time-sharing or networked system, this means the operating system must keep
track of the size and identity of every working set, making sure that the jobs destined
for processing at any one time won’t exceed the available memory. Some operating
systems use a variable working set size and either increase it when necessary (the job
requires more processing) or decrease it when necessary. This may mean that the num-
ber of jobs in memory will need to be reduced if, by doing so, the system can ensure
the completion of each job and the subsequent release of its memory space.


We have looked at several examples of demand paging memory allocation schemes.
Demand paging had two advantages. It was the first scheme in which a job was no
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Execute Process


1st Page Wait


Execute Process


2nd Page Wait


Execute Process


3rd Page Wait


Execute Process


1020 ms


(30 ms)


(300 ms)


(30 ms)


(300 ms)


(30 ms)


(300 ms)


(30 ms)


(figure 3.12)


Time line showing the amount of time required to process page faults for a single program. The program


in this example takes 120 milliseconds (ms) to execute but an additional 900 ms to load the necessary


pages into memory. Therefore, job turnaround is 1020 ms.
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longer constrained by the size of physical memory and it introduced the concept of vir-
tual memory. The second advantage was that it utilized memory more efficiently than
the previous schemes because the sections of a job that were used seldom or not at all
(such as error routines) weren’t loaded into memory unless they were specifically
requested. Its disadvantage was the increased overhead caused by the tables and the
page interrupts. The next allocation scheme built on the advantages of both paging
and dynamic partitions.


Segmented Memory Allocation


The concept of segmentation is based on the common practice by programmers of struc-
turing their programs in modules—logical groupings of code. With segmented memory
allocation, each job is divided into several segments of different sizes, one for each mod-
ule that contains pieces that perform related functions. Segmented memory allocation
was designed to reduce page faults that resulted from having a segment’s loop split over
two or more pages. A subroutine is an example of one such logical group. This is funda-
mentally different from a paging scheme, which divides the job into several pages all of
the same size, each of which often contains pieces from more than one program module.


A second important difference is that main memory is no longer divided into page
frames because the size of each segment is different—some are large and some are
small. Therefore, as with the dynamic partitions discussed in Chapter 2, memory is
allocated in a dynamic manner.


When a program is compiled or assembled, the segments are set up according to the
program’s structural modules. Each segment is numbered and a Segment Map Table
(SMT) is generated for each job; it contains the segment numbers, their lengths, access
rights, status, and (when each is loaded into memory) its location in memory. Figures
3.13 and 3.14 show the same job, Job 1, composed of a main program and two sub-
routines, together with its Segment Map Table and actual main memory allocation.
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(figure 3.13)


Segmented memory allo-


cation. Job 1 includes a


main program, Subroutine


A, and Subroutine B. It is


one job divided into three


segments.


✔
The Segment Map
Table functions the
same way as a
Page Map Table
but manages
segments instead
of pages.


C7047_03_Ch03.qxd  1/12/10  4:13 PM  Page 86








As in demand paging, the referenced, modified, and status bits are used in segmenta-
tion and appear in the SMT but they aren’t shown in Figures 3.13 and 3.14.


The Memory Manager needs to keep track of the segments in memory. This is done
with three tables combining aspects of both dynamic partitions and demand paging
memory management:


• The Job Table lists every job being processed (one for the whole system).


• The Segment Map Table lists details about each segment (one for each job).


• The Memory Map Table monitors the allocation of main memory (one for the
whole system).


Like demand paging, the instructions within each segment are ordered sequentially,
but the segments don’t need to be stored contiguously in memory. We only need to
know where each segment is stored. The contents of the segments themselves are con-
tiguous in this scheme.


To access a specific location within a segment, we can perform an operation similar to
the one used for paged memory management. The only difference is that we work with
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The Segment Map Table


tracks each segment for


Job 1.
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segments instead of pages. The addressing scheme requires the segment number and
the displacement within that segment; and because the segments are of different sizes,
the displacement must be verified to make sure it isn’t outside of the segment’s range.


In Figure 3.15, Segment 1 includes all of Subroutine A so the system finds the begin-
ning address of Segment 1, address 7000, and it begins there. 


If the instruction requested that processing begin at byte 100 of Subroutine A (which
is possible in languages that support multiple entries into subroutines) then, to locate
that item in memory, the Memory Manager would need to add 100 (the displacement)
to 7000 (the beginning address of Segment 1). Its code could look like this:


ACTUAL_MEM_LOC = BEGIN_MEM_LOC + DISPLACEMENT
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(figure 3.15)


During execution, the main program calls Subroutine A, which triggers the SMT to look up its location in


memory.
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Can the displacement be larger than the size of the segment? No, not if the program is
coded correctly; however, accidents do happen and the Memory Manager must always
guard against this possibility by checking the displacement against the size of the seg-
ment, verifying that it is not out of bounds.


To access a location in memory, when using either paged or segmented memory
management, the address is composed of two values: the page or segment number
and the displacement. Therefore, it is a two-dimensional addressing scheme: 


SEGMENT_NUMBER & DISPLACEMENT


The disadvantage of any allocation scheme in which memory is partitioned dynami-
cally is the return of external fragmentation. Therefore, recompaction of available
memory is necessary from time to time (if that schema is used).


As you can see, there are many similarities between paging and segmentation, so they
are often confused. The major difference is a conceptual one: pages are physical units
that are invisible to the user’s program and consist of fixed sizes; segments are logical
units that are visible to the user’s program and consist of variable sizes.


Segmented/Demand Paged Memory Allocation


The segmented/demand paged memory allocation scheme evolved from the two we
have just discussed. It is a combination of segmentation and demand paging, and it
offers the logical benefits of segmentation, as well as the physical benefits of paging.
The logic isn’t new. The algorithms used by the demand paging and segmented mem-
ory management schemes are applied here with only minor modifications.


This allocation scheme doesn’t keep each segment as a single contiguous unit but sub-
divides it into pages of equal size, smaller than most segments, and more easily manip-
ulated than whole segments. Therefore, many of the problems of segmentation
(compaction, external fragmentation, and secondary storage handling) are removed
because the pages are of fixed length.


This scheme, illustrated in Figure 3.16, requires four tables:


• The Job Table lists every job in process (one for the whole system).


• The Segment Map Table lists details about each segment (one for each job).


• The Page Map Table lists details about every page (one for each segment).


• The Memory Map Table monitors the allocation of the page frames in main mem-
ory (one for the whole system).
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Note that the tables in Figure 3.16 have been simplified. The SMT actually includes
additional information regarding protection (such as the authority to read, write, exe-
cute, and delete parts of the file), as well as which users have access to that segment
(user only, group only, or everyone—some systems call these access categories owner,
group, and world, respectively). In addition, the PMT includes the status, modified,
and referenced bits.


To access a location in memory, the system must locate the address, which is composed
of three entries: segment number, page number within that segment, and displacement
within that page. It is a three-dimensional addressing scheme:  


SEGMENT_NUMBER & PAGE_NUMBER & DISPLACEMENT


The major disadvantages of this memory allocation scheme are the overhead required
for the extra tables and the time required to reference the segment table and the
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(figure 3.16)


How the Job Table, Segment Map Table, Page Map Table, and main memory interact in a segment/paging


scheme.
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page table. To minimize the number of references, many systems use associative mem-
ory to speed up the process.


Associative memory is a name given to several registers that are allocated to each job
that is active. Their task is to associate several segment and page numbers belonging
to the job being processed with their main memory addresses. These associative reg-
isters reside in main memory, and the exact number of registers varies from system
to system.


To appreciate the role of associative memory, it is important to understand how the
system works with segments and pages. In general, when a job is allocated to the CPU,
its Segment Map Table is loaded into main memory while the Page Map Tables are
loaded only as needed. As pages are swapped between main memory and secondary
storage, all tables are updated.


Here is a typical procedure: when a page is first requested, the job’s SMT is searched
to locate its PMT; then the PMT is loaded and searched to determine the page’s loca-
tion in memory. If the page isn’t in memory, then a page interrupt is issued, the page is
brought into memory, and the table is updated. (As the example indicates, loading the
PMT can cause a page interrupt, or fault, as well.) This process is just as tedious as it
sounds, but it gets easier. Since this segment’s PMT (or part of it) now resides in mem-
ory, any other requests for pages within this segment can be quickly accommodated
because there is no need to bring the PMT into memory. However, accessing these
tables (SMT and PMT) is time-consuming.


That is the problem addressed by associative memory, which stores the information
related to the most-recently-used pages. Then when a page request is issued, two
searches begin—one through the segment and page tables and one through the contents
of the associative registers.


If the search of the associative registers is successful, then the search through the
tables is stopped (or eliminated) and the address translation is performed using the
information in the associative registers. However, if the search of associative memory
fails, no time is lost because the search through the SMTs and PMTs had already
begun (in this schema). When this search is successful and the main memory address
from the PMT has been determined, the address is used to continue execution of the
program and the reference is also stored in one of the associative registers. If all of
the associative registers are full, then an LRU (or other) algorithm is used and the
least-recently-referenced associative register is used to hold the information on this
requested page.


For example, a system with eight associative registers per job will use them to store the
SMT and PMT for the last eight pages referenced by that job. When an address needs
to be translated from segment and page numbers to a memory location, the system will
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look first in the eight associative registers. If a match is found, the memory location is
taken from the associative register; if there is no match, then the SMTs and PMTs will
continue to be searched and the new information will be stored in one of the eight reg-
isters as a result.


If a job is swapped out to secondary storage during its execution, then all of the infor-
mation stored in its associative registers is saved, as well as the current PMT and SMT,
so the displaced job can be resumed quickly when the CPU is reallocated to it. The pri-
mary advantage of a large associative memory is increased speed. The disadvantage is
the high cost of the complex hardware required to perform the parallel searches. In
some systems the searches do not run in parallel, but the search of the SMT and PMT
follows the search of the associative registers.


Virtual Memory


Demand paging made it possible for a program to execute even though only a part
of a program was loaded into main memory. In effect, virtual memory removed the
restriction imposed on maximum program size. This capability of moving pages at
will between main memory and secondary storage gave way to a new concept appro-
priately named virtual memory. Even though only a portion of each program is
stored in memory, it gives users the appearance that their programs are being com-
pletely loaded in main memory during their entire processing time—a feat that
would require an incredible amount of main memory. 


Until the implementation of virtual memory, the problem of making programs fit into
available memory was left to the users. In the early days, programmers had to limit the
size of their programs to make sure they fit into main memory; but sometimes that
wasn’t possible because the amount of memory allocated to them was too small to get
the job done. Clever programmers solved the problem by writing tight programs wher-
ever possible. It was the size of the program that counted most—and the instructions
for these tight programs were nearly impossible for anyone but their authors to under-
stand or maintain. The useful life of the program was limited to the employment of its
programmer.


During the second generation, programmers started dividing their programs into sec-
tions that resembled working sets, really segments, originally called roll in/roll out and
now called overlays. The program could begin with only the first overlay loaded into
memory. As the first section neared completion, it would instruct the system to lay the
second section of code over the first section already in memory. Then the second sec-
tion would be processed. As that section finished, it would call in the third section to
be overlaid, and so on until the program was finished. Some programs had multiple
overlays in main memory at once.
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Although the swapping of overlays between main memory and secondary storage was
done by the system, the tedious task of dividing the program into sections was done
by the programmer. It was the concept of overlays that suggested paging and segmen-
tation and led to virtual memory, which was then implemented through demand pag-
ing and segmentation schemes. These schemes are compared in Table 3.6.


Virtual Memory with Paging Virtual Memory with Segmentation


Allows internal fragmentation within Doesn’t allow internal fragmentation
page frames


Doesn’t allow external fragmentation Allows external fragmentation


Programs are divided into equal-sized Programs are divided into unequal-sized
pages segments that contain logical groupings of code


The absolute address is calculated using The absolute address is calculated using 
page number and displacement segment number and displacement


Requires PMT Requires SMT


Segmentation allowed for sharing program code among users. This means that the
shared segment contains: (1) an area where unchangeable code (called reentrant code)
is stored, and (2) several data areas, one for each user. In this schema users share the
code, which cannot be modified, and can modify the information stored in their own
data areas as needed without affecting the data stored in other users’ data areas.


Before virtual memory, sharing meant that copies of files were stored in each user’s
account. This allowed them to load their own copy and work on it at any time. This
kind of sharing created a great deal of unnecessary system cost—the I/O overhead in
loading the copies and the extra secondary storage needed. With virtual memory, those
costs are substantially reduced because shared programs and subroutines are loaded
on demand, satisfactorily reducing the storage requirements of main memory
(although this is accomplished at the expense of the Memory Map Table).


The use of virtual memory requires cooperation between the Memory Manager (which
tracks each page or segment) and the processor hardware (which issues the interrupt
and resolves the virtual address). For example, when a page is needed that is not
already in memory, a page fault is issued and the Memory Manager chooses a page
frame, loads the page, and updates entries in the Memory Map Table and the Page
Map Tables. 


Virtual memory works well in a multiprogramming environment because most pro-
grams spend a lot of time waiting—they wait for I/O to be performed; they wait for
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pages to be swapped in or out; and in a time-sharing environment, they wait when
their time slice is up (their turn to use the processor is expired). In a multiprogram-
ming environment, the waiting time isn’t lost, and the CPU simply moves to another
job.


Virtual memory has increased the use of several programming techniques. For
instance, it aids the development of large software systems because individual pieces
can be developed independently and linked later on.


Virtual memory management has several advantages:


• A job’s size is no longer restricted to the size of main memory (or the free space
within main memory).


• Memory is used more efficiently because the only sections of a job stored in 
memory are those needed immediately, while those not needed remain in secondary
storage.


• It allows an unlimited amount of multiprogramming, which can apply to many 
jobs, as in dynamic and static partitioning, or many users in a time-sharing
environment.


• It eliminates external fragmentation and minimizes internal fragmentation by
combining segmentation and paging (internal fragmentation occurs in the 
program).


• It allows the sharing of code and data.


• It facilitates dynamic linking of program segments.


The advantages far outweigh these disadvantages:


• Increased processor hardware costs.


• Increased overhead for handling paging interrupts.


• Increased software complexity to prevent thrashing.


Cache Memory


Caching is based on the idea that the system can use a small amount of expensive high-
speed memory to make a large amount of slower, less-expensive memory work faster
than main memory. 


Because the cache is small in size (compared to main memory), it can use faster, more
expensive memory chips and can be five to ten times faster than main memory and
match the speed of the CPU. Therefore, when frequently used data or instructions are
stored in cache memory, memory access time can be cut down significantly and
the CPU can execute instructions faster, thus raising the overall performance of the
computer system.
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As shown in Figure 3.17(a), the original architecture of a computer was such that data
and instructions were transferred from secondary storage to main memory and then
to special-purpose registers for processing, increasing the amount of time needed to
complete a program. However, because the same instructions are used repeatedly in
most programs, computer system designers thought it would be more efficient if the
system would not use a complete memory cycle every time an instruction or data value
is required. Designers found that this could be done if they placed repeatedly used data
in general-purpose registers instead of in main memory, but they found that this tech-
nique required extra work for the programmer. Moreover, from the point of view of
the system, this use of general-purpose registers was not an optimal solution because
those registers are often needed to store temporary results from other calculations, and
because the amount of instructions used repeatedly often exceeds the capacity of the
general-purpose registers.


To solve this problem, computer systems automatically store data in an intermediate
memory unit called cache memory. This adds a middle layer to the original hierarchy.
Cache memory can be thought of as an intermediary between main memory and the
special-purpose registers, which are the domain of the CPU, as shown in Figure 3.17(b). 


A typical microprocessor has two levels of caches: Level 1 (L1) and Level 2 (L2).
Information enters the processor through the bus interface unit, which immediately
sends one copy to the L2 cache, which is an integral part of the microprocessor and is
directly connected to the CPU. A second copy is sent to a pair of L1 caches, which are
built directly into the CPU. One of these L1 caches is designed to store instructions,
while the other stores data to be used by the instructions. If an instruction needs more
data, it is put on hold while the processor looks for it first in the data L1 cache, and
then in the larger L2 cache before looking for it in main memory.


Because the L2 cache is an integral part of the microprocessor, data moves two to four
times faster between the CPU and the L2 than between the CPU and main memory.
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To understand the relationship between main memory and cache memory, consider the
relationship between the size of the Web and the size of your private bookmark file. If
main memory is the Web and cache memory is your private bookmark file where you
collect your most frequently used Web addresses, then your bookmark file is small and
may contain only 0.00001 percent of all the addresses in the Web; but the chance that
you will soon visit a Web site that is in your bookmark file is high. Therefore, the pur-
pose of your bookmark file is to keep your most recently accessed addresses so you
can access them quickly, just as the purpose of cache memory is to keep handy the
most recently accessed data and instructions so that the CPU can access them repeat-
edly without wasting time.


The movement of data, or instructions, from main memory to cache memory uses a
method similar to that used in paging algorithms. First, cache memory is divided into
blocks of equal size called slots. Then, when the CPU first requests an instruction or
data from a location in main memory, the requested instruction and several others
around it are transferred from main memory to cache memory where they are stored
in one of the free slots. Moving a block at a time is based on the principle of locality
of reference, which states that it is very likely that the next CPU request will be physi-
cally close to the one just requested. In addition to the block of data transferred, the
slot also contains a label that indicates the main memory address from which the
block was copied. When the CPU requests additional information from that location
in main memory, cache memory is accessed first; and if the contents of one of the
labels in a slot matches the address requested, then access to main memory is not
required.


The algorithm to execute one of these “transfers from main memory” is simple to
implement, as follows:


Main Memory Transfer Algorithm


1 CPU puts the address of a memory location in the Memory Address


Register and requests data or an instruction to be retrieved from that


address


2 A test is performed to determine if the block containing this address


is already in a cache slot:


If YES, transfer the information to the CPU register – DONE


If NO:  Access main memory for the block containing the requested


address


Allocate a free cache slot to the block


Perform these in parallel:  Transfer the information to CPU


Load the block into slot


DONE
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This algorithm becomes more complicated if there aren’t any free slots, which can
occur because the size of cache memory is smaller than that of main memory, which
means that individual slots cannot be permanently allocated to blocks. To address this
contingency, the system needs a policy for block replacement, which could be one sim-
ilar to those used in page replacement.


When designing cache memory, one must take into consideration the following four
factors: 


• Cache size. Studies have shown that having any cache, even a small one, can sub-
stantially improve the performance of the computer system.


• Block size. Because of the principle of locality of reference, as block size increases,
the ratio of number of references found in the cache to the total number of refer-
ences will be high. 


• Block replacement algorithm. When all the slots are busy and a new block has to be
brought into the cache, a block that is least likely to be used in the near future should
be selected for replacement. However, as we saw in paging, this is nearly impossible to
predict. A reasonable course of action is to select a block that has not been used for a
long time. Therefore, LRU is the algorithm that is often chosen for block replacement,
which requires a hardware mechanism to specify the least recently used slot.


• Rewrite policy. When the contents of a block residing in cache are changed, it must
be written back to main memory before it is replaced by another block. A rewrite
policy must be in place to determine when this writing will take place. On the one
hand, it could be done every time that a change occurs, which would increase the
number of memory writes, increasing overhead. On the other hand, it could be done
only when the block is replaced or the process is finished, which would minimize
overhead but would leave the block in main memory in an inconsistent state. This
would create problems in multiprocessor environments and in cases where I/O mod-
ules can access main memory directly.


The optimal selection of cache size and replacement algorithm can result in 80 to
90 percent of all requests being in the cache, making for a very efficient memory sys-
tem. This measure of efficiency, called the cache hit ratio (h), is used to determine the
performance of cache memory and represents the percentage of total memory requests
that are found in the cache:
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HitRatio = 
number of requests found in the cache


* 100
total number of requests


For example, if the total number of requests is 10, and 6 of those are found in cache
memory, then the hit ratio is 60 percent. 


HitRatio = (6 / 10) * 100 = 60%


On the other hand, if the total number of requests is 100, and 9 of those are found in
cache memory, then the hit ratio is only 9 percent.


HitRatio = (9 / 100) * 100 = 9%


Another way to measure the efficiency of a system with cache memory, assuming that
the system always checks the cache first, is to compute the average memory access time
using the following formula:


AvgMemAccessTime = AvgCacheAccessTime + (1 – h) * AvgMainMemAccTime


For example, if we know that the average cache access time is 200 nanoseconds (nsec)
and the average main memory access time is 1000 nsec, then a system with a hit ratio
of 60 percent will have an average memory access time of 600 nsec:


AvgMemAccessTime = 200 + (1 - 0.60) * 1000 = 600 nsec


A system with a hit ratio of 9 percent will show an average memory access time of
1110 nsec:


AvgMemAccessTime = 200 + (1 - 0.09) * 1000 = 1110 nsec


Conclusion


The Memory Manager has the task of allocating memory to each job to be executed,
and reclaiming it when execution is completed.


Each scheme we discussed in Chapters 2 and 3 was designed to address a different set
of pressing problems; but, as we have seen, when some problems were solved, others
were created. Table 3.7 shows how memory allocation schemes compare. 
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Scheme Problem Solved Problem Created Changes in Software


Single-user Job size limited to None
contiguous physical memory size;


CPU often idle


Fixed partitions Idle CPU time Internal fragmentation; Add Processor Scheduler;
Job size limited to Add protection handler
partition size


Dynamic Internal External fragmentation None
partitions fragmentation


Relocatable Internal Compaction overhead; Compaction algorithm
dynamic fragmentation Job size limited to
partitions physical memory size


Paged Need for Memory needed for Algorithms to handle
compaction tables; Page Map Tables


Job size limited to 
physical memory size;
Internal fragmentation
returns


Demand paged Job size no longer Larger number of tables; Page replacement
limited to Possibility of thrashing; algorithm;
memory size; Overhead required by Search algorithm for
More efficient page interrupts; pages in secondary
memory use; Necessary paging storage
Allows large-scale hardware
multiprogramming
and time-sharing


Segmented Internal Difficulty managing Dynamic linking package;
fragmentation variable-length segments Two-dimensional


in secondary storage; addressing scheme
External fragmentation


Segmented/ Large virtual Table handling overhead; Three-dimensional
demand paged memory; Memory needed for page addressing scheme


Segment loaded and segment tables
on demand


The Memory Manager is only one of several managers that make up the operating sys-
tem. Once the jobs are loaded into memory using a memory allocation scheme, the
Processor Manager must allocate the processor to process each job in the most effi-
cient manner possible. We will see how that is done in the next chapter.
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Key Terms


address resolution: the process of changing the address of an instruction or data item
to the address in main memory at which it is to be loaded or relocated.


associative memory: the name given to several registers, allocated to each active
process, whose contents associate several of the process segments and page numbers
with their main memory addresses.


cache memory: a small, fast memory used to hold selected data and to provide faster
access than would otherwise be possible.


clock cycle: the elapsed time between two ticks of the computer’s system clock.


clock page replacement policy: a variation of the LRU policy that removes from main
memory the pages that show the least amount of activity during recent clock cycles.


demand paging: a memory allocation scheme that loads a program’s page into mem-
ory at the time it is needed for processing.


displacement: in a paged or segmented memory allocation environment, the difference
between a page’s relative address and the actual machine language address. Also called
offset.


FIFO anomaly: an unusual circumstance through which adding more page frames
causes an increase in page interrupts when using a FIFO page replacement policy.


first-in first-out (FIFO) policy: a page replacement policy that removes from main
memory the pages that were brought in first.


Job Table (JT): a table in main memory that contains two values for each active job—
the size of the job and the memory location where its page map table is stored. 


least recently used (LRU) policy: a page-replacement policy that removes from main
memory the pages that show the least amount of recent activity.


locality of reference: behavior observed in many executing programs in which mem-
ory locations recently referenced, and those near them, are likely to be referenced in
the near future.


Memory Map Table (MMT): a table in main memory that contains as many entries as
there are page frames and lists the location and free/busy status for each one.


offset: see displacement.


page: a fixed-size section of a user’s job that corresponds in size to page frames in main
memory.
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page fault: a type of hardware interrupt caused by a reference to a page not residing in
memory. The effect is to move a page out of main memory and into secondary storage
so another page can be moved into memory.


page fault handler: the part of the Memory Manager that determines if there are empty
page frames in memory so that the requested page can be immediately copied from
secondary storage, or determines which page must be swapped out if all page frames
are busy. Also known as a page interrupt handler.


page frame: an individual section of main memory of uniform size into which a single
page may be loaded without causing external fragmentation.


Page Map Table (PMT): a table in main memory with the vital information for each
page including the page number and its corresponding page frame memory address.


page replacement policy: an algorithm used by virtual memory systems to decide
which page or segment to remove from main memory when a page frame is needed
and memory is full.


page swapping: the process of moving a page out of main memory and into secondary
storage so another page can be moved into memory in its place.


paged memory allocation: a memory allocation scheme based on the concept of divid-
ing a user’s job into sections of equal size to allow for noncontiguous program storage
during execution.


reentrant code: code that can be used by two or more processes at the same time; each
shares the same copy of the executable code but has separate data areas.


sector: a division in a disk’s track, sometimes called a “block.” The tracks are divided
into sectors during the formatting process.


segment: a variable-size section of a user’s job that contains a logical grouping of code.


Segment Map Table (SMT): a table in main memory with the vital information for
each segment including the segment number and its corresponding memory address.


segmented/demand paged memory allocation: a memory allocation scheme based on
the concept of dividing a user’s job into logical groupings of code and loading them
into memory as needed to minimize fragmentation.


segmented memory allocation: a memory allocation scheme based on the concept of
dividing a user’s job into logical groupings of code to allow for noncontiguous pro-
gram storage during execution.


subroutine: also called a “subprogram,” a segment of a program that can perform a
specific function. Subroutines can reduce programming time when a specific function
is required at more than one point in a program.
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thrashing: a phenomenon in a virtual memory system where an excessive amount of
page swapping back and forth between main memory and secondary storage results in
higher overhead and little useful work.


virtual memory: a technique that allows programs to be executed even though they are
not stored entirely in memory.


working set: a collection of pages to be kept in main memory for each active process
in a virtual memory environment.


Interesting Searches
• Memory Card Suppliers


• Virtual Memory


• Working Set


• Cache Memory


• Thrashing


Exercises


Research Topics


A. The sizes of pages and page frames are often identical. Search academic
sources to discover typical page sizes, what factors are considered by oper-
ating system developers when establishing these sizes, and whether or not
hardware considerations are important. Cite your sources.


B. Core memory consists of the CPU and arithmetic logic unit but not the
attached cache memory. On the Internet or using academic sources, research
the design of multi-core memory and identify the roles played by cache mem-
ory Level 1 and Level 2. Does the implementation of cache memory on multi-
core chips vary from one manufacturer to another? Explain and cite your
sources.


Exercises


1. Compare and contrast internal fragmentation and external fragmentation.
Explain the circumstances where one might be preferred over the other.


2. Describe how the function of the Page Map Table differs in paged vs.
segmented/demand paging memory allocation.


3. Describe how the operating system detects thrashing. Once thrashing is
detected, explain what the operating system can do to stop it.


4. Given that main memory is composed of three page frames for public use and
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that a seven-page program (with pages a, b, c, d, e, f, g) requests pages in the
following order:


a, b, a, c, d, a, e, f, g, c, b, g


a. Using the FIFO page removal algorithm, do a page trace analysis indicating
page faults with asterisks (*). Then compute the failure and success ratios.


b. Increase the size of memory so it contains four page frames for public use.
Using the same page requests as above and FIFO, do another page trace
analysis and compute the failure and success ratios.


c. Did the result correspond with your intuition? Explain.


5. Given that main memory is composed of three page frames for public use and
that a program requests pages in the following order:


a, d, b, a, f, b, e, c, g, f, b, g


a. Using the FIFO page removal algorithm, perform a page trace analysis indicat-
ing page faults with asterisks (*). Then compute the failure and success ratios.


b. Using the LRU page removal algorithm, perform a page trace analysis and
compute the failure and success ratios.


c. Which is better? Why do you think it is better? Can you make general state-
ments from this example? Why or why not?


6. Let us define “most-recently-used” (MRU) as a page removal algorithm that
removes from memory the most recently used page. Perform a page trace
analysis using three page frames and the page requests from the previous exer-
cise. Compute the failure and success ratios and explain why you think MRU
is, or is not, a viable memory allocation system.


7. By examining the reference bits for the six pages shown in Figure 3.11, identify
which of the six pages was referenced most often as of the last time snapshot
[shown in (e)]. Which page was referenced least often? Explain your answer.


8. To implement LRU, each page needs a referenced bit. If we wanted to imple-
ment a least frequently used (LFU) page removal algorithm, in which the
page that was used the least would be removed from memory, what would
we need to add to the tables? What software modifications would have to be
made to support this new algorithm?


9. Calculate the cache Hit Ratio using the formula presented at the end of this
chapter assuming that the total number of requests is 2056 and 1209 of those
requests are found in the cache.


10. Assuming a hit ratio of 67 percent, calculate the Average Memory Access Time
using the formula presented in this chapter if the Average Cache Access Time is
200 nsec and the Average Main Memory Access Time is 500 nsec.
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11. Assuming a hit ratio of 31 percent, calculate the Average Memory Access Time
using the formula presented in this chapter if the Average Cache Access Time is
125 nsec and the Average Main Memory Access Time is 300 nsec.


12. Using a paged memory allocation system with a page size of 2,048 bytes and
an identical page frame size, and assuming the incoming data file is 25,600,
calculate how many pages will be created by the file. Calculate the size of any
resulting fragmentation. Explain whether this situation will result in internal
fragmentation, external fragmentation, or both.


Advanced Exercises


13. Given that main memory is composed of four page frames for public use, use
the following table to answer all parts of this problem:


Time When Time When
Page Frame Loaded Last Referenced Referenced Bit Modified Bit


0 126 279 0 0


1 230 280 1 0


2 120 282 1 1


3 160 290 1 1


a. The contents of which page frame would be swapped out by FIFO?


b. The contents of which page frame would be swapped out by LRU?


c. The contents of which page frame would be swapped out by MRU?


d. The contents of which page frame would be swapped out by LFU?


14. Given three subroutines of 700, 200, and 500 words each, if segmentation is
used then the total memory needed is the sum of the three sizes (if all three rou-
tines are loaded). However, if paging is used then some storage space is lost
because subroutines rarely fill the last page completely, and that results in inter-
nal fragmentation. Determine the total amount of wasted memory due to inter-
nal fragmentation when the three subroutines are loaded into memory using
each of the following page sizes:


a. 100 words


b. 600 words


c. 700 words


d. 900 words
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15. Given the following Segment Map Tables for two jobs:


SMT for Job 1
Segment Number Memory Location


0 4096


1 6144


2 9216


3 2048


4 7168


SMT for Job 2
Segment number Memory location


0 2048


1 6144


2 9216


a. Which segments, if any, are shared between the two jobs?


b. If the segment now located at 7168 is swapped out and later reloaded at
8192, and the segment now at 2048 is swapped out and reloaded at 1024,
what would the new segment tables look like?


Programming Exercises


16. This problem studies the effect of changing page sizes in a demand 
paging system.


The following sequence of requests for program words is taken from a 
460-word program: 10, 11, 104, 170, 73, 309, 185, 245, 246, 434, 458, 364.
Main memory can hold a total of 200 words for this program and the page
frame size will match the size of the pages into which the program has been
divided.


Calculate the page numbers according to the page size, divide by the page size,
and the quotient gives the page number. The number of page frames in memory
is the total number, 200, divided by the page size. For example, in problem (a)
the page size is 100, which means that requests 10 and 11 are on Page 0, and
requests 104 and 170 are on Page 1. The number of page frames is two.


a. Find the success frequency for the request list using a FIFO replacement
algorithm and a page size of 100 words (there are two page frames).


b. Find the success frequency for the request list using a FIFO replacement
algorithm and a page size of 20 words (10 pages, 0 through 9).
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c. Find the success frequency for the request list using a FIFO replacement
algorithm and a page size of 200 words.


d. What do your results indicate? Can you make any general statements about
what happens when page sizes are halved or doubled?


e. Are there any overriding advantages in using smaller pages? What are the
offsetting factors? Remember that transferring 200 words of information
takes less than twice as long as transferring 100 words because of the way
secondary storage devices operate (the transfer rate is higher than the access
[search/find] rate).


f. Repeat (a) through (c) above, using a main memory of 400 words. The size
of each page frame will again correspond to the size of the page.


g. What happened when more memory was given to the program? Can you
make some general statements about this occurrence? What changes might
you expect to see if the request list was much longer, as it would be in real
life?


h. Could this request list happen during the execution of a real program?
Explain.


i. Would you expect the success rate of an actual program under similar
conditions to be higher or lower than the one in this problem?


17. Given the following information for an assembly language program:


Job size = 3126 bytes


Page size = 1024 bytes


instruction at memory location  532: Load 1, 2098


instruction at memory location 1156: Add 1, 2087


instruction at memory location 2086: Sub 1, 1052


data at memory location 1052: 015672


data at memory location 2098: 114321


data at memory location 2087: 077435


a. How many pages are needed to store the entire job?


b. Compute the page number and displacement for each of the byte addresses
where the data is stored. (Remember that page numbering starts at zero).


c. Determine whether the page number and displacements are legal for this job.


d. Explain why the page number and/or displacements may not be legal for
this job.


e. Indicate what action the operating system might take when a page number
or displacement is not legal.
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“Nature acts by progress . . . It goes and returns, then advances
further, then twice as much backward, then more forward


than ever.”
—Blaise Pascal (1623–1662)


Learning Objectives


After completing this chapter, you should be able to describe:


• The difference between job scheduling and process scheduling, and how they relate


• The advantages and disadvantages of process scheduling algorithms that are pre-
emptive versus those that are nonpreemptive


• The goals of process scheduling policies in single-core CPUs


• Six different process scheduling algorithms


• The role of internal interrupts and the tasks performed by the interrupt handler


The Processor Manager is responsible for allocating the processor to execute the
incoming jobs, and the tasks of those jobs. In this chapter, we’ll see how a Processor
Manager manages a single CPU to do so.
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Overview


In a simple system, one with a single user and one processor, the process is busy only
when it is executing the user’s jobs. However, when there are many users, such as in a
multiprogramming environment, or when there are multiple processes competing to be
run by a single CPU, the processor must be allocated to each job in a fair and efficient
manner. This can be a complex task as we’ll see in this chapter, which is devoted to
single processor systems. Those with multiple processors are discussed in Chapter 6.


Before we begin, let’s clearly define some terms. A program is an inactive unit, such as
a file stored on a disk. A program is not a process. To an operating system, a program
or job is a unit of work that has been submitted by the user.


On the other hand, a process is an active entity that requires a set of resources, includ-
ing a processor and special registers, to perform its function. A process, also called a
task, is a single instance of a program in execution.


As mentioned in Chapter 1, a thread is a portion of a process that can run indepen-
dently. For example, if your system allows processes to have a single thread of control
and you want to see a series of pictures on a friend’s Web site, you can instruct the
browser to establish one connection between the two sites and download one picture
at a time. However, if your system allows processes to have multiple threads of con-
trol, then you can request several pictures at the same time and the browser will set up
multiple connections and download several pictures at once. 


The processor, also known as the CPU (for central processing unit), is the part of the
machine that performs the calculations and executes the programs. 


Multiprogramming requires that the processor be allocated to each job or to each
process for a period of time and deallocated at an appropriate moment. If the proces-
sor is deallocated during a program’s execution, it must be done in such a way that it
can be restarted later as easily as possible. It’s a delicate procedure. To demonstrate,
let’s look at an everyday example.


Here you are, confident you can put together a toy despite the warning that some
assembly is required. Armed with the instructions and lots of patience, you embark on
your task—to read the directions, collect the necessary tools, follow each step in turn,
and turn out the finished product.


The first step is to join Part A to Part B with a 2-inch screw, and as you complete that
task you check off Step 1. Inspired by your success, you move on to Step 2 and then
Step 3. You’ve only just completed the third step when a neighbor is injured while
working with a power tool and cries for help.


Quickly you check off Step 3 in the directions so you know where you left off, then
you drop your tools and race to your neighbor’s side. After all, someone’s immediate
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need is more important than your eventual success with the toy. Now you find your-
self engaged in a very different task: following the instructions in a first-aid book and
using bandages and antiseptic.


Once the injury has been successfully treated, you return to your previous job. As you
pick up your tools, you refer to the instructions and see that you should begin with
Step 4. You then continue with this project until it is finally completed.


In operating system terminology, you played the part of the CPU or processor. There
were two programs, or jobs—one was the mission to assemble the toy and the second
was to bandage the injury. When you were assembling the toy (Job A), each step you
performed was a process. The call for help was an interrupt; and when you left the toy
to treat your wounded friend, you left for a higher priority program. When you were
interrupted, you performed a context switch when you marked Step 3 as the last com-
pleted instruction and put down your tools. Attending to the neighbor’s injury became
Job B. While you were executing the first-aid instructions, each of the steps you exe-
cuted was again a process. And, of course, when each job was completed it was
finished or terminated.


The Processor Manager would identify the series of events as follows:


get the input for Job A (find the instructions in the box)


identify resources (collect the necessary tools)


execute the process (follow each step in turn)


interrupt (neighbor calls)


context switch to Job B (mark your place in the instructions)


get the input for Job B (find your first-aid book)


identify resources (collect the medical supplies)


execute the process (follow each first-aid step)


terminate Job B (return home)


context switch to Job A (prepare to resume assembly)


resume executing the (follow remaining steps in turn)
interrupted process


terminate Job A (turn out the finished toy)


As we’ve shown, a single processor can be shared by several jobs, or several processes—
but if, and only if, the operating system has a scheduling policy, as well as a scheduling
algorithm, to determine when to stop working on one job and proceed to another.


In this example, the scheduling algorithm was based on priority: you worked on the
processes belonging to Job A until a higher priority job came along. Although this was
a good algorithm in this case, a priority-based scheduling algorithm isn’t always best,
as we’ll see later in this chapter.
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About Multi-Core Technologies


A dual-core, quad-core, or other multi-core CPU has more than one processor (also
called a core) on the computer chip. Multi-core engineering was driven by the prob-
lems caused by nano-sized transistors and their ultra-close placement on a computer
chip. Although chips with millions of transistors that were very close together helped
increase system performance dramatically, the close proximity of these transistors also
increased current leakage and the amount of heat generated by the chip.


One solution was to create a single chip (one piece of silicon) with two or more
processor cores. In other words, they replaced a single large processor with two half-
sized processors, or four quarter-sized processors. This design allowed the same sized
chip to produce less heat and offered the opportunity to permit multiple calculations
to take place at the same time. 


For the Processor Manager, multiple cores are more complex to manage than a single
core. We’ll discuss multiple core processing in Chapter 6. 


Job Scheduling Versus Process Scheduling


The Processor Manager is a composite of two submanagers: one in charge of job
scheduling and the other in charge of process scheduling. They’re known as the Job
Scheduler and the Process Scheduler.


Typically a user views a job either as a series of global job steps—compilation, load-
ing, and execution—or as one all-encompassing step—execution. However, the sched-
uling of jobs is actually handled on two levels by most operating systems. If we return
to the example presented earlier, we can see that a hierarchy exists between the Job
Scheduler and the Process Scheduler.


The scheduling of the two jobs, to assemble the toy and to bandage the injury, was on
a first-come, first-served and priority basis. Each job is initiated by the Job Scheduler
based on certain criteria. Once a job is selected for execution, the Process Scheduler
determines when each step, or set of steps, is executed—a decision that’s also based on
certain criteria. When you started assembling the toy, each step in the assembly
instructions would have been selected for execution by the Process Scheduler.


Therefore, each job (or program) passes through a hierarchy of managers. Since the
first one it encounters is the Job Scheduler, this is also called the high-level scheduler. It
is only concerned with selecting jobs from a queue of incoming jobs and placing them
in the process queue, whether batch or interactive, based on each job’s characteristics.
The Job Scheduler’s goal is to put the jobs in a sequence that will use all of the system’s
resources as fully as possible.
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This is an important function. For example, if the Job Scheduler selected several jobs
to run consecutively and each had a lot of I/O, then the I/O devices would be kept very
busy. The CPU might be busy handling the I/O (if an I/O controller were not used) so
little computation might get done. On the other hand, if the Job Scheduler selected sev-
eral consecutive jobs with a great deal of computation, then the CPU would be very
busy doing that. The I/O devices would be idle waiting for I/O requests. Therefore, the
Job Scheduler strives for a balanced mix of jobs that require large amounts of I/O
interaction and jobs that require large amounts of computation. Its goal is to keep
most components of the computer system busy most of the time.


Process Scheduler


Most of this chapter is dedicated to the Process Scheduler because after a job has been
placed on the READY queue by the Job Scheduler, the Process Scheduler takes over. It
determines which jobs will get the CPU, when, and for how long. It also decides when
processing should be interrupted, determines which queues the job should be moved to
during its execution, and recognizes when a job has concluded and should be terminated.


The Process Scheduler is the low-level scheduler that assigns the CPU to execute the
processes of those jobs placed on the READY queue by the Job Scheduler. This becomes
a crucial function when the processing of several jobs has to be orchestrated—just as
when you had to set aside your assembly and rush to help your neighbor.


To schedule the CPU, the Process Scheduler takes advantage of a common trait among
most computer programs: they alternate between CPU cycles and I/O cycles. Notice
that the following job has one relatively long CPU cycle and two very brief I/O cycles:


{
printf(“\nEnter the first integer: ”);
scanf(“%d”, &a);


I/O cycleprintf(“\nEnter the second integer: ”);
scanf(“%d”, &b);


c = a+b
d = (a*b)–c


CPU cyclee = a–b
f = d/e


printf(“\n a+b= %d”, c);
printf(“\n (a*b)-c = %d”, d);


I/O cycleprintf(“\n a-b = %d”, e);
printf(“\n d/e = %d”, f);
}
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Although the duration and frequency of CPU cycles vary from program to program,
there are some general tendencies that can be exploited when selecting a scheduling
algorithm. For example, I/O-bound jobs (such as printing a series of documents) have
many brief CPU cycles and long I/O cycles, whereas CPU-bound jobs (such as finding
the first 300 prime numbers) have long CPU cycles and shorter I/O cycles. The total
effect of all CPU cycles, from both I/O-bound and CPU-bound jobs, approximates a
Poisson distribution curve as shown in Figure 4.1.


In a highly interactive environment, there’s also a third layer of the Processor Manager
called the middle-level scheduler. In some cases, especially when the system is over-
loaded, the middle-level scheduler finds it is advantageous to remove active jobs from
memory to reduce the degree of multiprogramming, which allows jobs to be com-
pleted faster. The jobs that are swapped out and eventually swapped back in are man-
aged by the middle-level scheduler.


In a single-user environment, there’s no distinction made between job and process
scheduling because only one job is active in the system at any given time. So the CPU
and all other resources are dedicated to that job, and to each of its processes in turn,
until the job is completed.
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Distribution of CPU cycle


times. This distribution


shows a greater number of


jobs requesting short CPU


cycles (the frequency


peaks close to the low end


of the CPU cycle axis), and


fewer jobs requesting long


CPU cycles.
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Controlled


by Job
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by Job
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interrupt
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(figure 4.2)


A typical job (or process)


changes status as it


moves through the system


from HOLD to FINISHED.
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Job and Process Status


As a job moves through the system, it’s always in one of five states (or at least three) as
it changes from HOLD to READY to RUNNING to WAITING and eventually to
FINISHED as shown in Figure 4.2. These are called the job status or the process status.


Here’s how the job status changes when a user submits a job to the system via batch or
interactive mode. When the job is accepted by the system, it’s put on HOLD and placed
in a queue. In some systems, the job spooler (or disk controller) creates a table with the
characteristics of each job in the queue and notes the important features of the job, such
as an estimate of CPU time, priority, special I/O devices required, and maximum memory
required. This table is used by the Job Scheduler to decide which job is to be run next.


From HOLD, the job moves to READY when it’s ready to run but is waiting for the
CPU. In some systems, the job (or process) might be placed on the READY list directly.
RUNNING, of course, means that the job is being processed. In a single processor sys-
tem, this is one “job” or process. WAITING means that the job can’t continue until a
specific resource is allocated or an I/O operation has finished. Upon completion, the
job is FINISHED and returned to the user.


The transition from one job or process status to another is initiated by either the Job
Scheduler or the Process Scheduler:


• The transition from HOLD to READY is initiated by the Job Scheduler according
to some predefined policy. At this point, the availability of enough main memory
and any requested devices is checked.


• The transition from READY to RUNNING is handled by the Process Scheduler
according to some predefined algorithm (i.e., FCFS, SJN, priority scheduling, SRT,
or round robin—all of which will be discussed shortly).


• The transition from RUNNING back to READY is handled by the Process Scheduler
according to some predefined time limit or other criterion, for example a priority
interrupt.


• The transition from RUNNING to WAITING is handled by the Process Scheduler
and is initiated by an instruction in the job such as a command to READ, WRITE,
or other I/O request, or one that requires a page fetch.


• The transition from WAITING to READY is handled by the Process Scheduler and is
initiated by a signal from the I/O device manager that the I/O request has been satisfied
and the job can continue. In the case of a page fetch, the page fault handler will signal
that the page is now in memory and the process can be placed on the READY queue.


• Eventually, the transition from RUNNING to FINISHED is initiated by the Process
Scheduler or the Job Scheduler either when (1) the job is successfully completed and
it ends execution or (2) the operating system indicates that an error has occurred
and the job is being terminated prematurely.
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Process Control Blocks


Each process in the system is represented by a data structure called a Process Control
Block (PCB) that performs the same function as a traveler’s passport. The PCB (illus-
trated in Figure 4.3) contains the basic information about the job, including what it is,
where it’s going, how much of its processing has been completed, where it’s stored,
and how much it has spent in using resources.


114


Ch
ap


te
r 
4 


|P
ro


ce
ss


or
 M


an
ag


em
en


t


Process identification
Process status
Process state:


Process status word
Register contents
Main memory
Resources
Process priority


Accounting


(figure 4.3)


Contents of each job’s


Process Control Block.


Process Identification 


Each job is uniquely identified by the user’s identification and a pointer connecting it
to its descriptor (supplied by the Job Scheduler when the job first enters the system and
is placed on HOLD).


Process Status 


This indicates the current status of the job—HOLD, READY, RUNNING, or
WAITING —and the resources responsible for that status.


Process State 


This contains all of the information needed to indicate the current state of the job such as:


• Process Status Word—the current instruction counter and register contents when
the job isn’t running but is either on HOLD or is READY or WAITING. If the job is
RUNNING, this information is left undefined.


• Register Contents—the contents of the register if the job has been interrupted and is
waiting to resume processing.


• Main Memory—pertinent information, including the address where the job is stored
and, in the case of virtual memory, the mapping between virtual and physical mem-
ory locations.
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• Resources—information about all resources allocated to this job. Each resource has
an identification field listing its type and a field describing details of its allocation,
such as the sector address on a disk. These resources can be hardware units (disk
drives or printers, for example) or files.


• Process Priority—used by systems using a priority scheduling algorithm to select
which job will be run next.


Accounting


This contains information used mainly for billing purposes and performance measure-
ment. It indicates what kind of resources the job used and for how long. Typical
charges include:


• Amount of CPU time used from beginning to end of its execution.


• Total time the job was in the system until it exited.


• Main storage occupancy—how long the job stayed in memory until it finished exe-
cution. This is usually a combination of time and space used; for example, in a pag-
ing system it may be recorded in units of page-seconds.


• Secondary storage used during execution. This, too, is recorded as a combination of
time and space used.


• System programs used, such as compilers, editors, or utilities.


• Number and type of I/O operations, including I/O transmission time, that includes
utilization of channels, control units, and devices.


• Time spent waiting for I/O completion.


• Number of input records read (specifically, those entered online or coming from
optical scanners, card readers, or other input devices), and number of output
records written.


PCBs and Queueing


A job’s PCB is created when the Job Scheduler accepts the job and is updated as the
job progresses from the beginning to the end of its execution.


Queues use PCBs to track jobs the same way customs officials use passports to track
international visitors. The PCB contains all of the data about the job needed by the
operating system to manage the processing of the job. As the job moves through the
system, its progress is noted in the PCB.


The PCBs, not the jobs, are linked to form the queues as shown in Figure 4.4.
Although each PCB is not drawn in detail, the reader should imagine each queue as a
linked list of PCBs. The PCBs for every ready job are linked on the READY queue, and
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all of the PCBs for the jobs just entering the system are linked on the HOLD queue.
The jobs that are WAITING, however, are linked together by “reason for waiting,” so
the PCBs for the jobs in this category are linked into several queues. For example, the
PCBs for jobs that are waiting for I/O on a specific disk drive are linked together, while
those waiting for the printer are linked in a different queue. These queues need to be
managed in an orderly fashion and that’s determined by the process scheduling poli-
cies and algorithms.


Process Scheduling Policies


In a multiprogramming environment, there are usually more jobs to be executed than
could possibly be run at one time. Before the operating system can schedule them, it
needs to resolve three limitations of the system: (1) there are a finite number of
resources (such as disk drives, printers, and tape drives); (2) some resources, once
they’re allocated, can’t be shared with another job (e.g., printers); and (3) some
resources require operator intervention—that is, they can’t be reassigned automatically
from job to job (such as tape drives).


What’s a good process scheduling policy? Several criteria come to mind, but notice in
the list below that some contradict each other:


• Maximize throughput. Run as many jobs as possible in a given amount of time.
This could be accomplished easily by running only short jobs or by running jobs
without interruptions.
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(figure 4.4)


Queuing paths from HOLD to FINISHED. The Job and Processor schedulers release the resources when the


job leaves the RUNNING state.
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• Minimize response time. Quickly turn around interactive requests. This could be
done by running only interactive jobs and letting the batch jobs wait until the inter-
active load ceases.


• Minimize turnaround time. Move entire jobs in and out of the system quickly. This
could be done by running all batch jobs first (because batch jobs can be grouped to
run more efficiently than interactive jobs).


• Minimize waiting time. Move jobs out of the READY queue as quickly as possible.
This could only be done by reducing the number of users allowed on the system so
the CPU would be available immediately whenever a job entered the READY queue.


• Maximize CPU efficiency. Keep the CPU busy 100 percent of the time. This could
be done by running only CPU-bound jobs (and not I/O-bound jobs).


• Ensure fairness for all jobs. Give everyone an equal amount of CPU and I/O time.
This could be done by not giving special treatment to any job, regardless of its pro-
cessing characteristics or priority.


As we can see from this list, if the system favors one type of user then it hurts another or
doesn’t efficiently use its resources. The final decision rests with the system designer, who
must determine which criteria are most important for that specific system. For example,
you might decide to “maximize CPU utilization while minimizing response time and bal-
ancing the use of all system components through a mix of I/O-bound and CPU-bound
jobs.” So you would select the scheduling policy that most closely satisfies your criteria.


Although the Job Scheduler selects jobs to ensure that the READY and I/O queues
remain balanced, there are instances when a job claims the CPU for a very long time
before issuing an I/O request. If I/O requests are being satisfied (this is done by an I/O
controller and will be discussed later), this extensive use of the CPU will build up the
READY queue while emptying out the I/O queues, which creates an unacceptable
imbalance in the system.


To solve this problem, the Process Scheduler often uses a timing mechanism and peri-
odically interrupts running processes when a predetermined slice of time has expired.
When that happens, the scheduler suspends all activity on the job currently running
and reschedules it into the READY queue; it will be continued later. The CPU is now
allocated to another job that runs until one of three things happens: the timer goes off,
the job issues an I/O command, or the job is finished. Then the job moves to the
READY queue, the WAIT queue, or the FINISHED queue, respectively. An I/O request
is called a natural wait in multiprogramming environments (it allows the processor to
be allocated to another job).


A scheduling strategy that interrupts the processing of a job and transfers the CPU to
another job is called a preemptive scheduling policy; it is widely used in time-sharing
environments. The alternative, of course, is a nonpreemptive scheduling policy, which
functions without external interrupts (interrupts external to the job). Therefore, once
a job captures the processor and begins execution, it remains in the RUNNING state
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uninterrupted until it issues an I/O request (natural wait) or until it is finished (with
exceptions made for infinite loops, which are interrupted by both preemptive and non-
preemptive policies).


Process Scheduling Algorithms


The Process Scheduler relies on a process scheduling algorithm, based on a specific pol-
icy, to allocate the CPU and move jobs through the system. Early operating systems used
nonpreemptive policies designed to move batch jobs through the system as efficiently as
possible. Most current systems, with their emphasis on interactive use and response
time, use an algorithm that takes care of the immediate requests of interactive users.


Here are six process scheduling algorithms that have been used extensively.


First-Come, First-Served


First-come, first-served (FCFS) is a nonpreemptive scheduling algorithm that handles
jobs according to their arrival time: the earlier they arrive, the sooner they’re served.
It’s a very simple algorithm to implement because it uses a FIFO queue. This algorithm
is fine for most batch systems, but it is unacceptable for interactive systems because
interactive users expect quick response times.


With FCFS, as a new job enters the system its PCB is linked to the end of the READY
queue and it is removed from the front of the queue when the processor becomes avail-
able—that is, after it has processed all of the jobs before it in the queue.


In a strictly FCFS system there are no WAIT queues (each job is run to completion),
although there may be systems in which control (context) is switched on a natural wait
(I/O request) and then the job resumes on I/O completion.


The following examples presume a strictly FCFS environment (no multiprogramming).
Turnaround time is unpredictable with the FCFS policy; consider the following three
jobs:


• Job A has a CPU cycle of 15 milliseconds.


• Job B has a CPU cycle of 2 milliseconds.


• Job C has a CPU cycle of 1 millisecond.


For each job, the CPU cycle contains both the actual CPU usage and the I/O requests.
That is, it is the total run time. Using an FCFS algorithm with an arrival sequence of
A, B, C, the timeline is shown in Figure 4.5.
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If all three jobs arrive almost simultaneously, we can calculate that the turnaround
time for Job A is 15, for Job B is 17, and for Job C is 18. So the average turnaround
time is:


15 + 17 + 18 
= 16.67


3


However, if the jobs arrived in a different order, say C, B, A, then the results using the
same FCFS algorithm would be as shown in Figure 4.6.


In this example the turnaround time for Job A is 18, for Job B is 3, and for Job C is 1
and the average turnaround time is:


18 + 3 + 1 
= 7.3


3


That’s quite an improvement over the first sequence. Unfortunately, these two exam-
ples illustrate the primary disadvantage of using the FCFS concept—the average
turnaround times vary widely and are seldom minimized. In fact, when there are
three jobs in the READY queue, the system has only a 1 in 6 chance of running the
jobs in the most advantageous sequence (C, B, A). With four jobs the odds fall to 1
in 24, and so on.


If one job monopolizes the system, the extent of its overall effect on system perfor-
mance depends on the scheduling policy and whether the job is CPU-bound or 
I/O-bound. While a job with a long CPU cycle (in this example, Job A) is using the
CPU, the other jobs in the system are waiting for processing or finishing their I/O
requests (if an I/O controller is used) and joining the READY queue to wait for their
turn to use the processor. If the I/O requests are not being serviced, the I/O queues
would remain stable while the READY list grew (with new arrivals). In extreme cases,
the READY queue could fill to capacity while the I/O queues would be empty, or sta-
ble, and the I/O devices would sit idle.
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(figure 4.5)


Timeline for job sequence


A, B, C using the FCFS


algorithm.


✔
FCFS is the only
algorithm
discussed in this
chapter that
includes an
element of chance.
The others do not.


(figure 4.6)


Timeline for job sequence


C, B, A using the FCFS


algorithm.
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On the other hand, if the job is processing a lengthy I/O cycle, the I/O queues
quickly build to overflowing and the CPU could be sitting idle (if an I/O controller 
is used). This situation is eventually resolved when the I/O-bound job finishes its 
I/O cycle, the queues start moving again, and the system can recover from the 
bottleneck.


In a strictly FCFS algorithm, neither situation occurs. However, the turnaround time is
variable (unpredictable). For this reason, FCFS is a less attractive algorithm than one
that would serve the shortest job first, as the next scheduling algorithm does, even in a
nonmultiprogramming environment.


Shortest Job Next


Shortest job next (SJN) is a nonpreemptive scheduling algorithm (also known as short-
est job first, or SJF) that handles jobs based on the length of their CPU cycle time. It’s
easiest to implement in batch environments where the estimated CPU time required to
run the job is given in advance by each user at the start of each job. However, it doesn’t
work in interactive systems because users don’t estimate in advance the CPU time
required to run their jobs. 


For example, here are four batch jobs, all in the READY queue, for which the CPU
cycle, or run time, is estimated as follows:


Job: A B C D


CPU cycle: 5 2 6 4


The SJN algorithm would review the four jobs and schedule them for processing in
this order: B, D, A, C. The timeline is shown in Figure 4.7.


The average turnaround time is:


2 + 6 + 11 + 17
= 9.0


4


Let’s take a minute to see why this algorithm can be proved to be optimal and will
consistently give the minimum average turnaround time. We’ll use the previous exam-
ple to derive a general formula.
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(figure 4.7)


Timeline for job sequence


B, D, A, C using the SJN


algorithm.
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If we look at Figure 4.7, we can see that Job B finishes in its given time (2), Job D fin-
ishes in its given time plus the time it waited for B to run (4 + 2), Job A finishes in its
given time plus D’s time plus B’s time (5 + 4 + 2), and Job C finishes in its given time
plus that of the previous three (6 + 5 + 4 + 2). So when calculating the average we have:


(2) + (4 + 2) + (5 + 4 + 2) + (6 + 5 + 4 + 2)
= 9.0


4


As you can see, the time for the first job appears in the equation four times—once for
each job. Similarly, the time for the second job appears three times (the number of jobs
minus one). The time for the third job appears twice (number of jobs minus 2) and the
time for the fourth job appears only once (number of jobs minus 3).


So the above equation can be rewritten as:


4 * 2 + 3 * 4 + 2 * 5 + 1 * 6
= 9.0


4


Because the time for the first job appears in the equation four times, it has four times
the effect on the average time than does the length of the fourth job, which appears
only once. Therefore, if the first job requires the shortest computation time, followed
in turn by the other jobs, ordered from shortest to longest, then the result will be the
smallest possible average. The formula for the average is as follows


t1(n) + t2(n – 1) + t3(n – 2) + … + tn(n(1))
n


where n is the number of jobs in the queue and tj(j = 1, 2, 3,…,n) is the length of the
CPU cycle for each of the jobs.


However, the SJN algorithm is optimal only when all of the jobs are available at the
same time and the CPU estimates are available and accurate.


Priority Scheduling


Priority scheduling is a nonpreemptive algorithm and one of the most common sched-
uling algorithms in batch systems, even though it may give slower turnaround to some
users. This algorithm gives preferential treatment to important jobs. It allows the pro-
grams with the highest priority to be processed first, and they aren’t interrupted until
their CPU cycles (run times) are completed or a natural wait occurs. If two or more
jobs with equal priority are present in the READY queue, the processor is allocated to
the one that arrived first (first-come, first-served within priority).
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Priorities can be assigned by a system administrator using characteristics extrinsic to
the jobs. For example, they can be assigned based on the position of the user
(researchers first, students last) or, in commercial environments, they can be purchased
by the users who pay more for higher priority to guarantee the fastest possible
processing of their jobs. With a priority algorithm, jobs are usually linked to one of
several READY queues by the Job Scheduler based on their priority so the Process
Scheduler manages multiple READY queues instead of just one. Details about multi-
ple queues are presented later in this chapter.


Priorities can also be determined by the Processor Manager based on characteristics
intrinsic to the jobs such as:


• Memory requirements. Jobs requiring large amounts of memory could be allocated
lower priorities than those requesting small amounts of memory, or vice versa.


• Number and type of peripheral devices. Jobs requiring many peripheral devices
would be allocated lower priorities than those requesting fewer devices.


• Total CPU time. Jobs having a long CPU cycle, or estimated run time, would be
given lower priorities than those having a brief estimated run time.


• Amount of time already spent in the system. This is the total amount of elapsed
time since the job was accepted for processing. Some systems increase the priority of
jobs that have been in the system for an unusually long time to expedite their exit.
This is known as aging.


These criteria are used to determine default priorities in many systems. The default pri-
orities can be overruled by specific priorities named by users.


There are also preemptive priority schemes. These will be discussed later in this chap-
ter in the section on multiple queues.


Shortest Remaining Time


Shortest remaining time (SRT) is the preemptive version of the SJN algorithm. The
processor is allocated to the job closest to completion—but even this job can be pre-
empted if a newer job in the READY queue has a time to completion that’s shorter.


This algorithm can’t be implemented in an interactive system because it requires
advance knowledge of the CPU time required to finish each job. It is often used in
batch environments, when it is desirable to give preference to short jobs, even
though SRT involves more overhead than SJN because the operating system has to
frequently monitor the CPU time for all the jobs in the READY queue and must per-
form context switching for the jobs being swapped (switched) at preemption time
(not necessarily swapped out to the disk, although this might occur as well).


The example in Figure 4.8 shows how the SRT algorithm works with four jobs that
arrived in quick succession (one CPU cycle apart).
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✔
If several jobs
have the same
amount of time
remaining, the job
that has been
waiting the
longest goes next.
In other words, it
uses the FCFS
algorithm to break
the tie.
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Arrival time: 0 1 2 3


Job: A B C D


CPU cycle: 6 3 1 4


In this case, the turnaround time is the completion time of each job minus its
arrival time:


Job: A B C D


Turnaround: 14 4 1 6


So the average turnaround time is:


14 + 4 + 1 + 6
= 6.25


4
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(figure 4.8)


Timeline for job sequence


A, B, C, D using the


preemptive SRT algorithm.


Each job is interrupted


after one CPU cycle if


another job is waiting with


less CPU time remaining.


(figure 4.9)


Timeline for the same job


sequence A, B, C, D using


the nonpreemptive SJN


algorithm.


How does that compare to the same problem using the nonpreemptive SJN policy?
Figure 4.9 shows the same situation using SJN.


In this case, the turnaround time is:


Job: A B C D


Turnaround: 6 9 5 11


So the average turnaround time is:


6 + 9 + 5 + 11
= 7.75


4
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Note in Figure 4.9 that initially A is the only job in the READY queue so it runs first
and continues until it’s finished because SJN is a nonpreemptive algorithm. The next
job to be run is C because when Job A is finished (at time 6), all of the other jobs (B,
C, and D) have arrived. Of those three, C has the shortest CPU cycle, so it is the next
one run, then B, and finally D.


Therefore, with this example, SRT at 6.25 is faster than SJN at 7.75. However, we
neglected to include the time required by the SRT algorithm to do the context switching.
Context switching is required by all preemptive algorithms. When Job A is preempted,
all of its processing information must be saved in its PCB for later, when Job A’s execu-
tion is to be continued, and the contents of Job B’s PCB are loaded into the 
appropriate registers so it can start running again; this is a context switch. Later, when
Job A is once again assigned to the processor, another context switch is performed.
This time the information from the preempted job is stored in its PCB, and the con-
tents of Job A’s PCB are loaded into the appropriate registers.


How the context switching is actually done depends on the architecture of the CPU; in
many systems, there are special instructions that provide quick saving and restoring of
information. The switching is designed to be performed efficiently but, no matter how
fast it is, it still takes valuable CPU time. So although SRT appears to be faster, in a
real operating environment its advantages are diminished by the time spent in context
switching. A precise comparison of SRT and SJN would have to include the time
required to do the context switching.


Round Robin


Round robin is a preemptive process scheduling algorithm that is used extensively in
interactive systems. It’s easy to implement and isn’t based on job characteristics but on
a predetermined slice of time that’s given to each job to ensure that the CPU is equally
shared among all active processes and isn’t monopolized by any one job.


This time slice is called a time quantum and its size is crucial to the performance of the
system. It usually varies from 100 milliseconds to 1 or 2 seconds.


Jobs are placed in the READY queue using a first-come, first-served scheme and the
Process Scheduler selects the first job from the front of the queue, sets the timer to the
time quantum, and allocates the CPU to this job. If processing isn’t finished when time
expires, the job is preempted and put at the end of the READY queue and its informa-
tion is saved in its PCB.


In the event that the job’s CPU cycle is shorter than the time quantum, one of two
actions will take place: (1) If this is the job’s last CPU cycle and the job is finished, then
all resources allocated to it are released and the completed job is returned to the user;
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(2) if the CPU cycle has been interrupted by an I/O request, then information about
the job is saved in its PCB and it is linked at the end of the appropriate I/O queue.
Later, when the I/O request has been satisfied, it is returned to the end of the READY
queue to await allocation of the CPU.


The example in Figure 4.10 illustrates a round robin algorithm with a time slice of
4 milliseconds (I/O requests are ignored):


Arrival time: 0 1 2 3


Job: A B C D


CPU cycle: 8 4 9 5
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Job
A


Job
B


Job
C


Job
D


Job
A


Job
C


Job
D


Job
C


0 4 8 12 16 20 24 25 26


(figure 4.10)


Timeline for job sequence


A, B, C, D using the


preemptive round robin


algorithm with time slices


of 4 ms.


The turnaround time is the completion time minus the arrival time:


Job: A B C D


Turnaround: 20 7 24 22


So the average turnaround time is:


20 + 7 + 24 + 22
= 18.25


4


Note that in Figure 4.10, Job A was preempted once because it needed 8 milliseconds
to complete its CPU cycle, while Job B terminated in one time quantum. Job C was
preempted twice because it needed 9 milliseconds to complete its CPU cycle, and Job D
was preempted once because it needed 5 milliseconds. In their last execution or swap
into memory, both Jobs D and C used the CPU for only 1 millisecond and terminated
before their last time quantum expired, releasing the CPU sooner.


The efficiency of round robin depends on the size of the time quantum in relation to
the average CPU cycle. If the quantum is too large—that is, if it’s larger than most CPU
cycles—then the algorithm reduces to the FCFS scheme. If the quantum is too small,
then the amount of context switching slows down the execution of the jobs and the
amount of overhead is dramatically increased, as the three examples in Figure 4.11
demonstrate. Job A has a CPU cycle of 8 milliseconds. The amount of context switch-
ing increases as the time quantum decreases in size.


In Figure 4.11, the first case (a) has a time quantum of 10 milliseconds and there is no
context switching (and no overhead). The CPU cycle ends shortly before the time


✔
With round robin
and a queue with
numerous
processes, each
process will get
access to the
processor before
the first process
will get access a
second time.
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quantum expires and the job runs to completion. For this job with this time quantum,
there is no difference between the round robin algorithm and the FCFS algorithm.


In the second case (b), with a time quantum of 5 milliseconds, there is one context
switch. The job is preempted once when the time quantum expires, so there is some
overhead for context switching and there would be a delayed turnaround based on the
number of other jobs in the system.


In the third case (c), with a time quantum of 1 millisecond, there are 10 context
switches because the job is preempted every time the time quantum expires; overhead
becomes costly and turnaround time suffers accordingly.


What’s the best time quantum size? The answer should be predictable by now: it
depends on the system. If it’s an interactive environment, the system is expected to
respond quickly to its users, especially when they make simple requests. If it’s a batch
system, response time is not a factor (turnaround is) and overhead becomes very
important.


Here are two general rules of thumb for selecting the proper time quantum: (1) it
should be long enough to allow 80 percent of the CPU cycles to run to completion,
and (2) it should be at least 100 times longer than the time required to perform one
context switch. These rules are used in some systems, but they are not inflexible.
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Job A


Job A


Job A


(a)


(b)


(c) Job B Job C Job D Job E Job F Job G Job H


time quantum of 1


time quantum of 5


time quantum of 10


Job B


Job J Job K


Job B


(figure 4.11)


Context switches for three different time quantums. In (a), Job A (which requires only 8 cycles to run to


completion) finishes before the time quantum of 10 expires. In (b) and (c), the time quantum expires first,


interrupting the jobs.
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Multiple-Level Queues


Multiple-level queues isn’t really a separate scheduling algorithm but works in con-
junction with several of the schemes already discussed and is found in systems with
jobs that can be grouped according to a common characteristic. We’ve already intro-
duced at least one kind of multiple-level queue—that of a priority-based system with
different queues for each priority level.


Another kind of system might gather all of the CPU-bound jobs in one queue and all
I/O-bound jobs in another. The Process Scheduler then alternately selects jobs from
each queue to keep the system balanced.


A third common example is one used in a hybrid environment that supports both
batch and interactive jobs. The batch jobs are put in one queue called the background
queue while the interactive jobs are put in a foreground queue and are treated more
favorably than those on the background queue.


All of these examples have one thing in common: The scheduling policy is based on
some predetermined scheme that allocates special treatment to the jobs in each queue.
Within each queue, the jobs are served in FCFS fashion.


Multiple-level queues raise some interesting questions:


• Is the processor allocated to the jobs in the first queue until it is empty before mov-
ing to the next queue, or does it travel from queue to queue until the last job on the
last queue has been served and then go back to serve the first job on the first queue,
or something in between?


• Is this fair to those who have earned, or paid for, a higher priority?


• Is it fair to those in a low-priority queue?


• If the processor is allocated to the jobs on the first queue and it never empties out,
when will the jobs in the last queues be served?


• Can the jobs in the last queues get “time off for good behavior” and eventually
move to better queues?


The answers depend on the policy used by the system to service the queues. There are
four primary methods to the movement: not allowing movement between queues,
moving jobs from queue to queue, moving jobs from queue to queue and increasing
the time quantums for lower queues, and giving special treatment to jobs that have
been in the system for a long time (aging). 
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use different
algorithms in
different queues,
allowing you to
combine the
advantages of
several algorithms.
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Case 1: No Movement Between Queues


No movement between queues is a very simple policy that rewards those who have
high-priority jobs. The processor is allocated to the jobs in the high-priority queue in
FCFS fashion and it is allocated to jobs in low-priority queues only when the high-
priority queues are empty. This policy can be justified if there are relatively few users
with high-priority jobs so the top queues quickly empty out, allowing the processor to
spend a fair amount of time running the low-priority jobs.


Case 2: Movement Between Queues


Movement between queues is a policy that adjusts the priorities assigned to each job:
High-priority jobs are treated like all the others once they are in the system. (Their ini-
tial priority may be favorable.) When a time quantum interrupt occurs, the job is pre-
empted and moved to the end of the next lower queue. A job may also have its priority
increased; for example, when it issues an I/O request before its time quantum has
expired.


This policy is fairest in a system in which the jobs are handled according to their com-
puting cycle characteristics: CPU-bound or I/O-bound. This assumes that a job that
exceeds its time quantum is CPU-bound and will require more CPU allocation than
one that requests I/O before the time quantum expires. Therefore, the CPU-bound jobs
are placed at the end of the next lower-level queue when they’re preempted because of
the expiration of the time quantum, while I/O-bound jobs are returned to the end of
the next higher-level queue once their I/O request has finished. This facilitates I/O-
bound jobs and is good in interactive systems.


Case 3: Variable Time Quantum Per Queue


Variable time quantum per queue is a variation of the movement between queues pol-
icy, and it allows for faster turnaround of CPU-bound jobs.


In this scheme, each of the queues is given a time quantum twice as long as the previ-
ous queue. The highest queue might have a time quantum of 100 milliseconds. So the
second-highest queue would have a time quantum of 200 milliseconds, the third
would have 400 milliseconds, and so on. If there are enough queues, the lowest one
might have a relatively long time quantum of 3 seconds or more.


If a job doesn’t finish its CPU cycle in the first time quantum, it is moved to the end of the
next lower-level queue; and when the processor is next allocated to it, the job executes
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for twice as long as before. With this scheme a CPU-bound job can execute for longer
and longer periods of time, thus improving its chances of finishing faster.


Case 4: Aging


Aging is used to ensure that jobs in the lower-level queues will eventually complete their
execution. The operating system keeps track of each job’s waiting time and when a job gets
too old—that is, when it reaches a certain time limit—the system moves the job to the next
highest queue, and so on until it reaches the top queue. A more drastic aging policy is one
that moves the old job directly from the lowest queue to the end of the top queue.
Regardless of its actual implementation, an aging policy guards against the indefinite post-
ponement of unwieldy jobs. As you might expect, indefinite postponement means that a
job’s execution is delayed for an undefined amount of time because it is repeatedly pre-
empted so other jobs can be processed. (We all know examples of an unpleasant task that’s
been indefinitely postponed to make time for a more appealing pastime). Eventually the
situation could lead to the old job’s starvation. Indefinite postponement is a major prob-
lem when allocating resources and one that will be discussed in detail in Chapter 5.


A Word About Interrupts


We first encountered interrupts in Chapter 3 when the Memory Manager issued page
interrupts to accommodate job requests. In this chapter we examined another type of
interrupt that occurs when the time quantum expires and the processor is deallocated
from the running job and allocated to another one.


There are other interrupts that are caused by events internal to the process. I/O inter-
rupts are issued when a READ or WRITE command is issued. (We’ll explain them in
detail in Chapter 7.) Internal interrupts, or synchronous interrupts, also occur as a
direct result of the arithmetic operation or job instruction currently being processed.


Illegal arithmetic operations, such as the following, can generate interrupts:


• Attempts to divide by zero


• Floating-point operations generating an overflow or underflow


• Fixed-point addition or subtraction that causes an arithmetic overflow


Illegal job instructions, such as the following, can also generate interrupts:


• Attempts to access protected or nonexistent storage locations


• Attempts to use an undefined operation code


• Operating on invalid data


• Attempts to make system changes, such as trying to change the size of the time
quantum
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The control program that handles the interruption sequence of events is called the 
interrupt handler. When the operating system detects a nonrecoverable error, the
interrupt handler typically follows this sequence:


1. The type of interrupt is described and stored—to be passed on to the user as an
error message.


2. The state of the interrupted process is saved, including the value of the pro-
gram counter, the mode specification, and the contents of all registers.


3. The interrupt is processed: The error message and state of the interrupted
process are sent to the user; program execution is halted; any resources allo-
cated to the job are released; and the job exits the system.


4. The processor resumes normal operation.


If we’re dealing with internal interrupts only, which are nonrecoverable, the job is ter-
minated in Step 3. However, when the interrupt handler is working with an I/O inter-
rupt, time quantum, or other recoverable interrupt, Step 3 simply halts the job and
moves it to the appropriate I/O device queue, or READY queue (on time out). Later,
when the I/O request is finished, the job is returned to the READY queue. If it was a
time out (quantum interrupt), the job (or process) is already on the READY queue.


Conclusion


The Processor Manager must allocate the CPU among all the system’s users. In this
chapter we’ve made the distinction between job scheduling, the selection of incoming
jobs based on their characteristics, and process scheduling, the instant-by-instant allo-
cation of the CPU. We’ve also described how interrupts are generated and resolved by
the interrupt handler.


Each scheduling algorithm presented in this chapter has unique characteristics, objec-
tives, and applications. A system designer can choose the best policy and algorithm
only after carefully evaluating their strengths and weaknesses. Table 4.1 shows how
the algorithms presented in this chapter compare.


In the next chapter we’ll explore the demands placed on the Processor Manager as it
attempts to synchronize execution of all the jobs in the system.
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Key Terms


aging: a policy used to ensure that jobs that have been in the system for a long time in
the lower-level queues will eventually complete their execution.


context switching: the acts of saving a job’s processing information in its PCB so the
job can be swapped out of memory and of loading the processing information from
the PCB of another job into the appropriate registers so the CPU can process it.
Context switching occurs in all preemptive policies.


CPU-bound: a job that will perform a great deal of nonstop processing before issuing
an interrupt.
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(table 4.1)


Comparison of the scheduling algorithms discussed in this chapter.


Algorithm Policy Type Best for Disadvantages Advantages


FCFS Nonpreemptive Batch Unpredictable turnaround times Easy to implement


SJN Nonpreemptive Batch Indefinite postponement Minimizes average 
of some jobs waiting time


Priority scheduling Nonpreemptive Batch Indefinite postponement Ensures fast completion of
of some jobs important jobs


SRT Preemptive Batch Overhead incurred by Ensures fast completion of 
context switching short jobs


Round robin Preemptive Interactive Requires selection of good Provides reasonable
time quantum response times to interactive


users; provides fair CPU
allocation


Multiple-level queues Preemptive/ Batch/ Overhead incurred by Flexible scheme; counteracts 
Nonpreemptive interactive monitoring of queues indefinite postponement with


aging or other queue move-
ment; gives fair treatment to
CPU-bound jobs by
incrementing time quantums
on lower-priority queues or
other queue movement
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first-come, first-served (FCFS): a nonpreemptive process scheduling policy (or algo-
rithm) that handles jobs according to their arrival time.


high-level scheduler: a synonym for the Job Scheduler.


I/O-bound: a job that requires a large number of input/output operations, resulting in
too much free time for the CPU.


indefinite postponement: signifies that a job’s execution is delayed indefinitely because
it is repeatedly preempted so other jobs can be processed.


interrupt: a hardware signal that suspends execution of a program and activates the
execution of a special program known as the interrupt handler.


interrupt handler: the program that controls what action should be taken by the oper-
ating system when a sequence of events is interrupted.


Job Scheduler: the high-level scheduler of the Processor Manager that selects jobs from
a queue of incoming jobs based on each job’s characteristics.


job status: the condition of a job as it moves through the system from the beginning to
the end of its execution.


low-level scheduler: a synonym for the Process Scheduler.


middle-level scheduler: a scheduler used by the Processor Manager when the system to
remove active processes from memory becomes overloaded. The middle-level scheduler
swaps these processes back into memory when the system overload has cleared.


multiple-level queues: a process scheduling scheme (used with other scheduling algo-
rithms) that groups jobs according to a common characteristic.


multiprogramming: a technique that allows a single processor to process several pro-
grams residing simultaneously in main memory and interleaving their execution by
overlapping I/O requests with CPU requests.


natural wait: a common term used to identify an I/O request from a program in a mul-
tiprogramming environment that would cause a process to wait “naturally” before
resuming execution.


nonpreemptive scheduling policy: a job scheduling strategy that functions without
external interrupts so that once a job captures the processor and begins execution, it
remains in the running state uninterrupted until it issues an I/O request or it’s finished.


preemptive scheduling policy: any process scheduling strategy that, based on predeter-
mined policies, interrupts the processing of a job and transfers the CPU to another job.
It is widely used in time-sharing environments.
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priority scheduling: a nonpreemptive process scheduling policy (or algorithm) that
allows for the execution of high-priority jobs before low-priority jobs.


process: an instance of execution of a program that is identifiable and controllable by
the operating system.


Process Control Block (PCB): a data structure that contains information about the
current status and characteristics of a process.


Process Scheduler: the low-level scheduler of the Processor Manager that establishes
the order in which processes in the READY queue will be served by the CPU.


process scheduling algorithm: an algorithm used by the Job Scheduler to allocate the
CPU and move jobs through the system. 


process scheduling policy: any policy used by the Processor Manager to select the
order in which incoming jobs will be executed.


process status: information stored in the job’s PCB that indicates the current position
of the job and the resources responsible for that status.


processor: (1) a synonym for the CPU, or (2) any component in a computing system
capable of performing a sequence of activities.


program: an interactive unit, such as a file stored on a disk.


queue: a linked list of PCBs that indicates the order in which jobs or processes will be
serviced.


response time: a measure of the efficiency of an interactive system that tracks the speed
with which the system will respond to a user’s command.


round robin: a preemptive process scheduling policy (or algorithm) that allocates to
each job one unit of processing time per turn to ensure that the CPU is equally shared
among all active processes and isn’t monopolized by any one job.


shortest job next (SJN): a nonpreemptive process scheduling policy (or algorithm) that
selects the waiting job with the shortest CPU cycle time. 


shortest remaining time (SRT): a preemptive process scheduling policy (or algorithm)
similar to the SJN algorithm that allocates the processor to the job closest to completion.


task: (1) the term used to describe a process, or (2) the basic unit of concurrent pro-
gramming languages that defines a sequence of instructions that may be executed in
parallel with other similar units.
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thread: a portion of a program that can run independently of other portions.
Multithreaded applications programs can have several threads running at one time
with the same or different priorities.


time quantum: a period of time assigned to a process for execution before it is pre-
empted.


turnaround time: a measure of a system’s efficiency that tracks the time required to
execute a job and return output to the user.


Interesting Searches
• CPU Cycle Time


• Task Control Block (TCB)


• Processor Bottleneck


• Processor Queue Length


• I/O Interrupts


Exercises


Research Topics


A. Multi-core technology can often, but not necessarily always, make applications
run faster. Research some real-life computing environments that are expected
to benefit from multi-core chips and briefly explain why. Cite your academic
sources.


B. Compare two processors currently being produced for personal computers.
Use standard industry benchmarks for your comparison and briefly list the
advantages and disadvantages of each. You can compare different processors
from the same manufacturer (such as two Intel processors) or different
processors from different manufacturers (such as Intel and AMD).


Exercises


1. Figure 4.12 is a simplified process model of you, in which there are only two
states: sleeping and waking. You make the transition from waking to sleep-
ing when you are tired, and from sleeping to waking when the alarm clock
goes off.


a. Add three more states to the diagram (for example, one might be eating).


b. State all of the possible transitions among the five states.
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Exercises


2. Describe context switching in lay terms and identify the process information
that needs to be saved, changed, or updated when context switching takes
place.


3. Five jobs (A, B, C, D, E) are already in the READY queue waiting to be
processed. Their estimated CPU cycles are respectively: 2, 10, 15, 6, and 8.
Using SJN, in what order should they be processed?


4. A job running in a system, with variable time quantums per queue, needs
30 milliseconds to run to completion. If the first queue has a time quantum of
5 milliseconds and each queue thereafter has a time quantum that is twice as
large as the previous one, how many times will the job be interrupted and on
which queue will it finish its execution?


5. Describe the advantages of having a separate queue for Print I/O and for
Disk I/O as illustrated in Figure 4.4.


6. Given the following information:


Job Arrival Time CPU Cycle


A 0 2


B 1 12


C 2 4


D 4 1


E 5 8


F 7 5


G 8 3


Using SJN, draw a timeline showing the time that each job arrives and the
order that each is processed. Calculate the finish time for each job.


Waking Sleeping


Tired


Alarm Clock
Rings


(figure 4.12)


Process model of two


states.
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7. Given the following information:


Job Arrival Time CPU Cycle


A 0 10


B 2 12


C 3 3


D 6 1


E 9 15


Draw a timeline for each of the following scheduling algorithms. (It may be
helpful to first compute a start and finish time for each job.)


a. FCFS


b. SJN


c. SRT


d. Round robin (using a time quantum of 5, ignore context switching and
natural wait)


8. Using the same information from Exercise 7, calculate which jobs will have
arrived ready for processing by the time the first job is finished or interrupted
using each of the following scheduling algorithms.


a. FCFS


b. SJN


c. SRT


d. Round robin (using a time quantum of 5, ignore context switching and
natural wait)


9. Using the same information given for Exercise 7, compute the waiting time and
turnaround time for every job for each of the following scheduling algorithms
(ignoring context switching overhead).


a. FCFS


b. SJN


c. SRT


d. Round robin (using a time quantum of 2)


Advanced Exercises


10. Consider a variation of round robin in which a process that has used its full
time quantum is returned to the end of the READY queue, while one that has
used half of its time quantum is returned to the middle of the queue and one
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that has used one-fourth of its time quantum goes to a place one-fourth of the
distance away from the beginning of the queue.


a. What is the objective of this scheduling policy?


b. Discuss the advantage and disadvantage of its implementation.


11. In a single-user dedicated system, such as a personal computer, it’s easy for the
user to determine when a job is caught in an infinite loop. The typical solution
to this problem is for the user to manually intervene and terminate the job.
What mechanism would you implement in the Process Scheduler to automate
the termination of a job that’s in an infinite loop? Take into account jobs that
legitimately use large amounts of CPU time; for example, one “finding the first
10,000 prime numbers.”


12. Some guidelines for selecting the right time quantum were given in this chapter.
As a system designer, how would you know when you have chosen the best
time quantum? What factors would make this time quantum best from the
user’s point of view? What factors would make this time quantum best from
the system’s point of view?


13. Using the process state diagrams of Figure 4.2, explain why there’s no transition:


a. From the READY state to the WAITING state


b. From the WAITING state to the RUNNING state


Programming Exercises


14. Write a program that will simulate FCFS, SJN, SRT, and round robin scheduling
algorithms. For each algorithm, the program should compute waiting time and
turnaround time of every job as well as the average waiting time and average
turnaround time. The average values should be consolidated in a table for easy
comparison. You may use the following data to test your program. The time
quantum for round robin is 4 milliseconds and the context switching time is 0.


Arrival Time CPU Cycle (in milliseconds)


0 6


3 2


5 1


9 7


10 5


12 3
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14 4


16 5


17 7


19 2


15. Using your program from Exercise 14, change the context switching time to
0.4 milliseconds. Compare outputs from both runs and discuss which would be
the better policy. Describe any drastic changes encountered or a lack of changes
and why.
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Learning Objectives


After completing this chapter, you should be able to describe:


• Several causes of system deadlock and livelock


• The difference between preventing and avoiding deadlocks


• How to detect and recover from deadlocks


• The concept of process starvation and how to detect and recover from it


• The concept of a race and how to prevent it


• The difference between deadlock, starvation, and race
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Chapter 5 Process Management


“We have all heard the story of the animal standing in doubt between
two stacks of hay and starving to death.”


—Abraham Lincoln (1809–1865)


PROCESSOR MANAGER


Deadlock Management Starvation Management


Process Synchronization
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We’ve already looked at resource sharing from two perspectives, that of sharing mem-
ory and sharing one processor, but the processor sharing described thus far was the
best case scenario, free of conflicts and complications. In this chapter, we address the
problems caused when many processes compete for relatively few resources and
the system stops responding as it should and is unable to service all of the processes in
the system.


Let’s look at how a lack of process synchronization can result in two extreme condi-
tions: deadlock or starvation.


In early operating systems, deadlock was known by the more descriptive phrase
“deadly embrace” and that’s exactly what happens when the system freezes. It’s a
system-wide tangle of resource requests that begins when two or more jobs are put on
hold, each waiting for a vital resource to become available. The problem builds when
the resources needed by those jobs are the resources held by other jobs that are also
waiting to run but cannot because they’re waiting for other unavailable resources.
The tangled jobs come to a standstill. The deadlock is complete if the remainder of 
the system comes to a standstill as well. When the situation can’t be resolved by the
operating system, then intervention is required.


A deadlock is most easily described with an example—a narrow staircase in a building
(we’ll return to this example throughout this chapter). The staircase was built as a fire
escape route, but people working in the building often take the stairs instead of
waiting for the slow elevators. Traffic on the staircase moves well unless two people,
traveling in opposite directions, need to pass on the stairs—there’s room for only one
person on each step. In this example, the staircase is the system and the steps and
landings are the resources. There’s a landing between each floor and it’s wide enough
for people to share it, but the stairs are not and can be allocated to only one person at
a time. Problems occur when someone going up the stairs meets someone coming
down, and each refuses to retreat to a wider place. This creates a deadlock, which is
the subject of much of our discussion on process synchronization.


Similarly, if two people on the landing try to pass each other but cannot do so because
as one steps to the right, the other steps to the left, and vice versa, then the 
step-climbers will continue moving but neither will ever move forward. This is called
livelock.


On the other hand, if a few patient people wait on the landing for a break in the
opposing traffic, and that break never comes, they could wait there forever. That
results in starvation, an extreme case of indefinite postponement, and is discussed at
the end of this chapter.
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Deadlock


Deadlock is more serious than indefinite postponement or starvation because it affects
more than one job. Because resources are being tied up, the entire system (not just a few
programs) is affected. The example most often used to illustrate deadlock is a traffic jam.


As shown in Figure 5.1, there’s no simple and immediate solution to a deadlock; no
one can move forward until someone moves out of the way, but no one can move out
of the way until either someone advances or the rear of a line moves back. Obviously
it requires outside intervention to remove one of the four vehicles from an intersection
or to make a line move back. Only then can the deadlock be resolved.


Deadlocks became prevalent with the introduction of interactive systems, which gen-
erally improve the use of resources through dynamic resource sharing, but this capa-
bility also increases the possibility of deadlocks.
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D
eadlock


(figure 5.1)


A classic case of traffic


deadlock on four one-way


streets. This is “gridlock,”


where no vehicles can


move forward to clear the


traffic jam.
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In some computer systems, deadlocks are regarded as a mere inconvenience that causes
delays. But for real-time systems, deadlocks cause critical situations. For example,
a deadlock in a hospital’s life support system or in the guidance system aboard an
aircraft could endanger lives. Regardless of the environment, the operating system
must either prevent deadlocks or resolve them when they happen. In Chapter 12, we’ll
learn how to calculate system reliability and availability, which can be affected by
processor conflicts.


Seven Cases of Deadlock


A deadlock usually occurs when nonsharable, nonpreemptable resources, such as files,
printers, or scanners, are allocated to jobs that eventually require other nonsharable,
nonpreemptive resources—resources that have been locked by other jobs. However,
deadlocks aren’t restricted to files, printers, and scanners. They can also occur on
sharable resources that are locked, such as disks and databases.


Directed graphs visually represent the system’s resources and processes, and show how
they are deadlocked. Using a series of squares (for resources) and circles (for
processes), and connectors with arrows (for requests), directed graphs can be manipu-
lated to understand how deadlocks occur.


Case 1: Deadlocks on File Requests


If jobs are allowed to request and hold files for the duration of their execution, a
deadlock can occur as the simplified directed graph shown in Figure 5.2 graphically
illustrates.
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Sales (P2)Purchasing
(P1)


Inventory
File (F1)


Supplier
File (F2)


(figure 5.2)


Case 1. These two


processes, shown as


circles, are each waiting


for a resource, shown as


rectangles, that has


already been allocated to


the other process, thus


creating a deadlock.
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For example, consider the case of a home construction company with two applica-
tion programs, purchasing (P1) and sales (P2), which are active at the same time.
Both need to access two files, inventory (F1) and suppliers (F2), to read and write
transactions. One day the system deadlocks when the following sequence of events
takes place:


1. Purchasing (P1) accesses the supplier file (F2) to place an order for more 
lumber.


2. Sales (P2) accesses the inventory file (F1) to reserve the parts that will be
required to build the home ordered that day.


3. Purchasing (P1) doesn’t release the supplier file (F2) but requests the inventory
file (F1) to verify the quantity of lumber on hand before placing its order for
more, but P1 is blocked because F1 is being held by P2.


4. Meanwhile, sales (P2) doesn’t release the inventory file (F1) but requests the
supplier file (F2) to check the schedule of a subcontractor. At this point, P2 is
also blocked because F2 is being held by P1. 


Any other programs that require F1 or F2 will be put on hold as long as this situation
continues. This deadlock will remain until one of the two programs is closed or
forcibly removed and its file is released. Only then can the other program continue and
the system return to normal.


Case 2: Deadlocks in Databases


A deadlock can also occur if two processes access and lock records in a database.


To appreciate the following scenario, remember that database queries and transac-
tions are often relatively brief processes that either search or modify parts of a
database. Requests usually arrive at random and may be interleaved arbitrarily.


Locking is a technique used to guarantee the integrity of the data through which the
user locks out all other users while working with the database. Locking can be done at
three different levels: the entire database can be locked for the duration of the request;
a subsection of the database can be locked; or only the individual record can be locked
until the process is completed. Locking the entire database (the most extreme and
most successful solution) prevents a deadlock from occurring but it restricts access to
the database to one user at a time and, in a multiuser environment, response times are
significantly slowed; this is normally an unacceptable solution. When the locking is
performed on only one part of the database, access time is improved but the possi-
bility of a deadlock is increased because different processes sometimes need to work
with several parts of the database at the same time.
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Here’s a system that locks each record when it is accessed until the process is
completed. There are two processes (P1 and P2), each of which needs to update two
records (R1 and R2), and the following sequence leads to a deadlock:


1. P1 accesses R1 and locks it.


2. P2 accesses R2 and locks it.


3. P1 requests R2, which is locked by P2.


4. P2 requests R1, which is locked by P1.


An alternative, of course, is to avoid the use of locks—but that leads to other difficul-
ties. If locks are not used to preserve their integrity, the updated records in the data-
base might include only some of the data—and their contents would depend on the
order in which each process finishes its execution. This is known as a race between
processes and is illustrated in the following example and Figure 5.3.
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(figure 5.3)


Case 2. P1 finishes first


and wins the race but its


version of the record will


soon be overwritten by P2.


Regardless of which


process wins the race, the


final version of the data


will be incorrect.


✔
A race introduces
the element
of chance, an
element that’s
totally
unacceptable
in database
management.
The integrity of
the database must
be upheld.


Let’s say you are a student of a university that maintains most of its files on a database
that can be accessed by several different programs, including one for grades and
another listing home addresses. You’ve just moved so you send the university a change
of address form at the end of the fall term, shortly after grades are submitted. And one
fateful day, both programs race to access your record in the database:


1. The grades process (P1) is the first to access your record (R1), and it copies the
record to its work area.


2. The address process (P2) accesses your record (R1) and copies it to its work area.
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3. P1 changes your student record (R1) by entering your grades for the fall term
and calculating your new grade average.


4. P2 changes your record (R1) by updating the address field.


5. P1 finishes its work first and rewrites its version of your record back to the
database. Your grades have been updated, but your address hasn’t.


6. P2 finishes and rewrites its updated record back to the database. Your address
has been changed, but your grades haven’t. According to the database, you 
didn’t attend school this term.


If we reverse the order and say that P2 won the race, your grades will be updated but
not your address. Depending on your success in the classroom, you might prefer one
mishap over the other; but from the operating system’s point of view, either
alternative is unacceptable because incorrect data is allowed to corrupt the database.
The system can’t allow the integrity of the database to depend on a random sequence
of events.


Case 3: Deadlocks in Dedicated Device Allocation 


The use of a group of dedicated devices, such as a cluster of DVD read/write drives,
can also deadlock the system.


