
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

A plus writer only
[image: profile]
rutus21
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

reading_2.pdf

Home>Computer Science homework help>A plus writer only

 141

4
Database Design

Database design is the process of transforming a logical data model into
a physical database design and then implementing the physical model as
an actual database. More precisely, database design requires up-front data
modeling and normalization as discussed in Chapter 3. A logical data model
is required before you can even begin to design a physical database. This
chapter assumes that the logical data model is complete. The focus of dis-
cussion, therefore, will be on producing a physical database from the logi-
cal data model.

From Logical Model to Physical Database
The physical data model is created by transforming the logical data model
into a physical implementation based on the DBMS to be used for deploy-
ment. To successfully create a physical database design you will need to
have a good working knowledge of the features of the DBMS, including

• In-depth knowledge of the database objects supported by the DBMS
and the physical structures and files required to support those objects

Mullins_Book.indb 141 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

142 Chapter 4 Database Design

• Details regarding the manner in which the DBMS supports index-
ing, referential integrity, constraints, data types, and other features
that augment the functionality of database objects

• Detailed knowledge of new and obsolete features for particular ver-
sions or releases of the DBMS

• Knowledge of the DBMS configuration parameters that are in place

• Data Definition Language (DDL) skills to translate the physical
design into actual database objects

Armed with the correct information, you can create an effective and
efficient database from a logical data model. The first step in transforming
a logical data model into a physical model is to perform a simple translation
from logical terms to physical objects. Of course, this simple transforma-
tion will not result in a complete and correct physical database design—it is
simply the first step. Let’s address the transformation step by step.

Transform Entities to Tables

The physical counterpart of an entity is a table. Therefore, the first step in
transforming a logical data model into a physical database is to map each
entity in the data model to a table in the database. The final database that
you implement need not adhere to this strict one-to-one entity-to-table map-
ping. For example, you may need to consolidate or break apart tables—a
process called denormalizing—for performance reasons. Denormalization
will be covered in detail later in this chapter.

In general, though, do not initially deviate from the simple rule of creat-
ing a table for each entity in the logical data model. The logical data model
represents the “things” of interest to the business. During the data model-
ing process, these things were analyzed and designed as entities, each hav-
ing a specific identity and purpose for existence. The only reason to deviate
from this process is if application performance or data availability would be
unacceptable without a change.

Transform Attributes to Columns

The physical counterpart of an attribute is a column within a table. When
you map entities to tables, map the attributes of each entity to the columns

The physical data
model is created by
transforming the
logical data model
into a physical
implementation.

Map each entity
in the data model
to a table in the
database.

Mullins_Book.indb 142 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 From Logical Model to Physical Database 143

of each respective table. At least initially, do not change the basic definition
of the columns. For example, do not group attributes together into a com-
posite column.

Try to maintain the same naming convention for physical columns as
was used for logical attribute names. However, you must understand that
the physical constraints of the DBMS being used may limit your ability to
do so. Always take into account the capabilities and limitations of the DBMS
when creating the physical database from the logical data model.

Transform Domains to Data Types
To support the mapping of attributes to table columns you will need to
map each logical domain of the attribute to a physical data type, perhaps
coupled with additional constraints. Each column must be assigned a data
type. Certain data types require you to specify a maximum length. For
example, you could specify a character data type as CHAR(20), indicating
that up to 20 characters can be stored for the column. You may need to
apply a length to other data types as well, such as graphic, floating-point,
and decimal (which also require a scale).

Commercial DBMS products do not support domains, so the domain
assigned in the logical data model must be mapped to a data type supported
by the DBMS. You may need to adjust the data type based on the DBMS
you use. For example, what data type and length will be used for monetary
values if no built-in currency data type exists? Many of the major DBMS
products support user-defined data types, so you might want to consider
creating a data type to support the logical domain if no built-in data type is
acceptable.

There may be multiple physical data types that can be used successfully
for a domain. Consider a logical domain whose valid values are integers
between 1 and 10. You could choose an integer data type, of which there
may be several (e.g., BIGINT, INTEGER, SMALLINT, TINYINT). Alterna-
tively, you could choose a decimal data type with a zero scale. You might
even choose to store the data in a 2-byte character column if no mathemat-
ical operations are required. Any of these can work. As the DBA, you will
need to determine which data type can be most efficiently accessed, stored,
maintained, and processed by the applications accessing the data. To make
such a decision requires in-depth technical knowledge of the way in which
your DBMS physically stores each type of data, as well as knowledge of

The attributes of
each entity should
be mapped to the
columns of each
respective table.

Map each logical
domain to a physical
data type, perhaps
coupled with addi-
tional constraints.

Mullins_Book.indb 143 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

144 Chapter 4 Database Design

application processing details. Data typing should not be undertaken hast-
ily. Choosing an inappropriate data type could have ramifications in terms
of both storage space and disk I/O.

In addition to a data type and length, you may also need to apply a
constraint to the column. Consider, once again, the domain of integers 1
through 10. Simply assigning the physical column to an integer data type is
insufficient to match the domain. A constraint must be added to restrict the
values that can be stored for the column to the specified range of 1 through
10. Without a constraint, negative numbers, zero, and values greater than
10 could be stored. Using check constraints, you can place limits on the
data values that can be stored in a column or set of columns. Check con-
straints are covered in detail in Chapter 13, “Data Integrity.”

The nullability of each column in the table must also be specified. The
logical data model should contain information on the nullability of each
attribute, and this information can be copied for each requisite column in
the physical database. Some DBMS software enables you to assign a default
value to be used when a row is to be inserted and no value has been pro-
vided for the column. You must assign column default values when you
create the table.

For text or character data, you need to make an additional decision:
Should the column be fixed length or variable length? A fixed-length col-
umn occupies a preset and unchanging amount of storage for each row. A
variable-length column specifies a maximum size, but the actual length
used by the column can vary for each row. Variable-length columns can
save storage space but usually require additional manipulation by appli-
cation code to insert and maintain them. Another negative aspect is that
variable-length columns can cause the table to require more frequent atten-
tion. Changes made to row size will have the effect of moving rows within
the database. If the DBMS offers a compression option, you may be able to
save more space by compressing the database than by implementing vari-
able-length columns.

Primary Keys
Specification of a primary key is an integral part of the physical design of
entities and attributes. When designing the logical data model, you assigned
a primary key for every entity, and as a first course of action you should
try to use that primary key. However, multiple candidate keys are often

Specify the nullabil-
ity of each column.

Mullins_Book.indb 144 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 From Logical Model to Physical Database 145

uncovered during the data modeling process. For physical implementation
you may decide to choose a primary key other than the one selected during
logical design—either one of the candidate keys or another surrogate key.

If the primary key is unwieldy, you may need to choose another pri-
mary key. Perhaps the key is composed of several columns or is a non-
standard data type. In either of these cases it may be better to choose a
surrogate primary key. Most DBMS products provide built-in features that
can assist in the definition of primary keys. Some examples include support
for default values, ROWID data types, SEQUENCE objects, and the identity
property (see the sidebar).

As a rule of thumb, though, be sure to identify a primary key for each
physical table you create. Failure to do so will make processing the data
in that table more difficult. If there is no key to uniquely identify rows
of the table, it will be difficult for programs to specifically select, modify,
and delete individual rows. Furthermore, without a primary key, dependent
relationships cannot be defined for that table.

There are, of course, exceptions to the general rule. For example, a
table implemented for logging or that serves as a generic queue may not
require a primary key. Before creating any table without a primary key,
though, be sure that you have a solid reason for deliberately defining a table
without a unique primary key.

Most DBMS prod-
ucts provide built-in
features to help
define primary keys.

Be sure to identify a
primary key for each
physical table you
create.

The Identity Property

The identity property is a feature supported by several of the most popular relational DBMS
products. It can be assigned to a column that has a numeric (usually integer) data type.
When the identity property is assigned to a column, the DBMS treats that column in a
special way. The database user does not provide values for the column when rows are
inserted into the table in which the column exists. Instead, the DBMS increments a counter
and automatically uses that value for the column. Usually only one column per table can be
assigned the identity property.

The identity property provides an efficient way for ever-increasing sequential values to
be populated into a relational table. Before using this feature, make sure that your DBMS
supports the identity property and that you completely understand how the feature works
and its impact on functionality and performance. For example, does the DBMS provide a
way to reset the identity property counter on a table-by-table basis?

Mullins_Book.indb 145 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

146 Chapter 4 Database Design

Column Ordering
Before implementing a physical table, be sure to review the order of the
columns. The order in which columns are specified is irrelevant from an
operational perspective—that is, the DBMS will produce the same results
regardless of the sequence of the columns in the table. Nevertheless, the
efficiency of how those results are obtained can vary greatly. Column
sequencing can impact performance; therefore, for physical implementa-
tion you may need to change the sequence recorded in the logical data
model.

