
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

A plus writer only
[image: profile]
rutus21
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

reading_1.pdf

Home>Computer Science homework help>A plus writer only

 185

5
Application Design

Application design is more than just writing efficient database requests in
application programs. Every aspect of the way the program is coded affects
the usability and effectiveness of the application. Of course, application
design includes database concerns such as interfacing SQL with traditional
programming languages and the type of SQL to use. However, each applica-
tion program must be designed to ensure the integrity of the data it modi-
fies. Additionally, performance has to be treated as a design issue.

At the forefront the DBA must promote the concept of application
design based on thorough knowledge of the database. It is unacceptable to
allow programmers to design and code applications without considering
how the programs will perform as they interact with databases. Some unin-
formed organizations approach database application development with no
proactive performance engineering: The assumption is that any perfor-
mance problems can be resolved after development by the DBA. However,
it may be impossible to tune an improperly designed application program
without rewriting it. So why not write it correctly the first time?

The intent of this chapter is not to teach software development method-
ology or to provide an in-depth treatise on programming—nor is it a primer

Performance has
to be treated as a
design issue.

Mullins_Book.indb 185 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

186 Chapter 5 Application Design

on SQL. The focus of discussion will be high-level application design issues
that need to be understood when writing applications that use a database
for persistent storage of data. All DBAs should understand the concepts in
this chapter and be able to effectively communicate them to the developers
in their organization.

Chapter 12, “Application Performance,” provides additional coverage of
application performance issues as they pertain to database development.

Database Application Development and SQL
Designing a proper database application system is a complex and time-
consuming task. The choices made during application design will impact
the usefulness of the final, delivered application. Indeed, an improperly
designed and coded application may need to be redesigned and recoded
from scratch if it is inefficient, ineffective, or not easy to use.

To properly design an application that relies on databases for persistent
data storage, the system designer at a minimum will need to understand the
following issues:

• How data is stored in a relational database

• How to code SQL statements to access and modify data in the database

• How SQL differs from traditional programming languages

• How to embed SQL statements into a host programming language

• How to optimize database access by changing SQL and indexes

• Programming methods to avoid potential database processing
problems

In general, the developer must match the application development lan-
guages and tools to the physical database design and functionality of the
DBMS. The first task is to master the intricacies of SQL.

SQL

Structured Query Language, better known as SQL (and pronounced
“sequel” or “ess-cue-el”), is the de facto standard for accessing relational
databases. All RDBMS products, and even some nonrelational DBMS prod-
ucts, use SQL to manipulate data.

Designing a proper
database application
system is a complex
task.

SQL is the de
facto standard for
accessing relational
databases.

Mullins_Book.indb 186 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Application Development and SQL 187

Why is SQL so pervasive within the realm of relational data access?
There are many reasons for SQL’s success. Foremost is that SQL is a high-
level language that provides a greater degree of abstraction than traditional
procedural languages. Third-generation languages, such as COBOL and C,
and even fourth-generation languages, usually require the programmer to
navigate data structures. Program logic must be coded to proceed record
by record through data stores in an order determined by the application
programmer or systems analyst. This information is encoded in the high-
level language and is difficult to change after it has been programmed.

SQL, by contrast, is designed such that programmers specify what
data is needed. It does not—indeed it cannot—specify how to retrieve it.
SQL is coded without embedded data-navigational instructions. The DBMS
analyzes each SQL statement and formulates data-navigational instructions
“behind the scenes.” These data-navigational instructions are commonly
called access paths. A heavy burden is removed from the programmer by
empowering the DBMS to determine the optimal access paths to the data.
Because the DBMS better understands the state of the data it stores, it can
produce a more efficient and dynamic access path to the data. The result
is that SQL, used properly, provides a quicker application development and
prototyping environment than is available with corresponding high-level
languages. Furthermore, as the data characteristics and access patterns
change, the DBMS can change access paths for SQL queries without requir-
ing the actual SQL to be changed in any way.

Inarguably, though, the single most important feature that has solidi-
fied SQL’s success is its capability to retrieve data easily using English-like
syntax. It is much easier to understand a query such as

SELECT deptnum, deptname
FROM dept
WHERE supervisornum = '903';

than it is to understand pages and pages of C or BASIC source code, let
alone the archaic instructions of Assembler. Because SQL programming
instructions are easier to understand, they are easier to learn and main-
tain—affording users and programmers more productivity in a shorter
period of time. However, do not underestimate SQL: Mastering all of its
intricacies is not easy and will require much study and practice.

SQL specifies what
data is needed . . .
not how to
retrieve it.

Mullins_Book.indb 187 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

188 Chapter 5 Application Design

SQL also uses a free-form structure that makes it very flexible. The SQL
programmer has the ability to develop SQL statements in a way best suited
to the given user. Each SQL request is parsed by the DBMS before execution
to check for proper syntax and to optimize the request. Therefore, SQL
statements do not need to start in any given column and can be strung
together on one line or broken apart on several lines. For example, the fol-
lowing SQL statement:

SELECT deptnum, deptname FROM dept WHERE supervisornum = '903';

is exactly equivalent to the previous SQL statement shown. Another exam-
ple of SQL’s flexibility is that the programmer can formulate a single request
in a number of different and functionally equivalent ways—a feature that
also can be very confusing for SQL novices. Furthermore, the flexibility of
SQL is not always desirable, because different but logically equivalent SQL
formulations can result in differing performance results. Refer to the side-
bar “Joins versus Subqueries” for an example.

Finally, one of the greatest benefits derived from using SQL is its ability
to operate on sets of data with a single line of code. Multiple rows can be
retrieved, modified, or removed in one fell swoop by using a single SQL
statement. This feature provides the SQL developer with great power but
also limits the overall functionality of SQL. Without the ability to loop or
step through multiple rows one at a time, certain tasks are impossible to
accomplish using only SQL. Of course, as more and more functionality is
added to SQL, the number of tasks that can be coded using SQL alone is
increasing. For example, SQL can be used to create a stored procedure to
perform many programming tasks that formerly required a traditional pro-
gramming language to accomplish. Furthermore, most of the popular rela-
tional DBMS products support extended versions of SQL with procedural
capabilities. Table 5.1 details the most popular procedural SQL dialects.

Table 5.1 SQL Usage Considerations

DBMS Procedural SQL Dialect

Oracle PL/SQL

Microsoft SQL Server Transact-SQL

Sybase Adaptive Server Enterprise Transact-SQL

DB2 SQL Procedure Language

Mullins_Book.indb 188 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Application Development and SQL 189

Set-at-a-Time Processing and Relational Closure

Every operation performed on a relational database operates on a table (or
set of tables) and results in another table. This feature of relational data-
bases is called relational closure. All SQL data manipulation operations—
that is, SELECT, INSERT, UPDATE, and DELETE statements—are performed
at a set level. One retrieval statement can return multiple rows; one modifi-
cation statement can modify multiple rows.

To clarify the concept of relational closure, refer to Figure 5.1. A database
user initiates SQL requests. Each SQL statement can access one or many
tables in the database. The SQL statement is sent to the DBMS, whereupon

All SQL data manip-
ulation operations
are performed at a
set level.

Joins versus Subqueries

One example of SQL’s flexibility is the way in which a single statement can access data from
multiple tables. SQL provides two methods: joins and subqueries. However, a subquery can
be converted to an equivalent join. The concept behind both types of queries is to retrieve
data from multiple tables based on search criteria matching data in the tables.

Consider the following two SQL statements. The first one is a subquery, where a query
is embedded within another query. The second query is a join, where two tables are spec-
ified in the FROM clause of a single SELECT statement.

SELECT empno, firstname, lastname
FROM employee
WHERE workdept IN
 (SELECT deptno
 FROM department
 WHERE deptname = ‘DBA’);
SELECT empno, firstname, lastname
FROM employee,
 department
WHERE workdept = deptno
AND deptname = ‘DBA’;

Both queries return information about employees who work in the database adminis-
tration department. The results returned by both queries will be the same, but the perfor-
mance may vary significantly depending on the DBMS in use, the indexes that are defined
for each table, and the complexity of the query itself.

Mullins_Book.indb 189 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

190 Chapter 5 Application Design

the query is analyzed, optimized, and executed. The DBMS formulates the
access path to the data, and upon completion of the request the desired
information is presented to the user as a set of columns and rows—in other
words, a table. The result will consist of one or more columns with zero,
one, or many rows. Because SQL performs set-level processing, the DBMS
operates on a set of data, and a set of data is always returned as the result. Of
course, the results set can be empty, or it can contain only one row or col-
umn. The relational model and set-level processing are based on the mathe-
matical laws of set theory, which permit empty and single-valued sets.

