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            Preface



            For Whom Is This Book Intended?
When I originally decided to offer an undergraduate course on game theory,
the first item on my to-do list was figuring out the target audience. As a pro-
fessor of economics, I clearly wanted the course to provide the tools and ap-
plications valuable to economics and business majors. It was also the case that
my research interests had recently expanded beyond economics to include is-
sues in electoral competition and legislative bargaining, which led me to
think, “Wouldn’t it be fun to apply game theory to politics, too?” So, the target
audience expanded to include political science and international relations ma-
jors. Then I thought about the many fascinating applications of game theory
to history, literature, sports, crime, theology, war, biology, and everyday life.
Even budding entrepreneurs and policy wonks have interests that extend
beyond their majors. As I contemplated the diversity of these applications, it
became more and more apparent that game theory would be of interest to a
broad spectrum of college students. Game theory is a mode of reasoning that
applies to all encounters between humans (and even some other members of
the animal kingdom) and deserves a place in a general liberal arts education.



            After all of this internal wrangling, I set about constructing a course (and
now a book) that would meet the needs of majors in economics, business, po-
litical science, and international relations—the traditional disciplines to which
game theory has been applied—but that would also be suitable for the general
college population. After 15 years of teaching this class, the course remains as
fresh and stimulating to me as when I taught it the first time. Bringing together
such an eclectic student body while applying game theory to a varied terrain of
social environments has made for lively and insightful intellectual discourse.
And the enthusiasm that students bring to the subject continues to amaze me.
This zeal is perhaps best reflected in a class project that has students scour real,
historical, and fictional worlds for strategic settings and then analyze them
using game theory. Student projects have dealt with a great range of subjects,
such as the Peloponnesian War, patent races among drug companies, the tele-
vision show Survivor, accounting scandals, and dating dilemmas. The quality
and breadth of these projects is testimony to the depth and diversity of stu-
dents’ interest in game theory. This is a subject that can get students fired up!



            Having taught a collegewide game theory course for 15 years, I’ve learned
what is comprehensible and what is befuddling, what excites students and
what allows them to catch up on their sleep. These experiences—though hum-
bling at times—provided the fodder for the book you now hold in your hands.



            How Does This Book Teach Game Theory?
Teaching a game theory course intended for the general college population raises
the challenge of dealing with a diversity of academic backgrounds. Although
many students have a common desire to learn about strategic reasoning, they dif-
fer tremendously in their mathematics comfort zone. The material has to be


            

        



        
            

            
presented so that it works for students who have avoided math since high school,
while at the same time not compromising on the concepts, lest one cheat the
better prepared students. A book then needs to both appeal to those who can
effortlessly swim in an ocean of mathematical equations and those who would
drown most ungracefully. A second challenge is to convey these concepts while
maintaining enthusiasm for the subject. Most students are not intrinsically
enamored with game-theoretic concepts, but it is a rare student who is not en-
tranced by the power of game theory when it is applied to understanding human
behavior. Let me describe how these challenges have been addressed in this book.



            Concepts Are Developed Incrementally with a Minimum 
of Mathematics



            A chapter typically begins with a specific strategic situation that draws in the
reader and motivates the concept to be developed. The concept is first intro-
duced informally to solve a particular situation. Systematic analysis of the
concept follows, introducing its key components in turn and gradually build-
ing up to the concept in its entirety or generality. Finally, a series of examples
serve to solidify, enhance, and stimulate students’ understanding. Although
the mathematics used is simple (nothing more than high school algebra), the
content is not compromised. This book is no Game Theory for Dummies or The
Complete Idiot’s Guide to Strategy; included are extensive treatments of games
of imperfect information, games of incomplete information with signaling (in-
cluding cheap-talk games), and repeated games that go well beyond simple
grim punishments. By gradually building structure, even quite sophisticated
settings and concepts are conveyed with a minimum of fuss and frustration.



            The Presentation Is Driven by a Diverse Collection 
of Strategic Scenarios



            Many students are likely to be majors from economics, business, political sci-
ence, and international relations, so examples from these disciplines are the
most common ones used. (A complete list of all the strategic scenarios and ex-
amples used in the text can be found on the inside cover.) Still, they make up
only about one-third of the examples, because the interests of students (even
economics majors) typically go well beyond these traditional game-theoretic set-
tings. Students are very interested in examples from history, fiction, sports, and
everyday life (as reflected in the examples that they choose to pursue in a class
project). A wide-ranging array of examples will hopefully provide something
for everyone—a feature that is crucial to maintaining enthusiasm for the sub-
ject. To further charge up enthusiasm, examples typically come with rich con-
text, which can be in the form of anecdotes (some serious, some amusing),
intriguing asides, empirical evidence, or experimental findings. Interesting
context establishes the relevance of the theoretical exercise and adds real-world
meat to the skeleton of theory. In this book, students do not just learn a clever
answer to a puzzle, but will acquire genuine insights into human behavior.



            To assist students in the learning process, several pedagogical devices are
deployed throughout the book.



            ■ Check Your Understanding exercises help ensure that students are
clear on the concepts. Following discussion of an important concept,
students are given the opportunity to test their understanding by solving
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a short Check Your Understanding exercise. Answers are provided at the
end of the book.