Let’s take a closer look. The way in which the DBMS logs changes
can impact performance. DB2, for example, logs database modifications
from the first byte changed to the last byte changed. The exception is
variable-length rows, in which case DB2 logs a change from the first byte
changed to the end of the row.

So, to take advantage of this knowledge about DB2’s physical imple-
mentation, we should sequence the columns based on how DB2 logs. Infre-
quently updated nonvariable columns should be grouped together at the
beginning of the table, followed by static (infrequently updated) variable
columns and then frequently updated columns. This structure will ensure
that the least amount of data required is logged, thereby speeding up any
data modification processes. Another good idea would be to group together
any columns that are frequently modified. This can also reduce the amount
of data logged. Because each DBMS logs data differently, you will need to
understand how your DBMS logs and how column ordering can impact
performance.

Build Referential Constraints for All Relationships

The physical counterpart of a relationship is a referential constraint. To
define a referential constraint you must create a primary key in the parent
table and a foreign key in the dependent table. The referential constraint
ties the primary key to the foreign key.

Referential Integrity
It is not sufficient merely to identify primary and foreign keys that make
up relationships between tables. The functionality of each relationship is
greatly affected by the parameters chosen for the referential constraint and

The referential
constraint ties the
primary key to the
foreign key.

Mullins_Book.indb 146 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 From Logical Model to Physical Database 147

the values in the foreign key column(s). A set of rules, which is applied
to each relationship, determines the status of foreign key columns when
inserted or updated, and of dependent rows when a primary key row is
deleted. For example, when a primary key is deleted that refers to existing
foreign key values, the rule specifies whether the DBMS should void the
primary key deletion, delete the foreign key values too, or set the foreign
key values to null.

In general, a foreign key should either contain a value within the
domain of foreign key values or be null. Any other value is unacceptable,
and the referential constraint will cause the DBMS to reject such values
during operation. Referential integrity, or RI for short, guarantees that an
acceptable value is always in each foreign key column.

It is a good physical design practice to implement referential integrity
using database constraints instead of trying to program integrity into appli-
cation programs. Using database RI will ensure that integrity is maintained
whether data is changed in a planned manner through an application pro-
gram or in an ad hoc manner through SQL statements or query tools.

Of course, there are exceptions to every rule. Cases where you should
avoid using database-enforced RI constraints include code tables where
the codes do not change frequently and data warehouse implementations
where the data is propagated from a referentially intact source. Basically,
do not use RI as a substitute for performing data validation and edit checks.
Listing valid values in a check constraint can be a better solution than RI for
static data with a small number of valid values.

Chapter 13, “Data Integrity,” discusses referential integrity in more
detail.

Build Physical Data Structures

Designing and implementing a physical database from a logical data model
is not just a simple matter of mapping entities to tables, attributes to col-
umns, and relationships to referential constraints. Quite a few other data-
base design issues must be addressed. One of these issues is preparing for
the physical storage of data.

Although relational data is expressed to the user by means of a table,
underlying files or data sets must exist to store the actual data—and those
files are not necessarily stored as a simple grid of rows and columns. During
the physical design process, the DBA must map each table to a physical

Referential integrity
guarantees that an
acceptable value is
always in each for-
eign key column.

Mullins_Book.indb 147 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

148 Chapter 4 Database Design

structure to store the table’s data. These physical structures are commonly
called tablespaces (or data spaces). As shown in Figure 4.1, a database
comprises one or more tablespaces, and each tablespace contains one or
more tables. Depending on the DBMS, a table may be able to span multiple
tablespaces, too. The DBA decides how to map tables to tablespaces based
on the anticipated usage of the data, the type of tablespace, and the features
of the DBMS. Please see the sidebar “SQL Server Filegroups” for information
on a similar file structure used by Microsoft SQL Server.

An additional physical design process is the effective planning for stor-
age and space usage. To calculate the amount of storage required to store
a table, the DBA must first establish the row size. This is accomplished by
adding up the maximum size of all the columns, based on their assigned
data type and length. An average size can be substituted for variable-length
columns. An estimate for the number of bytes required can be calculated
by multiplying the row size by the number of rows planned to be stored
in the table. Of course, the DBA must also factor in any storage overhead
required by the DBMS for row and page headers, pointers, and the like.
Because each DBMS uses different techniques, each DBMS will have differ-
ent overhead requirements.

Database

Tablespace

Disk Drive

File

Disk Drive

File

File

Table

Table

Table

Tablespace

Table

Tablespace

Table Table

Figure 4.1 Mapping files to database structures

Mullins_Book.indb 148 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 From Logical Model to Physical Database 149

The DBA must also determine the type of files to be used, based on the
operating system being used as the database server. In some cases, data-
base files that do not use the file system of the operating system can be
more efficient. Such files are sometimes referred to as raw files. Because a
raw file can prevent operating system overhead, it is often a better choice
for database implementation. The trade-off is that it requires more adminis-
trative support from the DBA.

To prepare storage devices for the database, though, the DBA must
determine the size of not only table structures but also index structures.
Indexes are covered in more depth in the next section.

The DBA will also build some free space into the database design.
When free space is assigned within the database, the DBMS can add data
more efficiently and with fewer outages for reorganizing and restructuring.

Solid-state devices can be helpful, too. Storing databases that have
extreme performance requirements on solid-state devices instead of disk
can improve the performance of many database operations.

A final storage consideration is whether to use compression. Most
DBMS products provide methods for compressing data. If the DBMS pro-
vides no compression option, third-party compression products can be

The DBA must deter-
mine the size of not
only table structures
but also index
structures.

SQL Server Filegroups

Microsoft SQL Server provides filegroups to group together the operating system files con-
taining data from a single database. By using a filegroup, the DBA can simplify certain
administration tasks. A filegroup is a property of a SQL Server database. A filegroup cannot
contain the operating system files of more than one database, though a single database
can contain more than one filegroup.

Every database is created on a single filegroup named PRIMARY. After the database is
created, additional filegroups can be added. If your database is very large and active, mul-
tiple files can be used to improve performance.

When using SQL Server with very large databases (VLDBs), filegroups are useful for
dividing the database into components for backup and restore. It can be difficult to man-
age VLDB backups and restores without using filegroups.

In a nutshell, SQL Server filegroups can be used to provide greater control over the I/O
of a given database.

Mullins_Book.indb 149 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

150 Chapter 4 Database Design

purchased. With compression, less storage is required to store the same
amount of data. A compression routine will algorithmically compress data
as it is added to the database and decompress the data as it is retrieved.
Compression adds CPU overhead1 to database processing because access
requires the DBMS to compress or decompress the data. However, I/O may
be more efficient with compression: Because the data takes up less space
on disk, more data can be read with a single I/O operation.

Database Performance Design
When implementing a physical database from a logical data model, you
must begin to consider how the database will perform when applications
make requests to access and modify data. A basic fact of database process-
ing is that disk access is slower than memory access—slower by orders of
magnitude. If the DBMS were required, in every instance, to scan through
the database row by row, or block by block, looking for the requested data,
no one could afford to use databases. Fortunately, several good techniques
exist to allow data in the database to be accessed more rapidly.

Designing Indexes

One of the best techniques for achieving acceptable query performance
is the creation of appropriate indexes on your database tables. Of course,
the trick is in determining how many indexes to create and how exactly to
define each index. First, let’s cover some index basics.

An index is an alternate path to data in the database. The structure of
an index makes it easier to find data in the database, with fewer I/O oper-
ations. Therefore, queries can perform faster when using an index to look
up data based on specific key values.

Many types of indexes are supported by the major DBMS products.
Indexes can be unique or nonunique, clustering or nonclustering, single
column or multicolumn. An index can be structured as a b-tree or a bitmap.
Some DBMS products even support hashing indexes. However, the basic
goal of every index is to optimize query processing.

1. Some DBMS products, such as DB2 for z/OS, offer hardware-assisted compression,
which can mitigate the CPU overhead incurred when compressing and decompressing
data.

An index is an alter-
nate path to data in
the database.

Mullins_Book.indb 150 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Performance Design 151

In a relational system, the DBMS—not the programmer—decides
whether to use an index. Therefore, the DBA must design indexes based on
the types of queries that will be run against the database. The DBA must
understand the operation of the relational optimizer and design indexes
that are likely to be used during application processing. In the absence of
an appropriate index for a query, the DBMS will most likely revert to a table
scan—every row of the table will be read to determine whether the data
matches the query specifications. Table scans are costly if the intent of the
query is not to process every row in the table.

In general, try to build indexes on large tables to support the most fre-
quently run queries. Queries that access 25 percent or fewer of the table’s
rows are good candidates for indexing. When more than 25 percent of the
table’s rows are to be selected, you should determine whether an index
would be more efficient than a table scan. This will differ from query to
query, and from DBMS to DBMS. Use the tools provided by the DBMS to
determine the effectiveness of your indexes. (The SHOWPLAN or EXPLAIN
command will show whether an index is used for a particular query.)