Application developers face a potential problem when using relational
databases because of the set-at-a-time nature of SQL. Most programming
languages operate on data one record at a time. When a program requires
relational data, though, it must request the data using SQL. This creates an
impedance mismatch. The program expects data to be returned a single
row at a time, but SQL returns data a set at a time. There are different ways
to get around this mismatch, depending on the DBMS, programming lan-
guage, and environment. Most DBMS products provide a feature called a
cursor that accepts the input from a SQL request and provides a mechanism
to fetch individual rows of the results set. Some programming environments

SQL
Statement

Result Set (table)

Database Tables

Figure 5.1 Relational closure

Mullins_Book.indb 190 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Application Development and SQL 191

and fourth-generation languages automatically transform multirow sets to
single rows when communicating with the DBMS.

Furthermore, most programmers are accustomed to hard-wiring data-nav-
igational instructions into their programs. SQL specifies what to retrieve but
not how to retrieve it. The DBMS determines how best to retrieve the data.
Programmers unaccustomed to database processing are unlikely to grasp
this concept without some training. At any rate, programmers will need to
be trained in these high-level differences between non-database and data-
base programming techniques. This job usually falls upon the DBA or other
highly skilled database technician within the organization. Of course, there
are many more details at a lower level that the database programmer needs
to know, such as SQL syntax, debugging and testing methods, optimization
techniques, and program preparation procedures (compilation, bind, etc.).

Embedding SQL in a Program

Most database applications require a host programming language to use
SQL to communicate with the database. A wide range of programming lan-
guages can be used with SQL, from traditional languages such as COBOL,
FORTRAN, and Assembler to more modern languages such as C/C++, Java,
PHP, and Visual Basic. Your choice of host programming language can
impact the way you will have to code SQL. For example, SQL is embedded
directly into a COBOL program, whereas a language like C requires an API
such as ODBC to issue SQL statements.

The choice of development language will likely be limited to just a
few at your shop. You should attempt to minimize the number of different
languages you use, because it will make supporting and maintaining your
applications easier. Furthermore, such limitations will make it easier for
DBAs to administer and optimize the database environment. A DBA should
be capable of reading and understanding program code for each language
used to access databases within the organization.

Some application development projects use an IDE (integrated devel-
opment environment) or code generator to create programs from program
specifications. Exercise caution when using this approach: Don’t allow the
code generator to create SQL for you without first testing it for efficiency.
Poor performance can result when using a code generation tool because
these tools often have very little knowledge of the DBMS you are using.

The DBMS deter-
mines how best to
retrieve the data.

Minimize the
number of different
languages you use.

Mullins_Book.indb 191 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

192 Chapter 5 Application Design

In most cases the code generator is designed to work for multiple DBMS
products and is therefore not optimized for any of them. Test the SQL that
is generated and, if necessary, modify the generated SQL or build indexes
to optimize the generated SQL before moving the programs to a production
environment. The DBA should be responsible for implementing a proce-
dure to ensure that such SQL performance testing occurs.

SQL Middleware and APIs

Application programs require an interface for issuing SQL to access or mod-
ify data. The interface is used to embed SQL statements in a host program-
ming language, such as COBOL, Java, C, or Visual Basic. Standard interfaces
enable application programs to access databases using SQL. There are sev-
eral popular standard interfaces or APIs for database programming, includ-
ing ODBC, JDBC, SQLJ, and OLE DB.

One of the most popular SQL APIs is Open Database Connectivity
(ODBC). Instead of directly embedding SQL in the program, ODBC uses call-
able routines. ODBC provides routines to allocate and deallocate resources,
control connections to the database, execute SQL statements, obtain diag-
nostic information, control transaction termination, and obtain information
about the implementation. ODBC is basically a call-level interface (CLI) for
interacting with databases. The CLI issues SQL statements against the data-
base by using procedure calls instead of direct embedded SQL statements.

Microsoft invented the ODBC interface to enable relational database
access for Microsoft Windows programming. However, ODBC has become
an industry-standard CLI for SQL programming. Indeed, every major DBMS
today supports ODBC.

ODBC relies on drivers, which are optimized ODBC interfaces for a par-
ticular DBMS implementation. Programs can make use of the ODBC drivers
to communicate with any ODBC-compliant database. The ODBC drivers
enable a standard set of SQL statements in any Windows application to be
translated into commands recognized by a remote SQL-compliant database.

Another popular SQL API is Java Database Connectivity (JDBC). JDBC
enables Java to access relational databases. Similar to ODBC, JDBC consists
of a set of classes and interfaces that can be used to access relational data.
There are several types of JDBC middleware, including the JDBC-to-ODBC
bridge, as well as direct JDBC connectivity to the relational database. Anyone
familiar with application programming and ODBC (or any call-level interface)

ODBC is basically a
call-level interface
for interacting with
databases.

Mullins_Book.indb 192 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Application Development and SQL 193

can get up and running with JDBC quickly. (Refer to Chapter 21, “Database
Connectivity,” for a discussion of the various types of JDBC drivers.)

Another way to access databases from a Java program is by using SQLJ.
SQLJ enables developers to directly embed SQL statements in Java programs,
thus providing static SQL support to Java. A precompiler translates the embed-
ded SQL into Java code. The Java program is then compiled into bytecodes,
and a database bind operation creates packaged access routines for the SQL.

OLE DB, which stands for Object Linking and Embedding Database, is
an interface that is based on the COM architecture. It is a low-level interface
to data. OLE DB provides applications with uniform access to data stored
in diverse information sources. It allows greater flexibility than ODBC
because it can be used to access both relational and nonrelational data.
OLE DB presents an object-oriented interface for generic data access. OLE
DB is conceptually divided into consumers and providers. The consumers
are the applications that need access to the data, and the providers are the
software components that implement the interface and thereby provide the
data to the consumer.

SQL Server 20121 is planned to be the final version to include an OLE
DB provider for SQL Server. However, Microsoft has indicated that support
will continue for at least seven years.

COM is Microsoft’s component-based development architecture. Using
COM, developers can create application components that can be pieced
together to create application systems. The components can be written by
different developers and need not be written using the same programming
language. ADO (which stands for ActiveX Data Objects) is a set of software
components that programmers can use to access data and data services.

Both COM and ADO predate the .NET framework but have been
adapted for use by .NET.

Application Infrastructure

Application infrastructure is the combined hardware and software environ-
ment that supports and enables the application. The application infrastruc-
ture will vary from organization to organization, and even from application to
application within an organization. The application infrastructure provides

1. The Microsoft information about moving from OLE DB to ODBC can be found at
http://social.technet.microsoft.com/Forums/en/sqldataaccess/thread/e696d0ac-f8e2-
4b19-8a08-7a357d3d780f

SQL J enables devel-
opers to embed SQL
statements in Java
programs.

Mullins_Book.indb 193 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

194 Chapter 5 Application Design

the foundation for building, deploying, and managing applications with high
performance, security, and control.

From a hardware perspective, the application infrastructure includes
the servers, clients, and networking components. From a software per-
spective, things are a bit more difficult to nail down. Software components
of an application infrastructure can include database servers, application
servers, Web servers, transaction managers, and development frameworks.
Some of the key functionality of application infrastructure includes transac-
tion management, clustering, reliable application-to-application messaging,
system management, advanced application development tools, proprietary
access, and interoperability with legacy technologies.

From a mainframe perspective, the application infrastructure may con-
sist of IBM z Series hardware running z/OS, DB2, CICS, with application
programs written in COBOL. Typically, applications consist of both batch
and online workload. A modern mainframe infrastructure adds interfaces
to non-mainframe clients, as well as WebSphere Application Server and Java
programs. Most new mainframe development uses IDEs to code modern
applications instead of relying upon COBOL programmers.

Most modern, distributed, non-mainframe application development
projects typically rely upon application development frameworks. The two
most commonly used frameworks are Microsoft .NET and J2EE.

.NET
The Microsoft .NET framework provides a comprehensive development
platform for the construction, deployment, and management of applica-
tions. The .NET framework provides CLR (common language run time) and
a class library for building components using a common foundation. This
offers benefits to developers such as support for standard practices, exten-
sibility, and a tightly integrated set of development tools.

The .NET framework consists of multiple major components in addition
to the CLR and class library. From a data perspective, the most important
component is ADO.NET, which provides access to data sources such as a
database management system.

See Figure 5.2 for a depiction of the .NET framework and its components.
ADO.NET is composed of a series of technologies that enable .NET

developers to interact with data in standard, structured, and predomi-
nantly disconnected ways. Applications that use ADO.NET depend on .NET
class libraries provided in DLL files. ADO.NET manages both internal data

Mullins_Book.indb 194 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Application Development and SQL 195

(created in memory and used by the program) and external data (in the data-
base). It provides interoperability and maintainability through its use and
support of XML, simplified programmability with a programming model
that uses strongly typed data, and enhanced performance and scalability.

J2EE and Java
The Java 2 Platform, Enterprise Edition (J2EE), is a set of coordinated
specifications and practices that together enable solutions for developing,
deploying, and managing multitier enterprise applications. The J2EE plat-
form simplifies enterprise applications by basing them on standardized,
modular components. J2EE provides a complete set of services to those
components and handles many details of application construction without
requiring complex programming.