            ■ Boxed Insights succinctly convey key conceptual points. Although
we explore game theory within the context of specific strategic scenar-
ios, often the goal is to derive a lesson of general relevance. Such lessons
are denoted as Insights. We also use this category to state general results
pertinent to the use of game theory.



            ■ Boxed Conundrums are yet-to-be-solved puzzles. In spite of the con-
siderable insight into human behavior that game theory has delivered,
there is still much that we do not understand. To remind myself of this
fact and to highlight it to students, peppered throughout the book are
challenging situations that currently defy easy resolution. These are ap-
propriately denoted Conundrums.



            ■ Chapter Summaries synthesize the key lessons of each chapter.
Students will find that end-of-chapter summaries not only review the key
concepts and terms of the chapter, but offer new insights into the big pic-
ture.



            ■ Exercises give students a chance to apply concepts and methods in
a variety of interesting contexts. While some exercises revisit examples
introduced earlier in the book, others introduce new and interesting sce-
narios, many based on real-life situations. (See the inside cover of the
text for a list of examples explored in chapter exercises.)



            How Is This Book Organized?
Let me now provide a tour of the book and describe the logic behind its struc-
ture. After an introduction to game theory in Chapter 1, Chapter 2 is about
constructing a game by using the extensive and strategic forms. My experience
is that students are more comfortable with the extensive form because it maps
more readily to the real world with its description of the sequence of deci-
sions. Accordingly, I start by working with the extensive form—initiating our
journey with a kidnapping scenario—and follow it up with the strategic form,
along with a discussion of how to move back and forth between them. A virtue
of this presentation is that a student quickly learns not only that a strategic
form game can represent a sequence of decisions, but, more generally, how the
extensive and strategic forms are related.



            Although the extensive form is more natural as a model of a strategic situ-
ation, the strategic form is generally easier to solve. This is hardly surprising,
since the strategic form was introduced as a more concise and manageable
mathematical representation. We then begin by solving strategic form games
in Part 2 and turn to solving extensive form games in Part 3.



            The approach taken to solving strategic form games in Part 2 begins by lay-
ing the foundations of rational behavior and the construction of beliefs based
upon players being rational. Not only is this logically appealing, but it makes for
a more gradual progression as students move from easier to more difficult con-
cepts. Chapter 3 begins with the assumption of rational players and applies it to
solving a game. Although only special games can be solved solely with the as-
sumption of rational players, it serves to introduce students to the simplest
method available for getting a solution. We then move on to assuming that each
player is rational and that each player believes that other players are rational.
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These slightly stronger assumptions allow us to consider games that cannot be
solved solely by assuming that players are rational. Our next step is to assume
that each player is rational, that each player believes that all other players are
rational, and that each player believes that all other players believe that all other
players are rational. Finally, we consider when rationality is common knowl-
edge and the method of the iterative deletion of strictly dominated strategies
(IDSDS). In an appendix to Chapter 3, the more advanced concept of rational-
izable strategies is covered. Although some books cover it much later, this is
clearly its logical home, since, having learned the IDSDS, students have the right
mind-set to grasp rationalizability (if you choose to cover it).



            Nash equilibrium is generally a more challenging solution concept for stu-
dents because it involves simultaneously solving all players’ problems. With
Chapter 4, we start slowly with some simple 2 � 2 games and move on to
games allowing for two players with three strategies and then three players
with two strategies. Games with n players are explored in Chapter 5. Section
5.4 examines the issue of equilibrium selection and is designed to be self-
contained; a reader need only be familiar with Nash equilibrium (as described
in Chapter 4) and need not have read the remainder of Chapter 5. Games with
a continuum of strategies are covered in Chapter 6 and include those that can
be solved without calculus (Section 6.2) and, for a more advanced course, with
calculus (Section 6.3).



            The final topic in Part 2 is mixed strategies, which is always a daunting sub-
ject for students. Chapter 7 begins with an introductory treatment of proba-
bility, expectation, and expected utility theory. Given the complexity of working
with mixed strategies, the chapter is compartmentalized so that an instructor
can choose how deeply to go into the subject. Sections 7.1–7.4 cover the basic
material. More complex games, involving more than two players or when
there are more than two strategies, are in Section 7.5, while the maximin strat-
egy for zero-sum games is covered in Section 7.6.



            Part 3 tackles extensive form games. (Students are recommended to re-
view the structure of these games described in Sections 2.2–2.4; repetition of the
important stuff never hurts.) Starting with games of perfect information,
Chapter 8 introduces the solution concept of subgame perfect Nash equilibrium
and the algorithm of backward induction. The definition of subgame perfect
Nash equilibrium is tailored specifically to games of perfect information. That
way, students can become comfortable with this simpler notion prior to facing
the more complex definition in Chapter 9 that applies as well to games of im-
perfect information. Several examples are provided, with particular attention to
waiting games and games of attrition. Section 8.5 looks at some logical and ex-
perimental sources of controversy with backward induction, topics lending
themselves to spirited in-class discussion. Games of imperfect information are
examined in Chapter 9. After introducing the idea of a “game within a game”
and how to properly analyze it, a general definition of subgame perfect Nash
equilibrium is provided. The concept of commitment is examined in Section 9.4.



