INV 28: How much gas is produced? – Two-Week lab Student handout

ALL data below should go in your notebook!

	_				
T	L	-	-	-	
	n	ሥ	O		w

Idea gas law: PV = nRT

P: partial pressure (atm) of the target gas

V: volume (L)

n: # of moles of the target gas

R: gas constant = 0.08206 L·atm/mol·k

T: temperature (k)

% error= |Experimental-Theoretical|/Theoretical x100

% yield= Experimental/Theoretical x100

WEEK 1

1. Proposal:

_	Write the reaction	equations for	each solid	Mg Na.	CO. and	CaCO31	with HCL.
	write the reaction	equations for	each sond	IVIE, IVA	CO3, and	cacos	WILLI IICI .

Mg(s)	+ 2 HCl(aq) →	HzT + Mg (/2
	+HCl(aq) →	alter Annu C. Ledtova on Mund
CaCO ₃ (s)	+HCl(aq) →	H(0) + Cacl

In your notebook, follow the table format below to prepare a table with the following headings for 3 trials.

Tria	Amoun t of Mg (g) used	Amoun t of HCl (mL) used	Initial Pressur e (atm)	Final Pressur e (atm)	Pressur e of Gas (atm)	Volum e of Gas (L)	Theoretica I mole of gas generated (mol)	Experimenta I mole of gas generated (mol)	% erro r	% yiel d
------	---------------------------------	-----------------------------------	-------------------------------	-----------------------------	------------------------------	--------------------------	--	--	----------------	----------------

Calculate the total volume: V_{total}= V_{flask} +V_{tubing}

 V_{flask} = volume of the reaction flask (Erlenmeyer flask)

 V_{tubing} = volume of the tubing

 V_{flask} can be determined by measuring the volume of water it takes to fill the flask to the point of the stopper. V_{tubing} can be determined by measuring the inner diameter (Use 0.125in of diameter of the inner tube) and length of the tubing and using the equation for calculating the volume of a cylinder: $V = \pi r^2 h$. Note that V_{total} used in the calculations in the lab report should subtract the volume of the reactants (mainly HCl solution).