So J2EE is not exactly a software framework, but a set of specifications,
each of which dictates how various J2EE functions must operate. Software
conforming to the J2EE platform offers advantages such as “Write Once, Run
Anywhere” portability, JDBC API for database access, CORBA technology

Visual
C#

Visual
Basic

Visual
J#

Visual
C++

JScript
Third
Party

Microsoft .NET Framework

ADO.NET ASP.NET User Interfaces

.NET Framework Class Library

CLR (Common Language Runtime)

Figure 5.2 The .NET framework

Mullins_Book.indb 195 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

196 Chapter 5 Application Design

for interaction with existing enterprise resources, and a security model for
data protection. Building on this base, the Java 2 Platform, Enterprise Edi-
tion, adds full support for Enterprise JavaBeans components, Java Servlets
API, JavaServer Pages, and XML technology.

See Figure 5.3 for a depiction of a sample J2EE implementation. Addi-
tional information and clarification on J2EE can be found online at http://
java.sun.com/j2ee/reference/whitepapers/j2ee_guide.pdf.

Note that there is much more to Java than is covered in this section.
Refer to the sidebar “Java Program Types” for a brief overview of the differ-
ent types of Java programs that can be coded.

Java Program Types

There are three types of programs that you can implement when accessing data using
Java: Java applets, Java servlets, and Java applications.

A Java applet is a small application program that must be downloaded before it can be
run by a Java-enabled Web browser. Java applets reside on a Web server. When the Web
server returns an HTML page that points to a Java applet, the Java-enabled Web browser
requests the applet to be downloaded. After the applet is received at the browser, either
the browser starts the applet internally or an external JVM executes it.

EIS Tier Client Tier

Java
Stand-alone
Run Time

Database

Web Tier

JSP
Pages

Browser

Business Tier

Servlets

Enterprise
JavaBeans

Business
Components
for Java

Java
Application

Pure
HTML

Applet

Figure 5.3 A sample J2EE implementation

Mullins_Book.indb 196 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Application Development and SQL 197

Applets typically perform simple operations, such as editing input data or controlling
screen interaction, and provide other client functionality. Of course, Java applets can be
written to perform more complex functionality, but to load and run non-Java code in the
client requires signed applets, which have the authority needed to run code in the client
machine.

Performance problems can arise because Java applets must be downloaded before
they can be run. The time to download the applet must be factored into its service levels. In
general, Java applets are small, so the performance impact should be negligible. Neverthe-
less, even small downloads can be slow if there are network problems. Java applets can be
cached by the Web browser, which diminishes the performance impact.

A Java servlet is basically server-side Java. A Java servlet runs on the Web server, just as
an applet runs in the Web browser. Java servlets can be used to extend the functionality
of the Web server. The Web server hands requests to the servlet, and the servlet replies to
them. Servlets can be used instead of CGI applications.

Java servlets have security advantages over client-side Java applets. A servlet that runs
on a Web server inside a firewall can control access to sensitive data and business logic.
Java applets do not inherently provide these security capabilities.

A Java application program is basically the same as a program written in any other
programming language. It can perform all of the tasks normally associated with programs,
including many tasks that Java applets cannot perform. Furthermore, a Java application
does not need a browser to be executed. It can be executed in a client or server machine.

Before choosing which Java development style to use, you must know the basics of the
environment in which the program will be run. Ask the following questions when deciding
what type of Java program is required for your development needs:

• How will the program be executed? Must it run over the Internet, as an intranet or
extranet application, or merely as a stand-alone application?

• What is the business logic that this program must perform?

• How complicated is the program?

• How large (or small) is the program, and can it be quickly downloaded?

• What are the security requirements?

• Who are the target users and at what speed will they be connected to the Web?

Java applications, Java applets, and Java servlets are similar in nature, but a different
method is used to invoke each of them. Java applets and servlets are started from an HTML
page. Java applications do not require a Web component but can be used as part of an
intranet solution.

Mullins_Book.indb 197 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

198 Chapter 5 Application Design

.NET versus J2EE
There is an ongoing debate as to the relative merits of .NET versus the J2EE
platform. In reality, it is not an “either/or” decision that organizations are
making, but a “both/and” decision. Although both are development plat-
forms, the two are not interchangeable.

At a very basic level, .NET is a platform designed to enable development
in multiple languages as long as the application is deployed on Windows. On
the other hand, J2EE is designed to enable applications to be deployed on any
platform as long as they are written in Java.2 Obviously, an organization may
choose to develop different application systems using different methodologies
and platforms, depending upon deployment and implementation requirements.

Another difference is that .NET is software that can be purchased from
Microsoft. J2EE is a set of specifications (managed by Oracle, formerly Sun
Microsystems), each of which dictates how various J2EE functions must
operate. IBM’s WebSphere Application Server is an example of software
that implements J2EE. Oracle makes money from J2EE not only by selling
J2EE software, but also by licensing the J2EE specifications to independent
software vendors, which then implement software according to the specs.

The bottom line is that both .NET and J2EE can be used to build Web
services. A Web service is an application that accepts requests from other
systems across the Internet (or an intranet), mediated by lightweight, ven-
dor-neutral communications technologies. Web services enable applica-
tions to share data and invoke capabilities from other applications without
knowledge of how those other applications were built, what operating sys-
tem or platform they run on, and what devices are used to access them.

Ruby on Rails
Ruby on Rails is an open-source Web application framework for the Ruby
programming language. Ruby on Rails includes tools that make common
development tasks easier and is an additional application development
framework, similar to but separate from both .NET and J2EE.

Truly, an entire book could be dedicated to the different framework
options available for modern application development. But this is a book
about database administration, so the cursory overview provided in this
section should be sufficient.

2. There are options for deploying .NET applications on other operating systems, one
of which is Mono (http://www.go-mono.com/mono-downloads/download.html).

Mullins_Book.indb 198 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Application Development and SQL 199

Object Orientation and SQL

Many organizations have adopted object-oriented (OO) programming stan-
dards and languages because of the claimed advantages of the OO devel-
opment paradigm. The primary advantages of object orientation are faster
program development time and reduced maintenance costs, resulting in a
better ROI. Piecing together reusable objects and defining new objects based
on similar object classes can dramatically reduce development time and costs.

With benefits like these, it is no wonder that object-oriented program-
ming and development is being embraced by many IT organizations. Histor-
ically, one of the biggest problems faced by IT is a large project backlog. In
many cases, end users are forced to wait for long periods of time for new
applications because the backlog is so great and the talent needed to tackle
so many new projects is not available. This backlog can sometimes result
in some unsavory phenomena such as business people attempting to build
their own applications or purchasing third-party packaged applications
(and all of the potential administrative burdens that packages carry). So, it
is very clear why the OO siren song lures organizations.

However, because OO and relational databases are not inherently com-
patible, OO programmers tend to resist using SQL. The set-based nature of
SQL is not simple to master and is anathema to the OO techniques prac-
ticed by Java and C++ developers. All too often insufficient consideration
has been given to the manner in which data is accessed, resulting in poor
design and faulty performance.

Object orientation is indeed a political nightmare for those schooled in
relational tenets. All too often organizations experience political struggles
between OO programming proponents and the data resource management
group. The OO crowd espouses programs and components as the center of
the universe; the data crowd adheres to normalized, shared data with the
RDBMS as the center of the universe.

Thanks to the hype surrounding object orientation, the OO crowd
may win many of these battles, but data-centered thinking will eventually
win the war. The use of data normalization and shared databases to reduce
redundancy provides far too many benefits in the long run for it ever to
be abandoned. Data has an existence independent of process, and the OO
way of encapsulating data within methods masks data from other processes
and is inefficient for sharing data across an organization. If the focus shifts

Object orientation
can result in a better
ROI.

Mullins_Book.indb 199 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

200 Chapter 5 Application Design

away from data management and sound relational practices, data quality
will deteriorate and productivity will decline.

If an OO programming language is to be used against a relational database,
you will need to marry the relational world to the OO world. This means your
applications will not be object oriented in the true sense of the word because
the data will not be encapsulated within the method (that is, the program).

There are several techniques that can be used to enable an OO pro-
gramming language to work with a relational database. Serialization, saving
data using a flat file representation of the object, is one approach. Because it
can be slow and difficult to use across applications, serialization is not com-
monly used for persisting object data. A second approach is to use XML,
which can be stored natively in many relational database systems. However,
XML adds a layer of complexity and requires an additional programming
skill set. XML is discussed in more detail later in this chapter.

Probably the most common technique is to deploy an ORM (object-
relational mapping) solution. Through ORM, an object’s attributes are
stored in one or more columns of a relational table. Hibernate is a popular
ORM library for Java. NHibernate is an adaptation of Hibernate for the .NET
framework. Both Hibernate and NHibernate provide capabilities for map-
ping objects to a relational database by replacing direct persistence-related
database accesses with high-level object-handling functions. Another option
is Microsoft LINQ, which stands for Language Integrated Query. LINQ pro-
vides a set of .NET framework and language extensions for object-relational
mapping.