Furthermore, you should create indexes on the most-referenced col-
umns in frequently run queries in your application. The order in which
columns appear in an index is important. By choosing the right order, you
may be able to make a particular index available to many other queries. For
example, if quite a few application queries look for items based on Item-
Type and a few other queries look for items by ItemType and ItemColor, a
single composite index on the combination of (ItemType, ItemColor) can
satisfy the needs of both types of queries.

A single table can have multiple indexes defined for it; you are not lim-
ited to a single index. Plan on creating indexes for the most common access
requirements in each application’s SQL WHERE and JOIN clauses. The fol-
lowing situations should prompt you to consider creating an index:

• Foreign keys. Even if the DBMS does not require foreign key col-
umns to be indexed, it is a good idea to do so. Creating an index on
foreign key columns can enhance the performance of joins based on
the relationships between the tables, but it may also speed up the
DBMS’s internal processing to enforce referential integrity.

• Primary keys. An index is usually required on the primary key col-
umns to enforce uniqueness.

Create indexes on
the most-referenced
columns in fre-
quently run queries
in your application.

Mullins_Book.indb 151 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

152 Chapter 4 Database Design

• Candidate keys. Even though indexes are not required on candidate
keys, it is a good idea to index them if processes will look up data
based on the candidate key.

• Index-only access. If all of the columns in a data retrieval request
exist in an index, it may be possible to satisfy the request using
only the index. Avoiding I/O to the table can enhance performance.
Therefore, it is sometimes a good idea to overload an index with
columns to facilitate index-only access for certain requests. Such
an index is sometimes called a “covering index” because the index
“covers” all of the data required by certain queries. Additionally,
some DBMS products provide the capability to add columns to a
unique index without having the column enforced for uniqueness.
This technique can be used to pack additional columns into a single
index instead of requiring multiple indexes.

• Sorting. Another reason for building indexes is to minimize sorting.
Queries that use JOINs, ORDER BY, GROUP BY, UNION, and DISTINCT
can cause the DBMS to sort the intermediate or final results of that
query. If indexes are created to support these features, the DBMS may
be able to use the index for ordering and avoid invoking a costly sort.

A frequent error made by DBAs and performance analysts is to index
by object instead of indexing by workload. Indexing by object means creat-
ing indexes as you create your tables. Oftentimes, during the physical data-
base implementation process, a DBA will create a database, then groups of
tablespaces and tables. And every time a new table is created, the DBA will
attempt to create the indexes on that table. This approach is not optimal.

Instead, DBAs should build indexes based on workload. Indexes should
support the predicates in the SQL that is written to access your tables. Build-
ing indexes to support predicates of the most frequently executed queries
and most important queries should be your first indexing step after building
the unique indexes required to support primary keys and unique constraints.

Of course, this requires knowledge of how your tables will be accessed.
And when you are first creating tables, you will not have any SQL. Some-
times you may have vague pseudo code descriptions of potential queries,
but you won’t have an accurate picture of access. Therefore, indexing has
to be an incremental task, performed on an ongoing basis as code is written
against your databases.

Mullins_Book.indb 152 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Performance Design 153

As you continually monitor and build new indexes, be sure to review
the old ones that were created. Sometimes a new index can render an exist-
ing index obsolete. It is a good idea to drop indexes that are not used for
query optimization because each index must be maintained as data is modi-
fied. This can negatively impact database and application performance.

Exercise great care in the creation of an indexing scheme for your
databases. Be sure to analyze all of the data access requirements of your
applications to ensure optimal indexing. You simply cannot design proper
indexes without knowledge of how tables are to be accessed. Furthermore,
you need a comprehensive view of the access requirements. An index that
is the best solution for a particular query can potentially adversely affect
the performance of other queries in the system.

Additionally, be aware that indexes do not come for free. The DBMS
must keep the indexes updated as the table’s data is inserted, updated, and
deleted. For that reason, you may want to avoid building indexes on col-
umns that are frequently modified, if you can. Make sure that every index
you create provides benefit to the performance of a query or set of queries
without significantly degrading the overall performance of the applications
accessing the database. Here are some things to consider when determin-
ing the cost of an index:

• Additional overhead is incurred to update the index when rows are
inserted and deleted, or when indexed columns are updated in the
base table.

• Additional disk space is required to store indexes. Some DBMS prod-
ucts offer index compression as an option. For very large databases,
index compression can be worthwhile.

• Utilities such as LOAD and REORG may take longer to run against
a table with many indexes because the indexes must also be main-
tained during the utility processing.

• Additional files are required to store the indexes, which could
potentially cause operating system problems if the number of files
that can be open at one time is exceeded.

When building indexes, keep in mind that they will be used in con-
junction with the base table data. Consider allocating separate DBMS buffer

Exercise great care
in the creation of an
indexing scheme for
your databases.

Mullins_Book.indb 153 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

154 Chapter 4 Database Design

areas for caching index reads instead of using the same buffers used for
data. Index entries will be smaller than a full table row, and thus more index
entries can be kept in memory longer if they are not combined with table
data in the database buffers. You might also consider placing the indexes
and the table data on different disk drives to minimize disk seek time.

DBAs must learn how each DBMS supports indexing so they can create
indexes to support the data access requirements of their database applica-
tions. Let’s learn a little bit more about the types of indexes that your DBMS
may support: b-tree, bitmap, reverse key, partitioned, and ordered.

B-Tree Indexes
The basic indexing technique supported by most relational database sys-
tems is the b-tree index. A b-tree is a keyed, treelike index structure. A
b-tree index begins at the root page and fans out down to the leaf pages.
Figure 4.2 shows the basic structure of a b-tree index.

A b-tree is a keyed,
treelike index
structure.

Root
Page

98 : 302

Nonleaf
Page

108 : 302

Nonleaf
Page

53 : 98

Nonleaf
Page

…

Nonleaf
Page

59 : 98

Nonleaf
Page

11 : 53

Leaf
Page

… 11/Ptr

Leaf
Page

… 53/Ptr

Leaf
Page

… 59/Ptr

Leaf
Page

… 98/Ptr

Level 1

Level 2

Level 3

Level 4

…

…

…

…to data in table.

Figure 4.2 B-tree index structure

Mullins_Book.indb 154 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Performance Design 155

The pages of a b-tree index are referred to as nodes. Nodes exist in
levels in the b-tree, with nodes above the leaf level containing directory
entries and pointers to lower-level b-tree nodes. Nodes at the lowest level
are called leaf pages. Leaf pages contain entries with the key value and a
pointer to individual data rows in the table. As data is added to the table,
the b-tree index is updated by storing the new key values in the appropriate
location in the index structure. To access data using the index, the DBMS
begins at the root page and follows the pointers through the index until
the key value is located at the leaf level, where a pointer leads to the actual
table data. Each parent node contains the highest key value that is stored in
its direct dependent nodes. The leaf pages of a b-tree index can be scanned
for ranges of values once the key has been looked up.

Refer to Figure 4.2 again. Suppose a query is run with a search con-
dition requesting data where the key value is equal to 53. The DBMS can
traverse the index and in this case will wind up on the second leaf page.
This leaf page contains a pointer to the actual row in the table containing
the requested key value. A maximum of five I/O requests is required to sat-
isfy this query: one for a page at each level of the index and an additional
request for the table page.

An access request using an index can perform better than a table scan
because the requested data can be accessed directly using the pointers from
the leaf node of the index. This reduces I/O and enhances performance for
most data access requests.

Bitmap Indexes
Bitmap indexes are a different type of index supported by some DBMS prod-
ucts. A bitmap index solves only a narrow range of problems but provides
superb performance. A bitmap index is most useful for query-heavy tables
that are infrequently modified. Furthermore, bitmap indexes are most use-
ful where the columns to be indexed have a very small number of distinct
values, such as sex (Male/Female) or Boolean (True/False) data. Data ware-
houses and data marts can often benefit from bitmap indexes.

A bitmap index is really quite simple. The implementation of a bitmap
index is, appropriately enough, accomplished using a string of zeroes and
ones, or bits. For each key value of the bitmap index a separate string of
zeroes and ones is stored. The number of distinct key values determines
the number of bit strings. For example, a bitmap index defined for the Sex
column of the EMPLOYEE table might have three strings, one for male, one

A bitmap index
solves only a narrow
range of problems
but provides superb
performance.

Mullins_Book.indb 155 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

156 Chapter 4 Database Design

for female, and one for unknown. A bitmap index on the State column (for
states within the United States) could have 51 strings—one for each state
and an extra one for unknown.

To elaborate, let’s consider the Sex example again. A bitmap index is
created on the Sex column of an EMPLOYEE table that contains ten rows.
The bitmap index will contain three strings as indicated above, each with
10 bits. The string is positional. Whatever position has a bit turned on (“1”),
the Sex column in that row will contain the value for which that particular
string was built. Examine the following three bitmaps:

 'Male' 1000011101
 'Female' 0110000010
 'Unknown' 0001100000

These strings indicate that rows 1, 6, 7, 8, and 10 are males; rows 2, 3,
and 9 are females; and rows 4 and 5 are unknown.

