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9


Simple Regression: Predicting  
One Variable From Another


Learning Objectives


After reading this chapter, you should be able to: 


• Develop the connection between correlation and prediction.


• Explain what is needed to fit a regression line.


• Predict a value based on the measure of a related variable.


 iStockphoto/Thinkstock
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Chapter Outline


9.1 The Language of Regression
Which Is the Predictor?
Picturing Regression
About Linearity
Coping With Less-Than-Perfect Correlations
Understanding the Least Squares Criterion


9.2 Ordinary Least Squares Regression With One Predictor
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9.3 Regression with Excel
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Regression to the Mean


9.4 The Requirements for Ordinary Least Squares Regression


Chapter Summary


Introduction


Predicting the future is a central requirement in business decision making. Managers use existing data to predict the future values of other variables of interest. For example, 
marketing data are used to predict future sales. Financial analysts and investors also use 
predictions. Financial ratios, for instance, are used to predict future stock prices. Although 
these predictions may not be perfectly accurate, they are usually more accurate than hap-
hazard, uninformed decision making. In statistics, if two variables are connected, the use 
of one variable to predict another yields better-than-chance estimates. Managers who use 
statistics to predict the variables they are interested in can make more educated guesses 
about the future, which can inform better decisions. 


Recall from Chapter 8 that when two variables are correlated, they co-vary, which means 
that they move together. Correlated variables share some variance, which means that they 
contain some of the same underlying characteristics and thus reflect some of the same 
information. For example, if organizational commitment and intentions to quit are cor-
related (of course negatively), it is because to some degree they both measure the same 
underlying characteristic of desire to identify with the organization. The more highly two 
variables are correlated, the greater the quantity of whatever is measured that the two 
variables have in common. 
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Also recall that the coefficient of determination (r2) indicates the proportion of one vari-
able that can be accounted for by the other. If organizational commitment and intentions 
to quit are correlated r 5 2.6, then r2 5 .36. The coefficient of determination tells us that 
36% of whatever turnover intentions measures can be explained by variations in orga-
nizational commitment. Another way to say this is that the coefficient of determination 
indicates how much information two correlated variables have in common.


If correlated variables share information, it seems logical that if we had information about 
the value of one of those variables, we could make a better-than-chance prediction of what 
the value of the other would be. For example:


• Because age and height are correlated for teenagers, knowing how old some-
one is should allow for a reasonably accurate estimate of how tall that person 
is. Or perhaps turning that analysis around, information about how tall a teen 
is should allow a reasonable prediction of age.


• If education and income are correlated, and someone’s years of schooling are 
known, it seems feasible that someone should be able to make an educated 
guess about the person’s level of income.


• If a mutual fund invests heavily in the banking sector, and banks’ profits are 
related to the prime rate, the value of funds in the mutual fund should be 
predictable from the prime rate.


Regression allows a precise mathematical prediction of the value of one variable from the 
value of another with which it is correlated. Karl Gauss, the man who defined the charac-
teristics of the normal (Gaussian) distribution, began developing the mathematics behind 
regression in the early part of the 19th century. Many others have also made contributions 
to this kind of quantitative analysis. Their work allows experts in a variety of fields to use 
regression procedures in their decision making. 


• Meteorologists use changes in barometric pressure to predict the kind of 
weather that is coming. Because drops in barometric pressure are predictors 
of violent storms in the Great Plains states and in the southeastern part of 
the United States, meteorologists watch particularly for dramatic drops in 
air pressure. 


• Oddsmakers use data on a team’s past performance, any injuries to key players, 
and the quality of the opponent to predict the outcomes in games.


• Psychologists can use genetic and social factors, including the history of alcohol 
abuse in a family, to predict an individual’s predisposition to abuse drugs.


• Closer to our subject, economists gather data on unemployment rates, whole-
sale inventories, and consumer spending to predict the rate at which the 
economy will grow. This approach is effective because each of those variables 
correlates with economic expansion.


Each of the above four scenarios is possible because of correlations between variables. 
Correlations pave the way for prediction. In each of the bulleted examples, someone could 
mathematically calculate the value of one variable based on the value of another. It is even 
possible to determine the probability that a specified result will emerge. Prediction is par-
ticularly important for managers because it allows for proactive planning. Rather than 
waiting for some important event to emerge and then reacting to it, the probability and 


tan81004_09_c09_219-246.indd   221 2/22/13   3:43 PM








CHAPTER 9Section 9.1 The Language of Regression


intensity of the event can be anticipated with some precision, and then managers can plan 
and initiate appropriate courses of action. Prediction is a basis for sound decision making.


9.1 The Language of Regression


There are many types of regression procedures. The concepts involved and much of the language is consistent in most instances. One element that is common to all regression 
procedures is that when variables have information in common, the measure of one can be 
used to predict the measure of the other. In the some of the more common statistical pack-
ages, the variable to be predicted is called the “dependent variable.” The variable used to 
make the prediction is called the “independent variable.” 


Those terms were part of the discussion of the z, t, and F tests under the hypothesis of 
difference, and we did not find them particularly objectionable there. However, regres-
sion is based on correlation, and there is a particular danger in correlation discussions of 
obscuring the distinctions between correlation and causation, as we noted in Chapter 8. To 
help avoid this “slippery slope,” we will adjust the language in the regression discussion. 
Rather than dependent and independent variable, as common as those terms may have 
become, the references here will be to the criterion variable and predictor variable. The 
criterion variable is the one whose value is predicted. The predictor variable, of course, 
is the one employed to make the prediction. This language will help minimize the risk of 
drifting toward assumptions about causal relationships. The point is not that the predictor 
does not cause the criterion variable. That may be exactly the case. For example, it would 
be difficult to argue that rising interest rates do not directly impact consumer spending—
that interest rates do not cause spending to decrease. 
The point is that the correlation, which is the founda-
tion for regression, is not usually sufficient by itself 
to establish cause.