One additional word of caution here: Many people believe that object-
relational databases resolve all of these issues. But an object-relational
database is not truly object oriented. The term object-relational means
basically that the DBMS supports large multimedia data types and gives
users the ability to define their own data types and functions—all good
things, but not object orientation. So don’t get confused over the similarity
of the terms.

Types of SQL

SQL, although a single language, comprises multiple types that exhibit dif-
ferent behavioral characteristics and require different development and
administration techniques. SQL can be broken down into categories based
on execution type, program requirement, and dynamism.

You will need to
marry the relational
world to the OO
world.

Mullins_Book.indb 200 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Application Development and SQL 201

• SQL can be planned or unplanned. A planned SQL request is typi-
cally embedded into an application program, but it might also exist
in a query or reporting tool. At any rate, a planned SQL request is
designed and tested for accuracy and efficiency before it is run in
a production system. Contrast this with the characteristics of an
unplanned SQL request. Unplanned SQL, also called ad hoc SQL, is
created “on the fly” by end users during the course of business. Most
ad hoc queries are created to examine data for patterns and trends
that impact business. Unplanned, ad hoc SQL requests can be a sig-
nificant source of inefficiency and are difficult to tune. How do you
tune requests that are constantly written, rewritten, and changed?

• SQL can either be embedded in a program or issued stand-
alone. Embedded SQL is contained within an application program,
whereas stand-alone SQL is run by itself or within a query, report-
ing, or OLAP tool.

• SQL can be dynamic or static. A dynamic SQL statement is opti-
mized at run time. Depending on the DBMS, a dynamic SQL state-
ment may also be changed at run time. Static SQL, on the other
hand, is optimized prior to execution and cannot change without
reprogramming. Favor static SQL to minimize the possibility of SQL
injection attacks (see the sidebar “SQL Injection”).

Programmers must be able to quantify each SQL statement being devel-
oped in terms of these three qualities. Every SQL statement exhibits one of
these properties for each criterion. For example, a certain SQL statement
can be a planned, embedded, static request, or it could be an unplanned,
stand-alone, dynamic request. Be sure to use the right type of SQL for the
right situation. Table 5.2 outlines situations and the type of SQL that is most

SQL can be planned
or unplanned,
embedded in a
program or stand-
alone, dynamic or
static.

SQL Injection

A common form of hack against Web-exposed applications using SQL to access data is the
SQL injection attack. Properly designed applications can thwart SQL injection attacks.

A SQL injection attack inserts SQL statements in the fields of a Web form to cause a
poorly designed Web application to expose database content to the attacker. Refer to Chap-
ter 14, “Database Security,” for an in-depth discussion of SQL injection and how to combat it.

Mullins_Book.indb 201 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

202 Chapter 5 Application Design

useful for that situation. Of course, the information in this table is meant to
serve as a broad suggestion only. You should use your knowledge of your
environment and the requirements of the user request to arrive at the cor-
rect type of SQL solution.

SQL Coding for Performance

Developing database application programs requires a good amount of effort
to ensure that SQL requests are properly coded for performance. A solid
understanding of SQL syntax, database structures, and the programming
language is imperative. Let’s concentrate first on SQL.

One of the first rules to learn as a database developer is to let SQL,
rather than the program logic, do the work. It is much better to filter out
unwanted data at the DBMS level than to do so within the program. You’ll
achieve better efficiency by avoiding the actual movement of data between
the DBMS and the program. For example, it is better to add more WHERE
clauses to SQL SELECT statements than to simply select all rows and filter
the data programmatically.

To use another example, consider the cost of a multitable join state-
ment. It will be easier to tune, say, a four-table join for efficiency than four
independent SQL SELECT statements that are filtered and joined using
application logic. Of course, this assumes an optimal physical database and
the possibility of having to tweak that design (such as by adding indexes).

The more work the DBMS can do to filter data, the greater the effi-
ciency should be, because less data will need to be moved between the

Let SQL do the
work.

Table 5.2 SQL Usage Considerations

Situation
Execution
Type

Program
Requirement Dynamism

Columns and predicates of
the SQL statement can change
during execution

Planned Embedded Dynamic

SQL formulation does not change Planned Embedded Static

Highly concurrent, high-perfor-
mance transactions

Planned Embedded Dynamic or static

Ad hoc one-off queries Unplanned Stand-alone Dynamic

Repeated analytical queries Planned Embedded or stand-alone Dynamic or static

Quick one-time “fix” programs Unplanned Embedded or stand-alone Dynamic or static

Mullins_Book.indb 202 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Database Application Development and SQL 203

DBMS and the application program as it runs. Of course, there is much
more to optimizing and tuning SQL than this short discussion of the matter.
More details are covered in Chapter 12, “Application Performance.”

Querying XML Data

These days, not all data stored in the database will be relational. XML is
gaining popularity for persisting complex data and is frequently used in
Web-enabled applications and as a means of data transmission. All of the
leading DBMS products provide means of storing and managing XML data.3

XML stands for Extensible Markup Language. You may be familiar with
HTML, the markup language used to create Web pages. Like HTML, XML is
based upon SGML (Standard Generalized Markup Language). SGML is a lan-
guage for defining markup languages; it was developed and standardized
by the International Organization for Standardization (ISO).

Whereas HTML uses tags to describe how data appears on a Web page,
XML is designed to transport and store data. In other words, XML is some-
what self-describing. It uses tags to describe the what, that is, the data
itself. The simple syntax of XML makes it easy to process by machine while
remaining understandable to people. Once again, let’s use HTML as a met-
aphor to help us understand XML. HTML uses tags to describe the appear-
ance of data on a page. For example the tag “text” would specify that the
“text” data should appear in boldface. XML uses tags to describe the data
itself, instead of its appearance. For example, consider the following XML
describing a customer address:

<CUSTOMER>
 <first_name>Craig</first_name>
 <middle_initial>S.</middle_initial>
 <last_name>Mullins</last_name>
 <company_name>Mullins Consulting, Inc.</company_name>
 <street_address>15 Coventry Ct.</street_address>
 <city>Sugar Land</city>
 <state>TX</state>
 <zip_code>77479</zip_code>
 <country>USA</country>
</CUSTOMER>

3. For more details and specifics regarding XML, refer to the following Web sites:
www.xml.org and www.w3.org/XML/.

XML uses tags to
describe the data
itself.

Mullins_Book.indb 203 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

204 Chapter 5 Application Design

XML is actually a meta-language—that is, a language for defining other
markup languages. These languages are collected in dictionaries called
Document Type Definitions (DTDs). The DTD stores definitions of tags
for specific industries or fields of knowledge. Instead of a DTD, an XML
schema could be employed for the same purpose.

When data is stored as XML, it cannot be accessed using standard SQL.
Instead, it requires either XQuery or SQL/XML extensions.

XQuery
XQuery is a query and programming language designed to query collec-
tions of XML data. XQuery uses XPath expression syntax to address specific
parts of an XML document. It supplements this with a SQL-like “FLWOR
expression” for performing joins. A FLWOR expression is constructed from
the five clauses after which it is named:

• FOR

• LET

• WHERE

• ORDER BY

• RETURN

The XQuery language is not just for querying; it also allows for new
XML documents to be constructed. However, there are no features in
XQuery for updating XML documents or databases. It also does not provide
full text search capability. Over time, expect these shortcomings to be rem-
edied, though.

In short, XQuery is a programming language that can be used to express
arbitrary XML-to-XML data transformations with strong typing and logical/
physical data independence.

SQL/XML
SQL/XML is an extension to the SQL standard that specifies SQL-based
extensions for using XML in conjunction with SQL. At a high level, it offers
an XML data type along with new routines, functions, and XML-to-SQL data
type mappings to support accessing and manipulating XML in SQL data-
bases. SQL/XML is developed to be complementary to XQuery.

Mullins_Book.indb 204 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Defining Transactions 205

At the heart of the SQL/XML specification are the functions that allow
users to access, modify, and construct XML elements or attributes. Exam-
ples of these functions include XMLDOCUMENT (which returns an XML
value with a single document node and zero or more nodes as its children),
XMLCONCAT (which returns a forest of XML elements generated from a
concatenation of two or more elements), XMLELEMENT (which returns an
XML element given an element name, an optional collection of attributes,
and zero or more arguments that make up the contents of the element),
XMLAGG (which returns an XML sequence that contains an item for each
non-null value in a set of XML values), among many others.

SQL/XML also defines functions that allow the user to embed XQuery
expressions in SQL statements and to convert complex data types. These
functions include XMLQUERY and XMLTABLE.

Defining Transactions
A transaction is an atomic unit of work with respect to recovery and consis-
tency. A logical transaction performs a complete business process typically
on behalf of an online user. It may consist of several steps and may comprise
more than one physical transaction. The results of running a transaction will
record the effects of a business process—a complete business process. The
data in the database must be correct and proper after the transaction executes.