Finding the set of records with any of several values that are bitmap
indexed simply requires adding the strings for those values. Bitmaps can be
much faster than table scans and even b-tree index retrieval under the right
circumstances. The strings of the bitmap index can be small enough to main-
tain in memory, minimizing I/O operations. Even for queries that retrieve
large numbers of rows, a complex query using bitmaps can be very efficient.

The problem with bitmaps is that a separate string is needed for each
value occurring in a field. When a column can take on a large number of
different values, a bitmap index is not practical because too many strings
will be required. Additionally, the zeroes and ones of the bitmap cannot be
used for calculations or be read directly to determine the actual values they
represent. Such limitations make true bitmap indexes impractical for most
applications. Some DBMS products have extended the bitmap index to make
it more practical for columns with higher cardinality. If your DBMS supports
bitmap indexes, make sure you understand the exact nature of the bitmaps
being used and the situations under which bitmap indexes are practical.

Reverse Key Indexes
A reverse key index is basically a b-tree index where the order of bytes
of each indexed column is reversed. The order of the columns within the
index is not reversed, just the bytes within each column. Such indexes can
be useful to eliminate data hot spots in OLTP applications. When the byte

Reverse key indexes
can eliminate data
hot spots in OLTP
applications.

Mullins_Book.indb 156 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Performance Design 157

order is reversed, adjacent key values are not physically stored together. So
reverse key indexes help to distribute the otherwise concentrated index
data across leaf nodes, thereby improving performance.

So, if a reverse key index is created on the FirstName column of the
EMPLOYEE table, and the value “Craig” is inserted, the value “giarC” is used
instead.

If the DBMS you are using does not support reverse key indexes, you
might be able to programmatically duplicate the effect. To do so, you will
need to use program logic (or perhaps an exit routine, if supported by the
DBMS) to reverse the values before inserting them into the columns. Of
course, you will need to programmatically unreverse the values when they
are retrieved. This process does not work well if the data must be queried
in an ad hoc manner, outside the scope of a program.

Partitioned Indexes
Partitioned indexes are basically b-tree indexes that specify how to break
up the index (and perhaps the underlying table) into separate chunks,
or partitions. Partitioning is usually done to enhance performance and
increase availability. When data is spread out across multiple partitions,
you may be able to operate on one partition without impacting others—for
example, to run utilities, to take data offline, or to place the underlying files
on separate disks.

Most DBMS products support partitioning, but in different ways. Be
sure to understand the nuances of your particular DBMS implementation
before partitioning.

Ordered Indexes
Most DBMS products provide an option to specify the order in which b-tree
key values are ordered. The order specified, either ascending or descend-
ing, will impact the usability of an index to avoid sort operations or to min-
imize I/O requirements for retrieving MIN or MAX values. Create indexes
in the appropriate order to support the types of queries that are to be run
against the table.

Index Summary
Indexing is an important component of a physical database design. Indeed,
the single most important thing a DBA can do to optimize the performance

Partitioning is
usually done
to enhance
performance.

Mullins_Book.indb 157 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

158 Chapter 4 Database Design

of database applications is to create effective indexes. In order to do so,
the DBA needs to know what indexing options are available in the DBMS
being used, but more importantly, the DBA must be able to match the
DBMS indexing options to the type of processing to be performed against
the table. Only by examining the SQL statements that operate on the data-
base tables can an effective indexing strategy be developed. Finally, keep
in mind that special processing requirements may require special indexing
needs and that add-on products are available from ISVs that can augment
the indexing options available to you.

Hashing

Hashing is a technique that uses key values to enable quick direct access
to data. An algorithm is used to transform the key values into a pointer to
the physical location of the rows that have those key values. The algorithm
is typically referred to as a randomizer, because the goal of the hashing
routine is to spread the key values evenly throughout the physical storage.

In general, the better the randomizing algorithm, the better the results
of hashing will be. When the randomizer generates the same pointer for
two different key values, a collision occurs. Different techniques can be
used to resolve collisions. Typically, the collision resolution algorithm
attempts to keep the data on the same page to avoid additional I/O. When
pages fill up and collisions force the data to another page, performance
rapidly degrades.

Hashing works better with a large amount of free space. A disadvantage
of hashing is the amount of space that must be preallocated for data to be
hashed into.

Hashing has the big advantage that normally only one database I/O
request is needed to retrieve a row of data using the key. Hashing works
best for direct data lookup of one row or a small number of rows. If you
need to retrieve ranges of data, hashing is not optimal because the data will
be spread out instead of clustered and therefore I/O costs will be substan-
tial. Additionally, hashing requires a unique key to minimize collisions.

So, hashing should be considered only when an overwhelming majority
of the queries against the table are based on lookups using the key and will
return small results sets.

Hashing uses key
values to enable
quick direct access
to data.

Mullins_Book.indb 158 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Performance Design 159

Clustering

Clustering describes a way of storing table data physically. The term refers
to keeping rows in a specific order on the disk. Through clustering, data
that is commonly accessed together can be stored together on the same
or contiguous database pages. Clustering optimizes performance because
fewer I/O requests are required to retrieve data.

Actually, more accurately, for some products clustering indicates that
the DBMS should attempt to maintain rows in the sequence of specific col-
umn values. If insufficient space is available to maintain clustering when
data is inserted or modified, the DBMS typically stores the data without
forcing clustering. Therefore, a clustered table may not actually be 100 per-
cent clustered by the key value at all times.

Usually an index, called a clustering index, is required to support clus-
tering. The columns identified as the index key indicate how the table upon
which the index is defined should be clustered.

Consider clustering tables under the following circumstances:

• When a large number of queries retrieve ranges of data based on
specific column values.

• When a foreign key exists in the table. A foreign key typically rep-
resents the “many” end of a one-to-many relationship. It is common
for queries to request data by the foreign key, resulting in large
sequential reads.

• When data is frequently sorted together (ORDER BY, GROUP BY,
UNION, SELECT DISTINCT, JOINs).

When you cluster a table, be sure to consider the frequency of modi-
fication. Inserts and updates can cause data to become unclustered. Favor
clustering infrequently modified data over very frequently modified data.
However, the primary key is almost always a bad choice for clustering
because primary key access tends to be random and clustering optimizes
sequential access.

Be sure to understand how your DBMS implements clustering. Some
DBMS products merge the table and the clustering index into a single struc-
ture, which may require you to modify your administration techniques and
procedures. Other clustering differences exist, too. For example, although

Clustering optimizes
performance
because fewer
I/O requests are
required to retrieve
data.

Mullins_Book.indb 159 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

160 Chapter 4 Database Design

Oracle supports a structure called a cluster, it does not perform clustering
as just described; instead, it interleaves index keys for multiple tables.

Interleaving Data

When data from two tables is frequently joined, it can make sense to use the
join criteria to physically interleave the data into the same physical storage
structure. Interleaving can be viewed as a specialized form of clustering.

To better understand data interleaving, refer to Figure 4.3. The dots
indicate rows in different tables. The data is interleaved on the disk, based
on the join criteria. Notice that the light dots (table 1) are intermixed in the
same file as the dark dots (table 2). When data is interleaved this way, join
performance may improve—but only for the specific join that the data was
interleaved to optimize.

Different DBMS products support interleaving in different ways. Oracle
uses a cluster to support a form of interleaving. For other DBMSs, you may
need to develop scripts to organize, sort, and interleave the data before
loading it. At any rate, interleaving is useful in a small number of cases and
only when the predominant access to the two tables is by means of partic-
ular join criteria.

Denormalization
Normalization is the process of putting each fact in the most appropriate
place. A normalized database implementation minimizes integrity problems
and optimizes updating, perhaps at the expense of retrieval. When a fact is

Disk Drive

Database File

Table 1

Table 2

Figure 4.3 Interleaving table data

Mullins_Book.indb 160 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Denormalization 161

stored in only one place, retrieving many different but related facts usually
requires going to many different places. This can slow the retrieval process.
Updating is quicker, however, because the fact you’re updating exists in
only one place.

Most applications require very rapid data retrieval. Some applications
require specific tinkering to optimize performance at all costs. To accom-
plish this, sometimes the decision is made to denormalize the physical data-
base implementation. Just as normalization is the process of assembling
data in an organized manner to eliminate redundancies, denormalization is
the process of deliberately introducing redundancy to your data. In other
words, denormalization can be thought of as the process of putting one
fact in numerous places. This can have the effect of speeding up the data
retrieval process, usually at the expense of data modification.

When to Denormalize

Of course, you should never denormalize data unless a performance need
arises or your knowledge of the way your DBMS operates overrides the
benefits of a normalized implementation. Many DBMS products have spe-
cific deficiencies and inefficiencies that may necessitate denormalizing for
performance reasons. Therefore, denormalization is not necessarily a bad
decision if implemented wisely. You should always consider the following
issues before denormalizing:

• Can the system achieve acceptable performance without
denormalizing?