Although the terms “criterion” and “predictor” are 
used here for descriptive purposes, some shorthand 
indicators will be needed as well. The symbols used 
in regression will be the same that were used for correlation problems in the last chapter, 
“x” and “y.” The difference is that in Chapter 8, which variable was x and which was y 
was an arbitrary assignment. Here the designation will be more particular:


• x for the predictor variable, and 
• y for the criterion variable.


Which Is the Predictor?


The confusion that can occur when equating correlation with causation is increased by 
recognizing that either variable in a significant correlation can be used to predict the other. 
If there is a correlation between interest rates and the level of consumer spending, it means 
that each variable is equally related to the other. 


Key Terms: The correlation 
between variables makes it 
possible to predict the value of 
a criterion variable from the 
value of a predictor variable.
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• Someone could predict consumer spending from the interest rates banks charge. 
• But turn it around, and the problem becomes one of predicting the interest 


rates that banks charge from the level of consumer spending. 


Either variable in a statistically significant correlation can predict the other. From the point 
of view of the mathematics involved, which variable is used to predict which does not 
matter. However, sometimes practical considerations dictate which variable must be the 
predictor and which must be the criterion. Even when the correlation is known, some-
times new data on one of the variables is more difficult to gather than it is for the other. In 
such cases, the more accessible variable may become the predictor and then the less avail-
able variable may be predicted rather than measured directly. 


Of the two variables in the bulleted example, consumer spending is probably more dif-
ficult to measure than the interest rates that banks charge. Interest rates can usually be 
determined from the financial section of the newspaper, or from an online news source. 
Consumer spending is more involved, including information from several different 
sources, so in such circumstances it probably makes more sense to use the bank rates, 
which are easier to access, as the predictor for the consumer spending variable.


Sometimes there are considerations besides the ease with which a variable is measured. 
Perhaps social skills among servers at a restaurant chain are correlated with average daily 
revenue. Although either variable is equally correlated with the other, revenue probably is 
the more important variable from the manager’s point of view. Mathematically, as long as 
the two variables are correlated, revenue can predict social skills among the staff members 
just as accurately as social skills predict revenue, but social skills are probably viewed as 
a means to an end—the end being revenue. Thus, it makes sense to use social skills as the 
predictor and revenue as the criterion.


Finally, for management decision-making purposes, it is often more useful to designate 
the variable that can be manipulated as the predictor. For example, knowing that servers’ 
social skills can predict revenues, the management of the restaurant chain can create a 
training program to enhance servers’ social skills. If the program is effective and servers’ 
social skills improve, it can be predicted that revenues will also rise. On the other hand, 
it is neither feasible nor particularly logical to attempt to improve servers’ social skills by 
increasing revenues. 


Picturing Regression


Visually, correlation and regression are very similar, because they are both based on 
the hypothesis of association. The tool that was used to picture correlation in Chapter 
8 was the scatter plot, which is an easy way to graphically represent regression proce-
dures as well. Recall that each point in a scatter plot represents a pair of measures. The 
distance from the vertical axis is the measure of the x variable, and the distance from 
the horizontal axis is the measure of the y variable. When they are used for regression, 
the assignment of the x and y variables is more specific. In regression: 


• y indicates the criterion variable and is plotted on the vertical axis.
• x indicates the predictor variable and is plotted on the horizontal axis.
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Remember that when there is a linear relationship between two variables (one of the 
requirements for the Pearson Correlation), the “pattern” formed by the points is generally 
from lower left to upper right for positive correlations and from upper left to lower right 
for negative correlations. In either of those diagonal patterns, highly correlated variables 
are indicated by relatively little scatter along the length of the pattern. 


Since correlation and regression are both based on the concept of association between 
variables, and since correlation came up in the last chapter, it is a good platform from 
which to introduce regression. Suppose that the research and development (R&D) depart-
ment housed in a company that manufactures household cleaning products has received 
budgets that have grown consistently over a 20-year period. Happily for those in the R&D 
department, sales have also grown over the same period. Put more directly, the two vari-
ables are correlated. A positive correlation suggests that as R&D budgets increase, so do 
sales, although there tends to be an interval between the time when the product is com-
pleted and the time required to prepare it for retail sales. Because the correlation between 
R&D budgets and sales of household products is positive, it seems safe to say that the 
larger the R&D budget is, the greater sales revenue will be once the products are available 
to consumers. 


At this point, those in the R&D department might take the conceptual “next step” and 
argue that R&D budgets will predict sales volume two years hence. That hypothesis 
makes the R&D budget the predictor variable, x, and sales revenue the criterion variable, 
y. With R&D money rounded to the nearest $100,000, and sales revenue in $millions, the 
data are as follows:


R&D Budget (x) Sales Revenue After Two Years (y)


1. 1 1.5


2. 2 1.8


3. 3 2.2


4. 3 2.0


5. 5 2.0


6. 5 2.1


7. 7 2.4


8. 7 2.2


9. 8 2.4


10. 10 2.7


11. 10 2.6


12. 11 2.9


13. 13 3.0


14. 15 3.0


15. 16 3.1


(continued)
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(continued)


R&D Budget (x) Sales Revenue After Two Years (y)


16. 16 2.7


17. 16 3.3


18. 17 3.0


19. 18 3.4


20. 20 4.0


If the data are placed in columns in an Excel spreadsheet, just as they are in the preceding 
table (the numbering down the left is automatic in Excel and not considered one of the 
data columns), the commands for creating the scatter plot are then simply Insert and then 
Scatter. With some additions to label the axes and title the graph, the result is Figure 9.1.


Figure 9.1: A scatter plot for the relationship between R&D 
budget and sales revenue


To complete the scatter plot by hand rather than having Excel produce it, draw the verti-
cal and horizontal axes of the graph at right angles to each other. Number the x-axis from 
0 at the point of the y-axis to 20 in equal increments to the left (numbering by 2s might be 
helpful); number the y-axis from 0 at the point of the x-axis to 4.0 in equal increments. For 
each pair of data, indicate the confluence of the sales revenue (vertical axis) with the R&D 
budget two years earlier (horizontal axis). Once all pairs of data are plotted, four things 
will be evident:
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1. There is a correlation between the R&D budget and the sales revenue two 
years later. If this were not the case, the dots would have no particular pattern 
and would scatter randomly throughout the graph.