Let’s say two users from the local board of education are each running a program
(P1 and P2), and both programs will eventually need two DVD drivers to copy files
from one disc to another. The system is small, however, and when the two programs
are begun, only two DVD-R drives are available and they’re allocated on an “as
requested” basis. Soon the following sequence transpires:


1. P1 requests drive 1 and gets it.


2. P2 requests drive 2 and gets it.


3. P1 requests drive 2 but is blocked.


4. P2 requests drive 1 but is blocked.


Neither job can continue because each is waiting for the other to finish and release its
drive—an event that will never occur. A similar series of events could deadlock any
group of dedicated devices.


Case 4: Deadlocks in Multiple Device Allocation 


Deadlocks aren’t restricted to processes contending for the same type of device; they
can happen when several processes request, and hold on to, several dedicated devices
while other processes act in a similar manner as shown in Figure 5.4.
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Consider the case of an engineering design firm with three programs (P1, P2, and P3)
and three dedicated devices: scanner, printer, and plotter. The following sequence of
events will result in deadlock:


1. P1 requests and gets the scanner.


2. P2 requests and gets the printer.


3. P3 requests and gets the plotter.


4. P1 requests the printer but is blocked.


5. P2 requests the plotter but is blocked.


6. P3 requests the scanner but is blocked.


As in the earlier examples, none of the jobs can continue because each is waiting for a
resource being held by another.


Case 5: Deadlocks in Spooling 


Although in the previous example the printer was a dedicated device, printers are usu-
ally sharable devices, called virtual devices, that use high-speed storage to transfer data
between it and the CPU. The spooler accepts output from several users and acts as a
temporary storage area for all output until the printer is ready to accept it. This process
is called spooling. If the printer needs all of a job’s output before it will begin printing,
but the spooling system fills the available space with only partially completed output,
then a deadlock can occur. It happens like this.


Let’s say it’s one hour before the big project is due for a computer class. Twenty-six
frantic programmers key in their final changes and, with only minutes to spare, all issue
print commands. The spooler receives the pages one at a time from each of the students
but the pages are received separately, several page ones, page twos, etc. The printer is
ready to print the first completed document it gets, but as the spooler canvasses its files
it has the first page for many programs but the last page for none of them. Alas, the
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Case 4. Three processes,


shown as circles, are


each waiting for a device


that has already been


allocated to another


process, thus creating a


deadlock.
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spooler is full of partially completed output so no other pages can be accepted, but none
of the jobs can be printed out (which would release their disk space) because the printer
only accepts completed output files. It’s an unfortunate state of affairs.


This scenario isn’t limited to printers. Any part of the system that relies on spooling,
such as one that handles incoming jobs or transfers files over a network, is vulnerable
to such a deadlock.


Case 6: Deadlocks in a Network 


A network that’s congested or has filled a large percentage of its I/O buffer space can
become deadlocked if it doesn’t have protocols to control the flow of messages
through the network as shown in Figure 5.5.
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C5C6


C7 C4 C3


C1
with buffer


C2
with bufferDEADLOCKED


(figure 5.5)


Case 6, deadlocked


network flow. Notice that


only two nodes, C1 and


C2, have buffers. Each


circle represents a node


and each line represents a


communication path. The


arrows indicate the


direction of data flow.


For example, a medium-sized word-processing center has seven computers on a
network, each on different nodes. C1 receives messages from nodes C2, C6, and C7
and sends messages to only one: C2. C2 receives messages from nodes C1, C3, and C4
and sends messages to only C1 and C3. The direction of the arrows in Figure 5.5
indicates the flow of messages.


Messages received by C1 from C6 and C7 and destined for C2 are buffered in an
output queue. Messages received by C2 from C3 and C4 and destined for C1 are
buffered in an output queue. As the traffic increases, the length of each output queue
increases until all of the available buffer space is filled. At this point C1 can’t accept
any more messages (from C2 or any other computer) because there’s no more buffer
space available to store them. For the same reason, C2 can’t accept any messages from
C1 or any other computer, not even a request to send. The communication path
between C1 and C2 becomes deadlocked; and because C1 can’t send messages to any
other computer except C2 and can only receive messages from C6 and C7, those
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routes also become deadlocked. C1 can’t send word to C2 about the problem and so
the deadlock can’t be resolved without outside intervention.


Case 7: Deadlocks in Disk Sharing 


Disks are designed to be shared, so it’s not uncommon for two processes to be accessing
different areas of the same disk. This ability to share creates an active type of deadlock,
known as livelock. Processes use a form of busy-waiting that’s different from a natural
wait. In this case, it’s waiting to share a resource but never actually gains control of it.
In Figure 5.6, two competing processes are sending conflicting commands, causing
livelock. Notice that neither process is blocked, which would cause a deadlock.
Instead, each is active but never reaches fulfillment.
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Disk Control Unit


20


310


I/O Channel
Read record at track 20


Main Memory


P1


Write to file at track 310P2


Disk


(figure 5.6)


Case 7. Two processes are


each waiting for an I/O


request to be filled: one at


track 20 and one at track


310. But by the time the


read/write arm reaches one


track, a competing com-


mand for the other track


has been issued, so neither


command is satisfied and


livelock occurs. 


For example, at an insurance company the system performs many daily transactions.
One day the following series of events ties up the system:


1. Customer Service (P1) wishes to show a payment so it issues a command to
read the balance, which is stored on track 20 of a disk.


2. While the control unit is moving the arm to track 20, P1 is put on hold and the
I/O channel is free to process the next I/O request.


3. While the arm is moving into position, Accounts Payable (P2) gains control
of the I/O channel and issues a command to write someone else’s payment to
a record stored on track 310. If the command is not “locked out,” P2 will be
put on hold while the control unit moves the arm to track 310.


4. Because P2 is “on hold” while the arm is moving, the channel can be captured
again by P1, which reconfirms its command to “read from track 20.”


5. Because the last command from P2 had forced the arm mechanism to track 310,
the disk control unit begins to reposition the arm to track 20 to satisfy P1. The I/O
channel would be released because P1 is once again put on hold, so it could be
captured by P2, which issues a WRITE command only to discover that the arm
mechanism needs to be repositioned.
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As a result, the arm is in a constant state of motion, moving back and forth between
tracks 20 and 310 as it responds to the two competing commands, but satisfies neither.


Conditions for Deadlock


In each of these seven cases, the deadlock (or livelock) involved the interaction of
several processes and resources, but each deadlock was preceded by the simultaneous
occurrence of four conditions that the operating system (or other systems) could have
recognized: mutual exclusion, resource holding, no preemption, and circular wait. It’s
important to remember that each of these four conditions is necessary for the
operating system to work smoothly. None of them can be removed easily without
causing the system’s overall functioning to suffer. Therefore, the system needs to
recognize the combination of conditions before they occur and threaten to cause the
system to lock up.


To illustrate these four conditions, let’s revisit the staircase example from the
beginning of the chapter to identify the four conditions required for a deadlock.


When two people meet between landings, they can’t pass because the steps can
hold only one person at a time. Mutual exclusion, the act of allowing only one
person (or process) to have access to a step (a dedicated resource), is the first
condition for deadlock.


When two people meet on the stairs and each one holds ground and waits for the
other to retreat, that is an example of resource holding (as opposed to resource shar-
ing), the second condition for deadlock.


In this example, each step is dedicated to the climber (or the descender); it is allocated
to the holder for as long as needed. This is called no preemption, the lack of temporary
reallocation of resources, and is the third condition for deadlock.


These three lead to the fourth condition of circular wait in which each person (or
process) involved in the impasse is waiting for another to voluntarily release the step
(or resource) so that at least one will be able to continue on and eventually arrive at
the destination.


All four conditions are required for the deadlock to occur, and as long as all four
conditions are present the deadlock will continue; but if one condition can be
removed, the deadlock will be resolved. In fact, if the four conditions can be prevented
from ever occurring at the same time, deadlocks can be prevented. Although this con-
cept is obvious, it isn’t easy to implement.
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eadlock


✔
When a deadlock
occurs, all four
conditions are
present, though
the opposite is not
true—the presence
of all four
conditions does
not always lead to
deadlock.
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Modeling Deadlocks


Holt showed how the four conditions can be modeled using directed graphs. (We
used modified directed graphs in Figure 5.2 and Figure 5.4.) These graphs use two
kinds of symbols: processes represented by circles and resources represented by
squares. A solid arrow from a resource to a process, shown in Figure 5.7(a), means
that the process is holding that resource. A dashed line with an arrow from a process
to a resource, shown in Figure 5.7(b), means that the process is waiting for that
resource. The direction of the arrow indicates the flow. If there’s a cycle in the graph
then there’s a deadlock involving the processes and the resources in the cycle.
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(a) (b)


Resource 1


Process 1 Process 2


Resource 2


Resource 1


Process 1 Process 2


Resource 2


(figure 5.7)


In (a), Resource 1 is being


held by Process 1 and


Resource 2 is held by


Process 2 in a system that


is not deadlocked. In


(b), Process 1 requests


Resource 2 but doesn’t


release Resource 1, and


Process 2 does the same —


creating a deadlock. (If one


process released its


resource, the deadlock


would be resolved.)
The following system has three processes—P1, P2, P3—and three resources—R1, R2,
R3—each of a different type: printer, disk drive, and plotter. Because there is no
specified order in which the requests are handled, we’ll look at three different possible
scenarios using graphs to help us detect any deadlocks.


Scenario 1


The first scenario’s sequence of events is shown in Table 5.1. The directed graph is
shown in Figure 5.8.


Event Action


1 P1 requests and is allocated the printer R1.


2 P1 releases the printer R1.


3 P2 requests and is allocated the disk drive R2.


4 P2 releases the disk R2.


5 P3 requests and is allocated the plotter R3.


6 P3 releases the plotter R3.


(table 5.1)


First scenario’s sequence


of events is shown in 


the directed graph in


Figure 5.8.
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Notice in the directed graph that there are no cycles. Therefore, we can safely conclude
that a deadlock can’t occur even if each process requests every resource if the resources
are released before the next process requests them.
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(figure 5.9)


Second scenario. The


system (a) becomes


deadlocked (b) when P3


requests R1. Notice the


circular wait.


(table 5.2)


The second scenario’s


sequence of events


is shown in the two


directed graphs shown


in Figure 5.9. 


R1


(b)(a)
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P2
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P1


R2


2


P2


R3


3


P3


6


4 54 5


Scenario 2


Now, consider a second scenario’s sequence of events shown in Table 5.2. 


Event Action


1 P1 requests and is allocated R1.


2 P2 requests and is allocated R2.


3 P3 requests and is allocated R3.


4 P1 requests R2.


5 P2 requests R3.


6 P3 requests R1.


The progression of the directed graph is shown in Figure 5.9. A deadlock occurs because
every process is waiting for a resource that is being held by another process, but none
will be released without intervention.


(figure 5.8)


First scenario. The system


will stay free of deadlocks


if each resource is released


before it is requested by


the next process.
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Scenario 3


The third scenario is shown in Table 5.3. As shown in Figure 5.10, the resources are
released before deadlock can occur.


Event Action


1 P1 requests and is allocated R1.


2 P1 requests and is allocated R2.


3 P2 requests R1.


4 P3 requests and is allocated R3.


5 P1 releases R1, which is allocated to P2.


6 P3 requests R2.


7 P1 releases R2, which is allocated to P3.
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P3
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R1


(b)(a)
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P2


R3


4


P3
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P1
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R3


4


P3


5


22


6


3 (figure 5.10)


The third scenario. After


event 4, the directed


graph looks like (a) and


P2 is blocked because P1


is holding on to R1.


However, event 5 breaks


the deadlock and the


graph soon looks like (b).


Again there is a blocked


process, P3, which must


wait for the release of R2


in event 7 when the graph


looks like (c).


(table 5.3)


The third scenario’s


sequence of events is


shown in the directed


graph in Figure 5.10.
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Another Example


The examples presented so far have examined cases in which one or more resources of
different types were allocated to a process. However, the graphs can be expanded to
include several resources of the same type, such as tape drives, which can be allocated
individually or in groups to the same process. These graphs cluster the devices of the
same type into one entity, shown in Figure 5.11 as a rectangle, and the arrows show
the links between the single resource and the processes using it.


Figure 5.11 gives an example of a cluster with three resources of the same type, such
as three disk drives, each allocated to a different process. Although Figure 5.11(a)
seems to be stable (no deadlock can occur), this is not the case because if all three
processes request one more resource without releasing the one they are using, then
deadlock will occur as shown in Figure 5.11(b).
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(figure 5.11)


(a): A fully allocated


cluster of resources. There


are as many lines coming


out of it as there are


resources, units, in it. The


state of (a) is uncertain


because a request for


another unit by all three


processes would create a


deadlock as shown in (b).


(a)


P1 P2 P3


1 2 3


(b)


P1 P2 P3


Strategies for Handling Deadlocks


As these examples show, the requests and releases are received in an unpredictable
order, which makes it very difficult to design a foolproof preventive policy. In general,
operating systems use one of three strategies to deal with deadlocks:


• Prevent one of the four conditions from occurring (prevention).


• Avoid the deadlock if it becomes probable (avoidance).


• Detect the deadlock when it occurs and recover from it gracefully (detection).


Prevention


To prevent a deadlock, the operating system must eliminate one of the four necessary
conditions, a task complicated by the fact that the same condition can’t be eliminated
from every resource.
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Mutual exclusion is necessary in any computer system because some resources such as
memory, CPU, and dedicated devices must be exclusively allocated to one user at a time.
In the case of I/O devices, such as printers, the mutual exclusion may be bypassed by
spooling, which allows the output from many jobs to be stored in separate temporary
spool files at the same time, and each complete output file is then selected for printing
when the device is ready. However, we may be trading one type of deadlock (Case 3:
Deadlocks in Dedicated Device Allocation) for another (Case 5: Deadlocks in Spooling).


Resource holding, where a job holds on to one resource while waiting for another one
that’s not yet available, could be sidestepped by forcing each job to request, at creation
time, every resource it will need to run to completion. For example, if every job in a
batch system is given as much memory as it needs, then the number of active jobs will
be dictated by how many can fit in memory—a policy that would significantly
decrease the degree of multiprogramming. In addition, peripheral devices would be
idle because they would be allocated to a job even though they wouldn’t be used all
the time. As we’ve said before, this was used successfully in batch environments
although it reduced the effective use of resources and restricted the amount of
multiprogramming. But it doesn’t work as well in interactive systems.


No preemption could be bypassed by allowing the operating system to deallocate
resources from jobs. This can be done if the state of the job can be easily saved and
restored, as when a job is preempted in a round robin environment or a page is swapped
to secondary storage in a virtual memory system. On the other hand, preemption of a
dedicated I/O device (printer, plotter, tape drive, and so on), or of files during the modi-
fication process, can require some extremely unpleasant recovery tasks.


Circular wait can be bypassed if the operating system prevents the formation of a
circle. One such solution was proposed by Havender and is based on a numbering
system for the resources such as: printer = 1, disk = 2, tape = 3, plotter = 4, and so on.
The system forces each job to request its resources in ascending order: any “number
one” devices required by the job would be requested first; any “number two” devices
would be requested next; and so on. So if a job needed a printer and then a plotter, it
would request them in this order: printer (#1) first and then the plotter (#4). If the job
required the plotter first and then the printer, it would still request the printer first
(which is a #1) even though it wouldn’t be used right away. A job could request a
printer (#1) and then a disk (#2) and then a tape (#3); but if it needed another printer
(#1) late in its processing, it would still have to anticipate that need when it requested
the first one, and before it requested the disk.


This scheme of “hierarchical ordering” removes the possibility of a circular wait and
therefore guarantees the removal of deadlocks. It doesn’t require that jobs state their
maximum needs in advance, but it does require that the jobs anticipate the order in
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which they will request resources. From the perspective of a system designer, one of
the difficulties of this scheme is discovering the best order for the resources so that
the needs of the majority of the users are satisfied. Another difficulty is that of
assigning a ranking to nonphysical resources such as files or locked database records
where there is no basis for assigning a higher number to one over another.


Avoidance


Even if the operating system can’t remove one of the conditions for deadlock, it can
avoid one if the system knows ahead of time the sequence of requests associated with
each of the active processes. As was illustrated in the graphs presented in Figure 5.7
through Figure 5.11, there exists at least one allocation of resources sequence that will
allow jobs to continue without becoming deadlocked.


One such algorithm was proposed by Dijkstra in 1965 to regulate resource allocation
to avoid deadlocks. The Banker’s Algorithm is based on a bank with a fixed amount
of capital that operates on the following principles:


• No customer will be granted a loan exceeding the bank’s total capital.


• All customers will be given a maximum credit limit when opening an account.


• No customer will be allowed to borrow over the limit.


• The sum of all loans won’t exceed the bank’s total capital.


Under these conditions, the bank isn’t required to have on hand the total of all
maximum lending quotas before it can open up for business (we’ll assume the bank
will always have the same fixed total and we’ll disregard interest charged on loans).
For our example, the bank has a total capital fund of $10,000 and has three cus-
tomers, C1, C2, and C3, who have maximum credit limits of $4,000, $5,000, and
$8,000, respectively. Table 5.4 illustrates the state of affairs of the bank after some
loans have been granted to C2 and C3. This is called a safe state because the bank still
has enough money left to satisfy the maximum requests of C1, C2, or C3.


Customer Loan Amount Maximum Credit Remaining Credit


C1 0 4,000 4,000


C2 2,000 5,000 3,000


C3 4,000 8,000 4,000


Total loaned: $6,000


Total capital fund: $10,000
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(table 5.4)


The bank started with


$10,000 and has remain-


ing capital of $4,000 after


these loans. Therefore, it’s


in a “safe state.”


✔
To remain in a
safe state, the
bank has to have
sufficient funds to
satisfy the needs
of at least one
customer. 
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A few weeks later after more loans have been made, and some have been repaid, the
bank is in the unsafe state represented in Table 5.5.


Customer Loan Amount Maximum Credit Remaining Credit


C1 2,000 4,000 2,000


C2 3,000 5,000 2,000


C3 4,000 8,000 4,000


Total loaned: $9,000 


Total capital fund: $10,000


This is an unsafe state because with only $1,000 left, the bank can’t satisfy anyone’s
maximum request; and if the bank lent the $1,000 to anyone, then it would be
deadlocked (it can’t make a loan). An unsafe state doesn’t necessarily lead to deadlock,
but it does indicate that the system is an excellent candidate for one. After all, none of
the customers is required to request the maximum, but the bank doesn’t know the
exact amount that will eventually be requested; and as long as the bank’s capital is less
than the maximum amount available for individual loans, it can’t guarantee that it will
be able to fill every loan request.


If we substitute jobs for customers and dedicated devices for dollars, we can apply the
same banking principles to an operating system. In this example the system has 10 devices.


Table 5.6 shows our system in a safe state and Table 5.7 depicts the same system in an
unsafe state. As before, a safe state is one in which at least one job can finish because
there are enough available resources to satisfy its maximum needs. Then, using the
resources released by the finished job, the maximum needs of another job can be filled
and that job can be finished, and so on until all jobs are done.


Job No. Devices Allocated Maximum Required Remaining Needs


1 0 4 4


2 2 5 3


3 4 8 4


Total number of devices allocated: 6


Total number of devices in system: 10
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(table 5.6)


Resource assignments


after initial allocations. A


safe state: Six devices are


allocated and four units


are still available.


(table 5.5)


The bank only has


remaining capital of


$1,000 after these loans


and therefore is in an


“unsafe state.”
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Job No. Devices Allocated Maximum Required Remaining Needs


1 2 4 2


2 3 5 2


3 4 8 4


Total number of devices allocated: 9


Total number of devices in system: 10


The operating system must be sure never to satisfy a request that moves it from a safe
state to an unsafe one. Therefore, as users’ requests are satisfied, the operating system
must identify the job with the smallest number of remaining resources and make sure that
the number of available resources is always equal to, or greater than, the number needed
for this job to run to completion. Requests that would place the safe state in jeopardy
must be blocked by the operating system until they can be safely accommodated. 


If this elegant solution is expanded to work with several classes of resources, the
system sets up a “resource assignment table” for each type of resource and tracks each
table to keep the system in a safe state.


Although the Banker’s Algorithm has been used to avoid deadlocks in systems with a
few resources, it isn’t always practical for most systems for several reasons:


• As they enter the system, jobs must predict the maximum number of resources
needed. As we’ve said before, this isn’t practical in interactive systems.


• The number of total resources for each class must remain constant. If a device
breaks and becomes suddenly unavailable, the algorithm won’t work (the system
may already be in an unsafe state).


• The number of jobs must remain fixed, something that isn’t possible in interactive
systems where the number of active jobs is constantly changing.


• The overhead cost incurred by running the avoidance algorithm can be quite high
when there are many active jobs and many devices because it has to be invoked for
every request.


• Resources aren’t well utilized because the algorithm assumes the worst case and, as
a result, keeps vital resources unavailable to guard against unsafe states.


• Scheduling suffers as a result of the poor utilization and jobs are kept waiting for
resource allocation. A steady stream of jobs asking for a few resources can cause the
indefinite postponement of a more complex job requiring many resources.


Detection


The directed graphs presented earlier in this chapter showed how the existence of a
circular wait indicated a deadlock, so it’s reasonable to conclude that deadlocks can
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✔
If the system is
always kept in a
safe state, all
requests will
eventually be
satisfied and
a deadlock will be
avoided.


(table 5.7)


Resource assignments


after later allocations. An


unsafe state: Only one


unit is available but every


job requires at least two to


complete its execution.
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be detected by building directed resource graphs and looking for cycles. Unlike the
avoidance algorithm, which must be performed every time there is a request, the
algorithm used to detect circularity can be executed whenever it is appropriate: every
hour, once a day, only when the operator notices that throughput has deteriorated, or
when an angry user complains.


The detection algorithm can be explained by using directed resource graphs and
“reducing” them. Begin with a system that is in use, as shown in Figure 5.12(a). The
steps to reduce a graph are these:


1. Find a process that is currently using a resource and not waiting for one. This
process can be removed from the graph (by disconnecting the link tying the
resource to the process, such as P3 in Figure 5.12(b)), and the resource can be
returned to the “available list.” This is possible because the process would
eventually finish and return the resource.


2. Find a process that’s waiting only for resource classes that aren’t fully allocated
(such as P2 in Figure 5.12(c)). This process isn’t contributing to deadlock since
it would eventually get the resource it’s waiting for, finish its work, and return
the resource to the “available list” as shown in Figure 5.12(c).”


3. Go back to step 1 and continue with steps 1 and 2 until all lines connecting
resources to processes have been removed, eventually reaching the stage shown
in Figure 5.12(d).


If there are any lines left, this indicates that the request of the process in question can’t
be satisfied and that a deadlock exists. Figure 5.12 illustrates a system in which three
processes—P1, P2, and P3—and three resources—R1, R2, and R3—aren’t deadlocked.
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(figure 5.12)


This system is 


deadlock-free because


the graph can be


completely reduced, as


shown in (d).


(a) (b)


(c) (d)
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(figure 5.13)


Even after this graph (a) is


reduced as much as


possible (by removing the


request from P3), it is still


deadlocked (b).


Figure 5.12 shows the stages of a graph reduction from (a), the original state. In (b),
the link between P3 and R3 can be removed because P3 isn’t waiting for any other
resources to finish, so R3 is released and allocated to P2 (step 1). In (c), the links
between P2 and R3 and between P2 and R2 can be removed because P2 has all of its
requested resources and can run to completion—and then R2 can be allocated to P1.
Finally, in (d), the links between P1 and R2 and between P1 and R1 can be removed
because P1 has all of its requested resources and can finish successfully. Therefore, the
graph is completely resolved. However, Figure 5.13 shows a very similar situation that
is deadlocked because of a key difference: P2 is linked to R1.


The deadlocked system in Figure 5.13 can’t be reduced. In (a), the link between P3 and
R3 can be removed because P3 isn’t waiting for any other resource, so R3 is released
and allocated to P2. But in (b), P2 has only two of the three resources it needs to finish
and it is waiting for R1. But R1 can’t be released by P1 because P1 is waiting for R2,
which is held by P2; moreover, P1 can’t finish because it is waiting for P2 to finish (and
release R2), and P2 can’t finish because it’s waiting for R1. This is a circular wait.


Recovery


Once a deadlock has been detected, it must be untangled and the system returned to
normal as quickly as possible. There are several recovery algorithms, but they all have
one feature in common: They all require at least one victim, an expendable job, which,
when removed from the deadlock, will free the system. Unfortunately for the victim,
removal generally requires that the job be restarted from the beginning or from a
convenient midpoint.


C7047_05_Ch05.qxd  1/12/10  4:50 PM  Page 159








The first and simplest recovery method, and the most drastic, is to terminate every job
that’s active in the system and restart them from the beginning.


The second method is to terminate only the jobs involved in the deadlock and ask their
users to resubmit them.


The third method is to identify which jobs are involved in the deadlock and terminate
them one at a time, checking to see if the deadlock is eliminated after each removal,
until the deadlock has been resolved. Once the system is freed, the remaining jobs are
allowed to complete their processing and later the halted jobs are started again from
the beginning.


The fourth method can be put into effect only if the job keeps a record, a snapshot, of
its progress so it can be interrupted and then continued without starting again from
the beginning of its execution. The snapshot is like the landing in our staircase
example: Instead of forcing the deadlocked stair climbers to return to the bottom of
the stairs, they need to retreat only to the nearest landing and wait until the others
have passed. Then the climb can be resumed. In general, this method is favored for
long-running jobs to help them make a speedy recovery.


Until now we’ve offered solutions involving the jobs caught in the deadlock. The next
two methods concentrate on the nondeadlocked jobs and the resources they hold. One
of them, the fifth method in our list, selects a nondeadlocked job, preempts the resources
it’s holding, and allocates them to a deadlocked process so it can resume execution, thus
breaking the deadlock. The sixth method stops new jobs from entering the system,
which allows the nondeadlocked jobs to run to completion so they’ll release their
resources. Eventually, with fewer jobs in the system, competition for resources is
curtailed so the deadlocked processes get the resources they need to run to completion.
This method is the only one listed here that doesn’t rely on a victim, and it’s not
guaranteed to work unless the number of available resources surpasses that needed by at
least one of the deadlocked jobs to run (this is possible with multiple resources).


Several factors must be considered to select the victim that will have the least-negative
effect on the system. The most common are:


• The priority of the job under consideration—high-priority jobs are usually untouched


• CPU time used by the job—jobs close to completion are usually left alone


• The number of other jobs that would be affected if this job were selected as the victim


In addition, programs working with databases also deserve special treatment because a
database that is only partially updated is only partially correct. Therefore, jobs that are
modifying data shouldn’t be selected for termination because the consistency and valid-
ity of the database would be jeopardized. Fortunately, designers of many database sys-
tems have included sophisticated recovery mechanisms so damage to the database is
minimized if a transaction is interrupted or terminated before completion.
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Starvation


So far we have concentrated on deadlocks, the result of liberal allocation of resources.
At the opposite end is starvation, the result of conservative allocation of resources
where a single job is prevented from execution because it’s kept waiting for resources
that never become available. To illustrate this, the case of the dining philosophers
problem was introduced by Dijkstra in 1968.


Five philosophers are sitting at a round table, each deep in thought, and in the cen-
ter lies a bowl of spaghetti that is accessible to everyone. There are forks on the
table—one between each philosopher, as illustrated in Figure 5.14. Local custom
dictates that each philosopher must use two forks, the forks on either side of the plate,
to eat the spaghetti, but there are only five forks—not the 10 it would require for all
five thinkers to eat at once—and that’s unfortunate for Philosopher 2.


When they sit down to dinner, Philosopher 1 (P1) is the first to take the two forks
(F1 and F5) on either side of the plate and begins to eat. Inspired by his colleague,
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Starvation


(figure 5.14)


The dining philosophers’


table, before the meal


begins.


✔
While deadlock
affects system-
wide performance,
starvation affects
individual jobs or
processes. To find
the starved tasks,
the system
monitors the
waiting times for
PCBs in the
WAITING queues. 
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Philosopher 3 (P3) does likewise, using F2 and F3. Now Philosopher 2 (P2) decides to
begin the meal but is unable to start because no forks are available: F1 has been
allocated to P1, and F2 has been allocated to P3, and the only remaining fork can be
used only by P4 or P5. So (P2) must wait.


Soon, P3 finishes eating, puts down his two forks, and resumes his pondering. Should
the fork beside him (F2), that’s now free, be allocated to the hungry philosopher (P2)?
Although it’s tempting, such a move would be a bad precedent because if the philoso-
phers are allowed to tie up resources with only the hope that the other required
resource will become available, the dinner could easily slip into an unsafe state; it
would be only a matter of time before each philosopher held a single fork—and nobody
could eat. So the resources are allocated to the philosophers only when both forks are
available at the same time. The status of the “system” is illustrated in Figure 5.15.


P4 and P5 are quietly thinking and P1 is still eating when P3 (who should be full)
decides to eat some more; and because the resources are free, he is able to take F2 and
F3 once again. Soon thereafter, P1 finishes and releases F1 and F5, but P2 is still not
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(figure 5.15)


Each philosopher must


have both forks to begin


eating, the one on the


right and the one on the


left. Unless the resources,


the forks, are allocated


fairly, some philosophers


may starve.
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able to eat because F2 is now allocated. This scenario could continue forever; and as
long as P1 and P3 alternate their use of the available resources, P2 must wait. P1 and
P3 can eat any time they wish while P2 starves—only inches from nourishment.


In a computer environment, the resources are like forks and the competing processes
are like dining philosophers. If the resource manager doesn’t watch for starving
processes and jobs, and plan for their eventual completion, they could remain in the
system forever waiting for the right combination of resources.


To address this problem, an algorithm designed to detect starving jobs can be
implemented, which tracks how long each job has been waiting for resources (this is the
same as aging, described in Chapter 4). Once starvation has been detected, the system
can block new jobs until the starving jobs have been satisfied. This algorithm must be
monitored closely: If monitoring is done too often, then new jobs will be blocked too
frequently and throughput will be diminished. If it’s not done often enough, then starv-
ing jobs will remain in the system for an unacceptably long period of time.


Conclusion


Every operating system must dynamically allocate a limited number of resources while
avoiding the two extremes of deadlock and starvation.


In this chapter we discussed several methods of dealing with livelocks and deadlocks:
prevention, avoidance, and detection and recovery. Deadlocks can be prevented by not
allowing the four conditions of a deadlock to occur in the system at the same time. By
eliminating at least one of the four conditions (mutual exclusion, resource holding, no
preemption, and circular wait), the system can be kept deadlock-free. As we’ve seen,
the disadvantage of a preventive policy is that each of these conditions is vital to
different parts of the system at least some of the time, so prevention algorithms are
complex and to routinely execute them involves high overhead.


Deadlocks can be avoided by clearly identifying safe states and unsafe states and
requiring the system to keep enough resources in reserve to guarantee that all jobs
active in the system can run to completion. The disadvantage of an avoidance policy is
that the system’s resources aren’t allocated to their fullest potential.


If a system doesn’t support prevention or avoidance, then it must be prepared to detect
and recover from the deadlocks that occur. Unfortunately, this option usually relies on
the selection of at least one “victim”—a job that must be terminated before it finishes
execution and restarted from the beginning.


In the next chapter, we’ll look at problems related to the synchronization of processes
in a multiprocessing environment.


163


Conclusion


C7047_05_Ch05.qxd  1/12/10  4:50 PM  Page 163








Key Terms


avoidance: the dynamic strategy of deadlock avoidance that attempts to ensure that
resources are never allocated in such a way as to place a system in an unsafe state.


circular wait: one of four conditions for deadlock through which each process
involved is waiting for a resource being held by another; each process is blocked and
can’t continue, resulting in deadlock.


deadlock: a problem occurring when the resources needed by some jobs to finish
execution are held by other jobs, which, in turn, are waiting for other resources to
become available. Also called deadly embrace.


detection: the process of examining the state of an operating system to determine
whether a deadlock exists.


directed graphs: a graphic model representing various states of resource allocations.


livelock: a locked system whereby two (or more) processes continually block the
forward progress of the others without making any forward progress themselves. It is
similar to a deadlock except that neither process is blocked or obviously waiting; both
are in a continuous state of change.


locking: a technique used to guarantee the integrity of the data in a database through
which the user locks out all other users while working with the database.


mutual exclusion: one of four conditions for deadlock in which only one process is
allowed to have access to a resource.


no preemption: one of four conditions for deadlock in which a process is allowed to
hold on to resources while it is waiting for other resources to finish execution.


prevention: a design strategy for an operating system where resources are managed in
such a way that some of the necessary conditions for deadlock do not hold.


process synchronization: (1) the need for algorithms to resolve conflicts between
processors in a multiprocessing environment; or (2) the need to ensure that events
occur in the proper order even if they are carried out by several processes.


race: a synchronization problem between two processes vying for the same resource. 


recovery: the steps that must be taken, when deadlock is detected, by breaking the
circle of waiting processes.


resource holding: one of four conditions for deadlock in which each process refuses to
relinquish the resources it holds until its execution is completed even though it isn’t
using them because it’s waiting for other resources. 


safe state: the situation in which the system has enough available resources to
guarantee the completion of at least one job running on the system.
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spooling: a technique developed to speed I/O by collecting in a disk file either input
received from slow input devices or output going to slow output devices, such as printers. 


starvation: the result of conservative allocation of resources in which a single job is pre-
vented from execution because it’s kept waiting for resources that never become available.


unsafe state: a situation in which the system has too few available resources to guar-
antee the completion of at least one job running on the system. It can lead to deadlock.


victim: an expendable job that is selected for removal from a deadlocked system to
provide more resources to the waiting jobs and resolve the deadlock.


Interesting Searches
• False Deadlock Detection


• Starvation and Livelock Detection


• Distributed Deadlock Detection


• Deadlock Resolution Algorithms


• Operating System Freeze


Exercises


Research Topics


A. In Chapter 3 we discussed the problem of thrashing. Research current literature
to investigate the role of deadlock and any resulting thrashing. Discuss how you
would begin to quantify the cost to the system (in terms of throughput and
performance) of deadlock-caused thrashing. Cite your sources.


B. Research the problem of livelock in a networked environment. Describe how it
differs from deadlock and give an example of the problem. Identify at least two
different methods the operating system could use to detect and resolve livelock.
Cite your sources.


Exercises


1. Give a computer system example (different from the one described in this
chapter) of a race that would yield a different result depending on the order of
processing.


2. Give at least two “real life” examples (not related to a computer system
environment) of each of these concepts: deadlock, starvation, and race.
Describe how the deadlocks can be resolved.
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3. Select one example of deadlock from Exercise 2 and identify which elements of
the deadlock represent the four necessary conditions for all deadlocks.


4. Describe the fate of the “victim” in deadlock resolution. Describe the actions
required to complete the victim’s tasks.


5. Using the narrow staircase example from the beginning of this chapter, create a
list of actions or tasks that would allow people to use the staircase without
causing deadlock or starvation.


6. Figure 5.16 shows a tunnel going through a mountain and two streets parallel
to each other—one at each end of the tunnel. Traffic lights are located at each
end of the tunnel to control the cross flow of traffic through each intersection.
Based on this figure, answer the following questions:


a. How can deadlock occur and under what circumstances?


b. How can deadlock be detected?


c. Give a solution to prevent deadlock and starvation.
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Independence
Tunnel


Mount George


(Figure 5.16)


Traffic flow diagram for


Exercise 6.


7. Consider the directed resource graph shown in Figure 5.17 and answer the fol-
lowing questions:


a. Are there any blocked processes?


b. Is this system deadlocked?


c. What is the resulting graph after reduction by P1?


d. What is the resulting graph after reduction by P2?
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e. If Both P1 and P2 have requested R2, answer these questions:


1. What is the status of the system if the request by P2 is granted before
that of P1?


2. What is the status of the system if the request by P1 is granted before
that of P2?
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(Figure 5.18)


Directed resource graph


for Exercise 8.


8. Consider the directed resource graph shown in Figure 5.18, and answer the fol-
lowing questions:


a. Identify all of the deadlocked processes.


b. Can the directed graph be reduced, partially or totally?


c. Can the deadlock be resolved without selecting a victim?


d. Which requests by the three processes for resources from R2 would you
satisfy to minimize the number of processes involved in the deadlock?


e. Conversely, which requests by the three processes for resources from R2
would you satisfy to maximize the number of processes involved in
deadlock?


(Figure 5.17)
Directed resource graph


for Exercise 7.
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9. Consider an archival system with 13 dedicated devices. All jobs currently run-
ning on this system require a maximum of five drives to complete but they each
run for long periods of time with just four drives and request the fifth one only
at the very end of the run. Assume that the job stream is endless.


a. Suppose your operating system supports a very conservative device
allocation policy so that no job will be started unless all the required
drives have been allocated to it for the entire duration of its run.


1. What is the maximum number of jobs that can be active at once?
Explain your answer.


2. What are the minimum and maximum number of tape drives that may
be idle as a result of this policy? Explain your answer.


b. Suppose your operating system supports the Banker’s Algorithm.


1. What is the maximum number of jobs that can be in progress at once?
Explain your answer.


2. What are the minimum and maximum number of drives that may be idle
as a result of this policy? Explain your answer.


10-12. For the three systems described below, given that all of the devices are of
the same type, and using the definitions presented in the discussion of the
Banker’s Algorithm, answer these questions:


a. Determine the remaining needs for each job in each system.


b. Determine whether each system is safe or unsafe.


c. If the system is in a safe state, list the sequence of requests and releases
that will make it possible for all processes to run to completion.


d. If the system is in an unsafe state, show how it’s possible for deadlock
to occur.


10. System A has 12 devices; only one is available.


Job No. Devices Allocated Maximum Required Remaining Needs


1 5 6


2 4 7


3 2 6


4 0 2


11. System B has 14 devices; only two are available.


Job No. Devices Allocated Maximum Required Remaining Needs


1 5 8


2 3 9


3 4 8
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12. System C has 12 devices; only two are available.


Job No. Devices Allocated Maximum Required Remaining Needs


1 5 8


2 4 6


3 1 4


Advanced Exercises


13. Suppose you are an operating system designer and have been approached by
the system administrator to help solve the recurring deadlock problem in your
installation’s spooling system. What features might you incorporate into the
operating system so that deadlocks in the spooling system can be resolved
without losing the work (the system processing) already performed by the
deadlocked processes?


14. As we discussed in this chapter, a system that is in an unsafe state is not
necessarily deadlocked. Explain why this is true. Give an example of such a
system (in an unsafe state) and describe how all the processes could be
completed without causing deadlock to occur.


15. Explain how you would design and implement a mechanism to allow the
operating system to detect which, if any, processes are starving.


16. Given the four primary types of resources—CPU, memory, storage devices, and
files—select for each one the most suitable technique described in this chapter
to fight deadlock and briefly explain why it is your choice.


17. State the limitations imposed on programs (and on systems) that have to follow a
hierarchical ordering of resources, such as disks, printers, and files.


18. Consider a banking system with 10 accounts. Funds may be transferred
between two of those accounts by following these steps:


lock A(i); lock A(j);


update A(i); update A(j);


unlock A(i); unlock A(j);


a. Can this system become deadlocked? If yes, show how. If no, explain
why not.


b. Could the numbering request policy (presented in the chapter discussion
about detection) be implemented to prevent deadlock if the number of
accounts is dynamic? Explain why or why not.
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Learning Objectives


After completing this chapter, you should be able to describe:


• The critical difference between processes and processors, and their connection


• The differences among common configurations of multiprocessing systems


• The basic concepts of multi-core processor technology


• The significance of a critical region in process synchronization


• The essential ideas behind process synchronization software


• The need for process cooperation when several processors work together


• The similarities and differences between processes and threads


• How processors cooperate when executing a job, process, or thread


• The significance of concurrent programming languages and their applications
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Chapter 6 Concurrent Processes


“The measure of power is obstacles overcome.”
—Oliver Wendell Holmes, Jr. (1841–1935)


PROCESS MANAGER Single-Processor Configurations


Multiple-Process Synchronization


Multiple-Processor Programming
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In Chapters 4 and 5, we described multiprogramming systems that use only one
CPU, one processor, which is shared by several jobs or processes. This is called
multiprogramming. In this chapter we look at another common situation,
multiprocessing systems, which have several processors working together in several
distinctly different configurations.


Multiprocessing systems include single computers with multiple cores as well as linked
computing systems with only one processor each to share processing among them.


What Is Parallel Processing?


Parallel processing, one form of multiprocessing, is a situation in which two or more
processors operate in unison. That means two or more CPUs are executing instruc-
tions simultaneously. In multiprocessing systems, the Processor Manager has to coor-
dinate the activity of each processor, as well as synchronize cooperative interaction
among the CPUs.


There are two primary benefits to parallel processing systems: increased reliability and
faster processing.


The reliability stems from the availability of more than one CPU: If one processor fails,
then the others can continue to operate and absorb the load. This isn’t simple to do;
the system must be carefully designed so that, first, the failing processor can inform
other processors to take over and, second, the operating system can restructure its
resource allocation strategies so the remaining processors don’t become overloaded.


The increased processing speed is often achieved because sometimes instructions can
be processed in parallel, two or more at a time, in one of several ways. Some systems
allocate a CPU to each program or job. Others allocate a CPU to each working set or
parts of it. Still others subdivide individual instructions so that each subdivision can
be processed simultaneously (which is called concurrent programming).


Increased flexibility brings increased complexity, however, and two major challenges
remain: how to connect the processors into configurations and how to orchestrate
their interaction, which applies to multiple interacting processes as well. (It might help
if you think of each process as being run on a separate processor.)


The complexities of the Processor Manager’s task when dealing with multiple proces-
sors or multiple processes are easily illustrated with an example: You’re late for an
early afternoon appointment and you’re in danger of missing lunch, so you get in line
for the drive-through window of the local fast-food shop. When you place your order,
the order clerk confirms your request, tells you how much it will cost, and asks you to
drive to the pickup window where a cashier collects your money and hands over your
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order. All’s well and once again you’re on your way—driving and thriving. You just
witnessed a well-synchronized multiprocessing system. Although you came in contact
with just two processors—the order clerk and the cashier—there were at least two
other processors behind the scenes who cooperated to make the system work—the
cook and the bagger.


A fast-food lunch spot is similar to the six-step information retrieval system below. It
is described in a different way in Table 6.1. 


a) Processor 1 (the order clerk) accepts the query, checks for errors, and passes
the request on to Processor 2 (the bagger). 


b) Processor 2 (the bagger) searches the database for the required information
(the hamburger). 


c) Processor 3 (the cook) retrieves the data from the database (the meat to cook
for the hamburger) if it’s kept off-line in secondary storage. 


d) Once the data is gathered (the hamburger is cooked), it’s placed where
Processor 2 can get it (in the hamburger bin). 


e) Processor 2 (the bagger) passes it on to Processor 4 (the cashier). 


f) Processor 4 (the cashier) routes the response (your order) back to the origina-
tor of the request—you.


Originator Action Receiver


Processor 1 Accepts the query, checks for errors, Processor 2 
(the order clerk) and passes the request on to => (the bagger)


Processor 2 Searches the database for the required 
(the bagger) information (the hamburger)


Processor 3 Retrieves the data from the database 
(the cook) (the meat to cook for the hamburger) 


if it’s kept off-line in secondary storage


Processor 3 Once the data is gathered (the hamburger Processor 2 
(the cook) is cooked), it’s placed where the receiver => (the bagger)


can get it (in the hamburger bin)


Processor 2 Passes it on to => Processor 4 
(the bagger) (the cashier)


Processor 4 Routes the response (your order) back You
(the cashier) to the originator of the request =>


Synchronization is the key to the system’s success because many things can go wrong
in a multiprocessing system. For example, what if the communications system broke
down and you couldn’t speak with the order clerk? What if the cook produced ham-
burgers at full speed all day, even during slow periods? What would happen to the
extra hamburgers? What if the cook became badly burned and couldn’t cook any-
more? What would the bagger do if there were no hamburgers? What if the cashier
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decided to take your money but didn’t give you any food? Obviously, the system can’t
work properly unless every processor communicates and cooperates with every other
processor.


Evolution of Multiprocessors


Multiprocessing can take place at several different levels, each of which requires a
different frequency of synchronization, as shown in Table 6.2. Notice that at the job
level, multiprocessing is fairly benign. It’s as if each job is running on its own work-
station with shared system resources. On the other hand, when multiprocessing takes
place at the thread level, a high degree of synchronization is required to disassemble
each process, perform the thread’s instructions, and then correctly reassemble the
process. This may require additional work by the programmer, as we’ll see later in
this chapter.


Parallelism Level Process Assignments Synchronization Required


Job Level Each job has its own processor No explicit synchronization 
and all processes and threads are required.
run by that same processor.


Process Level Unrelated processes, regardless Moderate amount of 
of job, are assigned to any synchronization required to 
available processor. track processes.


Thread Level Threads are assigned to available High degree of synchronization 
processors. required, often requiring explicit


instructions from the programmer.


Introduction to Multi-Core Processors


Multi-core processors have several processors on a single chip. As processors became
smaller in size (as predicted by Moore’s Law) and faster in processing speed, CPU
designers began to use nanometer-sized transistors. Each transistor switches between
two positions—0 and 1—as the computer conducts its binary arithmetic at increas-
ingly fast speeds. However, as transistors reached nano-sized dimensions and the
space between transistors became ever closer, the quantum physics of electrons got in
the way.


In a nutshell, here’s the problem. When transistors are placed extremely close together,
electrons have the ability to spontaneously tunnel, at random, from one transistor to
another, causing a tiny but measurable amount of current to leak. The smaller the transis-
tor, the more significant the leak. (When an electron does this “tunneling,” it seems to
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Levels of parallelism


and the required


synchronization among


processors.


✔
One single-core
CPU chip in 2003
placed about
10 million
transistors into
one square
millimeter, roughly
the size of the tip
of a ball point pen.
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spontaneously disappear from one transistor and appear in another nearby transistor. It’s
as if a Star Trek voyager asked the electron to be “beamed aboard” the second transistor.)


A second problem was the heat generated by the chip. As processors became faster, the
heat also climbed and became increasingly difficult to disperse. These heat and tunneling
issues threatened to limit the ability of chip designers to make processors ever smaller.


One solution was to create a single chip (one piece of silicon) with two “processor
cores” in the same amount of space. With this arrangement, two sets of calculations can
take place at the same time. The two cores on the chip generate less heat than a single
core of the same size and tunneling is reduced; however, the two cores each run more
slowly than the single core chip. Therefore, to get improved performance from a dual-
core chip, the software has to be structured to take advantage of the double calculation
capability of the new chip design. Building on their success with two-core chips, design-
ers have created multi-core processors with predictions, as of this writing, that 80 or
more cores will be placed on a single chip, as shown in Chapter 1.


Does this hardware innovation affect the operating system? Yes, because it must man-
age multiple processors, multiple RAMs, and the processing of many tasks at once.
However, a dual-core chip is not always faster than a single-core chip. It depends on
the tasks being performed and whether they’re multi-threaded or sequential.


Typical Multiprocessing Configurations


Much depends on how the multiple processors are configured within the system.
Three typical configurations are: master/slave, loosely coupled, and symmetric.


Master/Slave Configuration


The master/slave configuration is an asymmetric multiprocessing system. Think of it
as a single-processor system with additional slave processors, each of which is man-
aged by the primary master processor as shown in Figure 6.1.


The master processor is responsible for managing the entire system—all files, devices,
memory, and processors. Therefore, it maintains the status of all processes in the system,
performs storage management activities, schedules the work for the other processors, and
executes all control programs. This configuration is well suited for computing environ-
ments in which processing time is divided between front-end and back-end processors; in
these cases, the front-end processor takes care of the interactive users and quick jobs, and
the back-end processor takes care of those with long jobs using the batch mode.
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✔
Software that
requires
sequential
calculations will
run slower on a
dual-core chip
than on a single-
core chip. 
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The primary advantage of this configuration is its simplicity. However, it has three
serious disadvantages:


• Its reliability is no higher than for a single-processor system because if the master
processor fails, the entire system fails.


• It can lead to poor use of resources because if a slave processor should become free
while the master processor is busy, the slave must wait until the master becomes free
and can assign more work to it.


• It increases the number of interrupts because all slave processors must interrupt the
master processor every time they need operating system intervention, such as for I/O
requests. This creates long queues at the master processor level when there are many
processors and many interrupts.


Loosely Coupled Configuration


The loosely coupled configuration features several complete computer systems, each
with its own memory, I/O devices, CPU, and operating system, as shown in Figure 6.2.
This configuration is called loosely coupled because each processor controls its own
resources—its own files, access to memory, and its own I/O devices—and that means
that each processor maintains its own commands and I/O management tables. The only
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(figure 6.1)


In a master/slave


multiprocessing


configuration, slave


processors can access


main memory directly but


they must send all I/O


requests through the


master processor. 


I/O
Devices


1


I/O
Devices


2


I/O
Devices


3


Processor 1MainMemory


Main
Memory


Main
Memory


Processor 2


Processor 3


(figure 6.2)


In a loosely coupled


multiprocessing


configuration, each


processor has its own


dedicated resources.
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difference between a loosely coupled multiprocessing system and a collection of indepen-
dent single-processing systems is that each processor can communicate and cooperate
with the others.


When a job arrives for the first time, it’s assigned to one processor. Once allocated, the
job remains with the same processor until it’s finished. Therefore, each processor must
have global tables that indicate to which processor each job has been allocated.


To keep the system well balanced and to ensure the best use of resources, job schedul-
ing is based on several requirements and policies. For example, new jobs might be
assigned to the processor with the lightest load or the best combination of output
devices available.


This system isn’t prone to catastrophic system failures because even when a single
processor fails, the others can continue to work independently.  However, it can be dif-
ficult to detect when a processor has failed.


Symmetric Configuration


The symmetric configuration (also called tightly coupled) has four advantages over
loosely coupled configuration:


• It’s more reliable.


• It uses resources effectively.


• It can balance loads well.


• It can degrade gracefully in the event of a failure.


However, it is the most difficult configuration to implement because the processes
must be well synchronized to avoid the problems of races and deadlocks that we dis-
cussed in Chapter 5.


In a symmetric configuration (as depicted in Figure 6.3), processor scheduling is decen-
tralized. A single copy of the operating system and a global table listing each process and
its status is stored in a common area of memory so every processor has access to it. Each
processor uses the same scheduling algorithm to select which process it will run next.
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✔
The symmetric
configuration is
best implemented
if all of the
processors are of
the same type. 


I/O
Devices


Main
Memory


Processor 1


Processor 2


Processor 3


(figure 6.3)


A symmetric


multiprocessing


configuration with


homogeneous processors.


Processes must be carefully


synchronized to avoid


deadlocks and starvation.
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Whenever a process is interrupted, whether because of an I/O request or another type
of interrupt, its processor updates the corresponding entry in the process list and finds
another process to run. This means that the processors are kept quite busy. But it also
means that any given job or task may be executed by several different processors dur-
ing its run time. And because each processor has access to all I/O devices and can ref-
erence any storage unit, there are more conflicts as several processors try to access the
same resource at the same time.


This presents the obvious need for algorithms to resolve conflicts between processors—
that’s called process synchronization.


Process Synchronization Software


The success of process synchronization hinges on the capability of the operating sys-
tem to make a resource unavailable to other processes while it is being used by one of
them. These “resources” can include printers and other I/O devices, a location in stor-
age, or a data file. In essence, the used resource must be locked away from other
processes until it is released. Only when it is released is a waiting process allowed to
use the resource. This is where synchronization is critical. A mistake could leave a job
waiting indefinitely (starvation) or, if it’s a key resource, cause a deadlock.


It is the same thing that can happen in a crowded ice cream shop. Customers take a
number to be served. The numbers on the wall are changed by the clerks who pull a
chain to increment them as they attend to each customer. But what happens when
there is no synchronization between serving the customers and changing the number?
Chaos. This is the case of the missed waiting customer.


Let’s say your number is 75. Clerk 1 is waiting on customer 73 and Clerk 2 is waiting
on customer 74. The sign on the wall says “Now Serving #74” and you’re ready with
your order. Clerk 2 finishes with customer 74 and pulls the chain so the sign says
“Now Serving #75.” But just then the clerk is called to the telephone and leaves the
building, never to return (an interrupt). Meanwhile, Clerk 1 pulls the chain and pro-
ceeds to wait on #76—and you’ve missed your turn. If you speak up quickly, you can
correct the mistake gracefully; but when it happens in a computer system, the outcome
isn’t as easily remedied.


Consider the scenario in which Processor 1 and Processor 2 finish with their current
jobs at the same time. To run the next job, each processor must:


1. Consult the list of jobs to see which one should be run next.


2. Retrieve the job for execution.


3. Increment the READY list to the next job.


4. Execute it.
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Both go to the READY list to select a job. Processor 1 sees that Job 74 is the next job
to be run and goes to retrieve it. A moment later, Processor 2 also selects Job 74 and
goes to retrieve it. Shortly thereafter, Processor 1, having retrieved Job 74, returns to
the READY list and increments it, moving Job 75 to the top. A moment later
Processor 2 returns; it has also retrieved Job 74 and is ready to process it, so it incre-
ments the READY list and now Job 76 is moved to the top and becomes the next job
in line to be processed. Job 75 has become the missed waiting customer and will never
be processed, while Job 74 is being processed twice—an unacceptable state of affairs.


There are several other places where this problem can occur: memory and page alloca-
tion tables, I/O tables, application databases, and any shared resource.


Obviously, this situation calls for synchronization. Several synchronization mecha-
nisms are available to provide cooperation and communication among processes. The
common element in all synchronization schemes is to allow a process to finish work
on a critical part of the program before other processes have access to it. This is
applicable both to multiprocessors and to two or more processes in a single-processor
(time-shared) processing system. It is called a critical region because it is a critical sec-
tion and its execution must be handled as a unit. As we’ve seen, the processes within a
critical region can’t be interleaved without threatening the integrity of the operation.


Synchronization is sometimes implemented as a lock-and-key arrangement: Before a
process can work on a critical region, it must get the key. And once it has the key, all
other processes are locked out until it finishes, unlocks the entry to the critical region,
and returns the key so that another process can get the key and begin work. This
sequence consists of two actions: (1) the process must first see if the key is available
and (2) if it is available, the process must pick it up and put it in the lock to make it
unavailable to all other processes. For this scheme to work, both actions must be per-
formed in a single machine cycle; otherwise it is conceivable that while the first process
is ready to pick up the key, another one would find the key available and prepare to
pick up the key—and each could block the other from proceeding any further.


Several locking mechanisms have been developed, including test-and-set, WAIT and
SIGNAL, and semaphores.


Test-and-Set


Test-and-set is a single, indivisible machine instruction known simply as TS and was
introduced by IBM for its multiprocessing System 360/370 computers. In a single
machine cycle it tests to see if the key is available and, if it is, sets it to unavailable.


The actual key is a single bit in a storage location that can contain a 0 (if it’s free)
or a 1 (if busy). We can consider TS to be a function subprogram that has one
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technique is
conceptually the
same one that’s
used to lock
databases, as
discussed in
Chapter 5, so
different users can
access the same
database without
causing a
deadlock. 
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parameter (the storage location) and returns one value (the condition code: busy/free),
with the exception that it takes only one machine cycle.


Therefore, a process (Process 1) would test the condition code using the TS instruction
before entering a critical region. If no other process was in this critical region, then
Process 1 would be allowed to proceed and the condition code would be changed from
0 to 1. Later, when Process 1 exits the critical region, the condition code is reset to 0 so
another process can enter. On the other hand, if Process 1 finds a busy condition code,
then it’s placed in a waiting loop where it continues to test the condition code and
waits until it’s free.


Although it’s a simple procedure to implement, and it works well for a small number
of processes, test-and-set has two major drawbacks. First, when many processes are
waiting to enter a critical region, starvation could occur because the processes gain
access in an arbitrary fashion. Unless a first-come, first-served policy were set up, some
processes could be favored over others. A second drawback is that the waiting
processes remain in unproductive, resource-consuming wait loops, requiring context
switching. This is known as busy waiting—which not only consumes valuable proces-
sor time but also relies on the competing processes to test the key, something that is
best handled by the operating system or the hardware.


WAIT and SIGNAL


WAIT and SIGNAL is a modification of test-and-set that’s designed to remove busy
waiting. Two new operations, which are mutually exclusive and become part of the
process scheduler’s set of operations, are WAIT and SIGNAL.


WAIT is activated when the process encounters a busy condition code. WAIT sets the
process’s process control block (PCB) to the blocked state and links it to the queue of
processes waiting to enter this particular critical region. The Process Scheduler then
selects another process for execution. SIGNAL is activated when a process exits the
critical region and the condition code is set to “free.” It checks the queue of processes
waiting to enter this critical region and selects one, setting it to the READY state.
Eventually the Process Scheduler will choose this process for running. The addition of
the operations WAIT and SIGNAL frees the processes from the busy waiting dilemma
and returns control to the operating system, which can then run other jobs while the
waiting processes are idle (WAIT).


Semaphores


A semaphore is a non-negative integer variable that’s used as a binary signal, a flag.
One of the most well-known semaphores was the signaling device, shown in Figure 6.4,
used by railroads to indicate whether a section of track was clear. When the arm of the
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semaphore was raised, the track was clear and the train was allowed to proceed. When
the arm was lowered, the track was busy and the train had to wait until the arm was
raised. It had only two positions, up or down (on or off).
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(figure 6.4)


The semaphore used by


railroads indicates


whether your train can


proceed. When it’s


lowered (a), another train


is approaching and your


train must stop to wait for


it to pass. If it is raised (b),


your train can continue.


In an operating system, a semaphore performs a similar function: It signals if and
when a resource is free and can be used by a process. Dijkstra (1965) introduced two
operations to overcome the process synchronization problem we’ve discussed. Dijkstra
called them P and V, and that’s how they’re known today. The P stands for the Dutch
word proberen (to test) and the V stands for verhogen (to increment). The P and V
operations do just that: They test and increment.


Here’s how they work. If we let s be a semaphore variable, then the V operation on s
is simply to increment s by 1. The action can be stated as:


V(s): s: = s + 1


This in turn necessitates a fetch, increment, and store sequence. Like the test-and-set
operation, the increment operation must be performed as a single indivisible action to
avoid deadlocks. And that means that s cannot be accessed by any other process dur-
ing the operation.


The operation P on s is to test the value of s and, if it’s not 0, to decrement it by 1.
The action can be stated as:


P(s): If s > 0 then s: = s – 1


This involves a test, fetch, decrement, and store sequence. Again this sequence must be
performed as an indivisible action in a single machine cycle or be arranged so that the
process cannot take action until the operation (test or increment) is finished.


The operations to test or increment are executed by the operating system in response
to calls issued by any one process naming a semaphore as parameter (this alleviates the
process from having control). If s = 0, it means that the critical region is busy and the
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process calling on the test operation must wait until the operation can be executed and
that’s not until s > 0.


As shown in Table 6.3, P3 is placed in the WAIT state (for the semaphore) on State 4.
As also shown in Table 6.3, for States 6 and 8, when a process exits the critical region,
the value of s is reset to 1 indicating that the critical region is free. This, in turn, trig-
gers the awakening of one of the blocked processes, its entry into the critical region,
and the resetting of s to 0. In State 7, P1 and P2 are not trying to do processing in that
critical region and P4 is still blocked.


Actions Results
State Calling Running in Blocked
Number Process Operation Critical Region on s Value of s


0 1


1 P1 test(s) P1 0


2 P1 increment(s) 1


3 P2 test(s) P2 0


4 P3 test(s) P2 P3 0


5 P4 test(s) P2 P3, P4 0


6 P2 increment(s) P3 P4 0


7 P3 P4 0


8 P3 increment(s) P4 0


9 P4 increment(s) 1


After State 5 of Table 6.3, the longest waiting process, P3, was the one selected to
enter the critical region, but that isn’t necessarily the case unless the system is using a
first-in, first-out selection policy. In fact, the choice of which job will be processed next
depends on the algorithm used by this portion of the Process Scheduler.


As you can see from Table 6.3, test and increment operations on semaphore s enforce
the concept of mutual exclusion, which is necessary to avoid having two operations
attempt to execute at the same time. The name traditionally given to this semaphore in
the literature is mutex and it stands for MUTual EXclusion. So the operations become:


test(mutex): if mutex > 0 then mutex: = mutex – 1
increment(mutex): mutex: = mutex + 1


In Chapter 5 we talked about the requirement for mutual exclusion when several jobs
were trying to access the same shared physical resources. The concept is the same here,
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(table 6.3)


The sequence of states for


four processes calling test


and increment (P and V)


operations on the binary


semaphore s. (Note: The


value of the semaphore


before the operation is


shown on the line


preceding the operation.


The current value is on the


same line.) 
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but we have several processes trying to access the same shared critical region. The pro-
cedure can generalize to semaphores having values greater than 0 and 1.


Thus far we’ve looked at the problem of mutual exclusion presented by interacting
parallel processes using the same shared data at different rates of execution. This can
apply to several processes on more than one processor, or interacting (codependent)
processes on a single processor. In this case, the concept of a critical region becomes
necessary because it ensures that parallel processes will modify shared data only while
in the critical region.


In sequential computations mutual exclusion is achieved automatically because each
operation is handled in order, one at a time. However, in parallel computations the
order of execution can change, so mutual exclusion must be explicitly stated and
maintained. In fact, the entire premise of parallel processes hinges on the requirement
that all operations on common variables consistently exclude one another over time.


Process Cooperation


There are occasions when several processes work directly together to complete a com-
mon task. Two famous examples are the problems of producers and consumers, and
of readers and writers. Each case requires both mutual exclusion and synchronization,
and each is implemented by using semaphores.


Producers and Consumers


The classic problem of producers and consumers is one in which one process produces
some data that another process consumes later. Although we’ll describe the case with
one producer and one consumer, it can be expanded to several pairs of producers and
consumers.


Let’s return for a moment to the fast-food framework at the beginning of this chapter
because the synchronization between two of the processors (the cook and the bagger)
represents a significant problem in operating systems. The cook produces hamburgers
that are sent to the bagger (consumed). Both processors have access to one common
area, the hamburger bin, which can hold only a finite number of hamburgers (this is
called a buffer area). The bin is a necessary storage area because the speed at which
hamburgers are produced is independent from the speed at which they are consumed.


Problems arise at two extremes: when the producer attempts to add to an already full
bin (as when the cook tries to put one more hamburger into a full bin) and when the
consumer attempts to draw from an empty bin (as when the bagger tries to take a
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hamburger that hasn’t been made yet). In real life, the people watch the bin and if it’s
empty or too full the problem is recognized and quickly resolved. However, in a com-
puter system such resolution is not so easy.


Consider the case of the prolific CPU. The CPU can generate output data much faster
than a printer can print it. Therefore, since this involves a producer and a consumer of
two different speeds, we need a buffer where the producer can temporarily store data
that can be retrieved by the consumer at a more appropriate speed. Figure 6.5 shows
three typical buffer states.
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(a)


(b)


(c)


(figure 6.5)


The buffer can be in any


one of these three states:


(a) full buffer, (b) partially


empty buffer, or (c) empty


buffer.


Because the buffer can hold only a finite amount of data, the synchronization process
must delay the producer from generating more data when the buffer is full. It must
also be prepared to delay the consumer from retrieving data when the buffer is empty.
This task can be implemented by two counting semaphores—one to indicate the num-
ber of full positions in the buffer and the other to indicate the number of empty posi-
tions in the buffer.


A third semaphore, mutex, will ensure mutual exclusion between processes.


Producer Consumer


produce data P (full)


P (empty) P (mutex)


P (mutex) read data from buffer


write data into buffer V (mutex)


V (mutex) V (empty)


V (full) consume data


(table 6.4)


Definitions of the


Producers and Consumers


processes.
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Variables,
Functions Definitions


full defined as a semaphore


empty defined as a semaphore


mutex defined as a semaphore


n the maximum number of positions in the buffer


V (x) x: = x + 1 (x is any variable defined as a semaphore)


P (x) if x > 0 then x: = x – 1


mutex = 1 means the process is allowed to enter the critical region


COBEGIN the delimiter that indicates the beginning of concurrent processing


COEND the delimiter that indicates the end of concurrent processing


Given the definitions in Table 6.4 and Table 6.5, the Producers and Consumers Algorithm
shown below synchronizes the interaction between the producer and consumer.


Producers and Consumers Algorithm
empty:         = n
full:          = 0
mutex:         = 1
COBEGIN
repeat until no more data PRODUCER
repeat until buffer is empty CONSUMER


COEND


The processes (PRODUCER and CONSUMER) then execute as described. Try the code
with n = 3 or try an alternate order of execution to see how it actually works.


The concept of producers and consumers can be extended to buffers that hold records
or other data, as well as to other situations in which direct process-to-process commu-
nication of messages is required.


Readers and Writers


The problem of readers and writers was first formulated by Courtois, Heymans, and
Parnas (1971) and arises when two types of processes need to access a shared resource
such as a file or database. They called these processes readers and writers.


An airline reservation system is a good example. The readers are those who want flight
information. They’re called readers because they only read the existing data; they
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Definitions of the


elements in the Producers


and Consumers Algorithm.
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don’t modify it. And because no one is changing the database, the system can allow
many readers to be active at the same time—there’s no need to enforce mutual exclu-
sion among them.


The writers are those who are making reservations on a particular flight. Writers must
be carefully accommodated because they are modifying existing data in the database.
The system can’t allow someone to be writing while someone else is reading (or writ-
ing). Therefore, it must enforce mutual exclusion if there are groups of readers and a
writer, or if there are several writers, in the system. Of course the system must be fair
when it enforces its policy to avoid indefinite postponement of readers or writers.


In the original paper, Courtois, Heymans, and Parnas offered two solutions using P
and V operations. The first gives priority to readers over writers so readers are kept
waiting only if a writer is actually modifying the data. However, this policy results in
writer starvation if there is a continuous stream of readers. The second policy gives
priority to the writers. In this case, as soon as a writer arrives, any readers that are
already active are allowed to finish processing, but all additional readers are put on
hold until the writer is done. Obviously this policy results in reader starvation if a con-
tinuous stream of writers is present. Either scenario is unacceptable.


To prevent either type of starvation, Hoare (1974) proposed the following combina-
tion priority policy. When a writer is finished, any and all readers who are waiting, or
on hold, are allowed to read. Then, when that group of readers is finished, the writer
who is on hold can begin, and any new readers who arrive in the meantime aren’t
allowed to start until the writer is finished.


The state of the system can be summarized by four counters initialized to 0:


• Number of readers who have requested a resource and haven’t yet released it (R1 = 0)


• Number of readers who are using a resource and haven’t yet released it (R2 = 0)


• Number of writers who have requested a resource and haven’t yet released it (W1 = 0)


• Number of writers who are using a resource and haven’t yet released it (W2 = 0)


This can be implemented using two semaphores to ensure mutual exclusion between
readers and writers. A resource can be given to all readers, provided that no writers
are processing (W2 = 0). A resource can be given to a writer, provided that no readers
are reading (R2 = 0) and no writers are writing (W2 = 0).


Readers must always call two procedures: the first checks whether the resources can
be immediately granted for reading; and then, when the resource is released, the sec-
ond checks to see if there are any writers waiting. The same holds true for writers. The
first procedure must determine if the resource can be immediately granted for writing,
and then, upon releasing the resource, the second procedure will find out if any read-
ers are waiting.
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Concurrent Programming


Until now we’ve looked at multiprocessing as several jobs executing at the same time
on a single processor (which interacts with I/O processors, for example) or on multi-
processors. Multiprocessing can also refer to one job using several processors to exe-
cute sets of instructions in parallel. The concept isn’t new, but it requires a
programming language and a computer system that can support this type of construct.
This type of system is referred to as a concurrent processing system.


Applications of Concurrent Programming


Most programming languages are serial in nature—instructions are executed one at a
time. Therefore, to resolve an arithmetic expression, every operation is done in
sequence following the order prescribed by the programmer and compiler. Table 6.6
shows the steps to compute the following expression:


A = 3 * B * C + 4 / (D + E) ** (F – G)


Step No. Operation Result


1 (F – G) Store difference in T1


2 (D + E) Store sum in T2


3 (T2) ** (T1) Store power in T1


4 4 / (T1) Store quotient in T2


5 3 * B Store product in T1


6 (T1) * C Store product in T1


7 (T1) + (T2) Store sum in A


All equations follow a standard order of operations, which states that to solve an
equation you first perform all calculations in parentheses. Second, you calculate all
exponents. Third, you perform all multiplication and division. Fourth, you perform
the addition and subtraction. For each step you go from left to right. If you were to
perform the calculations in some other order, you would run the risk of finding the
incorrect answer. 


For many computational purposes, serial processing is sufficient; it’s easy to imple-
ment and fast enough for most users.


However, arithmetic expressions can be processed differently if we use a language that
allows for concurrent processing. Let’s revisit two terms—COBEGIN and COEND—
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The sequential


computation of the


expression requires


several steps. (In this


example, there are seven


steps, but each step may


involve more than one


machine operation.)


✔
The order of
operations is a
mathematical
convention, a
universal
agreement that
dictates the
sequence of
calculations to
solve any
equation.   
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that will indicate to the compiler which instructions can be processed concurrently. Then
we’ll rewrite our expression to take advantage of a concurrent processing compiler.


COBEGIN
T1 = 3 * B
T2 = D + E
T3 = F – G


COEND
COBEGIN


T4 = T1 * C
T5 = T2 ** T3


COEND
A = T4 + 4 / T5


As shown in Table 6.7, to solve A = 3 * B * C + 4 / (D + E) ** (F – G), the first three
operations can be done at the same time if our computer system has at least three
processors. The next two operations are done at the same time, and the last expres-
sion is performed serially with the results of the first two steps.


Step No. Processor Operation Result


1 1 3 * B Store product in T1


2 (D + E) Store sum in T2


3 (F – G) Store difference in T3


2 1 (T1) * C Store product in T4


2 (T2) ** (T3) Store power in T5


3 1 4 / (T5) Store quotient in T1


4 1 (T4) + (T1) Store sum in A


With this system we’ve increased the computation speed, but we’ve also increased the
complexity of the programming language and the hardware (both machinery and com-
munication among machines). In fact, we’ve also placed a large burden on the pro-
grammer—to explicitly state which instructions can be executed in parallel. This is
explicit parallelism.


The automatic detection by the compiler of instructions that can be performed in
parallel is called implicit parallelism.


With a true concurrent processing system, the example presented in Table 6.6 and
Table 6.7 is coded as a single expression. It is the compiler that translates the algebraic
expression into separate instructions and decides which steps can be performed in
parallel and which in serial mode.
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With concurrent


processing, the seven-


step procedure can be


processed in only four


steps, which reduces


execution time.
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For example, the equation Y = A + B * C + D could be rearranged by the compiler as
A + D + B * C so that two operations A + D and B * C would be done in parallel, leav-
ing the final addition to be calculated last.


As shown in the four cases that follow, concurrent processing can also dramatically
reduce the complexity of working with array operations within loops, of performing
matrix multiplication, of conducting parallel searches in databases, and of sorting or
merging files. Some of these systems use parallel processors that execute the same type
of tasks.


Case 1: Array Operations


To perform an array operation within a loop in three steps, the instruction might say:


for(j = 1; j <= 3; j++)
a(j) = b(j) + c(j);


If we use three processors, the instruction can be performed in a single step like this:


Processor #1: Processor #2: Processor #3:


a(1) = b(1) + c(1) a(2) = b(2) + c(2) a(3) = b(3) + c(3)


Case 2: Matrix Multiplication


Matrix multiplication requires many multiplication and addition operations that can take
place concurrently, such as this equation: Matrix C = Matrix 1 * Matrix 2.


Matrix C = Matrix 1 * Matrix 2
z y x


A B C
K L


w v u =
D E F


* M N


t s r O P


To find z in Matrix C, you multiply the elements in the first column of Matrix 1
by the corresponding elements in the first row of Matrix 2 and then add the
products. Therefore, one calculation is this:  z = (A * K) + (D * L). Likewise, 
x = (C * K) + (F * L) and r = (C * O) + (F * P). 


Using one processor, the answer to this equation can be computed in 27 steps. By
multiplying several elements of the first row of Matrix 1 by corresponding elements in
Matrix 2, three processors could cooperate to resolve this equation in fewer steps. The
actual number of products that could be computed at the same time would depend on
the number of processors available. With two processors it takes only 18 steps to perform
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the calculations in parallel. With three, it would require even fewer. Notice that concur-
rent processing does not necessarily cut processing activity in direct proportion to the
number of processors available. In this example, by doubling the number of processors
from one to two, the number of calculations was reduced by one-third—not by one-half. 


Case 3: Searching Databases


Database searching is a common non-mathematical application for concurrent pro-
cessing systems. For example, if a word is sought from a dictionary database or a part
number from an inventory listing, the entire file can be split into discrete sections with
one processor allocated to each section. This results in a significant reduction in search
time. Once the item is found, all processors can be deallocated and set to work on the
next task. Even if the item sought is in the last record of the database, a concurrent
search is faster than if a single processor was allocated to search the database.  


Case 4: Sorting or Merging Files


By dividing a large file into sections, each with its own processor, every section can be
sorted at the same time. Then pairs of sections can be merged together until the entire
file is whole again—and sorted.


Threads and Concurrent Programming


So far we have considered the cooperation and synchronization of traditional processes,
also known as heavyweight processes, which have the following characteristics:


• They pass through several states from their initial entry into the computer system to
their completion: ready, running, waiting, delayed, and blocked.


• They require space in main memory where they reside during their execution.


• From time to time they require other resources such as data.


As we have seen in Chapters 3 and 4, these processes are often swapped between main
memory and secondary storage during their execution to accommodate multiprogram-
ming and to take advantage of virtual memory. Every time a swap occurs, overhead
increases because of all the information that has to be saved.


To minimize this overhead time, most current operating systems support the imple-
mentation of threads, or lightweight processes, which have become part of numerous
application packages. Threads are supported at both the kernel and user level and can
be managed by either the operating system or the application that created them.


A thread, introduced in Chapter 1, is a smaller unit within a process, which can be
scheduled and executed. Threads share the same resources as the process that created
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them, which now becomes a more passive element because the thread is the unit that
uses the CPU and is scheduled for execution. Processes might have from one to several
active threads, which can be created, scheduled and synchronized more efficiently
because the amount of information needed is reduced. When running a process with
multiple threads in a computer system with a single CPU, the processor switches very
quickly from one thread to another, giving the impression that the threads are execut-
ing in parallel. However, it is only in systems with multiple CPUs that the multiple
threads in a process are actually executed in parallel.


Each active thread in a process has its own processor registers, program counter, stack
and status, but shares the data area and the resources allocated to its process. Each thread
has its own program counter and stack, which is used to store variables dynamically cre-
ated by a process. For example, function calls in C might create variables that are local to
the function. These variables are stored in the stack when the function is invoked and are
destroyed when the function is exited. Since threads within a process share the same space
and resources they can communicate more efficiently, increasing processing performance.


Consider how a Web server can improve performance and interactivity by using
threads. When a Web server receives requests for images or pages, it serves each
request with a different thread. For example, the process that receives all the requests
may have one thread that accepts these requests and creates a new separate thread for
each request received. This new thread retrieves the required information and sends it
to the remote client. While this thread is doing its task, the original thread is free to
accept more requests. Web servers are multiprocessor systems that allow for the con-
current completion of several requests, thus improving throughput and response time.
Instead of creating and destroying threads to serve incoming requests, which would
increase the overhead, Web servers keep a pool of threads that can be assigned to those
requests. After a thread has completed its task, instead of being destroyed, it is
returned to the pool to be assigned to another request.


Thread States


As a thread moves through the system it is in one of five states, not counting its cre-
ation and finished states, as shown in Figure 6.6. When an application creates a thread,
it is made ready by allocating to it the needed resources and placing it in the READY
queue. The thread state changes from READY to RUNNING when the Thread
Scheduler, whose function is similar to that of the Process Scheduler, assigns it a
processor.


A thread transitions from RUNNING to WAITING when it has to wait for an event
outside its control to occur. For example, a mouse click can be the trigger event for a
thread to change states, causing a transition from WAITING to READY. Alternatively,
another thread, having completed its task, can send a signal indicating that the waiting
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When an application such as a word processor has the capability of delaying the pro-
cessing of a thread by a specified amount of time, it causes the thread to transition
from RUNNING to DELAYED. When the prescribed time has elapsed, the thread
transitions from DELAYED to READY. For example, the thread that periodically
backs up a current document to disk will be delayed for a period of time after it has
completed the backup. After the time has expired, it performs the next backup and
then is delayed again. If the delay was not built into the application, this thread would
be forced into a loop that would continuously test to see if it was time to do a backup,
wasting processor time and reducing system performance. Setting up a delay state
avoids the problems of the test-and-set process synchronization algorithm.


A thread transitions from RUNNING to BLOCKED when an application issues an I/O
request. After the I/O is completed, the thread returns to the READY state. When a
thread transitions from RUNNING to FINISHED, all its resources are released and it
can exit the system.


As you can see, the same operations are performed on both traditional processes and
threads. Therefore, the operating system must be able to support:


• Creating new threads


• Setting up a thread so it is ready to execute


• Delaying, or putting to sleep, threads for a specified amount of time


• Blocking, or suspending, threads that are waiting for I/O to be completed


• Setting threads on a WAIT state until a specific event has occurred


• Scheduling threads for execution


• Synchronizing thread execution using semaphores, events, or conditional variables


• Terminating a thread and releasing its resources


To do so, the operating system needs to track the critical information for each thread.
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(figure 6.6)


A typical thread changes


states from READY to


FINISHED as it moves


through the system.


Creation Ready


Waiting


Running


Delayed


Blocked


Finished


thread can continue to execute. This is similar to the WAIT and SIGNAL process syn-
chronization algorithm.
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Thread Control Block


Just as processes are represented by Process Control Blocks (PCBs), so threads are rep-
resented by Thread Control Blocks (TCBs), which contain basic information about a
thread such as its ID, state, and a pointer to the process that created it. Figure 6.7
shows the contents of a typical TCB:


• A thread ID, a unique identifier assigned by the operating system when the thread is
created


• The thread state, which changes as the thread progresses through its execution;
state changes, as well as all other entries in the TCB, apply individually to each
thread


• CPU information, which contains everything that the operating system needs to
know about how far the thread has executed, which instruction is currently being
performed, and what data is being used


• Thread priority, used to indicate the weight of this thread relative to other threads
and used by the Thread Scheduler when determining which thread should be
selected from the READY queue


• A pointer to the process that created the thread


• Pointers to other threads created by this thread
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Comparison of a typical


Thread Control Block


(TCB) vs. a Process


Control Block (PCB) from


Chapter 4.


Program counter
Register contents


Thread identification
Thread state
CPU information:


Thread priority
Pointer to process that created this thread
Pointers to all other threads created by this thread


Process identification
Process status
Process state:


Process status word
Register contents
Main memory
Resources
Process priority


Accounting


Concurrent Programming Languages


Early programming languages did not support the creation of threads or the existence
of concurrent processes. Typically, they gave programmers the possibility of creating a
single process or thread of control. The Ada programming language, developed in the
late 1970s, was one of the first languages to provide specific concurrency commands.
Java, developed by Sun Microsystems, Inc., was designed as a universal software plat-
form for Internet applications and has been widely adopted.
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Java


Java was released in 1995 as the first software platform that allowed programmers to
code an application with the capability to run on any computer. This type of universal
software platform was an attempt to solve several issues: first, the high cost of
developing software applications for each of the many incompatible computer architec-
tures available; second, the needs of distributed client-server environments; and third,
the growth of the Internet and the Web, which added more complexity to program
development. 


Java uses both a compiler and an interpreter. The source code of a Java program is
first compiled into an intermediate language called Java bytecodes, which are
platform-independent. This means that one can compile a Java program on any
computer that has a Java compiler, and the bytecodes can then be run on any
computer that has a Java interpreter.


The interpreter is designed to fit in with the hardware and operating system specifica-
tions of the computer that will run the Java bytecodes. Its function is to parse and run
each bytecode instruction on that computer.


This combination of compiler and interpreter makes it easy to distribute Java applica-
tions because they don’t have to be rewritten to accommodate the characteristics of
every computer system. Once the program has been compiled it can be ported to, and
run on, any system with a Java interpreter.


The Java Platform


Typically a computer platform contains the hardware and software where a program
runs. The Java platform is a software-only platform that runs on top of other
hardware-based platforms. It has two components: the Java Virtual Machine (Java
VM), and the Java Application Programming Interface (Java API).


Java VM is the foundation for the Java platform and contains the Java interpreter,
which runs the bytecodes provided by the compiler. Java VM sits on top of many dif-
ferent hardware-based platforms, as shown in Figure 6.8.
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(figure 6.8)
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platform to shield a Java
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computer’s hardware.
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The Java API is a collection of software modules that programmers can use in their
applications. The Java API is grouped into libraries of related classes and interfaces.
These libraries, also known as packages, provide well-tested objects ranging from basic
data types to I/O functions, from network interfaces to graphical user interface kits.


The Java Language Environment


Java was designed to make it easy for experienced programmers to learn. Its syntax is
familiar because it looks and feels like C++. It is object-oriented, which means it takes
advantage of modern software development methodologies and fits well into distrib-
uted client-server applications.


One of Java’s features is that memory allocation is done at run time, unlike C and C++
where memory allocation is done at compilation time. Java’s compiled code references
memory via symbolic “handles” that are translated into real memory addresses at run
time by the Java interpreter. This means that the memory allocation and referencing
models are not visible to programmers, but are controlled entirely by the underlying
run-time platform.


Because Java applications run in distributed environments, security is a very impor-
tant built-in feature of the language and the run-time system. It provides compile-time
checking and run-time checking, which helps programmers create very reliable soft-
ware. For example, while a Java program is executing it can request particular classes
to be loaded from anywhere in the network. In this case all incoming code is checked
by a verifier, which ensures that the code is correct and can run safely without putting
the Java interpreter at risk. 


With its sophisticated synchronization capabilities, Java supports multithreading at
the language level. The language library provides the thread class, and the run-time
system provides monitor and condition lock primitives. The thread class is a collection
of methods used to start, run, stop, and check the status of a thread. Java’s threads are
preemptive and, depending on the platform on which the Java interpreter executes,
can also be time-sliced.


When a programmer declares some methods within a class to be synchronized, they
are not run concurrently. These synchronized methods are under the control of moni-
tors that ensure that variables remain in a consistent state. When a synchronized
method begins to run it is given a monitor for the current object, which does not allow
any other synchronized method in that object to execute. The monitor is released
when a synchronized method exits, which allows other synchronized methods within
the same object to run.
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Java technology continues to be popular with programmers for several reasons:


• It offers the capability of running a single program on various platforms without
having to make any changes.


• It offers a robust set of features such as run-time memory allocation, security, and multi-
threading.


• It is used for many Web and Internet applications, and integrates well with browsers
that can run Java applets with audio, video, and animation directly in a Web page.


Conclusion


Multiprocessing can occur in several configurations: in a single-processor system
where interacting processes obtain control of the processor at different times, or in
systems with multiple processors, where the work of each processor communicates
and cooperates with the others and is synchronized by the Processor Manager. Three
multiprocessing systems are described in this chapter: master/slave, loosely coupled,
and symmetric. Each can be configured in a variety of ways.


The success of any multiprocessing system depends on the ability of the system to syn-
chronize its processes with the system’s other resources. The concept of mutual exclu-
sion helps keep the processes with the allocated resources from becoming deadlocked.
Mutual exclusion is maintained with a series of techniques, including test-and-set,
WAIT and SIGNAL, and semaphores: test (P), increment (V), and mutex.


Hardware and software mechanisms are used to synchronize the many processes but
care must be taken to avoid the typical problems of synchronization: missed waiting
customers, the synchronization of producers and consumers, and the mutual exclusion
of readers and writers.


Continuing innovations in concurrent processing, including threads and multi-core
processors, are requiring fundamental changes to operating systems so they can take
advantage of these new technologies. These innovations require retooling of the many
applications that run on them as well as the operating system software. Research in
this area is expected to grow significantly in the next few years.


In the next chapter we look at the module of the operating system that manages the
printers, disk drives, tape drives, and terminals—the Device Manager.
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Key Terms


busy waiting: a method by which processes, waiting for an event to occur, continu-
ously test to see if the condition has changed and remain in unproductive, resource-
consuming wait loops.


CCOOBBEEGGIINN: command used with COEND to indicate to a multiprocessing compiler the
beginning of a section where instructions can be processed concurrently.


CCOOEENNDD: command used with COBEGIN to indicate to a multiprocessing compiler the
end of a section where instructions can be processed concurrently.


concurrent processing: execution by a single processor of a set of processes in such a
way that they appear to be happening at the same time.


critical region: a part of a program that must complete execution before other
processes can have access to the resources being used.


explicit parallelism: a type of concurrent programming that requires that the program-
mer explicitly state which instructions can be executed in parallel.


implicit parallelism: a type of concurrent programming in which the compiler auto-
matically detects which instructions can be performed in parallel.


Java: a cross-platform programming language, developed by Sun Microsystems,
that closely resembles C++ and runs on any computer capable of running the Java
interpreter.


loosely coupled configuration: a multiprocessing configuration in which each proces-
sor has a copy of the operating system and controls its own resources.


master/slave: an asymmetric multiprocessing configuration consisting of a single
processor system connected to “slave” processors each of which is managed by the
primary “master” processor, which provides the scheduling functions and jobs.


multi-core processor: a computer chip that contains more than a single central
processing unit (CPU). 


multiprocessing: when two or more processors share system resources that may
include some or all of the following: the same main memory, I/O devices, and control
program routines.


mutex: a condition that specifies that only one process may update (modify) a shared
resource at a time to ensure correct operation and results.


order of operations: the algebraic convention that dictates the order in which elements
of a formula are calculated. Also called precedence of operations or rules of precedence.
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parallel processing: the process of operating two or more CPUs in parallel, with more
than one CPU executing instructions simultaneously.


pointer: an address or other indicator of location.


process synchronization: (1) the need for algorithms to resolve conflicts between
processors in a multiprocessing environment; or (2) the need to ensure that events
occur in the proper order even if they are carried out by several processes.


producers and consumers: a classic problem in which a process produces data that will
be consumed, or used, by another process.


readers and writers: a problem that arises when two types of processes need to access
a shared resource such as a file or a database.


semaphore: a type of shared data item that may contain either binary or nonnegative
integer values and is used to provide mutual exclusion.


symmetric configuration: a multiprocessing configuration in which processor schedul-
ing is decentralized and each processor is of the same type.


test-and-set (TS): an indivisible machine instruction, which is executed in a single
machine cycle to determine whether the processor is available.


Thread Control Block (TCB): a data structure that contains information about the
current status and characteristics of a thread.


WAIT and SIGNAL: a modification of the test-and-set synchronization mechanism
that’s designed to remove busy waiting.


Interesting Searches
• ADA Programming Language


• Multi-core CPU Speed


• Multithreaded Processing


• Real-time Processing


• Cluster Computing


Exercises


Research Topics


A. Research current literature to identify a computer model with exceptional par-
allel processing ability. Identify the manufacturer, the maximum number of
processors the computer uses, how fast the machine can perform calculations,
and typical applications for it. Cite your sources. If your answer includes terms
not used in this chapter, be sure to define them.
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B. Research current literature to identify a recent project that has combined the
processing capacity of numerous small computers to address a problem.
Identify the operating system used to coordinate the processors for this project
and discuss the obstacles overcome to make the system work. If your answer
includes terms not used in this chapter, be sure to define them. Cite your
sources.


Exercises


1. Compare the processors’ access to printers and other I/O devices for the
master/slave and the symmetric multiprocessing configurations. Give a real-life
example where the master/slave configuration might be preferred. 


2. Compare the processors’ access to main memory for the loosely coupled
configuration and the symmetric multiprocessing configurations. Give a 
real-life example where the symmetric configuration might be preferred. 


3. Describe the programmer’s role when implementing explicit parallelism. 


4. Describe the programmer’s role when implementing implicit parallelism.


5. What steps does a well-designed multiprocessing system follow when it detects
that a processor is failing? What is the central goal of most multiprocessing
systems?


6. Give an example from real life of busy waiting. 


7. In the last chapter, we discussed deadlocks. Describe in your own words why
mutual exclusion is necessary for multiprogramming systems. 


8. Compare and contrast multiprocessing and concurrent processing. Describe the
role of process synchronization for both systems. 


9. Describe the purpose of a buffer and give an example from your own
experience where its use clearly benefits system response. 


10. Consider this formula:


G = (A + C2) * (E!1)3 / D + B


a. Show the order that a processor would follow to calculate G. To do so,
break down the equation into the correct order of operations with one
calculation per step. Show the formula for each step. 


b. Find the value of G: if A = 5, B = 10, C = 3, D = 8, and E = 5. 


11. Consider this formula:


G = D + (A + C2) * E / (D + B)3


a. Show the order that a processor would follow to calculate G. To do so,
break down the equation into the correct order of operations with one
calculation per step. Show the formula for each step.


b. Find the value of G: if A = 5, B = 10, C = 3, D = 8, and E = 5. 
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12. Rewrite each of the following arithmetic expressions to take advantage of
concurrent processing and then code each. Use the terms COBEGIN and 
COEND to delimit the sections of concurrent code.


a. A+B*R*Z – N*M+C2


b. (X*(Y*Z*W*R)+M+N+P)


c. ((J+K*L*M*N)*I)


13. Rewrite each of the following expressions for concurrent processing and then
code each one. Use the terms COBEGIN and COEND to delimit the sections of
concurrent code. Identify which expressions, if any, might NOT run faster in
a concurrent processing environment. 


a. H2*(O*(N+T))


b. X*(Y*Z*W*R)


c. M*T* R


Advanced Exercises


14. Use the test and increment (P and V) semaphore operations to simulate the
traffic flow at the intersection of two one-way streets. The following rules
should be satisfied: 


• Only one car can be crossing at any given time. 


• A car should be allowed to cross the intersection only if there are no cars
coming from the other street. 


• When cars are coming from both streets, they should take turns to prevent
indefinite postponements in either street. 


15. Compare and contrast the critical region and working set.


16. Consider the following program segments for two different processes (P1, P2)
executing concurrently and where B and A are not shared variables, but x
starts at 0 and is a shared variable. 


Processor #1: Processor #2:


for(a = 1; a <= 3; a++) for(b = 1; b <= 3; b++)
x = x + 1; x = x + 1;


If the processes P1 and P2 execute only once at any speed, what are the
possible resulting values of x? Explain your answers. 


17. Examine one of the programs you have written recently and indicate which
operations could be executed concurrently. How long did it take you to do
this? When might it be a good idea to write your programs in such a way that
they can be run concurrently? 
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18. Consider the following segment taken from a C program:
for(j = 1; j <= 12; j++)


{


printf("\nEnter an integer value:");


scanf("%d", &x);


if(x == 0)


y(j)=0;


if(x != 0)


y(j)=10;


}


a. Recode it so it will run more efficiently in a single-processor system.


b. Given that a multiprocessing environment with four symmetrical processors
is available, recode the segment as an efficient concurrent program that
performs the same function as the original C program. 


c. Given that all processors have identical capabilities, compare the execution
speeds of the original C segment with the execution speeds of your segments
for parts (a) and (b). 


Programming Exercises


19. Dijkstra introduced the Sleeping Barber Problem (Dijkstra, 1965): A barbershop
is divided into two rooms. The waiting room has n chairs and the work room
only has the barber chair. When the waiting room is empty, the barber goes to
sleep in the barber chair. If a customer comes in and the barber is asleep, he
knows it’s his turn to get his hair cut. So he wakes up the barber and takes his
turn in the barber chair. But if the waiting room is not empty, the customer must
take a seat in the waiting room and wait his turn. Write a program that will
coordinate the barber and his customers. 


20. Patil introduced the Cigarette Smokers Problem (Patil, 1971): Three smokers
and a supplier make up this system. Each smoker wants to roll a cigarette and
smoke it immediately. However, to smoke a cigarette the smoker needs three
ingredients—paper, tobacco, and a match. To the great discomfort of everyone
involved, each smoker has only one of the ingredients: Smoker 1 has lots of
paper, Smoker 2 has lots of tobacco, and Smoker 3 has the matches. And, of
course, the rules of the group don’t allow hoarding, swapping, or sharing. The
supplier, who doesn’t smoke, provides all three ingredients and he has an infi-
nite amount of all three items. But he only provides two of them at a time—
and only when no one is smoking. Here’s how it works. The supplier randomly
selects and places two different items on the table (which is accessible to all
three smokers), and the smoker with the remaining ingredient immediately
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takes them, rolls, and smokes a cigarette. When he’s finished smoking he
signals the supplier, who then places another two randomly selected items on
the table, and so on.


Write a program that will synchronize the supplier with the smokers. Keep
track of how many cigarettes each smoker consumes. Is this a fair supplier?
Why or why not? 
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Learning Objectives


After completing this chapter, you should be able to describe:


• Features of dedicated, shared, and virtual devices


• Differences between sequential and direct access media


• Concepts of blocking and buffering, and how they improve I/O performance


• Roles of seek time, search time, and transfer time in calculating access time


• Differences in access times in several types of devices


• Critical components of the input/output subsystem, and how they interact


• Strengths and weaknesses of common seek strategies, including FCFS, SSTF,
SCAN/LOOK, C-SCAN/C-LOOK, and how they compare


• Different levels of RAID and what sets each apart from the others
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“Nothing endures but change.”
—Heraclitus of Ephesus (c. 540 B.C. – 480 B.C.)
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Despite the multitude of devices that appear (and disappear) in the marketplace and
the swift rate of change in device technology, the Device Manager must manage every
peripheral device of the system. To do so, it must maintain a delicate balance of sup-
ply and demand—balancing the system’s finite supply of devices with users’ almost-
infinite demand for them. 