When all the steps that make up a specific transaction have been accom-
plished, a COMMIT is issued. The COMMIT signals that all work since the
last COMMIT is correct and should be externalized to the database. At any
point within the transaction, the decision can be made to stop and roll
back the effects of all changes since the last COMMIT. When a transaction
is rolled back, the data in the database will be restored to the original state
before the transaction was started. The DBMS maintains a transaction log
(or journal) to track database changes.

Transactions exhibit ACID properties. ACID is an acronym for atomic-
ity, consistency, isolation, and durability. Each of these four qualities is
necessary for a transaction to be designed correctly.

• Atomicity means that a transaction must exhibit “all or nothing”
behavior. Either all of the instructions within the transaction hap-
pen, or none of them happen. Atomicity preserves the “complete-
ness” of the business process.

A transaction is
an atomic unit of
work with respect
to recovery and
consistency.

Mullins_Book.indb 205 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

206 Chapter 5 Application Design

• Consistency refers to the state of the data both before and after the
transaction is executed. A transaction maintains the consistency of
the state of the data. In other words, after a transaction is run, all
data in the database is “correct.”

• Isolation means that transactions can run at the same time. Any
transactions running in parallel have the illusion that there is no
concurrency. In other words, it appears that the system is running
only a single transaction at a time. No other concurrent transaction
has visibility to the uncommitted database modifications made by
any other transactions. To achieve isolation, a locking mechanism is
required.

• Durability refers to the impact of an outage or failure on a running
transaction. A durable transaction will not impact the state of data if
the transaction ends abnormally. The data will survive any failures.

Let’s use an example to better understand the importance of transactions
to database applications. Consider a banking application. Assume that you
wish to withdraw $50 from your account with Mega Bank. This “business
process” requires a transaction to be executed. You request the money either
in person by handing a slip to a bank teller or by using an ATM (automated
teller machine). When the bank receives the request, it performs the follow-
ing tasks, which make up the complete business process. The bank will

 1. Check your account to make sure you have the necessary funds to
withdraw the requested amount

 2. If you do not, deny the request and stop; otherwise continue
processing

 3, Debit the requested amount from your checking account

 4. Produce a receipt for the transaction

 5. Deliver the requested amount and the receipt to you

The transaction that is run to perform the withdrawal must complete
all of these steps, or none of these steps, or else one of the parties in the
transaction will be dissatisfied. If the bank debits your account but does
not give you your money, you will not be satisfied. If the bank gives you
the money but does not debit the account, the bank will be unhappy. Only

Design transactions
that ensure ACID
properties.

Mullins_Book.indb 206 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Defining Transactions 207

the completion of every one of these steps results in a “complete business
process.” Database developers must understand the requisite business pro-
cesses and design transactions that ensure ACID properties.

To summarize, a transaction—when executed alone, on a consistent
database—will either complete, producing correct results, or terminate,
with no effect. In either case the resulting condition of the database will be
a consistent state.

Transaction Guidelines

A transaction should be short in duration because it locks shared resources.
Of course, “short” will vary from system to system. A short transaction in a
very large system handling multiple thousands of transactions per second
will most likely be measured in subseconds.

At any rate, transactions must be designed to remove the human element
of “think time” from the equation. When a transaction locks resources, it
makes those resources inaccessible to other transactions. Therefore, a good
transaction must be designed so that it does not wait for user input in the
middle of the processing.

Unit of Work

Unit of work (UOW) is another transaction term that describes a physical
transaction. A UOW is a series of instructions and messages that, when exe-
cuted, guarantee data integrity. So a UOW and a transaction are similar in
concept. However, a UOW is not necessarily a complete business process—
it can be a subset of the business process, and a group of units of work can
constitute a single transaction.

Each UOW must possess ACID characteristics. In other words, if the
transaction were to fail, the state of the data upon failure must be consis-
tent in terms of the business requirements.

Transaction Processing Systems

A transaction processing (TP) system, appropriately enough, facilitates the
processing of transactions. Such a system is sometimes referred to as a trans-
action server or a transaction processing monitor. Regardless of name, a
TP system delivers a scheme to monitor and control the execution of trans-
action programs. The TP system also provides an API—a mechanism for

A transaction should
be short in duration.

A UOW is a series
of instructions and
messages that guar-
antee data integrity.

A TP system delivers
a scheme to monitor
and control the exe-
cution of transaction
programs.

Mullins_Book.indb 207 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

208 Chapter 5 Application Design

programs to interact and communicate with the TP server. Examples of TP
systems include CICS, IMS/TM, Tuxedo, and Microsoft Transaction Server.

The TP system provides an environment for developing and executing
presentation logic and business logic components. A TP system is useful for
mission-critical applications requiring a high volume of concurrent users
with minimal downtime. Used properly, a TP system can efficiently con-
trol the concurrent execution of many application programs serving large
numbers of online users. Another major benefit of some TP systems is their
ability to ensure ACID properties across multiple, heterogeneous databases.
This is accomplished using a two-phase COMMIT, where the TP system
controls the issuance of database commits and ensures their satisfactory
completion. If your application requires online access and modification of
heterogeneous databases, a TP system is recommended.

A transaction server is ideal for building high-performance and reliable
distributed applications across heterogeneous environments. A TP system
can support the diverse application requirements of front-end e-commerce
applications as well as the robust needs of back-office processes. When plat-
form independence is crucial, a TP system can help developers to success-
fully develop, manage, and deploy online applications that are completely
independent of the underlying communications, hardware, and database
environment.

Of course, a TP system is not required in order to develop database
transactions for every application. The DBMS itself can deliver ACID prop-
erties for the data it manages. Yet even in a single-DBMS environment, a
TP system can provide development benefits. Take a look at Figure 5.4. It
shows the typical application setup: a database server without a TP system.

Presentation
(Client)

Stored
Procedures
Relational

DBMS

Disk

Figure 5.4 Using a database server

Mullins_Book.indb 208 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Defining Transactions 209

Requests are made by the client through the presentation layer to the data-
base server (DBMS). The client can make data requests directly of the data-
base server, or the client may execute stored procedures to run application
logic on the database server.

Now let’s compare Figure 5.4 with Figure 5.5, which shows an appli-
cation using a TP system. Database requests are run within the TP system,
which helps to control the transaction workflow. Furthermore, the TP sys-
tem enables the application to make requests of multiple heterogeneous
databases and to coordinate database modifications.

If your database applications use a TP system, the DBA should work
with the system administrator to ensure that the DBMS and the TP system
are set up to work with each other in an efficient manner. Furthermore,
both the DBA and the SA will need to monitor the interaction between the
DBMS and the TP system on an ongoing basis.

Application Servers

A more recent type of middleware for serving database transactions is the
application server. An application server usually combines the features
of a transaction server with additional functionality to assist in building,

Ensure that the
DBMS and the TP
system are set up to
work together in an
efficient manner.

Presentation
(Client)

Workflow
Controller

Transaction
Server

Relational
DBMS 1

Relational
DBMS 2

DiskDisk

Figure 5.5 Using a transaction server

Mullins_Book.indb 209 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

210 Chapter 5 Application Design

managing, and distributing database applications. An application server,
such as IBM’s WebSphere, provides an environment for developing and
integrating components into a secure, performance-oriented application.

Other examples of application servers include Zend Server (for PHP-
based applications), Base4 Application Server (open source), and TNAPS
Application Server (freeware).

There are several advantages of using an application server. When busi-
ness logic is centralized on an application server, application updates will
apply to all users. The risk of having old versions of the application is elimi-
nated. Furthermore, changes to the application configuration, such as mov-
ing a database server, can occur centrally and thereby apply to all users at
the same time. Additionally, an application server can act as a central point
for application security.

Application servers also serve many of the purposes of a transaction
server, such as the delivery of transaction support, whereby a unit of work
can be made atomic and indivisible.

Locking
Every programmer who has developed database programs understands the
potential for concurrency problems. When one program tries to read data
that is in the process of being changed by another program, the DBMS must
prohibit access until the modification is complete, in order to ensure data
integrity. The DBMS uses a locking mechanism to enable multiple, concur-
rent users to access and modify data in the database. By using locks, the
DBMS automatically guarantees the integrity of data. The DBMS locking
strategies permit multiple users from multiple environments to access and
modify data in the database at the same time.

Locks are used to ensure the integrity of data. When a database resource
is locked by one process, another process is not permitted to change the
locked data. Locking is necessary to enable the DBMS to facilitate the ACID
properties of transaction processing.

Data may be locked at different levels within the database. It is the
DBA’s job to determine the appropriate level of locking for each database
object, based on how the data will be accessed and to what extent concur-
rent users will access the data. Theoretically, database locks can be taken at
the following levels:

With an application
server, application
changes are made
centrally, thereby
reducing risk.

Locks are used to
ensure the integrity
of data.

Mullins_Book.indb 210 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Locking 211

• Column

• Row

• Page (or block)

• Table

• Tablespace

• Database

The level of locking is known as lock granularity. The actual lock gran-
ularity levels available will depend on the DBMS in use. Typically the lock
granularity is controlled by the DBA when the database object is created,
but there may be an overall default lock granularity that is used if none is
specified. Nevertheless, it is a good practice for DBAs always to specify the
lock granularity when database objects are created.