2. The fact that the pattern is from lower left to upper right indicates that the 
relationship between these two variables is positive; as one increases, so does 
the other. If the relationship had been negative, the data pattern would have 
been from the upper left to the lower right. This might occur, for example, if 
someone plotted the relationship between the number of vacation and sick 
days taken by the R&D staff and their productivity as a group. In that case, as 
the value of one variable increases, the other decreases. 


3. The correlation is substantial, indicated by the fact that there is not much scatter 
in the scatter plot. 


4. The relationship appears to be linear. There is no suggestion in the graph that the 
relationship changes from positive to negative, or even to neutral at some point.


About Linearity


The last point about the relationship between x and y being linear is particularly impor-
tant. Recall that one of the requirements for the Pearson Correlation in Chapter 8 is that 
the relationship must be linear. The type of regression discussed in this chapter is based 


on the Pearson Correlation and so likewise depends upon a 
linear relationship between x and y. There are other regres-
sion approaches when the relationship between variables is 
not linear, but in the present example, linearity is essential. 


Because of the linear relationship between variables, any sta-
tistically significant correlation allows a straight line to be 
scribed through the data points so that it is as close as possible 


to as many of the data points as possible. The result might look like the line through the 
data points in the graph in Figure 9.2 (a).


Review Question A:  
What is the visual 
evidence in a scat-
ter plot for a weak 
correlation?
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Figure 9.2: The regression line


That line through the data points is called a regression line. If it is positioned so that it is 
as close as possible to as many of the 20 data points as it can be and still be a straight line, 
it can be used to determine any value of y from a specified value of x (or for that matter, 
any value of x from a specified value of y). For example, someone using the graph can 
select any value of x along the horizontal axis, go vertically from that x value up to the line 
drawn through the dots, and then move left horizontally from the line to where the y-axis 
is. The value of the y variable at the point at which the y-axis is encountered will be the 


predicted value of y for the specified x value. This is 
shown in Figure 9.2 (b).


Although the R&D budget was not $1.25 million 
for any of the 20 years in the data set, the position-
ing of the regression line allows someone to predict 
what sales revenue would likely be 2 years later if 
that were the R&D budget. Perhaps the CEO asks the 


R&D director, “If your budget for next year is $1.25 million, how much sales revenue can 
you predict 2 years from now?” If the regression line is positioned correctly, the researcher 
can find 1.25 on the x-axis, travel vertically up to the regression line, and then move left to 
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(b) Using the Regression Line to Determine y from x


The Relationship Between R&D Budget and Sales


Key Terms: The regression 
line is the visual representation 
of the regression equation. The 
line’s position in a graph is fixed 
by the intercept and slope values.
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the y-axis to determine that $1.25 million in R&D predicts sales revenue of about $3 mil-
lion. This type of prediction is of critical importance in budget allocation decisions and in 
a good many other business situations. 


Coping With Less-Than-Perfect Correlations


Although the R&D director in the above example could predict that a budget of $1.25 
million would produce sales of “about” $3 million, a number of factors might affect the 
accuracy of this prediction. The director cannot be precise about future sales because the 
correlation between the two variables is less than perfect. Future sales of $3 million might 
be the best possible prediction given the data, but there is likely to be some margin of 
error. Maybe for a budget of $1.25 million, sales of $2.9 million would turn out to be a bet-
ter prediction, or perhaps $3.1 million.


A glance at the scatter plot indicates that indeed there is some scatter. For example, there 
were three years when the budget was the same $1.6 million, but the sales revenues were 
different. This indicates that factors besides the size of the R&D budget affect sales. Left 
unmeasured in this analysis are changes in general economic conditions, changes in the 
quality of competing products, the budget devoted to advertising, and a host of other 
variables. Such variables aside, as long as the correlation between the predictor and crite-
rion variables is statistically significant, the predicted value of y from the value of x will be 
more accurate than a number of random guesses.


Because correlations are never perfect, prediction error is 
inevitable, and a certain amount of it is tolerable. No one sues 
the United States Commerce Department if the prediction for 
job growth is off by 1⁄10 of a percent for the year. People do not 
ordinarily petition the television station to fire the weather-
man when the forecast high for the day is wrong by a couple 
of degrees. It is helpful, however, to have some measure of 
how extensive the error is likely to be. Later in this chapter, 
procedures will be investigated that estimate the amount of 
error, a value that when coupled with the predicted value of y 
provides a useful gauge of prediction accuracy. 


Understanding the Least Squares Criterion


Although the scatter plot provides a helpful way to introduce the concept of regression, 
relying on the scattered points in a graph to predict one variable from the other is nei-
ther practical nor as accurate as analysts need to be. Rather than a visual guess about the 
best fit of the regression line, its positioning is actually determined mathematically with 
a regression equation. For the particular kind of regression in this chapter, the equation 
must satisfy what is called the least squares criterion, which means that the regression 
line must be positioned so that the sum of all possible prediction errors has its lowest pos-
sible value.


Look at Figure 9.2 again. If the correlation between R&D budgets and later sales were per-
fect, the data points would form a straight line. For each value of x there would be just one 
corresponding value of y. With a perfect correlation, those three years in which the R&D 


Review Question B: If 
for a particular data 
set all the prediction 
errors were calculated 
for an infinite number 
of regression proce-
dures, what would be 
the value of their sum?
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budget was $1.6 million would all have the same associated sales revenues values. To “fit” 
a straight line to data that do not form a straight line, there must be some compromise. 
The line must be as close as possible to all the data points and remain a straight line.


Because an element of error in the regression solution is unavoidable, at least some of the 
predictions are going to be inaccurate, and the degree of accuracy may vary from predic-
tion to prediction. If the actual value of the criterion variable were known, error would be 
the difference between the predicted value of that variable, symbolized by y’ (y “prime”), 
and the actual value, symbolized by y. If the difference between y and y’ is not zero, there 
is some prediction error. Those y 2 y’ differences are termed residual scores.