Device management involves four basic functions:


• Monitoring the status of each device, such as storage drives, printers, and other
peripheral devices


• Enforcing preset policies to determine which process will get a device and for how long


• Allocating the devices


• Deallocating them at two levels—at the process (or task) level when an I/O com-
mand has been executed and the device is temporarily released, and then at the job
level when the job is finished and the device is permanently released


Types of Devices


The system’s peripheral devices generally fall into one of three categories: dedicated,
shared, and virtual. The differences are a function of the characteristics of the devices,
as well as how they’re managed by the Device Manager.


Dedicated devices are assigned to only one job at a time; they serve that job for the
entire time it’s active or until it releases them. Some devices, such as tape drives, print-
ers, and plotters, demand this kind of allocation scheme, because it would be awkward
to let several users share them. A shared plotter might produce half of one user’s graph
and half of another. The disadvantage of dedicated devices is that they must be allo-
cated to a single user for the duration of a job’s execution, which can be quite ineffi-
cient, especially when the device isn’t used 100 percent of the time. And some devices
can be shared or virtual.


Shared devices can be assigned to several processes. For instance, a disk, or any other
direct access storage device (often shortened to DASD), can be shared by several
processes at the same time by interleaving their requests, but this interleaving must be
carefully controlled by the Device Manager. All conflicts—such as when Process A and
Process B each need to read from the same disk—must be resolved based on predeter-
mined policies to decide which request will be handled first. 


Virtual devices are a combination of the first two: They’re dedicated devices that have
been transformed into shared devices. For example, printers (which are dedicated
devices) are converted into sharable devices through a spooling program that reroutes
all print requests to a disk. Only when all of a job’s output is complete, and the printer
is ready to print out the entire document, is the output sent to the printer for printing.
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(This procedure has to be managed carefully to prevent deadlock, as we explained in
Chapter 5.) Because disks are sharable devices, this technique can convert one printer
into several virtual printers, thus improving both its performance and use. Spooling is
a technique that is often used to speed up slow dedicated I/O devices.


For example, the universal serial bus (USB) controller acts as an interface between the
operating system, device drivers, and applications and the devices that are attached via
the USB host. One USB host (assisted by USB hubs) can accommodate up to 127 differ-
ent devices, including flash memory, cameras, scanners, musical keyboards, etc. Each
device is identified by the USB host controller with a unique identification number, which
allows many devices to exchange data with the computer using the same USB connection.


The USB controller assigns bandwidth to each device depending on its priority:


• Highest priority is assigned to real-time exchanges where no interruption in the data
flow is allowed, such as video or sound data.


• Medium priority is assigned to devices that can allow occasional interrupts without
jeopardizing the use of the device, such as a keyboard or joystick.


• Lowest priority is assigned to bulk transfers or exchanges that can accommodate
slower data flow, such as printers or scanners.


Regardless of the specific attributes of the device, the most important differences
among them are speed and degree of sharability. 


Storage media are divided into two groups: sequential access media, which store
records sequentially, one after the other; and direct access storage devices (DASD),
which can store either sequential or direct access files. There are vast differences in
their speed and sharability.


Sequential Access Storage Media


Magnetic tape was developed for routine secondary storage in early computer systems
and features records that are stored serially, one after the other.


The length of these records is usually determined by the application program and each
record can be identified by its position on the tape. Therefore, to access a single record,
the tape must be mounted and fast-forwarded from its beginning until the desired posi-
tion is located. This can be a time-consuming process.


To appreciate just how long it takes, let’s consider a hypothetical computer system that
uses a reel of tape that  i s  2400 feet long (see Figure 7.1). Data is recorded on eight of
the nine parallel tracks that run the length of the tape. (The ninth track, shown at the
top of the figure, holds a parity bit that is used for routine error checking.)
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(figure 7.1)


Nine-track magnetic tape


with three characters


recorded using odd parity.


A 1/2-inch wide reel of


tape, typically used to


back up a mainframe


computer, can store


thousands of characters,


or bytes, per inch. 


The number of characters that can be recorded per inch is determined by the density
of the tape, such as 1600 bytes per inch (bpi). For example, if you had records of 160
characters each, and were storing them on a tape with a density of 1600 bpi, then the-
oretically you could store 10 records on one inch of tape. However, in actual practice,
it would depend on how you decided to store the records: individually or grouped into
blocks. If the records are stored individually, each record would need to be separated
by a space to indicate its starting and ending places. If the records are stored in blocks,
then the entire block is preceded by a space and followed by a space, but the individ-
ual records are stored sequentially within the block.


To appreciate the difference between storing individually or in blocks, let’s look at the
mechanics of reading and writing on magnetic tape. Magnetic tape moves under the
read/write head only when there’s a need to access a record; at all other times it’s stand-
ing still. So the tape moves in jerks as it stops, reads, and moves on at high speed, or
stops, writes, and starts again, and so on. Records would be written in the same way.


The tape needs time and space to stop, so a gap is inserted between each record. This
interrecord gap (IRG) is about 1⁄2 inch long regardless of the sizes of the records it sep-
arates. Therefore, if 10 records are stored individually, there will be nine 1⁄2-inch IRGs
between each record. (In this example we assume each record is only 1⁄10 inch.)


In Figure 7.2, 5.5 inches of tape are required to store 1 inch of data—not a very effi-
cient way to use the storage medium. (figure 7.2)


IRGs in magnetic tape.


Each record requires only


1/10 inch of tape, for a


total of 1 inch. When 10


records are stored


individually on magnetic


tape, they are separated


by IRGs, which adds up to


4.5 inches of tape. This


totals 5.5 inches of tape. 
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An alternative is to group the records into blocks before recording them on tape. This
is called blocking and it’s performed when the file is created. (Later, when you retrieve
them, you must be sure to unblock them accurately.)


The number of records in a block is usually determined by the application program,
and it’s often set to take advantage of the transfer rate, which is the density of the tape
(measured in bpi), multiplied by the tape drive speed, called transport speed, which is
measured in inches per second (ips):


transfer rate (ips) = density * transport speed


Let’s say that in our hypothetical system the transport speed is 200 ips. Therefore, at
1600 bpi, a total of 320,000 bytes can be transferred in one second, so theoretically
the optimal size of a block is 320,000 bytes. But there’s a catch: This technique
requires that the entire block be read into a buffer, so the buffer must be at least as
large as the block. 


Notice in Figure 7.3 that the gap (now called an interblock gap or IBG) is still 1⁄2 inch
long, but the data from each block of 10 records is now stored on only 1 inch of tape—
so we’ve used only 1.5 inches of tape (instead of the 5.5 inches shown in Figure 7.2), and
we’ve wasted only 1⁄2 inch of tape (instead of 4.5 inches).
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(figure 7.3)


Two blocks of records


stored on magnetic tape,


each preceded by an IBG of


1/2 inch. Each block holds


10 records, each of which is


still 1/10 inch. The block,


however, is 1 inch, for a


total of 1.5 inches. 


Blocking has two distinct advantages:


• Fewer I/O operations are needed because a single READ command can move an entire
block, the physical record that includes several logical records, into main memory.


• Less tape is wasted because the size of the physical record exceeds the size of the gap.


The two disadvantages of blocking seem mild by comparison:


• Overhead and software routines are needed for blocking, deblocking, and recordkeeping.


• Buffer space may be wasted if you need only one logical record but must read an
entire block to get it.
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How long does it take to access a block or record on magnetic tape? It depends on where
the record is located, but we can make some general calculations. For example, our
2400-foot reel of tape with a tape transport speed of 200 ips can be read without stop-
ping in approximately 2.5 minutes. Therefore, it would take 2.5 minutes to access the
last record on the tape. On the average, then, it would take 1.25 minutes to access a
record. And to access one record after another sequentially would take as long as it takes
to start and stop a tape—which is 0.003 seconds, or 3 milliseconds (ms).


As we can see from Table 7.1, access times can vary widely. That makes magnetic tape
a poor medium for routine secondary storage except for files with very high sequential
activity—that is, those requiring that 90 to 100 percent of the records be accessed
sequentially during an application.


Benchmarks Access Time


Maximum access 2.5 minutes


Average access 1.25 minutes


Sequential access 3 milliseconds


Direct Access Storage Devices


Direct access storage devices (DASDs) are devices that can directly read or write to a
specific place. DASDs can be grouped into three categories: magnetic disks, optical
discs, and flash memory. Although the variance in DASD access times isn’t as wide as
with magnetic tape, the location of the specific record still has a direct effect on the
amount of time required to access it.


Fixed-Head Magnetic Disk Storage


A fixed-head magnetic disk looks like a large CD or DVD covered with magnetic film that
has been formatted, usually on both sides, into concentric circles. Each circle is a track.
Data is recorded serially on each track by the fixed read/write head positioned over it.


A fixed-head disk, shown in Figure 7.4, is also very fast—faster than the movable-head
disks we’ll talk about in the next section. However, its major disadvantages are its high
cost and its reduced storage space compared to a movable-head disk (because the
tracks must be positioned farther apart to accommodate the width of the read/write
heads). These devices have been used when speed is of the utmost importance, such as
space flight or aircraft applications.
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(table 7.1)


Access times for 2400-foot


magnetic tape with a


tape transport speed of


200 ips. 
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Movable-Head Magnetic Disk Storage


Movable-head magnetic disks, such as computer hard drives, have one read/write head
that floats over each surface of each disk. Disks can be a single platter, or part of a disk
pack, which is a stack of magnetic platters. Figure 7.5 shows a typical disk pack—sev-
eral platters stacked on a common central spindle, separated by enough space to allow
the read/write heads to move between each pair of disks.


As shown in Figure 7.5, each platter (except those at the top and bottom of the stack)
has two surfaces for recording, and each surface is formatted with a specific number
of concentric tracks where the data is recorded. The number of tracks varies from
manufacturer to manufacturer, but typically there are a thousand or more on a high-
capacity hard disk. Each track on each surface is numbered: Track 0 identifies the out-
ermost concentric circle on each surface; the highest-numbered track is in the center.


The arm, shown in Figure 7.6, moves two read/write heads between each pair of surfaces:
one for the surface above it and one for the surface below. The arm moves all of the heads
in unison, so if one head is on Track 36, then all of the heads are on Track 36—in other
words, they’re all positioned on the same track but on their respective surfaces creating a
virtual cylinder.


This raises some interesting questions: Is it more efficient to write a series of records on
surface one and, when that surface is full, to continue writing on surface two, and then
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(figure 7.4)


A fixed-head disk with


four read/write heads, one


per track.
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on surface three, and so on? Or is it better to fill up every outside track of every surface
before moving the heads inward to the next track position to continue writing?


It’s slower to fill a disk pack surface-by-surface than it is to fill it up track-by-track—
and this leads us to a valuable concept. If we fill Track 0 of all of the surfaces, we’ve
got a virtual cylinder of data. There are as many cylinders as there are tracks, and the
cylinders are as tall as the disk pack. You could visualize the cylinders as a series of
smaller and smaller soup cans, each nested inside the larger ones.


To access any given record, the system needs three things: its cylinder number, so the
arm can move the read/write heads to it; its surface number, so the proper read/write
head is activated; and its sector number, as shown in Figure 7.7, so the read/write head
knows the instant when it should begin reading or writing.
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platter


cylinder


read/write head


(figure 7.5)


A disk pack is a stack of


magnetic platters. The


read/write heads move


between each pair of


surfaces, and all of the


heads are moved in


unison by the arm. 


(figure 7.6)


A typical hard drive from a


PC showing the arm that


floats over the surface of


the disk.


© Courtesy Seagate


Technology
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One clarification: We’ve used the term surface in this discussion because it makes the
concepts easier to understand. However, conventional literature generally uses the
term track to identify both the surface and the concentric track. Therefore, our use of
surface/track coincides with the term track or head used in some other texts.


Optical Disc Storage


The advent of optical disc storage was made possible by developments in laser technol-
ogy. Among the many differences between an optical disc and a magnetic disk is the
design of the disc track and sectors. 


A magnetic disk, which consists of concentric tracks of sectors, spins at a constant
speed—this is called constant angular velocity (CAV). Because the sectors at the outside
of the disk spin faster past the read/write head than the inner sectors, outside sectors
are much larger than sectors located near the center of the disk. This format wastes
storage space but maximizes the speed with which data can be retrieved. 


On the other hand, an optical disc consists of a single spiraling track of same-sized
sectors running from the center to the rim of the disc, as shown in Figure 7.8. This sin-
gle track also has sectors, but all sectors are the same size regardless of their locations
on the disc. This design allows many more sectors, and much more data, to fit on an
optical disc compared to a magnetic disk of the same size. The disc drive adjusts the
speed of the disc’s spin to compensate for the sector’s location on the disc—this is called
constant linear velocity (CLV). Therefore, the disc spins faster to read sectors located at
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storage disk. 


sectors
track


(figure 7.7)


On a magnetic disk, the


sectors are of different


sizes: bigger at the rim


and smaller at the center.


The disk spins at a


constant angular velocity


(CAV) to compensate for


this difference. Some


optical discs can read and


write on multiple layers,


greatly enhancing storage


capacity.
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the center of the disc, and slower to read sectors near the outer edge. If you listen to a
disc drive in action, you can hear it change speeds as it makes these adjustments. 


Two of the most important measures of optical disc drive performance are sustained
data transfer rate and average access time. The data transfer rate is measured in
megabytes per second and refers to the speed at which massive amounts of data can
be read from the disc. This factor is crucial for applications requiring sequential
access, such as for audio and video playback. For example, a DVD with a fast data
transfer rate will drop fewer frames when playing back a recorded video segment than
will a unit with a slower transfer rate. This creates an image that’s much smoother.


However, to retrieve data that is not stored sequentially, the drive’s access time may be
more important. Access time, which indicates the average time required to move the
head to a specific place on the disc, is expressed in milliseconds (ms). The fastest units
have the smallest average access time, which is the most important factor when search-
ing for information randomly, such as in a database. Therefore, a fast data-transfer
rate is most important for sequential disc access, such as for video playback, whereas
fast access time is crucial when retrieving data that’s widely dispersed on the disc. 


A third important feature of optical disc drives is cache size. Although it’s not a speed
measurement, cache size has a substantial impact on perceived performance. A hard-


212


Ch
ap


te
r 
7 


|D
ev


ic
e 


M
an


ag
em


en
t


single track
spirals to edge


of disc
disc sectors


(figure 7.8)


On an optical disc, the


sectors (not all sectors are


shown here) are of the


same size throughout the


disc. The disc drive


changes speed to


compensate, but it spins


at a constant linear


velocity (CLV).
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ware cache acts as a buffer by transferring blocks of data from the disc, anticipating
that the user may want to reread some recently retrieved information, which can be
done quickly if the information remains in the cache. In some cases, the cache can also
act as a read-ahead buffer, looking for the next block of information on the disc. Read-
ahead caches might appear to be most useful for multimedia playback, where a con-
tinuous stream of data is flowing. However, because they fill up quickly, read-ahead
caches actually become more useful when paging through a database or electronic
book. In these cases, the cache has time to recover while the user is reading the current
piece of information. 


There are several types of optical-disc systems, depending on the medium and the
capacity of the discs: CDs, DVDs, and Blu-ray as shown in Figure 7.9. 


To put data on an optical disc, a high-intensity laser beam burns indentations on the
disc that are called pits. These pits, which represent 0s, contrast with the unburned flat
areas, called lands, which represent 1s. The first sectors are located in the center of the
disc and the laser moves outward reading each sector in turn. If a disc has multiple lay-
ers, the laser’s course is reversed to read the second layer with the arm moving from
the outer edge to the inner. 
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(Red Laser)


(CD) (DVD) (Blu-ray)


(Red Laser) (Blue/Violet Laser)


(figure 7.9)


CD readable technology


(left) uses a red laser to


write on the bottom of the


disc’s substrate. DVDs


(middle) use a smaller red


laser to write on the disc’s


substrate so tracks can be


layered, one on top of the


other. Blu-ray (right) uses


a finer blue laser to write


on multiple layers with


more tightly packed


tracks. (from 


blu-raydisc.com) 


CD and DVD Technology 


In the CD or DVD player, data is read back by focusing a low-powered red laser on it,
which shines through the protective layer of the disc onto the CD track (or DVD
tracks) where data is recorded. Light striking a land is reflected into a photodetector
while light striking a pit is scattered and absorbed. The photodetector then converts
the intensity of the light into a digital signal of 1s and 0s.
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Recordable CD and DVD disc drives require more expensive disc controllers than the
read-only disc players because they need to incorporate write mechanisms specific to
each medium. For example, a CD consists of several layers, including a gold reflec-
tive layer and a dye layer, which is used to record the data. The write head uses a
high-powered laser beam to record data. A permanent mark is made on the dye when
the energy from the laser beam is absorbed into it and it cannot be erased after it is
recorded. When it is read, the existence of a mark on the dye will cause the laser
beam to scatter and light is not returned back to the read head. However, when there
are no marks on the dye, the gold layer reflects the light right back to the read head.
This is similar to the process of reading pits and lands. The software used to create a
recordable CD (CD-R) uses a standard format, such as ISO 9096, which automati-
cally checks for errors and creates a table of contents, used to keep track of each file’s
location.


Similarly, recordable and rewritable CDs (CD-RWs) use a process called phase change
technology to write, change, and erase data. The disc’s recording layer uses an alloy of
silver, indium, antimony, and tellurium. The recording layer has two different phase
states: amorphous and crystalline. In the amorphous state, light is not reflected as well
as in the crystalline state. 


To record data, a laser beam heats up the disc and changes the state from crystalline to
amorphous. When data is read by means of a low-power laser beam, the amorphous
state scatters the light that does not get picked up by the read head. This is interpreted
as a 0 and is similar to what occurs when reading pits. On the other hand, when the
light hits the crystalline areas, light is reflected back to the read head, and this is similar
to what occurs when reading lands and is interpreted as a 1. To erase data, the CD-RW
drive uses a low-energy beam to heat up the pits just enough to loosen the alloy and
return it to its original crystalline state. 


Although DVDs use the same design and are the same size and shape as CDs, they can
store much more data. A dual-layer, single-sided DVD can hold the equivalent of 13
CDs; its red laser, with a shorter wavelength than the CD’s red laser, makes smaller pits
and allows the spiral to be wound tighter. 


When the advantages of compression technology (discussed in the next chapter) are
added to the high capacity of a DVD, such as MPEG video compression, a single-sided,
double-layer DVD can hold 8.6GB, more than enough space to hold a two-hour movie
with enhanced audio. 
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Blu-ray Disc Technology 


A Blu-ray disc is the same physical size as a DVD or CD but the laser technology used to
read and write data is quite different. As shown in Figure 7.9, the pits (each representing
a 1) on a Blu-ray disc are much smaller and the tracks are wound much tighter than they
are on a DVD or CD. Although Blu-ray products can be made backward compatible so
they can accommodate the older CDs and DVDs, the Blu-ray’s blue-violet laser (405nm)
has a shorter wavelength than the CD/DVD’s red laser (650nm). This allows data to be
packed more tightly and stored in less space.


In addition, the blue-violet laser can write on a much thinner layer on the disc,
allowing multiple layers to be written on top of each other and vastly increasing the
amount of data that can be stored on a single disc. The disc’s format was created to
further the commercial prospects for high-definition video, and to store large
amounts of data, particularly for games and interactive applications via the Java
programming language. Blu-ray players execute Java programs for menus and user
interaction.


As of this writing, each Blu-ray disc can hold much more data (50GB for a two-layer
disc) than can a similar DVD (8.5GB for a two-layer disc). (Pioneer Electronics has
reported that its new 20-layer discs can hold 500GB.) Reading speed is also much
faster with the fastest Blu-ray players featuring 432 Mbps (comparable DVD players
reach 168.75 Mbps). Like CDs and DVDs, Blu-ray discs are available in several for-
mats: read-only (BD-ROM), recordable (BD-R), and rewritable (BD-RE).


Flash Memory Storage


Flash memory is a type of electrically erasable programmable read-only memory (EEP-
ROM). It’s a nonvolatile removable medium that emulates random access memory, but,
unlike RAM, stores data securely even when it’s removed from its power source.
Historically, flash memory was primarily used to store startup (boot up) information
for computers, but is now used to store data for cell phones, mobile devices, music
players, cameras, and more.


Flash memory uses a phenomenon (known as Fowler-Nordheim tunneling) to send
electrons through a floating gate transistor where they remain even after power is
turned off. Flash memory allows users to store data. It is sold in a variety of configu-
rations, including compact flash, smart cards, and memory sticks, and they often con-
nect to the computer through the USB port.


Flash memory gets its name from the technique used to erase its data. To write data, an
electric charge is sent through one transistor, called the floating gate, then through a
metal oxide layer, and into a second transistor called the control gate where the charge
is stored in a cell until it’s erased. To reset all values, a strong electrical field, called a
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flash, is applied to the entire card. However, flash memory isn’t indestructible. It has two
limitations: The bits can be erased only by applying the flash to a large block of memory
and, with each flash erasure, the block becomes less stable. In time (after 10,000 to
1,000,000 uses), a flash memory device will no longer reliably store data.


Magnetic Disk Drive Access Times


Depending on whether a disk has fixed or movable heads, there can be as many as
three factors that contribute to the time required to access a file: seek time, search
time, and transfer time.


To date, seek time has been the slowest of the three factors. This is the time required
to position the read/write head on the proper track. Obviously, seek time doesn’t apply
to devices with fixed read/write heads because each track has its own read/write head.
Search time, also known as rotational delay, is the time it takes to rotate the disk until
the requested record is moved under the read/write head. Transfer time is the fastest of
the three; that’s when the data is actually transferred from secondary storage to main
memory.


Fixed-Head Drives


Fixed-head disk drives are fast. The total amount of time required to access data
depends on the rotational speed, which varies from device to device but is constant
within each device, and the position of the record relative to the position of the
read/write head. Therefore, total access time is the sum of search time plus transfer
time.


search time (rotational delay)
+  transfer time (data transfer)
access time


Because the disk rotates continuously, there are three basic positions for the requested
record in relation to the position of the read/write head. Figure 7.10(a) shows the best
possible situation because the record is next to the read/write head when the I/O com-
mand is executed; this gives a rotational delay of zero. Figure 7.10(b) shows the average
situation because the record is directly opposite the read/write head when the I/O
command is executed; this gives a rotational delay of t/2 where t (time) is one full
rotation. Figure 7.10(c) shows the worst situation because the record has just rotated
past the read/write head when the I/O command is executed; this gives a rotational
delay of t because it will take one full rotation for the record to reposition itself under
the read/write head.
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(table 7.2)


Access times for a 


fixed-head disk drive at 


16.8 ms/revolution.


1


1


1


(a) (b) (c)


(figure 7.10)


As a disk rotates, Record 1


may be near the read/


write head and ready to be


scanned, as seen in (a); in


the farthest position just


past the head, (c); or


somewhere in between, as


in the average case, (b).


How long will it take to access a record? If one complete revolution takes 16.8 ms, then
the average rotational delay, as shown in Figure 7.10(b), is 8.4 ms. The data-transfer
time varies from device to device, but a typical value is 0.00094 ms per byte—the size
of the record dictates this value. For example, if it takes 0.094 ms (almost 0.1 ms) to
transfer a record with 100 bytes, then the resulting access times are shown in
Table 7.2.


Benchmarks Access Time


Maximum access 16.8 ms + 0.00094 ms/byte


Average access 8.4 ms + 0.00094 ms/byte


Sequential access Depends on the length of the record; generally less than 1 ms
(known as the transfer rate)


Data recorded on fixed head drives may or may not be blocked at the discretion of the
application programmer. Blocking isn’t used to save space because there are no IRGs
between records. Instead, blocking is used to save time.


To illustrate the advantages of blocking the records, let’s use the same values shown in
Table 7.2 for a record containing 100 bytes and blocks containing 10 records. If we
were to read 10 records individually, we would multiply the access time for a single
record by 10:


access time = 8.4 + 0.094 = 8.494 ms for one record
total access time = 10(8.4 + 0.094) = 84.940 ms for 10 records


On the other hand, to read one block of 10 records we would make a single access, so
we’d compute the access time only once, multiplying the transfer rate by 10:


access time = 8.4 + (0.094 * 10)
= 8.4 + 0.94
= 9.34 ms for 10 records in one block


C7047_07_Ch07.qxd  1/12/10  4:56 PM  Page 217








Once the block is in memory, the software that handles blocking and deblocking takes
over. But, the amount of time used in deblocking must be less than what you saved in
access time (75.6 ms) for this to be a productive move.


Movable-Head Devices


Movable-head disk drives add a third time element to the computation of access time.
Seek time is the time required to move the arm into position over the proper track. So
now the formula for access time is:


seek time (arm movement)
search time (rotational delay)


+      transfer time (data transfer)
access time


Of the three components of access time in this equation, seek time is the longest. We’ll
examine several seek strategies in a moment.


The calculations to figure search time (rotational delay) and transfer time are the same
as those presented for fixed-head drives. The maximum seek time, which is the maxi-
mum time required to move the arm, is typically 50 ms. Table 7.3 compares typical
access times for movable-head drives.


Benchmarks Access Time


Maximum access 50 ms + 16.8 ms + 0.00094 ms/byte


Average access 25 ms + 8.4 ms + 0.00094 ms/byte


Sequential access Depends on the length of the record,
generally less than 1 ms


The variance in access time has increased in comparison to that of the fixed-head drive
but it’s relatively small—especially when compared to tape access, which varies from
milliseconds to minutes. Again, blocking is a good way to minimize access time. If we
use the same example as for fixed-head disks and consider the average case with 10
seeks followed by 10 searches, we would get:


access time = 25 + 8.4 + 0.094 = 33.494 ms for one record
total access time = 10 * 33.494


= 334.94 ms for 10 records
(about 1⁄3 of a second)
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(table 7.3)


Typical access times for a


movable-head drive, such


as the hard drive, shown


in Figure 7.6. 
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But when we put the 10 records into one block, the access time is significantly
decreased:


total access time = 25 + 8.4 + (0.094 * 10)
= 33.4 + 0.94
= 34.34 ms for 10 records


(about 1⁄29 of a second)


We stress that these figures wouldn’t apply in an actual operating environment. For
instance, we haven’t taken into consideration what else is happening in the system while
I/O is taking place. Therefore, although we can show the comparable performance of
these components of the system, we’re not seeing the whole picture.


Components of the I/O Subsystem


The pieces of the I/O subsystem all have to work harmoniously, and they work in a
manner similar to the mythical “Flynn Taxicab Company” shown in Figure 7.11.


Many requests come in from all over the city to the taxi company dispatcher. It’s the
dispatcher’s job to handle the incoming calls as fast as they arrive and to find out who
needs transportation, where they are, where they’re going, and when. Then the dispatcher
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Mechanic 1 Minibus


Cab


Cab


Cab


Cab


Van


Van


Station Wagon


Limousine


Mechanic 2


Mechanic 3


Mechanic 5


Mechanic 6


Mechanic 4


(figure 7.11)


The taxicab company


works in a manner similar


to an I/O subsystem. One


mechanic can service


several vehicles just as an


I/O control unit can


operate several devices,


as shown in Figure 7.12. 


C7047_07_Ch07.qxd  1/12/10  4:56 PM  Page 219








organizes the calls into an order that will use the company’s resources as efficiently as pos-
sible. That’s not easy, because the cab company has a variety of vehicles at its disposal:
ordinary taxicabs, station wagons, vans, limos, and a minibus. These are serviced by spe-
cialized mechanics. A mechanic handles only one type of vehicle, which is made available
to many drivers. Once the order is set, the dispatcher calls the mechanic who, ideally, has
the vehicle ready for the driver who jumps into the appropriate vehicle, picks up the wait-
ing passengers, and delivers them quickly to their respective destinations.


That’s the ideal—but problems sometimes occur; rainy days mean too many phone
calls to fulfill every request, vehicles are not mechanically sound, and sometimes the
limo is already busy.


The I/O subsystem’s components perform similar functions. The channel plays the
part of the dispatcher in this example. Its job is to keep up with the I/O requests from
the CPU and pass them down the line to the appropriate control unit. The control
units play the part of the mechanics. The I/O devices play the part of the vehicles.


I/O channels are programmable units placed between the CPU and the control units.
Their job is to synchronize the fast speed of the CPU with the slow speed of the I/O
device, and they make it possible to overlap I/O operations with processor operations
so the CPU and I/O can process concurrently. Channels use I/O channel programs,
which can range in size from one to many instructions. Each channel program speci-
fies the action to be performed by the devices and controls the transmission of data
between main memory and the control units.


The channel sends one signal for each function, and the I/O control unit interprets the
signal, which might say “go to the top of the page” if the device is a printer or
“rewind” if the device is a tape drive. Although a control unit is sometimes part of the
device, in most systems a single control unit is attached to several similar devices, so
we distinguish between the control unit and the device.


Some systems also have a disk controller, or disk drive interface, which is a special-
purpose device used to link the disk drives with the system bus. Disk drive interfaces
control the transfer of information between the disk drives and the rest of the com-
puter system. The operating system normally deals with the controller, not the device.


At the start of an I/O command, the information passed from the CPU to the channel
is this:


• I/O command (READ, WRITE, REWIND, etc.)


• Channel number


• Address of the physical record to be transferred (from or to secondary storage)


• Starting address of a memory buffer from which or into which the record is to be
transferred
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Because the channels are as fast as the CPU they work with, each channel can direct
several control units by interleaving commands (just as we had several mechanics
directed by a single dispatcher). In addition, each control unit can direct several
devices (just as a single mechanic could repair several vehicles of the same type). A typ-
ical configuration might have one channel and up to eight control units, each of which
communicates with up to eight I/O devices. Channels are often shared because they’re
the most expensive items in the entire I/O subsystem.


The system shown in Figure 7.12 requires that the entire path be available when an
I/O command is initiated. However, there’s some flexibility built into the system
because each unit can end independently of the others, as will be explained in the next
section. This figure also shows the hierarchical nature of the interconnection and the
one-to-one correspondence between each device and its transmission path.


Additional flexibility can be built into the system by connecting more than one chan-
nel to a control unit or by connecting more than one control unit to a single device.
That’s the same as if the mechanics of the Flynn Taxicab Company could also make
repairs for the ABC Taxicab Company, or if its vehicles could be used by ABC drivers
(or if the drivers in the company could share vehicles).


These multiple paths increase the reliability of the I/O subsystem by keeping commu-
nication lines open even if a component malfunctions. Figure 7.13 shows the same sys-
tem presented in Figure 7.12, but with one control unit connected to two channels and
one device connected to two control units.
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Typical I/O subsystem


configuration.
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Communication Among Devices


The Device Manager relies on several auxiliary features to keep running efficiently
under the demanding conditions of a busy computer system, and there are three prob-
lems that must be resolved:


• It needs to know which components are busy and which are free.


• It must be able to accommodate the requests that come in during heavy I/O traffic.


• It must accommodate the disparity of speeds between the CPU and the I/O devices.


The first is solved by structuring the interaction between units. The last two problems
are handled by buffering records and queuing requests.


As we mentioned previously, each unit in the I/O subsystem can finish its operation
independently from the others. For example, after a device has begun writing a record,
and before it has completed the task, the connection between the device and its con-
trol unit can be cut off so the control unit can initiate another I/O task with another
device. Meanwhile, at the other end of the system, the CPU is free to process data
while I/O is being performed, which allows for concurrent processing and I/O.


The success of the operation depends on the system’s ability to know when a device
has completed an operation. This is done with a hardware flag that must be tested by
the CPU. This flag is made up of three bits and resides in the Channel Status Word
(CSW), which is in a predefined location in main memory and contains information
indicating the status of the channel. Each bit represents one of the components of
the I/O subsystem, one each for the channel, control unit, and device. Each bit is
changed from 0 to 1 to indicate that the unit has changed from free to busy. Each com-
ponent has access to the flag, which can be tested before proceeding with the next I/O
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(figure 7.13)


I/O subsystem


configuration with


multiple paths, which


increase both flexibility


and reliability. With two


additional paths, shown


with dashed lines, if


Control Unit 2


malfunctions, then Tape 2


can still be accessed via


Control Unit 3. 


✔
Polling increases
system overhead
because the flag
is tested regularly.
This overhead is
similar to that
caused by busy
waiting, discussed
in Chapter 5.
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operation to ensure that the entire path is free and vice versa. There are two common
ways to perform this test—polling and using interrupts.


Polling uses a special machine instruction to test the flag. For example, the CPU period-
ically tests the channel status bit (in the CSW). If the channel is still busy, the CPU per-
forms some other processing task until the test shows that the channel is free; then the
channel performs the I/O operation. The major disadvantage with this scheme is deter-
mining how often the flag should be polled. If polling is done too frequently, the CPU
wastes time testing the flag just to find out that the channel is still busy. On the other
hand, if polling is done too seldom, the channel could sit idle for long periods of time.


The use of interrupts is a more efficient way to test the flag. Instead of having the CPU
test the flag, a hardware mechanism does the test as part of every machine instruction
executed by the CPU. If the channel is busy, the flag is set so that execution of the cur-
rent sequence of instructions is automatically interrupted and control is transferred to
the interrupt handler, which is part of the operating system and resides in a predefined
location in memory.


The interrupt handler’s job is to determine the best course of action based on the cur-
rent situation because it’s not unusual for more than one unit to have caused the I/O
interrupt. So the interrupt handler must find out which unit sent the signal, analyze its
status, restart it when appropriate with the next operation, and finally return control
to the interrupted process.


Some sophisticated systems are equipped with hardware that can distinguish between
several types of interrupts. These interrupts are ordered by priority, and each one can
transfer control to a corresponding location in memory. The memory locations are
ranked in order according to the same priorities. So if the CPU is executing the inter-
rupt-handler routine associated with a given priority, the hardware will automatically
intercept all interrupts at the same or at lower priorities. This multiple-priority inter-
rupt system helps improve resource utilization because each interrupt is handled
according to its relative importance.


Direct memory access (DMA) is an I/O technique that allows a control unit to directly
access main memory. This means that once reading or writing has begun, the remain-
der of the data can be transferred to and from memory without CPU intervention.
However, it is possible that the DMA control unit and the CPU compete for the sys-
tem bus if they happen to need it at the same time. To activate this process, the CPU
sends enough information—such as the type of operation (read or write), the unit
number of the I/O device needed, the location in memory where data is to be read
from or written to, and the amount of data (bytes or words) to be transferred—to the
DMA control unit to initiate the transfer of data; the CPU then can go on to another
task while the control unit completes the transfer independently. The DMA controller
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sends an interrupt to the CPU to indicate that the operation is completed. This mode
of data transfer is used for high-speed devices such as disks.


Without DMA, the CPU is responsible for the physical movement of data between
main memory and the device—a time-consuming task that results in significant over-
head and decreased CPU utilization.


Buffers are used extensively to better synchronize the movement of data between the
relatively slow I/O devices and the very fast CPU. Buffers are temporary storage areas
residing in three convenient locations throughout the system: main memory, channels,
and control units. They’re used to store data read from an input device before it’s
needed by the processor and to store data that will be written to an output device. A
typical use of buffers (mentioned earlier in this chapter) occurs when blocked records
are either read from, or written to, an I/O device. In this case, one physical record con-
tains several logical records and must reside in memory while the processing of each
individual record takes place. For example, if a block contains five records, then a
physical READ occurs with every six READ commands; all other READ requests are
directed to retrieve information from the buffer (this buffer may be set by the applica-
tion program).


To minimize the idle time for devices and, even more important, to maximize their
throughput, the technique of double buffering is used, as shown in Figure 7.14. In this
system, two buffers are present in main memory, channels, and control units. The
objective is to have a record ready to be transferred to or from memory at any time to
avoid any possible delay that might be caused by waiting for a buffer to fill up with
data. Thus, while one record is being processed by the CPU, another can be read or
written by the channel.
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✔
Another buffering
concept is the
circular buffer,
which is the
subject of a
research topic at
the end of this
chapter.


(figure 7.14)


Example of double


buffering: (a) the CPU is


reading from Buffer 1 as


Buffer 2 is being filled; (b)


once Buffer 2 is filled, it


can be read quickly by the


CPU while Buffer 1 is being


filled again.
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When using blocked records, upon receipt of the command to “READ last logical
record,” the channel can start reading the next physical record, which results in over-
lapped I/O and processing. When the first READ command is received, two records
are transferred from the device to immediately fill both buffers. Then, as the data from
one buffer has been processed, the second buffer is ready. As the second is being read,
the first buffer is being filled with data from a third record, and so on.


Management of I/O Requests


Although most users think of an I/O request as an elementary machine action, the
Device Manager actually divides the task into three parts with each one handled by a
specific software component of the I/O subsystem. The I/O traffic controller watches
the status of all devices, control units, and channels. The I/O scheduler implements the
policies that determine the allocation of, and access to, the devices, control units, and
channels. The I/O device handler performs the actual transfer of data and processes
the device interrupts. Let’s look at these in more detail.


The I/O traffic controller monitors the status of every device, control unit, and chan-
nel. It’s a job that becomes more complex as the number of units in the I/O subsystem
increases and as the number of paths between these units increases. The traffic con-
troller has three main tasks: (1) it must determine if there’s at least one path available;
(2) if there’s more than one path available, it must determine which to select; and (3) if
the paths are all busy, it must determine when one will become available.
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To do all this, the traffic controller maintains a database containing the status and
connections for each unit in the I/O subsystem, grouped into Channel Control Blocks,
Control Unit Control Blocks, and Device Control Blocks, as shown in Table 7.4.


Channel Control Block Control Unit Control Block Device Control Block


• Channel identification


• Status


• List of control units
connected to it


• List of processes
waiting for it


• Control unit identification


• Status


• List of channels
connected to it


• List of devices
connected to it


• List of processes
waiting for it


• Device identification


• Status


• List of control units
connected to it


• List of processes 
waiting for it


(table 7.4)


Each control block


contains the information it


needs to manage its part


of the I/O subsystem.


To choose a free path to satisfy an I/O request, the traffic controller traces backward
from the control block of the requested device through the control units to the chan-
nels. If a path is not available, a common occurrence under heavy load conditions, the
process (actually its Process Control Block, or PCB, as described in Chapter 4) is
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linked to the queues kept in the control blocks of the requested device, control unit,
and channel. This creates multiple wait queues with one queue per path. Later, when a
path becomes available, the traffic controller quickly selects the first PCB from the
queue for that path.


The I/O scheduler performs the same job as the Process Scheduler described in
Chapter 4 on processor management—that is, it allocates the devices, control units, and
channels. Under heavy loads, when the number of requests is greater than the number
of available paths, the I/O scheduler must decide which request to satisfy first. Many of
the criteria and objectives discussed in Chapter 4 also apply here. In many systems, the
major difference between I/O scheduling and process scheduling is that I/O requests are
not preempted. Once the channel program has started, it’s allowed to continue to com-
pletion even though I/O requests with higher priorities may have entered the queue.
This is feasible because channel programs are relatively short, 50 to 100 ms. Other sys-
tems subdivide an I/O request into several stages and allow preemption of the I/O
request at any one of these stages.


Some systems allow the I/O scheduler to give preferential treatment to I/O requests
from high-priority programs. In that case, if a process has high priority, then its I/O
requests would also have high priority and would be satisfied before other I/O requests
with lower priorities. The I/O scheduler must synchronize its work with the traffic
controller to make sure that a path is available to satisfy the selected I/O requests.


The I/O device handler processes the I/O interrupts, handles error conditions, and pro-
vides detailed scheduling algorithms, which are extremely device dependent. Each type
of I/O device has its own device handler algorithm.


Device Handler Seek Strategies


A seek strategy for the I/O device handler is the predetermined policy that the device
handler uses to allocate access to the device among the many processes that may be
waiting for it. It determines the order in which the processes get the device, and the
goal is to keep seek time to a minimum. We’ll look at some of the most commonly
used seek strategies—first-come, first-served (FCFS); shortest seek time first (SSTF);
and SCAN and its variations LOOK, N-Step SCAN, C-SCAN, and C-LOOK.


Every scheduling algorithm should do the following:


• Minimize arm movement


• Minimize mean response time


• Minimize the variance in response time


✔
Because seek time
is often the
slowest element
in most
circumstances,
access time is
fastest if the entire
data request can
be fulfilled with a
minimum of arm
movement.
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These goals are only a guide. In actual systems, the designer must choose the strategy
that makes the system as fair as possible to the general user population while using the
system’s resources as efficiently as possible.


First-come, first-served (FCFS) is the simplest device-scheduling algorithm; it is easy to
program and essentially fair to users. However, on average, it doesn’t meet any of the
three goals of a seek strategy. To illustrate, consider a single-sided disk with one record-
able surface where the tracks are numbered from 0 to 49. It takes 1 ms to travel from one
track to the next adjacent one. For this example, let’s say that while retrieving data from
Track 15, the following list of requests has arrived: Tracks 4, 40, 11, 35, 7, and 14. Let’s
also assume that once a requested track has been reached, the entire track is read into
main memory. The path of the read/write head looks like the graph shown in Figure 7.15.
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(figure 7.15)


The arm makes many


time-consuming


movements as it travels


from track to track to


satisfy all requests in


FCFS order.


In Figure 7.15, it takes a long time, 135 ms, to satisfy the entire series of requests—
and that’s before considering the work to be done when the arm is finally in
place—search time and data transfer.


FCFS has an obvious disadvantage of extreme arm movement: from 15 to 4, up to 40,
back to 11, up to 35, back to 7, and, finally, up to 14. Remember, seek time is the most
time-consuming of the three functions performed here, so any algorithm that can min-
imize it is preferable to FCFS.


Shortest seek time first (SSTF) uses the same underlying philosophy as Shortest Job
Next (described in Chapter 4), where the shortest jobs are processed first and longer
jobs are made to wait. With SSTF, the request with the track closest to the one being
served (that is, the one with the shortest distance to travel) is the next to be satisfied,
thus minimizing overall seek time. Figure 7.16 shows what happens to the same track
requests that took 135 ms to service using FCFS; in this example, all track requests are
present and on the wait queue.
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(figure 7.16)


Using the SSTF algorithm,


with all track requests on


the wait queue, arm


movement is reduced by


almost one third while


satisfying the same


requests shown in


Figure 7.15 (using the


FCFS algorithm).


Again, without considering search time and data transfer time, it took 47 ms to satisfy
all requests—which is about one third of the time required by FCFS. That’s a substan-
tial improvement.


But SSTF has its disadvantages. Remember that the Shortest Job Next (SJN) process
scheduling algorithm had a tendency to favor the short jobs and postpone the long,
unwieldy jobs. The same holds true for SSTF. It favors easy-to-reach requests and post-
pones traveling to those that are out of the way.


For example, let’s say that in the previous example, the arm is at Track 11 and is
preparing to go to Track 7 when the system suddenly gets a deluge of requests, includ-
ing requests for Tracks 22, 13, 16, 29, 1, and 21. With SSTF, the system notes that
Track 13 is closer to the arm’s present position (only two tracks away) than the older
request for Track 7 (five tracks away), so Track 13 is handled first. Of the requests
now waiting, the next closest is Track 16, so off it goes—moving farther and farther
away from Tracks 7 and 1. In fact, during periods of heavy loads, the arm stays in the
center of the disk, where it can satisfy the majority of requests easily and it ignores (or
indefinitely postpones) those on the outer edges of the disk. Therefore, this algorithm
meets the first goal of seek strategies but fails to meet the other two.


SCAN uses a directional bit to indicate whether the arm is moving toward the center
of the disk or away from it. The algorithm moves the arm methodically from the outer
to the inner track, servicing every request in its path. When it reaches the innermost
track, it reverses direction and moves toward the outer tracks, again servicing every
request in its path. The most common variation of SCAN is LOOK, sometimes known
as the elevator algorithm, in which the arm doesn’t necessarily go all the way to either
edge unless there are requests there. In effect, it “looks” ahead for a request before
going to service it. In Figure 7.17, we assume that the arm is moving first toward the
inner (higher-numbered) tracks before reversing direction. In this example, all track
requests are present and on the wait queue.


✔
What happens if
two or more jobs or
processes are tied?
It depends on the
policy, but the
most common way
ties are broken is
to apply FCFS to
break the tie. The
oldest one is
allowed to go next.
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Again, without adding search time and data transfer time, it took 61 ms to satisfy all
requests, 14 ms more than with SSTF. Does this make SCAN a less attractive algo-
rithm than SSTF? For this particular example, the answer is yes. But for the overall
system, the answer is no because it eliminates the possibility of indefinite postpone-
ment of requests in out-of-the-way places—at either edge of the disk.


Also, as requests arrive, each is incorporated in its proper place in the queue and ser-
viced when the arm reaches that track. Therefore, if Track 11 is being served when the
request for Track 13 arrives, the arm continues on its way to Track 7 and then to
Track 1. Track 13 must wait until the arm starts on its way back, as does the request
for Track 16. This eliminates a great deal of arm movement and saves time in the end.
In fact, SCAN meets all three goals for seek strategies.


Variations of SCAN, in addition to LOOK, are N-Step SCAN, C-SCAN, and C-LOOK.
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(figure 7.17)


The LOOK algorithm


makes the arm move


systematically from the


first requested track at


one edge of the disk to


the last requested track at


the other edge. In this


example, all track requests


are on the wait queue.


N-Step SCAN holds all new requests until the arm starts on its way back. Any requests
that arrive while the arm is in motion are grouped for the arm’s next sweep.


With C-SCAN (an abbreviation for Circular SCAN), the arm picks up requests on its
path during the inward sweep. When the innermost track has been reached, it immedi-
ately returns to the outermost track and starts servicing requests that arrived during
its last inward sweep. With this modification, the system can provide quicker service
to those requests that accumulated for the low-numbered tracks while the arm was
moving inward. The theory here is that by the time the arm reaches the highest-
numbered tracks, there are few requests immediately behind it. However, there are
many requests at the far end of the disk and these have been waiting the longest.
Therefore, C-SCAN is designed to provide a more uniform wait time.
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C-LOOK is an optimization of C-SCAN, just as LOOK is an optimization of SCAN.
In this algorithm, the sweep inward stops at the last high-numbered track request, so
the arm doesn’t move all the way to the last track unless it’s required to do so. In addi-
tion, the arm doesn’t necessarily return to the lowest-numbered track; it returns only
to the lowest-numbered track that’s requested.


Which strategy is best? It’s up to the system designer to select the best algorithm for
each environment. It’s a job that’s complicated because the day-to-day performance of
any scheduling algorithm depends on the load it must handle; but some broad general-
izations can be made based on simulation studies:


• FCFS works well with light loads; but as soon as the load grows, service time
becomes unacceptably long.


• SSTF is quite popular and intuitively appealing. It works well with moderate loads
but has the problem of localization under heavy loads.


• SCAN works well with light to moderate loads and eliminates the problem of indef-
inite postponement. SCAN is similar to SSTF in throughput and mean service times.


• C-SCAN works well with moderate to heavy loads and has a very small variance in
service times.


The best scheduling algorithm for a specific computing system may be a combination
of more than one scheme. For instance, it might be a combination of two schemes:
SCAN or LOOK during light to moderate loads, and C-SCAN or C-LOOK during
heavy load times.


Search Strategies: Rotational Ordering


So far we’ve only tried to optimize seek times. To complete the picture, we’ll now look
at a way to optimize search times by ordering the requests once the read/write heads
have been positioned. This search strategy is called rotational ordering.


To help illustrate the abstract concept of rotational ordering, let’s consider a virtual
cylinder with a movable read/write head.


Figure 7.18 illustrates the list of requests arriving at this cylinder for different sectors
on different tracks. For this example, we’ll assume that the cylinder has only five
tracks, numbered 0 through 4, and that each track contains five sectors, numbered 0
through 4. We’ll take the requests in the order in which they arrive.
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(figure 7.18)


This movable-head


cylinder takes 5 ms to


move the read/write head


from one track to the next.


The read/write head is


initially positioned at


Track 0, Sector 0. It takes


5 ms to rotate the cylinder


from Sector 0 to Sector 4


and 1 ms to transfer one


sector from the cylinder to


main memory.


Each request is satisfied as it comes in. The results are shown in Table 7.5.


Request
(Track, Sector) Seek Time Search Time Data Transfer Total Time


1. 0,1 0 1 1 2


2. 1,4 5 2 1 8


3. 1,3 0 3 1 4


4. 2,0 5 1 1 7


5. 2,3 0 2 1 3


6. 2,4 0 0 1 1


7. 3,2 5 2 1 8


8. 3,0 0 2 1 3


TOTALS 15 ms       + 13 ms      + 8 ms       = 36 ms


Although nothing can be done to improve the time spent moving the read/write head
because it’s dependent on the hardware, the amount of time wasted due to rotational
delay can be reduced. If the requests are ordered within each track so that the first sec-
tor requested on the second track is the next number higher than the one just served,
rotational delay will be minimized, as shown in Table 7.6.


To properly implement this algorithm, the device controller must provide rotational
sensing so the device driver can see which sector is currently under the read/write head.
Under heavy I/O loads, this kind of ordering can significantly increase throughput,
especially if the device has fixed read/write heads rather than movable heads.


(table 7.5)


It takes 36 ms to fill the


eight requests on the


movable-head cylinder


shown in Figure 7.18.
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Disk pack cylinders are an extension of the previous example. Once the heads are
positioned on a cylinder, each surface has its own read/write head shown in Figure 7.5.
So rotational ordering can be accomplished on a surface-by-surface basis, and the
read/write heads can be activated in turn with no additional movement required.


Request
(Track, Sector) Seek Time Search Time Data Transfer Total Time


1. 0,1 0 1 1 2


2. 1,3 5 1 1 7


3. 1,4 0 0 1 1


4. 2,0 5 0 1 6


5. 2,3 0 2 1 3


6. 2,4 0 0 1 1


7. 3,0 5 0 1 6


8. 3,2 0 1 1 2


TOTALS 15 ms      + 5 ms       + 8 ms       = 28 ms


Only one read/write head can be active at any one time, so the controller must be ready
to handle mutually exclusive requests such as Request 2 and Request 5 in Table 7.6.
They’re mutually exclusive because both are requesting Sector 3, one at Track 1 and the
other at Track 2, but only one of the two read/write heads can be transmitting at any
given time. So the policy could state that the tracks will be processed from low-numbered
to high-numbered and then from high-numbered to low-numbered in a sweeping motion
such as that used in SCAN. Therefore, to handle requests on a disk pack, there would be
two orderings of requests: one to handle the position of the read/write heads making up
the cylinder and the other to handle the processing of each cylinder.


RAID


RAID is a set of physical disk drives that is viewed as a single logical unit by the oper-
ating system. It was introduced to close the widening gap between increasingly fast
processors and slower disk drives. RAID assumes that several small-capacity disk dri-
ves are preferable to a few large-capacity disk drives because, by distributing the data
among several smaller disks, the system can simultaneously access the requested data
from the multiple drives, resulting in improved I/O performance and improved
data recovery in the event of disk failure.
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(table 7.6)


It takes 28 ms to fill the


same eight requests


shown in Table 7.5 after


the requests are ordered


to minimize search time,


reducing it from 13 ms 


to 5 ms.
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A typical disk array configuration may have five disk drives connected to a specialized
controller, which houses the software that coordinates the transfer of data from the
disks in the array to a large-capacity disk connected to the I/O subsystem, as shown in
Figure 7.19. This configuration is viewed by the operating system as a single large-
capacity disk, so that no software changes are needed.
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Strip 1
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Controller
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RAID Disk 1


RAID Disk 2


RAID Disk 3


RAID Disk 4


Data Transferred in Parallel


Strip 2
Strip 1


~~~~~~
~~~~~~
~~~~~~
~~~~~~


(figure 7.19)


Data being transferred in


parallel from a Level 0


RAID configuration to a


large-capacity disk. The


software in the controller


ensures that the strips are


stored in correct order.


Data is divided into segments called strips, which are distributed across the disks in
the array. A set of consecutive strips across disks is called a stripe and the whole
process is called striping. Figure 7.19 shows how data strips are distributed in an array
of four disks.


RAID technology was originally proposed by researchers at the University of
California at Berkeley, who created the acronym to stand for Redundant Array of
Inexpensive Disks. The industry has since amended the acronym to represent
Redundant Array of Independent Disks to emphasize the scheme’s improved disk per-
formance and reliability.


There are seven primary levels of RAID, numbered from Level 0 through Level 6. It
should be noted that the levels do not indicate a hierarchy but rather denote different


✔
While RAID
introduces the
much-needed
concept of
redundancy to
help systems
recover from
hardware failure,
most RAID
configurations
require more disk
drives, which
increases
hardware costs.
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types of configurations and error correction capabilities. Table 7.7 provides a sum-
mary of the seven levels including how error correction is implemented and the per-
ceived quality of performance.


RAID Level Error Correction Method I/O Request Rate Data Transfer Rate


0 None Excellent Excellent


1 Mirroring Read: Good Read: Fair
Write: Fair Write: Fair


2 Hamming code Poor Excellent


3 Word parity Poor Excellent


4 Strip parity Read: Excellent Read: Fair
Write: Fair Write: Poor


5 Distributed strip Read: Excellent Read: Fair
parity Write: Fair Write: Poor


6 Distributed strip parity Read: Excellent Read: Fair
and independent Write: Poor Write: Poor
data check


Level Zero


RAID Level 0 uses data striping without parity, without error correction. It is the only
level that does not provide error correction, or redundancy, and so it is not considered
a true form of RAID because it cannot recover from hardware failure. However, it
does offer the same significant benefit of all RAID systems—that this group of devices
appears to the operating system as a single logical unit.


Raid Level 0 is well suited to transferring large quantities of non-critical data. In the
configuration shown in Figure 7.20, when the operating system issues a read com-
mand for the first four strips, all four strips can be transferred in parallel, improving
system performance. Level 0 works well in combination with other configurations as
we’ll see in our discussion about Nested RAID Levels.


Level One


RAID Level 1 also uses striping, and is called a mirrored configuration because it pro-
vides redundancy by having a duplicate set of all data in a mirror array of disks, which
acts as a backup system in the event of hardware failure. If one drive should fail, the
system would immediately retrieve the data from its backup disk, making this a very
reliable system. Figure 7.21 shows a RAID Level 1 configuration with three disks on
each identical array: main and mirror.
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(table 7.7)


The seven standard levels


of RAID provide various


degrees of error


correction. Cost, speed,


and the system’s


applications are


significant factors to


consider when choosing a


system.
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Using Level 1, read requests can be satisfied by either disk containing the requested
data. The choice of disk could minimize seek time and rotational delay. The disadvan-
tage is that write requests require twice as much effort because data must be written
twice, once to each set of disks. However, this does not require twice the amount of
time because both writes can be done in parallel.


Level 1 is an expensive system to construct because it requires at least twice the disk
capacity of a Level 0 system, but its advantage of improved reliability makes it ideal
for data-critical real-time systems.
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RAID Level 0 with four


disks in the array. Strips 1,


2, 3, and 4 make up a


stripe. Strips 5, 6, 7, and 8


make up another stripe,


and so on.


Strip 7
Strip 4
Strip 1


Disk 1


RAID Level 1


Strip 8
Strip 5
Strip 2


Strip 9
Strip 6
Strip 3


Disk 2 Disk 3


Strip 7
Strip 4
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Disk 1


Strip 8
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Strip 2


Strip 9 Main Array


Mirrored Array


Strip 6
Strip 3


Disk 2 Disk 3(figure 7.21)


RAID Level 1 with three


disks in the main array


and three corresponding


disks in the backup array,


the mirrored array.
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Level Two


RAID Level 2 uses very small strips (often the size of a word or a byte) and uses a
Hamming code to provide error detection and correction, or redundancy. The
Hamming code is an algorithm that adds extra, redundant bits to the data and is there-
fore able to correct single-bit errors and detect double-bit errors.


Level 2 is an expensive and complex configuration to implement because the number
of disks in the array depends on the size of the strip, and all drives must be highly syn-
chronized in both rotational movement and arm positioning. For example, if each strip
is 4 bits, then the Hamming code adds three parity bits in positions 1, 2, and 4 of the
newly created 7-bit data item. In the example of RAID Level 2 shown in Figure 7.22,
the array has seven disks, one for each bit. Its advantage is that, if a drive should mal-
function, only one bit would be affected and the data could be quickly corrected.
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Disk 1


RAID Level 2 - Hamming Code


Parity Bit
Parity Bit
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Disk 2


Data Bit
Data Bit
Data Bit


Disk 3


Parity Bit
Parity Bit
Parity Bit


Disk 4


Data Bit
Data Bit
Data Bit


Disk 5


Data Bit
Data Bit
Data Bit


Disk 6


Data Bit
Data Bit
Data Bit


Disk 7 (figure 7.22)


RAID Level 2. Seven disks


are needed in the array to


store a 4-bit data item,


one for each bit and three


for the parity bits. Each


disk stores either a bit or a


parity bit based on the


Hamming code used for


redundancy.Level Three


RAID Level 3 is a modification of Level 2 that requires only one disk for redundancy.
Only one parity bit is computed for each strip, and it is stored in the designated redun-
dant disk. Figure 7.23 shows a five-disk array that can store 4-bit strips and their par-
ity bit. If a drive malfunctions, the RAID controller considers all bits coming from that
drive to be 0 and notes the location of the damaged bit. Therefore, if a data item being
read has a parity error, then the controller knows that the bit from the faulty drive
should have been a 1 and corrects it. If data is written to an array that has a malfunc-
tioning disk, the controller keeps the parity consistent so data can be regenerated when
the array is restored. The system returns to normal when the failed disk is replaced and
its contents are regenerated on the new disk.


Level Four


RAID Level 4 uses the same strip scheme found in Levels 0 and 1, but it computes a
parity for each strip, and then it stores these parities in the corresponding strip in the
designated parity disk. Figure 7.24 shows a Level 4 disk array with four disks; the first
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three hold data while the fourth stores the parities for the corresponding strips on the
first three disks. The advantage of Level 4 is that if any one drive fails, data can be
restored using the bits in the parity disk. Parity is computed every time a write com-
mand is executed. However, if data is rewritten, then the RAID controller must update
both the data and parity strips. Therefore, the parity disk is accessed with every write,
or rewrite, operation, sometimes causing a bottleneck in the system.


Level Five


RAID Level 5 is a modification of Level 4. Instead of designating one disk for storing
parities, it distributes the parity strips across the disks, which avoids the bottleneck
created in Level 4. Its disadvantage is that regenerating data from a failed drive is more
complicated. Figure 7.25 shows a Level 5 disk array with four disks.
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RAID Level 3. A 4-bit data
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RAID Level 4. The array


contains four disks: the


first three are used to


store data strips, and the


fourth is used to store the


parity of those strips.
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RAID Level 5 with four


disks. Notice how the


parity strips are


distributed among


the disks.
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Level Six


RAID Level 6 was introduced by the Berkeley research team in a paper that followed its
original outline of RAID levels. This system provides an extra degree of error detection
and correction because it requires two different parity calculations. One calculation is
the same as that used in Levels 4 and 5; the other is an independent data-check algo-
rithm. Both parities are distributed on separate disks across the array, and they are
stored in the strip that corresponds to the data strips, as shown in Figure 7.26. The
advantage is that the double parity allows for data restoration even if two disks fail.


However, the redundancy increases the time needed to write data because each write
affects two parity strips. In addition, Level 6 requires that two disks become dedicated to
parity strips and not data, which therefore reduces the number of data disks in the array.
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RAID Level 6. Notice how


parity strips and data


check (DC) strips are


distributed across


the disks.


Nested RAID Levels


Additional complex configurations of RAID can be created by combining multiple lev-
els. For example, a RAID Level 10 system consists of a Level 1 system mirrored to a sec-
ond Level 1 system, both controlled by a single Level 0 system, as shown in Figure 7.27.
Some RAID combinations are listed in Table 7.8.


RAID Level Combinations


01 (or 0+1) A Level 1 system consisting of multiple Level 0 systems


10 (or 1+0) A Level 0 system consisting of multiple Level 1 systems


03 (or 0+3) A Level 3 system consisting of multiple Level 0 systems


30 (or 3+0) A Level 0 system consisting of multiple Level 3 systems


50 (or 5+0) A Level 0 system consisting of multiple Level 5 systems


60 (or 6+0) A Level 0 system consisting of multiple Level 6 systems


(table 7.8)


Some common nested


RAID configurations.


Important: RAID 01 and 03


are not to be confused


with RAID Levels 1 and 3,


respectively.
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Conclusion


The Device Manager’s job is to manage every system device as effectively as possible
despite the unique characteristics of each. The devices have varying speeds and degrees
of sharability; some can handle direct access and some only sequential access. For
magnetic media, they can have one or many read/write heads, and the heads can be in
a fixed position for optimum speed or able to move across the surface for optimum
storage space. For optical media, the Device Manager tracks storage locations and
adjusts the disc’s speed accordingly so data is recorded and retrieved correctly. For
flash memory, the Device Manager tracks every USB device and assures that data is
sent and received correctly.


Balancing the demand for these devices is a complex task that’s divided among several
hardware components: channels, control units, and the devices themselves. The suc-
cess of the I/O subsystem depends on the communications that link these parts.


In this chapter we reviewed several seek strategies, each with distinct advantages and
disadvantages, as shown in Table 7.9.
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Conclusion


✔
Nested RAID
Levels increase
the complexity of
disk management,
but they also add
more protection
against data loss,
a benefit that for
some system
owners outweighs
the increase in
overhead.  


RAID Level 1


Main Array Mirrored Array Main Array Mirrored Array


RAID Level 1


RAID Level 0
(figure 7.27)


A RAID Level 10 system.
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Strategy Advantages Disadvantages


FCFS • Easy to implement • Doesn’t provide best average
service• Sufficient for light loads


• Doesn’t maximize throughput


SSTF • Throughput better than FCFS • May cause starvation of some
requests• Tends to minimize arm movement


• Localizes under heavy loads• Tends to minimize response time


SCAN/LOOK • Eliminates starvation • Needs directional bit
• Throughput similar to SSTF • More complex algorithm to


implement• Works well with light to
• Increased overheadmoderate loads


N-Step SCAN • Easier to implement than SCAN • The most recent requests wait
longer than with SCAN


C-SCAN/C-LOOK • Works well with moderate to • May not be fair to recent
heavy loads requests for high-numbered


tracks• No directional bit
• Small variance in service time


• More complex algorithm than
N-Step SCAN, causing more
overhead


• C-LOOK doesn’t travel to
unused tracks


Our discussion of RAID included a comparison of the considerable strengths and
weaknesses of each level, and combinations of levels, as well as the potential boost to
system reliability and error correction that each represents.


Thus far in this text, we’ve reviewed three of the operating system’s managers: the
Memory Manager, the Processor Manager, and the Device Manager. In the next chap-
ter, we’ll meet the fourth, the File Manager, which is responsible for the health and
well-being of every file used by the system, including the system’s files, those submit-
ted by users, and those generated as output.


Key Terms


access time: the total time required to access data in secondary storage.


blocking: a storage-saving and I/O-saving technique that groups individual records
into a block that’s stored and retrieved as a unit.


buffers: temporary storage areas residing in main memory, channels, and control units.


Channel Status Word (CSW): a data structure that contains information indicating the
condition of the channel, including three bits for the three components of the I/O sub-
system—one each for the channel, control unit, and device.
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(table 7.9)


Comparison of DASD seek


strategies discussed in


this chapter.
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C-LOOK: a scheduling strategy for direct access storage devices that’s an optimization
of C-SCAN.


C-SCAN: a scheduling strategy for direct access storage devices that’s used to optimize
seek time. It’s an abbreviation for circular-SCAN.


cylinder: a concept that describes a virtual tube that is formed when two or more
read/write heads are positioned at the same track, at the same relative position, on
their respective surfaces.


dedicated device: a device that can be assigned to only one job at a time; it serves that
job for the entire time the job is active.


direct access storage device (DASD): any secondary storage device that can directly
read or write to a specific place. Sometimes called a random access storage device.


direct memory access (DMA): an I/O technique that allows a control unit to access
main memory directly and transfer data without the intervention of the CPU.


first-come, first-served (FCFS): the simplest scheduling algorithm for direct access stor-
age devices that satisfies track requests in the order in which they are received.


flash memory: a type of nonvolatile memory used as a secondary storage device that
can be erased and reprogrammed in blocks of data.


Hamming code: an error-detecting and error-correcting code that greatly improves the
reliability of data, named after mathematician Richard Hamming, its inventor.


I/O channel: a specialized programmable unit placed between the CPU and the control
units, which synchronizes the fast speed of the CPU with the slow speed of the I/O device
and vice versa, making it possible to overlap I/O operations with CPU operations.


I/O channel program: the program that controls the channels.


I/O control unit: the hardware unit containing the electronic components common to
one type of I/O device, such as a disk drive.


I/O device handler: the module that processes the I/O interrupts, handles error condi-
tions, and provides detailed scheduling algorithms that are extremely device dependent.


I/O scheduler: one of the modules of the I/O subsystem that allocates the devices, con-
trol units, and channels.


I/O subsystem: a collection of modules within the operating system that controls all
I/O requests.


I/O traffic controller: one of the modules of the I/O subsystem that monitors the sta-
tus of every device, control unit, and channel.


interrecord gap (IRG): an unused space between records on a magnetic tape. It facili-
tates the tape’s start/stop operations.
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interrupt: a hardware signal that suspends execution of a program and activates the
execution of a special program known as the interrupt handler.


lands: flat surface areas on the reflective layer of an optical disc. Each land is inter-
preted as a 1. Contrasts with pits, which are interpreted as 0s.


LOOK: a scheduling strategy for direct access storage devices that’s used to optimize
seek time. Sometimes known as the elevator algorithm.


N-step SCAN: a variation of the SCAN scheduling strategy for direct access storage
devices that’s used to optimize seek times.


pits: tiny depressions on the reflective layer of an optical disc. Each pit is interpreted
as a 0. Contrasts with lands, which are interpreted as 1s.


RAID: acronym for redundant array of independent disks; a group of hard disks con-
trolled in such a way that they speed read access of data on secondary storage devices
and aid data recovery.


rotational ordering: an algorithm used to reorder record requests within tracks to opti-
mize search time.


SCAN: a scheduling strategy for direct access storage devices that’s used to optimize
seek time. The most common variations are N-step SCAN and C-SCAN.


search time: the time it takes to rotate the disk from the moment an I/O command is
issued until the requested record is moved under the read/write head. Also known as
rotational delay.


seek strategy: a predetermined policy used by the I/O device handler to optimize seek times.


seek time: the time required to position the read/write head on the proper track from
the time the I/O request is issued.


sequential access medium: any medium that stores records only in a sequential man-
ner, one after the other, such as magnetic tape.


shared device: a device that can be assigned to several active processes at the same time.


shortest seek time first (SSTF): a scheduling strategy for direct access storage devices
that’s used to optimize seek time. The track requests are ordered so the one closest to
the currently active track is satisfied first and the ones farthest away are made to wait.


storage: the place where data is stored in the computer system. Secondary storage is
nonvolatile media, such as disks and flash memory. Primary storage is main memory.


stripe: a set of consecutive strips across disks; the strips contain data bits and some-
times parity bits depending on the RAID level.
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track: a path on a storage medium along which data is recorded.


transfer rate: the rate at which data is transferred from sequential access media.


transfer time: the time required for data to be transferred between secondary storage
and main memory.


universal serial bus (USB) controller: the interface between the operating system,
device drivers, and applications that read and write to devices connected to the com-
puter through the USB port.


virtual device: a dedicated device that has been transformed into a shared device
through the use of spooling techniques.


Interesting Searches
• Solid State Hard Drive


• Circular Buffers


• Direct Memory Access


• RAID Level Performance


• Blu-ray Storage Media


Exercises


Research Topics


A. Conduct research to discover two of the fastest devices available today for
desktop computers or workstations that can be used to copy important files
from the computer to a medium (paper, disk, flash memory, tape, etc.), and
that can be removed and stored in a safe place off-site. For both devices,
explain in a short paragraph why you believe they are the best available.
Include important benchmarks. Cite your sources and attach documentation
from your research to substantiate your answer.


B. Consult current academic literature to research the concept of the circular buffer.
Define it and compare and contrast it to a single buffer and double buffers.
Explain why the circular buffer might be advantageous in multimedia applica-
tions. Cite your sources and the dates your source information was published.


Exercises


1. Name three examples of secondary storage media other than hard disks.


2. Describe how primary storage differs from secondary storage.
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3. Explain the differences between buffering and blocking. 


4. Given the following characteristics for a disk pack with 10 platters yielding
18 recordable surfaces:


Rotational speed = 10 ms


Transfer rate = 0.1 ms/track


Density per track = 19,000 bytes


Number of records to be stored = 200,000 records


Size of each record = 160 bytes


Block size = 10 logical records


Number of tracks per surface = 500


Find the following:


a. Number of blocks per track


b. Waste per track


c. Number of tracks required to store the entire file 


d. Total waste to store the entire file 


e. Time to write all of the blocks (Use rotational speed; ignore the time it takes
to move to the next track.) 


f. Time to write all of the records if they’re not blocked. (Use rotational speed;
ignore the time it takes to move to the next track.) 


g. Optimal blocking factor to minimize waste 


h. What would be the answer to (e) if the time it takes to move to the next
track were 5 ms? 


i. What would be the answer to (f) if the time it takes to move to the next
track were 5 ms?


5. Given the following characteristics for a magnetic tape:


Density = 1600 bpi


Speed = 200 inches/second


Size = 2400 feet


Start/stop time = 3 ms


Number of records to be stored = 200,000 records


Size of each record = 160 bytes


Block size = 10 logical records


IBG = 0.5 inch


Find the following:


a. Number of blocks needed


b. Size of the block in bytes


c. Time required to read one block
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d. Time required to write all of the blocks


e. Amount of tape used for data only, in inches


f. Total amount of tape used (data + IBGs), in inches


6. Given that it takes 1 ms to travel from one track to the next, and that the arm
is originally positioned at Track 15 moving toward the low-numbered tracks,
and you are using the LOOK scheduling policy, compute how long it will take
to satisfy the following requests—4, 40, 35, 11, 14, and 7. All requests are pre-
sent in the wait queue. (Ignore rotational time and transfer time; just consider
seek time.) Why do you think there is a difference between your result and the
one in Figure 7.17? 


7. Minimizing the variance of system response time is an important goal, but it
does not always prevent an occasional user from suffering indefinite postpone-
ment. What mechanism would you incorporate into a disk scheduling policy to
counteract this problem and still provide reasonable response time to the user
population as a whole? 


Advanced Exercises


8. What is the difference between buffering and spooling?


9. Under light loading conditions, every disk scheduling policy discussed in this
chapter tends to behave like one of the policies discussed in this chapter. Which
one is it and why? 


10. Assume you have a file of 10 records (identified as A, B, C, . . . J) to be stored
on a disk that holds 10 records per track. Once the file is stored, the records
will be accessed sequentially: A, B, C, . . . J. It takes 2 ms to process each
record once it has been transferred into memory. It takes 10 ms for the disk to
complete one rotation. It takes 1 ms to transfer the record from the disk to
main memory. Suppose you store the records in the order given: A, B, C, . . . J. 


Compute how long it will take to process all 10 records. Break up your compu-
tation into (1) the time to transfer a record, (2) the time to process a record,
and (3) the time to access the next record.


11. Given the same situation described in the previous exercise. 


a. Organize the records so that they’re stored in non-alphabetical order 
(not A, B, C, . . . J) to reduce the time it takes to process them sequentially
in alphabetical order.
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b. Compute how long it will take to process all 10 records using this new
order. Break up your computation into (1) the time to transfer a record, (2)
the time to process a record, and (3) the time to access the next record.


12. Track requests are not usually equally or evenly distributed. For example, the
tracks where the disk directory resides are accessed more often than those
where the user’s files reside. Suppose that you know that 50 percent of the
requests are for a small, fixed number of cylinders.


a. Which one of the scheduling policies presented in this chapter would be the
best under these conditions?


b. Can you design one that would be better? 


13. Complete the following chart for three optical storage devices. Cite your sources. 


Transfer Rate Storage Average 
Type (bytes per second) Capacity Access Time Cost in Dollars


CD-RW


DVD-RW


Blu-ray


14. Give an example of an environment or application that best matches the
characteristics of each of the following RAID levels:


a. Level 0


b. Level 1


c. Level 3


d. Level 5


e. Level 6


Programming Exercise


15. Write a program that will simulate the FCFS, SSTF, LOOK, and C-LOOK seek
optimization strategies. Assume that: 


a. The disk’s outer track is the 0 track and the disk contains 200 tracks per
surface. Each track holds eight sectors numbered 0 through 7. 


b. A seek takes 10 + 0.1 * T ms, where T is the number of tracks of motion
from one request to the next, and 10 is a movement time constant. 


c. One full rotation takes 8 ms. 


d. Transfer time is 1 ms.
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Use the following data to test your program:


Arrival Time Track Requested Sector Requested


0 45 0


23 132 6


25 20 2


29 23 1


35 198 7


45 170 5


57 180 3


83 78 4


88 73 5


95 150 7


For comparison purposes, compute the average, variance, and standard deviation of
the time required to accommodate all requests under each of the strategies.
Consolidate your results into a table.


Optional: Run your program again with different data and compare your results.
Recommend the best policy and explain why.
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Learning Objectives


After completing this chapter, you should be able to describe:


• The fundamentals of file management and the structure of the file management system


• File-naming conventions, including the role of extensions


• The difference between fixed-length and variable-length record format


• The advantages and disadvantages of contiguous, noncontiguous, and indexed file
storage techniques


• Comparisons of sequential and direct file access


• Access control techniques and how they compare


• The role of data compression in file storage


Chapter 8 File Management
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“Knowledge is of two kinds. We know a subject ourselves, or we
know where we can find information upon it.”


—Samuel Johnson (1709–1784)


DEVICE MANAGEMENT Paper Storage Media


Magnetic Tape Storage Media


Magnetic Disk Storage Media


Optical Disc Storage


Sequential Access


Direct Access
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The File Manager controls every file in the system. In this chapter we’ll learn how files
are organized logically, how they’re stored physically, how they’re accessed, and who
is allowed to access them. We’ll also study the interaction between the File Manager
and the Device Manager.


The efficiency of the File Manager depends on how the system’s files are organized
(sequential, direct, or indexed sequential); how they’re stored (contiguously, noncon-
tiguously, or indexed); how each file’s records are structured (fixed-length or variable-
length); and how access to these files is controlled. We’ll look at each of these variables
in this chapter. 


The File Manager


The File Manager (also called the file management system) is the software responsible
for creating, deleting, modifying, and controlling access to files—as well as for manag-
ing the resources used by the files. The File Manager provides support for libraries of
programs and data to online users, for spooling operations, and for interactive
computing. These functions are performed in collaboration with the Device Manager.


Responsibilities of the File Manager


The File Manager has a complex job. It’s in charge of the system’s physical compo-
nents, its information resources, and the policies used to store and distribute the files.
To carry out its responsibilities, it must perform these four tasks:


1. Keep track of where each file is stored.


2. Use a policy that will determine where and how the files will be stored, making
sure to efficiently use the available storage space and provide efficient access to
the files.


3. Allocate each file when a user has been cleared for access to it, then record its use.


4. Deallocate the file when the file is to be returned to storage, and communicate
its availability to others who may be waiting for it.


For example, the file system is like a library, with the File Manager playing the part of
the librarian who performs the same four tasks:


1. A librarian uses the catalog to keep track of each item in the collection; each entry
lists the call number and the details that help patrons find the books they want.


2. The library relies on a policy to store everything in the collection including
oversized books, magazines, books-on-tape, DVDs, maps, and videos. And
they must be physically arranged so people can find what they need.
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3. When it’s requested, the item is retrieved from its shelf and the borrower’s
name is noted in the circulation records.


4. When the item is returned, the librarian makes the appropriate notation in the
circulation records and reshelves it.


In a computer system, the File Manager keeps track of its files with directories that
contain the filename, its physical location in secondary storage, and important infor-
mation about each file.


The File Manager’s policy determines where each file is stored and how the system,
and its users, will be able to access them simply—via commands that are independent
from device details. In addition, the policy must determine who will have access to
what material, and this involves two factors: flexibility of access to the information
and its subsequent protection. The File Manager does this by allowing access to shared
files, providing distributed access, and allowing users to browse through public direc-
tories. Meanwhile, the operating system must protect its files against system malfunc-
tions and provide security checks via account numbers and passwords to preserve the
integrity of the data and safeguard against tampering. These protection techniques are
explained later in this chapter.


The computer system allocates a file by activating the appropriate secondary storage
device and loading the file into memory while updating its records of who is using
what file.


Finally, the File Manager deallocates a file by updating the file tables and rewriting the
file (if revised) to the secondary storage device. Any processes waiting to access the file
are then notified of its availability.


Definitions


Before we continue, let’s take a minute to define some basic file elements, illustrated in
Figure 8.1, that relate to our discussion of the File Manager.
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Field A Field B Field C Field DRecord 22


Field A Field B Field C Field DRecord 21


Field A Field B Field C Field DRecord 20


Field A Field B Field C Field DRecord 19


(figure 8.1)


Files are made up of


records. Records consist


of fields.
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A field is a group of related bytes that can be identified by the user with a name, type,
and size. A record is a group of related fields.


A file is a group of related records that contains information to be used by specific
application programs to generate reports. This type of file contains data and is some-
times called a flat file because it has no connections to other files; unlike databases, it
has no dimensionality.


A database appears to the File Manager to be a type of file, but databases are more
complex because they’re actually groups of related files that are interconnected at var-
ious levels to give users flexibility of access to the data stored. If the user’s database
requires a specific structure, the File Manager must be able to support it.


Program files contain instructions and data files contain data; but as far as storage is
concerned, the File Manager treats them exactly the same way. 


Directories are special files with listings of filenames and their attributes. Data col-
lected to monitor system performance and provide for system accounting is collected
into files. In fact, every program and data file accessed by the computer system, as well
as every piece of computer software, is treated as a file.


Interacting with the File Manager


The user communicates with the File Manager, which responds to specific commands.


Some examples displayed in Figure 8.2 are OPEN, DELETE, RENAME, and COPY.
Actually, files can be created with other system-specific terms: for example, the first
time a user gives the command to save a file, it’s actually the CREATE command. In
other operating systems, the OPEN NEW command within a program indicates to the
File Manager that a file must be created.


These commands and many more were designed to be very simple to use, so they’re
devoid of the detailed instructions required to run the device (information in the
device driver) where the file may be stored. That is, they’re device independent.
Therefore, to access a file, the user doesn’t need to know its exact physical location
on the disk pack (the cylinder, surface, and sector), the medium in which it’s stored
(archival tape, magnetic disk, optical disc, or flash storage), or the network specifics.
That’s fortunate because file access is a complex process. Each logical command is
broken down into a sequence of signals that trigger the step-by-step actions performed
by the device and supervise the progress of the operation by testing the device’s status.
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For example, when a user’s program issues a command to read a record from a disk
the READ instruction has to be decomposed into the following steps:


1. Move the read/write heads to the cylinder or track where the record is to be found.


2. Wait for the rotational delay until the sector containing the desired record
passes under the read/write head.


3. Activate the appropriate read/write head and read the record.


4. Transfer the record to main memory.


5. Set a flag to indicate that the device is free to satisfy another request.


While all of this is going on, the system must check for possible error conditions. The
File Manager does all of this, freeing the user from including in each program the low-
level instructions for every device to be used: the terminal, keyboard, printer, CD, disk
drive, etc. Without the File Manager, every program would need to include instructions
to operate all of the different types of devices and every model within each type.
Considering the rapid development and increased sophistication of I/O devices, it would
be impractical to require each program to include these minute operational details.
That’s the advantage of device independence.


Typical Volume Configuration


Normally the active files for a computer system reside on secondary storage units. Some
devices accommodate removable storage units—such as CDs, DVDs, floppy disks, USB
devices, and other removable media—so files that aren’t frequently used can be stored
offline and mounted only when the user specifically requests them. Other devices fea-
ture integrated storage units, such as hard disks and nonremovable disk packs.
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Typical menu of file


options.


✔
Network resources
are typically given
a logical volume
label for easy
identification, such
as z, x, w, etc.


C7047_08_Ch08.qxd  1/13/10  4:37 PM  Page 253








Each storage unit, whether it’s removable or not, is considered a volume, and each vol-
ume can contain several files, so they’re called “multifile volumes.” However, some
files are extremely large and are contained in several volumes; not surprisingly, these
are called “multivolume files.”


Each volume in the system is given a name. The File Manager writes this name and
other descriptive information, as shown in Figure 8.3, on an easy-to-access place on
each unit: the innermost part of the CD or DVD, the beginning of the tape, or the first
sector of the outermost track of the disk pack. Once identified, the operating system
can interact with the storage unit.
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(figure 8.3)


The volume descriptor,


which is stored at the


beginning of each volume,


includes this vital


information about the


storage unit.


The master file directory (MFD) is stored immediately after the volume descriptor and
lists the names and characteristics of every file contained in that volume. The filenames
in the MFD can refer to program files, data files, and/or system files. And if the File
Manager supports subdirectories, they’re listed in the MFD as well. The remainder of
the volume is used for file storage.


The first operating systems supported only a single directory per volume. This direc-
tory was created by the File Manager and contained the names of files, usually orga-
nized in alphabetical, spatial, or chronological order. Although it was simple to
implement and maintain, this scheme had some major disadvantages:


• It would take a long time to search for an individual file, especially if the MFD was
organized in an arbitrary order.


• If the user had more than 256 small files stored in the volume, the directory space
(with a 256 filename limit) would fill up before the disk storage space filled up. The
user would then receive a message of “disk full” when only the directory itself was full.


• Users couldn’t create subdirectories to group the files that were related.


• Multiple users couldn’t safeguard their files from other users because the entire
directory was freely made available to every user in the group on request.


• Each program in the entire directory needed a unique name, even those directories
serving many users, so only one person using that directory could have a program
named Program1.


This could cause havoc in an introductory computer science class. For example, what
if the first person named the first programming assignment Program1? Then the rest
of the class would have interesting choices: write a new program and give it a different
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name; write a new program and name it Program1 (which would erase the original ver-
sion); or simply open Program1, modify it, and then save it with changes. With the lat-
ter option, the entire class could end up with a single, though perhaps terrific, program.


Introducing Subdirectories


File Managers create an MFD for each volume that can contain entries for both files
and subdirectories. A subdirectory is created when a user opens an account to access
the computer system. Although this user directory is treated as a file, its entry in the
MFD is flagged to indicate to the File Manager that this file is really a subdirectory
and has unique properties—in fact, its records are filenames pointing to files.


Although this was an improvement from the single directory scheme (now all of the
students could name their first programs Program1), it didn’t solve the problems
encountered by prolific users who wanted to group their files in a logical order to
improve the accessibility and efficiency of the system.


Today’s File Managers encourage users to create their own subdirectories, so related files
can be grouped together. Many computer users and some operating systems call these
subdirectories “folders.” This structure is an extension of the previous two-level direc-
tory organization, and it’s implemented as an upside-down tree, as shown in Figure 8.4.


Tree structures allow the system to efficiently search individual directories because
there are fewer entries in each directory. However, the path to the requested file may
lead through several directories. For every file request, the MFD is the point of entry.
Actually, the MFD is usually transparent to the user—it’s accessible only by the oper-
ating system. When the user wants to access a specific file, the filename is sent to the
File Manager. The File Manager first searches the MFD for the user’s directory, and it
then searches the user’s directory and any subdirectories for the requested file and its
location.


Regardless of the complexity of the directory structure, each file entry in every direc-
tory contains information describing the file; it’s called the file descriptor. Information
typically included in a file descriptor includes the following:


• Filename—within a single directory, filenames must be unique; in some operating
systems, the filenames are case sensitive


• File type—the organization and usage that are dependent on the system (for exam-
ple, files and directories)


• File size—although it could be computed from other information, the size is kept
here for convenience


• File location—identification of the first physical block (or all blocks) where the file
is stored


255


Interacting w
ith the File M


anager


C7047_08_Ch08.qxd  1/13/10  4:37 PM  Page 255








File-Naming Conventions


A file’s name can be much longer than it appears. Depending on the File Manager, it
can have from two to many components. The two components common to many file-
names are a relative filename and an extension. 


To avoid confusion, in the following discussion we’ll use the term “complete filename”
to identify the file’s absolute filename (that’s the long name that includes all path infor-
mation), and “relative filename” to indicate the name without path information that
appears in directory listings and folders.


The relative filename is the name that differentiates it from other files in the same direc-
tory. Examples can include DEPARTMENT ADDRESSES, TAXES_PHOTOG, or
AUTOEXEC. Generally, the relative filename can vary in length from one to many char-
acters and can include letters of the alphabet, as well as digits. However, every operating
system has specific rules that affect the length of the relative name and the types of
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(figure 8.4)


File directory tree structure.


The “root” is the MFD


shown at the top, each


node is a directory file, and


each branch is a directory


entry pointing to either


another directory or to a


real file. All program and


data files subsequently


added to the tree are the


leaves, represented by


circles.


✔
The filename
character limit
(256 characters for
some Windows
operating systems)
can apply to the
entire path and
not just to the
relative filename. 


• Date and time of creation


• Owner


• Protection information—access restrictions, based on who is allowed to access the
file and what type of access is allowed


• Record size—its fixed size or its maximum size, depending on the type of record
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characters allowed. Most operating systems allow names with dozens of characters
including spaces, hyphens, underlines, and certain other keyboard characters.


Some operating systems require an extension that’s appended to the relative filename. It’s
usually two or three characters long and is separated from the relative name by a period,
and its purpose is to identify the type of file or its contents. For example, in a Windows
operating system, a typical relative filename with extension would be BASIA_TUNE.MP3.
Similarly, TAKE OUT MENU.RTF and TAKE OUT MENU.DOC both indicate that they
can be opened with a word processing application. What happens if an extension is incor-
rect or unknown? Most ask for guidance from the user, as shown in Figure 8.5.
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To open a file with an


unrecognized extension,


Windows asks the user to


choose an application to


associate with that type


of file.


Some extensions (such as EXE, BAT, COB, and FOR) are restricted by certain operat-
ing systems because they serve as a signal to the system to use a specific compiler or
program to run these files. 


There may be other components required for a file’s complete name. Here’s how a file
named INVENTORY_COST.DOC is identified by different operating systems:


1. Using a Windows operating system and a personal computer with three disk
drives, the file’s complete name is composed of its relative name and extension,
preceded by the drive label and directory name:


C:\IMFST\FLYNN\INVENTORY_COST.DOC
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This indicates to the system that the file INVENTORY_COST.DOC requires a
word processing application program, and it can be found in the directory;
IMFST; subdirectory FLYNN in the volume residing on drive C.


2. A UNIX or Linux system might identify the file as:


/usr/imfst/flynn/inventory_cost.doc


The first entry is represented by the forward slash ( / ). This represents a special
master directory called the root. Next is the name of the first subdirectory,
usr/imfst, followed by a sub-subdirectory, /flynn, in this multiple directory sys-
tem. The final entry is the file’s relative name, inventory_cost.doc. (Notice that
UNIX and Linux filenames are case sensitive and often expressed in lowercase.)


As you can see, the names tend to grow in length as the file manager grows in flexibil-
ity. The folders on a system with a graphical user interface, such as Windows or
Macintosh, are actually directories or subdirectories. When someone creates a folder,
the system creates a subdirectory in the current directory or folder.


Why don’t users see the complete file name when accessing a file? First, the File
Manager selects a directory for the user when the interactive session begins, so all file
operations requested by that user start from this “home” or “base” directory. Second,
from this home directory, the user selects a subdirectory, which is called a current
directory or working directory. Thereafter, the files are presumed to be located in this
current directory. Whenever a file is accessed, the user types in the relative name, and
the File Manager adds the proper prefix. As long as users refer to files in the working
directory, they can access their files without entering the complete name.


The concept of a current directory is based on the underlying hierarchy of a tree struc-
ture, as shown in Figure 8.4, and allows programmers to retrieve a file by typing only
its relative filename…


INVENTORY_COST.DOC


…and not its complete filename:


C:\IMFST\FLYNN\INVENTORY_COST.DOC


File Organization


When we discuss file organization, we are talking about the arrangement of records
within a file because all files are composed of records. When a user gives a command to
modify the contents of a file, it’s actually a command to access records within the file.
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✔
Operating systems
separate file
elements with
delimiters. For
example, some use
a forward slash (/)
and others use a
backward slash (\).
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Record Format


All files are composed of records. When a user gives a command to modify the con-
tents of a file, it’s actually a command to access records within the file. Within each
file, the records are all presumed to have the same format: they can be of fixed length
or of variable length, as shown in Figure 8.6. And these records, regardless of their for-
mat, can be blocked or not blocked.
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(figure 8.6)


When data is stored in fixed-


length fields (a), data that


extends beyond the fixed


size is truncated.  When


data is stored in a variable-


length record format (b),


the size expands to fit the


contents, but it takes longer


to access it.
Whitestone 1243 Elementary Ave. Harrisburg


(a)


(b) PA


Dan Whitesto 1243 Ele Harrisbu PA 412 683-


Dan


Fixed-length records are the most common because they’re the easiest to access directly.
That’s why they’re ideal for data files. The critical aspect of fixed-length records is the
size of the record. If it’s too small—smaller than the number of characters to be stored in
the record—the leftover characters are truncated. But if the record size is too large—
larger than the number of characters to be stored—storage space is wasted.


Variable-length records don’t leave empty storage space and don’t truncate any char-
acters, thus eliminating the two disadvantages of fixed-length records. But while they
can easily be read (one after the other), they’re difficult to access directly because it’s
hard to calculate exactly where the record is located. That’s why they’re used most fre-
quently in files that are likely to be accessed sequentially, such as text files and pro-
gram files or files that use an index to access their records. The record format, how it’s
blocked, and other related information is kept in the file descriptor.


The amount of space that’s actually used to store the supplementary information
varies from system to system and conforms to the physical limitations of the storage
medium, as we’ll see later in this chapter.


Physical File Organization


The physical organization of a file has to do with the way records are arranged and
the characteristics of the medium used to store it.
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On magnetic disks (hard drives), files can be organized in one of several ways: sequen-
tial, direct, or indexed sequential. To select the best of these file organizations, the pro-
grammer or analyst usually considers these practical characteristics:


• Volatility of the data—the frequency with which additions and deletions are made


• Activity of the file—the percentage of records processed during a given run


• Size of the file


• Response time—the amount of time the user is willing to wait before the requested
operation is completed (This is especially crucial when doing time-sensitive searches)


Sequential record organization is by far the easiest to implement because records are
stored and retrieved serially, one after the other. To find a specific record, the file is
searched from its beginning until the requested record is found.


To speed the process, some optimization features may be built into the system. One is
to select a key field from the record and then sort the records by that field before stor-
ing them. Later, when a user requests a specific record, the system searches only the
key field of each record in the file. The search is ended when either an exact match is
found or the key field for the requested record is smaller than the value of the record
last compared, in which case the message “record not found” is sent to the user and
the search is terminated.


Although this technique aids the search process, it complicates file maintenance
because the original order must be preserved every time records are added or deleted.
And to preserve the physical order, the file must be completely rewritten or maintained
in a sorted fashion every time it’s updated.


A direct record organization uses direct access files, which, of course, can be imple-
mented only on direct access storage devices (discussed in Chapter 7). These files give
users the flexibility of accessing any record in any order without having to begin a
search from the beginning of the file to do so. It’s also known as “random organiza-
tion,” and its files are called “random access files.”


Records are identified by their relative addresses—their addresses relative to the begin-
ning of the file. These logical addresses are computed when the records are stored and
then again when the records are retrieved.


The method used is quite straightforward. The user identifies a field (or combination
of fields) in the record format and designates it as the key field because it uniquely
identifies each record. The program used to store the data follows a set of instructions,
called a hashing algorithm, that transforms each key into a number: the record’s logi-
cal address. This is given to the File Manager, which takes the necessary steps to trans-
late the logical address into a physical address (cylinder, surface, and record numbers),
preserving the file organization. The same procedure is used to retrieve a record.
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A direct access file can also be accessed sequentially, by starting at the first relative
address and going to each record down the line.


Direct access files can be updated more quickly than sequential files because records
can be quickly rewritten to their original addresses after modifications have been
made. And there’s no need to preserve the order of the records so adding or deleting
them takes very little time.


For example, data for a telephone mail-order firm must be accessed quickly so cus-
tomer information can be retrieved quickly. To do so, they can use hashing algorithms
to directly access their data. Let’s say you’re placing an order, and you’re asked for
your postal code and street number (let’s say they are 15213 and 2737). The program
that retrieves information from the data file uses that key in a hashing algorithm to
calculate the logical address where your record is stored. So when the order clerk types
152132737, the screen soon shows a list of all current customers whose customer
numbers generated the same logical address. If you’re in the database, the operator
knows right away. If not, you will be soon.


The problem with hashing algorithms is that several records with unique keys (such as
customer numbers) may generate the same logical address—and then there’s a collision,
as shown in Figure 8.7. When that happens, the program must generate another logical
address before presenting it to the File Manager for storage. Records that collide are
stored in an overflow area that was set aside when the file was created. Although the
program does all the work of linking the records from the overflow area to their corre-
sponding logical address, the File Manager must handle the physical allocation of space.
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✔
Databases use a
hash table to
speed up access
to data records.
Using a hashing
algorithm, each
record is uniquely
identified, and the
hash table
contains pointers
to each record.


Logical Addresses
152122737


152132737


152142737


Records
2737 Highland Ave.
15212


2737 Anderson Ave.
15213


2737 Boyd Rd.
15213


2737 Glen St.
15213


2737 Balsam Way
15214


(figure 8.7)


The hashing algorithm


causes a collision. Using a


combination of street


address and postal code,


it generates the same


logical address


(152132737) for three


different records.
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The maximum size of the file is established when it’s created, and eventually either
the file might become completely full or the number of records stored in the over-
flow area might become so large that the efficiency of retrieval is lost. At that time,
the file must be reorganized and rewritten, which requires intervention by the File
Manager.