• Will the performance of the system after denormalizing still be
unacceptable?

• Will the system be less reliable due to denormalization?

If the answer to any of these questions is yes, you should avoid denor-
malization because the benefits typically will not exceed the cost. If, after
considering these issues, you decide to denormalize, be sure to adhere to
the general guidelines that follow.

If enough disk space is available, consider creating two sets of tables:
one set fully normalized and another denormalized. Populate the denor-
malized versions by querying the data in the normalized tables and loading
or inserting it into the denormalized tables. Your application can access

Denormalization
can be thought of
as the process of
putting one fact in
numerous places.

Mullins_Book.indb 161 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

162 Chapter 4 Database Design

the denormalized tables in a read-only fashion and achieve performance
gains, while at the same time modifying the normalized version and avoid-
ing integrity problems in the base data. However, it is important to set up
a controlled and scheduled population function to synchronize the normal-
ized table with the denormalized.

If sufficient disk space is not available for two complete sets of tables,
implement only the denormalized tables and maintain them programmat-
ically. Be sure to update each denormalized table representing the same
entity at the same time, or use database triggers to keep the redundant data
synchronized.

When a column is replicated in many different tables, always update
it everywhere simultaneously—or as close to simultaneously as possible—
given the physical constraints of your environment. Once again, triggers
can be helpful to accomplish this. If the denormalized tables are ever out
of sync with the normalized tables, be sure to inform end users that batch
reports and online queries may not contain sound data; if at all possible,
this should be avoided.

Finally, be sure to design the application so that it can easily be con-
verted from using denormalized tables to using normalized tables.

Every denormalization decision should be documented, including the
reason behind the decision and the exact changes made from the normal-
ized logical data model. Such a record will help to ensure that future data-
base changes are made with appropriate knowledge. Documentation will
also make it clear that you didn’t simply make a design or implementation
mistake.

Remember that only one valid reason exists for denormalizing a rela-
tional design—to enhance performance. The following criteria can be used
to help identify potential denormalization candidates:

• Numerous critical queries or reports require data from more than
one table—in other words, joins are required. If these types of
requests need to be processed in an online transaction environ-
ment, denormalization may be able to improve performance.

• Repeating groups need to be processed in a group instead of
individually.

• Many calculations need to be applied to one or many columns
before queries can be successfully answered. Storing derived or

Every denormaliza-
tion decision should
be documented.

Mullins_Book.indb 162 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Denormalization 163

precalculated data can reduce I/O and CPU usage upon retrieval and
therefore be more efficient.

• Tables need to be accessed in different ways by different users
during the same time frame.

• Many large primary keys exist that are clumsy to query and con-
sume a large amount of disk space when carried as foreign key
columns in related tables.

• Certain columns are queried a large percentage of the time, causing
very complex or inefficient SQL to be used.

Of course, these situations do not always require denormalization, but
they can be used as broad indications of when denormalization might be
considered—which raises the question “When should the DBA denormalize
a database design?” Although you might think it would be easier to denor-
malize at the very beginning of the physical design process, this is usually
not the case. DBAs and application designers often decide to denormalize
prematurely—before they obtain any concrete evidence for its necessity.
Even though it may be difficult to retrofit a partially completed system to
work on denormalized structures, it is almost never a good idea to denor-
malize before you’re sure that a normalized design will not perform ade-
quately. Of course, sometimes a DBA will have direct experience for the
specific application, DBMS, and version—and in those cases it may be
acceptable to denormalize the physical design immediately. However, such
a case is actually quite rare.

Be aware that each new RDBMS release usually brings enhanced per-
formance and improved access options that may reduce the need for denor-
malization. However, most of the popular RDBMS products will require
denormalized data structures on occasion. There are many different types
of denormalized tables that can resolve the performance problems caused
when accessing fully normalized data. The following sections detail the dif-
ferent types and advise on when to consider implementing them.

Never, under any circumstances, should you attempt to create a denor-
malized logical data model. The logical data model should always be com-
pletely normalized. The physical implementation of the database can differ
from the data model, but the model should always be fully normalized, and
above all, all physical variations from the data model should be documented.

Never attempt to
create a denormal-
ized logical data
model.

Mullins_Book.indb 163 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

164 Chapter 4 Database Design

Prejoined Tables

If two or more tables need to be joined on a regular basis by an application,
but the cost of the join is prohibitive, consider creating prejoined tables.
The prejoined tables should

• Contain no redundant columns

• Contain only those columns absolutely necessary to meet the pro-
cessing needs of the application

• Be created periodically, using SQL to join the normalized tables

The benefit of prejoining is that the cost of the join will be incurred
only once—when the prejoined tables are created. A prejoined table can be
queried very efficiently because every new query does not incur the over-
head of the join process.

However, the negative aspect of prejoining, as with most forms of
denormalization, is the difficulty of keeping the data accurate. Prejoined
tables may quickly get out of sync with the independent tables from which
they were created. For this reason, prejoined tables are more useful for rel-
atively static data than for more dynamic data.

Report Tables

Oftentimes it is impossible to develop an end user report using only SQL.
Such a report may require special formatting or data manipulation. If
certain critical or highly visible reports of this nature are required to be
viewed in an online environment, consider creating a table that represents
the report. This table can then be queried using stand-alone SQL in a query
tool or reporting facility. The data for the report should be created by the
appropriate mechanism (application program, 4GL, SQL, etc.) in a batch
environment and then loaded into the report table in sequence. The report
table should

• Contain one column for every column of the report

• Have its rows physically sequenced in the order in which they
should appear on the report so sorting is not required

• Not subvert relational tenets (such as 1NF and atomic data elements)

The report table
should contain one
column for every
column of the
report.

Mullins_Book.indb 164 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Denormalization 165

Report tables are ideal for carrying the results of multiple joins and
outer joins, correlated subqueries, or other complex SQL statements. If a
complex query is coded, run, and then loaded into a table, a simple SELECT
statement can be used to retrieve the results, instead of the complex (and
perhaps slower) query that was used to populate the report table.

Mirror Tables

If an application system is very active, it may be necessary to split process-
ing into two (or more) distinct components. Such a split will result in the
creation of duplicate, or mirror, tables. For example, consider an applica-
tion system with very heavy online traffic during the morning and early
afternoon hours. This traffic consists of both queries and data modifica-
tions. Decision support processing is also performed on the same appli-
cation tables during the afternoon. The production work in the afternoon
always seems to disrupt the decision support processing, causing frequent
time-outs and deadlocks.

These disruptions could be corrected by creating mirror tables—a fore-
ground set of tables for the production traffic and a background set of tables
for decision support. A mechanism to periodically migrate the foreground
data to background tables must be established to keep the application
data synchronized. One such mechanism could be a batch job executing
UNLOAD and LOAD utilities. Another possibility is to use built-in replica-
tion and propagation software, if the DBMS supports such functionality. At
any rate, the data synchronization should be done as often as necessary to
sustain the effectiveness of the decision support processing.

It is important to note that the access needs of decision support are
often considerably different from the access needs of the production envi-
ronment. Therefore, different decisions about data definition, such as
indexing and clustering, may be made for the mirror tables.

In addition, simple mirror tables may not be sufficient for your decision
support needs. Perhaps you will need to create a full-blown data warehouse
environment. A data warehouse is just a relational database that is specifi-
cally designed or denormalized for decision support and analytical queries.

Split Tables

If separate pieces of one normalized table are accessed by different and
distinct groups of users or applications, consider splitting the table into two

Mullins_Book.indb 165 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

166 Chapter 4 Database Design

(or more) denormalized tables—one for each distinct processing group.
The original table can also be maintained if other applications access the
entire table. In this scenario the split tables should be handled as a special
case of mirror tables. If an additional table is not desired, a view joining the
tables could be provided instead.

Tables can be split in one of two ways: vertically or horizontally. A ver-
tically split table separates the columns of a table into separate tables: One
set of columns is placed in a new table and the remaining columns are
placed in another new table. The primary key columns are placed in both
of the new tables. Designate one of the two new tables as the parent table
for the purposes of referential integrity unless the original table still exists,
in which case the original table should be the parent table in all referen-
tial constraints. If the original table still exists and the split tables are read
only, don’t set up referential integrity for the split tables. Because the split
tables are derived from a referentially intact source, referential integrity is
unnecessary.

If you are splitting a table vertically, always include one row per pri-
mary key in each split table. Do not eliminate rows from any of the new
tables for any reason. If rows are eliminated, the update process and any
retrieval process that must access data from both tables will be unnecessar-
ily complicated.

A horizontally split table separates the rows of a table into separate
tables. To split a table horizontally, rows are classified into groups via key
ranges. The rows from one key range are placed in one table, those from
another key range are placed in a different table, and so on. The columns
of horizontally split tables are the same. For horizontal splits, avoid dupli-
cating rows in the new tables. To accomplish this, use the primary key to
perform the split and ensure that each key value is assigned to only one of
the new tables.