If someone were to rely on Figure 9.2 to make a series of predictions and then go through 
company records to determine what the actual sale values were for those 20 years, any dif-
ference between what sales were predicted to be and what they actually were would be 
reflected in the residual scores. If all of those residual scores were added up, what would 
be their total? This is how that question looks in symbols:


(y 2 y’) 5 ?


When several predictions are made, some of the residual scores turn out to be positive (the 
actual value of y will be larger than the predicted value, y’) and some are negative (the 
actual value of y is smaller than its predicted value). Because the positive and negative 
residual scores offset each other when there are several, summing the residual scores from 
several predictions would equal zero. The positive and negative residual scores would 
cancel each other out. 


That zero sum is unhelpful to someone wishing 
to know how much error there is in a regression 
solution. To provide an indicator of the prediction 
error, it would be more telling to square and then 
sum the residual scores. When the regression line 
is located in a position of best fit, the sum of those 
squared residual scores has its lowest possible 
value. Such a solution minimizes prediction error 
and satisfies the least squares criterion. For that 
reason, this particular form of regression is called 
ordinary least square regression.


9.2 Ordinary Least Squares Regression With One Predictor


Theoretically, there can be any number of predictor variables in a regression analysis. The multiple predictors are designated, x1, x2, x3 . . ., and so on. Multiple regression, 
which is regression with multiple predictors, is the subject of Chapter 10. The focus here is 
on regression with just one predictor. It is sometimes called simple (bivariate) regression 
since only two variables—a single predictor and a single criterion variable—are involved.


The regression equation provides the math that is needed to position the regression line. 
The process requires answers to two questions:


Key Terms: Ordinary least 
squares regression procedures 
minimize residual scores, the 
differences between the pre-
dicted and actual values. This 
requirement is called the least 
squares criterion.
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Where 


y’ 5 the predicted value of the criterion variable
 a 5 the intercept
 b 5 the slope of the regression line
 x 5 the value of the predictor variable
 e 5 prediction error


The equation indicates that the predicted value of y is based on the value of the intercept, 
plus the product of the slope times the predictor, plus some error. Calculating the amount 
of error in the regression problem is actually done separately from estimating the value 
of y. The “e” here in the equation is mostly a reminder that absent perfect correlations 
between x and y, there will always be some error in the prediction. Having noted the per-
sistence of error, the e will be removed from the equation from this point forward, making 
the formula: 


y’ 5 a 1 bx


1. At what point does the regression line cross the y-axis in the graph? 
2. How much change is there in the criterion variable (y), when the predictor vari-


able (x) increases by 1.0?


The answer to the first question will produce a value 
for the regression intercept. The name indicates 
that this value is the point on the y-axis of the graph 
where the axis is intercepted by the regression line. 
Since the y-axis occurs at the point where x 5 0, the 
intercept is “the value of y when x 5 0.” Figure 9.2 
makes it look like the regression line crosses the 
y-axis at about y 5 1.2. In fact the intercept value is 
calculated rather than visually estimated, but as a 
conceptual exercise, it can be helpful to look at the 
graph and make a guess about the value.


The answer to the second question is a value representing the slope of the line. With refer-
ence once more to Figure 9.2, how much does the criterion variable (y) appear to change 
when the value of the predictor variable (x) increases by 1.0? How much does y change 
vertically when x is increased by 1.0? Perhaps a reasonable estimate is that y increases by 
about .2 every time x goes up by 1.0. This slope value gauges how radically the regression 
line inclines or declines.


The Regression Equation


The bivariate regression equation has this form:


Formula 9.1 y’ 5 a 1 bx 1 e


Key Terms: Simple, or bivari-
ate regression involves deter-
mining the value of the criterion 
when the single predictor is 0 
(the intercept) and calculating 
the change in the criterion of 
increasing the predictor by 1.0 
(the slope).
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Where 


 b 5 the slope of the regression line, or the regression coefficient
 rxy 5 the correlation coefficient for x and y
 sy 5 the standard deviation of the criterion variable, y
 sx 5 the standard deviation of the predictor variable, x


Calculating a Regression Solution


It was estimated earlier, based on the graph, that if the R&D budget was about $1.25 mil-
lion, the sales two years later would be about $3 million. How close was that visual esti-
mate to the calculated regression solution? 


The steps involved in completing the regression solution are as follows:


1. Calculate the means and standard deviations for x and y.
2. Calculate the correlation of x and y.
3. Calculate the slope of the line, or the regression coefficient, b.
4. Calculate the regression intercept, a.
5. Solve the regression equation for the value of y’.


Where 


 a 5 the intercept
 b 5 is the new part, the slope of the regression line
 My 5 the mean of the criterion variable, y
 Mx 5 the mean of the predictor variable, x


The intercept value is found by taking: 


1. the mean of the criterion variable 
2. minus the slope value, once that is determined, times the mean of the predictor 


variable.


The slope of the line has this formula:


The intercept value, a, and the slope, b, each have their own equations, but most of the 
terms involved are statistics that are already familiar. First the intercept:


Formula 9.2 a 5 My 2 bMx


Formula 9.3 b 5 rxy (sy/sx)
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1. For the two variables, verify that: 


R&D Budget (x) Sales Revenue (y)


Means 10.150 2.615


Standard Deviations 5.941 .613


2. Use the Correlation procedure in Excel Data Analysis (Data → Data  
Analysis → Correlation). Indicate the cells containing the input data,  
indicate where the output is to go, and click OK. Verify that: 


rxy 5 .946 


Checking this value against the critical value from the table, rxy.05(18) 5 .444 indi-
cates that the correlation of R&D budget with sales 2 years later is statistically 
significant. The correlation indicates that regression procedures will result in a 
better-than-chance prediction of the value of y for a given value of x.


3. The slope of the line is as follows:


 b 5 rxy (sy/sx)


5 .946(.613/5.941)


 5 .098 


This value indicates that y increases by .098 units for every 1.0 unit increase in 
x. Earlier the estimate was that the slope of the line in the graph in Figure 9.2 
might be about .2, an overestimate, as it turns out.