The lock granularity specification should be based on the needs of the
applications and users that will be accessing and changing the data. In gen-
eral, the smaller the granularity of the lock, the more concurrent access
will be allowed, as shown in Figure 5.6. However, the smaller the granu-
larity of the lock, the more resources the DBMS will need to consume to
perform locking.

The smallest unit that can conceivably be locked is a single column;
the largest lock size is the entire database. Neither of these two options is
really practical. Locking individual columns would maximize the ability to

Granularity of Lock

A
c
c
e
s
s
 C

o
n

c
u

rr
e
n

c
y

Column Row Page Table Tablespace

High

Low

Database

 Figure 5.6 Lock granularity and concurrent access

Mullins_Book.indb 211 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

212 Chapter 5 Application Design

concurrently update data, but it would require too much overhead. Con-
versely, locking the database would be cheap to implement, but it would
restrict concurrency to the point of making the database worthless for any-
body but a single user.

Most database implementations choose between row and page locking.
For many applications, page locking is sufficient. However, applications
needing many concurrent update processes may benefit from the smaller
granularity of row locking. Very infrequently, when a specific process will
be run when no other concurrent access is needed, table locking can be
useful. For this reason many DBMS products provide a LOCK TABLE com-
mand that can be issued to override the current locking granularity for a
database object during the course of a single process or UOW. The DBA
must analyze the application processing requirements for each database
object to determine the optimal locking granularity.

Index entries can also be locked, depending on the DBMS and version
in use. However, index locking can be a significant impediment to perfor-
mance. Because index entries are usually quite small, it is not uncommon
for locking to block application access—especially when the DBMS locks
indexes at the block or page level. Some DBMSs do not require index locks,
instead handling integrity by using locks on the data. Remember, there is
no data in the index that is not also in a table.

The exact nature of locking and the types of locks taken will differ
from DBMS to DBMS. This section will cover the basics of locking that are
generally applicable to most DBMS products.

Types of Locks

At a very basic level, a DBMS will take a write lock when it writes informa-
tion or a read lock when it reads information. A write occurs for INSERT,
UPDATE, and DELETE statements. A read occurs for SELECT statements.
But to actually accomplish such locking, the typical DBMS will use three
basic types of locks: shared locks, exclusive locks, and update locks.

• A shared lock is taken by the DBMS when data is read with no
intent to update it. If a shared lock has been taken on a row, page,
or table, other processes or users are permitted to read the same
data. In other words, multiple processes or users can have a shared
lock on the same data.

Most database
implementations
choose between
row and page
locking.

Index locking can
be a significant
impediment to
performance.

Mullins_Book.indb 212 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Locking 213

• An exclusive lock is taken by the DBMS when data is modified. If
an exclusive lock has been taken on a row, page, or table, other
processes or users are generally not permitted to read or modify the
same data. In other words, multiple processes or users cannot have
an exclusive lock on the same data.

• An update lock is taken by the DBMS when data must first be read
before it is changed or deleted. The update lock indicates that the
data may be modified or deleted in the future. If the data is actually
modified or deleted, the DBMS will promote the update lock to an
exclusive lock. If an update lock has been taken on a row, page, or
table, other processes or users generally are permitted to read the
data, but not to modify it. So a single process or user can have an
update lock while other processes and users have shared locks on
the same data. However, multiple processes or users cannot have
both an exclusive lock and an update lock, or multiple update locks,
on the same data.

Intent Locks
In addition to shared, exclusive, and update locks, the DBMS also will take
another type of lock, known as an intent lock. Intent locks are placed on
higher-level database objects when a user or process takes locks on the data
pages or rows. An intent lock stays in place for the life of the lower-level
locks.

For example, consider a table created with row-level locking. When a
process locks the row, an intent lock is taken on the table. Intent locks are
used primarily to ensure that one process cannot take locks on a table, or
pages in the table, that would conflict with the locking of another process.
For example, if a user was holding an exclusive row lock and another user
wished to take out an exclusive table lock on the table containing the row,
the intent lock held on the table by the first user would ensure that its row
lock would not be overlooked by the lock manager.

Lock Time-outs

When data is locked by one process, other processes must wait for the lock
to be released before processing the data. A lock that is held for a long time
has the potential to severely degrade performance because other processes

An intent lock stays
in place for the life
of the lower-level
locks.

Mullins_Book.indb 213 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

214 Chapter 5 Application Design

must wait until the lock is released and the data becomes available. Further-
more, if the application is designed improperly or has a bug, the blocking
lock may not be released until the program fails or the DBA intervenes.

The locking mechanism of the DBMS prevents processes from wait-
ing forever for a lock to be released by timing out. Each DBMS provides a
parameter to set a lock time-out value. Depending on the DBMS, the lock
time-out value might be set at the DBMS level, the process level, or the
connection level. Regardless of the level, after a process waits for the prede-
termined amount of time for a lock to be granted, the process will receive
an error message informing it that the time-out period has been exceeded.
Such an approach assumes that a problem occurs after a certain amount of
time is spent waiting for a lock. Time-outs prevent a process from waiting
indefinitely for locks—the rationale being that it is better for a process to
give up and release its locks than to continue to wait and perhaps block
other processes from running.

It is usually a good practice for programs to retry an operation when
a lock time-out error is received. If multiple lock time-outs occur for the
same operation, the program should log the problem and inform the user
that it cannot proceed.

Deadlocks

Another locking problem that can occur is deadlocking. A deadlock occurs
when concurrent processes are competing for locks. Figure 5.7 shows a
deadlock situation. Process A holds a lock on row 3 and is requesting a lock
on row 7; process B holds a lock on row 7 and is requesting a lock on row 3.

The deadlock is a specific type of lock time-out. It occurs when one
process holds a lock that another process is requesting at the same time the
second process holds a lock that the first process is requesting. This is also
known as a “deadly embrace.” The DBMS will choose one of the processes
to abort and roll back so the other process can continue.

As with time-outs, it is a good practice for programs to retry an opera-
tion when a deadlock error is received. If multiple deadlocks occur for the
same operation, the program should log the problem and inform the user
that it cannot proceed.

If deadlocks are a persistent problem, application or database design
changes may be warranted. One technique is to consider changing the lock

A deadlock occurs
when concurrent
processes are com-
peting for locks.

Mullins_Book.indb 214 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Locking 215

granularity (perhaps from page to row) so that less data is locked for each
lock request. Another technique is to make application changes. You might
rewrite the program to lock all required resources at the beginning of the
transaction. However, such a technique is not likely to be possible for most
applications. A final method of avoiding deadlocks is to ensure that all data-
base modifications occur in the same order for all programs in your shop. If
the updates in every program are sequenced, deadlocks can be minimized
or eliminated. Perhaps you’ll find a logical business order for updates that is
reasonable to use for applications. If you don’t, consider using an arbitrary
policy such as modification in alphabetical order.

Lock Duration

Lock duration refers to the length of time that a lock is held by the DBMS.
The longer a lock is held on a database resource, the longer a concurrent
lock request must wait to be taken. As lock durations increase, so does the
likelihood of lockout time-outs.

Each DBMS provides parameters that can be set to impact the duration
of a lock. Typically these parameters are set at the program, transaction, or
SQL statement level. In general, there are two parameters that affect lock
duration: isolation level and acquire/release specification.

Lock duration refers
to the length of time
that a lock is held by
the DBMS.

Process A is waiting on Process B. Process B is waiting on Process A.

data…data…data…

data…data…data…

.

.

.
Request Row 3

.

.

.

.
Request Row 7

.

.

.
Request Row 7

.

.

.
Request Row 3

Process A

Table X

Process B

lock

lock

 Figure 5.7 A deadlock situation

Mullins_Book.indb 215 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

216 Chapter 5 Application Design

Isolation Level
The isolation level specifies the locking behavior for a transaction or state-
ment. Standard SQL defines four isolation levels that can be set using the
SET TRANSACTION ISOLATION LEVEL statement:

• UNCOMMITTED READ

• COMMITTED READ

• REPEATABLE READ

• SERIALIZABLE

The preceding list progresses from lowest to highest isolation. The higher
the isolation level, the stricter the locking protocol becomes. The lower the
isolation level, the shorter the lock duration will be. Additionally, each higher
isolation level is a superset of the lower levels. Let’s briefly examine each of
the standard isolation levels.

Specifying UNCOMMITTED READ isolation implements read-through
locks and is sometimes referred to as a dirty read. It applies to read oper-
ations only. With this isolation level, data may be read that never actually
exists in the database, because the transaction can read data that has been
changed by another process but is not yet committed. UNCOMMITTED
READ isolation provides the highest-level availability and concurrency
of the isolation levels, but the worst degree of data integrity. It should be
used only when data integrity problems can be tolerated. Certain types
of applications, such as those using analytical queries, estimates, and aver-
ages, are often candidates for UNCOMMITTED READ locking. A dirty read
can cause duplicate rows to be returned where none exist, or no rows to
be returned when one (or more) actually exists. When choosing UNCOM-
MITTED READ isolation, the programmer and DBA must ensure that these
types of problems are acceptable for the application. Refer to the sidebar
“Dirty Read Scenarios” for additional guidance on when to consider using
UNCOMMITTED READ isolation.