Splitting Long Text Columns
A special case of a vertical split can be used to break up very large text
columns. For example, consider a table that stores item descriptions of mer-
chandise. The description can be 100 characters long, but most processes
require only the first ten characters. For example, consider this CREATE
TABLE statement:

Tables can be split
in one of two
ways: vertically or
horizontally.

Mullins_Book.indb 166 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Denormalization 167

CREATE TABLE ITEM
 (ItemNum integer not null,
 ItemSize CHAR(1),
 ItemColor CHAR(10),
 ItemDescr CHAR(100)
;

In such a case, you can split the table into two tables by splitting the
description into two columns. One new column, maintained in the old
table, would house the first 10 bytes of the description. The second column
would be created in a new table with the primary key and the last 90 bytes
of the description. For example:

CREATE TABLE ITEM
 (ItemNum INTEGER NOT NULL,
 ItemSize CHAR(1),
 ItemColor CHAR(10),
 ItemDescr CHAR(10)
;
CREATE TABLE ITEM_DESC
 (ItemNum INTEGER NOT NULL,
 ItemDesc CHAR(90)
;

The value of this type of denormalization is better I/O: More rows can
be stored on each physical page because each row of the main table is
smaller. Only those tasks that require all 100 bytes would need to access
both tables. Of course, there are variations on this type of denormalization.
You might choose to store only the first 10 bytes in the main table, but
all 100 bytes in the description table if the other columns do not need to
be accessed when the description is accessed. On the other hand, if the
description is very large, you might want to break it up into multiple rows
in the description table. For example, if the description can be up to 10,000
bytes long but most are under 1,000 bytes, you would not want to create a
character column of 10,000 bytes (even if the DBMS allowed you to do so).
Instead, you could create a table such as this:

CREATE TABLE ITEM_DESC
 (ItemNum INTEGER NOT NULL,
 ItemCtr INTEGER NOT NULL,
 ItemDesc CHAR(100)
;

The value of this
type of denormaliza-
tion is better I/O.

Mullins_Book.indb 167 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

168 Chapter 4 Database Design

In this example, the primary key of the description table is now the
combination of ItemNum and ItemCtr, where ItemCtr is a counter of the
number of rows of description stored for the ItemNum. This design breaks
the description up into 100-byte chunks. For the largest values, 100 rows
would be required to store all 10,000 bytes, but for most descriptions, 10 or
fewer rows would be required.

Combined Tables

If tables exist with a one-to-one relationship, consider combining them into
a single table. Of course, if each participant in the one-to-one relationship
has different relationships to other tables, you will need to take that into
account when denormalizing. Sometimes even one-to-many relationships
can be combined into a single table, but the data update process will be
significantly complicated because of the increase in redundant data.

For example, consider an application with two tables: DEPT (containing
department data) and EMP (containing employee data). You might choose
to denormalize by combining the two tables into a large table named, for
example, EMP_AND_DEPT. This new table would contain all of the col-
umns of both tables except for the redundant foreign key. So, in addition
to all the employee information, all the department information would also
be contained on each employee row. This will result in many duplicate
instances of the department data. Combined tables of this sort can be con-
sidered prejoined tables and treated accordingly.

Tables with one-to-one relationships should always be analyzed to
determine whether combination is useful. Sometimes the consolidation of a
one-to-one relationship is normalization, not denormalization.

Redundant Data

Sometimes one or more columns from one table are accessed almost every
time data is queried in another table. In such cases, consider appending
the columns to the queried table as redundant data. If the table carries
these additional columns, joins can be eliminated and performance per-
haps improved. This should be attempted only if the normal data access
performs insufficiently.

Consider, once again, the DEPT and EMP tables. If most of the employee
queries require the name of the employee’s department, the department

Consider combining
tables with a one-
to-one relationship
into a single table.

Mullins_Book.indb 168 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Denormalization 169

name column could be carried as redundant data in the EMP table. The
column should not be removed from the DEPT table, though. Columns to
consider storing redundantly should exhibit the following characteristics:

• Only a few columns are necessary to support the redundancy.

• The columns should be stable, needing infrequent updates.

• The columns should be used by either a large number of users or a
few very important users.

Repeating Groups

The normalization process transforms repeating groups into distinct rows
instead of separate columns of the same row. Even though the normaliza-
tion of repeating groups optimizes data integrity and update performance,
it usually results in higher disk usage and less efficient retrieval. This hap-
pens because there are more rows in the table and more rows need to be
read in order to satisfy queries that access the repeating group.

Sometimes by denormalizing such groups back into distinct columns,
you can achieve significant performance gains. Nevertheless, these gains
come at the expense of flexibility. For example, consider an application
that stores repeating group information in a table such as this:

CREATE TABLE CUST_BALANCE
 (CustNum INTEGER NOT NULL,
 BalancePeriod INTEGER NOT NULL,
 Balance DECIMAL(15,2),
 constraint PKCB PRIMARY KEY (CustNum, BalancePeriod)
;

This table can store an infinite number of balances per customer, lim-
ited only by available storage and the storage limits of the DBMS. If the
decision were made to string the repeating group, Balance, out into col-
umns instead of rows, a limit would need to be set for the number of
balances to be carried in each row. Here is an example of this table after
denormalization:

 CREATE TABLE CUST_BALANCE
 (CustNum INTEGER NOT NULL,
 Period1_Balance DECIMAL(15,2),
 Period2_Balance DECIMAL(15,2),

Mullins_Book.indb 169 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

170 Chapter 4 Database Design

 Period3_Balance DECIMAL(15,2),
 Period4_Balance DECIMAL(15,2),
 Period5_Balance DECIMAL(15,2),
 Period6_Balance DECIMAL(15,2),
 constraint PKCB PRIMARY KEY (CustNum)
;

In this example, only six balances may be stored for any one customer.
The designer could just as easily have chosen to store eight, 12, or any
arbitrary number of balances. The number six is not important, but the
concept that the number of values is limited is important. This reduces the
flexibility of data storage and should be avoided unless performance needs
dictate otherwise.

Using the first design, six rows would need to be retrieved to obtain six
balances. Using the second design, all six balances can be retrieved by read-
ing one row. Therefore, the performance of retrieval may be better using
the denormalized design. Before deciding to implement repeating groups
as columns instead of rows, be sure the following criteria are met:

• The data is rarely or never aggregated, averaged, or compared
within the row.

• The data occurs in a statistically well-behaved pattern.

• The data has a stable number of occurrences.

• The data is usually accessed collectively.

• The data has a predictable pattern of insertion and deletion.

If any of these criteria are not met, certain types of data retrieval may
be difficult to code, making the data less available. This should be avoided
because, in general, data is denormalized only to make it more readily
available.

Derivable Data

If the cost of deriving data using complicated formulas is prohibitive, think
about physically storing the derived data in a column instead of calculat-
ing it. For example, consider employee data that is scattered across multi-
ple tables. Perhaps the database contains three columns in several tables
that store employee compensation data. These columns are Salary, Bonus,

It can make sense
to include a derived
column in a table
to avoid multi-
table joins and
calculations.

Mullins_Book.indb 170 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Denormalization 171

and Commission. Furthermore, assume that, more often than not, queries
require total compensation to be reported, which is the sum of these three
columns. It might make sense to include a column in the main EMP table
called TotalCompensation that is the sum of Salary, Bonus, and Commis-
sion, thereby avoiding a multitable join and a calculation. Even though this
example shows a simple addition, certain business calculations can be
quite complex, requiring a lot of I/O and CPU processing to accomplish.
The more complex the calculation and the more resources it requires, the
better the performance gain you can achieve by physically storing it in the
database instead of calculating the value every time it is required.

However, when the underlying values that constitute the calculated
value change, it is imperative that the stored derived data also be changed;
otherwise inconsistent information will be stored. Such incorrect data will
adversely impact the usability, effectiveness, and reliability of the database.
To avoid such problems, consider storing derived data only when the fol-
lowing criteria are met:

• The source data used for the derivation calculation is relatively static.

• The cost of performing the derivation calculation is quite high.

• The usage pattern of the source tables is such that recalculation can
be performed quickly when the source data changes.

Sometimes it is not possible to immediately update derived data ele-
ments when the columns upon which they rely change. Such situations can
occur when the tables containing the derived elements are offline or being
operated on by a utility. Whenever possible, time the update of the derived
data so that it occurs immediately when the source table is made available
again. Under no circumstances should outdated derived data be made avail-
able for reporting and inquiry purposes.

Hierarchies

A hierarchy is a structure that is easy to support using a relational data-
base, but it can cause data retrieval difficulties unless the DBMS supports
SQL extensions for traversing the hierarchy. For this reason, applications
requiring hierarchies frequently contain denormalized tables to speed up
data retrieval.