4. The regression line intercept is:


 a 5 My 2 bMx 


5 2.615 2 (.098)(10.15)


 5 1.620 


This value indicates that when x 5 0, y 5 1.620. The estimate based on the 
visual “best fit” was that the intercept would be at about y 5 1.2. That esti-
mate, too, was off the mark.


5. What are sales likely to be if the R&D budget is about $1.25 million? The 
estimate based on a visual placement of the regression line in Figure 9.2 
was of sales of about $3 million. Check this “guesstimate” by solving for y’ 
and comparing the answer to that estimation. Substituting x 5 $1.25 mil-
lion in the regression equation (using 12.5, since the values were reported in 
$100,000 above):
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 y’ 5 a 1 bx


5 1.620 1 (.098)(12.5)


 5 2.845


Based on the data available for 20 years, the best sales prediction following a 
year in which the research and development budget was $1.25 million is 
$2.845 million, which, as it turns out, is not too far from the earlier prediction 
of $3 million.


The bivariate regression procedure reduces to this: Data from 
two significantly correlated variables can be used to predict 
what is unknown about one variable from what is known of 
the other. Making the prediction requires some descriptive sta-
tistics, including the means and standard deviations of the two 
variables, and the coefficient of their correlation, in order to 
calculate three relatively straightforward equations for (1) the 
slope, (2) the intercept, and (3) the predicted value of y. 


Practicing the Regression Solution


Note that once the calculations of the slope (b) and the intercept (a) are completed, the 
value of y can be predicted for any value of x. For example, what sales can be predicted 2 
years later for a year in which the R&D budget was $3.0 million?


 y’ 5 a 1 bx


5 1.620 1 (.098)(30)


 5 4.560


Based on the data available for the 20 years, an R&D budget of $3 million will result in 
sales of $4.56 million 2 years later. 


What would happen if the company were sold, and someone interested in short-term 
profits eliminated the R&D budget for a year? What would be the subsequent impact on 
sales? Would sales likewise fall to zero?


 y’ 5 a 1 bx


5 1.620 1 (.098)(0)


 5 1.620


Even with no money devoted to research and development, the solution indicates that a 
$0 sales year is unlikely. But this is an answer that was already available. Note that the 
intercept is defined as the value of y when x 5 0. In this case, x 5 0 is an R&D budget of 
0. Just examining the intercept value of the intercept would have answered the question.


Review Question C: 
What statistic indi-
cates the value of y 
when x 5 0?
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Interpreting the Results


Because b 5 rxy (sy/sx), the value of the regression slope is actually a particular proportion 
of the ratio of sy to sx. The specific proportion is determined by the strength of the corre-
lation. It is largely academic because the potential for a correlation of 1.0 between any 2 
variables in a business problem is so remote, but if the correlation between the 2 variables 
is perfect (rxy 5 1.0), the slope becomes 1 times that ratio of sy to sx. As the correlation 
diminishes, the value of the slope is a decreasing proportion of that ratio. If the correlation 
is .50, for example, the slope’s value will be half the ratio of sy to sx. 


The slope of the regression line is not always a positive value. If the correlation between 
the predictor and criterion variables is negative, the slope will be negative, which means 
that for every 1.0 increase in x, the value of y declines; the regression line will move down-
ward in the scatter plot from left to right. For example, the number of conflicts between a 
chief executive officer and the corporation’s governing board is used to predict the length 
of the CEO’s tenure. As the number of conflicts increase, the length of the executive’s ten-
ure probably decreases. The slope in such a case would be a negative value. 


A negative value for the slope is not unusual. 


• Perhaps the number of hours that business students spend per week playing 
video games is used to predict their grade averages during their freshman 
year. Since the correlation is likely negative, the regression slope probably 
declines from left to right.


• The number of days of sick leave will likely be negatively correlated with 
work performance, yielding a negative slope and a downward-sloping regres-
sion line.


Error


The sales that were associated with a budget of $1.25 million were predicted to be $2.845 
million. It is the best prediction that the available 20 pairs of data allow. Twenty years of 
data are a great deal, but the results still represent only a sample, and there is always a 
possibility that because of sampling error, the data may be unlike the population of all 
relationships between R&D budgets and subsequent sales. 


However, even if the data set were exhaustive and included data for single case of the rela-
tionship between R&D and sales for every single producer of household clearing prod-
ucts, the answer still would not necessarily be precisely accurate for one individual case. 
The regression equations allow the best prediction given the data, but some prediction 
error is inevitable as long as the correlation between predictor and criterion is , 1.0.


This reality does not mean that the regression process is flawed. It just means that it is 
imperfect. It is similar to the point made about calculating the various standard error sta-
tistics for t-tests. The fact that there is error in the test statistic does not imply that mistakes 
were made. It indicates that there is variability in the data that is unaccounted for. It is the 
same with regression procedures. Meeting the least squares criterion minimizes error, but 
error cannot be entirely eliminated.
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Where


SEest 5 the standard error of estimate
 sy 5 the standard deviation of the criterion (y) variable


 r2xy 5 the square of the correlation coefficient 


For the problem where R&D budgets predicted sales, the standard error of the estimate is 
as follows: 


For any data set, where a large number of predictions is made, some of the predictions will 
be too high, some will be too low, and a few might be correct. The fact that all these predic-
tion errors would sum to 0, ( y 2 y’ 5 0) is small consolation to someone making a single 
prediction and for whom that outcome is very important. Regression procedures include 
a way to estimate the amount of error so that we know how much to trust the prediction.


The Standard Error of the Estimate


Recall that the standard error of the mean and the standard error of the difference were 
calculated for t-tests. Both those statistics are measures of error variance. For regression, 
there is a similar measure of error variance called the standard error of the estimate 
(SEest). Theoretically, the standard error of the estimate is this: 


• If a very large number of regression solutions is calculated from a data set, and 
• for each solution, we are able to determine the residual score (the difference 


between the actual and predicted values of the criterion variable, y 2 y’), 
• the standard error of the estimate is the standard deviation of all those resid-


ual scores. 