COMMITTED READ isolation, also called cursor stability, provides
more integrity than UNCOMMITTED READ isolation. When READ COM-
MITTED isolation is specified, the transaction will never read data that is
not yet committed; it will only COMMITTED READ data.

The isolation level
specifies the locking
behavior for a trans-
action or statement.

Mullins_Book.indb 216 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Locking 217

REPEATABLE READ isolation places a further restriction on reads,
namely, the assurance that the same data can be accessed multiple times
during the course of the transaction without its value changing. The lower
isolation levels (UNCOMMITTED READ and COMMITTED READ) permit
the underlying data to change if it is accessed more than once. Use REPEAT-
ABLE READ isolation only when data can be read multiple times during the
course of the transaction and the data values must be consistent.

Dirty Read Scenarios

When is using UNCOMMITTED READ isolation appropriate? The general recommendation
is to avoid it if your results must be 100 percent accurate. For example, avoid dirty reads
when calculations must balance, when data is being retrieved to insert into another table,
or for mission-critical data where consistency and integrity are crucial.

Frankly, most database applications are not candidates for dirty reads. However, there
are specific situations where permitting uncommitted data to be read is beneficial.

One such situation is when accessing a reference, code, or lookup table that is very
static. Because the data is not volatile, an UNCOMMITTED READ would usually be no differ-
ent from using a stricter isolation level. For those rare occasions when the lookup codes are
being modified, the problems should be minimal for concurrent transactions.

When a transaction must perform statistical processing on a large amount of data, a
dirty read may be useful. For example, consider a transaction designed to return the aver-
age account balance for each type of account. The impact of using UNCOMMITTED READ
isolation is minimal because changing a single value should not have a significant impact
on the result. Because the result is an average of multiple values, one or perhaps a few
“bad” values are unlikely to change the average significantly.

Data warehousing queries are good candidates for dirty reads. A data warehouse is a
time-sensitive, subject-oriented store of business data that is used for analytical processing.
Other than periodic data propagation and/or replication, access to the data warehouse is
read only. An UNCOMMITTED READ can cause little damage because the data generally
does not change.

You might also consider using dirty read for those rare instances when a transaction
accesses a table, or set of tables, that is used by a single user only. If only one person
can modify the data, the application programs can be coded so that most reads can use
UNCOMMITTED READ isolation with no negative impact on data integrity.

Finally, if the data being accessed is already inconsistent, little harm can be done by
using a dirty read to access the information.

Mullins_Book.indb 217 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

218 Chapter 5 Application Design

Finally, SERIALIZABLE isolation provides the greatest integrity. SERI-
ALIZABLE isolation removes the possibility of phantoms. A phantom occurs
when the transaction opens a cursor that retrieves data and another pro-
cess subsequently inserts a value that would satisfy the request and should
be in the results set. For example, consider the following situation:

• Transaction 1 opens a cursor and reads account information, keep-
ing a running sum of the total balance for the selected accounts.

• Transaction 2 inserts a new account that falls within the range of
accounts being processed by Transaction 1, but the insert occurs
after Transaction 1 has passed the new account.

• Transaction 2 COMMITs the insert.

• Transaction 1 runs a query to sum the values to check the accuracy
of the running total. However, the totals will not match.

SERIALIZABLE isolation eliminates this problem. Phantoms can occur
for lower isolation levels, but not when the isolation level is SERIALIZABLE.

Most DBMS products support the specification of isolation level at the
program or transaction level, as well as at the SQL statement level.

Keep in mind that your DBMS may not implement all of these isolation
levels, or it may refer to them by other names. Be sure you understand the
isolation supported by each DBMS you use and its impact on application
behavior and lock duration.

Acquire/Release Specification
An additional parameter that impacts lock duration is the treatment of intent
locks. Regular transaction locks are taken as data is accessed and modified.
However, some DBMS products provide methods to control when intent
locks are taken. Intent locks can be acquired either immediately when the
transaction is requested or iteratively as needed while the transaction exe-
cutes. Furthermore, intent locks can be released when the transaction com-
pletes or when each intent lock is no longer required for a unit of work.

If the DBMS supports different options for the acquisition and release of
intent locks, the parameter will be specified at the transaction or program
level.

SERIALIZABLE iso-
lation provides the
greatest integrity.

Mullins_Book.indb 218 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Locking 219

Skipping Locked Rows
An additional locking option, available in some DBMSs,4 is the ability to
skip locked data. If you code a parameter specifying SKIP LOCKED DATA
on certain SQL statements, any data that is locked will simply be skipped
over instead of the DBMS waiting for the lock to be released.

This option should be used only sparingly and only with a full under-
standing of its impact. When you tell the DBMS to skip locked data, that
data is not accessed and will not be available to your program. The benefit,
of course, is improved performance because you will not incur any lock
wait time; however, it comes at the cost of not accessing the locked data.

You should use this feature sparingly and with extreme caution. Before
skipping locked data, make sure that you completely understand exactly
what you are telling the DBMS to do. It is very easy to misuse this feature
and wind up reading less data than you want.

Consider using this option in certain test environments, in a data ware-
house where data is read only, and possibly even in production under the
proper conditions. For example, perhaps you have a program that needs to
read from a table such as a queue to get a next number. If it is not imper-
ative that the numbers be sequential, skipping locked data can eliminate
bottlenecks by skipping any locked rows/pages to get data off of the queue.

Lock Escalation

If processing causes the DBMS to hold too many locks, lock escalation can
occur. Lock escalation is the process of increasing the lock granularity for
a process or program. When locks are escalated, more data is locked, but
fewer actual locks are required. An example of escalating a lock would be
moving from page locks to table locks. You can see where this would min-
imize the number of locks the DBMS needs to track—multiple page locks
for a table can be converted into a single lock on the entire table. Of course,
this impacts concurrent access because the process locks the entire table,
making it inaccessible to other processes.

The DBMS kicks off lock escalation based on preset thresholds. Typi-
cally, the DBMS will provide system parameters that can be set to custom-
ize the actual manner in which the DBMS escalates locks, or to turn off

4. For example, DB2 for z/OS.

Lock escalation
is the process of
increasing the lock
granularity for a pro-
cess or program.

Mullins_Book.indb 219 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

220 Chapter 5 Application Design

lock escalation. Also, the DBMS will provide DDL parameters for database
objects to indicate on an object-by-object basis whether escalation should
occur.

Some DBMSs, such as DB2 and Microsoft SQL Server, provide the capa-
bility to escalate locks, whereas others, such as Oracle, do not. However,
both DB2 and Microsoft SQL Server can escalate from page locks to table
locks or from row locks to table locks. Neither allows escalation from row
locks to table locks.

Programming Techniques to Minimize Locking Problems

We have learned that locking is required to ensure data integrity. If appli-
cation programs are not designed with database locking in mind, though,
problems can arise. Application developers must understand the impact of
locking on the performance and availability of their applications. If locks
are held too long, time-outs will make data less available. If applications
request locks in a disorganized manner, deadlocks can occur, causing fur-
ther availability problems.

Fortunately, though, there are development techniques that can be
applied to minimize locking problems. One such technique is to standard-
ize the sequence of updates within all programs. When the sequence of
updates is the same for all programs, deadlocks should not occur.

Another programming technique is to save all data modification
requests until the end of the transaction. The later modifications occur
in a transaction, the shorter the lock duration will be. From a logical per-
spective, it really does not matter where a modification occurs within a
transaction, as long as all of the appropriate modifications occur within the
same transaction. However, most developers feel more comfortable scat-
tering the data modification logic throughout the transaction in a pattern
that matches their concept of the processes in the transaction. Grouping
modifications such as INSERT, UPDATE, and DELETE statements and issu-
ing them near the end of the transaction can improve concurrency because
resources are locked for shorter durations.

Locking Summary

Database locking is a complex subject with more details than we have cov-
ered in this section. Each DBMS performs locking differently, and you will
need to study the behavior of each DBMS you use to determine how best

Standardize the
sequence of
updates within all
programs.

Mullins_Book.indb 220 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Batch Processing 221

to set locking granularity and isolation levels, and to program to minimize
time-outs and deadlocks.

Batch Processing
Most of the discussion in this chapter has centered around transaction pro-
cessing, which is usually assumed to be for online processes. However,
many database programs are designed to run as batch jobs with no online
interaction required. DBAs must be aware of the special needs of batch
database programs.

The first design concern for batch database programs is to ensure that
database COMMITs are issued within the program. Except for very trivial
programs that access small amounts of data, database COMMITs should be
issued periodically within a batch program to release locks. Failure to do so
can cause problems such as a reduction in availability for concurrent pro-
grams because a large number of locks are being held, or a large disruption
if the batch program aborts, because all the database modifications must be
rolled back.