Indexed sequential record organization combines the best of sequential and direct
access. It’s created and maintained through an Indexed Sequential Access Method
(ISAM) application, which removes the burden of handling overflows and preserves
record order from the shoulders of the programmer.


This type of organization doesn’t create collisions because it doesn’t use the result of
the hashing algorithm to generate a record’s address. Instead, it uses this information
to generate an index file through which the records are retrieved. This organization
divides an ordered sequential file into blocks of equal size. Their size is determined by
the File Manager to take advantage of physical storage devices and to optimize
retrieval strategies. Each entry in the index file contains the highest record key and the
physical location of the data block where this record, and the records with smaller
keys, are stored.


Therefore, to access any record in the file, the system begins by searching the index file
and then goes to the physical location indicated at that entry. We can say, then, that
the index file acts as a pointer to the data file. An indexed sequential file also has over-
flow areas, but they’re spread throughout the file, perhaps every few records, so
expansion of existing records can take place, and new records can be located in close
physical sequence as well as in logical sequence. Another overflow area is located
apart from the main data area but is used only when the other overflow areas are com-
pletely filled. We call it the overflow of last resort.


This last-resort overflow area can store records added during the lifetime of the file.
The records are kept in logical order by the software package without much effort
on the part of the programmer. Of course, when too many records have been added
here, the retrieval process slows down because the search for a record has to go from
the index to the main data area and eventually to the overflow area.


When retrieval time becomes too slow, the file has to be reorganized. That’s a job that,
although it’s not as tedious as reorganizing direct access files, is usually performed by
maintenance software.


For most dynamic files, indexed sequential is the organization of choice because it
allows both direct access to a few requested records and sequential access to many. 
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Physical Storage Allocation


The File Manager must work with files not just as whole units but also as logical units
or records. Records within a file must have the same format, but they can vary in
length, as shown in Figure 8.8.


In turn, records are subdivided into fields. In most cases, their structure is managed by
application programs and not the operating system. An exception is made for those
systems that are heavily oriented to database applications, where the File Manager
handles field structure.


So when we talk about file storage, we’re actually referring to record storage. How are
the records within a file stored? At this stage the File Manager and Device Manager
have to cooperate to ensure successful storage and retrieval of records. In Chapter 7
on device management, we introduced the concept of logical versus physical records,
and this theme recurs here from the point of view of the File Manager.
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A delimiter follows each record


The record length precedes each record


(a)


(b)


(c)


(d)


(e)


(figure 8.8)


Every record in a file must


have the same format but


can be of different sizes,


as shown in these five


examples of the most


common record formats.


The supplementary


information in (b), (c), (d),


and (e) is provided by the


File Manager, when the


record is stored.


Contiguous Storage


When records use contiguous storage, they’re stored one after the other. This was the
scheme used in early operating systems. It’s very simple to implement and manage.
Any record can be found and read, once its starting address and size are known, so the
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directory is very streamlined. Its second advantage is ease of direct access because
every part of the file is stored in the same compact area.


The primary disadvantage is that a file can’t be expanded unless there’s empty space
available immediately following it, as shown in Figure 8.9. Therefore, room for expan-
sion must be provided when the file is created. If there’s not enough room, the entire
file must be recopied to a larger section of the disk every time records are added. The
second disadvantage is fragmentation (slivers of unused storage space), which can be
overcome by compacting and rearranging files. And, of course, the files can’t be
accessed while compaction is taking place.
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File A
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Record 2
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Record 3
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Record 4


Free
Space


File C
Record 1


(figure 8.9)


With contiguous file


storage, File A can’t be


expanded without being


rewritten to a larger


storage area. File B can be


expanded, by only one


record replacing the free


space preceding File C.


The File Manager keeps track of the empty storage areas by treating them as files—
they’re entered in the directory but are flagged to differentiate them from real files.
Usually the directory is kept in order by sector number, so adjacent empty areas can
be combined into one large free space.


Noncontiguous Storage


Noncontiguous storage allocation allows files to use any storage space available on
the disk. A file’s records are stored in a contiguous manner, only if there’s enough
empty space. Any remaining records and all other additions to the file are stored in
other sections of the disk. In some systems these are called the extents of the file and
are linked together with pointers. The physical size of each extent is determined by the
operating system and is usually 256—or another power of two—bytes.


File extents are usually linked in one of two ways. Linking can take place at the storage
level, where each extent points to the next one in the sequence, as shown in Figure 8.10.
The directory entry consists of the filename, the storage location of the first extent, the
location of the last extent, and the total number of extents not counting the first.
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The alternative is for the linking to take place at the directory level, as shown in Figure
8.11. Each extent is listed with its physical address, its size, and a pointer to the next
extent. A null pointer, shown in Figure 8.11 as a hyphen (-), indicates that it’s the last one.


Although both noncontiguous allocation schemes eliminate external storage fragmen-
tation and the need for compaction, they don’t support direct access because there’s
no easy way to determine the exact location of a specific record.


Files are usually declared to be either sequential or direct when they’re created, so the
File Manager can select the most efficient method of storage allocation: contiguous for
direct files and noncontiguous for sequential. Operating systems must have the capa-
bility to support both storage allocation schemes.


Files can then be converted from one type to another by creating a file of the desired
type and copying the contents of the old file into the new file, using a program
designed for that specific purpose.


Indexed Storage


Indexed storage allocation allows direct record access by bringing together the
pointers linking every extent of that file into an index block. Every file has its own
index block, which consists of the addresses of each disk sector that make up the
file. The index lists each entry in the same order in which the sectors are linked, as
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(figure 8.10)


Noncontiguous file storage


with linking taking place at


the storage level. File 1


starts in address 2 and


continues in addresses 8,


20, and 18. The directory


lists the file’s starting


address,  ending address,


and the number of extents


it uses. Each block of


storage includes its


address and a pointer to


the next block for the file,


as well as the data itself.
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shown in Figure 8.12. For example, the third entry in the index block corresponds
to the third sector making up the file.


When a file is created, the pointers in the index block are all set to null. Then, as each sec-
tor is filled, the pointer is set to the appropriate sector address—to be precise, the address
is removed from the empty space list and copied into its position in the index block.


This scheme supports both sequential and direct access, but it doesn’t necessarily
improve the use of storage space because each file must have an index block—usually
the size of one disk sector. For larger files with more entries, several levels of indexes
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(figure 8.11)


Noncontiguous storage


allocation with linking


taking place at the


directory level for the files


shown in Figure 8.10.
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can be generated; in which case, to find a desired record, the File Manager accesses the
first index (the highest level), which points to a second index (lower level), which
points to an even lower-level index and eventually to the data record.


Access Methods


Access methods are dictated by a file’s organization; the most flexibility is allowed
with indexed sequential files and the least with sequential.


A file that has been organized in sequential fashion can support only sequential access
to its records, and these records can be of either fixed or variable length, as shown in
Figure 8.6. The File Manager uses the address of the last byte read to access the next
sequential record. Therefore, the current byte address (CBA) must be updated every
time a record is accessed, such as when the READ command is executed.
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Indexed storage allocation


with a one-level index,


allowing direct access to


each record for the files


shown in Figures 8.10


and 8.11.
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Figure 8.13 shows the difference between storage of fixed-length and of variable-
length records.
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Record 1 Record 2 Record 3 Record 4 Record 5


RL = x RL = x RL = x RL = x RL = x


(a)


Record 1


RL = m


(b) m Record 2


RL = n


n Rec.3


RL = p


p Record 4


RL = q


q


(figure 8.13)


Fixed- versus variable-


length records. (a) Fixed-


length records have the


same number of bytes, so


record length (RL) is the


constant x. (b) With


variable-length records,


RL isn’t a constant.


Therefore, it’s recorded on


the sequential media


immediately preceding


each record.


Sequential Access


For sequential access of fixed-length records, the CBA is updated simply by increment-
ing it by the record length (RL), which is a constant:


CBA = CBA + RL


For sequential access of variable-length records, the File Manager adds the length of the
record (RL) plus the number of bytes used to hold the record length (N, which holds
the constant shown as m, n, p, or q, in Figure 8.13) to the CBA.


CBA = CBA + N + RL


Direct Access


If a file is organized in direct fashion, it can be accessed easily in either direct or sequen-
tial order if the records are of fixed length. In the case of direct access with fixed-length
records, the CBA can be computed directly from the record length and the desired
record number RN (information provided through the READ command) minus 1:


CBA = (RN – 1) * RL


For example, if we’re looking for the beginning of the eleventh record and the fixed
record length is 25 bytes, the CBA would be:


(11 – 1) * 25 = 250


However, if the file is organized for direct access with variable-length records, it’s vir-
tually impossible to access a record directly because the address of the desired record


✔
Direct access was
first called
“random access”
because it allowed
access to data
stored in a
random order. It
did not require
sequential
storage. 
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can’t be easily computed. Therefore, to access a record, the File Manager must do a
sequential search through the records. In fact, it becomes a half-sequential read
through the file because the File Manager could save the address of the last record
accessed, and when the next request arrives, it could search forward from the CBA—if
the address of the desired record was between the CBA and the end of the file.
Otherwise, the search would start from the beginning of the file. It could be said that
this semi-sequential search is only semi-adequate.


An alternative is for the File Manager to keep a table of record numbers and their
CBAs. Then, to fill a request, this table is searched for the exact storage location of the
desired record, so the direct access reduces to a table lookup.


To avoid dealing with this problem, many systems force users to have their files orga-
nized for fixed-length records, if the records are to be accessed directly.


Records in an indexed sequential file can be accessed either sequentially or directly, so
either of the procedures to compute the CBA presented in this section would apply but
with one extra step: the index file must be searched for the pointer to the block where
the data is stored. Because the index file is smaller than the data file, it can be kept in
main memory, and a quick search can be performed to locate the block where the
desired record is located. Then, the block can be retrieved from secondary storage, and
the beginning byte address of the record can be calculated. In systems that support sev-
eral levels of indexing to improve access to very large files, the index at each level must
be searched before the computation of the CBA can be done. The entry point to this
type of data file is usually through the index file.


As we’ve shown, a file’s organization and the methods used to access its records are
very closely intertwined; so when one talks about a specific type of organization, one
is almost certainly implying a specific type of access.


Levels in a File Management System


The efficient management of files can’t be separated from the efficient management of
the devices that house them. This chapter and the previous one on device management
have presented the wide range of functions that have to be organized for an I/O sys-
tem to perform efficiently. In this section, we’ll outline one of the many hierarchies
used to perform those functions.


The highest level module is called the “basic file system,” and it passes information
through the access control verification module to the logical file system, which, in turn,
notifies the physical file system, which works with the Device Manager. Figure 8.14
shows the hierarchy.


269


Levels in a File M
anagem


ent System


C7047_08_Ch08.qxd  1/13/10  4:37 PM  Page 269








Each level of the file management system is implemented using structured and modular
programming techniques that also set up a hierarchy—that is, the higher positioned
modules pass information to the lower modules, so that they, in turn, can perform the
required service and continue the communication down the chain to the lowest module,
which communicates with the physical device and interacts with the Device Manager.
Only then is the record made available to the user’s program.


Each of the modules can be further subdivided into more specific tasks, as we can see
when we follow this I/O instruction through the file management system:


READ RECORD NUMBER 7 FROM FILE CLASSES INTO STUDENT


CLASSES is the name of a direct access file previously opened for input, and
STUDENT is a data record previously defined within the program and occupying spe-
cific memory locations.


Because the file has already been opened, the file directory has already been searched
to verify the existence of CLASSES, and pertinent information about the file has been
brought into the operating system’s active file table. This information includes its
record size, the address of its first physical record, its protection, and access control
information, as shown in the UNIX directory listing in Table 8.1.
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Basic File System


File Manager Device Manager


Access Control Module


Logical File System


Device


Device Interface Module


Physical File System


(figure 8.14)


Typical modules of a file


management system


showing how information


is passed from the File


Manager to the Device


Manager.


C7047_08_Ch08.qxd  1/13/10  4:37 PM  Page 270








Access Control No. of Links Group Owner No. of Bytes Date Time Filename


drwxrwxr-x 2 journal comp 12820 Jan 10 19:32 ArtWarehouse


drwxrwxr-x 2 journal comp 12844 Dec 15 09:59 bus_transport


-rwxr-xr-x 1 journal comp 2705221 Mar 6 11:38 CLASSES


-rwxr--r-- 1 journal comp 12556 Feb 20 18:08 PAYroll


-rwx------ 1 journal comp 8721 Jan 17 07:32 supplier
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A typical list of files stored in the directory called journal.


This information is used by the basic file system, which activates the access control
verification module to verify that this user is permitted to perform this operation with
this file. If access is allowed, information and control are passed along to the logical
file system. If not, a message saying “access denied” is sent to the user.


Using the information passed down by the basic file system, the logical file system
transforms the record number to its byte address using the familiar formula:


CBA = (RN – 1) * RL


This result, together with the address of the first physical record and, in the case where
records are blocked, the physical block size, is passed down to the physical file system,
which computes the location where the desired record physically resides. If there’s
more than one record in that block, it computes the record’s offset within that block
using these formulas:


block number = integers        
byte address


+ address of the first physical record
physical block size


offset = remainder        
byte address


physical block size


This information is passed on to the device interface module, which, in turn, trans-
forms the block number to the actual cylinder/surface/record combination needed to
retrieve the information from the secondary storage device. Once retrieved, here’s
where the device-scheduling algorithms come into play, as the information is placed in
a buffer and control returns to the physical file system, which copies the information
into the desired memory location. Finally, when the operation is complete, the “all
clear” message is passed on to all other modules.
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Although we used a READ command for our example, a WRITE command is handled
in exactly the same way until the process reaches the device handler. At that point, the
portion of the device interface module that handles allocation of free space, the alloca-
tion module, is called into play because it’s responsible for keeping track of unused
areas in each storage device.


We need to note here that verification, the process of making sure that a request is
valid, occurs at every level of the file management system. The first verification occurs
at the directory level when the file system checks to see if the requested file exists. The
second occurs when the access control verification module determines whether access
is allowed. The third occurs when the logical file system checks to see if the requested
byte address is within the file’s limits. Finally, the device interface module checks to see
whether the storage device exists.


Therefore, the correct operation of this simple user command requires the coordinated
effort of every part of the file management system.


Access Control Verification Module


The first operating systems couldn’t support file sharing among users. For instance,
early systems needed 10 copies of a compiler to serve 10 users. Today’s systems require
only a single copy to serve everyone, regardless of the number of active programs in
the system. In fact, any file can be shared—from data files and user-owned program
files to system files. The advantages of file sharing are numerous. In addition to saving
space, it allows for synchronization of data updates, as when two applications
are updating the same data file. It also improves the efficiency of the system’s resources
because if files are shared in main memory, then there’s a reduction of I/O operations.


However, as often happens, progress brings problems. The disadvantage of file shar-
ing is that the integrity of each file must be safeguarded; that calls for control over
who is allowed to access the file and what type of access is permitted. There are five
possible actions that can be performed on a file—the ability to READ only, WRITE
only, EXECUTE only, DELETE only, or some combination of the four. Each file man-
agement system has its own method to control file access.
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✔
Access control is a
critical element of
system security. It
identifies who is
allowed to access
which files and
what operations
that user is
allowed to
perform.
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Access Control Matrix


The access control matrix is intuitively appealing and easy to implement, but because
of its size it only works well for systems with a few files and a few users. In the matrix,
each column identifies a user and each row identifies a file. The intersection of the row
and column contains the access rights for that user to that file, as Table 8.2 illustrates.


User 1 User 2 User 3 User 4 User 5


File 1 RWED R-E- ---- RWE- --E-


File 2 ---- R-E- R-E- --E- ----


File 3 ---- RWED ---- --E- ----


File 4 R-E- ---- ---- ---- RWED


File 5 ---- ---- ---- ---- RWED
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(table 8.2)


The access control matrix


showing access rights for


each user for each file.


User 1 is allowed unlimited


access to File 1 but is


allowed only to read and


execute File 4 and is


denied access to the three


other files. R = Read


Access, W = Write Access,


E = Execute Access, D =


Delete Access, and a dash


(-) = Access Not Allowed.


(table 8.3)


The five access codes for


User 2 from Table 8.2. The


resulting code for each file


is created by assigning a 1


for each checkmark, and a


0 for each blank space.


In the actual implementation, the letters RWED are represented by bits 1 and 0: a 1 indi-
cates that access is allowed, and a 0 indicates access is denied. Therefore, as shown in
Table 8.3, the code for User 2 for File 1 would read “1010” and not “R-E-”.


Access R W E D Resulting Code


R-E- ! ! 1010


R-E- ! ! 1010


RWED ! ! ! ! 1111


---- 0000


---- 0000


As you can see, the access control matrix is a simple method; but as the numbers of
files and users increase, the matrix becomes extremely large—sometimes too large to
store in main memory. Another disadvantage is that a lot of space is wasted because
many of the entries are all null, such as in Table 8.2, where User 3 isn’t allowed into
most of the files, and File 5 is restricted to all but one user. A scheme that conserved
space would have only one entry for User 3 or one for File 5, but that’s incompatible
with the matrix format.
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Access Control Lists


The access control list is a modification of the access control matrix. Each file is
entered in the list and contains the names of the users who are allowed to access it and
the type of access each is permitted. To shorten the list, only those who may use the
file are named; those denied any access are grouped under a global heading such as
WORLD, as shown in Table 8.4.


File Access


File 1 USER1 (RWED), USER2 (R-E-), USER4 (RWE-), USER5 (--E-), WORLD (----)


File 2 USER2 (R-E-), USER3 (R-E-), USER4 (--E-), WORLD (----)


File 3 USER2 (RWED), USER4 (--E-), WORLD (----)


File 4 USER1 (R-E-), USER5 (RWED), WORLD (----)


File 5 USER5 (RWED), WORLD (----)


Some systems shorten the access control list even more by putting every user into a cat-
egory: system, owner, group, and world. SYSTEM or ADMIN is designated for sys-
tem personnel who have unlimited access to all files in the system. The OWNER has
absolute control over all files created in the owner’s account. An owner may create a
GROUP file so that all users belonging to the appropriate group have access to it.
WORLD is composed of all other users in the system; that is, those who don’t fall into
any of the other three categories. In this system, the File Manager designates default
types of access to all files at creation time, and it’s the owner’s responsibility to change
them as needed.


Capability Lists


A capability list shows the access control information from a different perspective. It
lists every user and the files to which each has access, as shown in Table 8.5.


User Access


User 1 File 1 (RWED), File 4 (R-E-)


User 2 File 1 (R-E-), File 2 (R-E-), File 3 (RWED)


User 3 File 2 (R-E-)


User 4 File 1 (RWE-), File 2 (--E-), File 3 (--E-)


User 5 File 1 (--E-), File 4 (RWED), File 5 (RWED)
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(table 8.4)


An access control list


showing which users are


allowed to access each


file. This method requires


less storage space than


an access control matrix.


(table 8.5)


A capability list shows files


for each user and requires


less storage space than an


access control matrix; and


when users are added or


deleted from the system,


is easier to maintain than


an access control list.
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Of the three schemes described so far, the most commonly used is the access control
list. However, capability lists are gaining in popularity because in operating systems
such as Linux or UNIX, they control access to devices as well as to files.


Although both methods seem to be the same, there are some subtle differences best
explained with an analogy. A capability list may be equated to specific concert tickets
that are made available to only individuals whose names appear on the list. On the
other hand, an access control list can be equated to the reservation list in a restaurant
that has limited seating, with each seat assigned to a certain individual.


Data Compression


Data compression algorithms consist of two types: lossless algorithms typically used
for text or arithmetic files, which retain all the data in the file throughout the compres-
sion-decompression process; and lossy algorithms, which are typically used for image
and sound files and remove data permanently. At first glance, one wouldn’t think that
a loss of data would be tolerable; but when the deleted data is unwanted noise, tones
beyond a human’s ability to hear, or light spectrum that we can’t see, deleting this data
can be undetectable and therefore acceptable. 


Text Compression


To compress text in a database, three methods are described briefly here: records with
repeated characters, repeated terms, and front-end compression.


Records with repeated characters: Data in a fixed-length field might include a short
name followed by many blank characters. This can be replaced with a variable-length
field and a special code to indicate how many blanks were truncated.


For example, let’s say the original string, ADAMS, looks like this when it’s stored
uncompressed in a field that’s 15 characters wide (b stands for a blank character):


ADAMSbbbbbbbbbb


When it’s encoded it looks like this:


ADAMSb10
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Likewise, numbers with many zeros can be shortened, too, with a code (in this case,
the pound sign #) to indicate how many zeros must be added to recreate the original
number. For instance, if the original entry is this number:


300000000


the encoded entry is this:


3#8


Repeated terms can be compressed by using symbols to represent each of the most
commonly used words in the database. For example, in a university’s student database,
common words like student, course, teacher, classroom, grade, and department could
each be represented with a single character. Of course, the system must be able to dis-
tinguish between compressed and uncompressed data.


Front-end compression builds on the previous data element. For example, the student
database where the students’ names are kept in alphabetical order could be com-
pressed, as shown in Table 8.6.


Original List Compressed List


Smith, Betty Smith, Betty


Smith, Donald 7Donald


Smith, Gino 7Gino


Smithberger, John 5berger, John


Smithbren, Ali 6ren, Ali


Smithco, Rachel 5co, Rachel


Smither, Kevin 5er, Kevin


Smithers, Renny 7s, Renny


Snyder, Katherine 1nyder, Katherine


There is a trade-off: storage space is gained, but processing time is lost. Remember, for
all data compression schemes, the system must be able to distinguish between com-
pressed and uncompressed data.


Other Compression Schemes


Lossy compression allows a loss of data from the original file to allow significant com-
pression. This means the compression process is irreversible as the original file cannot
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(table 8.6)


Each entry takes a given


number of characters from


the previous entry that


they have in common and


adds the characters that


make it unique. So


“Smithbren, Ali” uses the


first six characters from


“Smithberger, John” and


adds “ren, Ali.” Therefore,


the entry is “6ren, Ali.”
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be reconstructed. The specifics of the compression algorithm are highly dependent on
the type of file being compressed, with JPEG a popular option for still images and
MPEG for video images. For video and music files, the International Organization for
Standardization (ISO) has issued MPEG standards that “are international standards
dealing with the compression, decompression, processing, and coded representation of
moving pictures, audio, and their combination.” 


ISO is the world’s leading developer of international standards. For more information
about current compression standards and other industry standards, we encourage you
to visit http://www.iso.org.


Conclusion


The File Manager controls every file in the system and processes the user’s commands
(read, write, modify, create, delete, etc.) to interact with any file on the system. It also
manages the access control procedures to maintain the integrity and security of the
files under its control.


To achieve its goals, the File Manager must be able to accommodate a variety of file
organizations, physical storage allocation schemes, record types, and access methods.
And, as we’ve seen, this requires increasingly complex file management software.


In this chapter we discussed:


• Sequential, direct, and indexed sequential file organization


• Contiguous, noncontiguous, and indexed file storage allocation


• Fixed-length versus variable-length records


• Three methods of access control


• Data compression techniques


To get the most from a File Manager, it’s important for users to realize the strengths
and weaknesses of its segments—which access methods are allowed on which devices
and with which record structures—and the advantages and disadvantages of each in
overall efficiency.


Key Terms


absolute filename: a file’s name, as given by the user, preceded by the directory (or
directories) where the file is found and, when necessary, the specific device label.


access control list: an access control method that lists each file, the names of the users
who are allowed to access it, and the type of access each is permitted.
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access control matrix: an access control method that uses a matrix with every file,
every user, and the type of access each user is permitted on each file.


capability list: an access control method that lists every user, the files to which each
has access, and the type of access allowed to those files.


contiguous storage: a type of file storage in which all the information is stored in adja-
cent locations in a storage medium.


current byte address (CBA): the address of the last byte read. It is used by the File
Manager to access records in secondary storage and must be updated every time a
record is accessed.


current directory: the directory or subdirectory in which the user is working.


data compression: a procedure used to reduce the amount of space required to store
data by reducing, encoding, or abbreviating repetitive terms or characters.


database: a group of related files that are interconnected at various levels to give users
flexibility of access to the data stored.


direct record organization: files stored in a direct access storage device and organized
to give users the flexibility of accessing any record at random, regardless of its posi-
tion in the file.


directory: a storage area in a secondary storage volume (disk, disk pack, etc.) contain-
ing information about files stored in that volume.


extension: in some operating systems, it’s the part of the filename that indicates which
compiler or software package is needed to run the files. In UNIX and Linux, it is
optional and called a suffix.


extents: any remaining records and all other additions to the file that are stored in
other sections of the disk.


field: a group of related bytes that can be identified by the user with a name, type, and
size. A record is made up of fields.


file: a group of related records that contains information to be used by specific appli-
cation programs to generate reports.


file descriptor: information kept in the directory to describe a file or file extent.


fixed-length record: a record that always contains the same number of characters.


hashing algorithm: the set of instructions used to perform a key-to-address transfor-
mation in which a record’s key field determines its location.


indexed sequential record organization: a way of organizing data in a direct access
storage device. An index is created to show where the data records are stored. Any
data record can be retrieved by consulting the index first.
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key field: (1) a unique field or combination of fields in a record that uniquely identifies
that record; or (2) the field that determines the position of a record in a sorted sequence.


logical address: the result of a key-to-address transformation.


master file directory (MFD): a file stored immediately after the volume descriptor. It
lists the names and characteristics of every file contained in that volume.


noncontiguous storage: a type of file storage in which the information is stored in non-
adjacent locations in a storage medium. 


path: the sequence of directories and subdirectories the operating system must follow
to find a specific file.


program file: a file that contains instructions for the computer.


record: a group of related fields treated as a unit. A file is a group of related records.


relative address: in a direct organization environment, it indicates the position of a
record relative to the beginning of the file.


relative filename: a file’s name and extension that differentiates it from other files in
the same directory.


sequential record organization: the organization of records in a specific sequence.
Records in a sequential file must be processed one after another.


subdirectory: a directory created by the user within the boundaries of an existing
directory. Some operating systems call this a folder.


variable-length record: a record that isn’t of uniform length, doesn’t leave empty stor-
age space, and doesn’t truncate any characters.


volume: any secondary storage unit, such as hard disks, disk packs, CDs, DVDs,
removable disks, flash memory, or tapes.


working directory: the directory or subdirectory in which the user is currently working.


Interesting Searches
• Cloud Computing File Storage


• File Backup Policies


• File Compression Techniques


• File Access Audits


• Filename Limitations


• Hash Function
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Exercises


Research Topics


A. Research the size of operating system software by finding the amount of sec-
ondary storage (disk) space required by different versions of the same operat-
ing system or different operating systems. If their sizes are substantially
different, explain why that may be the case, such as platform issues, features,
etc. Cite your sources.


B. Consult current literature to research file-naming conventions for four different
operating systems (not including UNIX, MS-DOS, Windows, or Linux). Note the
acceptable range of characters, maximum length, case sensitivity, etc. Give exam-
ples of both acceptable and unacceptable filenames. For extra credit, explain how
the File Managers for those operating systems shorten long filenames (if they do
so) in their internal lists to make them easier to manipulate. Cite your sources.


Exercises


1. Explain in your own words why file deallocation is important and what would
happen if it did not occur on a regular basis.


2. Describe how the File Manager allocates a file to a single user. List the steps
that you think would be followed and explain your reasoning.


3. Is device independence important to the File Manager? Why or why not?
Describe the consequences if that were not the case.


4. Do you think file retrieval is different on a menu-driven system and a command-
driven system? Explain your answer and describe any differences between the
two. Give an example of when each would be preferred over the other.


5. Imagine one real-life example of each: a multi-file volume and a multi-volume
file. Include a description of the media used for storage and a general description
of the data in the file.


6. As described in this chapter, files can be formatted with fixed-length fields or
variable-length fields. In your opinion, would it be feasible to combine both
formats in a single disk? Explain the reasons for your answer.


7. Explain why it’s difficult to support direct access to files with variable-length
records. Suggest a method for handling this type of file if direct access is
required.


8. Give an example of the names of three files from your own computer that do
not reside at the root or master directory. For each file, list both the relative
filename and its complete filename.
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9. In your own words, describe the purpose of the working directory and how it
can speed or slow file access. In your opinion, should there be more than one
working directory? Explain.


10. For each of the following entries in an access control matrix for User 2010,
give the type of access allowed for each of the following files: 


a. File1 --E-


b. File2 RWED


c. File3 R-E-


d. File4 R---


11. For each of the following entries in an access control list, give the type of
access allowed for each user of File221 and describe who is included in the
WORLD category:


a. User2010 R-E-


b. User2014 --E-


c. User2017 RWED


d. WORLD R---


12. Devise a way to compress the following list of last names using a lossless tech-
nique similar to that shown in Table 8.6. Describe your method and show the
compressed list. Explain why your technique is lossless (and not lossy).


POWE


POWELL


POWER


POWERS


PORUN


Advanced Exercises


13. If you were designing the file access control system for a highly secure environ-
ment and were given a choice between the establishment of many access cate-
gories and just a few access categories, which would you select and why?


14. Compare and contrast dynamic memory allocation and the allocation of files
in secondary storage.


15. When is compaction of secondary storage beneficial from the File Manager’s
perspective? Give several examples. List some problems that could be presented
as a result of compaction and explain how they might be avoided.


16. While sophisticated File Managers implement file sharing by allowing several
users to access a single copy of a file at the same time, others implement file
sharing by providing a copy of the file to each user. List the advantages and
disadvantages of each method.
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“Knowledge of the universe would somehow be …
defective were no practical results to follow.”


—Cicero (106-43 BC)


Learning Objectives


After completing this chapter, you should be able to describe:


• Several different network topologies—including the star, ring, bus, tree, and
hybrid—and how they connect numerous hosts to the network


• Several types of networks: LAN, MAN, WAN, and wireless LAN


• The difference between circuit switching and packet switching, and examples of
everyday use that favor each


• Conflict resolution procedures that allow a network to share common transmission
hardware and software effectively


• The two transport protocol models (OSI and TCP/IP) and how the layers of each
one compare
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When computer facilities are connected together by data-communication components,
they form a network of resources to support the many functions of the organization.
Networks provide an essential infrastructure for members of the information-based
society to process, manipulate, and distribute data and information to each other. This
chapter introduces the terminology and basic concepts of networks.


Basic Terminology


In general, a network is a collection of loosely coupled processors interconnected by
communication links using cables, wireless technology, or a combination of both. 


A common goal of all networked systems is to provide a convenient way to share
resources while controlling users’ access to them. These resources include both
hardware (such as a CPU, memory, printers, USB ports, and disk drives) and software
(such as application programs and data files).


There are two general configurations for operating systems for networks. The oldest
added a networking capability to a single-user operating system. This is called a
network operating system (NOS). With this configuration, users are aware of the spe-
cific assortment of computers and resources in the network and can access them by
logging on to the appropriate remote host or by transferring data from the remote
computer to their own.


With the second configuration, users don’t need to know where and how each
machine is connected to the system; they can access remote resources as if they were
local resources. A distributed operating system (D/OS) provides good control for
distributed computing systems and allows their resources to be accessed in a unified
way. A distributed operating system represents a total view across multiple computer
systems for controlling and managing resources without local dependencies.
Management is a cooperative process that encompasses every resource and involves
every site.


A distributed operating system is composed of the same four managers previously
discussed but with a wider scope. At a minimum, it must provide the following
components: process or object management, memory management, file management,
device management, and network management, as shown in Figure 9.1. A distributed
operating system offers several important advantages over older operating systems and
NOSs including easy and reliable resource sharing, faster computation, adequate load
balancing, good reliability, and dependable electronic communications among the net-
work’s users.


In a distributed system, each processor classifies the other processors and their
resources as remote and considers its own resources local. The size, type, and
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identification of processors vary. Processors are referred to as sites, hosts, and nodes
depending on the context in which they’re mentioned. Usually, the term “site”
indicates a specific location in a network containing one or more computer systems,
“host” indicates a specific computer system found at a site whose services and
resources can be used from remote locations, and “node” (or, more formally, “node
name”) refers to the name assigned to a computer system connected to a network to
identify it to other computers in the network, shown in Figure 9.2.


Typically, a host at one site, called the server, has resources that a host at another site,
called the client, wants to use. But the assignments aren’t static. Hosts can alternate
between being clients or servers depending on their requirements.
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This five-sided pyramid


graphically illustrates how


the five managers in a net-


worked system work


together and support the


user interface.


File Manager


User Interface


Device Manager


Processor Manager


Memory Manager


Network Manager


(figure 9.2)
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In this discussion, we’ve simplified the concept of client and server to represent static
network software that’s located at two different sites. That is, we’ve assumed that the
host-client is a client all of the time, and that the host-server is always a server.
However, the actual roles of client and server often alternate between two networked
hosts, depending on the application and the network configuration. In this text, we’ve
chosen to use the simplest configuration to make our explanation as clear as possible. 


Network Topologies


Sites in any networked system can be physically or logically connected to one another
in a certain topology, the geometric arrangement of connections (cables, wireless, or
both) that link the nodes. The most common geometric arrangements are star, ring,
bus, tree, and hybrid. In each topology there are trade-offs between the need for fast
communication among all sites, the tolerance of failure at a site or communication
link, the cost of long communication lines, and the difficulty of connecting one site to
a large number of other sites. It’s important to note that the physical topology of a net-
work may not reflect its logical topology. For example, a network that is wired in a
star configuration can be logically arranged to operate as if it is a ring. That is, it can
be made to manipulate a token in a ring-like fashion even though its cables are
arranged in a star topology. To keep our explanations in this chapter as simple as pos-
sible, whenever we discuss topologies, we are assuming that the logical structure of the
network is identical to the physical structure. 


For the network designer, there are many alternatives available, all of which will
probably solve the customer’s requirements. When deciding which configuration to
use, designers should keep in mind four criteria:


• Basic cost—the expense required to link the various sites in the system


• Communications cost—the time required to send a message from one site to another


• Reliability—the assurance that many sites can still communicate with each other
even if a link or site in the system fails


• User’s environment—the critical parameters that the network must meet to be a
successful business investment


It’s quite possible that there are several possible solutions for each customer. The
best choice would need to consider all four criteria. For example, an international
data retrieval company might consider the fastest communications and the most
flexible hardware configuration to be a cost-effective investment. But a neighbor-
hood charity might put the most emphasis on having a low-cost networking
solution. Over-engineering the neighborhood system could be just as big a mistake
as under-engineering the international customer’s network. The key to choosing the
best design is to understand the available technology, as well as the customer’s busi-
ness requirements and budget. 
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Star


A star topology, sometimes called a hub or centralized topology, is a traditional
approach to interconnecting devices in which all transmitted data must pass through a
central controller when going from a sender to a receiver, as shown in Figure 9.3. 
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(figure 9.3)


Star topology. Hosts are


connected to each other


through a central con-


troller, which assumes 


all responsibility for 


routing messages to the


appropriate host. Data


flow between the hosts


and the central controller


is represented by dotted


lines. Direct host-to-host


communication isn’t 


permitted.


central
controller


host 1 host 6


host 5host 2


host 3 host 4


Star topology permits easy routing because the central station knows the path to all
other sites and, because there is a central control point, access to the network can be
controlled easily, and priority status can be given to selected sites. However, this
centralization of control requires that the central site be extremely reliable and able to
handle all network traffic, no matter how heavy.


Ring


In the ring topology all sites are connected in a closed loop, as shown in Figure 9.4,
with the first site connected to the last. 


(figure 9.4)


Ring topology. Hosts are


connected to each other in


a circular fashion with data


flowing in one direction


only, shown here as dotted


lines. The network can be


connected to other net-


works via a bridge or


gateway. 
host 2


host 1
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A ring network can connect to other networks via the bridge or gateway, depending
on the protocol used by each network. (The protocol is the specific set of rules used to
control the flow of messages through the network.) If the other network has the same
protocol, then a bridge is used to connect the networks. If the other network has a dif-
ferent protocol, a gateway is used.


Data is transmitted in packets that also contain source and destination address fields.
Each packet is passed from node to node in one direction only, and the destination
station copies the data into a local buffer. Typically, the packet continues to circulate
until it returns to the source station, where it’s removed from the ring. There are
some variations to this basic topology, such as the double loop network, shown in
Figure 9.5, and a set of multiple rings bridged together, as shown in Figure 9.6. Both
variations provide more flexibility, but at a cost.
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(figure 9.5)


Double loop computer


network using a ring


topology. Packets of data


flow in both directions. 


C7047_09_Ch09.qxd  1/12/10  5:01 PM  Page 288








Although ring topologies share the disadvantage that every node must be functional
for the network to perform properly, rings can be designed that allow failed nodes to
be bypassed—a critical consideration for network stability.


Bus


In the bus topology all sites are connected to a single communication line running the
length of the network, as shown in Figure 9.7. 
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(figure 9.6)
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(figure 9.7)


Bus topology. Hosts are


connected to one another


in a linear fashion. Data


flows in both directions


from host to host and is


turned around when it


reaches an end point


controller.


end point
controller


end point
controller


host 1 host 3 host 5


host 4host 2


Devices are physically connected by means of cables that run between them, but the
cables don’t pass through a centralized controller mechanism. Messages from any site
circulate in both directions through the entire communication line and can be received
by all other sites. 
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Because all sites share a common communication line, only one of them can successfully
send messages at any one time. Therefore, a control mechanism is needed to prevent col-
lisions. In this environment, data may pass directly from one device to another, or it may
be routed to an end point controller at the end of the line. In a bus, if the data reaches
an end point controller without being accepted by a host, the end point controller turns
it around and sends it back so the message can be accepted by the appropriate node on
the way to the other end point controller. With some busses, each message must always
go to the end of the line before going back down the communication line to the node to
which it’s addressed. However, other bus networks allow messages to be sent directly to
the target node without reaching an end point controller.


Tree


The tree topology is a collection of busses. The communication line is a branching
cable with no closed loops, as shown in Figure 9.8. 
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(figure 9.8)


Tree topology. Data flows


up and down the branches


of the trees and is


absorbed by controllers at


the end points. Gateways


help minimize differences


between the protocol used


on one part of the network


and the different protocol


used on the branch with


host 7.


head end
controller end point


controller


end point
controller


end point
controller


host 4 host 5


host 7
host 6


host 1 host 2


host 3


Gateway


The tree layout begins at the head end, where one or more cables start. Each cable
may have branches that may, in turn, have additional branches, potentially resulting
in quite complex arrangements. Using bridges as special fitters between busses of the
same protocol and as translators to those with different protocols allows designers to
create networks that can operate at speeds more responsive to the hosts in the
network. In a tree configuration, a message from any site circulates through the
communication line and can be received by all other sites, until it reaches the end
points. If a message reaches an end point controller without being accepted by a host,
the end point controller absorbs it—it isn’t turned around as it is when using a bus
topology. One advantage of bus and tree topologies is that even if a single node fails,
message traffic can still flow through the network.
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Hybrid


A hybrid topology is some combination of any of the four topologies discussed here.
For example, a hybrid can be made by replacing a single host in a star configuration
with a ring, as shown in Figure 9.9. Or a star configuration could have a bus topology
as one of the communication lines feeding its hub, as shown in Figure 9.10.
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The objective of a hybrid configuration is to select among the strong points of each
topology and combine them to meet that system’s communications requirements most
effectively.


(figure 9.9)


Hybrid topology, version 1.


This network combines a


star and a ring, connected


by a bridge. Hosts 5, 6, 7,


and 8 are located on


the ring.


(figure 9.10)


Hybrid topology, version 2.


This network combines


star and bus topologies.


Hosts 5, 6, 7, and 8 are


located on the bus.
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Network Types


It’s often useful to group networks according to the physical distances they cover.
Although the characteristics that define each group are becoming increasingly blurred
as communications technology advances, networks are generally divided into local
area networks, metropolitan area networks, and wide area networks. In recent years,
the wireless local area network has become ubiquitous.


Local Area Network


A local area network (LAN) defines a configuration found within a single office
building, warehouse, campus, or similar computing environment. Such a network is
generally owned, used, and operated by a single organization and allows computers
to communicate directly through a common communication line. Typically, it’s a
cluster of personal computers or workstations located in the same general
area. Although a LAN may be physically confined to a well-defined local area, its
communications aren’t limited to that area because the LAN can be a component of
a larger communication network and can provide easy access to other networks
through a bridge or a gateway.


A bridge is a device, and the software to operate it, that connects two or more
geographically distant local area networks that use the same protocols. For example, a
simple bridge could be used to connect two local area networks that use the Ethernet
networking technology. (Ethernet is discussed later in this chapter.)


A gateway, on the other hand, is a more complex device and software used to connect
two or more local area networks or systems that use different protocols. A gateway
will translate one network’s protocol into another, resolving hardware and software
incompatibilities. For example, the systems network architecture (commonly called
SNA) gateway can connect a microcomputer network to a mainframe host.


High-speed LANs have a data rate that varies from 100 megabits per second to more
than 40 gigabits per second. Because the sites are close to each other, bandwidths are
available to support very high-speed transmission for fully animated, full-color
graphics and video, digital voice transmission, and other high data-rate signals. The
previously described topologies—star, ring, bus, tree, and hybrid—are normally used
to construct local area networks. The transmission medium used may vary from one
topology to another. Factors to be considered when selecting a transmission medium
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are cost, data rate, reliability, number of devices that can be supported, distance
between units, and technical limitations.


Metropolitan Area Network


A metropolitan area network (MAN) defines a configuration spanning an area larger
than a LAN, ranging from several blocks of buildings to an entire city but not
exceeding a circumference of 100 kilometers. In some instances MANs are owned and
operated as public utilities, providing the means for internetworking several LANs.


A MAN is a high-speed network often configured as a logical ring. Depending on the
protocol used, messages are either transmitted in one direction using only one ring, as
illustrated in Figure 9.4, or in both directions using two counter-rotating rings, as illus-
trated in Figure 9.5. One ring always carries messages in one direction and the other
always carries messages in the opposite direction.


Wide Area Network


A wide area network (WAN) defines a configuration that interconnects communica-
tion facilities in different parts of the world, or that’s operated as part of a public util-
ity. WANs use the communications lines of common carriers, which are
government-regulated private companies, such as telephone companies that already
provide the general public with communication facilities. WANs use a broad range of
communication media, including satellite and microwaves; in some cases, the speed of
transmission is limited by the capabilities of the communication line. WANs are gener-
ally slower than LANs.


The first WAN, ARPANET, was developed in 1969 by the Advanced Research Projects
Agency (ARPA); responsibility for its operation was transferred in 1975 to the Defense
Communications Agency. Its successor, the Internet, is the most widely recognized
WAN, but there exist other commercial WANs.


Wireless Local Area Network


A wireless local area network (WLAN) is a local area network that uses wireless
technology to connect computers or workstations located within the range of the
network. As shown in Table 9.1, the Institute of Electrical and Electronics Engineers
(IEEE) has specified several standards for wireless networking, each with different
ranges. 
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IEEE Standard Net Bit Rate Range Indoors Frequency Compatibility


802.11a 54 Mbps 25-75 feet 5 GHz First IEEE wireless
standard


802.11b 11 Mbps 100-150 feet 2.4 GHz Not compatible with
802.11g


802.11g 54 Mbps 100-150 feet 2.4 GHz Compatible with 802.11b


802.11n 600 Mbps 300 feet 5 GHz Compatible with 802.11g


For wireless nodes (workstations, laptops, etc.), a WLAN can provide easy access to a
larger network or the Internet, as shown in Figure 9.11. Keep in mind that a WLAN
typically poses security vulnerabilities because of its open architecture and the inherent
difficulty of keeping out unauthorized intruders. 
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Wired
 Local Area 


Network


(table 9.1)


Comparison of three IEEE


standards for wireless net-


works (IEEE, 2007). The


fourth standard, 802.11n,


is expected to be pub-


lished in November 2009.


(figure 9.11)


In a WLAN, wireless-


enabled nodes connect to


the cabled LAN via access


points (APs) if they are


located within the range


of the device sending the


signal.


The IEEE mobile WiMAX standard (802.16), approved in 2005 by the Institute of
Electrical and Electronics Engineers, promises to deliver high-bandwidth data over
much longer distances (up to 10 miles) than the current Wi-Fi standard (IEEE, 2007).
This is a fast-changing subject, so we encourage you to research current literature for
the latest developments.
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Software Design Issues


So far we’ve examined the configurations of a network’s hardware components. In this
section we’ll examine four software issues that must be addressed by network designers:


• How do sites use addresses to locate other sites?


• How are messages routed and how are they sent?


• How do processes communicate with each other?


• How are conflicting demands for resources resolved?


Addressing Conventions


Network sites need to determine how to uniquely identify their users, so they can
communicate with each other and access each other’s resources. Names, addresses,
and routes are required because sites aren’t directly connected to each other except
over point-to-point links; therefore, addressing protocols are closely related to the
network topology and geographic location of each site. In some cases, a distinction is
made between “local name,” which refers to the name by which a unit is known
within its own system, and “global name,” the name by which a unit is known outside
its own system. This distinction is useful because it allows each site the freedom to
identify its units according to their own standards without imposing uniform naming
rules, something that would be difficult to implement at the local level. On the other
hand, a global name must follow standard name lengths, formats, and other global
conventions.


Using an Internet address as a typical example, we can see that it follows a hierarchical
organization, starting from left to right in the following sequence: from logical
user to host machine, from host machine to net machine, from net machine to
cluster, and from cluster to network. For example, in each Internet address—
[email protected] or [email protected]—the periods are used to separate
each component. These electronic mail addresses, which are fairly easy to remember,
must be translated (or “resolved,” using a concept similar to that described in Chapter
3) to corresponding hardware addresses. This conversion is done by the networking
section of the computer’s operating system.


The examples given above follow the Domain Name Service (DNS) protocol, a
general-purpose distributed data query service whose principal function is the
resolution of Internet addresses. If we dissect [email protected] into its
components, we have the following:


• someone is the logical user,


• icarus is the host for the user called someone,


• lis is the net machine for icarus,
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• pitt is the cluster for lis, and


• edu is the network for the University of Pittsburgh.


Not all components need to be present in all Internet addresses. Nevertheless, the DNS
is able to resolve them by examining each one in reverse order.


Routing Strategies


A router is an internetworking device, primarily software driven, which directs traf-
fic between two different types of LANs or two network segments with different
protocol addresses. It operates at the network layer, which is explained later in this
chapter.


Routing allows data to get from one point on a network to another. To do so, each
destination must be uniquely identified. Once the data is at the proper network, the
router makes sure that the correct node in the network receives it. The role of routers
changes as network designs change. Routers are used extensively for connecting sites
to each other and to the Internet. They can be used for a variety of functions, includ-
ing securing the information that is generated in predefined areas, choosing the fastest
route from one point to another, and providing redundant network connections so
that a problem in one area will not degrade network operations in other areas. 


Routing protocols must consider addressing, address resolution, message format, and
error reporting. Most routing protocols are based on an addressing format that uses a
network and a node number to identify each node. When a network is powered on,
each router records in a table the addresses of the networks that are directly
connected. Because routing protocols permit interaction between routers, sharing
network destinations that each router may have acquired as it performs its services
becomes easy. At specified intervals each router in the internetwork broadcasts a copy
of its entire routing table. Eventually, all of the routers know how to get to each of the
different destination networks.


Although the addresses allow routers to send data from one network to another, they
can’t be used to get from one point in a network to another point in the same network.
This must be done through address resolution, which allows a router to map the
original address to a hardware address and store the mapping in a table to be used for
future transmissions.


A variety of message formats are defined by routing protocols. These messages are
used to allow the protocol to perform its functions, such as finding new nodes on a
network, testing to determine whether they’re working, reporting error conditions,
exchanging routing information, establishing connections, and transmitting data.
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Data transmission does not always run smoothly. For example, conditions may arise
that cause errors such as inability to reach a destination because of a malfunctioning
node or network. In cases such as this, routers and routing protocols would report the
error condition, although they would not attempt to correct the error; error correction
is left to protocols at other levels of the network’s architecture.


Two of the most widely used routing protocols in the Internet are routing information
protocol and open shortest path first.


Routing Information Protocol 


In routing information protocol (RIP), selection of a path to transfer data from one
network to another is based on the number of intermediate nodes, or hops, between
the source and the destination. The path with the smallest number of hops is always
chosen. This distance vector algorithm is easy to implement, but it may not be the best
in today’s networking environment because it does not take into consideration other
important factors such as bandwidth, data priority, or type of network. That is, it can
exclude faster or more reliable paths from being selected just because they have more
hops. Another limitation of RIP relates to routing tables. The entire table is updated
and reissued every 30 seconds, whether or not changes have occurred; this increases
internetwork traffic and negatively affects the delivery of messages. In addition, the
tables propagate from one router to another. Thus, in the case of an internetwork with
15 hops, it would take more than seven minutes for a change to be known at the other
end of the internetwork. Because not all routers would have the same information
about the internetwork, a failure at any one of the hops could create an unstable
environment for all message traffic.


Open Shortest Path First 


In open shortest path first (OSPF), selection of a transmission path is made only after
the state of a network has been determined so that if an intermediate hop is
malfunctioning, it’s eliminated immediately from consideration until its services have
been restored. Routing update messages are sent only when changes in the routing
environment occur, thereby reducing the number of messages in the internetwork and
reducing the size of the messages by not sending the entire routing table. However,
memory usage is increased because OSPF keeps track of more information than RIP. In
addition, the savings in bandwidth consumption are offset by the higher CPU usage
needed for the calculation of the shortest path, which is based on Dijkstra’s algorithm,
simply stated as find the shortest paths from a given source to all other destinations by
proceeding in stages and developing the path in increasing path lengths.


When a router uses Dijkstra’s algorithm, it computes all the different paths to get to
each destination in the internetwork, creating what is known as a topological
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database. This data structure is maintained by OSPF and is updated whenever failures
occur. Therefore, a router would simply check its topological database to determine
whether a path was available, and would then use Dijkstra’s algorithm to generate a
shortest-path tree to get around the failed link.


Connection Models


A communication network isn’t concerned with the content of data being transmitted
but with moving the data from one point to another. Because it would be prohibitive
to connect each node in a network to all other nodes, the nodes are connected to a
communication network designed to minimize transmission costs and to provide full
connectivity among all attached devices. Data entering the network at one point is
routed to its destination by being switched from node to node, whether by circuit
switching or by packet switching.


Circuit Switching


Circuit switching is a communication model in which a dedicated communication
path is established between two hosts. The path is a connected sequence of links and
the connection between the two points exists until one of them is disconnected. The
connection path must be set up before data transmission begins; therefore, if the
entire path becomes unavailable, messages can’t be transmitted because the circuit
would not be complete. The telephone system is a good example of a circuit-switched
network.


In terms of performance, there is a delay before signal transfer begins while the
connection is set up. However, once the circuit is completed, the network is transpar-
ent to users and information is transmitted at a fixed rate of speed with insignificant
delays at intermediate nodes.


Packet Switching


Packet switching is basically a store-and-forward technique in which a message is
divided into multiple equal-sized units called packets, which are then sent through the
network to their destination where they’re reassembled into their original long format,
as shown in Figure 9.12.


Packet switching is an effective technology for long-distance data transmission and
provides more flexibility than circuit switching because it permits data transmission
between devices that receive or transmit data at different rates. However, there is no
guarantee that after a message has been divided into packets the packets will all travel
along the same path to their destination or that they will arrive in their physical
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sequential order. In addition, packets from one message may be interspersed with
those from other messages as they travel toward their destinations. Therefore, a header
containing pertinent information about the packet is attached to each packet before
it’s transmitted. The information contained in the packet header varies according to
the routing method used by the network.


The idea is similar to sending a series of 30 reference books through a package delivery
system. Six boxes contain five volumes each, and each box is labeled with its sequence
number (e.g., box 2 of 6), as well as its ultimate destination. As space on passing
delivery trucks becomes available, each box is forwarded to a central switching center
where it’s stored until space becomes available to send it to the next switching center
closer to its destination. Eventually, when all six boxes arrive, they’re put in their
original order, the 30 volumes are unpacked, and the original sequence is restored.


As shown in Table 9.2, packet switching is fundamentally different from circuit
switching, also a store-and-forward technique, in which an entire message is accepted
by a central switching node and forwarded to its destination when one of two events
occurs: all circuits are free to send the entire message at once, or the receiving node
requests its stored messages.
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A packet switching network does not require a dedicated connection. It sends packets using a three-step


procedure: (a) divide the data into addressed packets; (b) send each packet toward its destination; (c) and,


at the destination, confirm receipt of all packets, place them in order, reassemble the data, and deliver it to


the recipient.
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(table 9.2)


Comparison of circuit and


packet switching.


Circuit Switching Packet Switching


• Transmits in real time • Transmits in batches


• Preferred in low-volume networks • Preferred in high-volume networks


• Reduced line efficiency • High line efficiency


• Dedicated to a single transmission • Shared by many transmissions


• Preferred for voice communications • Not good for voice communications


• Easily overloaded • Accommodates varying priority among packets


Packet switching provides greater line efficiency because a single node-to-node circuit
can be shared by several packets and does not sit idle over long periods of time.
Although delivery may be delayed as traffic increases, packets can still be accepted and
transmitted.


That’s also in contrast to circuit switching networks, which, when they become
overloaded, refuse to accept new connections until the load decreases. Have you ever
received a busy signal when trying to place a long-distance telephone call during a
major holiday? That problem is similar to a circuit switching network’s overload
response.


Packet switching allows users to allocate priorities to their messages so that a router
with several packets queued for transmission can send the higher priority packets first.
In addition, packet switching networks are more reliable than other types because
most nodes are connected by more than one link, so that if one circuit should fail, a
completely different path may be established between nodes.


There are two different methods of selecting the path: datagrams and virtual circuits. In
the datagram approach, the destination and sequence number of the packet are added to
the information uniquely identifying the message to which the packet belongs; each
packet is then handled independently and a route is selected as each packet is accepted
into the network. This is similar to the shipping label that’s added to each package in
the book shipment example. At their destination, all packets belonging to the same
message are then reassembled by sequence number into one continuous message and,
finally, are delivered to the addressee. Because the message can’t be delivered until all
packets have been accounted for, it’s up to the receiving node to request retransmission
of lost or damaged packets. This routing method has two distinct advantages: It helps
diminish congestion by sending incoming packets through less heavily used paths, and it
provides more reliability because alternate paths may be set up when one node fails.


In the virtual circuit approach, the destination and packet sequence number aren’t
added to the information identifying the packet’s message because a complete path
from sender to receiver is established before transmission starts—all the packets
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belonging to that message use the same route. Although it’s a similar concept, this is
different from the dedicated path used in circuit switching because any node can have
several virtual circuits to any other node. Its advantage over the datagram method is
that its routing decision is made only once for all packets belonging to the same
message—a feature that should speed up message transmission for long messages. On
the other hand, it has a disadvantage in that if a node fails, all virtual circuits using
that node become unavailable. In addition, when the circuit experiences heavy traffic,
congestion is more difficult to resolve.


Conflict Resolution


Because a network consists of devices sharing a common transmission capability,
some method to control usage of the medium is necessary to facilitate equal and fair
access to this common resource. First we will describe some medium access control tech-
niques: round robin, reservation, and contention. Then we will briefly examine three
common medium access control protocols used to implement access to resources: carrier
sense multiple access (CSMA); token passing; and distributed-queue, dual bus (DQDB).


Access Control Techniques


In networks, round robin allows each node on the network to use the communication
medium. If the node has data to send, it’s given a certain amount of time to complete
the transmission, at the end of which, the opportunity is passed to the next node. If
the node has no data to send, or if it completes transmission before the time is up, then
the next node begins its turn. Round robin is an efficient technique when there are
many nodes transmitting over long periods of time. However, when there are few
nodes transmitting over long periods of time, the overhead incurred in passing turns
from node to node can be substantial, making other techniques preferable depending
on whether transmissions are short and intermittent, as in interactive terminal-host
sessions, or lengthy and continuous, as in massive file transfer sessions.


The reservation technique is well-suited for lengthy and continuous traffic. Access time
on the medium is divided into slots and a node can reserve future time slots for its use.
The technique is similar to that found in synchronous time-division multiplexing, used
for multiplexing digitized voice streams, where the time slots are fixed in length and
preassigned to each node. This technique could be good for a configuration with
several terminals connected to a host computer through a single I/O port.


The contention technique is better for short and intermittent traffic. No attempt is made
to determine whose turn it is to transmit, so nodes compete for access to the medium.
Therefore, it works well under light to moderate traffic, but performance tends to break
down under heavy loads. This technique’s major advantage is that it’s easy to implement.


301


Softw
are D


esign Issues


✔
The round robin
access control used
here follows the
same principles as
round robin
processor
management,
described in
Chapter 4.


C7047_09_Ch09.qxd  1/12/10  5:01 PM  Page 301








Access protocols currently in use are based on the previously mentioned techniques
and are discussed here with regard to their role in LAN environments.


CSMA


Carrier sense multiple access (CSMA) is a contention-based protocol that’s easy to
implement. Carrier sense means that a node on the network will listen to or test the
communication medium before transmitting any messages, thus preventing a collision
with another node that’s currently transmitting. Multiple access means that several
nodes are connected to the same communication line as peers, on the same level, and
with equal privileges.


Although a node will not transmit until the line is quiet, two or more nodes could
come to that conclusion at the same instant. If more than one transmission is sent
simultaneously, creating a collision, the data from all transmissions will be damaged
and the line will remain unusable while the damaged messages are dissipated. When
the receiving nodes fail to acknowledge receipt of their transmissions, the sending
nodes will know that the messages did not reach their destinations successfully
and both will be retransmitted. The probability of this happening increases if the
nodes are farther apart, making CSMA a less appealing access protocol for large or
complex networks.


Therefore, the original algorithm was modified to include collision detection and was
named carrier sense multiple access with collision detection (CSMA/CD). Ethernet is
the most widely known CSMA/CD protocol. Collision detection does not eliminate
collisions, but it does reduce them. When a collision occurs, a jamming signal is sent
immediately to both sending nodes, which then wait a random period before trying
again. With this protocol, the amount of wasted transmission capacity is reduced to
the time it takes to detect the collision.


A different modification is CSMA with collision avoidance (CSMA/CA). Collision
avoidance means that the access method prevents multiple nodes from colliding during
transmission. However, opinion on its efficiency is divided. Some claim it’s more
efficient than collision detection, whereas others contend that it lowers a network’s
performance when there are a large number of nodes. The CSMA/CA protocol is
implemented in LocalTalk, Apple’s cabling system, which uses a protocol called
LocalTalk link access protocol. A terminal connected to an Apple CSMA/CA network
would send out a three-byte packet to indicate that it wants to start transmitting. This
packet tells all other terminals to wait until the first is finished transmitting before they
initiate transmissions. If collisions do occur, they involve only the three-byte packets,
not the actual data. This protocol does not guarantee the data will reach its
destination, but it ensures that any data that’s delivered will be error-free.
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Token Passing


In a token passing network, a special electronic message, called a “token,” is gener-
ated when the network is turned on and is then passed along from node to node. Only
the node with the token is allowed to transmit, and after it has done so, it must pass
the token on to another node. These networks typically have either a bus or ring topol-
ogy and are popular because access is fast and collisions are nonexistent.


In a token bus network, the token is passed to each node in turn. Upon receipt of the
token, a node attaches the data to it to be transmitted and sends the packet, contain-
ing both the token and the data, to its destination. The receiving node copies the data,
adds the acknowledgment, and returns the packet to the sending node, which then
passes the token on to the next node in logical sequence.


Initially, node order is determined by a cooperative decentralized algorithm. Once the
network is up and running, turns are determined by priority based on node activity. A
node requiring the token frequently will have a higher priority than one that seldom
needs it. A table of node addresses is kept in priority order by the network. When a
transmission is complete, the token passes from the node that just finished to the one
having the next lower entry in the table. When the lowest priority node has been
serviced, the token returns to the top of the table, and the process is repeated.


This process is similar to a train engine pulling into the station. If the stationmaster
has a delivery to send, those cars are attached to the engine and the train is dispatched
to its destination with no intermediate stops. When it arrives, the cars are detached,
and the engine is sent back to the point of origin with the message that the shipment
was successfully received. After delivering that message to the shipment’s originator,
the engine proceeds to the next station to pick up a delivery.


Implementation of this protocol dictates higher overhead at each node than does
CSMA/CD, and nodes may have long waits under certain conditions before receiving
the token.


Token ring is the most widely used protocol for ring topology; it became better known
than token bus when IBM made its Token Ring Network commercially available. It’s
based on the use of a token that moves between the nodes in turn and in one direction
only. When it’s not carrying a message, the token is called a “free” token. If a node
wants to send a message, it must wait for the free token to come by. It then changes
the token from free to busy and sends its message immediately following the busy
token. Meanwhile, all other nodes must wait for the token to become free and come
to them again before they’re able to transmit a message.


The receiving node copies the message in the packet and sets the copied bit to indicate
it was successfully received; the packet then continues on its way, making a complete
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round trip back to the sending node, which then releases the new free token on
the network. At this point, the next node down the line with data to send will be able
to pick up the free token and repeat the process.


DQDB


The distributed-queue, dual bus (DQDB) protocol is intended for use with a dual-bus
configuration, where each bus transports data in only one direction and has been
standardized by one of the IEEE committees as part of its MAN standards.
Transmission on each bus consists of a steady stream of fixed-size slots, as shown in
Figure 9.13. Slots generated at one end of each bus are marked free and sent
downstream, where they’re marked busy and written to by nodes that are ready to
transmit data. Nodes read and copy data from the slots, which then continue to travel
toward the end of the bus, where they dissipate.
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(figure 9.13)


Distributed-queue, dual bus protocol. Free slots are generated at one end of each bus and flow in only one


direction. Using DQDB, if node C wants to send data to node D, it must wait for a free slot on Bus 1 because


the slots are flowing toward node D on that bus.


Bus 1


Bus 2


Slot flow


Slot flow


A B C D Z


Data flow


Data flow


Nodes


Bus 2 generates slots here


Bus 1 generates slots here Bus 1 terminates here


Bus 2 terminates here


C7047_09_Ch09.qxd  1/12/10  5:01 PM  Page 304








The distributed access protocol is based on a distributed reservation scheme and can
be summarized as follows. If node C in Figure 9.13 wants to send data to node D, it
would use Bus 1 because the slots are flowing toward D on that bus. However, if the
nodes before C monopolize the slots, then C would not be able to transmit its data to
D. To solve the problem, C can use Bus 2 to send a reservation to its upstream neigh-
bors. The protocol states that a node will allow free slots to go by until outstanding
reservations from downstream nodes have been satisfied. Therefore, the protocol must
provide a mechanism by which each station can keep track of the requests of its down-
stream peers.


This mechanism is handled by a pair of first-in, first-out queues and a pair of counters,
one for each bus, at each of the nodes in the network. This is a very effective protocol
providing negligible delays under light loads and predictable queuing under heavy
loads. This combination makes the DQDB protocol suitable for MANs that manage
large file transfers and are able to satisfy the needs of interactive users.


Transport Protocol Standards


During the 1980s, network usage began to grow at a fast pace, as did the need to
integrate dissimilar network devices from different vendors—a task that became
increasingly difficult as the number and complexity of network devices increased.
Soon the user community pressured the industry to create a single universally adopted
network architecture that would allow true multivendor interoperability. We’ll review
two models, OSI and TCP/IP.


OSI Reference Model


The International Organization for Standardization (ISO), which makes technical
recommendations about data communication interfaces, took on the task of creating
such a network architecture. Its efforts resulted in the open systems interconnection
(OSI) reference model, which serves as a framework for defining the services that a
network should provide to its users. This model provides the basis for connecting open
systems for distributed applications processing. The word “open” means that any two
systems that conform to the reference model and the related standards can be
connected, regardless of the vendor.


Once all services were identified, similar functions were collected together into seven
logical clusters known as layers. One of the main reasons used to define the seven lay-
ers was to group easily localized functions so that each layer could be redesigned and
its protocols changed in any way to take advantage of new advances in architecture,
hardware, or software without changing the services expected from and provided to
the adjacent layers. Boundaries between layers were selected at points that past
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experience had revealed to be effective. The resulting seven-layer OSI model handles
data transmission from one terminal or application program to another. Figure 9.14
shows how data passes through the seven layers and how it’s organized: from the
application layer, the one closest to the user, to the physical layer, the one closest to the
cables, modems, and circuits. A brief description of each layer’s function follows.
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(figure 9.14)


The OSI transport protocol model. At every layer of the sending unit, System A, a new header is attached to


the previous packet before it’s passed on to the next lower layer. Finally, at the data link layer, a link trailer


(LT) is added, completing the frame, which is passed to the physical layer for transmission. Then the receiv-


ing unit removes each header or trailer until it delivers the data to the application program at Layer 7 on


System B.
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Layer 1—The Physical Layer 


Layer 1 is at the bottom of the model. This is where the mechanical, electrical, and
functional specifications for connecting a device to a particular network are described.
Layer 1 is primarily concerned with transmitting bits over communication lines, so
voltages of electricity and timing factors are important. This is the only layer
concerned with hardware, and all data must be passed down to it for actual data
transfer between units to occur. (Layers 2 through 7 all are concerned with software,
and communication between units at these levels is only virtual.) Examples of physical
layer specifications are 100Base-T, RS449, and CCITT V.35.


Layer 2—The Data Link Layer 


Because software is needed to implement Layer 2, this software must be stored in some
type of programmable device such as a front-end processor, network node, or micro-
computer. Bridging between two homogeneous networks occurs at this layer. On one
side, the data link layer establishes and controls the physical path of communications
before sending data to the physical layer below it. It takes the data, which has been
divided into packets by the layers above it, and physically assembles the packet for trans-
mission by completing its frame. Frames contain data combined with control and error
detection characters so that Layer 1 can transmit a continuous stream of bits without
concern for their format or meaning. On the other side, it checks for transmission errors
and resolves problems caused by damaged, lost, or duplicate message frames so that
Layer 3 can work with error-free messages. Typical data link level protocols are High-
Level Data Link Control (HDLC) and Synchronous Data Link Control (SDLC).


Layer 3—The Network Layer


Layer 3 provides services, such as addressing and routing, that move data through the
network to its destination. Basically, the software at this level accepts blocks of data
from Layer 4, the transport layer, resizes them into shorter packets, and routes them
to the proper destination. Addressing methods that allow a node and its network to be
identified, as well as algorithms to handle address resolution, are specified in this layer.
A database of routing tables keeps track of all possible routes a packet may take and
determines how many different circuits exist between any two packet switching nodes.
This database may be stored at this level to provide efficient packet routing and should
be dynamically updated to include information about any failed circuit and the trans-
mission volume present in the active circuits.


Layer 4—The Transport Layer


Layer 4 is also known as the host-to-host or end-to-end layer because it maintains reli-
able data transmission between end users. A program at the source computer can send a
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virtual communication to a similar program at a destination machine by using message
headers and control messages. However, the physical path still goes to Layer 1 and
across to the destination computer. Software for this layer contains facilities that handle
user addressing and ensures that all the packets of data have been received and that none
have been lost. This software may be stored in front-end processors, packet switching
nodes, or host computers. In addition, this layer has a mechanism that regulates the flow
of information so a fast host can’t overrun a slower terminal or an overloaded host. A
well-known transport layer protocol is Transmission Control Protocol (TCP).


Layer 5—The Session Layer


Layer 5 is responsible for providing a user-oriented connection service and transferring
data over the communication lines. The transport layer is responsible for creating and
maintaining a logical connection between end points. The session layer provides a user
interface that adds value to the transport layer in the form of dialogue management and
error recovery. Sometimes the session layer is known as the “data flow control” layer
because it establishes the connection between two applications or processes, enforces the
regulations for carrying on the session, controls the flow of data, and resets the connec-
tion if it fails. This layer might also perform some accounting functions to ensure that
users receive their bills. The functions of the transport layer and session layer are very
similar and, because the operating system of the host computer generally handles the ses-
sion layer, it would be natural to combine both layers into one, as does TCP/IP.


Layer 6—The Presentation Layer


Layer 6 is responsible for data manipulation functions common to many applications,
such as formatting, compression, and encryption. Data conversion, syntax conversion,
and protocol conversion are common tasks performed in this layer. Gateways connect-
ing networks with different protocols are presentation layer devices; one of their func-
tions is to accommodate totally different interfaces as seen by a terminal in one node
and expected by the application program at the host computer. For example, IBM’s
Customer Information Control System (CICS) teleprocessing monitor is a presentation
layer service located in a host mainframe, although it provides additional functions
beyond the presentation layer.


Layer 7—The Application Layer 


At Layer 7, application programs, terminals, and computers access the network. This
layer provides the interface to users and is responsible for formatting user data before
passing it to the lower layers for transmission to a remote host. It contains network
management functions and tools to support distributed applications. File transfer and
e-mail are two of the most common application protocols and functions.
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Once the OSI model is assembled, it allows nodes to communicate with each other.
Each layer provides a completely different array of functions to the network, but all
the layers work in unison to ensure that the network provides reliable transparent ser-
vice to the users.


TCP/IP Model


The Transmission Control Protocol/Internet Protocol (TCP/IP) reference model is
probably the oldest transport protocol standard. It’s the basis for Internet communica-
tions and is the most widely used network layer protocol in use today. It was devel-
oped for the U.S. Department of Defense’s ARPANET and provides reasonably
efficient and error-free transmission between different systems. Because it’s a file-trans-
fer protocol, large files can be sent across sometimes unreliable networks with a high
probability that the data will arrive error free. Some differences between the TCP/IP
model and the OSI reference model are the significance that TCP/IP places on internet-
working and providing connectionless services, and its management of certain func-
tions, such as accounting for use of resources.


The TCP/IP model organizes a communication system with three main components:
processes, hosts, and networks. Processes execute on hosts, which can often support
multiple simultaneous processes that are defined as primary units that need to commu-
nicate. These processes communicate across the networks to which hosts are connected.
Based on this hierarchy, the model can be roughly partitioned into two major tasks: one
that manages the transfer of information to the host in which the process resides, and
one that ensures it gets to the correct process within the host. Therefore, a network
needs to be concerned only with routing data between hosts, as long as the hosts can
then direct the data to the appropriate processes. With this in mind, the TCP/IP model
can be arranged into four layers instead of OSI’s seven, as shown in Figure 9.15. A brief
description of the layers’ functions and how they relate to the OSI model follows.


Network Access Layer


The network access layer is equivalent to the physical, data link, and part of the net-
work layers of the OSI model. Protocols at this layer provide access to a communica-
tion network. Some of the functions performed here are flow control, error control
between hosts, security, and priority implementation.


Internet Layer


The Internet layer is equivalent to the portion of the network layer of the OSI model
that isn’t already included in the previous layer, specifically the mechanism that per-
forms routing functions. Therefore, this protocol is usually implemented within gate-
ways and hosts. An example of a standard set by the U.S. Department of Defense
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(figure 9.15)


Comparison of OSI and


TCP/IP models and their


functional layers.
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Layer 5
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Layer 4
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Layer 3
network layer


Layer 2
data link layer


Layer 1
physical layer


TCP/IP ModelOSI Model


(DoD) is the Internet Protocol (IP), which provides connectionless service for end sys-
tems to communicate across one or more networks.


Host-Host Layer


The host-host layer is equivalent to the transport and session layers of the OSI model.
As its name indicates, this layer supports mechanisms to transfer data between two
processes on different host computers. Services provided in the host-host layer also
include error checking, flow control, and an ability to manipulate connection control
signals. An example of a standard set by the DoD is the Transmission Control Protocol
(TCP), which provides a reliable end-to-end data transfer service.
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Process/Application Layer


The process/application layer is equivalent to the presentation and application layers
of the OSI model. It includes protocols for computer-to-computer resource sharing
and terminal-to-computer remote access. Specific examples of standards set by the
DoD for this layer are File Transfer Protocol (FTP), a simple application for transfer
of ASCII, EBCDIC, and binary files; Simple Mail Transfer Protocol (SMTP), a simple
electronic mail facility; and Telnet, a simple asynchronous terminal capability that pro-
vides remote log-on capabilities to users working at a terminal or a personal computer.


Conclusion


Although operating systems for networks necessarily include the functions of the four
managers discussed so far in this textbook—the Memory Manager, Processor
Manager, Device Manager, and File Manager—they also need to coordinate all those
functions among the network’s many varied pieces of hardware and software, no mat-
ter where they’re physically located.


There is no single gauge by which we can measure the success of a network’s operating
system, but at a minimum it must meet the reliability requirements of its owners. That
is, when a node fails—and all networks experience node failure from time to time—the
operating system must detect the failure, change routing instructions to avoid that
node, and make sure every lost message is retransmitted until it’s successfully received.


In this chapter we’ve introduced the basic network organization concepts: common ter-
minology, network topologies, types of networks, software design issues, and transport
protocol standards. Bear in mind, however, that this is a complicated subject and we’ve
only just touched the surface in these few pages. For more information about connecting
topics discussed here, refer to the texts or references listed at the end of the book.


Key Terms


bridge: a data-link layer device used to interconnect multiple networks using the same
protocol.


bus topology: network architecture to connect elements together along a single line.


circuit switching: a communication model in which a dedicated communication path
is established between two hosts and on which all messages travel.


distributed operating system (D/OS): an operating system that provides control for a
distributed computing system, allowing its resources to be accessed in a unified way.
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Domain Name Service (DNS): a general-purpose, distributed, replicated data query
service. Its principal function is the resolution of Internet addresses based on fully
qualified domain names.


Ethernet: a popular LAN network technology in which nodes contend for access to a
network. Inexpensive, easy to install and maintain.


gateway: a communications device or program that passes data between networks
having similar functions but different protocols. 


host: (1) the Internet term for a network node that is capable of communicating at the
application layer. Each Internet host has a unique IP address. (2) a networked com-
puter with centralized program or data files that makes those resources available to
other computers on the network.


hybrid topology: a network architecture that combines other types of network topolo-
gies to accommodate particular operating characteristics or traffic volumes.


Internet: the largest collection of networks interconnected with routers. The Internet is
a multi-protocol internetwork.


International Organization for Standardization (ISO): a voluntary, non-treaty organi-
zation responsible for creating international standards in many areas, including com-
puters and communications.


local: pertaining to the network node to which a user is attached.


local area network (LAN): a data network intended to serve an area covering only a
few square kilometers or less.


metropolitan area network (MAN): a data network intended to serve an area approxi-
mating that of a large city.


network: a collection of loosely coupled processors interconnected by communications
links using cables, wireless technology, or a combination.


network operating system (NOS): the software that manages network resources for a
node on a network and may provide security and access control.


node: a network-layer addressable device attached to a computer network.


open shortest path first (OSPF): a protocol designed for use in Internet Protocol (IP)
networks, concerned with tracking the operational state of every network interface.


open systems interconnection (OSI) reference model: a seven-layer conceptual struc-
ture describing computer network architectures and the ways in which data passes
through them.


packet: a unit of data sent across a network.


packet switching: a communication model in which messages are individually routed
between hosts, with no previously established communication path.
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Interesting Searches


protocol: a set of rules to control the flow of messages through a network.


remote: pertaining to a node at the distant end of a network connection.


ring topology: a network topology; each node is connected to two adjacent nodes.


router: a device that forwards traffic between networks.


routing information protocol (RIP): a routing protocol used by IP, based on a distance-
vector algorithm.


site: a specific location on a network containing one or more computer systems.


star topology: a network topology in which multiple network nodes are connected
through a single, central node.


token ring: a type of local area network with stations wired into a ring network.


token bus: a type of local area network with nodes connected to a common cable using
a CSMA/CA protocol.


topology: in a network, the geometric arrangement of connections (cables, wireless, or
both) that link the nodes. 


Transmission Control Protocol/Internet Protocol (TCP/IP) reference model: a com-
mon acronym for the suite of transport-layer and application-layer protocols that
operate over the Internet Protocol.


tree topology: a network architecture in which elements are connected in a hierarchi-
cal structure.


wide area network (WAN): a network usually constructed with long-distance, point-
to-point lines, covering a large geographic area.


wireless local area network (WLAN): a local area network with wireless nodes.


Interesting Searches
• IEEE Wireless Standards


• WiMAX vs. Wi-Fi


• Voice Over Internet Protocol (VoIP)


• Network Topologies


• Routing Protocols
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Exercises


Research Topics


A. Name several operating systems that run LANs today. Do not include different
versions of a single operating system. For each operating system, list its name,
the platform or network it operates on, and its distributor or manufacturer.
Cite your sources.


B. In this chapter, we discussed the WiMAX standard. Consult current litera-
ture to further explore the status of WiMAX technology. Describe any barri-
ers to commercial use and the applications that show the most promise.
Explain which countries expect to benefit the most and why. Be sure to cite
your sources. If your discussion includes terms not used in the text, define
them.


Exercises


1. As mentioned in this chapter, sometimes clients and servers exchange roles with
clients becoming servers at times. Give an example where a client always
remains the client and never becomes the server.


2. Explain why network operating systems were phased out when distributed
operating systems gained popularity.


3. An early network topology was the token bus. Describe how the role of the
token c in the token bus network compares with the token ring network.


4. In your own words, describe the functional differences between a bridge and a
gateway. Give an example of each.


5. Explain the major advantages and disadvantages of a star topology.


6. Explain the major advantages and disadvantages of a bus topology.


7. Describe how a network with a star topology can be manipulated to act as if it
uses a ring topology.


8. Referring to Figure 9.9, describe the flow of data from host to host as it moves
from host 1 to host 6 including each controller or bridge.


9. Referring to Figure 9.10, describe the flow of data from host to host as it
moves from host 1 to host 6 including each controller or bridge.


10. Describe a hybrid topology and draw graphic illustrations of two examples.


11. Discuss at least three advantages of a hard-wired LAN compared to a wireless LAN
and describe one situation where the wired LAN would be preferred.


12. Discuss the primary difference between a bridge and a gateway, and give a real-
life example that uses each one.


13. Explain the role of routers when moving data from one host to another in the
same network.
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Exercises


14. This chapter described packet routing. Give the two examples in which packets
can be routed and explain how they differ. 


15. Give two real-life examples where packet switching would be preferred over
circuit switching and explain why.


16. Compare the virtual circuit approach to packet switching and describe its
advantages. 


17. Compare and contrast the two most widely used routing protocols: routing
information protocol (RIP) and open shortest path first (OSFP).


18. Identify a network topology that would best suit each of the following environ-
ments and explain why:


a. Dormitory floor


b. University campus


c. Airport


d. State or province


Advanced Exercises


19. Although not explicitly discussed in the chapter, packet size would seem to have
an impact on transmission time. Discuss whether or not this is true and explain
why. Specifically compare the concept of the number of bits that constitute the
data portion of the packet and the number of bits that constitute the address
portion of the packet. Remember that the address is overhead and it has an
impact on data transmission rates.


Offer a comprehensive example comparing packet sizes and resulting trans-
mission times. For example, look at some of your e-mail messages and compare
the number of bytes that constitute the message with the number of bytes for
the address. Compute the results for several e-mails and give your conclusions.


20. Discuss what is incorrect with the following logic: Packet switching requires
control and address bits to be added to each packet, which causes considerable
overhead in packet switching. In circuit switching, a dedicated circuit is set up
and no extra bits are needed.


a. Therefore, there is no overhead in circuit switching.


b.Because there is no overhead in circuit switching, line utilization must be
more efficient than in packet switching.


21. Describe the differences between CSMA/CD and CSMA/CA. Provide one real-
life example where CSMA/CD is used. Provide one real-life example where
CSMA/CA is used.


22. Explain the circumstances under which a token ring network is more effective
than an Ethernet network.


23. Even though the OSI model of networking specifies seven layers of functionality,
most computer systems use fewer layers to implement a network. Why do they
use fewer layers? What problems could be caused by the use of fewer layers?
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Single-User Operating Systems


Network Operating Systems


Distributed Operating Systems


INTERACTION
AMONG MANAGERS


Single-User Operating Systems


Network Operating Systems


Distributed Operating Systems


“As knowledge increases, wonder deepens.”
—Charles Morgan (1894–1958)


Learning Objectives


After completing this chapter, you should be able to describe:


• The complexities introduced to operating systems by network capabilities


• Network operating systems (NOSs) compared to distributed operating 
systems (DO/Ss)


• How a DO/S performs memory, process, device, and file management


• How a NOS performs memory, process, device, and file management


• Important features of DO/Ss and NOSs


Chapter 10 Management of 
Network Functions
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When organizations move toward completely decentralized systems, more and more
computing devices are linked through complex networks of wireless communications,
teleconferencing equipment, host computers, and other digital technologies. But there
are two problems with this expansion. First, a tremendous demand is placed on data
communication networks by the staggering number of hardware interconnections.
Second, the user community places increasing pressure on these networks to operate
with greater reliability, security, and speed.


In this chapter we’ll explore the differences between network operating systems and
distributed operating systems. We’ll explain process-based and object-based operating
system models and use them to define the roles of the Memory, Processor, Device, File,
and Network Managers in distributed operating systems, and we’ll discuss the role of
network operating systems. 


History of Networks


Networks were created initially to share expensive hardware resources such as large
mainframes, laser printers, and sizable hard disks. These physical networks, with their
network operating systems, allowed organizations to increase the availability of these
resources and spread the cost among many users. However, the focus of technology
changed when system owners realized that a network’s most prized resource wasn’t
the hardware—it was the information stored on it. Soon many operating systems were
enhanced with network capabilities to give users throughout an organization easy
access to centralized information resources. The network operating system was devel-
oped first, followed by the more powerful distributed operating system.


Today, applications collectively known as computer-supported cooperative work, or
groupware, use a set of technologies called distributed processing to allow even greater
access to centralized information and to allow users to work together to complete
common tasks.


Comparison of Network and Distributed Operating Systems


The network operating system (NOS) evolved from the need to give users global access
to resources, globally manage the network’s processes, and make the network almost
completely transparent for users and their sites’ operating systems, known as local
operating systems. A typical NOS is shown in Figure 10.1.


A network operating system gives local operating systems extended powers. That is, it
gives the local system new ability to accept a request to perform processing or to
access data that’s not available locally. It starts by determining where the resources are
located. Then it initiates the operation and returns the appropriate data or service to
the requester. 
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It’s important that the NOS accomplish this transparently. The local operating system
views the action as having been performed onsite. That’s because the network operat-
ing system handles the interfacing details and coordinates the remote processing. It
also coordinates communications between the local operating systems by tracking the
status and location of all entities in the system. 


The local operating systems are traditional operating systems designed to run a single
computer. That means they can perform a task only if the process is part of their envi-
ronment; otherwise, they must pass the request on to the network operating system to
run it. To a local operating system, it appears that the NOS is the server performing
the task, whereas in reality the NOS is only the facilitator.


The biggest limitation of a NOS is that it doesn’t take global control over memory
management, process management, device management, or file management. Rather,
it sees them as autonomous local functions that must interact with each other. This
limited view is problematic because an operating system can’t achieve true distributed
computing or processing functions without global control of all assets, not only assets
at the network communication level. This need for global control led to the develop-
ment of the distributed operating system (DO/S). (Although they use a similar
acronym, the DO/S described in this chapter must not be confused with the DOS [disk
operating system] for microcomputers or MS-DOS, described in Chapter 14.)


Distributed operating systems provide a unified environment designed to optimize oper-
ations for the network as a whole, not just for local sites, as illustrated in Figure 10.2.


The major difference between a NOS and a DO/S is how each views and manages the
local and global resources. A NOS builds on capabilities provided by the local
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In a NOS environment,
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operating system and extends it to satisfy new needs. It accesses resources by using
local mechanisms, and each system is controlled and managed locally based on that
system’s policy. On the other hand, the DO/S considers system resources to be globally
owned and manages them as such. It accesses resources using global mechanisms
rather than local mechanisms, with system control and management based on a single
system-wide policy. A comparison of the two types of systems is shown in Table 10.1.


Network Operating System (NOS) Distributed Operating System (DO/S)


Resources owned by local nodes Resources owned by global system


Local resources managed by local Local resources managed by a global DO/S
operating system


Access performed by a local operating system Access performed by the DO/S


Requests passed from one local operating Requests passed directly from node to 
system to another via the NOS node via the DO/S 


For example, in a typical NOS environment, a user who wants to run a local process
at a remote site must (1) log on to the local network, (2) instruct the local system to
migrate the process or data to the remote site, and then (3) send a request to the
remote site to schedule the process on its system. Thereafter, the remote site views the
process as a newly created process within its local operating system’s environment and
manages it without outside intervention. If the process needs to be synchronized with
processes at remote sites, the process needs to have embedded calls to initiate action
by the NOS. These calls are typically added on top of the local operating system to
provide the communications link between the two processes on the different devices.
This complicates the task of synchronization, which is the responsibility of the user
and is only partially supported by the operating system.


On the other hand, a system managed by a DO/S handles the same example differ-
ently. If one site has a process that requires resources at another site, then the task is
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In a DO/S environment, all


nodes are part of a glob-


ally managed operating


system designed to opti-


mize all system resources.


Requests between nodes


are handled entirely by the


DO/S as well as every


operation at every node.


(table 10.1)


Comparison of a NOS and


a DO/S, two types of oper-


ating systems used to


manage networked


resources.
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presented to the DO/S as just another process. The user acquires no additional
responsibility. The DO/S examines the process control block to determine the spe-
cific requirements for this process. Then, using its process scheduler, the DO/S deter-
mines how to best execute the process based on the site’s current knowledge of the
state of the total system. The process scheduler then takes this process, along with
all other processes ready to run on the network, and calculates their order of execu-
tion on each node while optimizing global run time and maintaining process priori-
ties. The emphasis is on maintaining the operating system’s global functionality,
policies, and goals.


To globally manage the network’s entire suite of resources, a DO/S is typically con-
structed with a replicated kernel operating system—low-level, hardware-control soft-
ware (firmware) with system-level software for resource management. This software
may be unique or duplicated throughout the system. Its purpose is to allocate and
manage the system’s resources so that global system policies, not local policies, are
maximized. The DO/S also has a layer that hides the network and its intricacies from
users so they can use the network as a single logical system and not as a collection of
independent cooperating entities.


DO/S Development


Although the DO/S was developed after the NOS, its global management of network
devices is the easiest to understand, so we’ll explain it first.


Because a DO/S manages the entire group of resources within the network in a global
fashion, resources are allocated based on negotiation and compromise among equally
important peer sites in the distributed system. One advantage of this type of system is
its ability to support file copying, electronic mail, and remote printing without requir-
ing the user to install special server software on local machines. Here’s how operating
system management functions are performed by a DO/S.


Memory Management


For each node, the Memory Manager uses a kernel with a paging algorithm to track
the amount of memory that’s available. The algorithm is based on the goals of the
local system but the policies and mechanisms that are used at the local sites are driven
by the requirements of the global system. To accommodate both local and global
needs, memory allocation and deallocation depend on scheduling and resource-sharing
schemes that optimize the resources of the entire network.


The Memory Manager for a network works the same way as it does for a stand-alone
operating system, but it’s extended to accept requests for memory from both local and
global sources. On a local level, the Memory Manager allocates pages based on the
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local policy. On a global level, it receives requests from the Process Manager to pro-
vide memory to new or expanding client or server processes. The Memory Manager
also uses local resources to perform garbage collection in memory, perform com-
paction, decide which are the most and least active processes, and determine which
processes to preempt to provide space for others.


To control the demand, the Memory Manager handles requests from the Process
Manager to allocate and deallocate space based on the network’s usage patterns. In a
distributed environment, the combined memory for the entire network is made up of
several subpools, one for each processor, and the Memory Manager has a subcompo-
nent that exists on each processor. 


When an application tries to access a page that’s not in memory, a page fault occurs
and the Memory Manager automatically brings that page into memory. If the page is
changed while in memory, the Memory Manager writes the changed page back to the
file when it’s time to swap the page out of memory. 


Before allocating space, the Memory Manager examines the total free memory table.
If the request can be filled, the memory is allocated and the table is modified to show
the location of the allocated space. 


The Memory Manager also manages virtual memory. Specifically, it allocates and deal-
locates virtual memory, reads and writes to virtual memory, swaps virtual pages to
disk, gets information about virtual pages, locks virtual pages in memory, and protects
the pages that need to be protected. 


Pages are protected using hardware or low-level memory management software in
each site’s kernel. This protection is summoned as pages are loaded into memory.
Several protection checks are performed on the pages, as shown in Table 10.2.


Access Allowed Protection


Read/write Allows users to have full access to the page’s contents, giving them the
ability to read and write.


Read-only Allows users to read the page but they’re not allowed to modify it.


Execute-only Allows users to use the page but they’re not allowed to read or modify it.
This means that although a user’s process can’t read or write to the page,
it can jump to an address within the page and start executing. This is
appropriate for shared application software, editors, and compilers.


Guard-page Used to facilitate automatic bounds-checking on stacks and other types
of data structures.


No access Prevents users from gaining access to the page. This is typically used by
debugging or virus protection software to prevent a process from read-
ing from or writing to a particular page.  
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(table 10.2)


Protection checks are


performed on pages as


they’re loaded into mem-


ory. The last three controls


shown in this table are


needed to make sure


processes don’t write to


pages that should be


read-only.
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Process Management


In a network, the Processor Manager provides the policies and mechanisms to create,
delete, abort, name, rename, find, schedule, block, run, and synchronize processes,
and provides real-time priority execution if required. In addition, the Processor
Manager manages the states of execution: READY, RUNNING, and WAIT as
described in Chapter 4. To do this, each CPU in the network is required to have its
own run-time kernel that manages the hardware—the lowest-level operation on the
physical device, as shown in Figure 10.3.
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Each kernel controls each


piece of hardware,


including the CPU. Each


kernel is operated by the


DO/S, which, in turn, is


directed by the application


software running on the


host computer. In this way,


the most cumbersome


functions are hidden from


the user.


A kernel actually controls and operates the CPU and manages the queues used for
states of execution, although upper-level system policies direct how process control
blocks (PCBs) are stored in the queues and how they’re selected to be run. Therefore,
each kernel assumes the role of helping the system reach its operational goals.


The kernel’s states are dependent on the global system’s process scheduler and dis-
patcher, which organize the queues within the local CPU and choose the running pol-
icy that’s used to execute the processes on those queues. Typically, the system’s
scheduling function has three parts: a decision mode, a priority function, and an arbi-
tration rule.


The decision mode determines which policies are used when scheduling a resource.
Options could include preemptive, nonpreemptive, round robin, etc.


The priority function gives the scheduling algorithm the policy that’s used to assign an
order to processes in the execution cycle. This priority is often determined using a cal-
culation that’s based on system characteristics such as occurrence of events, task
recurrence, system loading levels, or program run time characteristics. Examples of
these run-time characteristics are most time remaining (MTR), least time remaining
(LTR), and so on. 
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The arbitration rule is a policy that’s used to resolve conflicts between jobs of equal
priority. That is, it typically dictates the order in which jobs of the same priority are to
be executed. Two examples of arbitration rules are last-in first-out (LIFO) and first-in
first-out (FIFO).


Most advances in job scheduling rely on one of three theories: queuing theory, statisti-
cal decision theory, or estimation theory. (These queuing and statistical decision theo-
ries are the same as those discussed in statistics courses.) An example of estimation
theory is a scheduler based on process priorities and durations. It maximizes the sys-
tem’s throughput by using durations to compute and schedule the optimal way to
interleave process chunks. Distributed scheduling is better achieved when migration of
the scheduling function and policies considers all aspects of the system, including I/O,
devices, processes, and communications. 


Processes are created, located, synchronized, and deleted using specific procedures. To
create a process, the Process Manager (which is part of the Processor Manager) starts
by creating a process control block (PCB) with information similar to the PCBs dis-
cussed in Chapter 4, but with additional information identifying the process’s location
in the network. To locate a process, the Process Manager uses a system directory or
process that searches all kernel queue spaces—this requires system support for inter-
process communications. To synchronize processes, the Process Manager uses message
passing or remote procedure calls. To delete or terminate a process, the Process
Manager finds the PCB accesses it, and deletes it.


There are two ways to design a distributed operating system. The first is a process-
based DO/S in which network resources are managed as a large heterogeneous collec-
tion. The second and more recent is an object-based DO/S, which clumps each type of
hardware with its necessary operational software into discrete objects that are manip-
ulated as a unit. Of the two, process-based DO/S most closely resembles the theory
described in Chapter 4.


Process-Based DO/S 


A process-based DO/S provides for process management through the use of client/server
processes synchronized and linked together through messages and ports, also known as
channels or pipes. The major emphasis is on processes and messages and how they pro-
vide the basic features essential to process management such as process creation, sched-
uling, pausing, communication, and identification, to name a few. 


The issue of how to provide these features can be addressed in several ways. For exam-
ple, the processes can be managed from a single copy of the operating system, from
multiple cooperating peers, or from some combination of the two. Operating systems
for distributed computers are typically configured as a kernel on each site. All other
services that are dependent on particular devices are typically found on the sites where
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the devices are located. As users enter the system, they’re given a unique process iden-
tifier and then assigned to a site for processing by the scheduling manager.


In a distributed system, there is a high level of cooperation and sharing of actions and
data maintained by the sites when determining which process should be loaded and
where it should be run. This is done by exchanging messages between site operating
systems. Once a process is scheduled for service, it must be initiated at the assigned site
by a dispatcher. The dispatcher takes directions from the operating system’s scheduler,
allocates the device to the process, and initiates its execution. This procedure may
necessitate moving a process from memory in one site to memory at another site; reor-
ganizing a site’s memory allocation; reorganizing a site’s READY, RUNNING, and
WAIT queues; and initiating the scheduled process. The Processor Manager only rec-
ognizes processes and their demands for service. It responds to them based on the
established scheduling policy, which determines what must be done to manage the
processes. As mentioned in earlier chapters, policies for scheduling must consider
issues such as load balancing, overhead minimization, memory loading minimization,
and first-come first-served and least-time-remaining.


