
Figure 16-37

SEC. 16-8 THE MILLER EFFECT

- **16–26** What is the input Miller capacitance in Fig. 16–38 if C = 5 pF and $A_v = 200,000$?
- **16–27** Draw the ideal Bode plot for the input lag circuit of Fig. 16–38 with $A_V = 250,000$ and C = 15 pF.
- **16–28** If the feedback capacitor of Fig. 16–38 is 50 pF, what is the input Miller capacitance when $A_v = 200,000$?
- **16–29** Draw the ideal Bode plot for Fig. 16–38 with a feedback capacitance of 100 pF and a voltage gain of 150,000.

SEC. 16-9 RISETIME-BANDWIDTH RELATIONSHIP

- **16–30** An amplifier has the step response shown in Fig. 16–39 α . What is its upper cutoff frequency?
- **16–31** What is the bandwidth of an amplifier if the risetime is 0.25 μ s?
- **16–32** The upper cutoff frequency of an amplifier is 100 kHz. If it is square-wave tested, what would the risetime of the amplifier output be?
- **16–33** In Fig. 16–40, what is the low-cutoff frequency for the base coupling circuit?

Figure 16-38

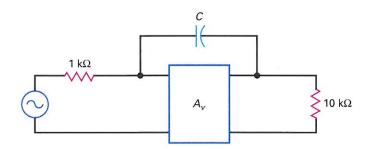


Figure 16-39

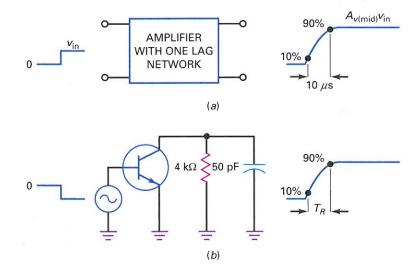
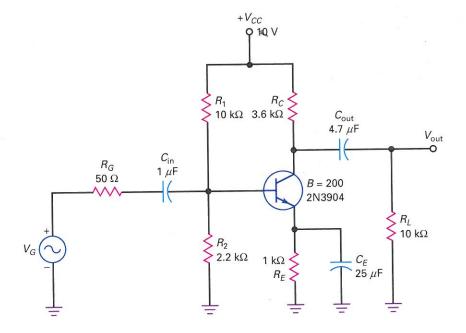
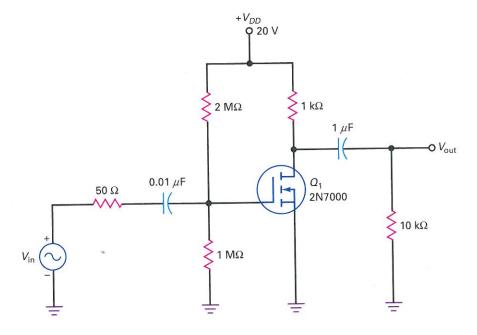



Figure 16-40



- 16-34 In Fig. 16-40, what is the low-cutoff frequency for the collector coupling circuit?
- 16-35 In Fig. 16-40, what is the low-cutoff frequency for the emitter bypass circuit?
- 16-36 In Fig. 16-40, C_C' is given as 2 pF, $C_C' = 10$ pF, and C_{stray} is 5 pF. Determine the high-frequency cutoff values for both base-input and collector-output circuits.
- 16-37 The circuit of Fig. 16-41 uses an E-MOSFET with these specifications: $g_m = 16.5$ mS, $C_{iss} = 30$ pF, $C_{oss} = 20$ pF,

and $C_{rss} = 5.0$ pF. Determine the FET's internal capacitance values for C_{gd} , C_{gs} , and C_{ds} .

- **16–38** In Fig. 16–41, what is the dominant low-cutoff frequency?
- 16-39 In Fig. 16-41, determine the high-frequency cutoff values for both gate input and drain output circuits.

Figure 16-41