Applications
requiring hierarchies
frequently contain
denormalized tables
to speed up data
retrieval.

Mullins_Book.indb 171 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

172 Chapter 4 Database Design

Most of us have encountered at least one hierarchy in our data- processing
careers. Two common hierarchical structures are bill-of- materials applica-
tions and departmental organization systems. A bill-of-materials application
typically records information about parts assemblies in which one part is
composed of other parts, which can then be a component of yet another
part. A departmental organization system typically records the departmen-
tal structure of an organization, indicating which departments report to
which other departments. A typical implementation of a hierarchy table for
departmental organization would be

CREATE TABLE DEPT
 (ParentDeptNum INTEGER NOT NULL,
 DeptName CHAR(25),
 SupervisorNum INTEGER,
 ReportsToDeptNum INTEGER,
 constraint PKDN PRIMARY KEY (DeptNum),
 constraint FKCB FOREIGN KEY (ReportsToDeptNum) REFERENCES
DEPT
 ON DELETE RESTRICT
;

To support such a hierarchy, a one-to-many relationship is set up for a
single table. In this example the ReportsToDeptNum column is the foreign
key that refers to the DeptNum primary key. Each department reports to
only one department, but a department can have more than one depart-
ment reporting to it.

Such a table represents an accurately normalized entity for storing a
hierarchy. The complete hierarchy can be rebuilt with the proper data
retrieval instructions. However, consider the difficulty of writing SQL to
query this table and report on the departmental organization. It is impos-
sible to accomplish such a task using only SQL unless you have some guid-
ing knowledge of the number of levels of reporting that may exist or your
DBMS supports SQL extensions for traversing hierarchies.

A very effective way to denormalize a hierarchy is to create speed
tables. The speed table contains a pretraversed hierarchy for easy retrieval.
Such a speed table is shown here:

CREATE TABLE DEPT
 (DeptNum INTEGER NOT NULL,
 ChildDeptNum INTEGER NOT NULL,
 Level INTEGER,

A very effective way
to denormalize a
hierarchy is to create
speed tables.

Mullins_Book.indb 172 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Denormalization 173

 Detail CHAR(1),
 DeptName CHAR(25),
 SupervisorNum INTEGER,
 constraint PKDN PRIMARY KEY (DeptNum, ChildDeptNum)
;

The speed table contains a row for every dependent ChildDeptNum,
not just immediate dependents. The primary key for the speed table is the
combination of DeptNum and ChildDeptNum. Two additional columns are
provided:

• A column named Level contains a numeric value indicating the
level within the hierarchy for the ChildDeptNum. For example, if
the child resides two levels down in the hierarchy from the parent,
Level will contain the value 2.

• A column named Detail contains “Y” if the ChildDeptNum is at the
very bottom of the hierarchy, and “N” otherwise.

The speed table must be created programmatically—it cannot be gen-
erated using SQL.

Special Physical Implementation Needs

Sometimes the requirements of the database and the physical implementa-
tion details of the DBMS will not mix for good performance. For example,
some DBMS products have limitations on the physical block sizes that can
be specified for database files. At times, the row size of a table in a logi-
cal data model may require a very large block size because it will not fit
completely in a smaller block size. Some DBMS products treat large block
sizes inefficiently. In that case, you may want to denormalize the table by
breaking apart the row so it will fit in a smaller block size. This is just
one example of a physical DBMS implementation detail that may call for
denormalization.

Denormalization Summary

We have discussed ten different types of denormalization. Table 4.1 summa-
rizes the types of denormalization that are available with a short descrip-
tion of when each type is useful.

Mullins_Book.indb 173 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

174 Chapter 4 Database Design

The decision to denormalize should never be made lightly, because it
can cause integrity problems and involve a lot of administration. Additional
administration tasks include

• Documenting every denormalization decision

• Ensuring that all data remains valid and accurate

• Scheduling data migration and propagation jobs

• Keeping end users informed about the state of the tables

• Analyzing the database periodically to decide whether denormaliza-
tion is still required

If a database has been denormalized, the data and environment should
be regularly reviewed whenever hardware, software, and application
requirements change. Any change can alter the need for denormalization.
To verify whether denormalization is still a valid decision, ask the following
questions:

• Have the processing requirements changed for the application such
that the join criteria, timing of reports, and/or transaction through-
put requirements no longer dictate a denormalized database?

Any change can
alter the need for
denormalization.

Table 4.1 Types of Denormalization

Denormalization Description

Prejoined tables Used when the cost of joining is prohibitive

Report tables Used when specialized critical reports are needed

Mirror tables Used when tables are accessed concurrently by different types of
environments

Split tables Used when distinct groups use different parts of a table

Combined tables Used to consolidate one-to-one or one-to-many relationships into a
single table

Redundant data Used to reduce the number of table joins required

Repeating groups Used to reduce I/O and (possibly) storage usage

Derivable data Used to eliminate calculations and algorithms

Speed tables Used to make the processing of hierarchies more efficient

Physical denormalization Used to optimize for specialized physical DBMS characteristics

Mullins_Book.indb 174 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Views 175

• Did a new release of the DBMS enhance performance? For example,
did the introduction of a new join method or performance tech-
nique undo the need for prejoined tables?

• Did a new hardware release change performance considerations?
For example, does the upgrade to a new, faster processor provide
additional CPU resources so that denormalization is no longer nec-
essary? Or did the addition of memory enable faster data access so
that data can be physically normalized?

In general, periodically test whether the extra cost related to process-
ing with normalized tables justifies the benefit of denormalization. You
should measure the following criteria:

• I/O saved

• CPU saved

• Complexity of data modification

• Cost of returning to a normalized design

Always remember that denormalization is implemented to enhance
performance. If the environment changes, it is only reasonable to reevalu-
ate the denormalization decision. Also, it is possible that, given a changing
hardware and software environment, denormalized tables may be caus-
ing performance degradation instead of performance gains. Simply stated,
always monitor and periodically reevaluate all denormalized applications.

Views
Another aspect of physical database design is the creation of database
views to support specific application data requirements. Views are not
required to access a physical database, but they can be helpful to support
specific application and user requirements. You can think of a view as a
way of turning a SELECT statement into a “table” that is accessible using
SQL. Therefore, a view can be considered a logical table. No physical struc-
ture is required of a view; it is a representation of data that is stored in
other tables (or other views). As shown in Figure 4.4, the data “in the view”
is not stored anywhere and physically exists only in the underlying tables.
Views can also be based on other views.

Denormalization
is implemented
to enhance
performance.

Mullins_Book.indb 175 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

176 Chapter 4 Database Design

Views are flexible and can consist of any combination of the following:

• Rows from tables. These can be a subset of rows from a single
table, all rows from a single table, a subset of rows from multiple
tables, or all rows from multiple tables.

• Rows from views. These can be the same combinations as listed for
tables.

• Columns from tables. These can be a subset of columns from a sin-
gle table, all columns from a single table, a subset of columns from
multiple tables, or all columns from multiple tables.

• Columns from views. These can be the same combinations as listed
for tables.

Views should be created based on their usefulness to application devel-
opment and ad hoc query users. There are six basic uses for which views
excel. Views can allow you to

• Provide row- and column-level security

• Ensure efficient access paths

• Mask complexity from the user

TABLE 1

TABLE 2

VIEW 1

VIEW

Figure 4.4 What is a view?

Mullins_Book.indb 176 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Temporal Data Support 177

• Ensure proper data derivation

• Rename tables

• Rename columns

At any rate, be sure to document the intended purpose for every view
created so that future structural changes to database tables can be promul-
gated to any views accessing those changed tables.

Data Definition Language
All physical database objects are created using SQL Data Definition Lan-
guage, or DDL for short. The basic components of DDL are the CREATE,
ALTER, and DROP statements. Appropriately enough, CREATE is used to
initially create a database object. Changes to the database object once it
has been created can be made using the ALTER statement. But the ALTER
statement cannot necessarily be used to change any and every aspect of a
database object (which is covered in more detail in Chapter 7, “Database
Change Management”). Finally, the DROP statement is used to remove a
database object from the system.

Many DBMS products provide a graphical interface for creating and
changing database objects. If your DBMS provides such an interface, you
may be able to create a physical database without learning the specifics
of DDL syntax. I do not recommend this for DBAs, because sometimes the
graphical interface does not support all of the syntax and options for every
database object. An informed DBA is an effective DBA—and unless you ver-
ify that the graphical interface supports every DDL option, you will be bet-
ter off learning and using DDL statements.

Temporal Data Support
The need to store and access noncurrent data is a common requirement
for some types of applications. Many types of data change over time, and
different users and applications have requirements to access the data at dif-
ferent points in time. For some, the current, up-to-date values for the data
are sufficient. But for others, the ability to access earlier versions of the data
is needed.

All physical database
objects are created
using SQL Data Defi-
nition Language.