Synchronization is a key issue in network process management. For example,
processes can coordinate their activities by passing messages to each other. In addition,
processes can pass synchronization parameters from one port to another using primi-
tives, well-defined low-level operating system mechanisms such as “send and receive,”
to carry out the proper logistics to synchronize actions within a process. For instance,
when a process reaches a point at which it needs service from an external source, such
as an I/O request, it sends a message searching for the service. While it waits for a
response, the processor server puts the process in a WAIT state.


Interrupts, which cause a processor to be assigned to another process, also are repre-
sented as messages that are sent to the proper process for service. For example, an
interrupt may cause the active process to be blocked and moved into a WAIT state.
Later, when the cause for the interruption ends, the processor server unblocks the
interrupted process and restores it to a READY state.


Object-Based DO/S 


An object-based DO/S has a different way of looking at the computer system. Instead
of viewing the system as a collection of individual resources and processes, the system
is viewed as a collection of objects. An object can represent hardware (such as CPUs
and memory), software (such as files, programs, semaphores, and data), or a combi-
nation of the two (printers, scanners, tape drives, and disks—each bundled with the
software required to operate it). Each object in the system has a unique identifier to
differentiate it from all other objects in the system.


Objects are viewed as abstract entities, data types that can go through a change of state,
act according to set patterns, be manipulated, or exist in relation to other objects in a
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manner appropriate to the object’s semantics in the system. This means that objects have
a set of unchanging properties that defines them and their behavior within the context
of their defined parameters. For example, a writable CD drive has unchanging proper-
ties that include the following: data can be written to a disc, data can be read from a
disc, reading and writing can’t take place concurrently, and the data’s beginning and end-
ing points can’t be compromised. If we use these simple rules to construct a simulation
of a CD-R drive, we have created an accurate representation of this object.


To determine an object’s state, one must perform an appropriate operation on it, such
as reading or writing to a hard disk, because the object is identified by the set of oper-
ations one can send it. The combination of the operations with their internally defined
data structures and computations represents an object’s instantiation. Typically, sys-
tems using this concept have a large number of objects but a small number of opera-
tions on the objects. For example, a printer can have three operations: one to advance
a full page, one to advance one line, and one to advance one character.


Therefore, in an object-based DO/S, process management becomes object manage-
ment, with processes acting as discrete objects. Process management, in this case, deals
with the policies and mechanisms for controlling the operations and the creation and
destruction of objects. Therefore, process management has two components: the ker-
nel level and the Process Manager.


The Kernel Level


The kernel level provides the basic mechanisms for building the operating system by
creating, managing, scheduling, synchronizing, and deleting objects, and it does so
dynamically. For example, when an object is created, it’s assigned all the resources
needed for its operation and is given control until the task is completed. Then the
object returns control to the kernel, which selects the next object to be executed.


The kernel also has ultimate responsibility for the network’s capability lists, discussed
in Chapter 8. Each site has both a capability manager that maintains the capability list
for its objects and a directory listing the location for all capabilities in the system. This
directory guides local requests for capabilities to other sites on which they’re located. 


For example, if a process requests access to a region in memory, the capability man-
ager first determines whether the requesting process has been previously granted
rights. If so, then it can proceed. If not, it processes the request for access rights. When
the requester has access rights, the capability manager grants the requester access to
the named object, in this case the region in memory. If the named object is at a remote
site, the local capability manager directs the requester, using a new address computa-
tion and message, to the remote capability manager.


The kernel is also responsible for process synchronization mechanisms and communica-
tion support. Typically, synchronization is implemented as some form of shared variable,
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such as the WAIT and SIGNAL codes discussed in Chapter 6. Communication between
distributed objects can be in the form of shared data objects, message objects, or control
interactions. Most systems provide different communications primitives to their objects,
which are either synchronous (either the sender and receiver are linked and ready to send
and receive) or asynchronous (there is some shareable area such as a mailbox, queue, or
stack to which the communicated information is sent). In some cases, the receiver peri-
odically checks to see if anyone has sent anything. In other cases, the communicated
information arrives at the receiver’s workstation without any effort on the part of the
receiver; it just waits. There can also be a combination of these. An example of this com-
munication model might have a mechanism that signals the receiver whenever a commu-
nication arrives at the sharable area so the information can be fetched whenever it’s
convenient. The advantage of this system is that it eliminates unnecessary checking when
no messages are waiting.


Finally, the kernel environment for distributed systems must have a scheduler with a
consistent and robust mechanism for scheduling objects within the system according
to its operation’s goals.


The Process Manager


If the kernel doesn’t already have primitives (test and set, P and V, etc.) to work with
the hardware, then the Process Manager has to create its own primitives before going
on with its job. The Process Manager has responsibility for the following tasks: creat-
ing objects, dispatching objects, scheduling objects, synchronizing operations on
objects, communicating among objects, and deleting objects. To perform these tasks,
the Process Manager uses the kernel environment, which provides the primitives it
needs to capture the low-level hardware in the system. 


For example, to run a database object, the Process Manager must do the following
steps in order: 


1. Determine whether or not the object is in memory. If so, go to step 3.


2. If it’s not in memory, find the object on secondary storage, allocate space in
memory for it, and log it into the proper locations. 


3. Provide the proper scheduling information for the object. 


4. Once the object has been scheduled, wait for the kernel dispatcher to pull it out
and place it into the RUNNING state.


Thus far we’ve discussed the similarities between the object-based and process-based
managers. The major difference between them is that objects contain all of their state
information. That means that the information is stored with the object, not separately
in another part of the system such as in a PCB or other data structure separate from
the object.
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Device Management


In all distributed systems, devices must be opened, read from, written to, and closed.
In addition, device parameters must be initialized and status bits must be set or
cleared—just as in stand-alone systems. All of this can be done on a global, cluster, or
localized basis. 


Usually users prefer to choose devices by name, and let the distributed operating sys-
tem select and operate the best device from among those available. For example, if
users need specific control of a device, then they should be able to call a device by
name, such as DISK 12. When the choice is made, the DO/S takes control, allocating
the unit when it’s available, assigning it to the user when the OPEN command is
issued, operating it, and then deallocating it when the job is finished.


The device can’t be allocated until the Device Manager examines the device’s status
and, when it’s free, sends the requesting process a unique device identifier—a name
that’s used for all communication between the process and the device. Later, when the
process issues a CLOSE command, the device is released. That’s when the DO/S resets
the device’s state information and returns its device control block to the device’s
READY queue. For example, when a user wants to print a file by executing a print
command, the DO/S follows a process similar to this:


1. The user’s File Manager places a copy of the file in the DO/S spooler directory. 


2. The spooler selects the file from the spooler directory and initiates an open
request to the DO/S File Manager. 


3. When the open request is satisfied, the spooler initiates another open request to
a networked line printer’s device driver. 


4. When the second open request is satisfied, the spooler sends the file to the
printer’s input buffer. This can be accomplished through a direct message trans-
fer or a packet transfer, as described in Chapter 9. 


5. When printing is complete, the DO/S File Manager deletes the copy of the file
from the spooler.


6. Finally, the device is reset and closed. 


This system works only if the DO/S keeps a global accounting of each network device
and its availability, maintaining each device’s status record and control block, and dis-
tributing this information to all sites. As shown in Figure 10.4, the DO/S Device
Manager is a collection of remote device drivers connected to and associated with the
devices, but controlled by status data that’s provided by the DO/S Device Manager.


Process-Based DO/S 


All resources in the process-based DO/S are controlled by servers called “guardians”
or “administrators.” These servers are responsible for accepting requests for service
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on the individual devices they control, processing each request fairly, providing service
to the requestor, and returning to serve others, as shown in Figure 10.5.


However, not all systems have a simple collection of resources. Many have clusters of
printers, disk drives, tapes, and so on. To control these clusters as a group, most
process-based systems are configured around complex server processes, which manage
multiple resources or divide the work among subordinate processes. The administra-
tor process is configured as a Device Manager and includes the software needed to
accept local and remote requests for service, decipher their meaning, and act on them.
Typically a server process is made up of one or more device drivers, a Device Manager,
and a network server component.
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(figure 10.5)
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Object-Based DO/S 


In an object-based DO/S, each device is managed the same way throughout the net-
work. The physical device is considered an object, just like other network resources,
and is surrounded by a layer of software that gives other objects a complete view of
the device object.


The physical device is manipulated by a set of operations, explicit commands that
mobilize the device to perform its designated functions. For example, an object to con-
trol a tape unit requires operations to rewind, fast forward, and scan. To use a tape
drive, users issue an operation on a tape object such as this:


WITH TAPE 1 DO FAST FORWARD (N) RECORDS


This causes the tape drive to advance N records. This assumes, of course, that the
operating system has already granted authorization to the user to use the tape object.


A disk drive works the same way. Users access the drive by sending operations to the
Device Manager to create a new file, destroy an old file, open or close an existing file,
read information from a file, or write to it. Users don’t need to know the underlying
mechanisms that implement the operations—they just need to know which opera-
tions work. 


One advantage of object-based DO/S is that the objects can be assembled to commu-
nicate and synchronize with each other to provide a distributed network of resources,
with each object knowing the location of its distributed peers. So, if the local device
manager can’t satisfy a user’s request, the request is sent to another device manager, a
peer. Again, users don’t need to know if the network’s resources are centralized or dis-
tributed—only that their requests are satisfied.


For this system to be successful, the Device Manager object at each site needs to main-
tain a current directory of device objects at all sites. Then, when a requesting object
needs to use a printer, for example, the request is presented to its local device manager.
If the local manager has the means and opportunity to provide the proper service, it
prints the request. If it can’t meet the request locally, it sends the request to a peer
Device Manager that has the appropriate resources. It’s this remote Device Manager
that processes the request and performs the operation.


File Management


Distributed file management gives users the illusion that the network is a single logical
file system that’s implemented on an assortment of devices and computers. Therefore,
the main function of a DO/S File Manager is to provide transparent mechanisms to
find and open, read, write, close, create, and delete files, no matter where they’re
located in the network, as shown in Table 10.3.
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Desired File Function File Manager’s Action


Find and Open It uses a master directory with information about all files stored
anywhere on the system and sets up a channel to the file.


Read It sets up a channel to the file and attempts to read it using
simple file access schemes. However, a read operation won’t
work if the file is currently being created or modified.


Write It sets up a channel to the file and attempts to write to it
using simple file access schemes. To write to a file, the
requesting process must have exclusive access to it. This can
be accomplished by locking the file, a technique frequently
used in database systems. While a file is locked, all other
requesting processes must wait until the file is unlocked
before they can write to or read the file.


Close It sends a command to the remote server to unlock that file.
This is typically accomplished by changing the information in
the directory at the file’s storage site.


Create It creates a unique file identifier in the network’s master direc-
tory and assigns space for it on a storage device.


Delete It erases the unique file identifier in the master directory and
deallocates the space reserved for it on the storage device.


File management systems are a subset of database managers, which provide more
capabilities to user processes than file systems and are being implemented as distrib-
uted database management systems as part of local area network systems.


Therefore, the tasks required by a DO/S include those typically found in a distributed
database environment. These involve a host of controls and mechanisms necessary to
provide consistent, synchronized, and reliable management of system and user infor-
mation assets, including the following: 


• Concurrency control


• Data redundancy


• Location transparency and distributed directory


• Deadlock resolution or recovery


• Query processing


Concurrency Control


Concurrency control techniques give the system the ability to perform concurrent
reads and writes, as long as the results of these actions don’t jeopardize the contents
of the database. That means that the results of all concurrent transactions are the
same as if the transactions had been executed one at a time, in some arbitrary serial
order, thereby providing the serial execution view on a database. The concurrency
control mechanism keeps the database in a consistent state as the transactions are
being processed.
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For example, let’s say a group of airline reservation agents are making flight arrange-
ments for telephone callers. By using concurrency control techniques, the File Manager
allows each agent to read and write to the airline’s huge database if, and only if, each
read and write doesn’t interfere with another that’s already taking place. These tech-
niques provide a serial execution view on a database. 


Data Redundancy 


Data redundancy can make files much faster and easier to read. That’s because the File
Manager can allow a process to read the copy that’s closest or easiest to access. Or, if
the file is very large, the read request can be split into several different requests, each
of which is fulfilled at a different file location. For example, if an airline reservation
system received a request for information about passengers on a certain flight, and the
database was stored in three different locations, then one read request could search the
passengers with last names beginning with A–K, the second read request could search
L–R, and the third read request could search S–Z. The results of all three requests are
combined before returning the results to the requester.


Data redundancy also has beneficial aspects from a disaster recovery standpoint
because if one site fails, operations can be restarted at another site with the same
resources. Later, the failed site can be reinstated by copying all files that were updated
since the failure. The disadvantage of redundant data is the task of keeping multiple
copies of the same file up-to-date at all times. Every time a file is updated, every other
copy of the file must be updated in the identical way and the update must be per-
formed according to the system’s reliability standards.


Based on the algorithm used and the method of recovery, the system can require that
updates be performed at all sites before any reads occur to a master site or to a major-
ity of sites. Some typically used update algorithms are: unanimous agreement, primary
site copy, moving primary site, and majority site agreement.


Location Transparency and Distributed Directory


Location transparency means that users aren’t concerned with the physical location of
their files. Instead, they deal with the network as a single system. Location trans-
parency is provided by mechanisms and directories that map logical data items to
physical locations. The mechanisms usually use information about data that’s stored
at all sites in the form of directories.


The distributed directory manages transparency of data location and enhances data
recovery for users. The directory contains definitions dealing with the physical and
logical structure for the stored data, as well as the policies and mechanisms for map-
ping between the two. In addition, it contains the systemwide names of all resources
and the addressing mechanisms for locating and accessing them.
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Deadlock Resolution or Recovery


Deadlock detection and recovery, described in Chapter 5, are critical issues in distrib-
uted systems. The most important function is to detect and recover from a circular
wait. This occurs when one process requests a resource (such as a file, disk drive,
modem, or tape unit), which we’ll call Resource B, while it keeps exclusive control
over another resource, which we’ll call Resource A. Meanwhile, a second process
requests use of Resource A while it keeps exclusive control over Resource B. A directed
graph for this example is shown in Figure 10.6 (the solid lines represent resources allo-
cated to processes, and the dotted lines represent resource requests by processes).


However, most real-life examples of circular wait are much more complex and difficult
to detect because they involve multiple processes and multiple resources—all waiting
for a resource that’s held exclusively by another process.
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This example of circular


wait was created when


Process 1 requested


Resource B without releas-


ing its exclusive control


over Resource A. Likewise,


Process 2 requested


Resource A without releas-


ing Resource B.


Detection, prevention, avoidance, and recovery are all strategies used by a distributed
system. To recognize circular waits, the system uses directed resource graphs and looks
for cycles. To prevent circular waits, the system tries to delay the start of a transaction
until it has all the resources it will request during its execution. To avoid circular waits,
the system tries to allow execution only when it knows that the transaction can run to
completion. To recover from a deadlock caused by circular waits, the system selects
the best victim—one that can be restarted without much difficulty and one that, when
terminated, will free enough resources so the others can finish. Then the system kills
the victim, forces that process to restart from the beginning, and reallocates its
resources to the waiting processes.


Query Processing


Query processing is the function of processing requests for information. Query
processing techniques try to increase the effectiveness of global query execution
sequences, local site processing sequences, and device processing sequences. All of
these relate directly to the network’s global process scheduling problem. Therefore, to
ensure consistency of the entire system’s scheduling scheme, the query processing strat-
egy must be an integral part of the processing scheduling strategy. 
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Network Management


The network management function is a communications function that’s unique to
networked systems because stand-alone operating systems don’t need to communicate
with other systems. For a DO/S, the Network Manager provides the policies and
mechanisms necessary to provide intrasite and intersite communication among
concurrent processes. For intrasite processes within the network, the Network
Manager provides process identifiers and logical paths to other processes—in a one-
to-one, one-to-few, one-to-many, or one-to-all manner—while dynamically managing
these paths. 


The Network Manager has many diverse responsibilities. It must be able to locate
processes in the network, send messages throughout the network, and track media use.
In addition, it must be able to reliably transfer data, code and decode messages,
retransmit errors, perform parity checking, do cyclic redundancy checks, establish
redundant links, and acknowledge messages and replies, if necessary.


The Network Manager begins by registering each network process as soon as it has
been assigned a unique physical designator. It then sends this identifier to all other sites
in the network. From that moment, the process is logged with all sites in the network. 


When processes—or objects—need to communicate with each other, the Network
Manager links them together through a port—a logical door on one process that can
be linked with a port on another process, thus establishing a logical path for the two
to communicate. Ports usually have physical buffers and I/O channels, and represent
physical assets that must be used wisely by the Network Manager. Ports can be
assigned to one process or to many. 


Processes require routing because of the underlying network topology and the processes’
location. Routing can be as simple as a process-device pair address that associates one
logical process with one physical site. Or it can incorporate many levels traversing mul-
tiple links in either a direct or a hop count form, as described in Chapter 9. 


In addition to routing, other functions required from the Network Manager are keep-
ing statistics on network use (for use in message scheduling, fault localizations, and
rerouting) and providing mechanisms to aid process time synchronization. This stan-
dardization mechanism is commonly known as a systemwide clock, a device that
allows system components at various sites to compensate for time variations because
of delays caused by the distributed communication system. 


Process-Based DO/S 


In a process-based DO/S, interprocess communication is transparent to users. The
Network Manager assumes full responsibility for allocating ports to the processes
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that request them, identifying every process in the network, controlling the flow of
messages, and guaranteeing the transmission and acceptance of messages without
errors. 


The Network Manager routinely acts as the interfacing mechanism for every process
in the system and handles message traffic, relieving users of the need to know where
their processes are physically located in the network. As traffic operator, the Network
Manager accepts and interprets each process’s commands to send and receive. Then it
transforms those commands into low-level actions that actually transmit the messages
over network communications links.


Object-Based DO/S 


A Network Manager object makes both intermode and intramode communications
among cooperative objects easy. A process, the active code elements within objects,
can begin an operation at a specific instance of an object by sending a request message.
The user doesn’t need to know the location of the receiver. The user only needs to
know the receiver’s name and the Network Manager takes over, providing the mes-
sage’s proper routing to the receiver. A process can also invoke an operation that’s part
of its local object environment.


Generally, network communications allow some level of the following functions: send,
receive, request, and reply, as described in Table 10.4.


Function Purpose


Send Allows objects to send a message with operations to any object in
the system.


Receive Warns objects of incoming communications from an object in the
system.


Request Provides a mechanism for objects to ask for particular services. For
example, they can request that a message be sent.


Reply Allows objects to do one of three things: 
• Respond to requests for communications from another object
• Respond to a send command that they aren’t prepared for 
• Indicate that they’re ready to accept a send command; a message


can now be sent knowing that the receiver is awaiting it


Network Manager services are usually provided at the kernel level to better accommo-
date the many objects that use them and to offer efficient service. However, depending
on the system, the Network Manager may be a simple utility that handles only send
and receive primitives. Or perhaps it’s constructed using ports, or channels. A simple
send-and-receive utility requires that users know the name of the objects they need to
communicate with, whereas the port or channel system requires users to know only
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the name of the port or channel with which the object is associated. For example, if a
communications facility is supported by a port-object type mechanism, then objects
are grouped as senders, receivers, ports, and messages, and are linked together using
capability lists.


NOS Development


A NOS typically runs on a computer called a server and performs services for network
workstations called clients. Although computers can assume the role of clients most or
all of the time, any given computer can assume the role of server (or client), depending
on the requirements of the network. Client and server are not hardware-specific terms.
Instead, they are role-specific terms.


Many modern network operating systems are true operating systems that include the
four management functions: memory management, process scheduling, file manage-
ment, and device management including disk and I/O operations. In addition, they
have a network management function with responsibility for network communica-
tions, protocols, etc. In a NOS, the network management functions come into play
only when the system needs to use the network, as shown in Figure 10.7. At all other
times, the Network Manager is dormant and the operating system operates as if it’s a
stand-alone system. 


Although NOSs can run applications as well as other operating systems, their focus is
on sharing resources instead of running programs. For example, a single-user operat-
ing system such as early versions of Windows, or even a multiuser system such as
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(figure 10.7)


In a NOS environment, the


four managers of the oper-


ating system manage all


system resources at that


site unless and until the


node needs to communi-


cate with another node on


the network. 


✔
Before one node
can communicate
with another node
on the network,
the NOS of the first
node must open
communications
with the NOS of
the targeted
network node.
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UNIX or Linux, focuses on the user’s ability to run applications. On the other hand,
network operating systems focus on the workstations’ ability to share the server’s
resources including applications and data as well as expensive shared resources such
as printers and high-speed modems. 


In the following pages we describe some of the features commonly found in a network
operating system without focusing on any one in particular. The best NOS choice
depends on many factors including the applications to be run on the server, the techni-
cal support required, the user’s level of training, and the compatibility of the hardware
with other networking systems.


Important NOS Features


Most network operating systems are implemented as early versions of 32-bit or 64-bit
software. However, more important than the processor is the support a NOS provides
for standard local area network technologies and client desktop operating systems.


Networks are becoming increasingly heterogeneous. That is, they support worksta-
tions running a wide variety of operating systems. For example, a single network
might include workstations running Windows, the Macintosh operating system, and
Linux. For a NOS to serve as the networking glue, it must provide strong support for
every operating system in the corporate information network, sustaining as many cur-
rent standards as necessary. Therefore, it must have a robust architecture that adapts
easily to new technologies.


For example, a NOS should preserve the user’s expectations for a desktop system.
That means that the network’s resources should appear as simple extensions of that
user’s existing system. For example, on a Windows computer, a network drive should
appear as just another hard disk but with a different volume name and a different
drive letter. On a Macintosh computer, the network drive should appear as an icon for
a volume on the desktop. And on a Linux system, the drive should appear as a mount-
able file system.


A NOS is designed to operate a wide range of third-party software applications and
hardware devices including hard drives, modems, CD-ROM drives, and network inter-
face cards. A NOS also supports software for multiuser network applications, such as
electronic messaging, as well as networking expansions such as new protocol stacks.


Finally, the NOS must blend efficiency with security. Its constant goal is to provide
network clients with quick and easy access to the network’s data and resources
without compromising network security. A compromised network instantly loses data
integrity and the confidence of its users.
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Major NOS Functions


An important NOS function is to let users transfer files from one computer to another.
In this case, each system controls and manages its own file system. For example, the
Internet provides the File Transfer Protocol (FTP) program. So, if students in a UNIX
programming class need to copy a data file from the university computer to their home
computers to complete an assignment, then each student begins by issuing the follow-
ing command to create the FTP connection:


ftp unixs.cis.pitt.edu


This opens the FTP program, which then asks the student for a login name and
password. Once this information has been verified by the UNIX operating system, each
student is allowed to copy the file from the host computer by using this command:


get filename.ext


In this example, filename.ext is the absolute filename and extension of the required
data file. That means the user must know exactly where the file is located—in which
directory and subdirectory the file is stored. That’s because the file location isn’t trans-
parent to the user. 


This find-and-copy technique isn’t considered true file sharing because all users want-
ing access to the data file must copy the file onto their own systems, thereby duplicat-
ing the code and wasting space. This practice also adds version control difficulties
because when one user modifies the file in any way, those changes aren’t reflected on
other copies already stored in other directories unless each user replaces the old ver-
sion with the new version.


For a collection of files to be available to the general public, the files must be placed in
a public FTP directory on an FTP server. Then, anyone with an FTP client or a Web
browser can download copies of the files on demand using a process called anony-
mous FTP. The advantage of an FTP connection is that it doesn’t force files to pass
through mail programs that might encode or decode the document. Therefore, all FTP
documents usually download faster while retaining their necessary characteristics,
including templates, formatting, fonts, and graphics.


Web visitors don’t usually visit the FTP server until they want to download a file.
When they click on the download link, they’re transferred to the FTP server. These
FTP sites aren’t usually designed for easy browsing but Web browsers can be used to
handle FTP files with some limitations. Most Web browsers display FTP directories
using graphical icons to represent available files and directories. Typical Web browser
commands and features can be used to download FTP files just as they do other Web
objects. The advantage of using the Web for FTP is that most users already know how
the Web browser works and don’t need to learn new software.
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Conclusion


The first operating systems for networks were NOSs. Although they were adequate,
they didn’t take full advantage of the global resources available to all connected
sites. The development of DO/Ss specifically addressed that need.


Every networked system, whether a NOS or a DO/S, has specific requirements. Each
must be secure from unauthorized access yet accessible to authorized users. Each must
monitor its available system resources, including memory, processors, devices, and
files (as described in Chapters 2 through 8), as well as its communications links. In
addition, because it’s a networking operating system, it must perform the required net-
working tasks described in Chapter 9.


Each of the technological advances we’ve discussed thus far have created security
vulnerabilities. System security experts like to say that the only secure computer is one
that is unplugged from its power source. In the next chapter we’ll look at key elements
of system security and ethics, and the role of the system administrator in safeguarding
the network’s most valuable resource—its data. 


Key Terms


anonymous FTP: a use of File Transfer Protocol that allows a user to retrieve docu-
ments, files, programs, and other data from anywhere in the Internet without having
to establish a user ID and password. 


client: a user node that requests and makes use of various network services.


distributed operating system (DO/S): an operating system that provides control for a
distributed computing system, allowing its resources to be accessed in a unified way.


distributed processing: a method of data processing in which files are stored at many
different locations and in which processing takes place at different sites.


File Transfer Protocol (FTP): a protocol that allows a user on one host to access and
transfer files to or from another host over a TCP/IP network.


groupware: software applications that support cooperative work over a network.


kernel: the part of the operating system that resides in main memory at all times and
performs the most essential tasks, such as managing memory and handling disk input
and output.


kernel level: in an object-based distributed operating system, it provides the basic
mechanisms for dynamically building parts of the operating system by creating, man-
aging, scheduling, synchronizing, and deleting objects.
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network operating system (NOS): the software that manages network resources for a
node on a network and may provide security and access control. 


object: any one of the many entities that constitute a computer system, such as CPUs,
terminals, disk drives, files, or databases. 


object-based DO/S: a view of distributed operating systems where each hardware unit
is bundled with its required operational software, forming a discrete object to be han-
dled as an entity.


primitives: well-defined, predictable, low-level operating system mechanisms that
allow higher-level operating system components to perform their functions without
considering direct hardware manipulation.


process-based DO/S: a view of distributed operating systems that encompasses all the
system’s processes and resources.


server: a node that provides to clients various network services such as file retrieval,
printing, or database access services.


server process: a logical unit composed of one or more device drivers, a device man-
ager, and a network server module needed to control clusters or similar devices in a
process-based, distributed operating system environment.


version control: the tracking and updating of a specific release of a piece of hardware
or software. 


Interesting Searches
• Concurrency Control


• Network Processing


• Network Process Synchronization


• Operating Systems Kernel


• File Transfer Protocol (FTP)


Exercises


Research Topics


A. Research the concept of query processing in distributed systems. Build on the
brief description provided in this chapter and explain what it is and (in simple
terms) how it works in a distributed network. Is it a necessary tool? Does
query processing increase network processing speed ? Why or Why not? What
effect does the size of the network have on query processing speed? Cite your
sources.
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B. Identify four early operating systems for networks and explain which group each
belonged to (as defined in this chapter)—NOS or DO/S. State the reasons for
your answer and cite your sources.


Exercises 


1. Briefly compare the advantages of a NOS with a DO/S and explain which you
would prefer to operate and why.


2. If your DO/S had four nodes, how many operating systems would it have?
Explain your answer.


3. If your NOS had four nodes, how many operating systems would it have?
Explain your answer.


4. We discussed several levels of file access in this chapter including read/write,
read-only, execute-only, guard-page, and no access. If you are maintaining a
database containing confidential patient information and need to restrict
UPDATE access to five individuals, restrict READ access to only 15 others, and
disallow access to any other users, then which access level would you assign to
the individuals in each of the three groups: the chosen five, the other 15, and
everyone else? Explain your answer.


5. Explain in your own words the steps a DO/S File Manager uses to open a file,
read data from it, update that data, and close the file. Do those steps change if
the data is not changed? Explain the reasons for your answer.


6. List three benefits of data redundancy as described in this chapter.


7. Describe in detail how a DO/S protects a file from access or modification by an
unauthorized user. Compare it to NOS file protection.


8. Process control blocks (PCBs) were discussed in Chapter 4 in the context of non-
networked systems. In a distributed operating system, what additional informa-
tion needs to be noted in the PCB in order for the Processor Manager to
successfully manage processes correctly?


9. Describe how the DO/S Processor Manager attempts to prevent deadlocks in the
network. Then describe how it tries to avoid them and, if necessary, recover from
a deadlock. 


10. Explain in your own words why process synchronization is critical in network
process management. 
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Advanced Exercises


11. Which kind of network structure (NOS or DO/S) do you believe is less likely to
crash or freeze if a spooler malfunction should deadlock a node? Explain your con-
clusion and suggest whether or not system robustness in this instance is reason
enough to choose one structure over the other.


12. Compare and contrast the two varieties of distributed operating systems discussed
in this chapter: a process-based DO/S and an object-based DO/S.


13. If you were managing a hospital’s network, what policies would you implement
to protect your system? Keep in mind that as system administrator, your job is to
provide the correct level of accessibility to authorized users while denying access
to those who lack authorization.


14. Remembering our discussion of deadlocks in Chapter 5, if you were designing a net-
worked system, how would you manage the threat of deadlocks in your network?
Consider all of the following: prevention, detection, avoidance, and recovery.


15. Describe the top 10 critical duties of a network administrator for a distributed
operating system. Identify the level of access needed by the administrator and
explain why. Describe in your own words how you would manage access control
for a network with multiple system administrators.
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“Perfection of means and confusion of goals seem, in my
opinion, to characterize our age.”


—Albert Einstein (1879–1955)


Learning Objectives


After completing this chapter, you should be able to describe:


• The role of the operating system with regard to system security


• The effects of system security practices on overall system performance


• The levels of system security that can be implemented and the threats posed by
evolving technologies


• The differences among computer viruses, worms, and blended threats 


• The role of education and ethical practices in system security


343


Security Management


Ethics
Password


Management
System


Protection


SECURITY 
MANAGEMENT 


Chapter 11 Security and Ethics


C7047_11_Ch11.qxd  1/12/10  5:05 PM  Page 343








Every computing system has conflicting needs: to share resources and to protect them.
In the early days, security consisted of a secure lock and a few keys. That is, the system
was physically guarded and only authorized users were allowed in its vicinity, and that
was sufficient when the user group was limited to several dozen individuals. However,
with the advent of data communication, networking, the proliferation of personal com-
puters, telecommunications software, Web sites, and e-mail, the user community has
grown to include millions of people, making computer security much more difficult.


System security is a vast and complex subject worthy of its own text. While we cannot
do justice to the subject in a single chapter, we introduce the important concepts here
and encourage the reader to review current research about the subject. Keep in mind
that this subject changes with lightning speed and is well worth constant monitoring
by system owners, operators, and users.


Role of the Operating System in Security


The operating system plays a key role in computer system security because it has
access to every part of the system. Any vulnerability at the operating system level
opens the entire system to attack. The more complex and powerful the operating
system, the more likely it is to have vulnerabilities to attack. As a result, system admin-
istrators must be on guard to arm their operating systems with all available defenses
against attack and possible failure.


System Survivability


System survivability is defined as “the capability of a system to fulfill its mission, in a
timely manner, in the presence of attacks, failures, or accidents (Linger, 2002).”


• The term system refers to any system. It’s used here in the broadest possible sense
from laptop to distributed system to supercomputer.


• A mission is a very high-level set of requirements or goals.


• In a timely manner refers to system response time, a critical factor for most systems.


• The terms attack, failure, and accident refer to any potentially damaging incident,
regardless of the cause, whether intentional or not.


Before a system can be considered survivable, it must meet all of these requirements,
especially with respect to services that are considered essential to the organization in
the face of adverse challenges. The four key properties of survivable systems are
resistance to attacks, recognition of attacks and resulting damage, recovery of essential
services after an attack, and adaptation and evolution of system defense mechanisms
to mitigate future attacks.


With the elevated risks in recent years of system intrusion and compromise, system
designers have recognized the critical need for system survivability that’s incorporated
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into system development. It’s no longer satisfactory to add survivability factors to the
system only as an afterthought. Examples of sample strategies that can be built into
systems to enhance their survivability are shown in Table 11.1. 


Key Property Description Example Strategies


Resistance to attacks Strategies for repelling Authentication
attacks Access controls


Encryption
Message filtering
System diversification
Functional isolation


Recognition of Strategies for detecting Intrusion detection
attacks and damage attacks and evaluating Integrity checking


damage


Recovery of essential Strategies for limiting Redundant components
and full services damage, restoring Data replication
after attack compromised information or System backup and 


functionality, maintaining or restoration
restoring essential services Contingency planning
within mission time 
constraints, restoring full
services


Adaptation and Strategies for improving Intrusion recognition 
evolution to reduce system survivability based patterns
effectiveness of on knowledge gained from 
future attacks intrusions


Levels of Protection


Once a system is breached, the integrity of every file on the system and the data in
those files can no longer be trusted. For each computer configuration, the system
administrator must evaluate the risk of intrusion, which, in turn, depends on the level
of connectivity given to the system, as shown in Table 11.2.


Configuration Ease of Protection Relative Risk Vulnerabilities


Single computer (without High Low Compromised 
e-mail or Internet) passwords, viruses 


LAN connected Medium Medium Sniffers, spoofing 
(without Internet) (+password, viruses)


LAN connected Low High E-mail, Web servers, FTP,
(with Internet) Telnet (+sniffers, spoofing,


password, viruses)


All of the vulnerabilities shown in Table 11.2 are discussed later in this chapter. 
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Four key properties of a
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strategies shown here can


be found at www.cert.org.
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as the computer’s level of
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Backup and Recovery 


Having sufficient backup and recovery policies in place and performing other
archiving techniques are standard operating procedure for most computing systems.
Many system managers use a layered backup schedule. That is, they back up the entire
system once a week and only back up daily the files that were changed that day. As an
extra measure of safety, copies of complete system backups are stored for three to six
months in a safe off-site location.


Backups become essential when the system becomes unavailable because of a natural
disaster or when a computer virus infects your system. If you discover it early, you can
run eradication software and reload damaged files from your backup copies. Of course,
any changes made since the files were backed up will have to be regenerated.


Backups, with one set stored off-site, are also crucial to disaster recovery. The disaster
could come from anywhere. Here are just a few of the threats:


• water from a fire upstairs


• fire from an electrical connection


• malfunctioning server


• corrupted archival media


• intrusion from unauthorized users 


The importance of adequate backups is illustrated in an example from a 2005 CERT
report about a system administrator angry about employment decisions at the defense
manufacturing firm where he worked. Upon learning that he would be given a smaller
role managing the computer network that he alone had developed and managed, he
took the initiative to centralize the software supporting the company’s manufacturing
processes on a single server. Then he intimidated a coworker into giving him the only
backup tapes for that software. When the system administrator was terminated, a
logic bomb that he had previously planted detonated and deleted the only remaining
copy of the critical software from the company’s server. The cost? The company esti-
mated that the damage exceeded $10 million, which led, in turn, to the layoff of some
80 employees. More case stories can be found at www.cert.org.


Written policies and procedures and regular user training are essential elements of
system management. Most system failures are caused by honest mistakes made by
well-intentioned users—not by malicious intruders. Written security procedures
should recommend frequent password changes, reliable backup procedures, guidelines
for loading new software, compliance with software licenses, network safeguards,
guidelines for monitoring network activity, and rules for terminal access.
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Security Breaches


A gap in system security can be malicious or not. For instance, some intrusions are the
result of an uneducated user and the unauthorized access to system resources. But others
stem from the purposeful disruption of the system’s operation, and still others are purely
accidental such as hardware malfunctions, undetected errors in the operating system or
applications, or natural disasters. Malicious or not, a breach of security severely dam-
ages the system’s credibility. Following are some types of security breaks that can occur.


Unintentional Intrusions


An unintentional attack is defined as any breach of security or modification of data
that was not the result of a planned intrusion.


When nonsynchronized processes access data records and modify some of a record’s
fields, it’s called accidental incomplete modification of data. An example was given in
Chapter 5 when we discussed the topic of a race in a database with two processes
working on the same student record and writing different versions of it to the database.


Errors can occur when data values are incorrectly stored because the field isn’t large
enough to hold the numeric value stored there. For example, when a field is too small
to hold a numeric value, FORTRAN replaces the number with a string of asterisks,
and COBOL simply truncates the higher-order digits, as shown in Figure 11.1. 
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0110110101000110


01000110


********


(a)


(b)


(c)


(figure 11.1)


The original data value is


shown (a) in a field large


enough to hold it. If the


field is too small,


FORTRAN (b) replaces the


data with asterisks.


COBOL (c) truncates the


higher-order digits (values


to the left of the dotted


line) and stores only the


digits that remain.


Neither error would be flagged or trigger an error message at the time of storage—they
would be discovered only when the value is retrieved. Needless to say, that’s an incon-
venient time to make such an unpleasant discovery.


C7047_11_Ch11.qxd  1/12/10  5:05 PM  Page 347








Intentional Attacks


Intentional unauthorized access includes denial of service attacks, browsing, wire-
tapping, repeated trials, trapdoors, and trash collection. These attacks are fundamen-
tally different from viruses and worms and the like (covered shortly), which inflict
widespread damage to numerous companies and organizations—without specifying
certain ones as targets.


This example comes from a 2005 CERT report on insider threats. An application
developer, who lost his IT sector job as a result of company downsizing, expressed his
displeasure at being laid off just prior to the Christmas holiday by launching a system-
atic attack on his former employer’s computer network. Three weeks following his ter-
mination, the insider used the username and password of one of his former coworkers
to gain remote access to the network and modify several of the company’s Web pages,
changing text and inserting pornographic images. He also sent each of the company’s
customers an e-mail message advising that the Web site had been hacked. Each e-mail
message also contained that customer’s usernames and passwords for the Web site. An
investigation was initiated, but it failed to identify the insider as the perpetrator. A
month and a half later, he again remotely accessed the network, executed a script to
reset all network passwords and changed 4,000 pricing records to reflect bogus infor-
mation. This former employee ultimately was identified as the perpetrator and prose-
cuted. He was sentenced to serve five months in prison and two years on supervised
probation, and ordered to pay $48,600 restitution to his former employer.


Intentional Unauthorized Access


Denial of service (DoS) attacks are synchronized attempts to deny service to authorized
users by causing a computer (usually a Web server) to perform a task (often an unpro-
ductive task) over and over, thereby making the system unavailable to perform the work
it is designed to do. For example, if a Web server designed to accept orders from cus-
tomers over the Internet is diverted from its appointed task with repeated commands to
identify itself, then the computer becomes unavailable to serve the customers online. 


Browsing is when unauthorized users gain the capability to search through storage,
directories, or files for information they aren’t privileged to read. The term storage
refers to main memory or to unallocated space on disks or tapes. Sometimes the
browsing occurs after the previous job has finished. When a section of main memory
is allocated to a process, the data from a previous job often remains in memory—it
isn’t usually erased by the system—and so it’s available to a browser. The same applies
to data stored in secondary storage.


Wiretapping is nothing new. Just as telephone lines can be tapped, so can most data
communication lines. When wiretapping is passive, the unauthorized user is just lis-
tening to the transmission but isn’t changing the contents. There are two reasons for
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passive tapping: to copy data while bypassing any authorization procedures and to
collect specific information (such as passwords) that will permit the tapper to enter the
system at a later date. In an unsecured wireless network environment, wiretapping is
not difficult.


Active wiretapping is when the data being sent is modified. Two methods of active
wiretapping are “between lines transmission” and “piggyback entry.” Between lines
doesn’t alter the messages sent by the legitimate user, but it inserts additional messages
into the communication line while the legitimate user is pausing. Piggyback entry
intercepts and modifies the original messages. This can be done by breaking the com-
munication line and routing the message to another computer that acts as the host. For
example, the tapper could intercept a logoff message, return the expected acknowledg-
ment of the logoff to the user, and then continue the interactive session with all the
privileges of the original user—without anyone knowing.


Repeated trials describes the method used to enter systems by guessing authentic pass-
words. If an intruder knows the basic scheme for creating passwords such as length of
password and symbols allowed to create it, then the system can be compromised with
a program that systematically goes through all possible combinations until a valid
combination is found. This isn’t as long a process as one might think if the passwords
are short or if the intruder learns enough about the intended victim/user, as shown in
Table 11.3. Because the intruder doesn’t need to break a specific password, the guess-
ing of any user’s password allows entry to the system and access to its resources.


No. of Alphabetic  Possible Combinations Human Attempt Computer Attempt 
Characters avg. time to avg. time to discovery


discovery at 1 at 1 million
try/second tries/second


1 26 13 seconds .000013 seconds


2 262 = 676 6 minutes .000338 seconds


3 263 = 17,576 2.5 hours .008788 seconds


8 268 = 208,827,064,576 6,640 years 58 hours


10 2610 = (1.4 x 10)14 4.5 million years 4.5 years


Trapdoors, including backdoor passwords, are defined as unspecified and undocu-
mented entry points to the system. It’s possible that trapdoors can be caused by a
flaw in the system design. More likely, they are installed by a system diagnostician
or programmer for future use. Or, they are incorporated into the system code by a
destructive virus or by a Trojan—one that’s seemingly innocuous but that executes
hidden instructions. Regardless of the reason for its existence, a trapdoor leaves the
system vulnerable to future intrusion.
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Average time required for


a human and computer to


guess passwords up to


10 alphabetic characters


(A–Z) using brute force. 
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Trash collection, also known as dumpster diving, is an evening pastime for those who
enjoy perusing anything and everything thrown out by system users—the discarded
disks, CDs, faxes, printer ribbons, as well as printouts of source code, programs, mem-
ory dumps, and notes. They all can yield important information that can be used to
enter the system illegally. It’s recommended that system administrators adopt a policy
of routinely shredding all work that can conceivably contain data, code, passwords,
access information, Web site development information, or clues to the organization’s
financial workings. The importance of this obvious precaution can’t be overstated.


Legally, it’s important to know that malicious attacks on computers may violate U.S.
federal and state laws and invite penalties. Generally, those convicted in the United
States have lost their computing systems and many have been sentenced to significant
fines, jail terms, or both.


Viruses


A virus is defined as a small program written to alter the way a computer operates,
without the permission or knowledge of the user. A virus must meet two criteria:


• It must be self-executing. Often, this means placing its own code in the path of
another program.


• It must be self-replicating. Usually, this is accomplished by copying itself from
infected files to clean files as shown in Figure 11.2. Viruses can infect desktop
computers and network servers alike and spread each time the host file is executed.
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(a) (b)


C lean  Code  in
Un in fec ted  F i l e


C lean  Code  


Ma l ic ious  Code


(figure 11.2)


A file infector virus attacks


a clean file (a) by attach-


ing a small program to it


(b), which executes every


time the infected file runs.
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Viruses are usually written to attack a certain operating system. Therefore, it’s unusual
for the same virus code to successfully attack a Linux workstation and a Windows
server. Writers of virus code usually exploit a known vulnerability in the operating sys-
tem software, hence the need to keep it correctly updated with patches—something we
discuss in Chapter 12.


Some viruses are designed to significantly damage the infected computer such as by
deleting or corrupting files or reformatting the hard disk. Others are not so malicious
but merely make their presence known by delivering text, video, or audio messages to
the computer’s user. However, no virus can be considered benign because all viruses
confiscate valuable memory and storage space required by legitimate programs and
often cause system failures and data loss. There are five recognized types of viruses, as
shown in Table 11.4.


Type of Virus Description


File infector virus Infects files on the computer, normally executable
files such as .exe and .com files commonly 
found on Microsoft operating systems. These 
viruses commonly become resident in memory 
and then infect any clean executable program 
that runs on that computer.


Boot sector virus Infects the boot record, the system area of a
floppy disk or hard drive. These viruses activate
whenever the user starts up (powers on) the 
computer. Most boot sector viruses were written 
for MS-DOS, but other operating systems are  
potential targets.


Master boot record virus Infects the boot record of a disk, saving a legiti-
mate copy of the master boot record in a 
different location on the volume. 


Multipartite virus Infects both the boot record and program files,
making them especially difficult to repair.
Successful removal requires that all instances of
the virus be removed at once—on the boot 
records as well as all instances of files infected 
with the virus. Should any instance of the 
infection remain, the virus will infect the 
system again.


Macro virus Infects data files (such as word processing docu-
ments, spreadsheets, etc.), though newer versions
now infect other program files as well. Computer
users are advised to disable the automatic 
execution of macros on files they don’t 
completely trust.


Viruses spread via a wide variety of applications and have even been found in legiti-
mate shrink-wrapped software. In one case, a virus was inadvertently picked up at a
trade show by a developer who unknowingly allowed it to infect the finished code of a
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completed commercial software package just before it was marketed. The package was
quickly recalled.


In one bizarre example, a virus was distributed to tourists in the Middle East, embed-
ded in part of an illegally copied (and illegally bought) software package. Reportedly,
the sellers told authorities that they did it to teach the buyers a lesson in ethics.


A macro virus works by attaching itself to the template which, in turn, is attached to
word processing documents. Once the template file is infected, every subsequent docu-
ment created on that template is infected. 


Worms


A worm is a memory-resident program that copies itself from one system to the next
without requiring the aid of an infected program file. The immediate result of a worm
is slower processing time of legitimate work because the worm siphons off processing
time and memory space. Worms are especially destructive on networks, where they
hoard critical system resources such as main memory and processor time.


Trojans


A Trojan (originally called a Trojan Horse) is a destructive program that’s disguised
as a legitimate or harmless program that sometimes carries within itself the means to
allow the program’s creator to secretly access the user’s system. Intruders have been
known to capture user passwords by using a Trojan to replace the standard login pro-
gram on the computer with an identical fake login that captures keystrokes. Once it’s
installed, it works like this:


1. The user sees a login prompt and types in the user ID.


2. The user sees a password prompt and types in the password.


3. The rogue program records both the user ID and password and sends a typical
login failure message to the user. Then the program stops running and returns
control to the legitimate program.


4. Now, the user sees the legitimate login prompt and retypes the user ID.


5. The user sees the legitimate password prompt and retypes the password.


6. Finally, the user gains access to the system, unaware that the rogue program
has stored the first attempt and recorded the user ID and password.


This series of events would look something like the dialog shown in Figure 11.3. A
similar technique using simulated menu-driven screens is also easy to create.


Later, at a convenient time, the Trojan’s creator retrieves the file with its list of valid
user IDs and passwords, perhaps even a root password, which would allow access to
sensitive administrative functions.
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Rogue software doesn’t need to be planted by someone outside the organization. In
a California case, an employee planted a Trojan in his employer’s system before
quitting his job. The code was designed to erase a program he’d written on the job
to track the availability and prices of parts for an orbital missile program. At its
conclusion, the program was instructed to erase itself. Reportedly, the programmer
hoped to become a consultant, and he planned to work for his former employer
reconstructing the program he had written and then erased. The plan was foiled
when another technician discovered the bad code and removed it before the sched-
uled date of operation. The rogue employee was indicted in federal court for
his actions.


Bombs


A logic bomb is a destructive program with a fuse—a certain triggering event (such as
a certain keystroke or connection with the Internet). A logic bomb often spreads unno-
ticed throughout a network until a predetermined event when it goes off and does its
damage. 


A time bomb is similar to a logic bomb but is triggered by a specific time, such as a
day of the year. For example, the time bomb called the Michelangelo virus, first dis-
covered in 1991, was one of the first logic bombs to prompt warnings to all com-
puter users by the popular media. The code was designed to execute on the
anniversary of the birth of the artist Michelangelo (March 6, 1475). The code was
designed to execute when an infected computer was started up on the trigger date
(March 6 of any year) and to overwrite the first 17 sectors on heads 0-3 of the first
256 tracks of the hard disk on the infected machine.
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(figure 11.3)


Two attempts by a legiti-


mate user to access the


system. The first attempt


(shown shaded) illustrates


how a Trojan captures the


user’s ID and password.


The program then returns


the user to the real system


prompt (login:) to


try again.


login: kat1422


password: ********


Error:login incorrect, please try again.


Login: kat1422


password: ********


Last login: Wed Nov 17 11:12:13
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Blended Threats


A blended threat combines into one program the characteristics of other attacks,
including a virus, a worm, a trojan, spyware, key loggers, and other malicious code.
That is, this single program uses a variety of tools to attack systems and spread to oth-
ers. Because the threat from these programs is so diverse, the only defense against them
is a comprehensive security plan that includes multiple layers of protection. A blended
threat shows the following characteristics: 


• Harms the affected system. For example, it might launch a denial of service attack
at a target IP address, deface a Web site, or plant Trojans for later execution. 


• Spreads to other systems using multiple methods. For example, it might scan for
vulnerabilities to compromise a system, such as embedding code in Web page files
on a server, infect the systems of visitors who visit a compromised Web site, or send
unauthorized e-mail from compromised servers with a worm attachment. 


• Attacks other systems from multiple points. For example: inject malicious code into
the .exe files on a system, raise the privilege level of an intruder’s guest account, cre-
ate world-readable and world-writeable access to private files, and add bogus script
code to Web page files. (We discuss world access later in this chapter.)


• Propagates without human intervention. For example, it might continuously scan
the Internet for vulnerable servers that are unpatched and open to attack. 


• Exploits vulnerabilities of target systems. For example, it might take advantage of
operating system problems (such as buffer overflows), Web page validation vulnera-
bilities on input screens, and commonly known default passwords to gain unautho-
rized access. 


When the threat includes all or many of these characteristics, no single tool can pro-
tect a system. Only a combination of defenses in combination with regular patch man-
agement (discussed in Chapter 12) can hope to protect the system adequately.


System Protection


Threats can come from outsiders (those outside the organization) as well as from
insiders (employees or others with access to the system) and can include theft of
intellectual property or other confidential or sensitive information, fraud, and acts
of system sabotage.


System protection is multifaceted. Four protection methods are discussed here:
installing antivirus software (and running it regularly), using firewalls (and keeping
them up-to-date), ensuring that only authorized individuals access the system, and tak-
ing advantage of encryption technology when the overhead required to implement it is
mandated by the risk.


354


Ch
ap


te
r 
11


 |
Se


cu
rit


y 
an


d 
Et


hi
cs


✔
Key logging
software records
every keystroke
and saves it for
reference later.
When key logging
software is
installed without
the knowledge
and consent of the
computer user, it
may be a form of
system intrusion.
This subject can
be explored more
as a research topic
at the end of this
chapter.
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Antivirus Software


Antivirus software can be purchased to protect systems from attack by malicious soft-
ware. The level of protection is usually in proportion to the importance of its data.
Medical data should be highly protected. Student-written computer programs proba-
bly don’t deserve the same level of security.


Software to combat viruses can be preventive or diagnostic, or both. Preventive programs
may calculate a checksum for each production program, putting the values in a master
file. Later, before a program is executed, its checksum is compared with the master.
Generally, diagnostic software compares file sizes (checking for added code when none is
expected), looks for replicating instructions, and searches for unusual file activity. Some
software may look for certain specific instructions and monitor the way the programs
execute. But remember: soon after these packages are marketed, system intruders start
looking for ways to thwart them. Hence, only the most current software can be expected
to uncover the latest viruses. In other words, old software will only find old viruses.


Information about current viruses is available from vendors and government agencies
dedicated to system security, such as those listed in Table 11.5. 


Web Site Organization


http://csrc.nist.gov Computer Security Division of the National
Institute of Standards and Technology


www.cert.org CERT Coordination Center


www.mcafee.com McAfee, Inc.


www.sans.org SANS Institute


www.symantec.com Symantec Corp.


www.us-cert.gov U.S. Computer Emergency Readiness Team


While antivirus software (an example is shown in Figure 11.4) is capable of repairing files
infected with a virus, it is generally unable to repair worms, Trojans, or blended threats
because of the structural differences between viruses and worms or Trojans. A virus
works by infecting an otherwise clean file. Therefore, antivirus software can sometimes
remove the infection and leave the remainder intact. On the other hand, a worm or
Trojan is malicious code in its entirety. That is, the entire body of the software code con-
tained in a worm or Trojan is threatening and must be removed as a whole. 


The only way to remove a Trojan is to remove the entire body of the malicious pro-
gram. For example, if a computer game, available for free download over the Internet,
is a worm that steals system IDs and passwords, there is no way to cleanse the game
of the bad code and save the rest. The game must go.
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System security is a


rapidly changing field.


Current information can be


found at these Web sites


and many more. Sites are


listed in alphabetical


order.
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Firewalls 


Network assaults include compromised Web servers, circumvented firewalls, and FTP
and Telnet sites accessed by unauthorized users, to name a few.


A firewall is a set of hardware and/or software designed to protect a system by disguis-
ing its IP address from outsiders who don’t have authorization to access it or ask for
information about it. A firewall sits between the Internet and the network, as shown
in Figure 11.5, blocking curious inquiries and potentially dangerous intrusions from
outside the system. The typical tasks of the firewall are to:


• log activities that access the Internet


• maintain access control based on the senders’ or receivers’ IP addresses


• maintain access control based on the services that are requested


• hide the internal network from unauthorized users requesting network information


• verify that virus protection is installed and being enforced


• perform authentication based on the source of a request from the Internet


The two fundamental mechanisms used by the firewall to perform these tasks are
packet filtering and proxy servers. Using packet filtering, the firewall reviews the
header information for incoming and outgoing Internet packets to verify that the
source address, destination address, and protocol are all correct. For example, if a
packet arrives from the Internet (outside the network) with an internal source
address (which should be from inside the network), the firewall would be expected
to refuse its entry.
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(figure 11.4)


This screenshot from the


Symantec.com Web site


shows the threats (viruses,


worms, and Trojans) as of


September 2009.
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A proxy server hides important network information from outsiders by making the
network server invisible. To do so, the proxy server intercepts the request for access to
the network, decides if it is a valid request and, if so, then passes the request to the
appropriate server that can fulfill the request—all without revealing the makeup of the
network, the servers, or other information that might reside on them. Likewise, if
information is to be passed from the network to the Internet, the proxy server relays
the transmission but without revealing anything about the network. Proxy servers are
invisible to the users but are critical to the success of the firewall.


Authentication


Authentication is verification that an individual trying to access a system is authorized
to do so. One popular authentication tool is Kerberos, a network authentication pro-
tocol developed as part of the Athena Project at MIT. The name is taken from the
three-headed dog of Greek mythology that guarded the gates of Hades. 


To answer the need for password encryption to improve network security, Kerberos
was designed to provide strong authentication for client/server applications. A free
open-source implementation of this protocol (under copyright permissions) is avail-
able from MIT (http://web.mit.edu/kerberos/) or for purchase from numerous distrib-
utors.


The Kerberos protocol uses strong cryptography (the science of coding messages) so
that a client can prove its identity to a server, and vice versa, across an insecure net-
work connection. Then, once authentication is completed, both client and server can
encrypt all of their subsequent communications to assure privacy and data integrity.
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In this example of a


university system, the fire-


wall sits between the cam-


pus networks and the


Internet, filtering requests


for access.
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In simplest form, here’s how Kerberos works, as shown in Figure 11.6:


1. When you (the client) want to access a server that requires a Kerberos ticket,
you request authentication from the Kerberos Authentication Server, which cre-
ates a session key based on your password. This key also serves as your encryp-
tion key.


2. Next, you are sent to a Ticket Granting Server (this can be the same physical
server but a different logical unit), which creates a ticket valid for access to the
server.


3. Next, your ticket is sent to the server where it can be rejected or accepted.
Once accepted, you are free to interact with the server for the specified period
of time. The ticket is timestamped so you can make additional requests using
the same ticket within a certain time period but must be reauthenticated after
the time period ends. This design feature is to limit the likelihood that someone
will later use your ticket without your knowledge. 
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(figure 11.6)


Using Kerberos, when


client A attempts to access


server B, the user is


authenticated (a) and


receives a ticket for the


session (b). Once the


ticket is issued, client and


server can communicate at


will (c). Without the ticket,


access is not granted.


Because the user gains access using a ticket, there’s no need for the user’s password to
pass through the network, thus improving the protection of network passwords.


An essential part of maintaining a Kerberos protocol is the systematic revocation of
access rights from clients who no longer deserve to have access. For this reason, the
administrators of the Kerberos Authentication Server as well as the Ticket Granting
Server must keep their databases updated and accurate. By keeping records of access
revocation, the administrator can spot trends and anticipate the need for user education. 
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Kerberos
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(b)


(c)
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For example, if the organization hires new consultants in February of each year, which
is followed by numerous calls of access revocation in March and April, as shown in
Figure 11.7, then scheduling user education for new employees in February can be a
proactive, cost effective move, thereby reducing the reason for revocation. 
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Sample system adminis-


trator report. By tracking


the reasons for revoking
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to the user population,


such as retraining and


password management. 


Encryption


The most extreme protection for sensitive data is with encryption—putting it into a
secret code. Total network encryption, also called communications encryption, is the
most extreme form—that’s when all communications with the system are encrypted.
The system then decrypts them for processing. To communicate with another system,
the data is encrypted, transmitted, decrypted, and processed.


Partial encryption is less extreme and may be used between a network’s entry and exit
points or other vulnerable parts of its communication system. Storage encryption
means that the information is stored in encrypted form and decrypted before it’s read
or used.


There are two disadvantages to encryption. It increases the system’s overhead and the
system becomes totally dependent on the encryption process itself—if you lose the key,
you’ve lost the data forever. But if the system must be kept secure, then this procedure
might be warranted.
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How Encryption Works


The way to understand cryptography is to first understand the role of a public key and
a private key. The private key is a pair of two prime numbers (usually with 75 or more
digits each) chosen by the person who wants to receive a private message. The two
prime numbers are multiplied together, forming a third number with 150 or more dig-
its. The person who creates this private key is the only one who knows which two
prime numbers were used to create it. What are the chances that someone else can
guess the two prime numbers? Very slim, because there is no known formula for fac-
toring large numbers greater than 80 digits, and this product has at least 150 digits.
Even with brute force computation on a supercomputer, the task would take decades
(as of this writing, at least).


Once the message receiver has the product, known as the public key, it can be posted
in any public place, even an online directory, for anyone to see, because the private key
can’t be decoded from the public key.


Then, anyone who wants to send a confidential message to the receiver uses encryp-
tion software and inserts the public key as a variable. The software then scrambles the
message before it’s sent to the receiver. Once received, the receiver uses the private key
in the encryption software and the confidential message is revealed. Should someone
else receive the encrypted message and attempt to open it with a private key that is
incorrect, the resulting message would be scrambled, unreadable code.


Sniffers and Spoofing


If sensitive data is sent over a network or the Internet in cleartext, without encryption,
it becomes vulnerable at numerous sites across the network. Packet sniffers, also called
sniffers, are programs that reside on computers attached to the network.


They peruse data packets as they pass by, examine each one for specific information,
and log copies of interesting packets for more detailed examination. Sniffing is partic-
ularly problematic in wireless networks. Anyone with a wireless device can detect a
wireless network that’s within range. If the network is passing cleartext packets, it’s
quite easy to intercept, read, modify, and resend them. The information sought ranges
from passwords, Social Security numbers, and credit card numbers to industrial secrets
and marketing information. This vulnerability is a fundamental shortcoming of clear-
text transmission over the Internet.
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Wireless security is a special area of system security that is too vast to cover here.
Readers are encouraged to pursue the subject in the current literature for the latest
research, tools, and best practices.


Spoofing is a security threat that relies on cleartext transmission whereby the assailant
falsifies the IP addresses of an Internet server by changing the address recorded in
packets it sends over the Internet. This technique is useful when unauthorized users
want to disguise themselves as friendly sites. For example, to guard confidential infor-
mation on an internal network (intranet), some Web servers allow access only to users
from certain sites; however, by spoofing the IP address, the server could inadvertently
admit unauthorized users.


Password Management 


The most basic techniques used to protect hardware and software investments are
good passwords and careful user training, but this is not as simple as it might appear.
Passwords are forgettable, unlikely to be changed often, commonly shared, and con-
sidered bothersome by many people. 


Password Construction


Passwords are one of the easiest and most effective protection schemes to implement,
but only if they’re used correctly. A good password is unusual, memorable, and
changed often, usually every 30 to 90 days. Ideally, the password should be a combi-
nation of characters and numbers, something that’s easy for the user to remember but
difficult for someone else to guess. The password should be committed to memory,
never written down, and not included in a script file to log on to a network.


Password files are normally stored in encrypted form so they are not readable by
casual browsers. To verify a password, the system will accept the user’s entry in clear-
text, encrypt it, and compare the new sequence to the encrypted version stored in the
password file for that user, as shown in Figure 11.8.
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There are several reliable techniques for generating a good password:


• Using a minimum of eight characters, including numbers and nonalphanumeric
characters


• Creating a misspelled word or joining bits of phrases into a word that’s easy to
remember


• Following a certain pattern on the keyboard, generating new passwords easily by
starting your sequence with a different letter each time


• Creating acronyms from memorable sentences, such as MDWB4YOIA, which
stands for: “My Dog Will Be 4 Years Old In April” 


• If the operating system differentiates between upper- and lowercase characters (as
UNIX and Linux do), users should take advantage of that feature by using both in
the password: MDwb4YOia


• Avoiding any words that appear in any dictionary


The length of the password has a direct effect on the ability of the password to survive
password cracking attempts. The longer passwords are, the better. For example, if the
system administrator mandates that all passwords must be exactly eight characters long
and contain any lowercase letters such as “abcdefgh,” the possible combinations num-
ber 268. Likewise, if the policy mandates 10 characters of lowercase letters, the combi-
nations total 2610. However, if the rule allows eight characters from among 95 printable
characters, the combinations jump to 958, as shown in Table 11.6.
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(figure 11.8)
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Length of Password in Characters
2 4 6 8 10 12


ASCII characters 1282 1284 1286 1288 12810 12812


Printable 952 954 956 958 9510 9512
characters


Alphanumeric 622 624 626 628 6210 6212
characters


Lowercase letters 362 364 366 368 3610 3612
and numbers


Lowercase letters 262 264 266 268 2610 2612


Dictionary attack is the term used to describe a method of breaking encrypted pass-
words. Its requirements are simple: a copy of the encrypted password file and the algo-
rithm used to encrypt the passwords. With these two tools, the intruder runs a
software program that takes every word in the dictionary, runs it through the pass-
word encryption algorithm, and compares the encrypted result to the encrypted pass-
words contained in the file. If both encrypted versions match, then the intruder knows
that this dictionary word was used as a legitimate password.


One technique used by some operating systems to make passwords harder to guess is to
“salt” user passwords with extra random bits to make them less vulnerable to dictionary
attacks. Here’s how it works. The user enters the desired password, which is then
encrypted. Then the system assigns the user a unique combination of bits (called the salt)
that are tacked on the end of the encrypted password. That means, the stored combina-
tion of 0s and 1s contains the encrypted password combined with a unique salt.
Therefore, if an intruder downloads the list of encrypted passwords, the intruder will
need to guess not only the password but also the random salt. This is something that’s
much more difficult and time consuming to do than merely guessing obvious passwords.


Password Alternatives


As an alternative to passwords, some systems have integrated use of a smart card—a
credit-card-sized calculator that requires both something you have and something you
know. The smart card displays a constantly changing multidigit number that’s synchro-
nized with an identical number generator in the system. To enter the correct password,
the user must type in the number that appears at that moment on the smart card. For
added protection, the user then enters a secret code. The user is admitted to the system
only if both number and code are validated. Using this scheme, an intruder needs more
than either the card or the code because unless both are valid, entry is denied.


Another alternative is biometrics, the science and technology of identifying individuals
based on the unique biological characteristics of each person. Current research focuses
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on analysis of the human face, fingerprints, hand measurements, iris/retina, and voice
prints. Biometric devices often consist of a scanner or other device to gather the neces-
sary data about the user, software to convert the data into a form that can be com-
pared and stored, and a database to keep the stored information from all authorized
users. One of the strengths of biometrics is that it positively identifies the person being
scanned. 


For example, a fingerprint has about 35 discriminators—factors that set one person’s fin-
gerprint apart from someone else’s. Even better, the iris has about 260 discriminators and
is unique from right eye to left. Not even identical twins have the same iris pattern. A crit-
ical factor with biometrics is reducing the margin of error so authorized users are rarely
turned away and those who are not authorized are caught at the door. At this writing, the
technology to implement biometric authentication is expensive, but there’s every indica-
tion that it will become widespread in the years to come.


Another password alternative involves the use of graphics and a pattern of clicks using a
mouse, stylus, touch screen, or other pointing device, as shown in Figure 11.9. With this
technology, the user establishes a certain sequence of clicks on a photo or illustration and
then repeats it to gain access. Because this system eliminates all keyboard entries, it is
resistant to dictionary attacks (which involves testing every word in a dictionary to try
to crack the targeted password). One of the research topics at the end of this chapter
allows you to explore the latest developments in this evolving subject.
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Social Engineering


Historically, intruders gained access to systems by using innovative techniques to crack
user passwords such as using default passwords, backdoor passwords, or trying words
found in a file of dictionary terms. They also use a technique called social engineering,
which means looking in and around the user’s desk for a written reminder, trying the
user logon ID as the password, searching logon scripts, and even telephoning friends
and co-workers to learn the names of a user’s family members, pets, vacation destina-
tions, favorite hobbies, car model, etc.


It even works with military targets. One such instance involved a computer system in
a remote location that was reported to be exceptionally secure. To test its security, a
systems consultant was hired to try to break into the system. She started by opening
an unprotected document that told her where the computer was located. Then she tele-
phoned the base and learned the name of the base commanding officer. Then she
learned the name of the commander’s secretary. Then she called the data center,
masquerading as the secretary, and informed them that the commander was having
difficulty accessing the data. When the data center personnel were reluctant to help,
the consultant got angry and demanded action. They responded with access so the
“commander” could use the network. Soon the consultant was on the system with
what appeared to be classified data. With that, the officers in charge of the exercise
pulled the plug and sent the consultant on her way. 


Phishing (pronounced “fishing”) is a form of social engineering whereby an intruder
pretends to be a legitimate entity and contacts unwary users asking them to reconfirm
their personal and/or financial information. In 2003, many customers of eBay, Inc.
received an e-mail saying that their account had been compromised and would be
closed. Attached to the e-mail was a link to a page that looked like a genuine eBay
Web page where they could reenter their credit card data, ATM personal identification
numbers, Social Security number, date of birth, and their mother’s maiden name. The
owner of the site then had all the information required to steal the identity of the peo-
ple who responded.


Default passwords pose unique vulnerabilities because they are widely known
among system attackers but are a necessary tool for vendors. Default passwords are
routinely shipped with hardware or software. They’re convenient for the manufac-
turer because they give field service workers supervisor-level access to fix problem
equipment on site or using a telecommunications connection. System intruders also
find them useful because if they have not been changed, they allow powerful access
to the system. Lists of default passwords are routinely passed from one hacker to the
next, often serving as a starting point for an attack. To protect the system, managers
should periodically identify and change all default passwords on their hardware and
software.
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Ethics


What is ethical behavior? In briefest form it is this: Be good. Do good. 


Many professional associations have addressed the issue of ethics—the rules or stan-
dards of behavior that members of the computer-using community are expected to fol-
low, demonstrating the principles of right and wrong. In 1992, the IEEE and the
Association for Computing Machinery (ACM) issued a standard of ethics for the
global computing community.


The apparent lack of ethics in computing is a significant departure from other pro-
fessions. For example, we take for granted that our medical doctor will keep our
records private, but many of us don’t have the same confidence in the individuals
working for companies that keep our credit records or the intruders who break into
those systems. Although ethics is a subject that’s not often addressed in computer
science classes, the implications are so vast they can’t be ignored by system adminis-
trators or users.


At issue are the seemingly conflicting needs of users: the individual’s need for privacy,
the organization’s need to protect its proprietary information, and the public’s right to
know, as illustrated in freedom of information laws.


For the system’s owner, ethical lapses by authorized or unauthorized users can have
severe consequences:


• Illegally copied software can result in lawsuits and fines of several times the retail
price of each product for each transgression. Several industry associations publish
toll-free numbers encouraging disgruntled employees to turn in their employers who
use illegal software.


• Plagiarism, the unauthorized copying of copyrighted work (including but not lim-
ited to music, movies, textbook material, databases), is illegal and punishable by
law in the United States as well as in many other nations. When the original work is
on paper, most users know the proper course of action, but when the original is in
electronic form, some people don’t recognize the ethical issues involved.


• Eavesdropping on e-mail, data, or voice communications is sometimes illegal and usu-
ally unwarranted, except under certain circumstances. If calls or messages must be
monitored, the participants should always be notified before the monitoring begins.


• Cracking, sometimes called hacking, is gaining access to another computer system
to monitor or change data, and it’s seldom an ethical activity. Although it’s seen as a
sport by certain people, each break-in should cause the system’s owner and users to
question the validity of the system’s data.


• Unethical use of technology, defined as unauthorized access to private or protected
computer systems or electronic information, is a murky area of the law, but it’s
clearly the wrong thing to do. Legally, the justice system has great difficulty keeping
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up with each specific form of unauthorized access because the technology changes
so quickly. Therefore, system owners can’t rely on the law for guidance. Instead,
they must aggressively teach their users about what is and is not ethical behavior.


How can users be taught to behave ethically? A continuing series of security aware-
ness and ethics communications to computer users is more effective than a single
announcement. Specific activities can include the following:


• Publish policies that clearly state which actions will and will not be condoned.


• Teach a regular seminar on the subject including real-life case histories.


• Conduct open discussions of ethical questions such as: Is it okay to read someone
else’s e-mail? Is it right for someone else to read your e-mail? Is it ethical for a com-
petitor to read your data? Is it okay if someone scans your bank account? Is it right
for someone to change the results of your medical test? Is it acceptable for someone
to copy your software program and put it on the Internet? Is it acceptable for some-
one to copy a government document and put it on the Internet?


For a guide to ethical behavior, see excerpts from the ACM Code of Ethics and
Professional Conduct in Appendix A of this book or visit www.acm.org.


Conclusion


The system is only as good as the integrity of the data that’s stored on it. A single
breach of security—whether catastrophic or not, whether accidental or not—damages
the system’s integrity. And damaged integrity threatens the viability of the best-
designed system, its managers, its designers, and its users. Therefore, vigilant security
precautions are essential.


So far in this text we’ve discussed each manager and each operating system function in
isolation, but in reality, system performance depends on the combined effort of each
piece. In the next chapter, we’ll look at the system as a whole and examine how each
piece contributes to, or detracts from, overall system performance.


Key Terms


access control: the control of user access to a network or computer system. 


antivirus software: software that is designed to detect and recover from attacks by
viruses and worms. It is usually part of a system protection software package.


authentication: the means by which a system verifies that the individual attempting to
access the system is authorized to do so. 
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backup: the process of making long-term archival file storage copies of files on the system.


blended threat: a system threat that combines into one program the characteristics of
other attacks, including a virus, a worm, Trojans, spyware, and other malicious code.


biometrics: the science and technology of identifying authorized users based on their
biological characteristics.


browsing: a system security violation in which unauthorized users are allowed to
search through secondary storage directories or files for information they should not
have the privilege to read.


cleartext: in cryptography, a method of transmitting data without encryption, in text
that is readable by anyone who sees it.


cryptography: the science of coding messages or text so unauthorized users cannot
read them.


denial of service (DoS) attack: an attack on a network that makes it unavailable to per-
form the functions it was designed to do. This can be done by flooding the server with
meaningless requests or information.


dictionary attack: the technique by which an intruder attempts to guess user pass-
words by trying words found in a dictionary.


encryption: translation of a message or data item from its original form to an encoded
form, thus hiding its meaning and making it unintelligible without the key to decode
it. Used to improve system security and data protection.


ethics: the rules or standards of behavior that individuals are expected to follow
demonstrating the principles of right and wrong.


firewall: a set of hardware and software that disguises the internal network address of
a computer or network to control how clients from outside can access the organiza-
tion’s internal servers.  


Kerberos: an MIT-developed authentication system that allows network managers to
administer and manage user authentication at the network level.


logic bomb: a virus with a trigger, usually an event, that causes it to execute. 


packet filtering: reviewing incoming and outgoing Internet packets to verify that the
source address, destination address, and protocol are correct.  Usually a function of a
firewall.


packet sniffer: software that intercepts Internet data packets sent in cleartext and
searches them for information, such as passwords.


password: a user-defined access control method. Typically a word or character string
that a user must specify in order to be allowed to log on to a computer system.
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phishing: a technique used to trick consumers into revealing personal information by
appearing as a legitimate entity.


private key: a tool that’s used to decrypt a message that was encrypted using a 
public key.


proxy server: a server positioned between an internal network and an external net-
work or the Internet to screen all requests for information and prevent unauthorized
access to network resources.


public key: a tool that’s used to encrypt a message, to be decoded later using a
private key.


recovery: the steps that must be taken when a system is assaulted to recover system
operability and, in the best case, recover any lost data.


smart card: a small, credit-card-sized device that uses cryptographic technology to
control access to computers and computer networks. Each smart card has its own per-
sonal identifier, which is known only to the user, as well as its own stored and
encrypted password.


social engineering: a technique whereby system intruders gain access to information
about a legitimate user to learn active passwords, sometimes by calling the user and
posing as a system technician.


spoofing: the creation of false IP addresses in the headers of data packets sent over the
Internet, sometimes with the intent of gaining access when it would not otherwise be
granted.


spyware: a blended threat that covertly collects data about system users and sends it
to a designated repository.


system survivability: the capability of a system to fulfill its mission, in a timely man-
ner, in the presence of attacks, failures, or accidents.


time bomb: a virus with a trigger linked to a certain year, month, day, or time that
causes it to execute.


trapdoor: an unspecified and undocumented entry point to the system, which repre-
sents a significant security risk.


Trojan: a malicious computer program with unintended side effects that are not
intended by the user who executes the program.


virus: a program that replicates itself by incorporating itself into other programs,
including those in secondary storage, that are shared among other computer systems.


wiretapping: a system security violation in which unauthorized users monitor or
modify a user’s transmission.


worm: a computer program that replicates itself and is self-propagating in main
memory.
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Interesting Searches
• Network Security Tools


• Strong Password Security


• Encryption Practices


• Thwarting Insider Threats


• Legal Issues vs. Ethical Issues


Exercises


Research Topics


A. Research the practice of key logging in current literature. Describe what it is
and explain why some people defend the practice while some others do not.
Finally, give your own opinion and defend it. Cite your sources.


B. In current literature, research the use of graphics to replace typed passwords.
Describe the historical milestones of the technology and list its significant
advantages and disadvantages. Find at least two real world examples where
this technology is used, citing your sources for each.


Exercises


1. Give three examples of excellent passwords and explain why each would be a
good choice to protect a system from unauthorized users.


2. Give three advantages and disadvantages of password generator software.
Would you recommend the use of such software for your own system? Explain
why or why not.


3. System managers can’t protect their resources without recognizing all threats
and even learning to think like an intruder. Knowing that, and knowing that
it’s unethical to use a computer system without proper authorization, imagine
that you are an unauthorized user who wants to break into your system.
Describe how you might begin guessing the password of a legitimate user.


4. As a follow-up to the previous question, identify a friend who has chosen at
least one computer password. On a piece of paper, list 20 possible passwords
you might use if you were trying to access the friend’s system. Then show the
list to your friend and ask if any of your guesses were correct. You might try
combinations of names of family members and friends, favorite hobbies, auto-
mobiles, pets, birthdays, slang terms, favorite sayings, etc.


5. Imagine that you are the manager of a small business computing center. List at
least three reasons that you would use to convince a busy, reluctant staff member
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to perform regular backups and manage your system’s archives appropriately,
and elaborate.


6. In the U.S., HIPAA (Health Insurance Portability and Accountability Act of
1996) legislation protects the privacy of patient medical data.Yet in an emer-
gency, it’s to your benefit if your caregivers have access to your history, medica-
tions, etc. Acknowledging the need for privacy as well as the need for
accessibility, describe several advantages and disadvantages of maintaining
strict patient data confidentiality.


7. Many users are required to log in to several networks and thus have multiple
passwords, which are difficult to remember. Name three ways that a user
can manage these password requirements, and compare the advantages and
disadvantages of each. Finally, decide which one you would use and explain
why.


Advanced Exercises


8. Describe the unique threats to a data center posed by disgruntled employees.
Describe how you would identify such people, if possible, and how you would
protect your system from these threats.


9. List 20 viruses discovered in the past 12 months and research three in detail,
describing which files they infect, how they spread, and their intended effects.


10. Identify three sets of security parameters (one each for good, better, and best
protection) for a computer that holds a university’s registration information.
Consider not only the operating system, but the protection software, access
controls, and the room in which the computer is located. Then make a recom-
mendation based on the need for security vs. the cost of that security.


11. Using information from the CERT Coordination Center (www.cert.org), iden-
tify the latest vulnerability for an operating system of your choice. List the
threat, the criticality of the threat, the potential impact, the suggested solution,
the systems that are affected, and the actions you would take as a system
administrator.


12. In the U.S., HIPAA legislation imposed stringent security requirements on the
healthcare industry. Identify the requirements for data transmissions between
networks and the role of encryption, if any, in those transmissions.


13. Wireless LANs pose unique challenges for system operators because of their
accessibility. Imagine that you are the system administrator for a wireless net-
work that is used in a scientific research setting. Identify the five biggest secu-
rity challenges and how you would address each of them in spite of your
limited budget.
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14. With identity theft becoming widespread, many organizations have moved to
secure the Social Security numbers of their customers, suppliers, and employ-
ees. Imagine that you are the system administrator for a college campus where
the students’ Social Security numbers are used as the key field to access student
records (and realizing that you need to extend your protection to several
decades of historical student records). Describe the steps you would follow to
change the system. Make sure your solution also removes the student Social
Security number on transcripts, course registration forms, student-accessible
data screens, student ID cards, health center records, and other record-keeping
systems. Finally, identify which individuals on campus would retain access to
the Social Security numbers and explain why.
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“There is no such thing as a single problem; … all problems are
interrelated.”


—Saul D. Alinsky (1909–1972)


Learning Objectives


After completing this chapter, you should be able to describe:


• The trade-offs to be considered when attempting to improve overall system
performance 


• The roles of system measurement tools such as positive and negative feedback loops


• Two system monitoring techniques


• The fundamentals of patch management


• The importance of sound accounting practices by system administrators
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In Chapter 1 we introduced the overall operating system. In Chapters 2 through 8 we
studied how each component works, and in Chapters 9 through 11 we discussed net-
working and security. In these chapters we examined each piece in isolation. In a real-
life operating system, however, they don’t work in isolation. Each component depends
on the other components.


This chapter shows how they work together and how the system designer has to con-
sider trade-offs to improve the system’s overall efficiency. We begin by showing how
the designer can improve the performance of one component, the cost of that improve-
ment, and how it might affect the performance of the remainder of the system. We
conclude with some methods used to monitor and measure system performance,
including the need to keep the operating system patched correctly.


Evaluating an Operating System


Most operating systems were designed to work with a certain piece of hardware, a
category of processors, or specific groups of users. Although most evolved over
time to operate multiple systems, most still favor some users and some computing
environments over others. For example, if the operating system was written for
novice users to meet basic requirements, it might not satisfy the demands of those
more knowledgeable. Conversely, if it was written for programmers, then a busi-
ness office’s computer operator might find its commands obscure. If it serves the
needs of a multiuser computer center, it might be inappropriate for a small comput-
ing center. Or, if it’s written to provide rapid response time, it might provide poor
throughput.


To evaluate an operating system, you need to understand its design goals, its history,
how it communicates with its users, how its resources are managed, and what trade-
offs were made to achieve its goals. In other words, an operating system’s strengths and
weaknesses need to be weighed in relation to who will be using the operating system,
on what hardware, and for what purpose.


Cooperation Among Components


The performance of any one resource depends on the performance of the other
resources in the system. For example, memory management is intrinsically linked with
device management when memory is used to buffer data between a very fast processor
and slower secondary storage devices. Many other examples of interdependence have
been shown throughout the preceding chapters.
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If you managed an organization’s computer system and were allocated money to upgrade
it, where would you put the investment to best use? You might have several choices:


• more memory


• a faster CPU


• additional processors


• more disk drives


• a RAID system


• new file management software


Or, if you bought a new system, what characteristics would you look for that would
make it more efficient than the old one?


Any system improvement can be made only after extensive analysis of the needs of
the system’s resources, requirements, managers, and users. But whenever changes
are made to a system, often you’re trading one set of problems for another. The key
is to consider the performance of the entire system and not just the individual
components.


Role of Memory Management


Memory management schemes were discussed in Chapters 2 and 3. If you increase
memory or change to another memory allocation scheme, you must consider the
actual operating environment in which the system will reside. There’s a trade-off
between memory use and CPU overhead.


For example, if the system will be running student programs exclusively and the
average job is only three pages long, your decision to increase the size of virtual
memory wouldn’t speed up throughput because most jobs are too small to use vir-
tual memory effectively. Remember, as the memory management algorithms grow
more complex, the CPU overhead increases and overall performance can suffer. On
the other hand, some operating systems perform remarkably better with additional
memory.


Role of Processor Management


Processor management was covered in Chapters 4, 5, and 6. Let’s say you decide to
implement a multiprogramming system to increase your processor’s utilization. If so,
you’d have to remember that multiprogramming requires a great deal of synchroniza-
tion between the Memory Manager, the Processor Manager, and the I/O devices. The
trade-off: better use of the CPU versus increased overhead, slower response time, and
decreased throughput.
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There are several problems to watch for, among them:


• A system could reach a saturation point if the CPU is fully utilized but is allowed to
accept additional jobs—this would result in higher overhead and less time to run
programs.


• Under heavy loads, the CPU time required to manage I/O queues (which under nor-
mal circumstances don’t require a great deal of time) could dramatically increase the
time required to run the jobs.


• With long queues forming at the channels, control units, and I/O devices, the CPU
could be idle waiting for processes to finish their I/O.


Likewise, increasing the number of processors necessarily increases the overhead
required to manage multiple jobs among multiple processors. But under certain cir-
cumstances, the payoff can be faster turnaround time.


Role of Device Management


Device management, covered in Chapter 7, contains several ways to improve I/O
device utilization including buffering, blocking, and rescheduling I/O requests to opti-
mize access times. But there are trade-offs: each of these options also increases CPU
overhead and uses additional memory space.


Blocking reduces the number of physical I/O requests, and that’s good. But it’s the
CPU’s responsibility to block and later deblock the records, and that’s overhead.


Buffering helps the CPU match the slower speed of I/O devices, and vice versa, but
it requires memory space for the buffers, either dedicated space or a temporarily
allocated section of main memory, and this, in turn, reduces the level of processing
that can take place. For example, if each buffer requires 64K of memory and the
system requires two sets of double buffers, we’ve dedicated 256K of memory to
the buffers. The trade-off is reduced multiprogramming versus better use of
I/O devices.


Rescheduling requests is a technique that can help optimize I/O times; it’s a queue
reordering technique. But it’s also an overhead function, so the speed of both the CPU
and the I/O device must be weighed against the time it would take to execute the
reordering algorithm. The following example illustrates this point. Figure 12.1 lists
three different CPUs with the speed for executing 1,000 instructions and four disk dri-
ves with their average access speeds.
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Using the data in Figure 12.1 and assuming that a typical reordering module consists
of 1,000 instructions, which combinations of one CPU and one disk drive warrant a
reordering module? To learn the answer, we need to compare disk access speeds before
and after reordering.


For example, let’s assume that a system consisting of CPU 1 and Disk Drive A has to
access Track 1, Track 9, Track 1, and then Track 9, and that the arm is already located
at Track 1. Without reordering, Drive A requires approximately 35 ms for each access:
35 + 35 + 35 = 105 ms, as shown in Figure 12.2. 
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Tracks 
1 2 3 4 5 6 7 8 9 


0 


0 


0 


0


(figure 12.2)


Using the combination of


CPU 1 and Disk Drive A


without reordering, data


access requires 105 ms.


After reordering (which requires 30 ms), the arm can perform both accesses on Track 1
before traveling, in 35 ms, to Track 9 for the other two accesses, resulting in a speed
nearly twice as fast: 30 + 35 = 65 ms, as shown in Figure 12.3. In this case, reordering
would improve overall speed.


Drive A
35 ms


Drive B
10 ms


Drive D
50 ms


Drive C
5 ms


CPU 3
0.2 ms


CPU 2
1.2 ms


CPU 1
30.0 ms


(figure 12.1)


A system with three CPUs


and four disk drives of


different speeds.


Assuming the system


requires 1,000 instructions


to reorder I/O requests,


the advantages of


reordering vary depending


on the combination of CPU


and disk drive.
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However, when the same situation is faced by CPU 1 and the much faster Disk Drive
C, we find the disk will again begin at Track 1 and make all four accesses in 15 ms
(5 + 5 + 5), but when it stops to reorder those accesses (which requires 30 ms), it
takes 35 ms (30 + 5) to complete the task. Therefore, reordering requests isn’t
always warranted.


Remember that when the system is configured, the reordering algorithm is either
always on or always off. It can’t be changed by the systems operator without reconfig-
uration, so the initial setting, on or off, must be determined by evaluating the system
based on average system performance.


Role of File Management


The discussion of file management in Chapter 8 looked at how secondary storage allo-
cation schemes help the user organize and access the files on the system. Almost every
factor discussed in that chapter can affect overall system performance.


For example, file organization is an important consideration. If a file is stored noncon-
tiguously and has several sections residing in widely separated cylinders of a disk pack,
sequentially accessing all of its records could be a time-consuming task. Such a case
would suggest that the files should be compacted, also called defragmented, so each
section of the file resides near the others. However, recompaction takes CPU time and
makes the files unavailable to users while it’s being done.


Another file management issue that could affect retrieval time is the location of a vol-
ume’s directory. For instance, some systems read the directory into main memory and
hold it there until the user terminates the session. If we return to our example in Figure
12.1 of the four disk drives of varying speeds, the first retrieval would take 35 ms when
the system retrieves the directory for Drive A and loads it into memory. But every subse-
quent access would be performed at the CPU’s much faster speed without the need to
access the disk. Similar results would be achieved with each of the other disk drives, as
shown in Table 12.1.
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Tracks 
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(figure 12.3)


Using CPU 1 and Disk Drive


A after reordering (which


takes 30 ms), data access


takes 35 ms.
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Access
Disk Speed for Subsequent
Drive First Retrieval Retrievals


A 35 ms 1.2 ms


B 10 ms 1.2 ms


C 5 ms 1.2 ms


D 50 ms 1.2 ms


This poses a problem if the system crashes before any modifications have been
recorded permanently in secondary storage. In such a case, the I/O time that was saved
by not having to access secondary storage every time the user requested to see the
directory would be negated by not having current information in the user’s directory.


Similarly, the location of a volume’s directory on the disk might make a significant dif-
ference in the time it takes to access it. For example, if directories are stored on the
outermost track, then, on average, the disk drive arm has to travel farther to access
each file than it would if the directories were kept in the center tracks.


Overall, file management is closely related to the device on which the files are stored
and designers must consider both issues at the same time when evaluating or modify-
ing computer systems. Different schemes offer different flexibility, but the trade-off for
increased file flexibility is increased CPU overhead.


Role of Network Management


The discussion of network management in Chapters 9 and 10 examined the impact of
adding networking capability to the operating system and the overall effect on system
performance. The Network Manager routinely synchronizes the load among remote
processors, determines message priorities, and tries to select the most efficient commu-
nication paths over multiple data communication lines.


For example, when an application program requires data from a disk drive at a dif-
ferent location, the Network Manager attempts to provide this service seamlessly.
When networked devices such as printers, plotters, or disk drives are required, the
Network Manager has the responsibility of allocating and deallocating the required
resources correctly. 


In addition to the routine tasks handled by stand-alone operating systems, the
Network Manager allows a network administrator to monitor the use of individual
computers and shared hardware, and ensure compliance with software license agree-
ments. The Network Manager also simplifies the process of updating data files and
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A system with four disk


drives of different speeds


and a CPU speed of 1.2 ms.


If the file’s directory is


loaded into memory,


access speed affects only


the initial retrieval and


none of the subsequent


retrievals.


✔
System
performance for
networks may give
higher priority to
certain servers,
such as e-mail or
Web servers, if
they’re critical to
the operation of
the organization.
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programs on networked computers by coordinating changes through a communica-
tions server instead of making the changes on each individual computer.


Measuring System Performance


Total system performance can be defined as the efficiency with which a computer sys-
tem meets its goals—that is, how well it serves its users. However, system efficiency is
not easily measured because it’s affected by three major components: user programs,
operating system programs, and hardware. In addition, system performance can be
very subjective and difficult to quantify—how, for instance, can anyone objectively
gauge ease of use? While some aspects of ease of use can be quantified—for example,
time to log on—the overall concept is difficult to quantify.


Even when performance is quantifiable, such as the number of disk accesses per
minute, it isn’t an absolute measure but a relative one based on the interactions of the
three components and the workload being handled by the system.


Measurement Tools


Most designers and analysts rely on certain measures of system performance: through-
put, capacity, response time, turnaround time, resource utilization, availability, and
reliability.


Throughput is a composite measure that indicates the productivity of the system as a
whole; the term is often used by system managers. Throughput is usually measured 
under steady-state conditions and reflects quantities such as “the number of 
jobs processed per day” or “the number of online transactions handled per hour.”
Throughput can also be a measure of the volume of work handled by one unit of the
computer system, an isolation that’s useful when analysts are looking for bottlenecks
in the system.


Bottlenecks tend to develop when resources reach their capacity, or maximum
throughput level; the resource becomes saturated and the processes in the system
aren’t being passed along. Thrashing is a result of a saturated disk. Bottlenecks also
occur when main memory has been overcommitted and the level of multiprogramming
has reached a peak point. When this occurs, the working sets for the active jobs can’t
be kept in main memory, so the Memory Manager is continuously swapping pages
between main memory and secondary storage. The CPU processes the jobs at a snail’s
pace because it’s very busy flipping pages.


Throughput and capacity can be monitored by either hardware or software.
Bottlenecks can be detected by monitoring the queues forming at each resource: when
a queue starts to grow rapidly, this is an indication that the arrival rate is greater than,
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or close to, the service rate and the resource is saturated. These are called feedback
loops, and we’ll discuss them later in this chapter. Once a bottleneck is detected, the
appropriate action can be taken to resolve the problem.


To online interactive users, response time is an important measure of system perfor-
mance. Response time is the interval required to process a user’s request: from when the
user presses the key to send the message until the system indicates receipt of the mes-
sage. For batch jobs, this is known as turnaround time—the time from the submission
of the job until its output is returned to the user. Whether in an online or batch context,
this measure depends on both the workload being handled by the system at the time of
the request and the type of job or request being submitted. Some requests, for instance,
are handled faster than others because they require fewer resources.


To be an accurate measure of the predictability of the system, measurement data show-
ing response time and turnaround time should include not just their average values but
also their variance.


Resource utilization is a measure of how much each unit is contributing to the overall
operation. It’s usually given as a percentage of time that a resource is actually in use.
For example: Is the CPU busy 60 percent of the time? Is the line printer busy 90 per-
cent of the time? How about each of the terminals? Or the seek mechanism on a disk?
This data helps the analyst determine whether there is balance among the units of a
system or whether a system is I/O-bound or CPU-bound.


Availability indicates the likelihood that a resource will be ready when a user needs it.
For online users, it may mean the probability that a port is free or a terminal is avail-
able when they attempt to log on. For those already on the system, it may mean the
probability that one or several specific resources, such as a plotter or a group of tape
drives, will be ready when their programs make requests. Availability in its simplest
form means that a unit will be operational and not out of service when a user needs it. 


Availability is influenced by two factors: mean time between failures (MTBF) and
mean time to repair (MTTR). MTBF is the average time that a unit is operational
before it breaks down, and MTTR is the average time needed to fix a failed unit and
put it back in service. These values are calculated with simple arithmetic equations. 


For example, if you buy a terminal with an MTBF of 4,000 hours (the number is given
by the manufacturer), and you plan to use it for 4 hours a day for 20 days a month (or
80 hours per month), then you would expect it to fail once every 50 months
(4000/80)—not bad. The MTTR is the average time it would take to have a piece of
hardware repaired and would depend on several factors: the seriousness of the damage,
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the location of the repair shop, how quickly you need it back, how much you are will-
ing to pay, and so on. This is usually an approximate figure. When calculating avail-
ability, make sure all your variables are in the same units (all are in hours, or all are in
days, etc.). 


The formula used to compute the unit’s availability is:


MTBFAvailability = 
MTBF + MTTR


As indicated, availability is a ratio between the unit’s MTBF and its total time 
(MTBF + MTTR). For our terminal, let’s assume the MTTR is 2 hours; therefore:


4000Availability = = 0.9995
4000 + 2


So, on the average, this unit would be available 9,995 out of every 10,000 hours. In
other words, you’d expect five failures out of 10,000 uses.


Reliability is similar to availability, but it measures the probability that a unit will not
fail during a given time period (t), and it’s a function of MTBF. The formula introduced
by Nickel in 1978 used to compute the unit’s reliability (where e is the mathematical
constant approximately equal to 2.71828) is:


Reliability(t) = e –(1/MTBF)(t)


To illustrate how this equation works, let’s say you absolutely need to use the terminal
for the 10 minutes before your upcoming deadline. With time expressed in hours, the
unit’s reliability is given by:


Reliability(t) = e–(1/4000)(10/60)


= e–(1/24,000)


= 0.9999584


This is the probability that it will be available (won’t fail) during the critical 10-minute
time period—and 0.9999584 is a very high number. Therefore, if the terminal was
ready at the beginning of the transaction, it will probably remain in working order for
the entire period of time.