The only way that residual scores could be deter-
mined, of course, would be to have access to the 
actual values of y to begin with. For someone with 
that information, what would be the point of using 
regression? The definition above is for conceptual 
purposes. The “standard deviation of residual 
scores” explains what the standard error of the esti-


mate represents, but it is not helpful as a guide to how to actually determine the amount 
of error in a prediction. 


Recall from Chapter 4 that, in theory, the standard error of 
the mean is the standard deviation of all the sample means 
in a population of sample means. In practice, that value was 
estimated by dividing the sample standard deviation by the 
square root of the number in the sample. The standard error 
of the estimate is determined similarly. The formula is:


Key Terms: The standard 
error of the estimate is the 
standard deviation of all pos-
sible error scores in a regression 
problem.


Review Question D: 
What impact will a 
stronger correlation 
have on the standard 
error of the estimate?


Formula 9.4 SEest 5 Sy "11 2 r2  xy 2
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1. With the correlation between R&D budgets and subsequent sales rxy 5 .946.
2. The standard deviation of the y variable, (sales) is sy 5 .613.


The standard error of the estimate is: 


SEest 5 sy "11 2 r2  xy 2


 5 .613 "11 2 .9462 2


 5 .199 


A large SEest value indicates substantial error in the prediction. Note that several factors 
affect the magnitude of the standard error of the estimate. 


1. The sy value is the standard deviation of the variable to be predicted. Highly 
variable data for the criterion measures result in large standard deviation val-
ues and, as a result, large SEest values.


2. The "1 2 rxy  component is such that the more highly x and y are correlated, 
the smaller this resulting value will be and, as a consequence, the smaller the 
SEest value.


The smallest SEest can be is zero, and its largest is the value of sy. Note the following:


• If the correlation between predictor and criterion is perfect (rxy 5 1.0), the 


latter part of the term, "11 2 r2  xy 2  becomes the square root of 1 2 1 which is 
"0 , which of course is 0; sy 3 0 5 0. 


• At the other extreme, if the correlation between predictor and criterion has its 
lowest possible value (0), the latter part of the term becomes the square root 
of 1 2 0, which is 1; sy 3 1 is sy.


Another Regression Problem


A second regression problem will provide more practice with calculating regression solu-
tions: The manager of a catering company is using the number of people in the party to 
predict the cost of the drinks that are required for the event. The following are the data for 
12 recently catered events:
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Number of People Dollar Cost of Drinks


1. 10 23.3


2. 12 27


3. 12 30.5


4. 14 34


5. 14 45


6. 16 55


7. 16 57.5


8. 16 62


9. 16 68


10. 18 70


11. 18 85


12. 18 90


The task is to predict what drinks will cost for a catered party for 14.


Number of People (x) Cost of Drinks (y)


Means 15.000 53.942


Standard Deviations  2.629 22.342
 


If the correlation is completed longhand, recall that each “raw” score is turned into a  
z score, so that there are z score equivalents for the x variable (number in the party) and for 
the y variable (drinks costs). The pairs of z scores are multiplied together, summed, and 
then divided by the number of pairs minus 1:


Formula 8.1 rxy 5
S1zx 3 zy 2


n 2 1


 rxy 5 .944
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Or if Excel calculates the correlation, once the data are in parallel columns, the commands 
are Data → Data Analysis → Correlation. Indicate the cells containing the input data, 
enter where the output is to go, and click OK.


The slope (regression coefficient):


 b 5 rxy (sy/sx)


5 .944(22.342/2.629)


 5 8.022 


The intercept (regression constant): 


 a 5 My 2 bMx


5 53.942 2 (8.022)(15.0)


 5 266.388 


Now to solve the equation for 14 people: 


 y’ 5 a 1 bx


5 266.388 1 (8.022)(14)


 5 45.92


If an event is catered for 14 people, the best prediction for the cost of drinks for the event 
is $45.92. The standard error of the estimate for this solution is as follows:


 SEest 5 sy "11 2 r2xy 2


5 22.342 "11 2 .9442 2


 5 7.372


9.3 Regression With Excel


The Data Analysis option in Excel has a specific regression procedure. To complete the problem above, the procedure is as follows:
• With the number in the party data in column A, and the costs of drinks data 


in column B, as they probably already are if Excel was used for the correla-
tion, insert a blank line at the top of the data set for the labels and enter Num-
ber and Drink Costs in cells A1 and B1 respectively.


• Select the Data tab at the top of the page and then Data Analysis at the far 
right just below the page tabs.
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• In the Analysis Tools window, scroll down to Regression and click OK.
• Click the Input Y Range window and drag the cursor from B2 to B13.
• Click the Input X Range window and drag the cursor from A2 to A13.
• Click the Output Range window and enter something like D1 so that the 


output data do not overwrite the results. Click OK.


The result is the screenshot that is Figure 9.3.


Figure 9.3: Predicting the cost of drinks at a catered  
event based on the number of people


Some of the columns have been expanded to make it easier to read the output. 


• The data under Regression Statistics include the same correlation value calcu-
lated in the longhand solution. Although Excel calls the statistic Multiple R,  
in bivariate regression problems it is actually the Pearson Correlation, rxy. 


• The R Square value is the square of the Pearson Correlation, the coefficient of 
determination that indicates the amount of variance in y explained by x. 


• The Adjusted R Square is a value reduced from the calculated R Square 
value. It is diminished according to the size of the sample so that the resulting 
statistic can be more safely generalized to other kinds of analyses.


• The Standard Error value is the standard error of the estimate, but it is calcu-
lated using the adjusted R square value rather than the original r2xy.


