Purdue University Calumet
ME 597-18 Matrix Analysis of Structures, Spring 2015

Lab 4 - Loops

5

A loop is another method to alter the flow of a computer program. In a loop, the execution of command, or group of commands, is repeated several times consecutively. Each round of execution is called a *pass* or *iteration*.

Topic 1: For-end loops

for variable = vector command command command

end

- Variable is referred to as the loop control variable.
- The first value in the vector is assigned to the loop control variable for the first iteration.
- After each iteration, the variable gets the **next** value in the vector.

Examples for Vectors

Vectors can be generated using the colon (:) operator.

- k = 25:-5:10 (produces four passes with k = 25, 20, 15, 10
- k = 3:7 (produces five passes with k = 3, 4, 5, 6, 7
- k = 8:10:50 (produces five passes with k = 8, 18, 28, 38, 48
- k = 25:25 (produces one pass with k = 25)
- k = 10:1 (produces no passes)

Vectors can be defined using the collection brackets [].

- k = [1 2 3] (produces three passes with k = 1, 2, 3
- k = [23 -44 8 0 78] (produces five passes with k = 23, -44, 8, 0, 78
- k = [] (produces no passes since [] generates an empty vector

Create the following "Script" example:

%add and multiply the numbers from 1 to 10

```
s = 0;

p = 1;

for k = 1:10

s = s + k;

p = p * k;
```

end

Purdue University Calumet ME 597-18 Matrix Analysis of Structures, Spring 2015

Create the following commands and scripts and compare the difference:

```
1. Write the following two commands:
```

```
x = 0.5.100;

y = cos(x)
```

2. Create the following loop and then run it:

```
for k = 1:21

x = (k-1)*5;

y(k) = cos(x);
```

end

- 3. Check if there is any difference between 1 and 2.
- 4. Write the following two commands:

$$x = [5 7 -1 4 9];$$

fprintf('%2.1f \n', x);

5. Create the following loop and then run it:

$$x = [5 \ 7 \ -1 \ 4 \ 9];$$

for $k = 1:length(x)$
Fprintf('%2.1f \n', x(k));

ena

6. Check if there is any difference between 4 and 5.

Topic 2: Nested loops

For k = 1:n

For h = 1:m

Command

Command

Command '

End

End

• Every time k increases by 1, the nested loop executes m times.

Purdue University Calumet
ME 597-18 Matrix Analysis of Structures, Spring 2015

Lab 4 exercise:

1. Consider the following statements.

```
For k = 1:3:10
Disp(k^2);
```

End

- a. How many times does this loop execute?
- b. What value is displayed during each iteration of the loop?
- c. What is the value of k after the loop is finished?
- 2. Consider the following statements.

```
a = [4 9 2];
s = 0;
For j = a
s = s + j;
```

end

- a. How many times does this loop execute?
- b. What value of s after each iteration of the loop?
- c. What is the value of j after the loop is finished?
- 3. Create an m-file that contains the following function.

This function calculates the sum of the first n terms of the series: $\sum_{k=1}^{n} \frac{(-1)^k k}{2^k}$

```
function s = series1(n)
```

%compute sum of first n terms in a particular series

```
s = 0;

for k = 1:n

%compute new term

term = (-1)^k * k / 2^k;

%add new term to current sum

s = s + term;
```

end

4. What are the results from each of the following commands?

```
>> disp(series1(1))
>> disp(series1(4))
```

5

>> disp(series1(10))

3

5. Write a function "fact" that returns the factorial of a number. Compute the factorial using a for-end loop. The factorial of a number n is defined as follows:

$$n! = n*(n-1)*(n-2)*(n-3)*...*1$$

6. Test your function with the following statements.

>> fact(0) ans = 1 >> fact(4) ans = 24 >> fact(1) ans = 1 >> fact(10) ans = 3628800

7. Write a function "sin2" that uses a for-end loop calculate sine(x) by using Taylor's

series:
$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

Your function should take two inputs, x and the number of terms to sum it should return the approximation for sin(x). Use your function "fact" to compute (2k + 1)!.

8. Test your function with the following statements. Compare your approximation to the values returned by the built-in MATLAB function sin.