These measures of performance can’t be taken in isolation from the workload being
handled by the system unless you’re simply fine-tuning a specific portion of the sys-
tem. Overall system performance varies from time to time, so it’s important to define
the actual working environment before making generalizations.
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Feedback Loops


To prevent the processor from spending more time doing overhead than executing jobs,
the operating system must continuously monitor the system and feed this information to
the Job Scheduler. Then the Scheduler can either allow more jobs to enter the system or
prevent new jobs from entering until some of the congestion has been relieved. This is
called a feedback loop and it can be either negative or positive.


A negative feedback loop mechanism monitors the system and, when it becomes too
congested, signals the Job Scheduler to slow down the arrival rate of the processes, as
shown in Figure 12.4.


383


M
easuring System


 Perform
ance


Monitor of 
System Activity 


Is System 
Too Busy? 


No 


Yes Decrease Flow of
New Jobs


(figure 12.4)


A simple negative


feedback loop. It monitors


system activity and goes


into action only when the


system is too busy.


People on vacation use negative feedback loops all the time. For example, if you’re
looking for a gas station and the first one you find has too many cars waiting in line,
you collect the data and you react negatively. Therefore, your processor suggests that
you drive on to another station (assuming, of course, that you haven’t procrastinated
too long and are about to run out of gas).


In a computer system, a negative feedback loop monitoring I/O devices would inform
the Device Manager that Printer 1 has too many jobs in its queue, causing the Device
Manager to direct all newly arriving jobs to Printer 2, which isn’t as busy. The nega-
tive feedback helps stabilize the system and keeps queue lengths close to expected
mean values.
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A positive feedback loop mechanism works in the opposite way: it monitors the
system, and when the system becomes underutilized, the positive feedback loop causes
the arrival rate to increase, as shown in Figure 12.5. Positive feedback loops are used
in paged virtual memory systems, but they must be used cautiously because they’re
more difficult to implement than negative loops.
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Is System
Underutilized?


No


Yes Increase Flow ofNew Jobs


(figure 12.5)


A simple positive feedback


loop. It monitors system


activity and goes into


action only when the


system is not busy


enough. System activity


monitoring is critical here


because the system can


become unstable.


Here’s how they work. The positive feedback loop monitoring the CPU informs the
Job Scheduler that the CPU is underutilized, so the Scheduler allows more jobs to enter
the system to give more work to the CPU. However, as more jobs enter, the amount of
main memory allocated to each job decreases. If too many new jobs are allowed to
enter the job stream, the result can be an increase in page faults. And this, in turn, may
cause CPU utilization to deteriorate. In fact, if the operating system is poorly designed,
positive feedback loops can actually put the system in an unstable mode of operation.
Therefore, the monitoring mechanisms for positive feedback loops must be designed
with great care.


As this example shows, an algorithm for a positive feedback loop should monitor the
effect of new arrivals in two places: the Processor Manager’s control of the CPU, and
the Device Manager’s read and write operations. That’s because both areas experience
the most dynamic changes, which can lead to unstable conditions. Such an algorithm
should check to see whether the arrival produces the anticipated result and whether
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system performance is actually improved. If the arrival causes performance to deterio-
rate, then the monitoring algorithm could cause the operating system to adjust its allo-
cation strategies until a stable mode of operation has been reached again.


Patch Management


Patch management is the systematic updating of the operating system and other sys-
tem software. Typically, a patch is a piece of programming code that replaces or
changes code that makes up the software. There are three primary reasons for the
emphasis on software patches for sound system administration: the need for vigilant
security precautions against constantly changing system threats; the need to assure sys-
tem compliance with government regulations regarding privacy and financial account-
ability; and the need to keep systems running at peak efficiency.


Patches aren’t new—they’ve been written and distributed since programming code was
first created. However, the task of keeping computing systems patched correctly has
become a challenge because of the complexity of the entire system (including the oper-
ating system, network, various platforms, and remote users), and the speed with which
software vulnerabilities are exploited by worms, viruses, and other system assaults
described in the last chapter. 


According to the 2004 E-Crime Watch survey of security and law enforcement execu-
tives, manual and automatic patch management were among the eight technologies used
most at their organizations, as shown in Table 12.2. The survey was conducted by CSO
Online in cooperation with the U.S. Secret Service and the CERT Coordination Center.


Technologies in Use Rank Percentage


Firewalls 1 98.2%


Physical Security Systems 2 94.2%


Manual Patch Management 3 91.0%


Automated Patch Management 8 74.4%
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Survey results show that


patch management


technologies were ranked


by most respondents as


being among the most


effective tools used to


detect and/or counter


misuse or abuse of


computer systems and


networks (CSO Online,


2004).


C7047_12_Ch12.qxd  1/12/10  5:17 PM  Page 385








Who has the overall responsibility of keeping an organization’s software up-to-date?
It depends on the organization. For many, overall responsibility lies with the chief
information officer or chief security officer. For others, it falls on the shoulders of the
network administrator or system security officer. In still others, individual users
assume that role. Regardless of which individual owns this job, it is only through rig-
orous patching that the system’s resources can reach top performance, and its infor-
mation can be best protected.


Patching Fundamentals


While the installation of the patch is the most public event, there are several essential
steps that take place before that happens:


1. Identify the required patch.


2. Verify the patch’s source and integrity.


3. Test the patch in a safe environment.


4. Deploy the patch throughout the system.


5. Audit the system to gauge the success of the patch deployment.


Although this discussion is limited to managing operating system patches, all changes
to the operating system or other critical system software must be undertaken in an envi-
ronment that makes regular system backups, and tests the restoration from backups.


Patch Availability


Let’s say you receive notification that a patch is available for an operating system on
your network. Your first task is to identify the criticality of the patch, information that
is available from the vendor. To be on the forefront of patch information, many sys-
tem administrators enroll in automatic announcement services offered by government
and industry groups or from software vendors. 


If the patch is a critical one, it should be applied as soon as possible. Remember that
with every patch announcement, system attackers are also armed with this critical
information, and they will move quickly to compromise your system.  If the patch is
not critical in nature, you might choose to delay installation until a regular patch cycle
begins. Patch cycles will be discussed later in this chapter.


Patch Integrity


Because software patches have authority to write over existing programming code,
they can be especially damaging if they are not valid. Authentic patches will have a
digital signature or validation tool. Before applying a patch, validate the digital signa-
ture used by the vendor to send the new software.
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Patch Testing


Before installation on a live system, test the new patch on a sample system or an iso-
lated machine to verify its worth. If a non-networked machine is not available, test the
patch on a development system instead of the operational system. 


First, test to see if the system restarts after the patch is installed. Then, check to see if
the patched software performs its assigned tasks—whether it’s warding off intruders
or improving system performance. While it’s often not feasible to test the patch on a
duplicate system, the tested system should resemble the complexity of the target net-
work as closely as possible. 


This is also the time to make detailed plans for what you’ll do if something goes terri-
bly wrong during installation. Test your contingency plans to uninstall the patch and
recover the old software should it become necessary to do so. 


Patch Deployment


On a single-user computer, patch deployment is a simple task—install the software
and restart the computer. However, on a multiplatform system with hundreds or thou-
sands of users, the task becomes exceptionally complicated. 


To assure success, maintain an accurate inventory of all hardware and software on
those computers that need the patch. On a large network, this information can be
gleaned from network mapping software that surveys the network and takes a detailed
inventory of the system. This, in turn, assumes that all system hardware is connected
to the network.


Finally, the deployment may be launched in stages so the help desk can cope with tele-
phone calls. Often, because it’s impossible to use the system during the patching
process, it is scheduled for times when system use will be low, such as evenings or
weekends. 


Audit the Finished System


Before announcing the deployment’s success, you will need to confirm that the result-
ing system meets your expectations by taking steps such as:


• verifying that all computers are patched correctly and perform fundamental tasks as
expected


• verifying that no users had unexpected or unauthorized versions of software that
may not accept the patch


• verifying that no users are left out of the deployment
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The process should include documentation of the changes made to the system and the
success or failure of each stage of the process. Keep a log of all system changes for
future reference. Finally, get feedback from the users to verify the deployment’s success.


Software Options


Patches can be installed manually, one at a time, or via software that’s written to
perform the task automatically. Organizations that choose software can decide to
build their own deployment software or buy ready-made software to perform the
task for them. Deployment software falls into two groups: those programs that
require an agent (called agent-based software), and those that do not (agentless
software). 


If the deployment software uses an agent, which is software that assists in patch instal-
lation, then the agent must be installed on every target computer system before patches
can be deployed. On a very large or dynamic system, this can be a daunting task.
Therefore, for administrators of large, complex networks, agentless software may
offer some time-saving efficiencies.


Timing the Patch Cycle


While critical system patches must be applied immediately, less-critical patches can be
scheduled at the convenience of the systems group. These patch cycles can be based on
calendar events or vendor events. For example, routine patches can be applied
monthly or quarterly, or they can be timed to coincide with a vendor’s service pack
release. The advantage of having routine patch cycles is that they allow for thorough
review of the patch and testing cycles before deployment. 


System Monitoring


Several techniques for measuring the performance of a working system have been
developed as computer systems have evolved, which can be implemented using either
hardware or software components. Hardware monitors are more expensive but they
have the advantage of having a minimum impact on the system because they’re out-
side of it and attached electronically. They include hard-wired counters, clocks, and
comparative elements.
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Software monitors are relatively inexpensive; but because they become part of the sys-
tem, they can distort the results of the analysis. After all, the software must use the
resources it’s trying to monitor. In addition, software tools must be developed for each
specific system, so it’s difficult to move them from system to system.


In early systems, performance was measured simply by timing the processing of spe-
cific instructions. The system analysts might have calculated the number of times an
ADD instruction could be done in one second. Or they might have measured the pro-
cessing time of a typical set of instructions (typical in the sense that they would repre-
sent the instructions common to the system). These measurements monitored only the
CPU speed because in those days the CPU was the most important resource, so the 
remainder of the system was ignored.


Today, system measurements must include the other hardware units as well as the
operating system, compilers, and other system software. Measurements are made in a
variety of ways. Some are made using real programs, usually production programs
that are used extensively by the users of the system, which are run with different con-
figurations of CPUs, operating systems, and other components. The results are called
benchmarks and are useful when comparing systems that have gone through extensive
changes. Benchmarks are often used by vendors to demonstrate to prospective clients
the specific advantages of a new CPU, operating system, compiler, or piece of hard-
ware. A sample benchmark table is shown in Table 12.3.


Remember that benchmark results are highly dependent upon the system’s workload,
the system’s design and implementation, as well as the specific requirements of the
applications loaded on the system. Performance data is usually obtained in a rigor-
ously controlled environment so results will probably differ in real-life operation. Still,
benchmarks offer valuable comparison data—a place to begin a system evaluation.


If it’s not advisable or possible to experiment with the system itself, a simulation model
can be used to measure performance. This is typically the case when new hardware is
being developed. A simulation model is a computerized abstraction of what is repre-
sented in reality. The amount of detail built into the model is dictated by time and
money—the time needed to develop the model and the cost of running it.


Designers of simulation models must be careful to avoid the extremes of too much
detail, which becomes too expensive to run, or of too little detail, which doesn’t pro-
duce enough useful information. If you’d like to write a program that’s an example of
a simulation model, see the first programming exercise in Chapter 2.
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390 Chapter 12 | System Management


Top 10 TPC-C by Performance (as of 22 Sep-2009)
System Operating TP Date 


Rank Company System tpmC Price/tpmC Availability Database System Monitor Submitted Cluster


1 IBM IBM Power 6,085,166 2.81 USD 12/10/08 IBM DB2 9.5 IBM AIX 5L Microsoft 06/10/08 N 
595 Server Model V5.3 COM+
9119-FHA


*** Bull Bull Escala 6,085,166 2.81 USD 12/15/08 IBM DB2 9.5 IBM AIX 5L Microsoft 06/15/08 N
PL6460R V5.3  COM+  


2 HP HP Integrity 4,092,799 2.93 USD 08/06/07 Oracle Database HP-UX BEA 02/27/07 N
Superdome-Itanium2/ 10g R2 11i v3 Tuxedo 8.0
1.6GHz/ Enterprise Edt
24MB iL3 w/Partitioning


3 IBM IBM System 4,033,378 2.97 USD 01/22/07 IBM DB2 9 IBM AIX Microsoft 01/22/07 N
p5 595 5L V5.3 COM+  


4 IBM IBM eServer 3,210,540 5.07 USD 05/14/05 IBM DB2 IBM AIX Microsoft 11/18/04 N
p5 595  UDB 8.2 5L V5.3 COM+


5 Fujitsu PRIMEQUEST 2,382,032 3.76 USD 12/04/08 Oracle Database Red Hat BEA 12/04/08 N
580A 32p/64c 10g R2 Enterprise Enterprise Tuxedo 8.1


Edt w/Partitioning Linux 4 AS


6 Fujitsu PRIMEQUEST 2,196,268 4.70 USD 04/30/08 Oracle 10g Red Hat BEA 10/30/07 N
580 32p/64c Enterprise Ed Enterprise Tuxedo 8.1


R2 w/ Partitioning Linux 4 AS


7 IBM IBM System 1,616,162 3.54 USD 11/21/07 IBM DB2 IBM AIX Microsoft 05/21/07 N
p 570 Enterprise 9 5L V5.3 COM+


*** Bull Bull Escala 1,616,162 3.54 USD 12/16/07 IBM DB2 9.1 IBM AIX Microsoft 12/17/07 N
PL1660R 5L V5.3 COM+ 


8 IBM IBM eServer 1,601,784 5.05 USD 04/20/05 Oracle Database IBM AIX Microsoft 04/20/05 N
p5 595 10g Enterprise 5L V5.3 COM+ 


Edition


9 Fujitsu PRIMEQUEST 1,354,086 3.25 USD 11/22/08 Oracle Database Red Hat BEA 11/22/08 N
540A 16p/32c 10g release2 Enterprise Tuxedo 8.1


Enterprise Edt Linux 4 AS


10 NEC NEC 1,245,516 4.57 USD 04/30/08 Oracle Database Red Hat BEA 01/21/08 N
Express5800/ 10g R2 Enterprise Enterprise Tuxedo 8.1
1320Xf (16p/32c) Edt w/Partitioning Linux 4 AS


*** - Duplicate results are shown with an asterisk (*) in the Rank column. 
Note 1: The TPC believes it is not valid to compare prices or price/performance of results in different currencies.


(table 12.3)
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published by the
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Performance Council
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transactions per minute


(tpmC) as well as nor-


malized price/perfor-


mance ($/tpmC). This is


only a sample report.


For recent benchmark


results and details of


the testing conditions


used to generate this


report, please see the


TPC Web site


(www.tpc.org).


Reprinted with permis-


sion of the Transaction


Processing Performance


Council.
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Accounting


The accounting function of the operating system might seem a mundane subject, but
it’s not; it pays the bills and keeps the system financially operable. From a practical
standpoint, it might be one of the most important elements of the system.


Most computer system resources are paid for by the users. In the simplest case, that of
a single user, it’s easy to calculate the cost of the system. But in a multiuser environ-
ment, computer costs are usually distributed among users based on how much each
one uses the system’s resources. To do this distribution, the operating system must be
able to set up user accounts, assign passwords, identify which resources are available
to each user, and define quotas for available resources, such as disk space or maximum
CPU time allowed per job. At a university, for example, students are sometimes given
quotas that include maximum pages per job, maximum logon time, and maximum
number of jobs during a given period of time. To calculate the cost of the whole sys-
tem, the accounting program must collect information on each active user.


Pricing policies vary from system to system. Typical measurements include some or all
of the following:


• Total amount of time spent between job submission and completion. In interactive
environments this is the time from logon to logoff, also known as connect time.


• CPU time is the time spent by the processor executing the job.


• Main memory usage is represented in units of time, bytes of storage, or bytes of
storage multiplied by units of time—it all depends on the configuration of the oper-
ating system. For example, a job that requires 200K for 4 seconds followed by
120K for 2 seconds could be billed for 6 seconds of main memory usage, or 320K
of memory usage or a combination of K/second of memory usage computed as
follows:


[(200 * 4) + (120 * 2)] = 1040K/second of memory usage


• Secondary storage used during program execution, like main memory use, can be
given in units of time or space or both.


• Secondary storage used during the billing period is usually given in terms of the
number of disk tracks allocated.


• Use of system software includes utility packages, compilers, and/or databases.


• Number of I/O operations is usually grouped by device class: line printer, terminal,
and disks.


• Time spent waiting for I/O completion.


• Number of input records read, usually grouped by type of input device.


• Number of output records printed, usually grouped by type of output device.


• Number of page faults is reported in paging systems.
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Pricing policies are sometimes used as a way to achieve specific operational goals. By
varying the price of system services, users can be convinced to distribute their work-
load to the system manager’s advantage. For instance, by offering reduced rates during
off-hours, some users might be persuaded to run long jobs in batch mode inexpen-
sively overnight instead of interactively during peak hours. Pricing incentives can also
be used to encourage users to access more plentiful and cheap resources rather than
those that are scarce and expensive. For example, by putting a high price on printer
output, users might be encouraged to order a minimum of printouts.


Should the system give each user billing information at the end of each job or at the
end of each online session? The answer depends on the environment. Some systems
only give information on resource usage. Other systems also calculate the price of the
most costly items, such as CPU utilization, disk storage use, and supplies (i.e., paper
used on the printer) at the end of every job. This gives the user an up-to-date report of
expenses and, if appropriate, calculates how much is left in the user’s account. Some
universities use this technique to warn paying students of depleted resources.


The advantage of maintaining billing records online is that the status of each user can
be checked before the user’s job is allowed to enter the READY queue. 


The disadvantage is overhead. When billing records are kept online and an accounting
program is kept active, memory space is used and CPU processing is increased. One
compromise is to defer the accounting program until off-hours, when the system is
lightly loaded.


Conclusion


The operating system is more than the sum of its parts—it’s the orchestrated coopera-
tion of every piece of hardware and every piece of software. As we’ve shown, when
one part of the system is favored, it’s often at the expense of the others. So if a trade-
off must be made, the system’s managers must make sure they’re using the appropriate
measurement tools and techniques to verify the effectiveness of the system before and
after modification, and then evaluate the degree of improvement.


With this chapter we conclude Part One of this book and we’ve seen how
operating systems are alike. In Part Two we look at actual operating systems and
show how they’re different—and how each manages the components common to
all operating systems. In other words, we see how close reality comes to the con-
cepts learned so far.


392


Ch
ap


te
r 
12


 |
Sy


st
em


 M
an


ag
em


en
t


C7047_12_Ch12.qxd  1/12/10  5:17 PM  Page 392








Key Terms


availability: a resource measurement tool that indicates the likelihood that the
resource will be ready when a user needs it. It’s influenced by mean time between fail-
ures and mean time to repair.


benchmarks: a measurement tool used to objectively measure and evaluate a system’s
performance by running a set of jobs representative of the work normally done by a
computer system.


capacity: the maximum throughput level of any one of the system’s components.


feedback loop: a mechanism to monitor the system’s resource utilization so adjust-
ments can be made.


mean time between failures (MTBF): a resource measurement tool; the average time
that a unit is operational before it breaks down.


mean time to repair (MTTR): a resource measurement tool; the average time needed
to fix a failed unit and put it back in service.


negative feedback loop: a mechanism to monitor the system’s resources and, when it
becomes too congested, to signal the appropriate manager to slow down the arrival
rate of the processes.


patch: executable software that repairs errors or omissions in another program or
piece of software.


patch management: the timely installation of software patches to make repairs and
keep the operating system software current.


positive feedback loop: a mechanism used to monitor the system. When the system
becomes underutilized, the feedback causes the arrival rate to increase.


reliability: a standard that measures the probability that a unit will not fail during a
given time period. It’s a function of mean time between failures.


resource utilization: a measure of how much each unit is contributing to the overall
operation of the system.


response time: a measure of an interactive system’s efficiency that tracks the speed
with which the system will respond to a user’s command.


service pack: a term used by some vendors to describe an update to customer software
to repair existing problems and/or deliver enhancements.


throughput: a composite measure of a system’s efficiency that counts the number of
jobs served in a given unit of time.


turnaround time: a measure of a system’s efficiency that tracks the time required to
execute a job and return output to the user.
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Interesting Searches
• Performance Monitoring


• System Benchmarks


• Critical OS Patches


• MTBF and Reliability


• Computer System Auditing


• Memory Leaks


Exercises


Research Topics


A. Visit the Web site of a major operating system vendor and identify the patches that
were issued in the last 12 months. For each patch, find its criticality and size. Then,
as if you were assigned the task of installing these patches, decide the timing for
their installation. How many would you install immediately and which ones could
wait for the next patch cycle (assuming a four-per-year cycle)? Cite your sources.


B. Research the current literature to find availability statistics for a server farm or
other collection of servers that supports a Web site. List the primary operating sys-
tems used and the calculated availability of the system as a whole. Mention whether
planned outages are included (or not) in the availability statistics. Cite your sources.


Exercises


1. Describe how a bank manager might use a positive feedback loop to direct
waiting customers to five loan officers, being careful to minimize waiting time
for customers and maximize the speed of loan processing. Include a description
of how you would monitor the system and measure its success.


2. Describe how you would use a negative feedback loop to manage your bank
balance. Describe how you would do so with a positive feedback loop. Explain
which you would prefer and why.


3. Remembering that there’s a trade-off between memory use and CPU overhead,
give an example where increasing the size of virtual memory will improve job
throughput. Then give an example where doing so will cause throughput to suffer.


4. Imagine that you are managing a university system that becomes CPU-bound
at the conclusion of each school semester. What effect on throughput would
you expect if you were allowed to double the number of processors? If you
could make one more change to the system, what would it be?


5. Imagine that you are managing the system for a consulting company that
becomes I/O-bound at the end of each fiscal year. What effect on throughput


394


Ch
ap


te
r 
12


 |
Sy


st
em


 M
an


ag
em


en
t


C7047_12_Ch12.qxd  1/12/10  5:17 PM  Page 394








would you expect if you were allowed to double the number of processors? If
you could make one more change to the system, what would it be?


6. Using the information given in Figure 12.1, calculate I/O access speed using
CPU 1 and each of the four disk drives as they evaluate the following track
requests in this order: 0, 31, 20, 15, 20, 31, 15. Then, in each case, calculate
the access speeds after the track requests were reordered and rank the four disk
drives before and after reordering.


7. Describe how you would convince a coworker to better manage a personal
computer by performing regular backups and keep the system patches current.


8. Compare and contrast availability and reliability. In your opinion, which is
more important to a system manager? Substantiate your answer.


9. Calculate the availability of a server with an MTBF of 80 hours and an MTTR
of 3 days (72 hours).


10. Calculate the reliability of a hard disk drive with an MTBF of 1,050 hours dur-
ing the last 40 hours of this month. Assume e = 2.71828 and use the formula:


Reliability(t) = e–(1/MTBF)(t)


Advanced Exercises


11. Calculate the availability of a hard disk drive with an MTBF of 1,050 hours
and an MTTR of 8 hours.


12. Calculate the availability of a server with an MTBF of 28 weeks and an MTTR
of 504 hours.


13. In this chapter, we described the trade-offs among all the managers in the oper-
ating system. Study a system to which you have access and, assuming you have
sufficient funds to upgrade only one component for the system, explain which
component you would choose to upgrade to improve overall system perfor-
mance, and explain why. 


14. Perform a software inventory of your computer system to identify all applications
resident on the computer. If you have more than a dozen applications, choose 12
of them and check each for patches that are available for your software. For each
vendor, identify how many patches are available for your software, the number of
critical patches, and what patch cycle you would recommend for that vendor’s
patches: annual, quarterly, monthly, or weekly updates.


15. Perform an inventory of your computer system (similar to the one shown in
Figure 12.6) to discover how many processes are active when it is connected to
the Internet. What is the total number of processes currently running? For
which processes can you identify the application? How many processes are
linked to applications that you cannot identify? Discuss how the unidentifiable
processes pose a challenge regarding effective system administration and what
you would do to address this challenge.
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Thus far in this text, we’ve explored how operating system software works in theory—
the roles of the Memory Manager, Processor Manager, Device Manager, File Manager,
and Network Manager. To do so, we’ve underplayed the intricate choreography
required by all managers as they work together to accomplish even the simplest tasks.
We’ve also described operating systems in their most basic form—operating systems
running relatively simple hardware configurations.


In the second part of this book, we explore operating systems in practice by becoming
acquainted with a few of the most popular operating systems. The following chapters
each describe one operating system; the chapters are presented in the order in which
the software was released. The four operating systems described here are all histori-
cally significant—three continue to be widely adopted. 


For each chapter in Part Two, our discourse includes the history of the operating sys-
tem’s development; its design goals; the unique properties of its submanagers; and its
user interface, the portion of the operating system that interacts with users. The user
interface commands and formats vary from system to system, as shown in the exam-
ples presented in this section. The user interface is probably the most unique compo-
nent of an operating system, which is why it hasn’t been presented until now.


The history of an operating system’s development often illustrates its intrinsic
strengths and weaknesses. For instance, a system that evolved from a rudimentary sin-
gle-user system to a multifunctional multiuser system might perform simple tasks well
but struggle when trying to meet the needs of a large computing environment. On the
other hand, an elegant mainframe system that was later scaled down might excel at
complex tasks but prove overdesigned and cumbersome when executing tasks in the
smaller environment.


Our discussion in this part cannot serve as an in-depth evaluation of any operating
system, but it does present each system in a standard format to help you compare their
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relative strengths and weaknesses. To begin, Table 1 demonstrates a few of the signifi-
cant events in operating system software during the past 50 years.


Operating System Approximate Date Significance


OS/PCP 1964 Primary Control Program (PCP). Designed by
(IBM) IBM to run on the IBM 360 computer; it


was a batch, single-task operating system.


OS/MVT 1967 Multiprogramming with a variable number
(IBM) of tasks (MVT). Descendant of IBM’s PCP;


introduced spooling; used dynamic memory
management.


UNIX 1969 Ken Thompson wrote first version of UNIX.


UNIX 1971 Based on MULTICS; introduced shell
(AT&T) concept, written in assembly language to 


run on DEC’s PDP-11 computer.


VM 1973 IBM introduced the virtual machine (VM)
(IBM) concept. Built for the IBM 370 computer.


MVS 1974 Multiple virtual storage system (MVS) for
(IBM) IBM computers.


CP/M 1975 Control Program/Microcomputer (CP/M). First
operating system for small computers (PCs)
sold commercially.


VMS 1978 Written specifically for the VAX-11 computer
(DEC) to take best advantage of its architecture.


MS-DOS 1981 First operating system for the IBM PC
(Microsoft) family of computers. Version 1 was CP/M


compatible and supported only one
directory.


UNIX System III 1981 First version of UNIX available for use on a
(AT&T) mainframe.


Mac OS 1984 The first widely distributed operating system
(Apple) with a graphical user interface. Also intro-


duced was the mouse for home computers.


Windows 3.0 1990 First usable version of a Windows graphical
(Microsoft) user interface for the PC. Required MS-DOS


operating system.


Linux 1991 Linus Torvalds released the Linux kernel.


OpenVMS Alpha 1992 Introduced 64-bit addressing, multiple
(DEC) compilers, and networks for the Alpha


system.


Novell UnixWare 1993 Novell’s version of UNIX System V release 4, 
designed to work with NetWare.


FreeBSD 2 (UNIX) 1994 A full 32-bit operating system for Intel 
(freeBSD.org) chips: 386, 486, and Pentium class.


(table 1)


Selected operating


systems and selected


releases demonstrating


the evolution of operating


systems software.
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Operating System Approximate Date Significance


Solaris 1994 Sun’s version of UNIX designed to run on
(Sun Microsystems) Sun workstations, derived from AT&T’s UNIX


System V, Release 4.


Linux 1.0 1995 First non-beta release of Linux by Red Hat.
(Red Hat)


Windows 95 1995 For PC users. The first true Windows 
(Microsoft) operating system. Technically, Windows 95


was not related to Windows NT, which had
networking capabilities.


Linux 3.0.3 1996 The first approximately concurrent multi-
(Red Hat) architecture release; it supported the Digital


Alpha platform.


OS/390, ver 2 1997 Scalable transaction-processing capability,
(IBM) batch workload scheduler, firewall security,


enhanced e-commerce capability.


OpenVMS Alpha, 1997 Designed for very large memory
version 7 (DEC) applications on the Alpha system.


Windows 98 1998 For PC users. More extended hardware sup-
port and fully 32-bit. Not directly related to
Windows NT.


Windows 2000 1999 For networks. The kernel contained 45 mil-
lion lines of code, compared to 15 million
for Windows NT. Not directly related to
Windows 95 or Windows 98.


FreeBSD 4 2000 Improved file management system and 
(freeBSD.org) security features.


Windows XP 2001 Home version was successor to Windows 95 
(Microsoft) and Windows 98 for individual users.


Pro version available in 32-bit and 64-bit
versions.


Mac OS X 10.0 2001 Combined a UNIX-based core with 
(Apple) Macintosh graphics and a new GUI.


Fedora Core 1 2003 Linux product based on Red Hat Linux 9;
created by the Fedora Project in coopera-
tion with Red Hat, Inc.


FreeBSD 6.0 2005 Multithreaded file system, expanded sup-
port for wireless technology.


FreeBSD 6.2 2007 Stability improvement, GUI updates.


Windows Vista 2007 New security and new performance 
(Microsoft) features.


Fedora 7 2007 New name. Allowed customization. Widened
accessibility by contributors in Fedora
community.
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Operating System Approximate Date Significance


Mac OS X 10.5 2007 UNIX-based system allowing 64-bit 
(Apple) processing with compatibility for existing


32-bit Mac OS X applications and drivers.


RHEL 5 2007 Improved performance, security, and 
(Red Hat) flexibility, with storage virtualization.


FreeBSD 6.4 2008 Allows linear scalability to over eight CPU 
cores. Enhanced wireless support.


Fedora 11 2009 Fast boot-up (20 sec.) from power on to 
fully operational system. Can handle files 
up to 16TB.


Mac OS X 10.6 Server 2009 The 64-bit kernel increases the total 
(Apple) number of simultaneous system processes, 


threads, and network connections for the 
server to use. Supports the standard LP64 
data model, so that code written for other 
64-bit UNIX-based systems can be ported to 
Mac OS X Server.


Windows 7 2009 A 64-bit operating system with usability and 
(Microsoft) networking improvements over Windows 


Vista.
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“UNIX is simple. It just takes a genius to understand its simplicity.”
—Dennis Ritchie


Learning Objectives


After completing this chapter, you should be able to describe:


• The goals of UNIX designers


• The significance of using files to manipulate devices


• The strengths and weaknesses of having competing versions of UNIX


• The advantages of command-driven user interfaces


• The roles of the Memory, Processor, Device, and File Managers in UNIX
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Unlike many operating systems, UNIX isn’t limited to specific computers using a par-
ticular microprocessor as a CPU. There are many versions of UNIX and they run on
all sizes of computers using a wide range of microprocessors. In addition, current ver-
sions of many other operating systems have been revised to include the capability to
run UNIX applications and connect smoothly with UNIX networks.


Linux (discussed in Chapter 16) and UNIX are different operating systems but they
strongly resemble each other in many ways. And while UNIX was written several
decades earlier, Linux and UNIX now compete as peers in almost every market. Since
2001 when Apple introduced the Macintosh OS X operating system, based on the
FreeBSD version of UNIX, the company has advertised that its operating system is
based on a proven and powerful UNIX foundation (Apple, 2009). The continuing
competition and cooperation between these two operating systems are likely to play
out in the marketplace for years to come.


Overview


UNIX (authored by Ken Thompson) has three major advantages: it is portable from large
systems to small systems, it has very powerful utilities, and it provides a device indepen-
dence to application programs. Its portability is attributed to the fact that most of it is
written in a high-level language, C (authored by Dennis Ritchie), instead of assembly lan-
guage. The utilities are brief, single-operation commands that can be combined in a single
command line to achieve almost any desired result—a feature that many programmers
find endearing. And it can be configured to operate virtually any type of device.


Throughout our discussion of UNIX we’ll describe AT&T’s version unless otherwise
specified. Note: UNIX is case sensitive and strongly oriented toward lowercase char-
acters, which are faster and easier to type. Therefore, throughout this chapter all file-
names and commands are shown in lowercase.


History


The evolution of UNIX, summarized in Table 13.1, starts with a research project that
began in 1965 as a joint venture between Bell Laboratories (the research and development
group of AT&T), General Electric, and MIT (Massachusetts Institute of Technology).


When Bell Laboratories withdrew from the project in 1969, AT&T management
decided not to undertake the development of any more operating systems—but that
didn’t stop two young veterans of the project, Ken Thompson and Dennis Ritchie.
Some people say they needed a new operating system to support their favorite com-
puter game. Regardless of their reasons for developing it, UNIX grew to become one
of the most widely used operating systems in history.
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Year Release Features


1969 — Ken Thompson wrote first version of UNIX


1971 UNIX V1 Based on MULTICS; introduced shell con-
cept, written in assembly language


1975 UNIX V6 First version to become widely available to
industry and academia


1980 UNIX System III First version used in 16-bit microcomputers


1984 UNIX System V Added features from Berkeley version:
Release 2 shared memory, more commands, vi editor,


termcap database, flex filenames


1991 UNIX System V Combined features from BSD, SunOS,
Release 4 and Xenix


1991 Solaris 1.0 Sun’s version designed to run on Sun
workstations, derived from AT&T’s UNIX
System V, Release 4


1994 Single UNIX Separates the UNIX trademark from
Specification 1 actual code stream, opening the door to


standardization


1997 Single UNIX Adds support for real-time processing,
Specification 2 threads, and 64-bit processors


2000 FreeBSD 4 Improved file management system and 
security features


2001 Single UNIX Unites IEEE POSIX and industry efforts
Specification 3 to standardize


2001 Mac OS X Apple combined a UNIX-based core with
Macintosh graphics and GUI


2003 ISO/IEC International standard approved for the
9945 core volumes of Single UNIX Specification


Version 3


2005 FreeBSD 6.0 Multithreaded file system, expanded 
support for wireless technology


2007 Mac OS X 10.5 Allows 64-bit processing with compatibility 
for existing 32-bit Mac OS X applications 
and drivers


2008 FreeBSD 6.4 Allows linear scalability to over eight CPU 
cores; enhanced wireless support


2009 Mac OS X 10.6 Server The 64-bit kernel increases the total 
number of simultaneous system processes, 
threads, and network connections for the 
server to use; supports the standard LP64 
data model, so that code written for other 
64-bit UNIX-based systems can be ported to 
Mac OS X Server
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The historical roots of


UNIX and some of its


features and


modifications. For current


information about the


history of UNIX, see


www.theopengroup.org.


✔
Berkeley UNIX
isn’t included in
Table 13.1; it was
originally
developed from
Version 7,
although some
features from the
Berkeley version
were later
integrated into
System V, such as
the fast file
system, demand
paged memory
management,
networking,
C shell, Vi, and
others.
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The Evolution of UNIX


Thompson and Ritchie originally wrote UNIX in assembly language for a Digital
Equipment Corporation PDP-7 computer. It was named “UNIX” by a colleague, Brian
Kernighan, as a play on words from MULTICS.


The first official version, presented in 1971 by Thompson and Ritchie, was designed
to “do one thing well” and run on a popular DEC minicomputer. Before long, UNIX
became known as a formidable operating system. For Version 3, Ritchie took the inno-
vative step of developing a new programming language, called C, and wrote a com-
piler for the C language, which made it easier and faster for system designers to write
code.


As UNIX grew in fame and popularity (see Figure 13.1 for an example), AT&T
found itself in a difficult situation. At the time it was forbidden by U.S. federal
government antitrust regulations to sell software—but it could, for a nominal fee,
make the operating system available first to universities and later to independent
developers who, in turn, transformed it into a commercial product. Between
1973 and 1975, several improved versions were developed—the most popular ver-
sion was developed at the University of California at Berkeley and it became
known as BSD. Its popularity in universities created a demand for it in business and
industry.
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(figure 13.1)


UNIX is a registered


trademark of The Open


Group. Graphic


supplied courtesy of


The Open Group.


AT&T entered the computer industry by offering a line of personal computers pow-
ered by UNIX System V—its version of UNIX with additional features from the
Berkeley version. At that time, AT&T tried to promote its version of UNIX as the
standard version, but by then UNIX had already been adopted and adapted by too
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many designers for too many computers. By 1990 there were about two dozen versions
of UNIX, among them AT&T’s UNIX System V; A/UX (UNIX System V for the
Macintosh II); Ultrix (UNIX for DEC’s VAX system); Microsoft’s Xenix (a UNIX-based
operating system for microcomputers using Intel processors); and the University of
California at Berkeley’s UNIX Versions 4.1 bsd, 4.2 bsd, and 4.3 bsd. Berkeley UNIX is
an expanded version of AT&T’s Version 7. It was designed originally to run on VAX
computers and became quite popular in many academic circles. Although it was a UNIX
derivative, in some areas, such as file system structure and network software, it was very
different from AT&T’s System V Release 1.


In 1991, IBM and Hewlett-Packard were among the companies that established The
Open Group, which owns the trademark to the name UNIX, and created a standard
version of the operating system.


By 1993 Berkeley released 4.4 bsd based on AT&T’s UNIX, requiring customers to
obtain licenses from AT&T to use it. Shortly thereafter, Novell acquired UNIX from
AT&T and released its own version called UnixWare designed to interact with Novell’s
NetWare system.


The original “do one thing well” position of the early commands has been modified in
current releases, and recent commands offer many options and controls. This factor
has pros and cons—although some commands may be more difficult to use, they can
be adapted to new situations with relative ease. In essence, the key features of the early
systems, such as pipelines, have been preserved, while the potential of the commands
has increased to meet new needs.


UNIX offers full support for local area networks and complies with international
operating system standards. In addition, system security has been greatly improved
and meets many of the U.S. government security requirements. Most UNIX systems
feature a graphical user interface designed to give UNIX systems a standard look.


To resolve the issue of multiple standards, a problem that has plagued UNIX from its
beginnings, the industry continues to try to standardize to improve portability of pro-
grams from one system to another. The release of ISO/IEC 9945:2003 was a big step
in that direction, with more progress expected in the years to come.


Design Goals


From the beginning, Thompson and Ritchie envisioned UNIX as an operating system
created by programmers for programmers. It was to be fast, flexible, and easy to use.
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✔
Some of the UNIX
commands seem
cryptic to users
unfamiliar with the
operating system.
For example,
grep is the
command to find
a specified string
of characters in
a file.
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The immediate goals were twofold: to develop an operating system that would
support software development, and to keep its algorithms as simple as possible (with-
out becoming rudimentary). To achieve their first goal, they included utilities in the
operating system for which programmers at the time needed to write customized code.
Each utility was designed for simplicity—to perform only one function but to perform
it very well. These utilities were designed to be used in combination with each other so
that programmers could select and combine any appropriate utilities that might be
needed to carry out specific jobs. This concept of small manageable sections of code
was a perfect fit with the second goal: to keep the operating system simple. To do this,
Thompson and Ritchie selected the algorithms based on simplicity instead of speed or
sophistication. As a result, UNIX can be mastered by experienced programmers in a
matter of weeks.


The designers’ long-term goal was to make the operating system, and any application
software developed for it, portable from one computer to another. The obvious advan-
tage of portability is that it reduces conversion costs and doesn’t cause application
packages to become obsolete with every change in hardware. This goal was finally
achieved with UNIX Version 4 because it was device independent—an innovation at
the time.


Numerous versions of UNIX meet the additional design element of conforming to the
specifications for Portable Operating System Interface for Computer Environments
(POSIX) (a registered trademark of the IEEE). POSIX is a family of IEEE standards that
define a portable operating system interface to enhance the portability of programs from
one operating system to another.


Memory Management


For multiprogramming systems, most UNIX operating systems use either swapping or
demand paging (or both) memory management techniques. The best choice depends
on the kind of applications that will run on the system: if most jobs are small then
swapping could be the best choice, but if the system will be running many large jobs
then demand paging is best.


Swapping requires that the entire program be in main memory before it can be executed,
and this imposes a size restriction on programs. For example, if there is 256MB of mem-
ory and the operating system takes up half of it (125MB), then the size of the programs
must be less than the remaining 125MB. Swapping uses a round robin policy—when a
job’s time slice is up, or when it generates an I/O interrupt, the entire job is swapped
out to secondary storage to make room for other jobs waiting in the READY queue.
That’s fine when there are relatively few processes in the system, but when traffic is
heavy this swapping back and forth can slow down the system.
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Demand paging requires more complicated hardware configurations; it increases the
system overhead and under heavy loads might lead to thrashing. But it has the advan-
tage of implementing the concept of virtual memory.


Figure 13.2 shows the typical internal memory layout for a single user-memory part image.
An image is an abstract concept that can be defined as a computer execution environment
composed of a user-memory part (all of which is depicted in Figure 13.2), general register
values, status of open files, and current directory. This image must remain in memory dur-
ing execution of a process.
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In Figure 13.2, the segment called program code is the sharable portion of the pro-
gram. Because this code can be physically shared by several processes, it must be writ-
ten in reentrant code. This means that the code is protected so that its instructions
aren’t modified in any way during its normal execution. In addition, all data references
are made without the use of absolute physical addresses.


The Memory Manager gives the program code special treatment. Because several
processes will be sharing it, the space allocated to the program code can’t be released
until all of the processes using it have completed their execution. UNIX uses a text
table to keep track of which processes are using which program code, and the memory
isn’t released until the program code is no longer needed. The text table is explained in
more detail in the next section on Processor Management.


The data segment shown in Figure 13.2 starts after the program code and grows
toward higher memory locations as needed by the program. The stack segment starts
at the highest memory address and grows downward as subroutine calls and interrupts
add information to it. A stack is a section of main memory where process information
is saved when a process is interrupted, or for temporary storage. The data and stack
are nonsharable sections of memory, so when the original program terminates the
memory, space is released.


Stack


Data


Program Code


Highest Memory Addresses


Lowest Memory Addresses


0


(figure 13.2)


This is how the user-


memory part of an image


is stored in main memory.
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The UNIX kernel, which permanently resides in memory, is the part of the operating
system that implements the “system calls” to set up the memory boundaries so several
processes can coexist in memory at the same time. The processes also use system calls
to interact with the File Manager and to request I/O services.


The kernel is the set of programs that implements the most primitive of that system’s
functions, and it’s the only part of the operating system to permanently reside in
memory. The remaining sections of the operating system are handled in the same
way as any large program. That is, pages of the operating system are brought into
memory on demand, only when they’re needed, and their memory space is released
as other pages are called. UNIX uses the least recently used (LRU) page replacement
algorithm.


Although we’ve directed this discussion to large multiuser computer systems, UNIX
uses the same memory management concepts for networked computers and single-
user systems. For example, a single computer with a UNIX operating system,
using a demand paging scheme, can support multiple users in a true multitasking
environment.


With the 64-bit addressing architecture in modern UNIX versions, including the Mac
OS X, the operating system can make much faster system calls, which, in turn,
improves the performance of I/O applications and network response. The 64-bit
addressing scheme is one shared by most operating systems as of this writing.


Process Management


The Processor Manager of a UNIX system kernel handles the allocation of the CPU,
process scheduling, and the satisfaction of process requests. To perform these tasks,
the kernel maintains several important tables to coordinate the execution of processes
and the allocation of devices.


Using a predefined policy, the Process Scheduler selects a process from the READY
queue and begins its execution for a given time slice. Remember, as we discussed in
Chapter 4, the processes in a time-sharing environment can be in any of five states:
HOLD, READY, WAITING, RUNNING, or FINISHED.


The process scheduling algorithm picks the process with the highest priority to be run
first. Since one of the values used to compute the priority is accumulated CPU time,
any processes that have used a lot of CPU time will get a lower priority than those that
have not. The system updates the compute-to-total-time ratio for each job every sec-
ond. This ratio divides the amount of CPU time that a process has used up by the total
time the same process has spent in the system. A result close to 1 would indicate that
the process is CPU-bound. If several processes have the same computed priority,
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they’re handled round-robin (low-priority processes are preempted by high-priority
processes). Interactive processes typically have a low compute-to-total-time ratio, so
interactive response is maintained without any special policies.


The overall effect of this negative feedback is that the system balances I/O-bound jobs
with CPU-bound jobs to keep the processor busy and to minimize the overhead for
waiting processes.


When the Processor Manager is deciding which process from the READY queue will
be loaded into memory to be run first, it chooses the process with the longest time
spent on the secondary storage.


When the Processor Manager is deciding which process (currently in memory and
waiting or ready to be run) will be moved out temporarily to make room for a new
arrival, it chooses the process that’s either waiting for disk I/O or that’s currently idle.
If there are several processes to choose from, the one that has been in memory the
longest is moved out first.


If a process is waiting for the completion of an I/O request and isn’t ready to run when
it’s selected, UNIX will dynamically recalculate all process priorities to determine
which inactive but ready process will begin execution when the processor becomes
available.


These policies seem to work well and don’t impact the running processes. However, if
a disk is used for secondary file storage as well as a “swapping area,” then heavy traf-
fic can significantly slow disk I/O because job swapping may take precedence over file
storage.


Process Table Versus User Table


UNIX uses several tables to keep the system running smoothly, as shown in Figure 13.3.
Information on simple processes, those with nonsharable code, is stored in two sets of
tables: the process table, which always resides in memory, and the user table, which
resides in memory only while the process is active. In Figure 13.3, Processes P3 and P4
show the same program code indicated in the text table by the number 2. Their data
areas and user tables are kept separate while the code area is being shared. Process P5
isn’t sharing its code with another process; therefore, it’s not recorded in the text table,
and its data and code area are kept together as a unit.
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Each entry in the process table contains the following information: process identifica-
tion number, user identification number, process memory address or secondary stor-
age address, size of the process, and scheduling information. This table is set up when
the process is created and is deleted when the process terminates.


For processes with sharable code, the process table maintains a subtable, called the
text table, which contains the following information: memory address or secondary
storage address of the text segment (sharable code) and a count to keep track of the
number of processes using this code. Every time a process starts using this code, the
count is increased by 1; and every time a process stops using this code, the count is
decreased by 1. When the count is equal to 0, the code is no longer needed and the
table entry is released together with any memory locations that had been allocated to
the code segment.
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and P4. Therefore, the count is 2.
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Data Area


Data Area


Data and 
Code Area


P5 User Table


P4 User Table


P3 User Table
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Code Area


P5 does not have sharable code.
Therefore, it has no entry in
the Text Table and doesn’t have 
separate areas for code data.


(figure 13.3)


The process control


structure showing how the


process table and text


table interact for


processes with sharable


code, as well as for those


without sharable code.
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A user table is allocated to each active process. This table is kept in the transient area
of memory as long as the process is active, and contains information that must be
accessible when the process is running. This information includes: the user and group
identification numbers to determine file access privileges, pointers to the system’s file
table for every file being used by the process, a pointer to the current directory, and a
list of responses for various interrupts. This table, together with the process data seg-
ment and its code segment, can be swapped into or out of main memory as needed.


Synchronization


UNIX is a true multitasking operating system. It achieves process synchronization by
requiring that processes wait for certain events. For example, if a process needs more
memory, it’s required to wait for an event associated with memory allocation. Later,
when memory becomes available, the event is signaled and the process can continue.
Each event is represented by integers that, by convention, are equal to the address of
the table associated with the event.


A race may occur if an event happens during the process’s transition between deciding
to wait for the event and entering the WAIT state. In this case, the process is waiting
for an event that has already occurred and may not recur.


fork


An unusual feature of UNIX is that it gives the user the capability of executing one
program from another program using the fork command. This command gives the sec-
ond program all the attributes of the first program, such as any open files, and saves
the first program in its original form.


The system call fork splits a program into two copies, which are both running from
the statement after the fork command. When fork is executed, a “process id” (called
pid for short) is generated for the new process. This is done in a way that ensures that
each process has its own unique ID number. Figure 13.4 shows what happens after the
fork. The original process (Process 1) is called the parent process and the resulting
process (Process 2) is the child process. A child inherits the parent’s open files and runs
asynchronously with it unless the parent has been instructed to wait for the termina-
tion of the child process.
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wait


A related command, wait, allows the programmer to synchronize process execution
by suspending the parent until the child is finished, as shown in Figure 13.5.


412


Ch
ap


te
r 
13


 |
U
N
IX


 O
pe


ra
tin


g 
Sy


st
em


Before fork
Parent


After fork


Child


Executing


Executing Executing


Process 1
Code Area


Process 1
Code Area


Process 2
Code Area


Newly created


Process 1
Data Area


Process 1
Data Area


Process 2
Data Area


(a) (b)


statement 1
fork
statement 2


statement 1
fork
statement 2


statement 1
fork
statement 2


(figure 13.4)


When the fork command is


received, the parent


process shown in (a)


begets the child process


shown in (b) and


Statement 2 is executed


twice.
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(figure 13.5)


The wait command used in


conjunction with the fork


command will synchronize


the parent and child


processes. In (a) the


parent process is shown


before the fork, (b) shows


the parent and child after


the fork, and (c) shows the


parent and child during


the wait.
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In Figure 13.5, the IF-THEN-ELSE structure is controlled by the value assigned to the
pid, which is returned by the fork system call. A pid greater than 0 indicates a parent
process, a pid equal to 0 indicates a child process, and a negative pid indicates an error
in the fork call.


exec


The exec family of commands—execl, execv, execle, execlp, and execvp—is used to
start execution of a new program from another program. Unlike fork, which results in
two processes running the same program being in memory, a successful exec call will
lay the second program over the first, leaving only the second program in memory.
The second program’s code and data are now part of the original process whose pid
does not change.


Notice that there’s no return from a successful exec call; therefore, the concept of par-
ent-child doesn’t hold here. However, a programmer can use the fork, wait, and exec
commands in this order to create a parent-child relationship and then have the child
be overlaid by another program that, when finished, awakens the parent so that it can
continue its execution, as shown in Figure 13.6.
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program after the exec
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The ls command can generate a listing of the current directory. When the exec ls sys-
tem call has been executed successfully, processing begins at the first line of the ls pro-
gram. Once the ls program is finished in the child, control returns to the executable
statement following wait in the parent process.


These system calls illustrate the flexibility of UNIX that programmers find extremely
useful. For example, a child process can be created to execute a program by the parent
process, as was done in Figure 13.6, without requiring the programmer to write code
to load or find memory space for a separate program (in this case, the ls program).


Device Management


An innovative feature is the treatment of devices—UNIX is designed to provide device
independence to the applications running under it. This is achieved by treating each
I/O device as a special type of file. Every device that’s installed in a UNIX system is
assigned a name that’s similar to the name given to any other file, which is given
descriptors called iodes. These descriptors identify the devices, contain information
about them, and are stored in the device directory. The subroutines that work with the
operating system to supervise the transmission of data between main memory and a
peripheral unit are called the device drivers.


If the computer system uses devices that are not supplied with the operating system,
their device drivers must be written by an experienced programmer or obtained from
a reliable source and installed on the operating system.


The actual incorporation of a device driver into the kernel is done during the system
configuration. UNIX has a program called config that will automatically create a
conf.c file for any given hardware configuration. This conf.c file contains the parame-
ters that control resources such as the number of internal buffers for the kernel and
the size of the swap space. In addition, the conf.c file contains two tables, bdevsw
(short for block device switch) and cdevsw (short for character device switch), which
provide the UNIX system kernel with the ability to adapt easily to different hardware
configurations by installing different driver modules.


Device Classifications


The I/O system is divided into the block I/O system (sometimes called the structured
I/O system) and the character I/O system (sometimes called the unstructured I/O
system).


Each physical device is identified by a minor device number, a major device number,
and a class—either block or character—as shown in Figure 13.7.
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Each class has a Configuration Table that contains an array of entry points into the
device drivers. This table is the only connection between the system code and the
device drivers, and it’s an important feature of the operating system. This table allows
the system programmers to create new device drivers quickly to accommodate differ-
ently configured system. The major device number is used as an index to the array to
access the appropriate code for a specific device driver.


The minor device number is passed to the device driver as an argument and is used to
access one of several identical or similar physical devices controlled by the driver.


As its name implies, the block I/O system is used for devices that can be addressed as a
sequence of identically sized blocks. This allows the Device Manager to use buffering
to reduce the physical disk I/O. UNIX has from 10 to 70 buffers for I/O, and informa-
tion related to these buffers is kept on a list.


Every time a read command is issued, the I/O buffer list is searched. If the requested data
is already in a buffer, then it’s made available to the requesting process. If not, then it’s
physically moved from secondary storage to a buffer. If a buffer is available, the move is
made. If all buffers are busy, then one must be emptied out to make room for the new
block. This is done by using a least recently used (LRU) policy, so the contents of fre-
quently used buffers will be left intact, which, in turn, should reduce physical disk I/O.


Devices in the character class are handled by device drivers that implement character
lists. Here’s how it operates: a subroutine puts a character on the list, or queue, and
another subroutine retrieves the character from the list.


A terminal is a typical character device that has two input queues and one output queue.
The two input queues are labeled the raw queue and the canonical queue. It works like
this: As the user types in each character, it’s collected in the raw input queue. When the
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line is completed and the Enter key is pressed, the line is copied from the raw input
queue to the canonical input queue, and the CPU interprets the line. Similarly, the sec-
tion of the device driver that handles characters going to the output module of a termi-
nal stores them in the output queue until it holds the maximum number of characters.


The I/O procedure is synchronized through hardware completion interrupts. Each
time there’s a completion interrupt, the device driver gets the next character from the
queue and sends it to the hardware. This process continues until the queue is empty.
Some devices can actually belong to both classes: block and character. For instance,
disk drives and tape drives can be accessed in block mode using buffers or the system
can bypass the buffers when accessing the devices in character mode.


Device Drivers


Each device has a special section in the kernel, called a device driver. Device drivers for
disk drives use a seek strategy to minimize the arm movement, as explained in Chapter 7.


Device drivers are kept in a set of files that can be included as needed. When upgrades are
made to peripherals, small changes to the device driver file can be linked into the kernel to
keep the operating system apprised of the new features and capabilities. Although device
files may be kept anywhere on the file system, by default and convention they are kept in
the /dev directory. Keeping them in this directory clearly marks them as device files.


The Mac OS X operating system has built-in support for RAID 0, RAID 1, RAID 01,
and RAID 10, as shown in Figure 13.8. 
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Establishing a mirrored RAID


set using Mac OS X.
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File Management


UNIX has three types of files: directories, ordinary files, and special files. Each file
enjoys certain privileges.


Directories are files used by the system to maintain the hierarchical structure of the file
system. Users are allowed to read information in directory files, but only the system is
allowed to modify directory files.


Ordinary files are those in which users store information. Their protection is based on
a user’s requests and related to the read, write, execute, and delete functions that can
be performed on a file.


Special files are the device drivers that provide the interface to I/O hardware.
Special files appear as entries in directories. They’re part of the file system, and
most of them reside in the /dev directory. The name of each special file indicates the
type of device with which it’s associated. Most users don’t need to know much
about special files, but system programmers should know where they are and how
to use them.


UNIX stores files as sequences of bytes and doesn’t impose any structure on them.
Therefore, text files (those written using an editor) are strings of characters with lines
delimited by the line feed, or new line, character. On the other hand, binary files (those
containing executable code generated by a compiler or assembler) are sequences of
binary digits grouped into words as they will appear in memory during execution of
the program. Therefore, the structure of files is controlled by the programs that use
them, not by the system.


The UNIX file management system organizes the disk into blocks of 512 bytes each
and divides the disk into four basic regions: 


• The first region (starting at address 0) is reserved for booting.


• The second region, called a superblock, contains information about the disk as a
whole, such as its size and the boundaries of the other regions.


• The third region includes a list of file definitions, called the i-list, which is a list of
file descriptors, one for each file. The descriptors are called i-nodes. The position of
an i-node on the list is called an i-number, and it is this i-number that uniquely iden-
tifies a file. 


• The fourth region holds the free blocks available for file storage. The free blocks are
kept in a linked list where each block points to the next available empty block.
Then, as files grow, noncontiguous blocks are linked to the already existing
chain.
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Whenever possible, files are stored in contiguous empty blocks. And since all disk
allocation is based on fixed-size blocks, allocation is very simple and there’s no need
to compact the files.


Each entry in the i-list is called an i-node (also spelled inode) and contains 13 disk
addresses. The first 10 addresses point to the first 10 blocks of a file. However, if a file
is larger than 10 blocks, the eleventh address points to a block that contains the
addresses of the next 128 blocks of the file. For larger files, the twelfth address points
to another set of 128 blocks, each one pointing to 128 blocks. For files larger than
8 MB, there is a thirteenth address allowing for a maximum file size of over 1GB.


Each i-node contains information on a specific file, such as owner’s identification, pro-
tection bits, physical address, file size, time of creation, last use and last update, num-
ber of links, and whether the file is a directory, an ordinary file, or a special file.


File Naming Conventions


Filenames are case sensitive so they recognize capital letters in filenames. For example,
these are legitimate names for four different files in a single directory: FIREWALL,
firewall, FireWall, and fireWALL.


Most versions of UNIX allow filenames to be up to 255 characters in length. Although
the operating systems don’t impose any naming conventions on files, some system pro-
grams, such as compilers, expect files to have specific suffixes (which are the same as
extensions described in Chapter 8). For example, prog1.bas would indicate the file to
be a BASIC program because of its suffix .bas, while the suffix in backup.sh would
indicate the file to be a shell program.


UNIX supports a hierarchical tree directory structure. The root directory is identi-
fied by a slash (/); the names of other directories are preceded by the slash (/) sym-
bol, which is used as a delimiter. A file is accessed by starting at a given point in the
hierarchy and descending through the branches of the tree (subdirectories) until
reaching the leaf (file). This path can become very long and it’s sometimes advanta-
geous to change directories before accessing a file. This can be done quickly by typ-
ing two periods (“..”) if the file needed is one level up from the working directory in
the hierarchy. Typing ../.. will move you up two branches toward the root in the tree
structure.
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To access the file checks in the system illustrated in Figure 13.9, the user can type the
following:


/programs/pay/checks
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(figure 13.9)


The file hierarchy as an


upside-down tree with (/ )


as the root, the directories


as branches, and the files


as leaves.


The first slash indicates that this is an absolute path name that starts at the root directory.
On the other hand, a relative path name is one that doesn’t start at the root directory.
Two examples of relative path names from Figure 13.9 are:


pay/checks
journal/chap8/illus


A few rules apply to all path names:


• If the path name starts with a slash, the path starts at the root directory.


• A path name can be either one name or a list of names separated by slashes. The last
name on the list is the name of the file requested.


• Using two periods (..) in a path name will move you upward in the hierarchy (closer
to the root). This is the only way to go up the hierarchy; all other path names go
down the tree.


• Spaces are not allowed within path names.


Directory Listings


As shown in Table 13.2, a “long listing” of files in a directory shows eight pieces of
information for each file: the access control, the number of links, the name of the
group and owner, the byte size of the file, the date and time of last modification, and,
finally, the filename. Notice that the list is displayed in alphabetical order by filename.
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Access No. of No. of
Control Links Group Owner Bytes Date Time Filename


drwxrwxr-x 2 journal comp 128 Jan 10 19:32 chap7


drwxrwxr-x 2 journal comp 128 Jan 15 09:59 chap8


-rwxr-xr-x 1 journal comp 11904 Jan 6 11:38 ms-dos


-rwxr--r-- 1 journal comp 12556 Jan 20 18:08 unix


-rwx------ 1 journal comp 10362 Jan 17 07:32 vax


The first column shows the type of file and the access privileges for each file, as shown
in Figure 13.10. The first character in the first column describes the nature of the file
or directory; d indicates a directory and - indicates an ordinary file. Other codes that
can be used are:


• b to indicate a block special file


• c to indicate a character special file


• p to indicate a named pipe file
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drwxr-xr-x


-rwxr-xr-x


-rwx------


-rwxrw-r--


r-x = read, execute only
(for users not in group)


d = directory


- (dash) = file


rwx = owner has read,
write, execute permission


(for owner only)


rw = read, write only
(for group only)


------ = no access allowed
(for anyone except user)


r-- = read only
(for users not in group)


(figure 13.10)
Graphical depiction of a


list of file and directory


permissions in UNIX.


(table 13.2)


This table shows the list


of files stored in the


directory journal from the


system illustrated in


Figure 13.9. The command


ls -l (short for “listing-
long”) was used to


generate this list.


The next three characters (rwx) show the access privileges granted to the owner of the
file: r stands for read, w stands for write, and x stands for execute. Therefore, if the
list includes rwx, the user can read, write, and/or execute that program.


Likewise, the following three characters describe the access privileges granted to other
members of the user’s group. (In UNIX, a group is defined as a set of users who have
something in common: the same project, same class, same department, etc.) Therefore,
rwx for characters 5–7 means other users can also read, write, and/or execute that file.
However, a hyphen - indicates that access is denied for that operation. In Table 13.2,
r-- means that the file called unix can be read by other group members but can’t be
altered or executed.


Finally, the last three characters in column one describe the access privileges granted
to users at large, those system-wide who are not the owner or part of the owner’s
group. Thus, at-large users can’t modify the files listed in Table 13.2, nor can they
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modify or execute the file called unix. What’s more, the vax file can’t be read, modi-
fied, or executed by anyone other than the owner.


The second column in the directory listing indicates the number of links, also known as
the number of aliases, that refer to the same physical file. Aliases are an important feature
of UNIX; they support file sharing when several users work together on the same project.
In this case, it’s convenient for the shared files to appear in different directories belonging
to different users even though only one central file descriptor (containing information on
the file) exists for that file. The filename may be different from directory to directory since
these names aren’t kept in the file descriptor, but the numbers of links kept there is
updated so the system knows how many users are sharing this file. Eventually this num-
ber will drop to 0 indicating that the file is no longer needed and can be deleted.


The next three columns show, respectively, the name of the group, the name of the
owner, and the file size in bytes. The sixth and seventh columns show the date and
time of the last modification, and the last column lists the filename.


Figure 13.11 shows that the Mac OS X uses an access control list to limit file access to
certain users and groups. 
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(figure 13.11)


On the Mac OS X, the Finder


uses an access control list


to set permissions for file


access.
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Data Structures 


The information presented in the directory isn’t all kept in the same location. UNIX
divides the file information into parts, some in the directory entries and some in the 
i-nodes. Therefore, everything you see in Table 13.2, with the exception of the file-
name and the addition of the device’s physical addresses for the file contents, is kept in
the i-node. All i-nodes are stored in a reserved part of the device where the directory
resides, usually in Block 1. This structure is illustrated in Figure 13.12, which uses the
directory memos from Figure 13.9 as an example.
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pub1


current directory: memos


name i-number


dean


File Information File Information


i-node for pub1 i-node for dean


0   block pointer block pointer       0
1   block pointer block pointer       1
2   block pointer block pointer       2
3   block pointer block pointer       3
.
.
.
.
..


.


.


.


.


.
12   block pointer block pointer       12


blocks for pub1 blocks for dean


pub1
block 0


pub1
block 1


dean
block 1


dean
block 0


dean
block 2


(figure 13.12)


Example of hierarchy for


directories, i-nodes, and


file blocks. Although the


file blocks are represented


here in physical serial


order, they actually may be


stored noncontiguously.


Each i-node has room for 13 pointers (0–12). The first 10 block numbers stored in the
i-node list relate to the first 10 blocks of a file.
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For the file called pub1 in Figure 13.12, only the first two entries have pointers to data
blocks and all the others are zeros because this is a small file that occupies only
two blocks of storage. If a file is larger than 10 blocks, then the eleventh entry points
to a block that contains a list of the next 128 blocks in the file. Because it’s an extra
step in the path to the data, this block is called an indirect block.


For files larger than 138 blocks, the twelfth entry points to a block that contains a
list of 128 indirect blocks (each one containing pointers to 128 file blocks). Because
this block introduces two extra steps in the path to the data, it’s called a double
indirect block. Finally, for extremely large files of more than 16,522 blocks,
the thirteenth entry points to a triple indirect block. This schema allows
for 2,113,674 blocks to be allocated to a single file, for a total of 1,082,201,088
bytes.


Therefore, carrying this one step further, we can see that the bytes numbered below
5120 can be retrieved with a single disk access. Those in the range between 5120 and
70,656 require two disk accesses. Those in the range between 70,656 and 8,459,264
require three disk accesses, while bytes beyond 8,459,264 require four disk accesses.
This would give very slow access to large data files but, in reality, the system maintains
a rather complicated buffering mechanism that considerably reduces the number of
I/O operations required to access a file.


When a file is created an i-node is allocated to it, and a directory entry with the file-
name and its i-node number is created. When a file is linked (which happens when
another user begins sharing the same file), a directory entry is created with the new
name and the original i-node number, and the link-count field in the i-node is incre-
mented by 1.


When a shared file is deleted, the link-count field in the i-node is decremented by 1.
And when the count reaches 0, the directory entry is erased and all disk blocks allo-
cated to the file, along with its i-node entry in the disk i-list, are deallocated.


User Command Interface


UNIX was created as a command-driven system and its user commands (shown in
Table 13.3) are very short: either one character (usually the first letter of the com-
mand) or a group of characters (an acronym of the words that make up the com-
mand). In command mode, the system prompt is very economical, often only one
character, such as a dollar sign ($) or percent sign (%).
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Command Stands For Action to be Performed


(filename) Run File Run/Execute the file with that name.


ls List Directory Show a listing of the filenames in directory.


ls -l Long List Show a comprehensive directory list.


cd Change Directory Change working directory.


cp Copy Copy a file into another file or directory.


rm Remove Remove/delete a file or directory.


mv Move Move or rename a file or directory.


more Show More Type the file’s contents to the screen.


lpr Print Print out a file.


date Date Show date and time.


date -u Universal Date/Time Show date and time in universal format (in
Greenwich Mean Time).


mkdir Make Directory Make a new directory.


grep Global Regular Find a specified string in a file.
Expression/Print


cat Concatenate Concatenate files.


format Format Format a volume.


diff Different Compare two files.


pwd Print Working Show name of working directory.
Directory


The general syntax of commands is this:


command arguments file_name


The command is any legal operating system command, as shown in Figure 13.13. The
arguments are required for some commands and optional for others. The file_name
can be a relative or absolute path name. Commands are interpreted and executed by the
shell, one of the two most widely used programs. The shell is technically known as the
command line interpreter because that’s its function. But it isn’t only an interactive com-
mand interpreter; it’s also the key to the coordination and combination of system pro-
grams. In fact, it’s a sophisticated programming language in itself.
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✔
In this chapter, we
discuss the
command
structures common
to both UNIX and
Linux. In Chapter
16, we discuss
graphical user
interfaces common
to some versions
of both operating
systems. 


(table 13.3)


User commands can’t be


abbreviated or expanded


and must be in the correct


case (usually, commands


must be entered only in


lowercase letters). Many


commands can be


combined on a single line


for additional power and


flexibility. Check the


technical documentation


for your system for proper


spelling and syntax.
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Script Files


Command files, often called shell files or script files, can be used to automate repeti-
tious tasks. Each line of the file is a valid command and the script file can be executed
by simply typing sh and the name of the script file. Another way to execute it is to
define the file as an executable command and simply type the filename at the system
prompt. 


Other common shells are csh (the C shell, which was originally developed to support
C language development environments at Berkeley and NASA) and ksh (the Korn
shell, which was developed after the Bourne and C shells). The Korn shell is usually
available as an unbundled product.


Script files are used to automate repetitive tasks and to simplify complex procedures.
Here is an example of a simple script file that’s designed to configure the system for a
certain user:


setenv DBPATH /u/lumber:.:/zdlf/product/central/db
setenv TERMCAP $INFODIR/etc/termcap
stty erase '^H'
set savehistory
set history=20
alias h history
alias 4gen infogen -f
setenv PATH /usr/info/bin:/etc
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(figure 13.13)


The command interface on


a Macintosh computer


running Mac OS X, a 


UNIX-based operating


system.
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In this example, the working directory paths are set, the history is set to 20 lines, and
it is given an alias of h (so the user can perform the history command simply by typing
h). Similarly, 4gen is established as an alias for the command infogen-f. Finally, the
path is defined as /usr/info/bin:/etc.


If this script file is included in the user’s configuration file, it will be automatically exe-
cuted every time the user logs on. The exact name of the user configuration file varies
from system to system, but two common names are .profile and .login. See the docu-
mentation for your system for specifics.


Redirection


If you’re an interactive user, most of the commands used to produce output will auto-
matically send it to your screen and the editor will accept input from the keyboard.
There are times when you may want to send output to a file or to another device. This
is done by using the symbol > between the command and the destination to which the
output should be directed. For example, to list the files in your current directory in the
file named myfiles instead of listing them on the screen, use this command:


ls > myfiles


The following command will copy the contents of two files, chapt1 followed by
chapt2, into a file named sectiona:


cat chapt1 chapt2 > sectiona


The command cat is short for “concatenate.” If sectiona is a new file, then it’s
automatically created. If it already exists, the previous contents will be overwritten.
(When cat is used with a single file and redirection is not indicated, then it displays the
contents of that file on the screen.) Another way to achieve the same result is with the
wild card symbol (*) like this:


cat chapt* > sectiona


The asterisk symbol (*) indicates that the command pertains to all files that begin with
chapt—in this case, that means chapt1 and chapt2.


The symbol >> will append the new file to an existing file. Therefore, either of the fol-
lowing two commands will copy the contents of chapt1 and chapt2 onto the end of
whatever already exists in the file called sectiona:


cat chapt1 chapt2 >> sectiona
cat chapt* >> sectiona


If sectiona doesn’t exist, then the file will be created as an empty file and will then
be filled with chapt1 and chapt2, in that order.
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The reverse redirection is to take input for a program from an existing file instead of
from the keyboard. For example, if you have written a memo and need to mail it to
several people, the following command will send the contents of the file memo to the
people listed between the command mail and the symbol <:


mail ann roger < memo


By combining the power of redirection with system commands, you can achieve results
not possible otherwise. For example, the following command will store in the file
called temporary the names of all users logged on to the system:


who > temporary


And the command sort will sort the list stored in temporary and display the sorted
list on the screen as it’s generated.


In each of these examples, it’s important to note that the interpretation of < and > is
done by the shell and not by the individual program (such as mail, who, or sort). This
means that input and output redirection can be used with any program because the
program isn’t aware that anything unusual is happening. This is one instance of the
power of UNIX—the flexibility that comes from combining many operations into a
single brief command.


Pipes


Pipes and filters make it possible to redirect output or input to selected files or devices
based on commands given to the command interpreter. UNIX does that by manipulat-
ing I/O devices as special files.


For the example just presented, we listed the number of users online into a file called tem-
porary and we then sorted the file. There was no reason to create this file other than the
fact that we needed it to complete the two-step operation required to see the list in alpha-
betical order on the screen. However, a pipe can do the same thing in a single step.


A pipe is the operating system’s way to connect the output from one program to the
input of another without the need for temporary or intermediate files. A pipe is a spe-
cial type of file connecting two programs; information written to it by one program
may be read immediately by the other, with synchronization, scheduling, and buffer-
ing handled automatically by the system. In other words, the programs are executing
concurrently, not one after the other. By using a pipe, indicated by the vertical symbol
(|), the last example can be rewritten as:


who | sort


As a result, a sorted list of all users logged on to the system will be displayed on the
screen.
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A pipeline is several programs simultaneously processing the same I/O stream. For
example, the following command is a pipeline that takes the output from who (a list
of all logged-on users), sorts it, and prints it out:


who | sort | lpr


Filters


UNIX has many programs that read some input, manipulate it in some way, and gen-
erate output; these programs are called filters. One example is wc, which stands for
word count and counts the lines, words, and characters in a file. For example, the fol-
lowing command would execute the word count command on the file journal and
send the output to the terminal:


wc journal


As a result, the system would respond with 10 140 700, meaning that the file journal
has 10 lines, 140 words, and 700 characters. (A word is defined as a string of charac-
ters separated by blanks.) A shorter version (wc -l) counts just the number of lines in
the file.


Another filter command is sort (the same command we used to demonstrate pipes). If
a filename is given with the command, the contents of the file are sorted and displayed
on the screen. If no filename is given with the command, sort accepts input from the
keyboard and directs the output to the screen. When it’s used with redirection, sort
accepts input from a file and writes the output to another file. For example,


sort names>sortednames


will sort the contents of the file called names and send the output to the file sorted-
names. The data in names will be sorted in ASCII order, that is, using a standard col-
lating sequence so lines with leading blanks come first (in sorted order), lines with
lowercase characters follow, and lines beginning with uppercase characters come last.
To sort the list in alphabetical order but ignore the case of letters, the command is:


sort -f names>sortednames


To obtain a numerical sort in ascending order, the command is:


sort -n names>sortednums


To obtain a numerical sort in descending order, the command is:


sort -nr names>sortednums


In every example presented here, sort uses each entire line of the file to conduct the
sort. However, if the structure of the data stored in the file is known, then the sort can
use other key fields.
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For example, let’s say a file called empl has data that follows the same column format:
the ID numbers start in column 1, phone numbers start in column 10, and last names
start in column 20. To sort the file by last name (the third field), the command would
be:


sort +2f empl>sortedempl


In this example, the file empl will be sorted alphabetically by the third field and the
output will be sent to the file called sortedempl. (A field is defined as a group of
characters separated by at least one blank.) The +2 tells the sort command to skip the
first two fields and the f says the list should be sorted in alphabetical order. The
integrity of the file is preserved because the entire line is sorted—so each name keeps
the correct phone and ID number.


Additional Commands


This section introduces several other commonly used commands.


man


This command displays the online manual supplied with the operating system. It’s
called with an argument that specifies which page of the online manual you are inter-
ested in seeing. For example, to display the page for the compare (cmp) command, the
command would look like this:


man cmp


If the cmp entry appears more than once in the manual, all the pages are displayed,
one after the other. You can redirect the output to a file, which can then be sent to a
printer for future reference. 


grep


One of the most-used commands is grep—it stands for global regular expression and
print and it looks for specific patterns of characters. It’s one of the most helpful (and
oddly named) commands. It’s the equivalent of the FIND and SEARCH commands
used in other operating systems. When the desired pattern of characters is found, the
line containing it is displayed on the screen.


Here’s a simple example: If you need to retrieve the names and addresses of everyone
with a Pittsburgh address from a large file called maillist, the command would look
like this:


grep Pittsburgh maillist
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As a result, you see on your screen the lines from maillist for entries that included
Pittsburgh. And if you want the output sent to a file for future use, you can add the
redirection command.


This grep command can also be used to list all the lines that do not contain a certain
string of characters. Using the same example, the following command displays on the
screen the names and addresses of all those who don’t have a Pittsburgh address:


grep -v Pittsburgh maillist


Similarly, the following command counts all the people who live in Pittsburgh and dis-
plays that number on the screen without printing each line:


grep -c Pittsburgh maillist


As noted before, the power of this operating system comes from its ability to combine
commands. Here’s how the grep command can be combined with the who command.
Suppose you want to see if your friend Sam is logged on. The command to display
Sam’s name, device, and the date and time he logged in would be:


who | grep sam


Combinations of commands, though effective, can appear confusing to the casual
observer. For example, if you wanted a list of all the subdirectories (but not the files)
found in the root directory, the command would be:


ls -l / | grep '^d'


This command is the combination of several simpler commands:


• ls for list directory


• -l, which is the long option of ls and includes the information shown in Table 13.3


• / to indicate the root directory


• | to establish a pipe


• grep to find


• '^d', which says that d is the character we’re looking for (because we only want
the directories), the ^ indicates that the d is at the beginning of each line, and the
quotes are required because we used the symbol ^


nohup


If a program’s execution is expected to take a long time, you can start its execution
and then log off the system without having to wait for it to finish. This is done with
the command nohup, which is short for “no hangup.” Let’s say, for example, you
want to copy a very large file but you can’t wait at the terminal until the job is fin-
ished. The command is:


nohup cp oldlargefile newlargefile &
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The copy command (cp) will continue its execution copying oldlargefile to newlarge-
file in the background even though you’ve logged off the system. For this example,
we’ve indicated that execution should continue in the background; the ampersand (&)
is the symbol for running the program in background mode.


nice


If your program uses a large number of resources and you are not in a hurry for the
results, you can be “nice” to other processes by lowering its priority with the com-
mand nice. This command with a trailing & frees up your terminal for different work.
For example, you want to copy oldlargefile to newlargefile and want to con-
tinue working on another project at the same time. To do that, use this command:


nice cp oldlargefile newlargefile &


However, you may not log off when using the nice command until the copy is finished
because the program execution would be stopped.


The command nohup automatically activates nice by lowering the process’s priority. It
assumes that since you’ve logged off the system, you’re not in a hurry for the output. The
opposite isn’t true—when nice is issued, it doesn’t automatically activate nohup. Therefore,
if you want to put a very long job in the background, work on some other jobs, and log out
before the long job is finished, nohup with a trailing &  is the command to use.


We’ve included only a few commands here. For a complete list of commands for a spe-
cific version of this operating system, their exact syntax, and more details about those
we’ve discussed here, see a technical manual for the appropriate version.


Conclusion


It is difficult to measure the impact that UNIX has had on the computing world. Since
it was written in 1969, it has been a major force in the field of operating systems and
is expected to remain so for many years to come.


UNIX began as a command-driven operating system written by and for programmers
who became comfortable with this operating system’s famously brief commands, but
it has evolved into one of the most significant operating systems available. With the
addition of a graphical user interface, UNIX has become an even more flexible operat-
ing system running computing hardware of every size and complexity, from telephones
to super computers. 


Since it was adopted by Apple for its Macintosh computers, UNIX has gained a new
legion of users and is certain to grow in popularity in the years to come.
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When the
ampersand “&”
is added to
a command, that
command is
executed and you
get the prompt
back right away
while the command
executes in
background mode.
This allows you to
execute another
command without
waiting for the first
one to finish.  
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Key Terms


argument: in a command-driven operating system, a value or option placed in the
command that modifies how the command is to be carried out.


child process: in UNIX-like operating systems, the subordinate processes that are cre-
ated and controlled by a parent process.


CPU-bound: a job that will perform a great deal of nonstop processing before issuing
an interrupt. A CPU-bound job can tie up the CPU for long periods of time.


device driver: a device-specific program module that handles the interrupts and con-
trols a particular type of device.


device independent: programs that can work on a variety of computers and with a
variety of devices. 


directory: a logical storage unit that contains files. 


I/O-bound: a job that requires a large number of input/output operations, resulting in
much free time for the CPU.


kernel: the part of the operating system that resides in main memory at all times and
performs the most essential tasks, such as managing memory and handling disk input
and output.


parent process: in UNIX-like operating systems, a job that controls one or more child
processes, which it created.


Portable Operating System Interface for Computer Environments (POSIX): a set of
IEEE standards that defines the standard user and programming interfaces for operat-
ing systems so developers can port programs from one operating system to another.


reentrant code: code that can be used by two or more processes at the same time; each
shares the same copy of the executable code but has separate data areas.


script: a series of executable commands written in plain text that can be executed by
the operating system in sequence as a single procedure.


sharable code: executable code in the operating system that can be shared by several
processes.
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Interesting Searches
• UNIX for Supercomputers


• UNIX File Management


• Embedded UNIX


• History of UNIX and Linux


• Macintosh OS X


Exercises


Research Topics


A. Research current literature to discover the current state of IEEE POSIX
Standards and list 10 UNIX operating systems that are currently 100 percent
POSIX-compliant. Explain the significance of this compliance and why you
think some popular operating systems might choose not to be compliant.


B. Explore the issues surrounding UNIX security. Specifically, identify major
threats to systems running UNIX, and the steps system administrators must
take to protect the system from unauthorized access. Compare the practical
problems when balancing the need for accessibility with the need to restrict
access, and suggest the first action you would take to secure a UNIX informa-
tion system if you managed one.


Exercises


1. Describe the importance of hardware independence.


2. Early versions of UNIX were available only with a command-driven interface.
In more recent years, graphical user interfaces became popular. Explain in your
own words why these GUIs made an impact on the popularity of this operating
system.


3. The role of the UNIX kernel is crucial. Explain why this is so and how it is
treated differently from other parts of the operating system.


4. Explain how UNIX identifies CPU- and I/O-bound jobs and uses that informa-
tion to keep the system balanced.


5. UNIX treats all devices as files. Explain why this was an innovative feature
when it was first introduced and how it adds flexibility to this operating system.


6. In your own words, compare and contrast the three types of files: directories,
ordinary files, and special files. Explain what would happen if a user modified
a directory file.
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7. Create an illustration showing how an i-node would track the disk addresses
for a single file that’s 1GB in size.


8. Describe at least one circumstance where you would want to run commands in
background mode.


9. Explain why you might want to change the permissions on some of your direc-
tories to make them invisible to other users.


10. Compare and contrast block and character devices and how they are manipu-
lated by the UNIX device manager.


Advanced Exercises


11. Describe in your own words how a parent and child are created from the fork
command and why you think the child process will or will not continue if the
parent process is terminated.


12. Using the command /dev, identify which devices are available and indicate
which of these devices are character-oriented and which are block-oriented.
Explain your reasoning.


13. If you were using a system and a system operator deleted the list (ls) command
accidentally, can you think of another way to list all the files in a directory?


14. On your UNIX system, identify which of the following files systems are sup-
ported, and identify the format that is supported by each file system: FAT32,
NTFS, ISO 9660, HFS+, UDF 2.5.


15. Compare and contrast the state of UNIX security in 1995 and in 2010 and
describe any significant threats to UNIX-run systems at that time.


434


Ch
ap


te
r 
13


 |
U
N
IX


 O
pe


ra
tin


g 
Sy


st
em


C7047_13_Ch13.qxd  1/13/10  9:43 PM  Page 434








435


Design Goals


Memory Management


Processor Management


Device Management


File Management


User Interface


MS-DOS


Design Goals


Memory Management


Processor Management


Device Management


File Management


User Interface


“PCs gave the world a whole new way to work, play
and communicate.”


—Bill Gates


Learning Objectives


After completing this chapter, you should be able to describe:


• How to access MS-DOS emulators from other operating systems


• How MS-DOS provided a foundation for early Microsoft Windows releases


• The basics of command-driven systems and how to construct simple batch files


• How one processor can be shared among multiple processes 


• The limitations of MS-DOS


Chapter 14 MS-DOS Operating System
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MS-DOS, also known simply as DOS, was developed to run single-user, stand-alone
desktop computers. When the personal computer market exploded in the 1980s, MS-
DOS was the standard operating system delivered with millions of these machines.


This operating system is one of the simplest to understand. In many ways, MS-DOS
exemplifies early operating systems because it manages jobs sequentially from a single
user. Its advantages are its fundamental operation and its straightforward user
commands. With only a few hours of instruction, a first-time user can learn to
successfully manipulate a personal computer and its files and devices.


MS-DOS was written for a single family of microprocessors: the Intel 8086, 8088,
80186, and 80286 chips. When those microprocessors dominated the personal
computer market, MS-DOS did too. When newer chips came along, MS-DOS lost its
market advantage to more sophisticated operating systems. MS-DOS was the primary
operating system for a generation of microcomputers and so it is included in this text
as an example.


It’s worth noting that early versions of Windows (versions 1.0 through 3.1) were
merely graphical user interfaces that ran on top of the MS-DOS operating system. See
Chapter 15 on Windows for more information.


History


MS-DOS was the successor of the CP/M operating system. CP/M (for Control
Program for Microcomputers) ran the first personal computers, 8-bit machines
marketed by Apple Computer and Tandy Corporation. But when the 16-bit personal
computers were developed in 1980, they required an operating system with more
capability than CP/M, and many companies rushed to develop the operating system
that would become the standard for the new generation of hardware.


IBM was the catalyst. When it searched for an operating system for its soon-to-be-
released line of 16-bit personal computers, Digital Research offered the new CP/M-86
operating system. IBM looked carefully at both and began negotiations with Digital
Research to buy the “new and improved CP/M” system. Meanwhile, Microsoft, a
fledgling company started by Bill Gates and Paul Allen, discovered an innovative oper-
ating system, called 86-DOS, designed by Tim Paterson of Seattle Computer Products
to run that company’s line of 16-bit personal computers. Microsoft bought it, renamed
it MS-DOS for Microsoft Disk Operating System, and made it available to IBM.
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Do not confuse
MS-DOS with
software that goes
by similar
acronyms, such as
“distributed
operating
systems” or a
“disk operating
system” sold by
other vendors,
such as IBM.
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(table 14.1)


The evolution of MS-DOS.


IBM chose MS-DOS in 1981, called it PC-DOS, and proclaimed it the standard for its
line of personal computers. Eventually, with the weight of IBM’s endorsement, MS-
DOS became the standard operating system for most 16-bit personal computers in the
1980s.


This operating system went through many versions after its birth in Seattle. Some were
needed to fix deficiencies, while others were made to accommodate major hardware
changes, such as increased disk drive capabilities or different formats. Table 14.1 lists
some of the major versions.


Version No. Release Date Features


1.0 1981 CP/M compatible; supported only one directory


1.1 1982 Allowed double-sided 51⁄4 inch disks


2.0 1983 Eliminated some defects in earlier version 


3.0 1984 Increased memory requirement to 36K, supported PC/AT


3.1 1984 First release to support networking


3.2 1986 Supported token ring and 31⁄2 inch disks


3.3 1987 Supported the IBM PS/2 computer


4.0 1988 Supported hard disks larger than 32MB


5.0 1991 Better use of extended memory


6.0 1993 Better use of conventional memory


6.22 1994 Provided users with capabilities previously available 
only as third-party applications


Each version of MS-DOS was a standard version, so later versions of MS-DOS were
compatible with earlier versions. Therefore, programs written to run on Version 5.0
could also be run on Version 6.2. It also meant that, among different manufacturers,
the same commands elicited the same response from the operating system regardless of
who manufactured the hardware running it; this was a significant feature at the time.


Although MS-DOS is no longer widely used, many Windows operating systems offer a
DOS emulator to allow anyone to enter some DOS-like commands. To find it in
Windows, click the Start button, then All Programs, Accessories, Command Prompt
to see a screen similar to Figure 14.1.


✔
Although the 
MS-DOS emulators
found in Windows
allow filenames
to exceed eight
alphanumeric
characters,
authentic MS-DOS
commands do not.


H
istory
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(figure 14.1)


The Command Prompt


window opened from a


Windows operating


system. From the


command prompt,  users


can enter selected 


MS-DOS commands.


(figure 14.2)


The three layers of 


MS-DOS. The top layer 


is the command processor,


a program called


COMMAND.COM, which


provides device


independence. The DOS


kernel software provides


file management services.


BIOS software provides


device management


services.


User


COMMAND.COM


DOS Kernel MS-DOS


BIOS


Hardware


Design Goals


MS-DOS was designed to accommodate a single novice user in a single-process
environment, as shown in Figure 14.2. Its standard I/O support includes a keyboard,
monitor, printer, and secondary storage unit. Its user commands are based on English
words or phrases and are indicative of the action to be performed. Examples are
shown in Appendix A. These commands are interpreted by the command processor,
typically the only portion of the operating system with which most users interact.


The layering approach is fundamental to the design of the whole MS-DOS system,
which is to “protect” the user from having to work with the bits and bytes of the bare
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machine that make up the bottom layer—the hardware that includes the electrical
circuits, registers, and other basic components of the computer. Each layer is built on
the one that precedes it, starting from the bottom up.


The layer at the bottom of MS-DOS is BIOS (basic input/output system). This layer of
the operating system interfaces directly with the various I/O devices such as printers,
keyboards, and monitors. BIOS contains the device drivers that control the flow of
data to and from each device except the disk drives. It receives status information
about the success or failure of each I/O operation and passes it on to the processor.
BIOS takes care of the small differences among I/O units so the user can purchase a
printer from any manufacturer without having to write a device driver for it—BIOS
makes it perform as it should.


The middle layer, the DOS kernel, contains the routines needed to interface with the
disk drives. It’s read into memory at initialization time from the MSDOS.SYS file
residing in the boot disk. The DOS kernel is a proprietary program supplied by
Microsoft Corporation that implements MS-DOS. It’s accessed by application
programs and provides a collection of hardware-independent services, such as mem-
ory management, and file and record management. These are called system functions.
Like BIOS, the DOS kernel compensates for variations from manufacturer to manu-
facturer so all disk drives perform in the same way. In other words, the kernel makes
disk file management transparent to the user so you don’t have to remember in which
tracks and sectors your files are stored—and which sectors of the disk are damaged
and must be avoided. The kernel does that for you; it manages the storage and
retrieval of files and dynamically allocates and deallocates secondary storage as it’s
needed.


The third layer, the command processor, is sometimes called the shell. This is the part
of the system that sends prompts to the user, accepts the commands that are typed
in, executes the commands, and issues the appropriate responses. The command
processor resides in a file called COMMAND.COM, which consists of two parts
stored in two different sections of main memory. Some users mistakenly believe the
COMMAND.COM file is the entire operating system because it’s the only part that
appears on the public directory. Actually, it’s only one of several programs that make
up MS-DOS; the rest are hidden.


It’s the command processor’s job to carry out the user’s commands entered from the
system prompt without having to wait for device-specific instructions. For example,
when a user issues a PRINT command, the command processor directs the output to
the line printer via BIOS. Similarly, with a user command to TYPE a file, the command
processor directs the output to the monitor. In these cases, the user doesn’t need to
compensate for the slow speed of the printer and the fast speed of the terminal; the
user can interact with both devices and files in the same way.
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The weakness of the command processor is that it isn’t interpretive. That is, program-
mers can’t take shortcuts by abbreviating the commands. New users must learn to
enter each command completely and correctly. It’s unforgiving to those who can’t type,
spell, or construct commands perfectly.


MS-DOS Version 4.0 introduced a menu-driven DOS shell to ease users’ interaction
with the system, but it was not widely accepted. When Version 5.0 was released, IBM
and Microsoft also released a new operating system, OS/2, which was designed to
replace MS-DOS. Although OS/2 offered several advantages over MS-DOS, such as
using all available memory and supporting multiprogramming, it failed to generate the
interest that both companies expected.


In its heyday, MS-DOS ran an enormous collection of software packages. Notable
among these applications were Lotus 1-2-3 (a popular spreadsheet program at that time)
and WordPerfect (a word processor). The widespread adoption of these two products
helped novice users learn the power of a personal computer and spurred the growth of
the industry.


Microsoft has continued to incorporate access to an MS-DOS emulator with a DOS
prompt, a DOS-like command capability, on many of its Windows products (shown in
Figure 14.1) even though MS-DOS has been officially withdrawn from the market.


Memory Management


The Memory Manager has a relatively simple job because it’s managing a single job
for a single user. To run a second job, the user must close or pause the first file before
opening the second. The Memory Manager uses a first-fit memory allocation scheme.
First-fit was selected for early DOS versions because it’s the most efficient strategy in a
single-user environment. (Some versions accommodate extended memory capabilities
and multitasking, features that are available with add-on hardware and software; but
to keep our discussion succinct, we won’t include them here.)


Before we see how memory is allocated, let’s see how it’s structured. Main memory
comes in two forms: read only memory (ROM) and random access memory (RAM).


ROM is usually very small in size and contains a program, a section of BIOS, with the
sole task of starting up the system. The startup process is called bootstrapping because
the system is effectively pulling itself up by its bootstraps. This program in ROM ini-
tializes the computer. It also retrieves the rest of the resident portion of the operating
system from secondary storage and loads it into RAM.


RAM is the part of main memory where programs are loaded and executed. The RAM
layout for a computer with 1 MB of memory is given in Figure 14.3.
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The lowest portion of RAM—known as low-addressable memory because this is
where memory addressing starts: 0, 1, 2…—is occupied by 256 interrupt vectors and
their tables. An interrupt vector specifies where the interrupt handler program for a
specific interrupt type is located. The use of interrupt handlers was discussed in
Chapter 4. This is followed by BIOS tables and DOS tables, and the DOS kernel with
additional installable drivers, if any, which are specified in the system’s configuration
file called CONFIG.SYS. This is followed by the resident part of the
COMMAND.COM command interpreter—the section that is required to run
application programs.


Any user application programs can now be loaded into the transient program area
(TPA). If a large program requires more space, the COMMAND.COM overlay area,
located at the high-numbered memory location, can be used by the application pro-
gram as well. The COMMAND.COM programs in this area are considered transient
because they are used to execute commands, such as FORMAT, that can’t be executed
by the user when an application program is running, so they can be overlayed (or over-
written) by other programs.
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Unused
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COMMAND. COM
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Buffer Cache


MS-DOS Kernel


BIOS Interface


Interrupt Vectors


1M


640K
May be overwritten by
user’s program if the
space is needed


0


(figure 14.3)


One megabyte of RAM


main memory in MS-DOS.


The interrupt vectors are


located in low-


addressable memory and


the COMMAND.COM


overlay is located in high-


addressable memory.
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Main Memory Allocation


The first versions of MS-DOS gave all available memory to the resident application
program, but that proved insufficient because the simple contiguous memory alloca-
tion scheme didn’t allow application programs to dynamically allocate and deallocate
memory blocks. With Version 2.0, MS-DOS began supporting dynamic allocation,
modification, and release of main memory blocks by application programs.


The amount of memory each application program actually owns depends on both the
type of file from which the program is loaded and the size of the TPA.


Programs with the COM extension are given all of the TPA, whether or not they need it.


Programs with the EXE extension are only given the amount of memory they need.
These files have a header that indicates the minimum and maximum amount of
memory needed for the program to run. Ideally, MS-DOS gives the program the
maximum amount of memory requested. If that isn’t possible, it tries to satisfy the
minimum requirement. If the minimum is more than the amount of main memory
space available, then the program cannot be run.