• The number of Observations is n 5 12.
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• The table labeled ANOVA has a different purpose than the one generated in 
previous chapters, when ANOVA was used to test mean differences among 
dependent or independent groups with one or more categorical predic-
tors and one continuous criterion. In regression output, this table tests the 
assumption that there is no significant relationship between the predictor and 
criterion variables, x and y. However, there are some similarities. For exam-
ple, the SS and MS for regression are similar to SSbet and MSbet in ANOVA in 
that it contains the variance accounted for by the predictor. One of the differ-
ences is that in regression the predictor is a continuous variable. Moreover, an 
F-value is calculated based on the ratio of the variance accounted for by the 
predictor in relation to residual error variance (MSres). Note that the ANOVA 
result (F) is statistically significant. That 4.12E206 means that F in the ANOVA 
table could have occurred by chance, with p 5 .00000412 (the E206 means 
that the value is read with the decimal moved 6 places to the left). The x, y 
relationship is probably not random, which is good news for someone wish-
ing to predict the value of y from x.


• The last table in Figure 9.3 provides the regression solution. The intercept and 
slope values are similar to those produced by the longhand calculations, with 
allowance for round-off variations. The standard error values for a and b were 
not calculated longhand, nor were the significance tests for those individual 
values. The significance tests are redundant since in this type of regression 
if rxy is significant, it means that x is a significant predictor of y, something 
already established by the ANOVA test. Notice that if you square the t-value 
of the predictor, 9.0042 5 81.072, which is the same as the F-value (81.073, due 
to rounding).


• The last four columns in the bottom table provide the confidence intervals for 
the intercept and slope. Confidence intervals will be covered in Chapter 11. 


Shrinkage and Over-Fitting the Sample


When samples are small and correlations are rela-
tively weak, the magnitude of the associated pre-
diction errors increases. Even with high correlations 
and low data variability, there are risks involved in 
regression solutions. When a particular solution is 
tailored too closely to the related sample, the prob-
lem is over-fitting the sample. It is a problem 


because to maximize its value, a regression solution should 
predict well for new data sets as well as for the original data 
set. Over-fitting is always a concern in regression, but it is 
most problematic when samples are relatively small. Another 
term to describe this problem is shrinkage, which refers to 
the degree to which the accuracy of a solution is diminished 
when it is used with new data.


Review Question E:  
What does “shrink-
age” mean in regres-
sion, and how can it 
be avoided?


Key Terms: Over-fitting 
refers to a solution that gener-
alizes poorly to new data sets. 
As the accuracy of predictions 
diminishes, there is reference to 
shrinkage.
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Regression to the Mean


When Sir Francis Galton, a 19th century British researcher, conducted his study of fami-
lies, he noted that very tall parents tend to have children who are less tall, and very short 
parents tend to have children who are not quite so short. He had stumbled into what is 
called regression to the mean, a principle that indicates that extreme values of x always 
predict slightly less extreme values of y. Why is this so? The answer lies in the nature of 


normal distributions, where the closer one comes to 
the mean, the greater the number of individuals. If 
an extreme value is employed as a predictor, prob-
ability indicates that most of the data in any popula-
tion, and therefore the most probable outcome, will 
be a value less distant from the mean. 


In the problem where the caterer was predicting the cost of drinks, the data were as follows:


Number of People (x) Cost of Drinks (y)


Means 15.000 53.942


Standard Deviations  2.629 22.342


If a value that is two standard deviations below the mean, Mx, is the predictor, what will 
be the predicted cost of drinks? Regression to the mean indicates that y’ will be less than 
two standard deviations below the mean for costs, a value that would be $9.258. If x has a 
value of the mean minus two standard deviations, it would be 15.0 2 (2 3 2.629) 5 9.742 
(never mind that there couldn’t be an event catered for 9.742 people). Using that value as 
x, the value of y’ is: 


 y’ 5 a 1 bx


5 266.388 1 (8.022)(9.742)


 5 11.762


The predicted cost of drinks for an event catered for 9.742 people is $11.762. How-
ever, the mean of y minus two standard deviations produces a different value. It is  
53.942 2 (2 3 22.342) 5 9.258, a value more extreme, more distant from the mean than y’. 
The difference is that in the regression equation, the solution has “regressed to the mean.”


9.4 The Requirements for Ordinary Least Squares Regression


There are many different regression procedures. Each is adapted to different circum-stances having to do largely with the nature of the data. The requirements of bivariate 
ordinary least squares regression are:


• Data that are interval or ratio scale variables
• Data that are normally distributed in their populations
• A statistically significant correlation between the predictor and criterion 


variables


Key Terms: Regression to the 
mean is a principle indicating 
that extreme values in a distribu-
tion predict less extreme values.
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• A linear relationship between the variables
• Similar amounts of variability in the ranges of the data


Chapter Summary


The correlation coefficient is an elegant statistic. Whenever separate measures have some quality in common, correlation coefficients quantify that commonality. Regres-
sion procedures capitalize on this by using what is shared to predict the level of one mea-
sure from the other. Because prediction is a part of all science and of virtually every social 
domain as well, regression has remarkably wide application. When variables are related, 
but one is more difficult to measure than the other, the more accessible variable can be 
used to predict the more elusive variable (Objective 1).


There are many types of regression. Bivariate regression has one predictor variable and 
one predicted variable, the criterion variable. The math involved is called “least squares 
regression,” or “ordinary least squares regression,” and reveals where to position a regres-
sion line so that the sum of the squared errors from a series of predictions has the lowest 
possible value. The line is a visual representation of the relationship between the vari-
ables. It allows the prediction of y from x, and since there is no assumption about which is 
the cause, a prediction also of x from y, when that is helpful. 


The regression line is a best case fit given the available data. The location of the regres-
sion line is based on where it intercepts the y-axis (the intercept) and the line’s inclining 
or declining orientation (the slope) (Objective 2). The intercept and slope values make it 
possible to predict y from a value of x (Objective 3). The regression line and the related 
predictions represent compromises based on imperfect correlations between the predictor 
and criterion variable. The imperfections are manifested in a measure of error in the pre-
dicted value of y. The standard error of the estimate indicates the magnitude of the error.


When regression solutions are tailored too closely to a data set, particularly a small data 
set, the solution is over-fitted to the sample. Over-fitting means that there will be enough 
error in the values of a and b and the positioning of the regression line that the solution 
will not predict equally well for other data sets. Shrinkage refers to this reduction in the 
value of the regression solution as it is applied to new data.