Mullins_Book.indb 177 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

178 Chapter 4 Database Design

In traditional relational database systems, various approaches have
been used to store and access temporal data. Separate history tables are one
approach (perhaps augmented with triggers); snapshot tables are another;
yet an additional approach is to custom-build time sensitivity into the tables
and queries. None of these approaches is ideal, especially with the fast pace
of business and the escalating need to comply with legal and regulatory
requirements. Many applications need to provide real-time access to non-
current data.

A traditional database stores data implied to be valid at the current point
in time; it does not track the past or future states of the data. But some
database systems (for example, DB2 for z/OS) support built-in temporal fea-
tures. Temporal support makes it possible to store different database states
and to query the data as of those different states. This is accomplished by
attaching a time period to the data to indicate when it was valid or changed
in the database.

A Temporal Example

 Consider an insurance company that sells policies to its customers. The
terms of any specific insurance policy are valid over a period of time. After
that period of time, customers can choose to decline further coverage, con-
tinue with the existing coverage, or modify the terms of their coverage. So
at any specific point in time, the terms of the customers’ policies can differ.

Over time, customers make claims against their policies. This claim
information needs to be stored, managed, and analyzed. Accident histories
for customers are also important pieces of data with a temporal element.

Now consider the complexity inherent in trying to develop not only a
database design that accommodates changing policies, claims, and histori-
cal details but also enables queries such that a user might access a custom-
er’s coverage at a given point in time. In other words, what policies were
in effect for that customer as of, say, April 15, 2012? Or on any other date
during which the customer had coverage?

This concept of business time can become quite complex. Consider the
situation in which a customer has multiple policies that expire on different
schedules. Add the possibility for periods in which coverage lapses. And
the database does not remain static; it grows in size, queries become more
complex, and so on.

Mullins_Book.indb 178 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Temporal Data Support 179

Insurance is but one example. Many other types of applications exist
for which temporal support would be useful, for example, financial appli-
cations, credit history, personnel management, transportation applications,
reservation systems, and medical information management, to name a few.

Business Time and System Time

There is another concept of temporal data that might need to be factored in
as well. Instead of business time, you also might need to track and manage
system time. For example, a regulatory mandate might require you to track
any changes to a particular piece of data. This is common with personally
identifiable information (PII), such as a Social Security number or phone
number. Support for managing system changes enables users to query the
database as of a point in time, returning the value of the data as of that time
frame.

The business time indicates the period during which the data is accu-
rate with respect to the world. The system time indicates the period during
which the data is stored in the database. These two time periods do not
need to be the same for a single piece of data. Suppose, for example, that
you want to store temporal information about twentieth-century events.
The valid business time for this data would be within the range of 1900
through 1999. But if you were to add the information to the database now,
perhaps the valid system time for the data would be at some point in 2013.
So, of course, you might need to support both business temporal data and
system temporal data in the same table. This is called bitemporal support.

So, to define terms a bit more precisely: Business time, also referred
to as valid time or application time, specifies when the facts stored in the
database are true for the real world. These are the dates of interest to the
business user interacting with the data. Business time should be associated
only with data that has a business need for temporal tracking.

System time, also referred to as transaction time, denotes the time
when the fact became current in the database. System time can be used
to track the insertion and modification history of the data. Unlike business
time, transaction time can be associated with any database entity. It might
be useful, depending upon regulatory or industry requirements, to track
when any specific piece of data changes. Of course, you do not want to
impose a system time on all your data just because you can due to the over-
head of doing so.

Mullins_Book.indb 179 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

180 Chapter 4 Database Design

A bitemporal table is defined with both a system period and a busi-
ness period. With a bitemporal table you can keep business (or application)
information and system-based historical information.

Impact on DBA
DBAs must understand the temporal requirements of the database before
it is implemented. The DBA should properly implement the business and
system time using the built-in facilities of the DBMS. When this is done,
temporal queries are easy to code using the AS OF syntax of SQL. For exam-
ple, consider our discussion of tracking the insurance policies in effect for
a customer as of April 15, 2012. For a temporal database, this can be simply
using something like the following SQL:

SELECT CustName, PolicyNo, BenefitSummary
FROM InsurancePolicy
 FOR BUSINESS_TIME AS OF '2012-04-15'
WHERE CustNo = ?
;

To modify temporal data you use standard INSERT, UPDATE, and
DELETE statements, but you must understand the temporal aspect of the
changes being made. For INSERT statements you must manipulate the date
range correctly. For DELETE statements you must assure that the correct
ranges are being removed. And UPDATE statements can be augmented with
temporal clauses so that specific ranges are modified.

Of course, if the DBMS does not offer temporal support, the DBA and
application team will need to build the tables with effective dates and ensure
that the application code is created to modify the time spans appropriately.
Additionally, queries against the tables become more complex, requiring
BETWEEN or greater-than/less-than predicates for the date ranges.

This discussion of temporal data is necessarily brief. For a more
detailed account consult Johnston and Weis, Managing Time in Relational
Databases.

Summary
A logical data model should be used as the blueprint for designing and cre-
ating a physical database. But the physical database cannot be created with

Mullins_Book.indb 180 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Review 181

a simple logical-to-physical mapping. Many physical design decisions need
to be made by the DBA before implementing physical database structures.
Many times this will necessitate deviating from the logical data model. But
such deviation must be based on in-depth knowledge of the DBMS and the
physical environment in which the database will exist.

Review
 1. Describe the first, simple steps to convert a logical data model to a

physical database.

 2. What is the only reason to denormalize a physical data model?

 3. Under what circumstances should a bitmap index be considered
instead of a b-tree index?

 4. Which types of data access will benefit from data clustering?

 5. Cite five reasons for creating a database view.

 6. A referential constraint is created by specifying a __________ key in the
dependent table that refers back to the primary key in the parent table.

 7. Describe how a relational database uses indexes.

 8. Why might the order in which columns are created in a table be
important for physical database design?

 9. When should you consider physically storing derived data in a
database?

 10. If indexes are beneficial to performance, why not create every possible
index conceivable just to be on the safe side?

Bonus Question

Review the very small data model shown in Figure 4.5 and create a physical
database implementation for the DBMS of your choice. Assume that there
are approximately 25,000 students and that each student enrolls in three
to five courses per semester. The most common query requirement is that
students be able to create their course schedules. Be sure to specify every
physical design decision and create sample DDL statements to implement
a basic physical design. Further, indicate where additional information is
required to make a physical design decision and why.

Mullins_Book.indb 181 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

182 Chapter 4 Database Design

Suggested Reading
Fleming, Candace, and Barbara von Halle. Handbook of Relational Data-

base Design. Reading, MA: Addison-Wesley (1989). ISBN 0-201-11434-8.

Harrington, Jan L. Relational Database Design: Clearly Explained. 2nd
ed. San Francisco, CA: Morgan Kaufmann (2002). ISBN 1-55860-820-6.

Hernandez, Michael J. Database Design for Mere Mortals. 2nd ed. Boston,
MA: Addison-Wesley (2003). ISBN 0-201-75284-0.

Hogan, Rex. A Practical Guide to Database Design. Englewood Cliffs, NJ:
Prentice Hall (1990). ISBN 0-13-690967-1.

Johnston, Tom, and Randall Weis. Managing Time in Relational
Databases. Burlington, MA: Morgan Kaufmann (2010). ISBN
978-0-12-375041-9.

Lahdenmaki, Tapio, and Michael Leach. Relational Database Index
Design and the Optimizers. Hoboken, NJ: John Wiley & Sons (2005).
ISBN 0-471-71999-4.

Lightstone, Sam, et al. Physical Database Design. San Francisco, CA: Mor-
gan Kaufmann (2007). ISBN 978-0-12-369389-1.

STUDENT
StudentID
LastName
FirstName
MiddleInit
MajorID

MAJOR
MajorID
Major

COURSE
CourseNum
CourseName
Credits

ENROLLMENT
StudentID
CourseNum
CourseCompDate

Figure 4.5 Logical data model

Mullins_Book.indb 182 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Suggested Reading 183

Pascal, Fabian. Practical Issues in Database Management. Boston, MA:
Addison-Wesley (2000). ISBN 0-201-48555-9.

Perkinson, Richard C. Data Analysis: The Key to Database Design.
Wellesley, MA: QED Information Sciences (1984). ISBN 0-89435-105-2.

Riordan, Rebecca M. Designing Effective Database Systems. Boston, MA:
Addison-Wesley (2003). ISBN 0-321-29093-3.

Rishe, Naphtali. Database Design. New York: McGraw-Hill (1992). ISBN
0-07-052955-8.

Stephens, Ryan K., and Ronald R. Plew. Database Design. Indianapolis, IN:
SAMS Publishing (2001). ISBN 0-672-31758-3.

Teory, Toby, et al. Database Design: Know It All. San Francisco, CA: Mor-
gan Kaufmann (2002). ISBN 978-0-12-374630-6.

Mullins_Book.indb 183 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