Except for COM files, there can be any number of files in the TPA at one time. But this
raises an interesting question: Why would a system have two programs in memory
when it can run only one at a time? Answer: By having several files in memory at once,
the user can quickly open one and work on it and close it before starting on the next.
They can’t both be open at the same time; but by alternately opening and closing them,
the user can use two programs quickly and easily.


For example, a word-processing program might allow a user to display two files on the
screen at once by opening a separate work area for each one. These work areas partition
the screen into sections; in this example, one would show the active file and the other
would show the dormant file. If the user indicates that work should begin on the second
(dormant) file, then the first (active) file is quickly closed and the second file is activated.


Here’s a second example: Let’s say your word processor’s main program includes the
code required to compose and print a document; but if you want to check your
spelling, the spell checker program has to be loaded from the disk. When that’s done,
the main portion of the word processor is kept in memory and the second program is
added without erasing the first one already there. Now you have two programs in
memory but only one of them is executing at any given time. This is discussed in the
section on Process Management later in this chapter.


If a program that is already running needs more memory, such as for additional I/O
buffers, the Memory Manager checks to see whether enough memory remains. If so, it
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allocates it to the program while updating the memory block allocation table for that
program. If not, then an error message is returned to the user and the program is
stopped. Although initial memory allocation is handled automatically by programs
written in BASIC, Pascal, or any other language supported by MS-DOS, the shrinking
and expanding of memory allocation during execution can be done only from
programs written in either assembly language or C.


Memory Block Allocation


The Memory Manager allocates memory by using a first-fit algorithm and a linked list
of memory blocks. But with Version 3.3 and beyond, a best-fit or last-fit strategy can
be selected. When using last-fit, DOS allocates the highest addressable memory block
big enough to satisfy the program’s request.


The size of a block can vary from as small as 16 bytes (called a “paragraph”) to as
large as the maximum available memory. When a block is formed, its first five bytes
contain the information shown in Table 14.2.


Byte Meaning


Byte 0 ASCII 90h if it’s the last block, or ASCII 77h if it’s not


Bytes 1–2 Includes the number 0 to indicate a busy block and 
the pointer to the Program Segment Prefix (PSP) that 
is created by the EXEC function when the program is 
loaded


Bytes 3–4 Gives the number of paragraphs contained in the block


Therefore, if a block contains four paragraphs and is the first of two blocks, then its
code would be 7700000004h (as explained in Table 14.3). The letter h at the end indi-
cates that the preceding value is in hexadecimal notation and is not recorded. 


Byte Contents Meaning


Byte 0 77 Indicates that this is not the last block 


Bytes 1–2 0000 Indicates that this is a busy block and its pointer to the 
PSP is 0


Bytes 3–4 0004 Indicates that this block contains four paragraphs


Whenever a request for memory comes in, DOS looks through the free/busy block list,
as shown in Figure 14.4, until it finds a free block that fits the request. If the list of
blocks becomes disconnected, an error message is generated, and the system stops. To
recover, the system must be rebooted.
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The first five bytes of a


memory block define 


the block’s structural


characteristics.


(table 14.3)


A sample memory block


with the first five bytes


containing 7700000004h.
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(figure 14.4)


The linked list of memory


blocks.


Busy


Block 1


Busy Busy . . . 


(etc.)


Free Free


Block 3 Block 5Block 2 Block 4


A well-designed application program releases the memory block it no longer needs. If
two free memory blocks are contiguous, they are merged immediately into one block
and linked to the list. A program that isn’t well designed, however, hoards its memory
blocks until it stops running; only then can MS-DOS deallocate the memory blocks
used by that program.


Processor Management


The Processor Manager has the relatively simple task of allocating the processor to the
resident job when it’s ready for execution.


Process Management


MS-DOS wasn’t written in reentrant code, discussed in the section on Virtual Memory
in Chapter 3, because it was designed for a single-user, single-task environment.
Reentrant code is the basis for multitasking, and MS-DOS doesn’t support it; there-
fore, programs can’t break out of the middle of a DOS internal routine and then
restart the routine from somewhere else.


In our word processing/spell checker example, the word processor’s parent program
called on the child spell checker program. The parent went to sleep, and remained
asleep, while the child was running. There’s no interleaving, so there’s no need for
sophisticated algorithms or policies to determine which job will run next or for how
long. Each job runs in complete segments and is not interrupted midstream. In other
words, there’s no need to maintain a good job mix to balance system utilization.


However, although two jobs can’t run together, some software programs give that
illusion. Both Microsoft Windows and Borland’s SideKick, for instance, appear to
interrupt the parent program, change the screen displays, run unrelated programs, and
then return to the parent—but this is not multitasking. (Multitasking is the microcom-
puter industry’s synonym for multiprogramming.) These programs look and feel like
multitasking operations because they retain their memory area and run executable
programs, but they aren’t both in the running state at the same time. In each case, the
parent program goes to sleep while the child runs along on its own. This synchroniza-
tion is possible because the interrupt handlers built into MS-DOS give programmers
the capability to save all information about the parent program, which allows its
proper restart after the child program has finished.
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Interrupt Handlers


Interrupt handlers are a crucial part of the system. One might say they are responsible
for synchronizing the processes. A personal computer has 256 interrupts and interrupt
handlers, and they are accessed via the interrupt vector table residing in the lowest
bytes of memory, as shown in Figure 14.3. Interrupts can be divided into three groups:
internal hardware interrupts, external hardware interrupts, and software interrupts.
Internal hardware interrupts are generated by certain events occurring during a
program’s execution, such as division by 0. The assignment of such events to specific
interrupt numbers is electronically wired into the processor and isn’t modifiable by
software instructions.


External hardware interrupts are caused by peripheral device controllers or by
coprocessors such as the 8087/80287. The assignment of the external devices to spe-
cific interrupt levels is done by the manufacturer of the computer system or the man-
ufacturer of the peripheral device. These assignments can’t be modified by software
because they are hardwired—implemented as physical electrical connections.


Software interrupts are generated by system and application programs. They access
DOS and BIOS functions, which, in turn, access the system resources.


Some software interrupts are used to activate specialized application programs that
take over control of the computer. Borland’s SideKick is one such program. This type
of interrupt handler is called Terminate and Stay Resident (TSR). Its function is to
terminate a process without releasing its memory, thus providing memory-resident
programming facilities. The TSR is usually used by subroutine libraries that are called
once from the MS-DOS command level and are then available to provide services to
other applications through a software interrupt. When a TSR starts running, it sets up
its memory tables and prepares for execution by connecting to a DOS interrupt; when
all is ready, the program determines how much memory it needs to keep. Later, when
the program exits, a return code is passed back to the parent.


How are these interrupts synchronized? When the CPU senses an interrupt, it does two
things: (1) it puts on a stack the contents of the PSW (Program Status Word), the code
segment register, and the instruction pointer register; and (2) it disables the interrupt
system so that other interrupts will be put off until the current one has been resolved.
The CPU uses the 8-bit number placed on the system bus by the interrupting device to
get the address of the appropriate interrupt handler from the interrupt vector table and
picks up execution at that address.


Finally, the interrupt handler reenables the interrupt system to allow higher-priority
interrupts to occur, saves any register it needs to use, and processes the interrupt as
quickly as possible.
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Obviously, this is a delicate procedure. The synchronization of TSR activities with
DOS functions already in progress must be carefully designed and implemented to
avoid either modifying things that shouldn’t be modified or crashing the system.


Device Management


The ability to reorder requests to optimize seek and search time is not a feature of
MS-DOS because it’s designed for a single-user environment. All requests are handled
on a first-come, first-served basis. But, since Version 3.0, BIOS can support spooling
allowing users to schedule several files to be printed one after the other. To do this,
BIOS continuously transfers data from a specified memory buffer to the printer until
the buffer is empty.


MS-DOS was written for simple systems that use a keyboard, monitor, printer, mouse,
one or two serial ports, and maybe a second printer. For storage, most personal
computer systems use direct access storage devices, usually floppy disks or hard disks.
Some systems also support a magnetic tape sequential access archiving system. The
MS-DOS Device Manager can work with all of them.


These systems use only one of each type of I/O device for each port, so device channels
are not a part of MS-DOS. And because each device has its own dedicated control
unit, the devices do not require special management from the operating system.
Therefore, device drivers are the only items needed by the Device Manager to make
the system work. A device driver is a software module that controls an I/O device but
handles its interrupts. Each device has its own device driver. BIOS is the portion of the
Device Manager that handles the device driver software.


BIOS is stored in both ROM and RAM. In many MS-DOS systems, the most
primitive parts of the device drivers are located in ROM so they can be used by
stand-alone applications, diagnostics, and the system’s bootstrapping program. A
second section is loaded from the disk into RAM and extends the capabilities of the
basic functions stored in ROM so that BIOS can handle all of the system’s input and
output requests.


Normally, BIOS is provided by the system manufacturer adhering to Microsoft’s
specifications for MS-DOS and, because it’s the link between the hardware and DOS,
it uses standard operating system kernels regardless of the hardware. This means that
programs with the standard DOS and BIOS interfaces for their system-dependent
functions can be used on every DOS machine regardless of the manufacturer.


BIOS responds to interrupts generated by either hardware or software. For example, a
hardware interrupt is generated when a user presses the Print Screen key—this causes
BIOS to activate a routine that sends the ASCII contents of the screen to the printer.
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Likewise, a software interrupt is generated when a program issues a command to read
something from a disk file. This causes the CPU to tell BIOS to activate a routine to
read data from the disk and gives it the following: the number of sectors to transfer,
track number, sector number, head number, and drive number. After the operation has
been successfully completed, it tells BIOS the number of sectors transferred and sends
an all clear code. If an error should occur during the operation, an error code is
returned so that BIOS can display the appropriate error message on the screen.


Most device drivers are part of standard MS-DOS. Of course, you can always write
your own device driver. All you need is knowledge of assembly language, information
about the hardware, and some patience. This option might be necessary if you’re using
a system with an unusual combination of devices. For instance, in its early years of
commercial availability, there was not a high demand for interfacing a computer with
a disc player—so its device drivers were not incorporated into BIOS. Therefore, users
who wanted to use a disc as an I/O device had to write or buy their own device drivers
and load them when the system was booted up. These device drivers are called instal-
lable because they can be incorporated into the operating system as needed without
having to patch or change the existing operating system. Installable device drivers are
a salient feature of MS-DOS design.


File Management


MS-DOS supports sequential, direct, and indexed sequential file organizations.
Sequential files can have either variable- or fixed-length records. However, direct and
indexed sequential files can only have fixed-length records.


Filename Conventions


A filename contains no spaces and consists of the drive designation, the directory, any
subdirectory, a primary name, and an optional extension. (DOS isn’t case sensitive so
filenames and commands can be entered in uppercase, lowercase, or a combination
of both.)


The drive name (usually A, B, C, or D) is followed by a colon (:). Directories or
subdirectories can be from one to eight characters long and are preceded by a back-
slash (\). The primary filename can be from one to eight characters long and the
extension from one to three characters long. The primary name and extension are
separated by a period. A file’s extension can have a special meaning to DOS—the user
should be aware of the standard extensions and their uses.


If no directories or subdirectories are included in the name, it’s assumed that the file
is in the current working directory. If no drive is designated, it’s assumed that the file
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is on the current drive. The root directory (see the next section, Managing Files, for a
discussion of this) is called by a single backslash (\). The names of other directories
are preceded by the backslash symbol. The backslash is also used as a delimiter
between names.


A file’s relative name consists of its primary name and extension, if used. A file’s
absolute name consists of its drive designation and directory location (called its path)
followed by its relative name. When the user is working in a directory or subdirectory,
it’s called the working directory and any file in that directory can be accessed by its
relative name. However, to access a file that’s in another directory, the absolute name
is required.


For example, if your working directory includes a file called JORDAN.DOC, then you
can identify that file by typing: 


JORDAN.DOC


However, if you changed to another working directory, then you would have to
include the directory name when you called the file:


\JOURNAL\CHAP9\JORDAN.DOC


And if you changed to another drive, such as drive A, and wanted to call the file, you
would have to include the drive designation as well:


C:\JOURNAL\CHAP9\JORDAN.DOC


DOS filenames can have no spaces within them. Therefore, to copy the file from drive
C to drive B, the command would look like this: 


COPY  C:\MEMO\DEAN.DOC  B:DEAN.DOC


A simpler way to access files is to select a working directory first and then access the
files within that directory by their relative names. Later, when you’re finished with one
directory, you can issue the change directory command (see Table 14.4 later in this
chapter) to move to another working directory.


Of course, there are many variations. For complete details, refer to a technical manual
for your version of MS-DOS.


Managing Files


The earliest versions of MS-DOS kept every file in a single directory. This was slow
and cumbersome, especially as users added more and more files. To retrieve a single
file, the File Manager searched from the beginning of the list until either the file was
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found or the end of the list was reached. If a user forgot how the file was named, there
was a good chance that it would never be seen again.


To solve this problem, Microsoft implemented a hierarchical directory structure in
Version 2.0—an inverted tree directory structure. (It’s inverted because the root is at
the top and the leaves are on the bottom.)


When a disk is formatted (using the FORMAT command), its tracks are divided into
sectors of 512 bytes each. (This corresponds to a buffer size of 512 bytes.) Single-sided
disks have one recording surface, double-sided disks have two recording surfaces, and
hard disks have from two to four platters, each with two recording surfaces. The
concept of cylinders, presented in Chapter 7, applies to these hard disks because the
read/write heads move in unison.


The sectors (from two to eight) are grouped into clusters and that’s how the File
Manager allocates space to files. When a file needs additional space, DOS allocates
more clusters to it. Besides dividing up the disk space, FORMAT creates three special
areas on the disk: the boot record, the root directory, and the FAT, which stands for
file allocation table.


The boot record is the first sector of every logical disk, whether it’s an entire physical
unit (such as a floppy disk or hard disk) or only a virtual disk (such as a RAM disk).
Beginning with Version 2.0, the boot record contains the disk boot program and a
table of the disk’s characteristics.


The root directory is where the system begins its interaction with the user when it’s
booted up. The root directory contains a list of the system’s primary subdirectories
and files, including any system-generated configuration files and any user-generated
booting instructions that may be included in an AUTOEXEC.BAT file. This is a batch
file containing a series of commands defined by the user. Every time the CPU is
powered up or is reset, the commands in this file are executed automatically by the
system. A sample AUTOEXEC.BAT file is discussed later in this chapter.


The information kept in the root directory is: (1) the filename, (2) the file extension,
(3) the file size in bytes, (4) the date and time of the file’s last modification, (5) the
starting cluster number for the file, and (6) the file attribute codes. Of these six ele-
ments, the first four are displayed in response to the DIR command, as shown in
Figure 14.5.


The number of entries in a root directory is fixed. For instance, only 512 entries are
allowed for a 20 MB hard disk. The size of the root directory is limited because DOS
needs to know where the disk’s data area begins. Beginning with Version 2.0, users can
avoid this limitation by creating subdirectories that have no size limit.
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MS-DOS supports hidden files—files that are executable but not displayed in response to
DIR commands. Some of MS-DOS’s system files are hidden files; they’re used to run the
operating system but they don’t show up on the directory listings. COMMAND.COM is
the only system file that isn’t hidden and so it’s always displayed on public directories.


The FAT contains critical status information, including each sector's capability to be
allocated or not, which may have resulted from formatting errors that rendered the
sector unusable.


The directory notes the number of the first sector or cluster of the file—this number is
recorded in the directory when the file is created. All successive sectors or clusters


(figure 14.5)


A listing of the DOCS


directory showing three


subdirectories and two


files.


(figure 14.6)


The directory system: The


root directory listing has


six entries. The directory


listing for JOURNAL has


four entries: its three files


and its subdirectory


CHAP9. The directory


listing for CHAP9 has


three entries for its


three files.


The directory listing shown in Figure 14.5 was generated by the command DIR.
Notice how the three subdirectories are distinguished from the two files. Notice, also,
that the system maintains the date and time when it was most recently modified. Some
software security programs use this data to detect any viruses or other unauthorized
or unusual modifications of the system’s software.


Each subdirectory can contain its own subdirectories and/or files, as shown in
Figure 14.6.
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allocated to that file are recorded in the FAT, and are linked together to form a chain,
with each FAT entry giving the sector/cluster number of the next entry. The last entry
for each chain contains the hexadecimal value FF to indicate the end of the chain. As
you can see in Figure 14.7, a file’s sectors don’t have to be contiguous.
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(figure 14.7)


For each file, the directory


includes the first


sector/cluster location in


the file allocation table so


it can be accessed quickly.


The FAT links every sector


for each file. Notice that


the sectors for the file


PHASES.DOC are not


contiguous (the arrows


are a visual aid to show


their linking).


MS-DOS looks at data in a disk file as a continuous string of bytes. Therefore, I/O
operations request data by relative byte (relative to the beginning of the file) rather
than by relative sector. The transformation from physical sector (or cluster) to relative
byte address is done by the File Manager so data on a disk appears to be accessed just
like data in main memory.


As we mentioned a moment ago, MS-DOS supports noncontiguous file storage and
dynamically allocates disk space to a file, provided there’s enough room on the disk.
Unfortunately, as files are added and deleted from the disk, a file may become quite
fragmented, making it increasingly cumbersome and time consuming to retrieve.


Compaction became a feature of MS-DOS Version 6.0 with the inclusion of
DEFRAG.EXE, a utility used to defragment a disk by picking up the fragments of a
file and repositioning them as a single piece in a contiguous space. 


C7047_14_Ch14.qxd  1/12/10  5:24 PM  Page 451








Another command can be used to determine the need for compaction. Given
CHKDSK (filename), the system responds with the number of noncontiguous blocks
in which the file is stored. It’s up to the user to compact the file, if necessary, so it’s
stored in as few noncontiguous blocks as possible to speed access time and reduce
maintenance on the seek mechanism.


The ability to restrict user access to the computer system and its resources isn’t built
into MS-DOS. Add-on security software is available; but, for most users, data is kept
secure by keeping the computer physically locked up or by removing the disks and
keeping them in a safe place.


User Interface


MS-DOS uses a command-driven interface. Table 14.4 shows some of the most common
commands. Users type in their commands at the system prompt. The default prompt is
the drive indicator (such as C:) and the > character; therefore, C:> is the standard
prompt for a hard drive system and A:> is the prompt for a computer with one floppy
disk drive. The default prompt can be changed using the PROMPT command.


Command Stands For Action to Be Performed


DIR Directory List what’s in this directory.


CD or CHDIR Change Directory Change the working directory.


COPY Copy Copy a file. Append one to another.


DEL or ERASE Delete Delete the following file or files.


RENAME Rename Rename a file.


TYPE Type Display the text file on the screen.


PRINT Print Print one or more files on printer.


DATE Date Display and/or change the system date.


TIME Time Display and/or change the system time.


MD or MKDIR Make Directory Create a new directory or subdirectory.


FIND Find Find a string. Search files for a string.


FORMAT Format Disk Logically prepare a disk for file storage.


CHKDSK Check Disk Check disk for disk/file/directory status.


PROMPT System Prompt Change the system prompt symbol.


DEFRAG Defragment Disk Compact fragmented files.


(filename) Run (execute) the file.
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(table 14.4)


Some common MS-DOS


user commands.


Commands can be


entered in either upper- or


lowercase characters;


although in this text we


use all capital letters to


make the notation


consistent. Check the


technical documentation


for your system for proper


spelling and syntax.
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When the user presses the Enter key, the shell called COMMAND.COM interprets the
command and calls on the next lower-level routine to satisfy the request.


User commands include some or all of these elements in this order:


command    source-file    destination-file    switches


The command is any legal MS-DOS command. The source-file and destination-file are
included when applicable and, depending on the current drive and directory, might
need to include the file’s complete pathname. The switches begin with a slash (i.e., /P
/V /F) and are optional; they give specific details about how the command is to be
carried out. Most commands require a space between each of their elements.


The commands are carried out by the COMMAND.COM file, which is part of
MS-DOS, as shown in Figure 14.2. As we said before, when COMMAND.COM is
loaded during the system’s initialization, one section of it is stored in the low section
of memory; this is the resident portion of the code. It contains the command
interpreter and the routines needed to support an active program. In addition, it
contains the routines needed to process CTRL-C, CTRL-BREAK, and critical errors.


The transient code, the second section of COMMAND.COM, is stored in the highest
addresses of memory and can be overwritten by application programs if they need to
use its memory space. Later, when the program terminates, the resident portion of
COMMAND.COM checks to see if the transient code is still intact. If it isn’t, it loads
a new copy.


As a user types in a command, each character is stored in memory and displayed on
the screen. When the Enter key is pressed, the operating system transfers control to the
command interpreter portion of COMMAND.COM, which either accesses the rou-
tine that carries out the request or displays an error message. If the routine is residing
in memory, then control is given to it directly. If the routine is residing on secondary
storage, it’s loaded into memory and then control is given to it.


Although we can’t describe every command available in MS-DOS, some features are
worth noting to show the flexibility of this operating system.


Batch Files


By creating customized batch files, users can quickly execute combinations of DOS
commands to configure their systems, perform routine tasks, or make it easier for
nontechnical users to run software.


For instance, if a user routinely checks the system date and time, loads a device driver
for a mouse, moves to a certain subdirectory, and loads a program called MAIL.COM, 
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To run this program, the user needs only to type START at the system prompt. To have
this program run automatically every time the system is restarted, then the file should
be renamed AUTOEXEC.BAT and loaded into the system’s root directory. By using
batch files, any tedious combinations of keystrokes can be reduced to a few easily
remembered customized commands.


Redirection


MS-DOS can redirect output from one standard input or output device to another. For
example, the DATE command sends output directly to the screen; but by using the
redirection symbol (>), the output is redirected to another device or file instead. 


The syntax is:


command > destination


For example, if you want to send a directory listing to the printer, you would type
DIR > PRN and the listing would appear on the printed page instead of the screen.
Likewise, if you want the directory of the default drive to be redirected to a file on the
disk in the B drive, you’d type DIR > B:DIRFILE and a new file called DIRFILE would
be created on drive B and it would contain a listing of the directory.


You can redirect and append new output to an existing file by using the append
symbol (>>). For example, if you’ve already created the file DIRFILE with the
redirection command and you wanted to generate a listing of the directory and append
it to the previously created DIRFILE, you would type:


DIR >> B:DIRFILE


Now DIRFILE contains two listings of the same directory.


Redirection works in the opposite manner as well. If you want to change the source to
a specific device or file, use the < symbol. For example, let’s say you have a program
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(figure 14.8)


Contents of the program


START.BAT.


then the program that performs each of these steps (called START.BAT), would per-
form each of those steps in turn as shown in Figure 14.8.
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called INVENTRY.EXE under development that expects input from the keyboard, but
for testing and debugging purposes you want it to accept input from a test data file.
In this case, you would type:


INVENTRY < B:TEST.DAT


Filters


Filter commands accept input from the default device, manipulate the data in some
fashion, and send the results to the default output device. A commonly used filter is
SORT, which accepts input from the keyboard, sorts that data, and displays it on the
screen. This filter command becomes even more useful if it can read data from a file
and sort it to another file. This can be done by using the redirectional parameters. For
example, if you wanted to sort a data file called STD.DAT and store it in another file
called SORTSTD.DAT, then you’d type:


SORT <STD.DAT> SORTSTD.DAT


The sorted file would be in ascending order (numerically or alphabetically) starting
with the first character in each line of the file. If you wanted the file sorted in reverse
order, then you would type: 


SORT /R  <STD.DAT> SORTSTD.DAT


You can sort the file by column. For example, let’s say a file called EMPL has data
that follows this format: the ID numbers start in Column 1, the phone numbers start
in Column 6, and the last names start in Column 14. (A column is defined as char-
acters delimited by one or more spaces.) To sort the file by last name, the command
would be:


SORT /+14  <EMPL.DAT> SORTEMPL.DAT


The file would be sorted in ascending order by the field starting at Column 14.


Another common filter is MORE, which causes output to be displayed on the screen
in groups of 24 lines, one screen at a time, and waits until the user presses the Enter
key before displaying the next 24 lines.


Pipes


A pipe can cause the standard output from one command to be used as standard input
to another command; its symbol is a vertical bar (|). You can alphabetically sort your
directory and display the sorted list on the screen by typing: 


DIR | SORT
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You can combine pipes and other filters too. For example, to display on the screen the
contents of the file INVENTRY.DAT one screen at a time, the command would be: 


TYPE INVENTRY.DAT | MORE


You can achieve the same result using only redirection by typing:


MORE < INVENTRY.DAT


You can sort your directory and display it one screen at a time by using pipes with
this command: 


DIR | SORT | MORE


Or you can achieve the same result by using both pipes and filters with these 
two commands:


DIR | SORT > SORTFILE


MORE < SORTFILE


Additional Commands


Three additional commands often used in MS-DOS are FIND, PRINT, and TREE.
Note that these are “traditional” MS-DOS commands, and some of the switches or
options mentioned here might not work in Windows DOS-like emulators. 


FIND


FIND is a filter command that searches for a specific string in a given file or files and
displays all lines that contain the string from those files. The string must be enclosed
in double quotes (“ ”) and must be typed exactly as it is to be searched; upper- and
lowercase letters are taken as entered.


For example, the command to display all the lines in the file PAYROLL.COB that con-
tain the string AMNT-PAID is this:


FIND "AMNT-PAID" PAYROLL.COB


The command to count the number of lines in the file PAYROLL.COB that contain the
string AMNT-PAID and display the number on the screen is this:


FIND /C "AMNT-PAID" PAYROLL.COB


The command to display the relative line number, as well as the line in the file
PAYROLL.COB that contains the string AMNT-PAID, is this:


FIND /N "AMNT-PAID" PAYROLL.COB
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The command to display all of the lines in the file PAYROLL.COB that do not contain
the string AMNT-PAID, is this:


FIND /V "AMNT-PAID" PAYROLL.COB


The command to display the names of all files on the disk in drive B that do not con-
tain the string SYS is this:


DIR B: | FIND /V "SYS"


PRINT


The PRINT command allows the user to set up a series of files for printing while free-
ing up COMMAND.COM to accept other commands. In effect, it’s a spooler. As the
printer prints your files, you can type other commands and work on other applica-
tions. The PRINT command has many options; but to use the following two, they
must be given the first time the PRINT command is used after booting the system:


• The command PRINT /B allows you to change the size of the internal buffer. Its
default is 512 bytes, but increasing its value speeds up the PRINT process.


• The command PRINT /Q specifies the number of files allowed in the print queue.
The minimum value for Q is 4 and the maximum is 32.


TREE


The TREE command displays directories and subdirectories in a hierarchical and
indented list. It also has options that allow the user to delete files while the tree is
being generated. The display starts with the current or specified directory, with the
subdirectories indented under the directory that contains them. For example, if we
issue the command TREE, the response would be similar to that shown in Figure 14.9.
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(figure 14.9)


Sample results of the


TREE command.
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To display the names of the files in each directory, add the switch /F:


TREE /F


The TREE command can also be used to delete a file that’s duplicated on several dif-
ferent directories. For example, to delete the file PAYROLL.COB anywhere on the
disk, the command would be:


TREE PAYROLL.COB /D /Q


The system displays the tree as usual; but whenever it encounters a file called
PAYROLL.COB, it pauses and asks if you want to delete it. If, you type Y, then it
deletes the file and continues. If you type N, then it continues as before.


For illustrative purposes, we’ve included only a few MS-DOS commands here. For a
complete list of commands, their exact syntax, and more details about those we’ve dis-
cussed here, see www.microsoft.com.


Conclusion


MS-DOS was written to serve users of 1980s personal computers, including the earli-
est IBM PCs. As such, it was a success but its limited flexibility made it unusable as
computer hardware evolved.


MS-DOS is remembered as the first standard operating system to be adopted by many
manufacturers of personal computing machines. As the standard, it also supported,
and was supported by, legions of software design groups.


The weakness of MS-DOS was its single-user/single-task system design that couldn't
support multitasking, networking, and other sophisticated applications required of
computers of every size. Today it is a relic of times past, but its simple structure and
user interface make it an accessible learning tool for operating system students.


Key Terms


batch file: a file that includes a series of commands that are executed in sequence with-
out any input from the user. It contrasts with an interactive session.


BIOS: an acronym for basic input/output system, a set of programs that are hard-
coded on a chip to load into ROM at startup.


bootstrapping: the process of starting an inactive computer by using a small initializa-
tion program to load other programs.
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command-driven interface: an interface that accepts typed commands, one line at a
time, from the user. It contrasts with a menu-driven interface.


compaction: the process of collecting fragments of available memory space into contigu-
ous blocks by moving programs and data in a computer’s memory or secondary storage.


device driver: a device-specific program module that handles the interrupts and con-
trols a particular type of device.


extension: the part of the filename that indicates which compiler or software package
is needed to run the files.


file allocation table (FAT): the table used to track segments of a file.


filter command: a command that directs input from a device or file, changes it, and
then sends the result to a printer or display.


first-fit memory allocation: a main memory allocation scheme that searches from the
beginning of the free block list and selects for allocation the first block of memory
large enough to fulfill the request. It contrasts with best-fit memory allocation.


interrupt handler: the program that controls what action should be taken by the oper-
ating system when a sequence of events is interrupted.


multitasking: a synonym for multiprogramming, a technique that allows a single
processor to process several programs residing simultaneously in main memory and
interleaving their execution by overlapping I/O requests with CPU requests.


path: the sequence of directories and subdirectories the operating system must follow
to find a specific file. 


pipe: a symbol that directs the operating system to divert the output of one command
so it becomes the input of another command. In MS-DOS, the pipe symbol is |.


redirection: an instruction that directs the operating system to send the results of a
command to or from a file or a device other than a keyboard or monitor. In MS-DOS,
the redirection symbols are < and >.


system prompt: the signal from the operating system that it is ready to accept a user’s
command, such as C:\> or C:\Documents>.


working directory: the directory or subdirectory that is currently the one being used as
the home directory.


Interesting Searches
• MS-DOS Emulator


• Autoexec Batch File


• Basic Input/Output System (BIOS)


459


Interesting Searches


C7047_14_Ch14.qxd  1/12/10  5:24 PM  Page 459








• Command-Driven User Interface


• MS-DOS Command Syntax


Exercises


Research Topics


A. Explore the computing world in the early 1980s and identify several reasons
for the popularity of MS-DOS at that time. List competing operating systems
and the brands of personal computers that were available. Cite your sources.


B. According to www.microsoft.com, the company still supports MS-DOS
because this operating system is in use at sites around the world. Conduct your
own research to find a site that is still running MS-DOS and explain in your
own words why it is the operating system of choice there.


Exercises


1. Describe in your own words the purpose of all user interfaces, whether com-
mand- or menu-driven.


2. Name five advantages that a command-driven user interface has over a menu-
driven user interface.


3. How is a legal MS-DOS filename constructed? Describe the maximum length
and the roles of special characters, upper/lowercase, slashes, etc.


4. How do the sizes of system buffers and disk sectors compare? Which is larger?
Explain why this is so.


5. Give examples of the CD, DIR, and TREE commands and explain why you
would use each one.


6. Open the MS-DOS emulator from a Windows operating system (perhaps under
the Accessories Menu and called “Command Prompt”). Change to a directory
with several files and subdirectories and perform a DIR command. How is the
resulting directory ordered (alphabetically, chronologically, or other)?


7. Open the MS-DOS emulator from a Windows operating system and perform a
directory listing of the root directory (use the CD\ command and then the DIR
command). Then using the Windows operating system, open the C folder.
Compare the two listings and explain in your own words how they are similar
and how they differ.


8. Open the MS-DOS emulator from a Windows operating system and perform a
TREE command. Explain in your own words whether or not having access to
this MS-DOS command could be valuable to a Windows user.
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9. Describe in your own words the role of the file allocation table (FAT) and how
it manages files.


10. How does the working directory described in this chapter compare to the
working set described in Chapter 3?


Advanced Exercises


11. If you were configuring a small office with 10 personal computers running only
MS-DOS, describe how you would network them and how many copies of the
operating system you would need to purchase.


12. The FORMAT command wipes out any existing data on the disk being format-
ted or reformatted. Describe what safety features you would want to add to the
system to prevent inadvertent use of this command.


13. Explain why a boot routine is a necessary element of all operating systems.


14. Describe how MS-DOS performs a cold boot and in what order its disk drives
are accessed. Explain why this order does or does not make sense.


15. Describe how you would add control access to protect sensitive data in a com-
puter running MS-DOS. Can you describe both hardware and software solu-
tions? Describe any other features you would want to add to the system to
make it more secure.


16. The boot routine is stored in the systems disk’s first sector so that this routine
can be the first software loaded into memory when the computer is powered
on. Conduct your own research to discover the essential elements of the boot
routine and describe why this software is needed to “boot up” the system.
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“Windows has this exciting central position, a position
that is used by thousands and thousands of companies
to build their products.”


—Bill Gates


Learning Objectives


After completing this chapter, you should be able to describe:


• The design goals for Windows operating systems


• The role of MS-DOS in early Windows releases


• The role of the Memory Manager and Virtual Memory Manager


• The use of the Device, Processor, and Network Managers


• The system security challenges


• The Windows user interface


Chapter 15 Windows Operating
Systems


WINDOWS
Design Goals


Memory Management


Processor Management


Device Management


File Management


Network Management


Security Management


User Interface
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Windows 95 was the first full-featured operating system sold by Microsoft
Corporation and each one since has been a financial success. Windows operating sys-
tems are now available for computing environments of all sizes. 


Windows Development


The first Windows product used a graphical user interface (GUI) as its primary
method of communication with the user and needed an underlying operating system
so it could translate the users’ requests into system commands. 


Early Windows Products


Windows 1.0, introduced in 1985, ran on microcomputers with the MS-DOS operat-
ing system. That is, the first Windows application was not a true operating system. 
It was merely an interface between the actual MS-DOS operating system and the user.
Even though this was a simple product (when compared to the complex operating
systems of today), it was notable because it was the first menu-driven interface for
desktop computers that were compatible with the IBM personal computer (PC). 


Windows 1.0 was followed by increasingly sophisticated GUIs designed to run increas-
ingly powerful desktop computers, as shown in Table 15.1. The first widely adopted
Windows product, Windows 3.1, featured a standardized look and feel, similar to the
one made popular by Apple’s Macintosh computer. Windows 3.1 became the entry-
level product for single-user installations or small-business environments.


Year Product Features


1985 Windows 1.0 First retail shipment of the first Windows product;
required MS-DOS


1990 Windows 3.0 Improved performance and advanced ease-of-use;
required MS-DOS


1992 Windows 3.1 Widely adopted, commercially successful GUI with
more than 1,000 enhancements over 3.0;
required MS-DOS


1992 Windows for Workgroups GUI for small networks; required MS-DOS


Notice in Table 15.1 that Windows for Workgroups was the first Windows product to
accommodate the needs of network users by including programs and features for small
LANs. For example, a Windows for Workgroups system could easily share directories,
disks, and printers among several interconnected machines. It also allowed personal
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intercommunication through e-mail and chat programs. It was intended for small or
mid-sized groups of PCs typically seen in small businesses or small departments of
larger organizations.


Operating Systems for Home and Professional Users


Before the release of the Windows 95 operating system, all Windows products were
built to run on top of the MS-DOS operating system. That is, MS-DOS was the true
operating system but took its direction from the Windows program being run on it.
However, this layering technique proved to be a disadvantage. Although it helped
Windows gain market share among MS-DOS users, MS-DOS had little built-in secu-
rity, couldn’t perform multitasking, and had no interprocess communication capabil-
ity. In addition, it was written to work closely with the microcomputer’s hardware,
making it difficult to move the operating system to other platforms.


To respond to these needs, Microsoft developed and released a succession of Windows
operating systems (not mere GUIs) to appeal to home and office users, as shown in
Table 15.2. (Parallel development of networking products is shown in Table 15.3.)


1995 Windows 95 True operating system designed to replace
Windows 3.x, Windows for Workgroups, and
MS-DOS for single-user desktop computers.


1998 Windows 98 For PC users. Implemented many bug fixes to
Windows 95, had more extended hardware
support, and was fully 32 bit. Not directly related
to Windows NT.


2000 Windows Millennium Last Windows operating system built on the
Edition (ME) Windows 95 code.


2001 Windows XP Home For PC users. A 32-bit operating system built to
succeed Windows 95 and 98, but built on the
Windows NT kernel.


2001 Windows XP For networking and power users, built on the
Professional Windows NT kernel. The Professional Edition was


available in 32-bit and 64-bit versions.


2007 Windows Vista Complex operating system with improved 
diagnostic and repair tools.


2009 Windows 7 Available in six versions, most with 64-bit 
addressing. Designed to address the stability 
and response shortcomings of Windows Vista.


While Microsoft was courting the home and office environment with single-user oper-
ating systems, the company also began developing more powerful networking prod-
ucts, beginning with Windows NT (New Technology). Unlike the single-user operating
systems, Windows NT never relied on MS-DOS for support.
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Operating Systems for Networks


In the fall of 1988, Microsoft hired David Cutler to lead the development of the
Windows NT operating system. As an experienced architect of minicomputer systems,
Cutler identified the primary market requirements for this new product: portability,
multiprocessing capabilities, distributed computing support, compliance with govern-
ment procurement requirements, and government security certification. The finished
product has evolved as shown in Table 15.3.


1993 Windows NT The first version of NT; featured true client/server
Advanced Server operating system with support for Intel, RISC, and
version 3.1 multiprocessor systems.


1994 Windows NT Introduced BackOffice applications suite, required
Server 4MB less RAM, and offered tighter links to NetWare
version 3.5 and UNIX networks through enhanced TCP/IP stack.


1996 Windows NT Added popular interface from Windows 95, included
Server support for DCOM, and integrated support for e-mail
version 4.0 and Internet connectivity.


1999 Windows 2000 Introduced X.500-style directory services, Kerberos
Server security, and improved Distributed Component Object


Model (DCOM).


2003 Windows Available in Standard Edition, Web Edition, Enterprise
Server 2003 Edition, and Datacenter Edition, this operating system


was designed as a server platform for Microsoft’s .NET
initiative.


2009 Windows Server Upgrade for Windows Server operating system.
2008 R2


2008 Windows Reduced power consumption, increased virtualization 
Server 2008 capabilities, supports up to 64 cores.


In 1999, Microsoft changed the operating system’s name from Windows NT to
Windows 2000, which was available in four packages: Windows 2000 Professional,
Windows 2000 Server, Windows 2000 Advanced Server, and Windows 2000
Datacenter Server. The Datacenter Server was a new product designed for large data
warehouses and other data-intensive business applications, and supported up to 64GB
of physical memory. Likewise, Windows Server 2003 was also released with these
same four packages plus a Web edition.


Windows Server 2008 Release 2 was launched in 2009 to coincide with the launch
of Windows 7 and offered improved support for multiple cores, up to 64, reduced
power consumption, and increased virtualization capabilities.


The rest of our discussion of Windows focuses primarily on the networking releases of
this operating system.
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Design Goals


For the operating system to fulfill its market requirements, certain features such as
security had to be incorporated from the outset. Therefore, the designers of Windows
assembled a set of software design goals to facilitate decision making as the coding
process evolved. For example, if two design options conflicted, the design goals were
used to help determine which was better.


When they were designed, Windows networking operating systems were influenced by
several operating system models, using already-existing frameworks while introducing
new features. They use an object model to manage operating system resources and to
allocate them to users in a consistent manner. They use symmetric multiprocessing
(SMP) to achieve maximum performance from multiprocessor computers. 


To accommodate the various needs of its user community, and to optimize resources, the
Windows team identified five design goals: extensibility, portability, reliability, compati-
bility, and performance—goals that Microsoft has met with varying levels of success.


Extensibility


Knowing that operating systems must change over time to support new hardware
devices or new software technologies, the design team decided that the operating sys-
tem had to be easily enhanced. This feature is called extensibility. In an effort to ensure
the integrity of the Windows code, the designers separated operating system functions
into two groups: a privileged executive process and a set of nonprivileged processes
called protected subsystems. The term privileged refers to a processor’s mode of oper-
ation. Most processors have a privileged mode (in which all machine instructions are
allowed and system memory is accessible) and a nonprivileged mode (in which certain
instructions are not allowed and system memory isn’t accessible). In Windows termi-
nology, the privileged processor mode is called kernel mode and the nonprivileged
processor mode is called user mode.


Usually, operating systems execute in kernel mode only and application programs exe-
cute in user mode only, except when they call operating system services. In Windows,
the protected subsystems execute in user mode as if they were applications, which
allows protected subsystems to be modified or added without affecting the integrity of
the executive process.
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In addition to protected subsystems, Windows designers included several features to
address extensibility issues:


• A modular structure so new components can be added to the executive process


• A group of abstract data types called objects that are manipulated by a special set of
services, allowing system resources to be managed uniformly


• A remote procedure call that allows an application to call remote services regardless
of their location on the network


Portability


Portability refers to the operating system’s ability to operate on different machines that
use different processors or configurations with a minimum amount of recoding. To
address this goal, Windows system developers used a four-prong approach. First, they
wrote it in a standardized, high-level language. Second, the system accommodated the
hardware to which it was expected to be ported (32-bit, 64-bit, etc.). Third, code that
interacted directly with the hardware was minimized to reduce incompatibility errors.
Fourth, all hardware-dependent code was isolated into modules that could be modified
more easily whenever the operating system was ported.


Windows is written for ease of porting to machines that use 32-bit or 64-bit linear
addresses and provides virtual memory capabilities. Most Windows operating systems
have shared the following features:


• The code is modular. That is, the code that must access processor-dependent data
structures and registers is contained in small modules that can be replaced by simi-
lar modules for different processors.


• Much of Windows is written in C, a programming language that’s standardized and
readily available. The graphic component and some portions of the networking user
interface are written in C++. Assembly language code (which generally is not
portable) is used only for those parts of the system that must communicate directly
with the hardware.


• Windows contains a hardware abstraction layer (HAL), a dynamic-link library that -
provides isolation from hardware dependencies furnished by different vendors. 
The HAL abstracts hardware, such as caches, with a layer of low-level software 
so that higher-level code need not change when moving from one platform to another.


Reliability


Reliability refers to the robustness of a system—that is, its predictability in respond-
ing to error conditions, even those caused by hardware failures. It also refers to the
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operating system’s ability to protect itself and its users from accidental or deliberate
damage by user programs.


Structured exception handling is one way to capture error conditions and respond to
them uniformly. Whenever such an event occurs, either the operating system or the
processor issues an exception call, which automatically invokes the exception handling
code that’s appropriate to handle the condition, ensuring that no harm is done to
either user programs or the system. In addition, the following features strengthen
the system:


• A modular design that divides the executive process into individual system compo-
nents that interact with each other through specified programming interfaces. For
example, if it becomes necessary to replace the Memory Manager with a new one,
then the new one will use the same interfaces.


• A file system called NTFS (NT File System), which can recover from all types of
errors including those that occur in critical disk sectors. To ensure recoverability,
NTFS uses redundant storage and a transaction-based scheme for storing data.


• A security architecture that provides a variety of security mechanisms, such as user
logon, resource quotas, and object protection.


• A virtual memory strategy that provides every program with a large set of memory
addresses and prevents one user from reading or modifying memory that’s occupied
by another user unless the two are explicitly sharing memory.


Compatibility


Compatibility usually refers to an operating system’s ability to execute programs writ-
ten for other operating systems or for earlier versions of the same system. However,
for Windows, compatibility is a more complicated topic.


Through the use of protected subsystems, Windows provides execution environments for
applications that are different from its primary programming interface—the Win32
application programming interface (API). When running on Intel processors, the protected
subsystems supply binary compatibility with existing Microsoft applications. Windows
also provides source-level compatibility with POSIX applications that adhere to the
POSIX operating system interfaces defined by the IEEE. (POSIX is the Portable
Operating System Interface for UNIX, an operating system API that defines how a ser-
vice is invoked through a software package. POSIX was developed by the IEEE to
increase the portability of application software. [IEEE, 2004].


In addition to compatibility with programming interfaces, recent versions of
Windows also support already-existing file systems, including the MS-DOS file allo-
cation table (FAT), the CD-ROM file system (CDFS), and the NTFS. 
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Windows comes with built-in verification of important hardware and software. That
is, the upgrade setup procedures include a check-only mode that examines the system’s
hardware and software for potential problems and produces a report that lists them.
The procedure stops when it can’t find drivers for critical devices, such as hard-disk
controllers, bus extensions, and other items that are sometimes necessary for a success-
ful upgrade.


Performance


The operating system should respond quickly to CPU-bound applications. To do so,
Windows is built with the following features:


• System calls, page faults, and other crucial processes are designed to respond in a
timely manner.


• A mechanism called the local procedure call (LPC) is incorporated into the
operating system so that communication among the protected subsystems doesn’t
restrain performance.


• Critical elements of Windows’ networking software are built into the privileged por-
tion of the operating system to improve performance. In addition, these components
can be loaded and unloaded from the system dynamically, if necessary.


That said, the response of some Windows operating systems slowed down as applica-
tions were installed and the computer was used over time. Even when these applications
were uninstalled, performance remained slow and did not return to benchmarks the sys-
tem achieved when the computer was new.


Memory Management


Every operating system uses its own view of physical memory and requires its applica-
tion programs to access memory in specified ways. In the example shown in Figure 15.1,
each process’s virtual address space is 4GB, with 2GB each allocated to program storage
and system storage. When physical memory becomes full, the Virtual Memory Manager
pages some of the memory contents to disk, freeing physical memory for other processes.


The challenge for all Windows operating systems, especially those running in a
network, is to run application programs written for Windows or POSIX without
crashing into each other in memory. Each Windows environment subsystem provides
a view of memory that matches what its applications expect. The executive process has
its own memory structure, which the subsystems access by calling the operating sys-
tem’s inherent services.
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In recent versions of Windows, the operating system resides in high virtual memory
and the user’s code and data reside in low virtual memory, as shown in Figure 15.1. A
user’s process can’t read or write to system memory directly. All user-accessible mem-
ory can be paged to disk, as can the segment of system memory labeled paged pool.
However, the segment of system memory labeled nonpaged pool is never paged to disk
because it’s used to store critical objects, such as the code that does the paging, as well
as major data structures.


User-Mode Features


The Virtual Memory (VM) Manager allows user-mode subsystems to share memory
and provides a set of native services that a process can use to manage its virtual mem-
ory in the following ways:


• Allocate memory in two stages: first by reserving memory and then by committing
memory, as needed. This two-step procedure allows a process to reserve a large
section of virtual memory without being charged for it until it’s actually needed.


• Provide read and/or write protection for virtual memory, allowing processes to
share memory when needed.


• Lock virtual pages in physical memory. This ensures that a critical page won’t be
removed from memory while a process is using it. For example, a database applica-
tion that uses a tree structure to update its data may lock the root of the tree in
memory, thus minimizing page faults while accessing the database.


• Retrieve information about virtual pages.


• Protect virtual pages. Each virtual page has a set of flags associated with it that
determines the types of access allowed in user mode. In addition, Windows provides
object-based memory protection. Therefore, each time a process opens a section
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object, a block of memory that can be shared by two or more processes, the security
reference monitor checks whether the process is allowed to access the object.


• Rewrite virtual pages to disk. If an application modifies a page, the VM Manager
writes the changes back to the file during its normal paging operations.


Virtual Memory Implementation


The Virtual Memory Manager relies on address space management and paging techniques.


Address Space Management


As shown in Figure 15.1, the upper half of the virtual address space is accessible only
to kernel-mode processes. Code in the lower part of this section, kernel code and data,
is never paged out of memory. In addition, the addresses in this range are translated
by the hardware, providing exceedingly fast data access. Therefore, the lower part of
the resident operating system code is used for sections of the kernel that require maxi-
mum performance, such as the code that dispatches units of execution, called threads
of execution, in a processor.


When users create a new process, they can specify that the VM Manager initialize their
virtual address space by duplicating the virtual address space of another process. This
allows environment subsystems to present their client processes with views of memory
that don’t correspond to the virtual address space of a native process.


Paging


The pager is the part of the VM Manager that transfers pages between page frames in
memory and disk storage. As such, it’s a complex combination of both software poli-
cies and hardware mechanisms. Software policies determine when to bring a page into
memory and where to put it. Hardware mechanisms include the exact manner in
which the VM Manager translates virtual addresses into physical addresses.


Because the hardware features of each system directly affect the success of the VM
Manager, implementation of virtual memory varies from processor to processor.
Therefore, this portion of the operating system isn’t portable and must be modified for
each new hardware platform. To make the transition easier, Windows keeps this code
small and isolated. The processor chip that handles address translation and exception
handling looks at each address generated by a program and translates it into a physical
address. If the page containing the address isn’t in memory, then the hardware
generates a page fault and issues a call to the pager. The translation look-aside buffer
(TLB) is a hardware array of associative memory used by the processor to speed mem-
ory access. As pages are brought into memory by the VM Manager, it creates entries
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for them in the TLB. If a virtual address isn’t in the TLB, it may still be in memory. In
that case, virtual software rather than hardware is used to find the address, resulting
in slower access times.


Paging policies in a virtual memory system dictate how and when paging is done and
are composed of fetch, placement, and replacement policies:


• The fetch policy determines when the pager copies a page from disk to memory. 
The VM Manager uses a demand paging algorithm with locality of reference, called
clustering, to load pages into memory. This strategy attempts to minimize the num-
ber of page faults that a process encounters.


• The placement policy is the set of rules that determines where the virtual page is
loaded in memory. If memory isn’t full, the VM Manager selects the first page frame
from a list of free page frames. This list is called the page frame database, and is an
array of entries numbered from 0 through n ! 1, with n equaling the number of
page frames of memory in the system. Each entry contains information about the
corresponding page frame, which can be in one of six states at any given time: valid,
zeroed, free, standby, modified, or bad. Valid and modified page frames are those
currently in use. Those zeroed, free, or on standby represent available page frames;
bad frames can’t be used.  


Of the available page frames, the page frame database links together those that are
in the same state, thus creating five separate homogeneous lists. Whenever the num-
ber of pages in the zeroed, free, and standby lists reaches a preset minimum, the
modified page writer process is activated to write the contents of the modified pages
to disk and link them to the standby list. On the other hand, if the modified page
list becomes too short, the VM Manager shrinks each process’s working set to its
minimum working set size and adds the newly freed pages to the modified or
standby lists to be reused.


• The replacement policy determines which virtual page must be removed from
memory to make room for a new page. Of the replacement policies considered in
Chapter 3, the VM Manager uses a local FIFO replacement policy and keeps track
of the pages currently in memory for each process—the process’s working set. The
FIFO algorithm is local to each process, so that when a page fault occurs, only page
frames owned by a process can be freed. When it’s created, each process is assigned
a minimum working-set size, which is the number of pages the process is guaranteed
to have in memory while it’s executing. If memory isn’t very full, the VM Manager
allows the process to have the pages it needs up to its working set maximum. If the
process requires even more pages, the VM Manager removes one of the process’s
pages for each new page fault the process generates.


Certain parts of the VM Manager are dependent on the processor running the operating
system and must be modified for each platform. These platform-specific features include
page table entries, page size, page-based protection, and virtual address translation.
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Processor Management


In general, a process is the combination of an executable program, a private mem-
ory area, and system resources allocated by the operating system as the program
executes. However, a process requires a fourth component before it can do any
work: at least one thread of execution. A thread is the entity within a process that
the kernel schedules for execution; it could be roughly equated to a task. Using mul-
tiple threads, also called multithreading, allows a programmer to break up a single
process into several executable segments and also to take advantage of the extra
CPU power available in computers with multiple processors. Windows Server 2008
Release 2 can coordinate processing among 64 cores.


Windows is a preemptive multitasking, multithreaded operating system. By default, a
process contains one thread, which is composed of the following: 


• A unique identifier 


• The contents of a volatile set of registers indicating the processor’s state 


• Two stacks used during the thread’s execution


• A private storage area used by subsystems and dynamic-link libraries 


These components are called the thread’s context; the actual data forming this context
varies from one processor to another. The kernel schedules threads for execution on a
processor. For example, when you use the mouse to double-click an icon in the
Program Manager, the operating system creates a process, and that process has one
thread that runs the code. The process is like a container for the global variables, the
environment strings, the heap owned by the application, and the thread. The thread is
what actually executes the code. Figure 15.2 shows a diagram of a process with a
single thread.
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For systems with multiple processors, a process can have as many threads as there are
CPUs available. The overhead incurred by a thread is minimal. In some cases, it’s
actually advantageous to split a single application into multiple threads because the
entire program is then much easier to understand. The creation of threads isn’t as com-
plicated as it may seem. Although each thread has its own stack, all threads belonging
to one process share its global variables, heap, and environment strings, as shown in
Figure 15.3.
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Multiple threads can present problems because it’s possible for several different
threads to modify the same global variables independently of each other. To prevent
this, Windows operating systems include synchronization mechanisms to give exclu-
sive access to global variables as these multithreaded processes are executed. 


For example, let’s say the user is modifying a database application. When the user
enters a series of records into the database, the cursor changes into a combination of
hourglass and arrow pointer, indicating that a thread is writing the last record to the
disk while another thread is accepting new data. Therefore, even as processing is going
on, the user can perform other tasks. The concept of overlapped I/O is now occurring
on the user’s end, as well as on the computer’s end. 


Multithreading is advantageous when doing database searches because data is retrieved
faster when the system has several threads of execution that are searching an array
simultaneously, especially if each thread has its own CPU. Programs written to take
advantage of these features must be designed very carefully to minimize contention, such
as when two CPUs attempt to access the same memory location at the same time, or
when two threads compete for single shared resources, such as a hard disk.


Client/server applications tend to be CPU-intensive for the server because, although
queries on the database are received as requests from a client computer, the actual
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query is managed by the server’s processor. A Windows multiprocessing environment
can satisfy those requests by allocating additional CPU resources.


Device Management


The I/O system must accommodate the needs of existing devices—from a simple
mouse and keyboard to printers, display terminals, disk drives, CD-ROM drives, mul-
timedia devices, and networks. In addition, it must consider future storage and input
technologies. The I/O system provides a uniform high-level interface for executive-
level I/O operations and eliminates the need for applications to account for differences
among physical devices. It shields the rest of the operating system from the details of
device manipulation and thus minimizes and isolates hardware-dependent code.


The I/O system in Windows is designed to provide the following:


• Multiple installable file systems including FAT, the CD-ROM file system, and NTFS


• Services to make device-driver development as easy as possible yet workable on
multiprocessor systems


• Ability for system administrators to add or remove drivers from the system
dynamically


• Fast I/O processing while allowing drivers to be written in a high-level language


• Mapped file I/O capabilities for image activation, file caching, and application use


The I/O system is packet driven. That is, every I/O request is represented by an I/O
request packet (IRP) as it moves from one I/O system component to another. An IRP
is a data structure that controls how the I/O operation is processed at each step.
The I/O Manager creates an IRP that represents each I/O operation, passes the IRP to
the appropriate driver, and disposes of the packet when the operation is complete. On
the other hand, when a driver receives the IRP, it performs the specified operation and
then either passes it back to the I/O Manager or passes it through the I/O Manager to
another driver for further processing.


In addition to creating and disposing of IRPs, the I/O Manager supplies code, common
to different drivers, that it calls to carry out its I/O processing. It also manages buffers
for I/O requests, provides time-out support for drivers, and records which installable file
systems are loaded into the operating system. It provides flexible I/O facilities that allow
subsystems such as POSIX to implement their respective I/O application programming
interfaces. Finally, the I/O Manager allows device drivers and file systems, which it per-
ceives as device drivers, to be loaded dynamically based on the needs of the user.


To make sure the operating system works with a wide range of hardware peripherals,
Windows provides a device-independent model for I/O services. This model takes
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advantage of a concept called a multilayered device driver that’s not found in
operating systems, such as MS-DOS with monolithic device drivers. These multilay-
ered drivers provide a large and complex set of services that are understood by an
intermediate layer of the operating system. 


Each device driver is made up of a standard set of routines including the following:


• Initialization routine, which creates system objects used by the I/O Manager to
recognize and access the driver.


• Dispatch routine, which comprises functions performed by the driver, such as
READ or WRITE. This is used by the I/O Manager to communicate with the driver
when it generates an IRP after an I/O request.


• Start I/O routine, used by the driver to initiate data transfer to or from a device.


• Completion routine, used to notify a driver that a lower-level driver has finished
processing an IRP.


• Unload routine, which releases any system resources used by the driver so that the
I/O Manager can remove them from memory.


• Error logging routine, used when unexpected hardware errors occur such as a bad
sector on a disk; the information is passed to the I/O Manager, which writes all this
information to an error log file.


When a process needs to access a file, the I/O Manager determines from the file
object’s name which driver should be called to process the request, and it must be able
to locate this information the next time a process uses the same file. This is accom-
plished by a driver object, which represents an individual driver in the system, and a
device object, which represents a physical, logical, or virtual device on the system and
describes its characteristics.


The I/O Manager creates a driver object when a driver is loaded into the system and
then calls the driver’s initialization routine, which records the driver entry points in
the driver object and creates one device object for each device to be handled by this
driver. An example showing how an application instruction results in disk access is
shown in Table 15.4 and graphically illustrated in Figure 15.4. 


Event Result


Instruction: READ READ = FUNCTION CODE 1 
"MYFILE.TXT" "MYFILE.TXT" = DISK SECTOR 10


Actions: 1. Access DRIVER OBJECT (1) 


2. Activate READ routine


3. Access DISK SECTOR 10
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(table 15.4)


Example showing how a


device object is created


from an instruction to


read a file. The actual


instruction is translated as


illustrated in Figure 15.4.
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Figure 15.4 illustrates how the last device object points back to its driver object, telling
the I/O Manager which driver routine to call when it receives an I/O request. It works
in the following manner: When a process requests access to a file, it uses a filename,
which includes the device object where the file is stored. When the file is opened, the
I/O Manager creates a file object and then returns a file handle to the process.
Whenever the process uses the file handle, the I/O Manager can immediately find
the device object, which points to the driver object representing the driver that services
the device. Using the function code supplied in the original request, the I/O Manager
indexes into the driver object and activates the appropriate routine because each func-
tion code corresponds to a driver routine entry point.
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Function Code 1


Function Code 2


Function Code X
Function Code Y


Function Code N


Read


Write


Start I/O
Unload


...


...


...


...
Device
Object


Device
Object


(Disk) (Disk
Sector 10)


Devices
Handled 
by This Driver


Driver Object (figure 15.4)


The driver object from


Table 15.4 is connected to


several device objects. The


last device object points


back to the driver object.


A driver object may have multiple device objects connected to it. The list of device objects
represents the physical, logical, and virtual devices that are controlled by the driver.
For example, each sector of a hard disk has a separate device object with sector-specific
information. However, the same hard disk driver is used to access all sectors. When a
driver is unloaded from the system, the I/O Manager uses the queue of device objects to
determine which devices will be affected by the removal of the driver.


Using objects to keep track of information about drivers frees the I/O Manager from
having to know details about individual drivers—it just follows a pointer to locate a dri-
ver. This provides portability and allows new drivers to be easily loaded. Another advan-
tage to representing devices and drivers with different objects is that it’s easier to assign
drivers to control additional or different devices if the system configuration changes.


Figure 15.5 shows how the I/O Manager interacts with a layered device driver to write
data to a file on a hard disk by following these steps in order: 
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1. An application issues a command to write to a disk file at a specified byte off-
set within the file. 


2. The I/O Manager passes the file handle to the file system driver. 


3. The I/O Manager translates the file-relative byte offset into a disk-relative byte
offset and calls the next driver. 


4. The function code and the disk-relative byte offset are passed to the disk driver. 


5. The disk-relative byte offset is translated into the physical location and data
is transferred. 


This process parallels the discussion in Chapter 8 about levels in a file management system.


The I/O Manager knows nothing about the file system. The process described in this
example works exactly the same if an NTFS driver is replaced by a FAT driver, a UNIX or
Linux file system driver, a CD-ROM driver, a Macintosh file system driver, or any other.
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System Services


I/O
Manager


Disk


Disk
Driver


File System
Driver


1. WRITE_FILE (File_handle, character_buffer)


2. Write data at
    specified location


3. Translate file-relative
    byte offset into
    disk-relative byte-
    offset; call next driver


4. Call driver to write
    data at disk-relative
    byte offset


5. Translate disk-relative
    byte offset into physical
    location; transfer data


User Mode
Kernel Mode


Dynamic-Link Library(figure 15.5)


Details of the layering of a


file system driver and a


disk driver first shown in


Figure 15.4. These are the


five steps that take place


when the I/O Manager


needs to access a


secondary storage device


to satisfy the user


command shown here as


number 1.
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Keep in mind that overhead is required for the I/O Manager to pass requests back and
forth for information. So for simple devices, such as serial and parallel printer ports,
the operating system provides a single-layer device driver approach in which the I/O
Manager can communicate with the device driver, which, in turn, returns information
directly. But for more complicated devices, particularly for devices such as hard drives
that depend on a file system, a multilayered approach is a better choice.


Another device driver feature of recent Windows operating systems is that almost all
low-level I/O operations are asynchronous. That means that when an application
issues an I/O request, it doesn’t have to wait for data to be transferred, but it can con-
tinue to perform other work while data transfer is taking place. Asynchronous I/O
must be specified by the process when it opens a file handle. During asynchronous
operations, the process must be careful not to access any data from the I/O operation
until the device driver has finished data transfer. Asynchronous I/O is useful for opera-
tions that take a long time to complete or for which completion time is variable.


For example, the time it takes to list the files in a directory varies according to the
number of files. Because Windows is a preemptive multitasking system that may be
running many tasks at the same time, it’s vital that the operating system not waste time
waiting for a request to be filled if it can be doing something else. The various layers
in the operating system use preemptive multitasking and multithreading to get more
work done in the same amount of time. 


File Management


Typically, an operating system is associated with the particular file structure that
it uses for mass storage devices, such as hard disks. Therefore, we speak of a UNIX
file system (i-nodes) or an MS-DOS file system (FAT). Although there is a resident
NTFS, current versions of Windows are designed to be independent of the file system
on which they operate.


The primary file handling concept in recent versions of Windows, first introduced in
UNIX, is the virtual file—that’s any I/O source or destination—and it’s treated as if it
were a file. In Windows, programs perform I/O on virtual files, manipulating them by
using file handles. Although not a new concept, in Windows a file handle actually
refers to an executive file object that represents all sources and destinations of I/O.
Processes call native file object services such as those required to read from or write to
a file. The I/O Manager directs these virtual file requests to real files, file directories,
physical devices, or any other destination supported by the system. File objects have
hierarchical names, are protected by object-based security, support synchronization,
and are handled by object services.


480


Ch
ap


te
r 
15


 |
W


in
do


w
s 


O
pe


ra
tin


g 
Sy


st
em


s


C7047_15_Ch15.qxd  1/12/10  5:27 PM  Page 480








When opening a file, a process supplies the file’s name and the type of access required.
This request moves to an environment subsystem that in turn calls a system service.
The Object Manager starts an object name lookup and turns control over to the I/O
Manager to find the file object. The I/O Manager checks the security subsystem to
determine whether or not access can be granted. The I/O Manager also uses the file
object to determine whether asynchronous I/O operations are requested.


The creation of file objects helps bridge the gap between the characteristics of physi-
cal devices and directory structures, file system structures, and data formats. File
objects provide a memory-based representation of shareable physical resources.
When a file is opened, the I/O Manager returns a handle to a file object. The
Object Manager treats file objects like all other objects until the time comes to
write to, or read from, a device, at which point the Object Manager calls the I/O
Manager for assistance to access the device. Figure 15.6 illustrates the contents of
file objects and the services that operate on them. Table 15.5 describes in detail the
object body attributes.


Attribute Purpose


Filename Identifies the physical file to which the file object refers


Device type Indicates the type of device on which the file resides


Byte offset Identifies the current location in the file (valid only for
synchronous I/O)


Share mode Indicates whether other callers can open the file for read,
write, or delete operations while this caller is using it


Open mode Indicates whether I/O is synchronous or asynchronous,
cached or noncached, sequential or random, etc.


File disposition Indicates whether to delete the file after closing it


Let’s make a distinction between a file object, a memory-based representation of a share-
able resource that contains only data unique to an object handle, and the file itself,
which contains the data to be shared. Each time a process opens a handle, a new file
object is created with a new set of handle-specific attributes. For example, the attribute
byte offset refers to the location in the file where the next READ or WRITE operation
using that handle will occur. It might help if you think of file object attributes as being
specific to a single handle.


Although a file handle is unique to a process, the physical resource isn’t. Therefore,
processes must synchronize their access to shareable files, directories, and devices. For
example, if a process is writing to a file, it should specify exclusive write-access or lock
portions of the file while writing to it, to prevent other processes from writing to that
file at the same time.
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(table 15.5)


Description of the


attributes shown in


Figure 15.6.
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Mapped file I/O is an important feature of the I/O system and is achieved through the
cooperation of the I/O system and the VM Manager. At the operating system level, file
mapping is typically used for file caching, loading, and running executable programs.
The VM Manager allows user processes to have mapped file I/O capabilities through
native services. Memory-mapped files exploit virtual memory capabilities by allowing
an application to open a file of arbitrary size and treat it as a single contiguous array
of memory locations without buffering data or performing disk I/O.  


For example, a file of 100MB can be opened and treated as an array in a system with
only 20MB of memory. At any one time, only a portion of the file data is physically
present in memory—the rest is paged out to the disk. When the application requests
data that’s not currently stored in memory, the VM Manager uses its paging mecha-
nism to load the correct page from the disk file. When the application writes to its vir-
tual memory space, the VM Manager writes the changes back to the file as part of the
normal paging. Because the VM Manager optimizes its disk accesses, applications that
are I/O bound can speed up their execution by using mapped I/O—writing to memory
is faster than writing to a secondary storage device.


A component of the I/O system called the cache manager uses mapped I/O to manage
its memory-based cache. The cache expands or shrinks dynamically depending on the
amount of memory available. Using normal working-set strategies, the VM Manager
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Filename
Device Type
Byte Offset
Share Mode
Open Mode


File Disposition


Create File
Open File
Read File
Write File


Query File Information
Set File Information


Query Extended Attributes
Set Extended Attributes


Lock Byte Range
Unlock Byte Range


Cancel I/O
Flush Buffers


Query Directory File
Notify Caller When Directory Changes


Get Volume Information
Set Volume Information


Object Type


Object
Body 
Attributes


Services


(figure 15.6)


Illustration of a file


object, its attributes,


and the services that


operate on them. The


attributes are explained


in Table 15.5.


C7047_15_Ch15.qxd  1/12/10  5:27 PM  Page 482








expands the size of the cache when there is memory available to accommodate the
application’s needs, and reduces the cache when it needs free pages. The cache manager
takes advantage of the VM Manager’s paging system, avoiding duplication of effort.


The file management system supports long filenames that can include spaces and
special characters. Therefore, users can name a file Spring 2005 Student Grades
instead of something cryptic like S05STD.GRD. Because the use of long filename
could create compatibility problems with older operating systems that might reside
on the network, the file system automatically converts a long filename to the standard
eight-character filename and three-character extension required by MS-DOS 
and 16-bit Windows applications. The File Manager does this by keeping a table
that lists each long filename and relates it to the corresponding short filename. 


Network Management


In Windows operating systems, networking is an integral part of the operating system
executive, providing services such as user accounts, resource security, and mechanisms
used to implement communication between computers, such as with named pipes
and mailslots. Named pipes provide a high-level interface for passing data between two
processes regardless of their locations. Mailslots provide one-to-many and many-to-one
communication mechanisms useful for broadcasting messages to any number of processes.


Microsoft Networks, informally known as MS-NET, became the model for the NT
Network Manager. Three MS-NET components—the redirector, the server message
block (SMB) protocol, and the network server—were extensively refurbished and
incorporated into subsequent Windows operating systems.


The redirector, coded in the C programming language, is implemented as a loadable
file system driver and isn’t dependent on the system’s hardware architecture. Its func-
tion is to direct an I/O request from a user or application to the remote server that has
the appropriate file or resource needed to satisfy the request. A network can incorpo-
rate multiple redirectors, each of which directs I/O requests to remote file systems or
devices. A typical remote I/O request might result in the following progression:


1. The user-mode software issues a remote I/O request by calling local I/O services.


2. After some initial processing, the I/O Manager creates an I/O request packet
(IRP) and passes the request to the Windows redirector, which forwards the
IRP to the transport drivers.


3. Finally, the transport drivers process the request and place it on the network.
The reverse sequence is observed when the request reaches its destination.


The SMB protocol is a high-level specification for formatting messages to be sent
across the network and correlates to the application layer (Layer 7), and the presenta-
tion layer (Layer 6) of the OSI model described in Chapter 9. An API called NetBIOS
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is used to pass I/O requests structured in the SMB format to a remote computer. Both
the SMB protocols and the NetBIOS API were adopted in several networking products
before appearing in Windows.


The Windows Server operating systems are written in C for complete compatibility
with existing MS-NET and LAN Manager SMB protocols, are implemented as load-
able file system drivers, and have no dependency on the hardware architecture on
which the operating system is running.


Directory Services


The Active Directory database stores many types of information and serves as a
general-purpose directory service for a heterogeneous network.


Microsoft built the Active Directory entirely around the Domain Name Service or
Domain Name System (DNS) and Lightweight Directory Access Protocol (LDAP).
DNS is the hierarchical replicated naming service on which the Internet is built.
However, although DNS is the backbone directory protocol for one of the largest data
networks, it doesn’t provide enough flexibility to act as an enterprise directory by
itself. That is, DNS is primarily a service for mapping machine names to IP addresses,
which is not enough for a full directory service, which must be able to map names of
arbitrary objects (such as machines and applications) to any kind of information about
those objects.


Active Directory groups machines into administrative units called domains, each of
which gets a DNS domain name (such as pitt.edu). Each domain must have at least
one domain controller that is a machine running the Active Directory server.


For improved fault tolerance and performance, a domain can have more than one domain
controller with each holding a complete copy of that domain’s directory database.


Current versions of Windows network operating systems eliminate the distinction
between primary domain controllers and backup domain controllers, making the
network simpler to administer because it doesn’t have multiple hierarchies. Active
Directory clients use standard DNS and LDAP protocols to locate objects on the net-
work. As shown in Figure 15.7, here’s how it works:


1. A client that needs to look up an Active Directory name first passes the DNS
part of the name to a standard DNS server. The DNS server returns the net-
work address of the domain controller responsible for that name.


2. Next, the client uses LDAP to query the domain controller to find the address
of the system that holds the service the client needs.


3. Finally, the client establishes a direct connection with the requested service
using the correct protocol required by that service.
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Security Management


Windows operating systems provide an object-based security model. That is, a secu-
rity object can represent any resource in the system: a file, device, process, program,
or user. This allows system administrators to give precise security access to specific
objects in the system while allowing them to monitor and record how objects are used.


One of the biggest concerns about Windows operating systems is the need for aggres-
sive patch management to combat the many viruses and worms that target these sys-
tems. Updates are available on www.microsoft.com, as shown in Figure 15.8.
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Active Directory clients use


standard DNS and LDAP


protocols to locate objects


on the network.


(figure 15.8)


Operating system updates


are available online.
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Security Basics


The U.S. Department of Defense has identified and categorized into seven levels of secu-
rity certain features that make an operating system secure. Early versions of Windows
targeted Class C2 level with a plan to evolve to Class B2 level—a more stringent level
of security in which each user must be assigned a specific security level clearance and
is thwarted from giving lower-level users access to protected resources.


To comply with the Class C2 level of security, Windows operating systems now
include the following features:


• A secure logon facility requiring users to identify themselves by entering a unique
logon identifier and a password before they’re allowed access to the system


• Discretionary access control allowing the owner of a resource to determine who else
can access the resource and what they can do to it


• Auditing ability to detect and record important security-related events or any
attempt to create, access, or delete system resources


• Memory protection preventing anyone from reading information written by some-
one else after a data structure has been released back to the operating system


Password management is the first layer of security.


The second layer of security deals with file access security. At this level, the user can
create a file and establish various combinations of individuals to have access to it
because the operating system makes distinctions between owners and groups. The cre-
ator of a file is its owner. The owner can designate a set of users as belonging to a
group and allow all the members of the group to have access to that file. Conversely,
the owner could prevent some of the members from accessing that file.


In addition to determining who is allowed to access a file, users can decide what type
of operations a person is allowed to perform on a file. For example, one may have
read-only access, while another may have read-and-write privileges. As a final mea-
sure, the operating system gives the user auditing capabilities that automatically keep
track of who uses files and how the files are used.


Security Terminology


The built-in security for recent Windows network operating systems is a necessary ele-
ment for managers of Web servers and networks. Its directory service lets users find
what they need and a communications protocol lets users interact with it. However,
because not everyone should be able to find or interact with everything in the network,
controlling access is the job of distributed security services.
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Effective distributed security requires an authentication mechanism that allows a client
to prove its identity to a server. Then the client needs to supply authorization
information that the server uses to determine which specific access rights have been
given to this client. Finally, it needs to provide data integrity using a variety of meth-
ods ranging from a cryptographic checksum for all transmitted data to completely
encrypting all transmitted data.


Recent Windows operating systems provide this with Kerberos security, as described
in Chapter 11. Kerberos provides authentication, data integrity, and data privacy. In
addition, it provides mutual authentication, which means that both the client and
server can verify the identity of the other. (Other security systems require only that the
clients prove their identity. Servers are automatically authenticated.)


Each domain has its own Kerberos server, which shares the database used by Active
Directory. This means that the Kerberos server must execute on the domain-controller
machine and, like the Active Directory server, it can be replicated within a domain.
Every user who wants to securely access remote services must log on to a Kerberos
server. Figure 15.9 shows the path followed by a request from an application to a ser-
vice provided on the network.
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(figure 15.9)


Requests from an


application flow through a


series of security providers,


as do the responses, from


the network back to the


application.


Application


Network Provider


Security Support Provider Interface (SSPI)


Security Support Provider (SSP)


Network


A successful login returns a ticket granting ticket to the user, which can be handed
back to the Kerberos server to request tickets to specific application servers.


If the Kerberos server determines that a user is presenting a valid ticket, it returns the
requested ticket to the user with no questions asked. The user sends this ticket to the
remote application server, which can examine it to verify the user’s identity and
authenticate the user. All of these tickets are encrypted in different ways, and various
keys are used to perform the encryption.


Different implementations of Kerberos send different authorization information.
Microsoft has implemented the standard Kerberos protocol to make the product more
compatible with other Kerberos implementations.


C7047_15_Ch15.qxd  1/12/10  5:27 PM  Page 487








Different security protocols can have very different APIs, creating problems for appli-
cations that might want to use more than one of them. Microsoft has addressed this
problem by separating the users of distributed security services from their providers,
allowing support for many options without creating unusable complexity.


User Interface


Although a detailed description of the tools present on the desktop is beyond the scope
of this chapter, we’ll take a brief look at the Start Menu because it’s the key applica-
tion of the Windows desktop. Figure 15.10 shows a typical Start Menu. 
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(figure 15.10)


A typical Windows Start


Menu divides functions


into logical groups and


lists the applications most


frequently used.
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The Start Menu organizes files and programs into logical groups. From here, users per-
form common functions including the following:


• All Programs goes to a list of many available applications. The applications shown
in Table 15.10 were recently used. To open one again, click the icon.


• Frequent and Recent show applications and folders that are frequently or were
recently used.


• Search initiates a searching routine.


• Shut Down with options for turning off the computer or hibernating.


The Windows Task Manager, opened by pressing and holding the Ctrl, Alt, and
Delete keys, offers users the chance to view running applications and processes, and
set the priorities of each, as shown in Figure 15.11. From this window, users can
also view information about performance, networking, and other users logged in to
the system.
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Priority management


using the Task Manager.
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A standard utility program called Windows Explorer (not to be confused with the Web
browser called Internet Explorer) contains directory and file display tools and a file
finding tool, as shown in Figure 15.12. 
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(figure 15.12)


Windows Explorer is a file


management tool that


displays directories


(folders).


For networked systems, there are tools to help administrators identify and access net-
work resources, such as folders, printers, and connections to other nodes. To find
them, go to Network and Sharing Center and click View Computers and Devices, and
then click the option to map a network drive, as shown in Figure 15.13. 


A command interface that resembles that used for MS-DOS is available from most
Windows desktops, as shown in Figure 15.14.  Using this feature, one can try out MS-
DOS commands from a computer running Windows.


For users who are faster with the keyboard than with a pointing device, Windows pro-
vides many keyboard shortcuts. For a guide, look for keyboard shortcuts on the pull-
down menus, such as the one shown in Figure 15.15, which identifies ALT+TAB as the
keyboard shortcut to switch to the next window.


A helpful Windows feature is its accommodation for users working in non-English lan-
guages. Windows has built-in input methods and fonts for many languages including
double-byte languages such as Japanese. During installation, the system administrator
can select one or several languages for the system, even adding different language sup-
port for specific individuals. For example, one user can work in Chinese while another
can work in Hindi. Even better, the system’s own resources also become multilingual,
which means that the operating system changes its dialog boxes, prompts, and menus
to support the user’s preferred language.
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System administrators on


a network can map a


network drive to identify


available resources.


(figure 15.14)


Command window that


allows users to run many


MS-DOS commands.
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For users who need enhanced accessibility options, or who have difficulty using a stan-
dard keyboard but need its functionality, Windows offers an on-screen keyboard, as
shown in Figure 15.16. This and other tools (a magnifier, a narrator, speech recogni-
tion, and more) can be found from the Start button under Accessories, Ease of Access.


(figure 15.15)


Keyboard shortcuts are


shown on the right next to


the menu items.


(figure 15.16)


From the Accessories


folder, tools such as an 


on-screen keyboard are


available to provide


enhanced user interface


tools.


Details about use of the system’s hardware and software can be found from the
Resource Monitor, as shown in Figure 15.17.
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Conclusion


Conclusion


What started as a microcomputer operating system has grown to include complex
multiplatform software that can be used to run computing systems of all sizes.
Windows’ commercial success is unquestioned, and its products have continued to
evolve in complexity and scope to cover many global markets.


Windows products are ubiquitous, including Windows Embedded, Windows
Automotive, and Windows Mobile, to name a few of the many specialty versions of
this operating system. Microsoft offers technical support for operating systems that
are no longer sold, including Windows NT and even MS-DOS.


A word of caution: The security vulnerabilities of Windows operating systems make
them popular targets for programmers of malicious code. Whether these vulnerabilities
are due to their enormous share of the market (making them enormously attractive) or
coding errors on the part of Microsoft, the result is the same: There is a constant need
for every system administrator and computer owner to proactively keep all Windows
systems as secure as possible through vigilant access control and patch management.


(figure 15.17)


The Resource Monitor,


available from the Control


Panel, can provide


running statistics on use


of system resources.
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Key Terms


Active Directory: Microsoft Windows directory service that offers centralized admin-
istration of application serving, authentication, and user registration for distributed
networking systems.


cache manager: a component of the I/O system that manages the part of virtual mem-
ory known as cache. The cache expands or shrinks dynamically depending on the
amount of memory available.


compatibility: the ability of an operating system to execute programs written for other
operating systems or for earlier versions of the same system.


Domain Name Service or Domain Name System (DNS): a general-purpose, distrib-
uted, replicated, data query service. Its principal function is the resolution of Internet
addresses based on fully qualified domain names such as .com (for commercial entity)
or .edu (for educational institution).


extensibility: one of an operating system’s design goals that allows it to be easily
enhanced as market requirements change.


fetch policy: the rules used by the Virtual Memory Manager to determine when a page
is copied from disk to memory.


graphical user interface (GUI): a user interface that allows the user to activate oper-
ating system commands by clicking on desktop icons or menus using a pointing
device such as a mouse or touch screen. GUIs evolved from command-driven user
interfaces.


Kerberos: MIT-developed authentication system that allows network managers to
administer and manage user authentication at the network level.


kernel mode: name given to indicate that processes are granted privileged access to the
processor. Therefore, all machine instructions are allowed and system memory is
accessible. Contrasts with the more restrictive user mode.


Lightweight Directory Access Protocol (LDAP): a protocol that defines a method 
for creating searchable directories of resources on a network. It’s called “lightweight”
because it is a simplified and TCP/IP-enabled version of the X.500 directory protocol.


mailslots: a high-level network software interface for passing data among processes in
a one-to-many and many-to-one communication mechanism. Mailslots are useful for
broadcasting messages to any number of processes.


named pipes: a high-level software interface to NetBIOS, which represents the hard-
ware in network applications as abstract objects. Named pipes are represented as file
objects in Windows NT and later, and operate under the same security mechanisms as
other executive objects.
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NT File System (NTFS): the file system introduced with Windows NT that offers file
management services, such as permission management, compression, transaction logs,
and the ability to create a single volume spanning two or more physical disks. 


placement policy: the rules used by the Virtual Memory Manager to determine where
the virtual page is to be loaded in memory.


portability: the ability to move an entire operating system to a machine based on a dif-
ferent processor or configuration with as little recoding as possible.


POSIX: Portable Operating System Interface for UNIX; an operating system application
program interface developed by the IEEE to increase the portability of application software.


reliability: the ability of an operating system to respond predictably to error conditions,
even those caused by hardware failures; or the ability of an operating system to actively
protect itself and its users from accidental or deliberate damage by user programs.


replacement policy: the rules used by the Virtual Memory Manager to determine
which virtual page must be removed from memory to make room for a new page. 


ticket granting ticket: a virtual “ticket” given by a Kerberos server indicating that the
user holding the ticket can be granted access to specific application servers. The user
sends this encrypted ticket to the remote application server, which can then examine it
to verify the user’s identity and authenticate the user. 


user mode: name given to indicate that processes are not granted privileged access to
the processor. Therefore, certain instructions are not allowed and system memory isn’t
accessible. Contrasts with the less restrictive kernel mode.


Interesting Searches
• Windows File System


• Embedded Windows Operating System


• Windows vs. Macintosh


• Windows Benchmarks


• Windows Patch Management


Exercises


Research Topics


A. Research current literature to discover the current state of IEEE POSIX Standards
and find out if the version of Windows on the computer that you use is currently
100 percent POSIX-compliant. Explain the significance of this compliance and
why you think some popular operating systems are not compliant.


C7047_15_Ch15.qxd  1/12/10  5:27 PM  Page 495








496


Ch
ap


te
r 
15


 |
W


in
do


w
s 


O
pe


ra
tin


g 
Sy


st
em


s


B. Some Windows products do not allow the use of international characters in the
username or password. These characters may be part of an international alpha-
bet or Asian characters. Research the characters that are allowed in recent ver-
sions of Windows and cite your sources. Describe the advantages to the
operating system of limiting the character set for usernames and passwords,
and whether or not you suggest an alternative. 


Exercises


1. If you wanted to add these four files to one Windows  directory (october.doc,
OCTober.doc,  OCTOBER.doc,  and OcTOBer.doc), how many new files
would be displayed: one, two, three, or four? Explain why this is so. Do you
think the answer is the same for all operating systems? Why or why not?


2. Explain the importance of monitoring system performance and why Windows
makes this information available to the user.


3. In some Windows operating systems, the paging file is a hidden file on the com-
puter’s hard disk and its virtual memory is the combination of the paging file
and the system’s physical memory. (This is called pagefile.sys and the default
size is equal to 1.5 times the system’s total RAM.) Describe in your own words
how the size of virtual memory might have an effect on system performance. 


4. If the paging file is located where fragmentation is least likely to happen,
performance may be improved. True or false? Explain in your own words.


5. When deploying Windows in a multilingual environment, administrators find
that some languages require more hard-disk storage space than others. In your
opinion, why is this the case?


6. The 64-bit version of Windows 7 can run all 32-bit applications with the help
of an emulator, but it does not support 16-bit applications. Can you imagine a
circumstance where someone might need support for a 16-bit application?
Describe it. 


7. Windows 7 features Kerberos authentication. Describe the role of the ticket
granting ticket to authenticate users for network access.


8. Describe in your own words the role of the Active Directory in recent Windows
operating systems.


9. The I/O system relies on an I/O request packet. Explain the role of this packet,
when it is passed, and where it goes before disposal.


Advanced Exercises


10. Identify at least five major types of threats to systems running Windows and
the policies that system administrators must take to protect the system from
unauthorized access. Compare the practical problems when balancing the need
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for accessibility with the need to restrict access, and suggest the first action you
would take to secure a Windows computer or network if you managed one. 


11. Windows Embedded is an operating system that is intended to run in real time.
In your own words, describe the difference between hard real-time and soft
real-time systems, and describe the benchmarks that you feel are most impor-
tant in each type of system. 


12-14 For these questions, refer to Table 15.6 (adapted from www.microsoft.com),
which shows how the memory structures for a 64-bit Windows operating system using
a 64-bit Intel processor compare with the 32-bit maximums on previous Windows
operating systems.


Component 32-bit 64-bit


Virtual Memory 4GB 16TB


Paging File Size 16TB 256TB


System Cache 1GB 1TB


Hyperspace 4MB 8GB


Paged Pool 470MB 128GB


System PTEs 660MB 128GB


12. Hyperspace is used to map the working set pages for system process, to temporar-
ily map other physical pages, and other duties. By increasing this space from 4MB
to 8GB in 64-bit system, hyperspace helps Windows run faster. In your opinion,
explain why this is so and describe other performance improvements that
increased hyperspace may have on system performance. Can you quantify the
speed increase from the information shown here? Explain your answer.


13. Paged pool is the part of virtual memory, created during system initialization,
that can be paged in and out of the working set of the system process and is
used by kernel-mode components to allocate system memory. If systems with
one processor have two paged pools, and those with multiprocessors have four,
discuss in your own words why having more than one paged pool reduces the
frequency of system code blocking on simultaneous calls to pool routines.


14. System PTEs are a pool of system page table entries that are used to map
system pages such as I/O space, kernel stacks, and memory descriptor lists. 
The 32-bit programs use a 4GB model and allocate half (2GB) to the user and
half to the kernel. The 64-bit programs use a similar model but on a much
larger scale with 8TB for the user and 8TB for the kernel. Given this structure,
calculate how many exabytes a 64-bit pointer could address (one exabyte
equals a billion gigabytes).


(table 15.6)


Windows specifications for


32-bit and 64-bit systems


adapted from


www.microsoft.com.
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“I’m doing a (free) operating system ...”
—Linus Torvalds


Learning Objectives


After completing this chapter, you should be able to describe:


• The design goals for the Linux operating system


• The flexibility offered by using files to manipulate devices


• The differences between command-driven and menu-driven interfaces


• The roles of the Memory, Device, File, Processor, and Network Managers


• Some strengths and weaknesses of Linux 
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Linux is not UNIX. Linux was based on a version of UNIX but capitalized on the
lessons learned over the previous 20 years of UNIX development. Linux has unique
features that set it apart from its predecessor and make it a global force in operating
system development. What’s more, Linux is not only powerful, but free or inexpensive
to own.


Overview


Linux is POSIX-compliant (POSIX will be discussed shortly) and portable with ver-
sions available to run cell phones, supercomputers, and most computing systems in
between. Unlike the other operating systems described in this book, its source code is
freely available, allowing programmers to configure it to run any device and meet any
specification. The frequent inclusion of several powerful desktop GUIs continues to
attract users. It is also highly modular, allowing multiple modules to be loaded and
unloaded on demand, making it a technically robust operating system.


Linux is an open source program, meaning that its source code is freely available to any-
one for improvement. If someone sends a better program or coding sequence to Linus
Torvalds, the author of Linux, and if it’s accepted as a universal improvement to the
operating system, then the new code is added to the next version made available to the
computing world. Updates are scheduled every six months. In this way, Linux is under
constant development by uncounted contributors around the world, most of whom have
never met. The name Linux remains a registered trademark of Linus Torvalds.


History


Linus Torvalds wanted to create an operating system that would greatly enhance the
limited capabilities of the Intel 80386 microprocessor. He started with MINIX (a
miniature UNIX system developed primarily by Andrew Tanenbaum) and rewrote cer-
tain parts to add more functionality. When he had a working operating system, he
announced his achievement on an Internet usegroup with this message:


Hello everybody out there using minix. I’m doing a (free)
operating system (just a hobby, won’t be big and profes-
sional like gnu) for 386(486)AT clones.


It was August 1991, and Torvalds was a 21-year-old student at University of Helsinki,
Finland. (The name Linux is a contraction of Linus and UNIX and, when pronounced,
it rhymes with “mimics.”) This new operating system, originally created to run a small
microcomputer, was built with substantial flexibility, and it features many of the same
functions found on expensive commercial operating systems. In effect, Linux brought
much of the speed, efficiency, and flexibility of UNIX to small desktop computers.
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✔
Linux is 
case sensitive.
Throughout this
text, we have
followed the
convention of
expressing all
filenames and
commands in
lowercase.
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The first Linux operating systems required typed and sometimes cryptic commands.
Now users can enter commands using either a command-driven interface (terminal
mode) or a menu-driven interface or graphical user interface (GUI), greatly expanding
the usability of the operating system. GUIs are discussed later in this chapter.


The first primary corporate supporter of Linux was Red Hat Linux, the world’s lead-
ing Linux distributor until 2003. In September of that year, the company split its
efforts in two directions, the Fedora Project to encourage continuation of open-source
development of the Linux kernel, and Red Hat Enterprise Linux (RHEL) to meet the
growing needs of organizations willing to pay for an enterprise-wide operating system
and dedicated technical support. 


As shown in Table 16.1, the Fedora Project issues updates free to the public about
every six months. There are many other popular distributions of Linux, including
Mandriva, Debian, and SUSE.


Year Release Features


1994 Beta versions First Red Hat Linux product available to the 
public in a series of beta versions.


1995 RHL 1.0 First non-beta release of Red Hat Linux.


1995 RHL 2.0 Written in Perl for quick development.


1996 RHL 3.0.3 The first approximately concurrent multi-architecture
release; supported the Digital Alpha platform.


1996 RHL 4.0 Based on the 2.0.18 kernel and the first release
to include documentation freely available in
electronic form.


1997 RHL 5.0 Named 1997 InfoWorld Product of the Year.


1999 RHL 6.0 Integrated GNOME desktop GUI.


2000 RHL 7.0 First release that supported Red Hat Network
out of the box. 


2001 RHL 7.0.90 Introduced the 2.4 kernel.


2002 RHEL 2.1 AS Launch of Red Hat Enterprise Linux, the first 
(Advanced Server) commercial enterprise computing offering, based


on RHL 7.2.


2002 RHL 8.0 Designed to provide a unified look across RHL
and RHEL desktops.


2003 RHL 9 First release to include Native POSIX Thread
Library (NPTL) support.


2003 RHEL 3 The first Red Hat product made to run on 7-chip
architectures (by Intel, AMD, and IBM).
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The major releases of


Linux by Red Hat, Inc.


RHL is an acronym for Red


Hat Linux. RHEL is an


acronym for Red Hat


Enterprise Linux. Fedora 


is a trademark of 


Red Hat, Inc.
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Year Release Features


2003 Fedora Core 1 Product based on RHL 9 for individual users;
created by the Fedora Project in cooperation
with Red Hat. 


2004 Fedora Core 2 Introduced Security Enhanced Linux (SELinux),
an implementation of Mandatory Access Control
(MAC) in the kernel.


2004 Fedora Core 3 Supported the 2.6.9 Linux kernel, updated
SELinux, and supported the latest popular GUIs,
including KDE and Gnome. 


2005 RHEL 4 Red Hat Enterprise Linux based on RHL 7.2.


2006 Fedora Core 5 & 6 Supported virtual machine technology.


2007 Fedora 7 New name (dropped Core). Allowed customiza-
tion. Widened accessibility by contributors in
Fedora community.


2007 RHEL 5 Improved performance, security, and flexibility,
with storage virtualization.


2009 Fedora 11 Fast boot-up from power on to fully operational 
system. Handles files up to 16TB.


Because Linux is written and distributed under the GNU General Public License, its
source code is freely distributed and available to the general public. As of this writing,
the current GNU General Public License is Version 3. Everyone is permitted to copy
and distribute verbatim copies of the license document, but changing it is not allowed.
It can be found at: www.gnu.org/licenses/gpl.html.


Design Goals


Linux has three design goals: modularity, simplicity, and portability (personified in its
mascot, shown in Figure 16.1). To achieve these goals, Linux administrators have
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(figure 16.1)


The Linux mascot evolved


from discussions with


Linus Torvalds, who said,


"Ok, so we should be


thinking of a lovable,


cuddly, stuffed penguin


sitting down after having


gorged itself on herring."


More about the penguin


can be found at


www.linux.org.
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access to numerous standard utilities, eliminating the need to write special code. Many
of these utilities can be used in combination with each other so that users can select
and combine appropriate utilities to carry out specific tasks. As shown in Table 16.2,
Linux accommodates numerous functions.


Function Purpose


Multiple processes and Linux can run more than one program or process at a 
multiple processors time and can manage numerous processors.


Multiple platforms Although it was originally developed to run on Intel’s
processors for microcomputers, it can now operate on
almost any platform.


Multiple users Linux allows multiple users to work on the same machine
at the same time.


Inter-process communications It supports pipes, sockets, etc.


Terminal management Its terminal management conforms to POSIX standards,
and it also supports pseudo-terminals as well as process
control systems.


Peripheral devices Linux supports a wide range of devices, including sound
cards, graphics interfaces, networks, SCSI, USB, etc.


Buffer cache Linux supports a memory area reserved to buffer the
input and output from different processes.


Demand paging memory Linux loads pages into memory only when they’re 
management needed.


Dynamic and shared libraries Dynamic libraries are loaded only when they’re needed,
and their code is shared if several applications are
using them.


Disk partitions Linux allows file partitions and disk partitions with
different file formats.


Network protocol It supports TCP/IP and other network protocols.


Linux conforms to the specifications for Portable Operating System Interface
(POSIX®), a registered trademark of the IEEE. POSIX is an IEEE standard that defines
operating system interfaces to enhance the portability of programs from one operating
system to another (IEEE, 2004). 