The discussion in this chapter has been confined to what is called simple, or bivariate, 
regression. This type of regression involves one predictor and one criterion variable. 
When there is more than one predictor, the analysis is multiple regression, which is the 
focus of Chapter 10.


Answers to Review Questions


A. The visual evidence is a great deal of “scatter” in the points in the graph. The 
weaker the correlation, the less well defined the pattern of dots.


B. The prediction errors would sum to zero with the overpredictions and the 
underpredictions cancelling each other out.
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C. The statistic that indicates the value of y when x 5 0 describes the value of the 
intercept, a, in the regression equation.


D. A stronger correlation will shrink the standard error of the estimate.
E. Shrinkage refers to the receding value of a regression solution when it is 


employed with additional data sets. The best check against shrinkage is large, 
representative data sets. 


Chapter Formulas


Formula 9.1 y’ 5 a 1 bx This is the equation for ordinary least squares regression.


Formula 9.2 a 5 My 2 bMx  This formula establishes the regression constant, or inter-
cept value. It indicates the value y when x 5 0.


Formula 9.3 b 5 rxy (sy/sx)  This formula indicates the slope of the regression line or 
the regression coefficient. It indicates the impact on y of 
increasing x by 1.0.


Formula 9.4. SEest 5 Sy "11 2 r2xy 2  This statistic is a measure of prediction error.


Management Application Exercises


Unless otherwise stated, use p 5 .05 in all your answers.


A large company administers aptitude tests to job applicants. The first table below, also 
sometimes referred to as a “correlation matrix,” summarizes the correlations between 6 
aptitude test scores among a group of 52 job applicants who have completed 6 tests. Each 
row-column intersection provides the correlation between the aptitudes noted in the row 
and column labels. The second table summarizes the means and standard deviations of 
the 52 applicants’ scores on each test. Use the information provided in these tables to 
answer questions 1 through 6 below.


Correlations


problem 
solving


analytical compre-
hension


reasoning computa-
tion


verbal


problem solving


analytical .726


comprehension .833 .767


reasoning .598 .857 .686


computation .919 .734 .736 .534


verbal .714 .894 .740 .852 .675
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Descriptive Statistics


Test Mean Standard Deviation


problem solving 43.000 8.441


analytical 46.500 9.317


comprehension 46.500 8.893


reasoning 48.000 6.144


computation 52.750 7.502


verbal 54.850 5.250


1. A new applicant completes all tests except for comprehension. What other apti-
tude will provide the most accurate prediction of this applicant’s comprehension 
ability? Explain.


2. What comprehension score is predicted for someone who has a reasoning score of 60?


3. The public relations department needs to hire someone with solid verbal skills. 
However, the applicants for this position were only given the analytical test. What 
verbal score is predicted for an applicant who has an analytical score of 57.5?


4. The office manager is hiring new administrative assistants who will have wide-
ranging data management responsibilities. Applicants for this position have taken 
the problem-solving test, but the manager is also interested in reasoning abilities. 


a. What reasoning score can be predicted for an applicant whose problem-solv-
ing score is 49?


b. How much will reasoning increase for every 1.0 increase in the problem solv-
ing?


c. What value will reasoning have if problem solving is 0? 
d. In terms of regression solutions, why is the value of reasoning relevant 


when problem solving is 0?
e. What is the value of the standard error of the estimate?


5. Referring to the chart at the beginning of the Exercises, what variable will provide 
the most accurate prediction of a potential employee’s comprehension ability? 
Explain.


6. The Personnel Department for a large company wishes to hire a public relations 
specialist. The need is for someone with solid verbal skills. Although the depart-
ment has data on applicants’ analytical ability, it lacks information about vocabu-
lary ability. From the chart at the beginning of the exercise, what vocabulary score 
is predicted for an applicant who has an analytic score of 575?


7. Use the following data to answer items a and b. The data indicate the number of 
“sick days” appliance installers take during a three-month period and the number 
of complaints filed by customers during the same interval. 
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Sick Days Complaints


2 3


5 6


4 5


1 3


3 4


5 7


4 4


6 9


a. Is the correlation between number of sick days and number of customer 
complaints statistically significant?


b. What is the best prediction for the number of complaints that will be regis-
tered for an installer who takes five sick days during the period?


8. Because machine tooling involves working equipment, and any errors that the 
workers make are potentially expensive for the company, the company personnel 
director gathers data on employees’ manual dexterity and their number of manu-
facturing errors. The data are as follows:


Dexterity Errors


23 6


25 4


18 7


15 6


25 3


20 4


19 4


28 2


a. How many errors can be predicted for someone with a manual dexterity 
score of 22?


b. Why might shrinkage be a problem if the solution based on these data is 
used to predict the number of errors a different group of machine tooling 
employees might make?


c. What is the value of the standard error of the estimate?
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Key Terms 


• The correlation between variables makes it possible to predict the value of a 
criterion variable from the value of a predictor variable.


• The regression line is the visual representation of the regression equation. The 
line’s position in a graph is fixed by the intercept and slope values.


• Ordinary least squares regression procedures minimize residual scores, the 
differences between the predicted and actual values. This requirement is called 
the least squares criterion.


• Simple (bivariate) regression involves determining the value of a criterion vari-
able based on the value of a predictor variable to which the criterion variable is 
correlated. The prediction is based on a value called the intercept, which is the 
value of the criterion when the predictor equals 0, and the value of the slope, which 
indicates the change in the criterion variable associated with increasing the predictor 
by 1.0. The slope is also known as the regression coefficient.


• The standard error of the estimate is the standard deviation of all possible error 
scores in a regression problem.


• Over-fitting the sample refers to a regression solution that does not generalize 
well to data sets other than the one for which it was calculated, either because the 
sample upon which the solution is based is small or because the correlation between 
predictor and criterion variables is relatively weak. When the accuracy of predic-
tions diminishes, the phenomenon is called shrinkage.


• Regression to the mean indicates that an extreme value of x will always predict a 
slightly less extreme value of y’.
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