ELET 131 FALL 2013

HomeWork_#4

10/02/2013

1.	Α 100Ω	resistor is	connected	across a	12V batter	٧.
----	--------	-------------	-----------	----------	------------	----

a.	How many	ioules of	energy will it	dissipate	in 1	minute?
----	----------	-----------	----------------	-----------	------	---------

b. If the resistor is left connected for 2 minutes instead of 1 minute, will the energy used increase? Will t dissipation level increase?

2. How long can a 1500W heater be on before using more than 12kW of energy?

3.	What is the efficiency of a motor that has an output of 0.5hp with an input of 410W?
4. a.	A stereo system draws 1.8A of current at 120V. the audio output power is 50W How much power is lost in the form of heat in the system?
b.	What is the efficiency of the system?

5. Find the total resistance R_T for each configuration shown.