Memory Management


When Linux allocates memory space, it allocates 1GB of high-order memory to the
kernel and 3GB of memory to executing processes. This 3GB address space is divided
among: process code, process data, shared library data used by the process, and the
stack used by the process.
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Linux supports a wide


variety of system


functions.
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When a process begins execution, its segments have a fixed size; but there are cases
when a process has to handle variables with an unknown number and size. Therefore,
Linux has system calls that change the size of the process data segment, either by
expanding it to accommodate extra data values or reducing it when certain values
positioned at the end of the data segment are no longer needed.


Linux offers memory protection based on the type of information stored in each
region belonging to the address space of a process. If a process modifies access autho-
rization assigned to a memory region, the kernel changes the protection information
assigned to the corresponding memory pages.


When a process requests pages, Linux loads them into memory. When the kernel needs
the memory space, the pages are released using a least recently used (LRU) algorithm.
Linux maintains a dynamically managed area in memory, a page cache, where new
pages requested by processes are inserted, and from which pages are deleted when
they’re no longer needed. If any pages marked for deletion have been modified, they’re
rewritten to the disk—a page corresponding to a file mapped into memory is rewritten
to the file and a page corresponding to the data is saved on a swap device. The swap
device could be a partition on the disk or it could be a normal file. Linux shows added
flexibility with swap devices because, if necessary, Linux can deactivate them without
having to reboot the system. When this takes place, all pages saved on that device are
reloaded into memory.


To keep track of free and busy pages, Linux uses a system of page tables. With certain
chip architectures, memory access is carried out using segments. 


Virtual memory in Linux is managed using a multiple-level table hierarchy, which
accommodates both 64- and 32-bit architectures. Table 16.3 shows how each virtual
address is made up of four fields, which are used by the Memory Manager to locate
the instruction or data requested. 


Main Directory Middle Directory Page Table Directory Page Frame


Page 1 Table 3 Page Table 2 Location of Line 214


Each page has its own entry in the main directory, which has pointers to each page’s
middle directory. A page’s middle directory contains pointers to its corresponding page
table directories. In turn, each page table directory has pointers to the actual page frame,
as shown in Figure 16.2. Finally, the page offset field is used to locate the instruction or
data within the requested page (in this example, it is Line 214).
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(table 16.3)


The four fields that make


up the virtual address for


Line 214 in Figure 16.2.
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Virtual memory is implemented in Linux through demand paging. Up to a total of 256MB
of usable memory can be configured into equal-sized page frames, which can be grouped
to give more contiguous space to a job. These groups can also be split to accommodate
smaller jobs. This process of grouping and splitting is known as the buddy algorithm, and
it works as follows.


Let’s consider the case where main memory consists of 64 page frames and Job 1
requests 15 page frames. The buddy algorithm first rounds up the request to the next
power of 2 (in this case, 15 is rounded up to 16, which is 24). Then the group of
64 page frames is divided into two groups of 32, and the lower section is then divided
in half. Now there is a group of 16 page frames that can satisfy the request, so the job’s
16 pages are copied into the page frames as shown in Figure 16.3 (a).


When the next job, Job 2, requests 8 page frames, the second group of 16 page frames is
divided in two and the lower half with 8 page frames is given to Job 2, as shown in Figure
16.3 (b). Later, when Job 2 releases its page frames, they are combined with the upper
8 page frames to make a group of 16 page frames, as shown in Figure 16.3 (c). 
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Table 2


Table 3


Table 4


Page 1


Page 2


Page 3


Page 4


Page Table 1
Page Table 2 Page with Line 214


Page Table 3
Page Table 4


Page Directory Page Middle Directories Page Tables Page Frames        


(figure 16.2)


Virtual memory


management uses three


levels of tables (Main,


Middle, and Page Table


Directories) to locate the


page frame with the


requested instruction or


data within a job.
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The page replacement algorithm is an expanded version of the clock page replacement
policy discussed in Chapter 3. Instead of using a single reference bit, Linux uses an 
8-bit byte to keep track of a page’s activity, which is referred to as its age. Each time a
page is referenced, this age variable is incremented. Behind the scenes, at specific inter-
vals, the Memory Manager checks each of these age variables and decreases their value
by 1. As a result, if a page is not referenced frequently, then its age variable will drop
to 0 and the page will become a candidate for replacement if a page swap is necessary.
On the other hand, a page that is frequently used will have a high age value and will
not be a good choice for swapping. Therefore, we can see that Linux uses a form of
the least frequently used (LFU) replacement policy.


Processor Management


Linux uses the same parent-child process management design found in UNIX and
described in Chapter 13, but it also supports the concept of “personality” to allow
processes coming from other operating systems to be executed. This means that each
process is assigned to an execution domain specifying the way in which system calls
are carried out and the way in which messages are sent to processes.


Organization of Process Table


Each process is referenced by a descriptor, which contains approximately 70 fields
describing the process attributes together with the information needed to manage the
process. The kernel dynamically allocates these descriptors when processes begin
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(figure 16.3)


Main memory is divided to


accommodate jobs of


different sizes. In (a), the


original group of 32 page


frames is divided to satisfy


the request of Job 1 for


16 page frames. In (b),


another group of 16 page


frames is divided to


accommodate Job 2,


which needs eight page


frames. In (c), after Job 2


finishes, the two groups of


eight page frames each


are recombined into a


group of 16, while Job 1


continues processing.
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execution. All process descriptors are organized in a doubly linked list, and the
descriptors of processes that are ready or in execution are put in another doubly linked
list with fields indicating “next run” and “previously run.” There are several macro
instructions used by the scheduler to manage and update these process descriptor lists
as needed.


Process Synchronization


Linux provides wait queues and semaphores to allow two processes to synchronize with
each other. A wait queue is a linked circular list of process descriptors. Semaphores,
described in Chapter 6, are used to solve the problems of mutual exclusion and the prob-
lems of producers and consumers. In Linux the semaphore structure contains three
fields: the semaphore counter, the number of waiting processes, and the list of processes
waiting for the semaphore. The semaphore counter may contain only binary values,
except when several units of one resource are available, and the semaphore counter then
assumes the value of the number of units that are accessible concurrently.


Process Management


The Linux scheduler scans the list of processes in the READY state and, using prede-
fined criteria, chooses which process to execute. The scheduler has three different
scheduling types: two for real-time processes and one for normal processes. The com-
bination of type (shown in Table 16.4) and priority is used by the scheduler to deter-
mine the scheduling policy used on processes in the READY queue.


Name Priority Level Process Type Scheduling Policy


SCHED_FIFO Highest Priority For non-preemptible First In First Out only
real-time processes


SCHED_RR Medium Priority For preemptible Round Robin and Priority
real-time processes


SCHED_OTHER Lowest Priority For normal processes Priority only


From among the processes with the highest priority (SCHED_FIFO), the scheduler
selects the process with the highest priority and executes it using the first in, first out
algorithm. This process is normally not preemptible and runs to completion unless one
of the following situations occurs:


• The process goes into the WAIT state (waiting for I/O, or another event, to finish).


• The process relinquishes the processor voluntarily, in which case the process is
moved to a WAIT state and other processes are executed.
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with three different


priority levels.
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Only when all FIFO processes are completed does the scheduler proceed to execute
processes of lower priority.


When executing a process of the second type (SCHED_RR), the scheduler chooses
those from this group with the highest priority and uses a round robin algorithm with
a small time quantum. Then, when the time quantum expires, other processes (such as
a FIFO or another RR type with a higher priority) may be selected and executed before
the first process is allowed to run to completion.


The third type of process (SCHED_OTHER) has the lowest priority and is executed
only when there are no processes with higher priority in the READY queue. From
among these processes, the scheduler selects processes in order after considering their
dynamic priorities (which are set by the user using system calls and by a factor com-
puted by the system). From among the SCHED_OTHER processes, the priorities of all
processes that are CPU-bound are lowered during execution; therefore, they may earn
a lower priority than processes that are not executing or those with a priority that has
not been lowered.


Device Management


Linux is device independent, which improves its portability from one system to another.
Device drivers supervise the transmission of data between main memory and the
peripheral unit. Devices are assigned not only a name but also descriptors that further
identify each device and are stored in the device directory, as shown in Figure 16.4.
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(figure 16.4)


Details about each device


can be accessed via the


Device Manager.
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Device Classifications


Linux identifies each device by a minor device number and a major device number.


• The minor device number is passed to the device driver as an argument and is used
to access one of several identical physical devices.


• The major device number is used as an index to the array to access the appropriate
code for a specific device driver.


Each class has a Configuration Table that contains an array of entry points into the
device drivers. This table is the only connection between the system code and the
device drivers, and it’s an important feature of the operating system because it allows
the system programmers to create new device drivers quickly to accommodate differ-
ently configured systems.


Standard versions of Linux often provide a comprehensive collection of common
device drivers; but if the computer system should include hardware or peripherals that
are not on the standard list, their device drivers can be retrieved from another source
and installed separately. Alternatively, a skilled programmer can write a device driver
and install it for use.


Device Drivers


Linux supports the standard classes of devices introduced by UNIX. In addition, Linux
allows new device classes to support new technology. Device classes are not rigid in
nature—programmers may choose to create large, complex device drivers to perform
multiple functions, but such programming is discouraged for two reasons: (1) code can
be shared among Linux users and there is a wider demand for several simple drivers than
for a single complex one, and (2) modular code is better able to support Linux’s goals of
system scalability and extendibility. Therefore, programmers are urged to write device
drivers that maximize the system’s ability to use the device effectively—no more, no less.


A notable feature of Linux is its ability to accept new device drivers on the fly, while
the system is up and running. That means administrators can give the kernel addi-
tional functionality by loading and testing new drivers without having to reboot each
time to reconfigure the kernel. To understand the following discussion more fully,
please remember that devices are treated in Linux in the same way all files are treated. 
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✔
Numerous device
drivers are
available for Linux
operating systems
at little or no cost.
More information
can be found at
www.linux.org.
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Open and Release


Two common functions of Linux device drivers are open and release, which essentially
allocate and deallocate the appropriate device. For example, the operation to open a
device should perform the following functions:


• Verify that the device is available and in working order


• Increase the usage counter for the device by 1, so the subsystem knows that the
module cannot be unloaded until its file is appropriately closed


• Initialize the device so that old data is removed and the device is ready to accept
new data


• Identify the minor number and update the appropriate pointer if necessary 


• Allocate any appropriate data structure


Likewise, the release function (called device_close or device_release) performs these tasks:


• Deallocate any resources that were allocated with the open function


• Shut down the device


• Reduce the usage counter by 1 so the device can be released to another module


Device Classes


The three standard classes of devices supported by Linux are character devices, block
devices, and network devices, as shown in Figure 16.5.


(figure 16.5)


This example of the three


primary classes of device


drivers shows how device


drivers receive direction


from different subsystems


of Linux.


✔
Modules can be
closed without
ever releasing the
device. If this
happens, the
module is not
deallocated.
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Char Devices


Character devices (also known as char devices) are those that can be accessed as a
stream of bytes, such as a communications port, monitor, or other byte-stream-fed
device. At a minimum, drivers for these devices usually implement the open, release,
read, and write system calls although additional calls are often added. Char devices
are accessed by way of file system nodes and, from a functional standpoint, these
devices look like an ordinary data area. Their drivers are treated the same way as ordi-
nary files with the exception that char device drivers are data channels that must be
accessed sequentially.


Block Devices


Block devices are similar to char devices except that they can host a file system, such
as a hard disk. (Char devices cannot host a file system.) Like char devices, block
devices are accessed by file system nodes in the /dev directory, but these devices are
transferred in blocks of data. Unlike most UNIX systems, data on a Linux system can
be transferred in blocks of any size, from a few bytes to many. Like char device drivers,
block device drivers appear as ordinary files with the exception that the block drivers
can access a file system in connection with the device, something not possible with the
char device.


Network Interfaces


Network interfaces are dissimilar from both char and block devices because their func-
tion is to send and receive packets of information as directed by the network subsys-
tem of the kernel. So, instead of read and write calls, the network device functions
relate to packet transmission.


Each system device is handled by a device driver that is, in turn, under the direction of
a subsystem of Linux.


File Management


Data Structures


All Linux files are organized in directories that are connected to each other in a tree-
like structure. Linux specifies five types of files, as shown in Table 16.5.
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File Type File Functions


Directory A file that contains lists of filenames.


Ordinary file A file containing data or programs belonging to users.


Symbolic link A file that contains the path name of another file that it is linking to.
(This is not a direct hard link. Rather it’s information about how to
locate a specific file and link it even if it’s in the directories of different
users. This is something that can’t be done with hard links.)


Special file A file that’s assigned to a device controller located in the kernel. When
this type of file is accessed, the physical device associated with it is
activated and put into service.


Named pipe A file that’s used as a communication channel among several
processes to exchange data. The creation of a named pipe is the same
as the creation of any file.


Filename Conventions


Filenames are case sensitive so Linux recognizes both uppercase and lowercase letters in
filenames. For example, each of the following filenames are recognizable as four differ-
ent files housed in a single directory: FIREWALL, firewall, FireWall, and fireWALL.
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(table 16.5)


The file type indicates how


each file is to be used.


✔
While some
operating systems
use a backslash
(\) to separate
folder names,
Linux uses a
forward slash ( /).


(figure 16.6)


A sample file hierarchy.


The forward slash ( / )


represents the root


directory.


Filenames can be up to 255 characters long and contain alphabetic characters, under-
scores, and numbers. File suffixes (similar to file extensions in Chapter 8) are optional.
Filenames can include a space; however, this can cause complications if you’re running
programs from the command line because a program named interview notes would be
viewed as a command to run two files: interview and notes. To avoid confusion, the
two words can be enclosed in quotes: “interview notes.” (This is important when using
Linux in terminal mode by way of its command interpretive shell. From a Linux desk-
top GUI, users choose names from a list so there’s seldom a need to type the filename.)
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To copy the file called checks for october, illustrated in Figure 16.6, the user can type
from any other folder:


cp/memo/job_expenses/checks for october


The first slash indicates that this is an absolute path name that starts at the root direc-
tory. If the file you are seeking is in a local directory, you can use a relative path
name—one that doesn’t start at the root directory. Two examples of relative path
names from Figure 16.6 are:


Job_expenses/checks for october


memo/music 10a


A few rules apply to all path names:


1. If the path name starts with a slash, the path starts at the root directory.


2. A path name can be either one name or a list of names separated by slashes.
The last name on the list is the name of the file requested. All names preceding
the file’s name must be directory names.


3. Using two periods (..) in a path name will move you upward in the hierarchy
(closer to the root). This is the only way to go up the hierarchy; all other path
names go down the tree.


Data Structures


To allow processes to access files in a consistent manner, the kernel has a layer of soft-
ware that maintains an interface between system calls related to files and the file man-
agement code. This layer is known as the Virtual File System (VFS). Any
process-initiated system call to files is directed to the VFS, which performs file opera-
tions independent of the format of the file system involved. The VFS then redirects the
request to the module managing the file.


Directory Listings


While directory listings can be created from Terminal mode using typed commands (ls
or ls -l), many Linux users find that the easiest way to list files in directories is from the
GUI desktop. A typical listing shows the name of the file or directory, its size, and the
date and time of modification. Information about file permissions shown in Figure 16.7
can be accessed from the View option on the menu bar.
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✔
Filenames that
begin with one or
two periods are
considered hidden
files and are not
listed with the ls
or ls -l commands. 
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(figure 16.7)


A sample list of files


stored in a directory,


including file permissions.


The Permissions column shows a code with the file’s type and access privileges, as
shown in Figure 16.8. To understand the specific kind of access granted, notice the
order of letters in this column. (This same information is displayed if the directory list-
ing is generated using the directory listing command in Terminal mode.)


r-x = read, execute only
(for users not in group)


d = directory


- (dash) = file


rwx = owner has read,
write, execute permission


(for owner only)


rw = read, write only
(for group only)


--- = no access allowed
(for anyone except user)


r-- = read only
(for users not in group)


(figure 16.8)


Graphical depiction of a


list of file and directory


permissions in UNIX.


The first character in the column describes the nature of the folder entry:


• the dash (-) indicates a file


• d indicates a directory file


• l indicates a link


• b indicates a block special file


• c indicates a character special file


The next three characters (rwx) show the access privileges granted to the owner of the file:


• r indicates read access 


• w indicates write access


• x indicates execute access


Likewise, the following three characters describe the access privileges granted to other
members of the user’s group. (A group is defined as a set of users, excluding the owner,
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who have something in common: the same project, same class, same department, etc.)
Therefore, rwx for characters 5–7 means group users can also read, write, and/or exe-
cute that file, and a dash ( - ) indicates that access is denied for that operation.


Finally, the last three characters describe the access privileges granted to others,
defined as users at large (but excluding the owner and members of the owner’s group).
This system-wide group of users is sometimes called world.


User Interface


Early versions of Linux required typed commands and a thorough knowledge of valid
commands, as shown in Table 16.6. Although most current versions include the power-
ful and intuitive menu-driven interfaces described shortly that allow even novice users
to successfully navigate the operating system, users can still use Terminal mode, shown
in Figure 16.9, to type commands that are very similar to those used for UNIX, which
can be helpful for those migrating from an operating system that’s command-driven.


Command Stands For Action to Be Performed


(filename) Run File Run/Execute the file with that name.


ls List Directory Show a listing of the filenames in directory.


ls -l Long List Show a comprehensive directory list.


ls /bin List /bin Directory Show a list of valid commands.


cd Change Directory Change working directory.


chmod Change Permissions Change permissions on a file or directory.


cp Copy Copy a file into another file or directory.


mv Move Move a file or directory.


more Show More Type the file’s contents to the screen.


lpr Print Print out a file.


date Date Show date and time.


mkdir Make Directory Make a new directory.


grep Global Regular Find a specified string in a file.
Expression/Print


cat Concatenate or Catenate Concatenate the files and print the resulting file.


diff Different Compare two files.


pwd Print Working Directory Print the name of the working directory.
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User Interface


(table 16.6)


Sample user commands,


which can be abbreviated


and must be in the correct


case (usually lowercase


letters). Many commands


can be combined on a


single line for additional


power and flexibility.


Check the technical


documentation for your


system for proper spelling


and syntax.
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Command-Driven Interfaces


The general syntax for typed commands is this:


command arguments filename


• The command is any legal operating system command. 


• The arguments are required for some commands and optional for others. 


• The filename can be the name of a file and can include a relative or absolute path name.


Commands are interpreted and executed by the shell (such as the Bash shell). The shell is
technically known as the command interpreter, but it isn’t only an interactive command
interpreter; it’s also the key to the coordination and combination of system programs.


Graphical User Interfaces 


Most Linux operating systems are delivered with multiple graphical user interfaces
(often free of charge), allowing the end users to choose the GUI that best meets their
needs or those of the organization. In fact, in certain environments, different GUIs can
be used by different users on the same system. This flexibility has spurred the ever-
widening acceptance of Linux and has helped it become more competitive. 


In addition to GUIs, many Linux versions also come equipped with Windows-compatible
word processors and spreadsheet and presentation applications— some at no cost. These
software tools make it possible for Linux users to read and write documents that are gen-
erated, or read, by colleagues using proprietary software from competing operating system
distributors. Because competing programs can cost hundreds of dollars, the availability of
these affordable applications is one factor that has spurred the popularity of Linux. 
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(figure 16.9)


In Terminal mode, users


can run the operating


system using commands


instead of menu-driven


GUI.


✔
There are many
versions of Linux
that will boot from
a CD or DVD,
allowing potential
users to test the
operating system
without installing
it on the computer.
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System Monitor


Information about the status of the system is available using the System Monitor win-
dow, shown in Figure 16.10, which shows the immediate history of CPU, memory, and
network usage. Other information available from this window includes supported file
systems and information about processes currently running.
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User Interface


(figure 16.10)


System Monitor displays


historical information


about CPU, memory, and


network use.


Service Settings


Depending on the Linux distribution, administrators can implement a variety of services
to help manage the system. A sample list of services is shown in Figure 16.11, but options
may vary from one system to another. See the documentation for your system for specifics.


(figure 16.11)


From the Services settings


window, many applications


are available for activation.
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System Logs


Administrators use system logs that provide a detailed description of activity on the
system. These logs are invaluable to administrators tracking the course of a system
malfunction, firewall failure, disabled device, and more. These log files for some Linux
operating systems can be found in the /var/log directory. A sample System Log Viewer
is shown in Figure 16.12. 
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There are numerous log files available for review (by someone with root access only)
using any simple text editor. A few typical log files are listed in Table 16.7.


boot.log Stores messages of which systems have successfully started up and shut
down, as well as any that have failed to do so.


dmesg A list of messages created by the kernel when the system starts up.


maillog Stores the addresses that received and sent e-mail messages for detection of
misuse of the e-mail system.


secure Contains lists of all attempts to log in to the system, including the date, time,
and duration of each access attempt.


xferlog Lists the status of files that have been transferred using an FTP service.


Keyboard Shortcuts


To allow users to switch easily from one task to another, Linux supports keyboard
shortcuts (shown in Figure 16.13), many of which are identical to those commonly
used on Windows operating systems, easing the transition from one operating system
to the other. For example, CTRL-V is a quick way to issue a PASTE command in
Linux, UNIX, and Windows.


(figure 16.12)


Sample System Log


Viewer.


(table 16.7)


Sample Linux log files. See


the documentation for


your system for specifics.
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We’ve included here only a tiny sample of the many features available from a typical
Linux desktop. Your system may have different windows, menus, tools, and options.
For details about your Linux operating system, please see the help menu commonly
available from the desktop or from your system menu.


System Management


All Linux operating systems are patched between version releases. These patches can
be downloaded on request, or users can set up the system to check for available
updates, as shown in Figure 16.14. Patch management is designed to replace or change
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(figure 16.13)


For some users, the ability


to use keyboard shortcuts


(instead of the mouse) to


maneuver through menus


quickly can be a time saver.


(figure 16.14)


Ubuntu Linux allows users


to check for available


software updates.
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code that makes up the software. Three primary reasons motivate patches to the oper-
ating system: a greater need for security precautions against constantly changing sys-
tem threats; the need to assure system compliance with government regulations
regarding privacy and financial accountability; and the need to keep systems running
at peak efficiency.


Every system manager, no matter the size of the system, should remain aware of secu-
rity vulnerabilities that can be addressed with critical patches. After all, system intrud-
ers are looking for these same vulnerabilities and are targeting computing devices that
are not yet patched.


When a patch becomes available, the user’s first task is to identify the criticality of the
patch. If it is important, it should be applied immediately. If the patch is not critical in
nature, installation might be delayed until a regular patch cycle begins. Patch cycles
were discussed in detail in Chapter 12.


Conclusion


What began as one man’s effort to get more power from a 1990s microcomputer chip
has evolved into a powerful, flexible operating system that can run supercomputers,
cell phones, and many devices in between. Linux enjoys unparalleled popularity
among programmers, who contribute enhancements and improvements to the stan-
dard code set. In addition, because there are a broad range of applications that are
available for minimal cost and easy to install, Linux has found growing acceptance
among those with minimal programming experience. For advocates in large organiza-
tions, commercial Linux products are available complete with extensive technical sup-
port and user help.


Linux is characterized by its power, flexibility, and constant maintenance by legions of
programmers worldwide while maintaining careful adherence to industry standards. It
is proving to be a viable player in the marketplace and is expected to grow in popular-
ity for many years to come.


Key Terms


argument: in a command-driven operating system, a value or option placed in the
command that modifies how the command is to be carried out.


buddy algorithm: a memory allocation technique that divides memory into halves to
try to give a best fit and to fill memory requests as suitably as possible. 


clock page replacement policy: a variation of the LRU policy that removes from main
memory the pages that show the least amount of activity during recent clock cycles.
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command: a directive to a computer program acting as an interpreter of some kind to
perform a specific action.


command-driven interface: an interface that accepts typed commands, one line at a
time, from the user. It is also called command line interface and contrasts with a menu-
driven interface.


CPU-bound: a job that will perform a great deal of nonstop processing before issuing
an interrupt. A CPU-bound job can tie up the CPU for long periods of time.


device driver: a device-specific program module that handles the interrupts and con-
trols a particular type of device.


device independent: programs that can work on a variety of computers and with a
variety of devices. 


directory: a logical storage unit that contains files. 


graphical user interface (GUI): allows the user to activate operating system commands
by clicking on icons or symbols using a pointing device such as a mouse. It is also
called a menu-driven interface.


kernel: the part of the operating system that resides in main memory at all times and
performs the most essential tasks, such as managing memory and handling disk input
and output. 


menu-driven interface: an interface that accepts instructions that users choose from a
menu of valid choices. It is also called a graphical user interface and contrasts with
a command-driven interface.


patch management: the timely installation of software patches to make repairs and
keep the operating system software current.


Portable Operating System Interface (POSIX): a set of IEEE standards that defines the
standard user and programming interfaces for operating systems so developers can
port programs from one operating system to another. 


Interesting Searches
• Linux Kernel


• Open Source Software


• Linux Device Drivers


• Embedded Linux


• Linux for Supercomputers


• Linux vs. UNIX
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Exercises


Research Topics


A. Research the similarities and differences between Linux and UNIX. List at least
five major differences between the two operating systems and cite your sources.
Describe in your own words which operating system you prefer and explain why.


B. Research the following statement: “Open source software is not free software.”
Explain whether or not the statement is true and describe the common misper-
ceptions about open source software. Cite your sources.


Exercises


1. If you wanted to add these four files to one Linux directory (october.doc,
OCTober.doc,  OCTOBER.doc,  and OcTOBer.doc), how many new files
would be displayed: one, two, three, or four? Explain why this is so. Do you
think the answer is the same for all operating systems? Why or why not?


2. Linux treats all devices as files. Explain why this feature adds flexibility to this
operating system.


3. In Linux, devices are identified by a major or minor device number. List at least
three types of devices that fall into each category and describe in your own
words the differences between the two categories. 


4. Explain why Linux makes system performance monitoring available to the user.


5. By examining permissions for each of the following files, identify if it is a file
or directory, and describe the access allowed to the world, user, and group:


a. -rwx---r-x


b. drwx------


c. -rwxrwxr--


d. dr-x---r-x


e. -rwx---rwx


6. Linux uses an LRU algorithm to manage memory. Suppose there is another
page replacement algorithm called not frequently used (NFU) that gives each
page its own counter that is incremented with each clock cycle. In this way,
each counter tracks the frequency of page use, and the page with the lowest
counter is swapped out when paging is necessary. In your opinion, how do
these two algorithms (LRU and NFU) compare? Explain which one would
work best under normal use, and define how you perceive “normal use.”


7. There are many reasons why the system administrator would want to restrict
access to areas of memory. Give the three reasons you believe are most impor-
tant and rank them in order of importance.
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8. Some versions of Linux place access control information among the page table
entries. Explain why (or why not) this might be an efficient way to control
access to files or directories.


9. With regard to virtual memory, decide if the following statement is true or
false: If the paging file is located where fragmentation is least likely to happen,
performance will be improved. Explain your answer.


Advanced Exercises


10. Compare and contrast block, character, and network devices, and how they are
manipulated differently by the Linux device manager.


11. Describe the circumstance whereby a module would be closed but not released.
What effect does this situation have on overall system performance? Describe
the steps you would take to address the situation.


12. Security Enhanced Linux (SELinux) was designed and developed by a team
from the U.S. National Security Agency and private industry. The resulting
operating system, which began as a series of security patches, has since been
included in the Linux kernel as of version 2.6. In your own words, explain why
you think Linux was chosen as the base platform.


13. There are several ways to manage devices. The traditional way recognizes sys-
tem devices in the order in which they are detected by the operating system.
Another is dynamic device management, which calls for the creation and dele-
tion of device files in the order that a user adds or removes devices. Compare
and contrast the two methods and indicate the one you think is most effective,
and explain why.


14. Device management also includes coordination with the Hardware Abstraction
Layer (HAL). Describe which devices are managed by the HAL daemon and
how duties are shared with the Linux device manager.
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The following passages are excerpted from the Code of Ethics and Professional
Conduct adopted by the Association for Computing Machinery Council on October
16, 1992. They are reprinted here with permission. For the complete text, see
www.acm.org/about/code-of-ethics.


Note: These imperatives are expressed in a general form to emphasize that ethical prin-
ciples which apply to computer ethics are derived from more general ethical principles.


Preamble


Commitment to ethical professional conduct is expected of every member (voting
members, associate members, and student members) of the Association for Computing
Machinery (ACM).


This Code, consisting of 24 imperatives formulated as statements of personal responsi-
bility, identifies the elements of such a commitment. It contains many, but not all, issues
professionals are likely to face. Section 1 outlines fundamental ethical considerations,
while Section 2 addresses additional, more specific considerations of professional con-
duct. Statements in Section 3 pertain more specifically to individuals who have a leader-
ship role, whether in the workplace or in a volunteer capacity such as with organizations
like ACM. Principles involving compliance with this Code are given in Section 4.


Section 1: GENERAL MORAL IMPERATIVES 


As an ACM member I will ....  


1.1 Contribute to society and human well-being.  


This principle concerning the quality of life of all people affirms an obligation to pro-
tect fundamental human rights and to respect the diversity of all cultures. An essential
aim of computing professionals is to minimize negative consequences of computing
systems, including threats to health and safety. When designing or implementing sys-
tems, computing professionals must attempt to ensure that the products of their efforts
will be used in socially responsible ways, will meet social needs, and will avoid harm-
ful effects to health and welfare.
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In addition to a safe social environment, human well-being includes a safe natural
environment. Therefore, computing professionals who design and develop systems
must be alert to, and make others aware of, any potential damage to the local or
global environment.


1.2 Avoid harm to others.  


“Harm” means injury or negative consequences, such as undesirable loss of informa-
tion, loss of property, property damage, or unwanted environmental impacts. This
principle prohibits use of computing technology in ways that result in harm to any of
the following: users, the general public, employees, employers. Harmful actions
include intentional destruction or modification of files and programs leading to seri-
ous loss of resources or unnecessary expenditure of human resources such as the time
and effort required to purge systems of “computer viruses.”


Well-intended actions, including those that accomplish assigned duties, may lead to
harm unexpectedly. In such an event the responsible person or persons are obligated
to undo or mitigate the negative consequences as much as possible. One way to avoid
unintentional harm is to carefully consider potential impacts on all those affected by
decisions made during design and implementation.


To minimize the possibility of indirectly harming others, computing professionals must
minimize malfunctions by following generally accepted standards for system design
and testing. Furthermore, it is often necessary to assess the social consequences of sys-
tems to project the likelihood of any serious harm to others. If system features are mis-
represented to users, coworkers, or supervisors, the individual computing professional
is responsible for any resulting injury.


In the work environment the computing professional has the additional obligation to
report any signs of system dangers that might result in serious personal or social damage.
If one’s superiors do not act to curtail or mitigate such dangers, it may be necessary to
“blow the whistle” to help correct the problem or reduce the risk. However, capricious or
misguided reporting of violations can, itself, be harmful. Before reporting violations, all
relevant aspects of the incident must be thoroughly assessed. In particular, the assessment
of risk and responsibility must be credible. It is suggested that advice be sought from
other computing professionals. See principle 2.5 regarding thorough evaluations.


1.3 Be honest and trustworthy.  


Honesty is an essential component of trust. Without trust an organization cannot
function effectively. The honest computing professional will not make deliberately
false or deceptive claims about a system or system design, but will instead provide full
disclosure of all pertinent system limitations and problems.
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A computer professional has a duty to be honest about his or her own qualifications,
and about any circumstances that might lead to conflicts of interest. 


1.4 Be fair and take action not to discriminate.  


The values of equality, tolerance, respect for others, and the principles of equal justice
govern this imperative. Discrimination on the basis of race, sex, religion, age, disabil-
ity, national origin, or other such factors is an explicit violation of ACM policy and
will not be tolerated.


Inequities between different groups of people may result from the use or misuse of
information and technology. In a fair society, all individuals would have equal opportu-
nity to participate in, or benefit from, the use of computer resources regardless of race,
sex, religion, age, disability, national origin or other similar factors. However, these
ideals do not justify unauthorized use of computer resources nor do they provide an
adequate basis for violation of any other ethical imperatives of this code.


1.5 Honor property rights including copyrights and patent.  


Violation of copyrights, patents, trade secrets and the terms of license agreements is pro-
hibited by law in most circumstances. Even when software is not so protected, such viola-
tions are contrary to professional behavior. Copies of software should be made only with
proper authorization. Unauthorized duplication of materials must not be condoned.


1.6 Give proper credit for intellectual property.  


Computing professionals are obligated to protect the integrity of intellectual property.
Specifically, one must not take credit for other’s ideas or work, even in cases where the
work has not been explicitly protected by copyright, patent, etc.


1.7 Respect the privacy of others.  


Computing and communication technology enables the collection and exchange of
personal information on a scale unprecedented in the history of civilization. Thus,
there is increased potential for violating the privacy of individuals and groups. It is the
responsibility of professionals to maintain the privacy and integrity of data describing
individuals. This includes taking precautions to ensure the accuracy of data, as well as
protecting it from unauthorized access or accidental disclosure to inappropriate indi-
viduals. Furthermore, procedures must be established to allow individuals to review
their records and correct inaccuracies.
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This imperative implies that only the necessary amount of personal information be col-
lected in a system, that retention and disposal periods for that information be clearly
defined and enforced, and that personal information gathered for a specific purpose
not be used for other purposes without consent of the individual(s). These principles
apply to electronic communications, including electronic mail, and prohibit proce-
dures that capture or monitor electronic user data, including messages, without the
permission of users or bona fide authorization related to system operation and main-
tenance. User data observed during the normal duties of system operation and mainte-
nance must be treated with strictest confidentiality, except in cases where it is evidence
for the violation of law, organizational regulations, or this Code. In these cases, the
nature or contents of that information must be disclosed only to proper authorities.


1.8 Honor confidentiality.  


The principle of honesty extends to issues of confidentiality of information whenever
one has made an explicit promise to honor confidentiality or, implicitly, when private
information not directly related to the performance of one’s duties becomes available.
The ethical concern is to respect all obligations of confidentiality to employers, clients,
and users unless discharged from such obligations by requirements of the law or other
principles of this Code.
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absolute filename: a file’s name, as given by the user, preceded by the directory
(or directories) where the file is found and, when necessary, the specific device label.


access control: the control of user access to a network or computer system. See
also authentication.


access control list: an access control method that lists each file, the names of the users
who are allowed to access it, and the type of access each is permitted.


access control matrix: an access control method that uses a matrix with every file (listed
in rows) and every user (listed in columns) and the type of access each user is
permitted on each file, recorded in the cell at the intersection of that row and column.


access control verification module: the section of the File Manager that verifies which
users are permitted to perform which operations with each file.


access time: the total time required to access data in secondary storage. For a direct
access storage device with movable read/write heads, it is the sum of seek time
(arm movement), search time (rotational delay), and transfer time (data transfer).


access token: an object that uniquely identifies a user who has logged on. An access
token is appended to every process owned by the user. It contains the user’s
security identification, the names of the groups to which the user belongs, any
privileges the user owns, the default owner of any objects the user’s processes
create, and the default access control list to be applied to any objects the user’s
processes create.


Active Directory: Microsoft Windows directory service that offers centralized
administration of application serving, authentication, and user registration for
distributed networking systems.


active multiprogramming: a term used to indicate that the operating system has more
control over interrupts; designed to fairly distribute CPU utilization over several
resident programs. It contrasts with passive multiprogramming.


address: a number that designates a particular memory location.
address resolution: the process of changing the address of an instruction or data item


to the address in main memory at which it is to be loaded or relocated.
Advanced Research Projects Agency network (ARPAnet): a pioneering long-distance


network funded by ARPA (now DARPA). It served as the basis for early
networking research, as well as a central backbone during the development of the
Internet. The ARPAnet consisted of individual packet switching computers
interconnected by leased lines.


aging: a policy used to ensure that jobs that have been in the system for a long time in
the lower level queues will eventually complete their execution.
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algorithm: a set of step-by-step instructions used to solve a particular problem. It can
be stated in any form, such as mathematical formulas, diagrams, or natural or
programming languages.


allocation module: the section of the File Manager responsible for keeping track of
unused areas in each storage device.


allocation scheme: the process of assigning specific resources to a job so it can execute.
anonymous FTP: a use of FTP that allows a user to retrieve documents, files,


programs, and other data from anywhere on the Internet without having to
establish a user ID and password. By using the special user ID of anonymous the
network user is allowed to bypass local security checks and access publicly
accessible files on the remote system.


antivirus software: software that is designed to detect and recover from attacks by
viruses and worms. It is usually part of a system protection software package.


argument: in a command-driven operating system, a value or option placed in the
command that modifies how the command is to be carried out.


arithmetic logic unit: The high-speed CPU circuit that is part of the processor core that
performs all calculations and comparisons.


ARPAnet: see Advanced Research Projects Agency network.
assembler: a computer program that translates programs from assembly language to


machine language.
assembly language: a programming language that allows users to write programs using


mnemonic instructions that can be translated by an assembler. It is considered a
low-level programming language and is very computer dependent.


associative memory: the name given to several registers, allocated to each active
process, whose contents associate several of the process segments and page
numbers with their main memory addresses.


authentication: the means by which a system verifies that the individual attempting to
access the system is authorized to do so. Password protection is an authentication
technique.


availability: a resource measurement tool that indicates the likelihood that the
resource will be ready when a user needs it. It is influenced by mean time between
failures and mean time to repair.


avoidance: the strategy of deadlock avoidance. It is a dynamic strategy, attempting to
ensure that resources are never allocated in such a way as to place a system in an
unsafe state.


backup: the process of making long-term archival file storage copies of files on the system.
batch system: a type of system developed for the earliest computers that used punched


cards or tape for input. Each job was entered by assembling the cards together into
a deck and several jobs were grouped, or batched, together before being sent
through the card reader.


benchmarks: a measurement tool used to objectively measure and evaluate a system’s
performance by running a set of jobs representative of the work normally done by
a computer system.
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best-fit memory allocation: a main memory allocation scheme that considers all free
blocks and selects for allocation the one that will result in the least amount of
wasted space. It contrasts with the first-fit memory allocation.


biometrics: the science and technology of identifying authorized users based on their
biological characteristics.


BIOS: an acronym for basic input output system, a set of programs that are hard-
coded on a chip to load into ROM at startup.


blocking: a storage-saving and I/O-saving technique that groups individual records
into a block that is stored and retrieved as a unit. The size of the block is often set
to take advantage of the transfer rate.


bootstrapping: the process of starting an inactive computer by using a small
initialization program to load other programs.


bounds register: a register used to store the highest location in memory legally
accessible by each program. It contrasts with relocation register.


bridge: a data-link layer device used to interconnect multiple networks using the same
protocol. A bridge is used to create an extended network so that several individual
networks can appear to be part of one larger network.


browsing: a system security violation in which unauthorized users are allowed to
search through secondary storage directories or files for information they should
not have the privilege to read.


B-tree: a special case of a binary tree structure used to locate and retrieve records
stored in disk files. The qualifications imposed on a B-tree structure reduce the
amount of time it takes to search through the B-tree, making it an ideal file
organization for large files.


buffers: the temporary storage areas residing in main memory, channels, and control
units. They are used to store data read from an input device before it is needed by
the processor and to store data that will be written to an output device.


bus: (1) the physical channel that links the hardware components and allows for
transfer of data and electrical signals; or (2) a shared communication link onto
which multiple nodes may connect.


bus topology: a network architecture in which elements are connected together along
a single link.


busy waiting: a method by which processes, waiting for an event to occur,
continuously test to see if the condition has changed and remain in unproductive,
resource-consuming wait loops.


cache manager: a component of the I/O system that manages the part of virtual
memory known as cache. The cache expands or shrinks dynamically depending on
the amount of memory available.


cache memory: a small, fast memory used to hold selected data and to provide faster
access than would otherwise be possible.


capability list: an access control method that lists every user, the files to which each
has access, and the type of access allowed to those files.


capacity: the maximum throughput level of any one of the system’s components.
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Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA): a method used
to avoid transmission collision on shared media such as networks. It usually
prevents collisions by requiring token acquisition.


Carrier Sense Multiple Access with Collision Detection (CSMA/CD): a method
used to detect transmission collision on shared media such as networks. It
requires that the affected stations stop transmitting immediately and try again
after delaying a random amount of time.


CD-R: a compact disc storage medium that can be read many times but can be written
to once.


CD-ROM: compact disc read-only memory; a direct access optical storage medium
that can store data including graphics, audio, and video. Because it is read-only,
the contents of the disc can’t be modified.


CD-RW: a compact disc storage medium that can be read many times and written to
many times.


central processing unit (CPU): the component with the circuitry, the chips, to control
the interpretation and execution of instructions. In essence, it controls the
operation of the entire computer system. All storage references, data
manipulations, and I/O operations are initiated or performed by the CPU.


channel: see I/O channel.
channel program: see I/O channel program.
Channel Status Word (CSW): a data structure that contains information indicating the


condition of the channel, including three bits for the three components of the I/O
subsystem—one each for the channel, control unit, and device.


child process: in UNIX and Linux operating systems, the subordinate processes that
are controlled by a parent process.


circuit switching: a communication model in which a dedicated communication path
is established between two hosts, and on which all messages travel. The telephone
system is an example of a circuit switched network.


circular wait: one of four conditions for deadlock through which each process
involved is waiting for a resource being held by another; each process is blocked
and can’t continue, resulting in deadlock.


cleartext: in cryptography, a method of transmitting data without encryption, in text
that is readable by anyone who sees it.


client: a user node that requests and makes use of various network services. A
workstation requesting the contents of a file from a file server is a client of the
file server.


clock cycle: the time span between two ticks of the computer’s system clock.
clock policy: a variation of the LRU policy that removes from main memory the pages


that show the least amount of activity during recent clock cycles.
C-LOOK: a scheduling strategy for direct access storage devices that is an


optimization of C-SCAN.
COBEGIN: used with COEND to indicate to a multiprocessing compiler the


beginning of a section where instructions can be processed concurrently.
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COEND: used with COBEGIN to indicate to a multiprocessing compiler the end of a
section where instructions can be processed concurrently.


collision: when a hashing algorithm generates the same logical address for two records
with unique keys.


command-driven interface: an interface that accepts typed commands, one line at a
time, from the user. It contrasts with a menu-driven interface.


compact disc: see CD-R.
compaction: the process of collecting fragments of available memory space into


contiguous blocks by moving programs and data in a computer’s memory or
secondary storage.


compatibility: the ability of an operating system to execute programs written for other
operating systems or for earlier versions of the same system.


compiler: a computer program that translates programs from a high-level
programming language (such as FORTRAN, COBOL, Pascal, C, or Ada) into
machine language.


complete filename: see absolute filename.
compression: see data compression.
concurrent processing: execution by a single processor of a set of processes in such a


way that they appear to be happening at the same time. It is typically achieved by
interleaved execution. Also called multiprocessing.


concurrent programming: a programming technique that allows a single processor to
simultaneously execute multiple sets of instructions. Also called
multiprogramming or multitasking.


connect time: in time-sharing, the amount of time that a user is connected to a computer
system. It is usually measured by the time elapsed between log on and log off.


contention: a situation that arises on shared resources in which multiple data sources
compete for access to the resource.


context switching: the acts of saving a job’s processing information in its PCB so the
job can be swapped out of memory, and of loading the processing information
from the Process Control Block (PCB) of another job into the appropriate registers
so the CPU can process it. Context switching occurs in all preemptive policies.


contiguous storage: a type of file storage in which all the information is stored in
adjacent locations in a storage medium.


control cards: cards that define the exact nature of each program and its requirements.
They contain information that direct the operating system to perform specific
functions, such as initiating the execution of a particular job. See job control language.


control unit: see I/O control unit.
control word: a password given to a file by its creator.
core: The processing part of a CPU chip made up of the control unit and the arithmetic


logic unit. The core does not include the cache.
C programming language: a general-purpose programming language developed by


D. M. Ritchie. It combines high-level statements with low-level machine controls
to generate software that is both easy to use and highly efficient.
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CPU: see central processing unit.
CPU-bound: a job that will perform a great deal of nonstop processing before issuing


an interrupt. A CPU-bound job can tie up the CPU for long periods of time. It
contrasts with I/O-bound.


cracker: an individual who attempts to access computer systems without
authorization. These individuals are often malicious, as opposed to hackers, and
have several means at their disposal for breaking into a system.


critical region: the parts of a program that must complete execution before other
processes can have access to the resources being used. It is called a critical region
because its execution must be handled as a unit.


cryptography: the science of coding a message or text so an unauthorized user cannot
read it.


C-SCAN: a scheduling strategy for direct access storage devices that is used to
optimize seek time. It is an abbreviation for circular-SCAN.


CSMA/CA: see Carrier Sense Multiple Access with Collision Avoidance.
CSMA/CD: see Carrier Sense Multiple Access with Collision Detection.
current byte address (CBA): the address of the last byte read. It is used by the File


Manager to access records in secondary storage and must be updated every time a
record is accessed, such as when the READ command is executed.


current directory: the directory or subdirectory in which the user is working.
cylinder: for a disk or disk pack, it is when two or more read/write heads are positioned


at the same track, at the same relative position, on their respective surfaces.
DASD: see direct access storage device.
database: a group of related files that are interconnected at various levels to give users


flexibility of access to the data stored.
data compression: a procedure used to reduce the amount of space required to store


data by reducing encoding or abbreviating repetitive terms or characters.
data file: a file that contains only data.
deadlock: a problem occurring when the resources needed by some jobs to finish


execution are held by other jobs, which, in turn, are waiting for other resources to
become available. The deadlock is complete if the remainder of the system comes
to a standstill as a result of the hold the processes have on the resource allocation
scheme. Also called deadly embrace.


deadly embrace: a colorful synonym for deadlock.
deallocation: the process of freeing an allocated resource, whether memory space, a


device, a file, or a CPU.
dedicated device: a device that can be assigned to only one job at a time; it serves that


job for the entire time the job is active.
demand paging: a memory allocation scheme that loads into memory a program’s page


at the time it is needed for processing.
denial of service (DoS) attack: an attack on a network that makes it unavailable to


perform the functions it was designed to do. This can be done by flooding the
server with meaningless requests or information.
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detection: the process of examining the state of an operating system to determine
whether a deadlock exists.


device: a computer’s peripheral unit such as a printer, plotter, tape drive, disk drive,
or terminal.


device driver: a device-specific program module that handles the interrupts and
controls a particular type of device.


device independent: programs that can work on a variety of computers and with a
variety of devices.


device interface module: transforms the block number supplied by the physical file
system into the actual cylinder/surface/record combination needed to retrieve the
information from a specific secondary storage device.


Device Manager: the section of the operating system responsible for controlling the
use of devices. It monitors every device, channel, and control unit and chooses the
most efficient way to allocate all of the system’s devices.


dictionary attack: the technique by which an intruder attempts to guess user
passwords by trying words found in a dictionary.


Dijkstra’s algorithm: a graph theory algorithm that has been used in various link state
routing protocols. This allows a router to step through an internetwork and find
the best path to each destination.


direct access file: see direct record organization.
direct access storage device (DASD): any secondary storage device that can directly


read or write to a specific place. Also called a random access storage device. It
contrasts with a sequential access medium.


direct memory access (DMA): an I/O technique that allows a control unit to access
main memory directly and transfer data without the intervention of the CPU.


direct record organization: files stored in a direct access storage device and organized
to give users the flexibility of accessing any record at random regardless of its
position in the file.


directed graphs: a graphic model representing various states of resource allocations. It
consists of processes and resources connected by directed lines (lines with
directional arrows).


directory: a logical storage unit that contains files.
disc: an optical storage medium such as CD or DVD.
disk pack: a removable stack of disks mounted on a common central spindle with


spaces between each pair of platters so read/write heads can move between them.
displacement: in a paged or segmented memory allocation environment, it’s the


difference between a page’s relative address and the actual machine language
address. It is used to locate an instruction or data value within its page frame. Also
called offset.


distributed operating system (DO/S): an operating system that provides control for a
distributed computing system (two or more computers interconnected for a
specific purpose), allowing its resources to be accessed in a unified way. See also
Network Operating System.
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distributed processing: a method of data processing in which files are stored at many
different locations and in which processing takes place at different sites.


DNS: see domain name service.
Domain Name Service (DNS): a general-purpose, distributed, replicated, data query


service. Its principal function is the resolution of Internet addresses based on fully
qualified domain names such as .com (for commercial entity) or .edu (for
educational institution).


DO/S: see distributed operating system.
double buffering: a technique used to speed I/O in which two buffers are present in


main memory, channels, and control units.
DVD: digital video disc; a direct access optical storage medium that can store up to 17


gigabytes, enough to store a full-length movie.
dynamic partitions: a memory allocation scheme in which jobs are given as much


memory as they request when they are loaded for processing, thus creating their own
partitions in main memory. It contrasts with static partitions, or fixed partitions.


elevator algorithm: see LOOK.
embedded computer system: a dedicated computer system that often resides inside a


larger physical system, such as jet aircraft or ships. It must be small and fast and
work with real-time constraints, fail-safe execution, and nonstandard I/O devices.
In some cases it must be able to manage concurrent activities, which requires
parallel processing.


encryption: translation of a message or data item from its original form to an encoded
form, thus hiding its meaning and making it unintelligible without the key to
decode it. It is used to improve system security and data protection.


Ethernet: a 10-megabit, 100-megabit, 1-gigabit or more standard for LANs, initially
developed by Xerox and later refined by Digital Equipment Corporation, Intel,
and Xerox. All hosts are connected to a coaxial cable where they contend for
network access.


ethics: the rules or standards of behavior that members of the computer-using
community are expected to follow, demonstrating the principles of right and wrong.


explicit parallelism: a type of concurrent programming that requires that the
programmer explicitly state which instructions can be executed in parallel. It
contrasts with implicit parallelism.


extensibility: one of an operating system’s design goals that allows it to be easily
enhanced as market requirements change.


extension: in some operating systems, it is the part of the filename that indicates
which compiler or software package is needed to run the files. UNIX and Linux
call it a suffix.


extents: any remaining records, and all other additions to the file, that are stored in
other sections of the disk. The extents of the file are linked together with pointers.


external fragmentation: a situation in which the dynamic allocation of memory creates
unusable fragments of free memory between blocks of busy, or allocated, memory.
It contrasts with internal fragmentation.
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external interrupts: interrupts that occur outside the normal flow of a program’s
execution. They are used in preemptive scheduling policies to ensure a fair use of
the CPU in multiprogramming environments.


FCFS: see first come first served.
feedback loop: a mechanism to monitor the system’s resource utilization so


adjustments can be made.
fetch policy: the rules used by the virtual memory manager to determine when a page


is copied from disk to memory.
field: a group of related bytes that can be identified by the user with a name, type, and


size. A record is made up of fields.
FIFO: see first-in first-out.
FIFO anomaly: an unusual circumstance through which adding more page frames


causes an increase in page interrupts when using a FIFO page replacement policy.
file: a group of related records that contains information to be used by specific


application programs to generate reports.
file allocation table (FAT): a table used to track noncontiguous segments of a file.
file descriptor: information kept in the directory to describe a file or file extent. It


contains the file’s name, location, and attributes.
File Manager: the section of the operating system responsible for controlling the use of


files. It tracks every file in the system including data files, assemblers, compilers,
and application programs. By using predetermined access policies, it enforces
access restrictions on each file.


file server: a dedicated network node that provides mass data storage for other nodes
on the network.


File Transfer Protocol (FTP): a protocol that allows a user on one host to access and
transfer files to or from another host over a TCP/IP network.


filter command: a command that directs input from a device or file, changes it, and
then sends the result to a printer or display.


FINISHED: a job status that means that execution of the job has been completed.
firewall: a set of hardware and software that disguises the internal network address of


a computer or network to control how clients from outside can access the
organization’s internal servers.


firmware: software instructions or data that are stored in a fixed or firm way, usually
implemented on read only memory (ROM). Firmware is built into the computer to
make its operation simpler for the user to understand.


first come first served (FCFS): (1) the simplest scheduling algorithm for direct access
storage devices that satisfies track requests in the order in which they are received;
(2) a nonpreemptive process scheduling policy (or algorithm) that handles jobs
according to their arrival time; the first job in the READY queue will be processed
first by the CPU.


first-fit memory allocation: a main memory allocation scheme that searches from the
beginning of the free block list and selects for allocation the first block of memory
large enough to fulfill the request. It contrasts with best-fit memory allocation.
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first generation (1940–1955): the era of the first computers, characterized by their use
of vacuum tubes and their very large physical size.


first-in first-out (FIFO) policy: a page replacement policy that removes from main
memory the pages that were brought in first. It is based on the assumption that
these pages are the least likely to be used again in the near future.


fixed-length record: a record that always contains the same number of characters. It
contrasts with variable-length record.


fixed partitions: a memory allocation scheme in which main memory is sectioned off,
with portions assigned to each user. Also called static partitions. It contrasts with
dynamic partitions.


flash memory: a type of nonvolatile memory used as a secondary storage device that
can be erased and reprogrammed in blocks of data.


FLOP: a measure of processing speed meaning floating point operations per second
(FLOP). See megaflop, gigaflop, teraflop.


floppy disk: a removable flexible disk for low-cost, direct access secondary storage.
fragmentation: a condition in main memory where wasted memory space exists within


partitions, called internal fragmentation, or between partitions, called external
fragmentation.


FTP: the name of the program a user invokes to execute the File Transfer Protocol.
gateway: a communications device or program that passes data between networks


having similar functions but different protocols. A gateway is used to create an
extended network so that several individual networks appear to be part of one
larger network.


gigabit: a measurement of data transmission speed equal to 1,073,741,824 bits per second.
gigabyte (GB): a unit of memory or storage space equal to 1,073,741,824 bytes or 230


bytes. One gigabyte is approximately 1 billion bytes.
gigaflop: a benchmark used to measure processing speed. One gigaflop equals 1 billion


floating point operations per second.
graphical user interface (GUI): a user interface that allows the user to activate


operating system commands by clicking on icons or symbols using a pointing
device such as a mouse.


group: a property of operating systems that enables system administrators to create
sets of users who share the same privileges. A group can share files or programs
without allowing all system users access to those resources.


groupware: software applications that support cooperative work over a network.
Groupware systems must support communications between users and information
processing. For example, a system providing a shared editor must support not only
the collective amendment of documents, but also discussions between the
participants about what is to be amended and why.


hacker: a person who delights in having an intimate understanding of the internal
workings of a system—computers and computer networks in particular. The term is
often misused in a pejorative context, where cracker would be the correct term.
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Hamming code: an error-detecting and error-correcting code that greatly improves the
reliability of data, named after mathematician Richard Hamming.


hard disk: a direct access secondary storage device for personal computer systems. It is
generally a high-density, nonremovable device.


hardware: the physical machine and its components, including main memory, I/O
devices, I/O channels, direct access storage devices, and the central processing unit.


hashing algorithm: the set of instructions used to perform a key-to-address
transformation in which a record’s key field determines its location. See also
logical address.


high-level scheduler: another term for the Job Scheduler.
HOLD: one of the process states. It is assigned to processes waiting to be let into the


READY queue.
hop: a node network through which a packet passes on the path between the packet’s


source and destination nodes.
host: (1) the Internet term for a network node that is capable of communicating at the


application layer. Each Internet host has a unique IP address. (2) a networked
computer with centralized program or data files that makes them available to
other computers on the network.


hybrid system: a computer system that supports both batch and interactive processes.
It appears to be interactive because individual users can access the system via
terminals and get fast responses, but it accepts and runs batch programs in the
background when the interactive load is light.


hybrid topology: a network architecture that combines other types of network
topologies, such as tree and star, to accommodate particular operating
characteristics or traffic volumes.


impersonation: in Windows, the ability of a thread in one process to take on the
security identity of a thread in another process and perform operations on that
thread’s behalf. Used by environment subsystems and network services when
accessing remote resources for client applications.


implicit parallelism: a type of concurrent programming in which the compiler
automatically detects which instructions can be performed in parallel. It contrasts
with explicit parallelism.


indefinite postponement: means that a job’s execution is delayed indefinitely because it
is repeatedly preempted so other jobs can be processed.


index block: a data structure used with indexed storage allocation. It contains the
addresses of each disk sector used by that file.


indexed sequential record organization: a way of organizing data in a direct access
storage device. An index is created to show where the data records are stored. Any
data record can be retrieved by consulting the index first.


indexed storage: the way in which the File Manager physically allocates space to an
indexed sequentially organized file.
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interactive system: a system that allows each user to interact directly with the
operating system via commands entered from a keyboard. Also called time-
sharing system.


interblock gap (IBG): an unused space between blocks of records on a magnetic tape.
internal fragmentation: a situation in which a fixed partition is only partially used by


the program. The remaining space within the partition is unavailable to any other
job and is therefore wasted. It contrasts with external fragmentation.


internal interrupts: also called synchronous interrupts, they occur as a direct result of
the arithmetic operation or job instruction currently being processed. They
contrast with external interrupts.


internal memory: see main memory.
International Organization for Standardization (ISO): a voluntary, non-treaty


organization founded in 1946 that is responsible for creating international
standards in many areas, including computers and communications. Its members
are the national standards organizations of the 89 member countries, including
ANSI for the United States.


Internet: the largest collection of networks interconnected with routers. The Internet is
a multiprotocol internetwork.


Internet Protocol (IP): the network-layer protocol used to route data from one
network to another. It was developed by the United States Department of Defense.


interrecord gap (IRG): an unused space between records on a magnetic tape. It
facilitates the tape’s start/stop operations.


interrupt: a hardware signal that suspends execution of a program and activates the
execution of a special program known as the interrupt handler. It breaks the
normal flow of the program being executed.


interrupt handler: the program that controls what action should be taken by the
operating system when a sequence of events is interrupted.


inverted file: a file generated from full document databases. Each record in an inverted
file contains a key subject and the document numbers where that subject is found.
A book’s index is an inverted file.


I/O-bound: a job that requires a large number of input/output operations, resulting in
much free time for the CPU. It contrasts with CPU-bound.


I/O channel: a specialized programmable unit placed between the CPU and the control
units. Its job is to synchronize the fast speed of the CPU with the slow speed of the
I/O device and vice versa, making it possible to overlap I/O operations with CPU
operations. I/O channels provide a path for the transmission of data between
control units and main memory, and they control that transmission.


I/O channel program: the program that controls the channels. Each channel program
specifies the action to be performed by the devices and controls the transmission
of data between main memory and the control units.


I/O control unit: the hardware unit containing the electronic components common to
one type of I/O device, such as a disk drive. It is used to control the operation of
several I/O devices of the same type.
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I/O device: any peripheral unit that allows communication with the CPU by users or
programs, including terminals, line printers, plotters, card readers, tape drives, and
direct access storage devices.


I/O device handler: the module that processes the I/O interrupts, handles error
conditions, and provides detailed scheduling algorithms that are extremely device
dependent. Each type of I/O device has its own device handler algorithm.


I/O scheduler: one of the modules of the I/O subsystem that allocates the devices,
control units, and channels.


I/O subsystem: a collection of modules within the operating system that controls all
I/O requests.


I/O traffic controller: one of the modules of the I/O subsystem that monitors the status
of every device, control unit, and channel.


IP: see Internet Protocol.
ISO: see International Organization for Standardization.
Java: a cross-platform programming language, developed by Sun Microsystems,


that closely resembles C!! and runs on any computer capable of running the
Java interpreter.


job: a unit of work submitted by a user to an operating system.
job control language (JCL): a command language used in several computer systems to


direct the operating system in the performance of its functions by identifying the
users and their jobs and specifying the resources required to execute a job. The JCL
helps the operating system better coordinate and manage the system’s resources.


Job Scheduler: the high-level scheduler of the Processor Manager that selects jobs from
a queue of incoming jobs based on each job’s characteristics. The Job Scheduler’s
goal is to sequence the jobs in the READY queue so that the system’s resources will
be used efficiently.


job status: the condition of a job as it moves through the system from the beginning to
the end of its execution: HOLD, READY, RUNNING, WAITING, or FINISHED.


job step: units of work executed sequentially by the operating system to satisfy the user’s
total request. A common example of three job steps is the compilation, linking, and
execution of a user’s program.


Job Table (JT): a table in main memory that contains two entries for each active job—the
size of the job and the memory location where its page map table is stored. It is used
for paged memory allocation schemes.


Kerberos: an MIT-developed authentication system that allows network managers to
administer and manage user authentication at the network level.


kernel: the part of the operating system that resides in main memory at all times and
performs the most essential tasks, such as managing memory and handling disk
input and output.


kernel level: in an object-based distributed operating system, it provides the basic
mechanisms for dynamically building the operating system by creating, managing,
scheduling, synchronizing, and deleting objects.
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kernel mode: the name given to indicate that processes are granted privileged access to
the processor. Therefore, all machine instructions are allowed and system memory
is accessible. Contrasts with the more restrictive user mode.


key field: (1) a unique field or combination of fields in a record that uniquely identifies
that record; (2) the field that determines the position of a record in a sorted sequence.


kilobyte (K): a unit of memory or storage space equal to 1,024 bytes or 210 bytes.
LAN: see local area network.
lands: flat surface areas on the reflective layer of a CD or DVD. Each land is


interpreted as a 1. Contrasts with pits, which are interpreted as 0s.
leased line: a dedicated telephone circuit for which a subscriber pays a monthly fee,


regardless of actual use.
least-frequently-used (LFU): a page-removal algorithm that removes from memory the


least-frequently-used page.
least-recently-used (LRU) policy: a page-replacement policy that removes from


main memory the pages that show the least amount of recent activity. It is based
on the assumption that these pages are the least likely to be used again in the
immediate future.


LFU: see least-frequently-used.
Lightweight Directory Access Protocol (LDAP): a protocol that defines a method for


creating searchable directories of resources on a network. It is called lightweight
because it is a simplified and TCP/IP-enabled version of the X.500 directory protocol.


link: a generic term for any data communications medium to which a network node
is attached.


livelock: a locked system whereby two or more processes continually block the
forward progress of the others without making any forward progress itself. It is
similar to a deadlock except that neither process is blocked or waiting; they are
both in a continuous state of change.


local area network (LAN): a data network intended to serve an area covering only a
few square kilometers or less.


local station: the network node to which a user is attached.
locality of reference: behavior observed in many executing programs in which memory


locations recently referenced, and those near them, are likely to be referenced in
the near future.


locking: a technique used to guarantee the integrity of the data in a database through
which the user locks out all other users while working with the database.


lockword: a sequence of letters and/or numbers provided by users to prevent
unauthorized tampering with their files. The lockword serves as a secret password
in that the system will deny access to the protected file unless the user supplies the
correct lockword when accessing the file.


logic bomb: a virus with a trigger, usually an event, that causes it to execute.
logical address: the result of a key-to-address transformation. See also hashing algorithm.
LOOK: a scheduling strategy for direct access storage devices that is used to optimize


seek time. Sometimes known as the elevator algorithm.
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loosely coupled configuration: a multiprocessing configuration in which each processor
has a copy of the operating system and controls its own resources.


low-level scheduler: a synonym for process scheduler.
LRU: see least-recently-used.
magnetic tape: a linear secondary storage medium that was first developed for early


computer systems. It allows only for sequential retrieval and storage of records.
magneto-optical (MO) disk drive: a data storage drive that uses a laser beam to read


and/or write information recorded on magneto-optical disks.
mailslots: a high-level network software interface for passing data among processes in


a one-to-many and many-to-one communication mechanism. Mail slots are useful
for broadcasting messages to any number of processes.


main memory: the memory unit that works directly with the CPU and in which the
data and instructions must reside in order to be processed. Also called random
access memory (RAM), primary storage, or internal memory.


mainframe: the historical name given to a large computer system characterized by its
large size, high cost, and high performance.


MAN: see metropolitan area network.
master file directory (MFD): a file stored immediately after the volume descriptor. It


lists the names and characteristics of every file contained in that volume.
master/slave configuration: an asymmetric multiprocessing configuration consisting of


a single processor system connected to slave processors, each of which is managed
by the primary master processor, which provides the scheduling functions and jobs.


mean time between failures (MTBF): a resource measurement tool; the average time
that a unit is operational before it breaks down.


mean time to repair (MTTR): a resource measurement tool; the average time needed
to fix a failed unit and put it back in service.


megabyte (MB): a unit of memory or storage space equal to 1,048,576 bytes or 220 bytes.
megaflop: a benchmark used to measure processing speed. One megaflop equals 1


million floating point operations per second.
megahertz (MHz): a speed measurement used to compare the clock speed of


computers. One megahertz is equal to 1 million electrical cycles per second.
Memory Manager: the section of the operating system responsible for controlling the


use of memory. It checks the validity of each request for memory space and, if it is
a legal request, allocates the amount of memory needed to execute the job.


Memory Map Table (MMT): a table in main memory that contains as many entries as
there are page frames and lists the location and free/busy status for each one.


menu-driven interface: an interface that accepts instructions that users choose from a
menu of valid choices. It contrasts with a command-driven interface.


metropolitan area network (MAN): a data network intended to serve an area
approximating that of a large city.


microcomputer: a small computer equipped with all the hardware and software
necessary to perform one or more tasks.
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middle-level scheduler: a scheduler used by the Processor Manager to manage
processes that have been interrupted because they have exceeded their allocated
CPU time slice. It is used in some highly interactive environments.


midrange computer: a small to medium-sized computer system developed to meet the
needs of smaller institutions. It was originally developed for sites with only a few
dozen users. Also called minicomputer.


minicomputer: see midrange computer.
MIPS: a measure of processor speed that stands for a million instructions per second.


A mainframe system running at 100 MIPS can execute 100,000,000 instructions
per second.


module: a logical section of a program. A program may be divided into a number
of logically self-contained modules that may be written and tested by a number
of programmers.


monoprogramming system: a single-user computer system.
most-recently-used (MRU): a page-removal algorithm that removes from memory the


most-recently-used page.
MTBF: see mean time between failures.
MTTR: see mean time to repair.
multiple-level queues: a process-scheduling scheme (used with other scheduling


algorithms) that groups jobs according to a common characteristic. The processor
is then allocated to serve the jobs in these queues in a predetermined manner.


multiprocessing: when two or more CPUs share the same main memory, most I/O
devices, and the same control program routines. They service the same job stream
and execute distinct processing programs concurrently.


multiprogramming: a technique that allows a single processor to process several
programs residing simultaneously in main memory and interleaving their execution
by overlapping I/O requests with CPU requests. Also called concurrent
programming or multitasking.


multitasking: a synonym for multiprogramming.
mutex: a condition that specifies that only one process may update (modify) a shared


resource at a time to ensure correct operation and results.
mutual exclusion: one of four conditions for deadlock in which only one process is


allowed to have access to a resource. It is typically shortened to mutex in algorithms
describing synchronization between processes.


named pipes: a high-level software interface to NetBIOS, which represents the
hardware in network applications as abstract objects. Named pipes are represented
as file objects in Windows and operate under the same security mechanisms as
other executive objects.


natural wait: common term used to identify an I/O request from a program in a
multiprogramming environment that would cause a process to wait naturally before
resuming execution.
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negative feedback loop: a mechanism to monitor the system’s resources and, when it
becomes too congested, to signal the appropriate manager to slow down the
arrival rate of the processes.


NetBIOS interface: a programming interface that allows I/O requests to be sent to and
received from a remote computer. It hides networking hardware from applications.


network: a system of interconnected computer systems and peripheral devices that
exchange information with one another.


Network Manager: the section of the operating system responsible for controlling the
access to, and use of, networked resources.


network operating system (NOS): the software that manages network resources for a
node on a network and may provide security and access control. These resources
may include electronic mail, file servers, and print servers. See also distributed
operating system.


no preemption: one of four conditions for deadlock in which a process is allowed to
hold on to resources while it is waiting for other resources to finish execution.


noncontiguous storage: a type of file storage in which the information is stored in
nonadjacent locations in a storage medium. Data records can be accessed directly
by computing their relative addresses.


nonpreemptive scheduling policy: a job scheduling strategy that functions without
external interrupts so that, once a job captures the processor and begins execution,
it remains in the RUNNING state uninterrupted until it issues an I/O request or it
is finished.


NOS: see network operating system.
N-step SCAN: a variation of the SCAN scheduling strategy for direct access storage


devices that is used to optimize seek times.
NT file system (NTFS): The file system introduced with Windows NT that offers file


management services, such as permission management, compression, transaction
logs, and the ability to create a single volume spanning two or more physical disks.


null entry: an empty entry in a list. It assumes different meanings based on the list’s
application.


object: any one of the many entities that constitute a computer system, such as CPUs,
terminals, disk drives, files, or databases. Each object is called by a unique name
and has a set of operations that can be carried out on it.


object-based DO/S: a view of distributed operating systems where each hardware unit
is bundled with its required operational software, forming a discrete object to be
handled as an entity.


object-oriented: a programming philosophy whereby programs consist of self-contained,
reusable modules called objects, each of which supports a specific function, but
which are categorized into classes of objects that share the same function.


offset: in a paged or segmented memory allocation environment, it is the difference
between a page’s address and the actual machine language address. It is used to
locate an instruction or data value within its page frame. Also called displacement.
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open shortest path first (OSPF): a protocol designed for use in Internet Protocol networks,
it is concerned with tracking the operational state of every network interface.
Any changes to the state of an interface will trigger a routing update message.


open systems interconnection (OSI) reference model: a seven-layer structure designed
to describe computer network architectures and the ways in which data passes
through them. This model was developed by the ISO in 1978 to clearly define the
interfaces and protocols for multi-vendor networks, and to provide users of those
networks with conceptual guidelines in the construction of such networks.


operating system: the software that manages all the resources of a computer system.
optical disc: a secondary storage device on which information is stored in the form of


tiny holes called pits laid out in a spiral track (instead of a concentric track as for a
magnetic disk). The data is read by focusing a laser beam onto the track.


optical disc drive: a drive that uses a laser beam to read and/or write information
recorded on compact optical discs.


order of operations: the algebraic convention that dictates the order in which elements
of a formula are calculated.


OSI reference model: see open systems interconnection reference model.
OSPF: see open shortest path first.
overlay: a technique used to increase the apparent size of main memory. This is


accomplished by keeping in main memory only the programs or data that are
currently active; the rest are kept in secondary storage. Overlay occurs when
segments of a program are transferred from secondary storage to main memory for
execution, so that two or more segments occupy the same storage locations at
different times.


owner: one of the three types of users allowed to access a file. The owner is the one
who created the file originally. The other two types are group and everyone else,
also known as world in some systems.


P: an operation performed on a semaphore, which may cause the calling process to
wait. It stands for the Dutch word proberen, meaning to test, and it is part of the P
and V operations to test and increment.


packet: a unit of data sent across a network. Packet is a generic term used to describe
units of data at all layers of the protocol stack, but it is most correctly used to
describe application data units.


packet sniffer: software that intercepts network data packets sent in cleartext and
searches them for information, such as passwords.


packet switching: a communication model in which messages are individually routed
between hosts, with no previously established communication path.


page: a fixed-size section of a user’s job that corresponds to page frames in main memory.
page fault: a type of hardware interrupt caused by a reference to a page not residing in


memory. The effect is to move a page out of main memory and into secondary
storage so another page can be moved into memory.
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page fault handler: part of the Memory Manager that determines if there are empty
page frames in memory so that the requested page can immediately be copied from
secondary storage, or determines which page must be swapped out if all page
frames are busy.


page frame: individual sections of main memory of uniform size into which a single
page may be loaded.


Page Map Table (PMT): a table in main memory with the vital information for each
page including the page number and its corresponding page frame memory address.


page replacement policy: an algorithm used by virtual memory systems to decide
which page or segment to remove from main memory when a page frame is needed
and memory is full. Two examples are FIFO and LRU.


page swap: the process of moving a page out of main memory and into secondary
storage so another page can be moved into memory in its place.


paged memory allocation: a memory allocation scheme based on the concept of
dividing a user’s job into sections of equal size to allow for noncontiguous program
storage during execution. This was implemented to further increase the level of
multiprogramming. It contrasts with segmented memory allocation.


parallel processing: the process of operating two or more CPUs in parallel: that is,
more than one CPU executing instructions simultaneously.


parent process: In UNIX and Linux operating systems, a job that controls one or more
child processes, which are subordinate to it.


parity bit: an extra bit added to a character, word, or other data unit and used for error
checking. It is set to either 0 or 1 so that the sum of the 1 bits in the data unit is always
even, for even parity, or odd for odd parity, according to the logic of the system.


partition: a section of hard disk storage of arbitrary size. Partitions can be static
or dynamic.


passive multiprogramming: a term used to indicate that the operating system doesn’t
control the amount of time the CPU is allocated to each job, but waits for each job
to end an execution sequence before issuing an interrupt releasing the CPU and
making it available to other jobs. It contrasts with active multiprogramming.


pass-through security: used to perform remote-validation activities in Windows 95.
Logon information is passed to the appropriate networking protocol for
processing that enables Windows 95 to use existing network hardware and
software with all the security that is built into these external network servers.


password: a user-defined access control method. Typically a word or character string
that a user must specify in order to be allowed to log on to a computer system.


patch: executable software that repairs errors or omissions in another program or
piece of software.


patch management: the rigorous application of software patches to make repairs and
keep the operating system software up to the latest standard.


path: (1) the sequence of routers and links through which a packet passes on its way
from source to destination node; (2) the sequence of directories and subdirectories
the operating system must follow to find a specific file.
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PCB: see process control block.
peer (hardware): a node on a network that is at the same level as other nodes on that


network. For example, all nodes on a local area network are peers.
peer (software): a process that is communicating to another process residing at the


same layer in the protocol stack on another node. For example, if the processes are
application processes, they are said to be application-layer peers.


performance: the ability of an operating system to give users good response times
under heavy loads and when using CPU-bound applications such as graphic and
financial analysis packages, both of which require rapid processing.


phishing: a technique used to trick consumers into revealing personal information by
appearing as a legitimate entity.


pipe: a symbol that directs the operating system to divert the output of one command
so it becomes the input of another command.


pirated software: illegally obtained software.
pits: tiny depressions on the reflective layer of a CD or DVD. Each pit is interpreted as


a 0. Contrasts with lands, which are interpreted as 1s.
placement policy: the rules used by the virtual memory manager to determine where


the virtual page is to be loaded in memory.
pointer: an address or other indicator of location.
polling: a software mechanism used to test the flag, which indicates when a device,


control unit, or path is available.
portability: the ability to move an entire operating system to a machine based on a


different processor or configuration with as little recoding as possible.
positive feedback loop: a mechanism used to monitor the system. When the system


becomes underutilized, the feedback causes the arrival rate to increase.
POSIX: Portable Operating System Interface is a set of IEEE standards that defines the


standard user and programming interfaces for operating systems so developers can
port programs from one operating system to another.


preemptive scheduling policy: any process scheduling strategy that, based on
predetermined policies, interrupts the processing of a job and transfers the CPU to
another job. It is widely used in time-sharing environments.


prevention: a design strategy for an operating system where resources are managed in
such a way that some of the necessary conditions for deadlock do not hold.


primary storage: see main memory.
primitives: well-defined, predictable, low-level operating system mechanisms that


allow higher-level operating system components to perform their functions without
considering direct hardware manipulation.


priority scheduling: a nonpreemptive process scheduling policy (or algorithm) that
allows for the execution of high-priority jobs before low-priority jobs.


process: an instance of execution of a program that is identifiable and controllable by
the operating system.


process control block (PCB): a data structure that contains information about the
current status and characteristics of a process. Every process has a PCB.
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process identification: a user-supplied unique identifier of the process and a pointer
connecting it to its descriptor, which is stored in the PCB.


process scheduler: the low-level scheduler of the Processor Manager that sets up the
order in which processes in the READY queue will be served by the CPU.


process scheduling algorithm: an algorithm used by the Job Scheduler to allocate the
CPU and move jobs through the system. Examples are FCFS, SJN, priority, and
round robin scheduling policies.


process scheduling policy: any policy used by the Processor Manager to select the
order in which incoming jobs will be executed.


process state: information stored in the job’s PCB that indicates the current condition
of the process being executed.


process status: information stored in the job’s PCB that indicates the current position
of the job and the resources responsible for that status.


Process Status Word (PSW): information stored in a special CPU register including the
current instruction counter and register contents. It is saved in the job’s PCB when
it isn’t running but is on HOLD, READY, or WAITING.


process synchronization: (1) the need for algorithms to resolve conflicts between
processors in a multiprocessing environment; (2) the need to ensure that events
occur in the proper order even if they are carried out by several processes.


process-based DO/S: a view of distributed operating systems that encompasses all the
system’s processes and resources. Process management is provided through the use
of client/server processes.


processor: (1) another term for the CPU (central processing unit); (2) any component
in a computing system capable of performing a sequence of activities. It controls
the interpretation and execution of instructions.


Processor Manager: a composite of two submanagers, the Job Scheduler and the Process
Scheduler. It decides how to allocate the CPU, monitors whether it is executing a
process or waiting, and controls job entry to ensure balanced use of resources.


producers and consumers: a classic problem in which a process produces data that will be
consumed, or used, by another process. It exhibits the need for process cooperation.


program: a sequence of instructions that provides a solution to a problem and directs
the computer’s actions. In an operating systems environment it can be equated
with a job.


program file: a file that contains instructions for the computer.
protocol: a set of rules to control the flow of messages through a network.
proxy server: a server positioned between an internal network and an external


network or the Internet to screen all requests for information and prevent
unauthorized access to network resources.


PSW: see Process Status Word.
queue: a linked list of PCBs that indicates the order in which jobs or processes will


be serviced.
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race: a synchronization problem between two processes vying for the same resource.
In some cases it may result in data corruption because the order in which the
processes will finish executing cannot be controlled.


RAID: redundant arrays of independent disks. A group of hard disks controlled in
such a way that they speed read access of data on secondary storage devices and
aid data recovery.


random access memory (RAM): see main memory.
random access storage device: see direct access storage device.
read only memory (ROM): a type of primary storage in which programs and data are


stored once by the manufacturer and later retrieved as many times as necessary.
ROM does not allow storage of new programs or data.


readers and writers: a problem that arises when two types of processes need to access
a shared resource such as a file or a database. Their access must be controlled to
preserve data integrity.


read/write head: a small electromagnet used to read or write data on a magnetic
storage medium, such as disk or tape.


READY: a job status that means the job is ready to run but is waiting for the CPU.
real-time system: the computing system used in time-critical environments that require


guaranteed response times, such as navigation systems, rapid transit systems, and
industrial control systems.


record: a group of related fields treated as a unit. A file is a group of related records.
recovery: (1) when a deadlock is detected, the steps that must be taken to break the


deadlock by breaking the circle of waiting processes; (2) when a system is
assaulted, the steps that must be taken to recover system operability and, in the
best case, recover any lost data.


redirection: a symbol that directs the operating system to send the results of a
command to or from a file or device other than a keyboard or monitor.


reentrant code: code that can be used by two or more processes at the same time; each
shares the same copy of the executable code but has separate data areas.


register: a hardware storage unit used in the CPU for temporary storage of a single
data item.


relative address: in a direct organization environment, it indicates the position of a
record relative to the beginning of the file.


relative filename: a file’s simple name and extension as given by the user. It contrasts
with absolute filename.


reliability: (1) a standard that measures the probability that a unit will not fail during
a given time period—it is a function of MTBF; (2) the ability of an operating
system to respond predictably to error conditions, even those caused by hardware
failures; (3) the ability of an operating system to actively protect itself and its users
from accidental or deliberate damage by user programs.
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relocatable dynamic partitions: a memory allocation scheme in which the system
relocates programs in memory to gather together all of the empty blocks and
compact them to make one block of memory that is large enough to accommodate
some or all of the jobs waiting for memory.


relocation: (1) the process of moving a program from one area of memory to another;
(2) the process of adjusting address references in a program, by either software or
hardware means, to allow the program to execute correctly when loaded in
different sections of memory.


relocation register: a register that contains the value that must be added to each
address referenced in the program so that it will be able to access the correct
memory addresses after relocation. If the program hasn’t been relocated, the value
stored in the program’s relocation register is 0. It contrasts with bounds register.


remote login: the ability to operate on a remote computer using a protocol over a
computer network as though locally attached.


remote station: the node at the distant end of a network connection.
repeated trials: repeated guessing of a user’s password by an unauthorized user. It is a


method used to illegally enter systems that rely on passwords.
replacement policy: the rules used by the virtual memory manager to determine which


virtual page must be removed from memory to make room for a new page.
resource holding: one of four conditions for deadlock in which each process refuses to


relinquish the resources it holds until its execution is completed, even though it
isn’t using them because it is waiting for other resources. It is the opposite of
resource sharing.


resource sharing: the use of a resource by two or more processes either at the same
time or at different times.


resource utilization: a measure of how much each unit is contributing to the overall
operation of the system. It is usually given as a percentage of time that a resource is
actually in use.


response time: a measure of an interactive system’s efficiency that tracks the speed
with which the system will respond to a user’s command.


ring topology: a network topology in which each node is connected to two adjacent
nodes. Ring networks have the advantage of not needing routing because all
packets are simply passed to a node’s upstream neighbor.


RIP: see Routing Information Protocol.
root directory: (1) for a disk, it is the directory accessed by default when booting up


the computer; (2) for a hierarchical directory structure, it is the first directory
accessed by a user.


rotational delay: a synonym for search time.
rotational ordering: an algorithm used to reorder record requests within tracks to


optimize search time.
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round robin: a preemptive process scheduling policy (or algorithm) that allocates to
each job one unit of processing time per turn to ensure that the CPU is equally
shared among all active processes and isn’t monopolized by any one job. It is used
extensively in interactive systems.


router: a device that forwards traffic between networks. The routing decision is based on
network-layer information and routing tables, often constructed by routing protocols.


routing: the process of selecting the correct interface and next hop for a packet
being forwarded.


Routing Information Protocol (RIP): a routing protocol used by IP. It is based on a
distance-vector algorithm.


RUNNING: a job status that means that the job is executing.
safe state: the situation in which the system has enough available resources to


guarantee the completion of at least one job running on the system.
SCAN: a scheduling strategy for direct access storage devices that is used to optimize


seek time. The most common variations are N-step SCAN and C-SCAN.
scheduling algorithm: see process scheduling algorithm.
script file: A series of executable commands written in plain text and executed by the


operating system in sequence as a procedure.
search strategies: algorithms used to optimize search time in direct access storage


devices. See also rotational ordering.
search time: the time it takes to rotate the drum or disk from the moment an I/O


command is issued until the requested record is moved under the read/write head.
Also called rotational delay.


second generation (1955–1965): the second era of technological development of
computers, when the transistor replaced the vacuum tube. Computers were smaller
and faster and had larger storage capacity than first-generation computers and
were developed to meet the needs of the business market.


sector: a division in a disk’s track. Sometimes called a block. The tracks are divided
into sectors during the formatting process.


security descriptor: a Windows data structure appended to an object that protects
the object from unauthorized access. It contains an access control list and
controls auditing.


seek strategy: a predetermined policy used by the I/O device handler to optimize
seek times.


seek time: the time required to position the read/write head on the proper track from
the time the I/O request is issued.


segment: a variable-size section of a user’s job that contains a logical grouping of code.
It contrasts with page.


Segment Map Table (SMT): a table in main memory with the vital information for each
segment including the segment number and its corresponding memory address.


segmented memory allocation: a memory allocation scheme based on the concept of
dividing a user’s job into logical groupings of code to allow for noncontiguous
program storage during execution. It contrasts with paged memory allocation.
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segmented/demand paged memory allocation: a memory allocation scheme based on
the concept of dividing a user’s job into logical groupings of code and loading them
into memory as needed.


semaphore: a type of shared data item that may contain either binary or nonnegative
integer values and is used to provide mutual exclusion.


sequential access medium: any medium that stores records only in a sequential
manner, one after the other, such as magnetic tape. It contrasts with direct access
storage device.


sequential record organization: the organization of records in a specific sequence.
Records in a sequential file must be processed one after another.


server: a node that provides to clients various network services such as file retrieval,
printing, or database access services.


server process: a logical unit composed of one or more device drivers, a device
manager, and a network server module; needed to control clusters or similar
devices, such as printers or disk drives, in a process-based distributed operating
system environment.


service pack: a term used by some vendors to describe an update to customer software
to repair existing problems and/or deliver enhancements.


sharable code: executable code in the operating system that can be shared by several
processes.


shared device: a device that can be assigned to several active processes at the same time.
shortest job first (SJF): see shortest job next.
shortest job next (SJN): a nonpreemptive process scheduling policy (or algorithm) that


selects the waiting job with the shortest CPU cycle time. Also called shortest job first.
shortest remaining time (SRT): a preemptive process scheduling policy (or algorithm),


similar to the SJN algorithm, that allocates the processor to the job closest
to completion.


shortest seek time first (SSTF): a scheduling strategy for direct access storage devices that
is used to optimize seek time. The track requests are ordered so the one closest to the
currently active track is satisfied first and the ones farthest away are made to wait.


site: a specific location on a network containing one or more computer systems.
SJF: see shortest job first.
SJN: see shortest job next.
smart card: a small, credit-card-sized device that uses cryptographic technology to


control access to computers and computer networks. Each smart card has its own
personal identifier, which is known only to the user, as well as its own stored and
encrypted password.


sniffer: see packet sniffer.
social engineering: a technique whereby system intruders gain access to information


about a legitimate user to learn active passwords, sometimes by calling the user
and posing as a system technician.


socket: abstract communication interfaces that allow applications to communicate
while hiding the actual communications from the applications.
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software: a collection of programs used to perform certain tasks. They fall into three
main categories: operating system programs, compilers and assemblers, and
application programs.


spin lock: a Windows synchronization mechanism used by the kernel and parts of the
executive that guarantees mutually exclusive access to a global system data
structure across multiple processors.


spoofing: the creation of false IP addresses in the headers of data packets sent over the
Internet, sometimes with the intent of gaining access when it would not otherwise
be granted.


spooling: a technique developed to speed I/O by collecting in a disk file either
input received from slow input devices or output going to slow output devices
such as printers. Spooling minimizes the waiting done by the processes
performing the I/O.


SRT: see shortest remaining time.
SSTF: see shortest seek time first.
stack: a sequential list kept in main memory. The items in the stack are retrieved from


the top using a last-in first-out (LIFO) algorithm.
stack algorithm: an algorithm for which it can be shown that the set of pages in


memory for n page frames is always a subset of the set of pages that would be in
memory with n ! 1 page frames. Therefore, increasing the number of page frames
will not bring about Belady’s anomaly.


star topology: a network topology in which multiple network nodes are connected
through a single, central node. The central node is a device that manages the
network. This topology has the disadvantage of depending on a central node, the
failure of which would bring down the network.


starvation: the result of conservative allocation of resources in which a single job is
prevented from execution because it is kept waiting for resources that never
become available. It is an extreme case of indefinite postponement.


static partitions: another term for fixed partitions.
station: any device that can receive and transmit messages on a network.
storage: the place where data is stored in the computer system. Primary storage is main


memory. Secondary storage is nonvolatile media, such as disks and flash memory.
store-and-forward: a network operational mode in which messages are received in


their entirety before being transmitted to their destination, or to their next hop in
the path to their destination.


stripe: a set of consecutive strips across disks; the strips contain data bits and
sometimes parity bits depending on the RAID level.


subdirectory: a directory created by the user within the boundaries of an existing
directory. Some operating systems call this a folder.


subroutine: also called a subprogram, a segment of a program that can perform a
specific function. Subroutines can reduce programming time when a specific
function is required at more than one point in a program.


subsystem: see I/O subsystem.
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suffix: see extension.
supercomputers: the fastest, most sophisticated computers made, used for complex


calculations at the fastest speed permitted by current technology.
symmetric configuration: a multiprocessing configuration in which processor


scheduling is decentralized and each processor is of the same type. A single copy of
the operating system and a global table listing each process and its status is stored
in a common area of memory so every processor has access to it. Each processor
uses the same scheduling algorithm to select which process it will run next.


synchronous interrupts: another term for internal interrupts.
system prompt: the signal from the operating system that it is ready to accept a user’s


command, such as C:\ >.
system survivability: the capability of a system to fulfill its mission, in a timely manner,


in the presence of attacks, failures, or accidents.
task: (1) the term used to describe a process; (2) the basic unit of concurrent


programming languages that defines a sequence of instructions that may be
executed in parallel with other similar units.


TCP/IP reference model: a common acronym for the suite of transport-layer and
application-layer protocols that operate over the Internet Protocol.


terabyte (TB): a unit of memory or storage space equal to 1,099,511,627,776 bytes or
240 bytes. One terabyte equals approximately 1 trillion bytes.


teraflop: a benchmark used to measure processing speed. One teraflop equals 1 trillion
floating point operations per second.


test-and-set: an indivisible machine instruction known simply as TS, which is executed
in a single machine cycle and was first introduced by IBM for its multiprocessing
System 360/370 computers to determine whether the processor was available.


third generation: the era of computer development beginning in the mid-1960s that
introduced integrated circuits and miniaturization of components to replace
transistors, reduce costs, work faster, and increase reliability.


thrashing: a phenomenon in a virtual memory system where an excessive amount of
page swapping back and forth between main memory and secondary storage
results in higher overhead and little useful work.


thread: a portion of a program that can run independently of other portions.
Multithreaded application programs can have several threads running at one time
with the same or different priorities.


Thread Control Block (TCB): a data structure that contains information about the
current status and characteristics of a thread.


throughput: a composite measure of a system’s efficiency that counts the number of
jobs served in a given unit of time.


ticket granting ticket: a virtual ticket given by a Kerberos server indicating that the
user holding the ticket can be granted access to specific application servers. The
user sends this encrypted ticket to the remote application server, which can then
examine it to verify the user’s identity and authenticate the user.
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time bomb: a virus with a trigger linked to a certain year, month, day, or time that
causes it to execute.


time quantum: a period of time assigned to a process for execution. When it expires
the resource is preempted, and the process is assigned another time quantum for
use in the future.


time-sharing system: a system that allows each user to interact directly with the operating
system via commands entered from a keyboard. Also called interactive system.


time slice: another term for time quantum.
token: a unique bit pattern that all stations on the LAN recognize as a permission to


transmit indicator.
token bus: a type of local area network with nodes connected to a common cable using


a CSMA/CA protocol.
token ring: a type of local area network with stations wired into a ring network. Each


station constantly passes a token on to the next. Only the station with the token
may send a message.


track: a path along which data is recorded on a magnetic medium such as tape or disk.
transfer rate: the rate with which data is transferred from sequential access media. For


magnetic tape, it is equal to the product of the tape’s density and its transport speed.
transfer time: the time required for data to be transferred between secondary storage


and main memory.
transport speed: the speed that magnetic tape must reach before data is either written


to or read from it. A typical transport speed is 200 inches per second.
trap door: an unspecified and nondocumented entry point to the system. It represents


a significant security risk.
Trojan: a malicious computer program with side effects that are not intended by the


user who executes the program. Also called a Trojan horse.
turnaround time: a measure of a system’s efficiency that tracks the time required to


execute a job and return output to the user.
universal serial bus (USB) controller: the interface between the operating system,


device drivers, and applications that read and write to devices connected to the
computer through the USB port. Each USB port can accommodate up to 127
different devices.


unsafe state: a situation in which the system has too few available resources to guarantee
the completion of at least one job running on the system. It can lead to deadlock.


user: anyone who requires the services of a computer system.
user mode: name given to indicate that processes are not granted privileged access to


the processor. Therefore, certain instructions are not allowed and system memory
isn’t accessible. Contrasts with the less restrictive kernel mode.


V: an operation performed on a semaphore that may cause a waiting process to
continue. It stands for the Dutch word verhogen, meaning to increment, and it is
part of the P and V operations to test and increment.
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variable-length record: a record that isn’t of uniform length, doesn’t leave empty
storage space, and doesn’t truncate any characters, thus eliminating the two
disadvantages of fixed-length records. It contrasts with a fixed-length record.


verification: the process of making sure that an access request is valid.
version control: the tracking and updating of a specific release of a piece of hardware


or software.
victim: an expendable job that is selected for removal from a deadlocked system to


provide more resources to the waiting jobs and resolve the deadlock.
virtual device: a dedicated device that has been transformed into a shared device


through the use of spooling techniques.
virtual memory: a technique that allows programs to be executed even though they are


not stored entirely in memory. It gives the user the illusion that a large amount of
main memory is available when, in fact, it is not.


virtualization: the creation of a virtual version of hardware or software. Operating
system virtualization allows a single CPU to run multiple operating system images
at the same time.


virus: a program that replicates itself on a computer system by incorporating itself into
other programs, including those in secondary storage, that are shared among other
computer systems.


volume: any secondary storage unit, such as hard disks, disk packs, CDs, DVDs,
removable disks, or tapes. When a volume contains several files it is called a
multifile volume. When a file is extremely large and contained in several volumes
it is called a multivolume file.


WAIT and SIGNAL: a modification of the test-and-set synchronization mechanism
that is designed to remove busy waiting.


WAITING: a job status that means that the job can’t continue until a specific resource
is allocated or an I/O operation has finished.


waiting time: the amount of time a process spends waiting for resources, primarily I/O
devices. It affects throughput and utilization.


warm boot: a feature that allows the I/O system to recover I/O operations that were in
progress when a power failure occurred.


wide area network (WAN): a network usually constructed with long-distance, point-
to-point lines, covering a large geographic area.


wire tapping: a system security violation in which unauthorized users monitor or
modify a user’s transmission.


working directory: the directory or subdirectory in which the user is currently working.
working set: a collection of pages to be kept in main memory for each active process


in a virtual memory environment.
workstation: a desktop computer attached to a local area network that serves as an


access point to that network.
worm: a computer program that replicates itself and is self-propagating in main memory.


Worms, as opposed to viruses, are meant to spawn in network environments.
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