Additionally, if a batch program with no COMMITs fails, all of the work
that is rolled back must be performed again when the problem is resolved
and the batch program is resubmitted for processing. A batch program with
COMMITs must be designed for restartability: The batch program must
keep track of its progress by recording the last successful COMMIT and
including logic to reposition all cursors to that point in the program. When
the program is restarted, it must check to see if it needs to reposition and,
if so, execute the repositioning logic before progressing.

Another problem that occurs frequently with batch database program
development is a tendency for developers to think in terms of file process-
ing, rather than database processing. This is especially true for mainframe
COBOL programmers who have never worked with database systems. Each
developer must be trained in the skills of database programming, includ-
ing SQL skills, set-at-at-time processing, and database optimization. The
responsibility for assuring that developers have these skills quite often falls
on the DBA.

Finally, batch programs typically are scheduled to run at predeter-
mined times. The DBA should assist in batch database job scheduling to
help minimize the load on the DBMS. Batch jobs that are long running and

Ensure that data-
base COMMITs are
issued within the
program.

Mullins_Book.indb 221 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

222 Chapter 5 Application Design

resource consuming should be scheduled during off-peak online transac-
tion processing hours.

Summary
Application design and development is the job of systems analysts and
application programmers. However, the DBA must be involved in the pro-
cess when programs are being written to access databases. Special skills
are required that can be difficult to master. The DBA must first understand
these skills and then work to transfer the knowledge to developers. This
is a continual job because new programmers are constantly being hired—
each with a different level of skill and degree of database experience. Fur-
thermore, DBMS products are constantly changing, resulting in additional
development options and features that need to be mastered.

Review
 1. Describe what the acronym ACID means and define each component.

 2. What is ORM and why would it be necessary for application
development?

 3. Why is locking required to assure data integrity?

 4. Describe the difference between CURSOR STABILITY and REPEAT-
ABLE READ isolation levels.

 5. Under what circumstance should an isolation level of UNCOMMITTED
READ be considered?

 6. Describe two application design techniques to minimize the impact of
locking on application performance.

 7. What does relational closure mean, and what is its significance in
application design?

 8. Describe, at a high level, what is required to embed SQL into an appli-
cation program written in a programming language like C or Visual
Basic.

 9. What is the difference between a lock time-out and a deadlock?

 10. What programming techniques can be used to minimize deadlocks
and why?

Mullins_Book.indb 222 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Suggested Reading 223

Bonus Question

Why might the order of database modifications within a transaction impact
deadlocks?

Suggested Reading
Anagol-Subbarao, Anjali. J2EE Web Services on BEA WebLogic. Upper

 Saddle River, NJ: Prentice Hall (2005). ISBN 0-13-143072-6.

Applequist, Daniel K. XML and SQL: Developing Web Applications.
 Boston, MA: Addison-Wesley (2002). ISBN 0-201-65796-1.

Bales, Donald. Java Programming with Oracle JDBC. Sebastopol, CA:
O’Reilly (2002). ISBN 0-596-00088-X.

Barcia, Roland, et al. Persistence in the Enterprise: A Guide to Persistence
Technologies. Upper Saddle River, NJ: IBM Press (2008).
ISBN 978-0-13-158756-4.

Beighley, Lynn, and Michael Morrison. Head First PHP & MySQL. Sebasto-
pol, CA: O’Reilly (2009). ISBN 978-0-596-00630-3.

Bernstein, Philip A., and Eric Newcomer. Principles of Transaction
Processing. San Francisco, CA: Morgan Kaufmann (1997). ISBN
1-55860-415-4.

Ceri, Stefano, et al. Designing Data-Intensive Web Applications. San Fran-
cisco, CA: Morgan Kaufmann (2003). ISBN 1-55860-190-2.

Date, C. J., with Hugh Darwen. A Guide to the SQL Standard. 4th ed.
Reading, MA: Addison-Wesley (1997). ISBN 0-201-96426-0.

Dix, Paul. Service-Oriented Design with Ruby and Rails. Boston, MA:
Addison-Wesley (2010). ISBN 978-0-321-65936-1.

Donahoo, Michael J., and Gregory D. Speegle. SQL: Practical Guide for
Developers. San Francisco, CA: Morgan Kaufmann (2005). ISBN
978-0-12-220531-6.

Fronckowiak, John W. Teach Yourself OLE DB and ADO in 21 Days.
Indianapolis, IN: SAMS Publishing (1997). ISBN 0-672-31083-X.

Garvin, Curtis, and Steve Eckols. DB2 for the COBOL Programmer
Part 1. 2nd ed. Fresno, CA: Mike Murach & Associates (1999). ISBN
1-890774-16-2.

Mullins_Book.indb 223 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

224 Chapter 5 Application Design

Garvin, Curtis, and Anne Prince. DB2 for the COBOL Programmer
Part 2. 2nd ed. Fresno, CA: Mike Murach & Associates (1999). ISBN
1-890774-03-0.

Gray, Jim, and Andreas Reuter. Transaction Processing: Concepts and
Techniques. San Francisco, CA: Morgan Kaufmann (1993). ISBN
1-55860-190-2.

Geiger, Kyle. Inside ODBC. Redmond, WA: Microsoft Press (1995). ISBN
1-55615-815-7.

Gulutzan, Peter, and Trudy Pelzer. SQL-99 Complete, Really. Lawrence,
KS: R&D Books (1999). ISBN 0-87930-568-1.

Harrington, Jan L. SQL Clearly Explained. 3rd ed. Burlington, MA: Morgan
Kaufmann (2010). ISBN 978-0-12-375697-8.

Jennings, Roger. Database Developer’s Guide with Visual Basic 6. India-
napolis, IN: SAMS Publishing (1999). ISBN 0-672-31063-5.

Jepson, Brian. Java Database Programming. New York, NY: John Wiley &
Sons (1997). ISBN 0-471-16518-2.

Kaute, Pierre Henri, Tobin Harris, Christian Bauer, and Gavin King.
NHibernate in Action. Greenwich, CT: Manning Publications (2009).
ISBN 978-1-932394-92-4.

Kline, Kevin, with Daniel Kline. SQL in a Nutshell. 3rd ed. Sebastopol,
CA: O’Reilly (2009). ISBN 978-0-596-51884-4.

Lewis, Philip M., Arthur Bernstein, and Michael Kifer. Databases and
Transaction Processing. Boston, MA: Addison-Wesley (2002). ISBN
0-201-70872-8.

Loosley, Chris, and Frank Douglas. High-Performance Client/Server.
New York, NY: John Wiley & Sons (1998). ISBN 0-471-16269-8.

Marguerie, Fabrice, Steve Eichert, and Jim Wooley. LINQ in Action. Green-
wich, CT: Manning Publications (2008). ISBN 978-1-933988-16-0.

Melton, Jim. Understanding SQL’s Stored Procedures: A Complete Guide
to SQL/PSM. San Francisco, CA: Morgan Kaufmann (1998). ISBN
1-55860-461-8.

Patrick, Tim. ADO.NET 4: Step by Step. Sebastopol, CA: Microsoft Press
(2010). ISBN 978-0-7356-3888-4.

Mullins_Book.indb 224 9/19/12 11:19 AM

IS
B

N
1-269-41465-8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

 Suggested Reading 225

Price, Jason. Java Programming with Oracle SQLJ. Sebastopol, CA:
O’Reilly (2001). ISBN 0-596-00087-1.

Pugh, Eric, and Joseph D. Gradecki. Professional Hibernate. Indianapolis,
IN: Wrox (2004). ISBN 0-7645-7677-1.

Reese, George. Java Database Best Practices. Sebastopol, CA: O’Reilly
(2003). ISBN 0-596-00522-9.

Rinehart, Martin. Java Database Development. Berkeley, CA: McGraw-Hill
(1998). ISBN 0-07-882356-0.

Sceppa, David. Programming Microsoft ADO.NET. Sebastopol, CA: Micro-
soft Press (2012). ISBN 978-0-7356-4801-2.

Syverson, Bryan. Murach’s SQL for SQL Server. Fresno, CA: Mike Murach
& Associates (2002). ISBN 1-890774-16-2.

Walmsley, Priscilla. XQuery. Sebastopol, CA: O’Reilly (2007). ISBN
978-0-596-00634-1.

Yank, Kevin. Build Your Own Database Driven Web Site Using PHP and
MySQL. 3rd ed. Collingwood, VIC, Australia: SitePoint (2004). ISBN
0-9752402-1-8.

Mullins_Book.indb 225 9/19/12 11:19 AM

IS
B

N
1-

26
9-

41
46

5-
8

Database Administration: The Complete Guide to DBA Practices and Procedures, Second Edition, by Craig S. Mullins. Published by Addison-Wesley Professional.
Copyright © 2013 by Pearson Education, Inc.

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