            Part 4 covers games of incomplete information, which is arguably the
most challenging topic in an introductory game theory class. My approach is
to slow down the rate at which new concepts are introduced. Three chapters
are devoted to the topic, which allows both the implementation of this incre-
mental approach and extensive coverage of the many rich applications involv-
ing private information.
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Chapter 10 begins with an example based on the 1938 Munich Agreement
and shows how a game of imperfect information can be created from a game of
incomplete information. With a Bayesian game thus defined, the solution con-
cept of Bayes–Nash equilibrium is introduced. Chapter 10 focuses exclusively on
when players move simultaneously and thereby extracts away from the more
subtle issue of signaling. Chapter 10 begins with two-player games in which only
one player has private information and then takes on the case of both players
possessing private information. Given the considerable interest in auctions
among instructors and students alike, both independent private-value auctions
and common-value, first-price, sealed-bid auctions are covered, and an optional
chapter appendix covers a continuum of types. The latter requires calculus and
is a nice complement to the optional calculus-based section in Chapter 6. (In ad-
dition, the second-price, sealed-bid auction is covered in Chapter 3.)



            Chapter 11 assumes that players move sequentially, with the first player to
move having private information. Signaling then emerges, which means that,
in response to the first player’s action, the player who moves second Bayesian
updates her beliefs as to the first player’s type. An appendix introduces Bayes’s
rule and how to use it. After the concepts of sequential rationality and consis-
tent beliefs are defined, perfect Bayes–Nash equilibrium is introduced. This
line of analysis continues into Chapter 12, where the focus is on cheap talk
games. In Section 12.4, we also take the opportunity to explore signaling one’s
intentions, as opposed to signaling information. Although not involving a
game of incomplete information, the issue of signaling one’s intentions natu-
rally fits in with the chapter’s focus on communication. The material on sig-
naling intentions is a useful complement to Chapter 9—as well as to
Chapter 7—as it is a game of imperfect information in that it uses mixed strate-
gies, and could be covered without otherwise using material from Part 4.



            Part 5 is devoted to repeated games, and again, the length of the treat-
ment allows us to approach the subject gradually and delve into a diverse col-
lection of applications. In the context of trench warfare in World War I,
Chapter 13 focuses on conveying the basic mechanism by which cooperation
is sustained through repetition. We show how to construct a repeated game
and begin by examining finitely repeated games, in which we find that coop-
eration is not achieved. The game is then extended to have an indefinite or in-
finite horizon, a feature which ensures that cooperation can emerge. Crucial
to the chapter is providing an operational method for determining whether a
strategy profile is a subgame perfect Nash equilibrium in an extensive form
game with an infinite number of moves. The method is based on dynamic pro-
gramming and is presented in a user-friendly manner, with an accompanying
appendix to further explain the underlying idea. Section 13.5 presents empir-
ical evidence—both experimental and in the marketplace—pertaining to coop-
eration in repeated Prisoners’ Dilemmas. Finally, an appendix motivates and
describes how to calculate the present value of a payoff stream.



            Chapters 14 and 15 explore the richness of repeated games through a series
of examples. Each example introduces the student to a new strategic scenario,
with the objective of drawing a new general lesson about the mechanism by
which cooperation is sustained. Chapter 14 examines different types of pun-
ishment (such as short, intense punishments and asymmetric punishments),
cooperation that involves taking turns helping each other (reciprocal altruism),
and cooperation when the monitoring of behavior is imperfect. Chapter 15
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considers environments poorly suited to sustaining cooperation—environ-
ments in which players are finitely lived or players interact infrequently.
Nevertheless, in practice, cooperation has been observed in such inhospitable
settings, and Chapter 15 shows how it can be done. With finitely lived players,
cooperation can be sustained with overlapping generations. Cooperation can
also be sustained with infrequent interactions if they occur in the context of a
population of players who share information.



            The book concludes with coverage of evolutionary game theory in
Part 6. Chapter 16 is built around the concept of an evolutionarily stable strat-
egy (ESS)—an approach based upon finding rest points (and thus analogous
to one based on finding Nash equilibria)—and relies on Chapter 7’s coverage
of mixed strategies as a prerequisite. Chapter 17 takes an explicitly dynamic
approach, using the replicator dynamic (and avoids the use of mixed strate-
gies). Part 6 is designed so that an instructor can cover either ESS or the repli-
cator dynamic or both. For coverage of ESS, Chapter 16 should be used. If
coverage is to be exclusively of the replicator dynamic, then students should
read Section 16.1—which provides a general introduction to evolutionary
game theory—and Chapter 17, except for Section 17.4 (which relates stable
outcomes under the replicator dynamic to those which are an ESS).



            How Can This Book Be Tailored to Your Course?
The Course Guideline (see the accompanying table) is designed to provide some
general assistance in choosing chapters to suit your course. The Core treatment
includes those chapters which every game theory course should cover. The Broad
Social Science treatment covers all of the primary areas of game theory that are
applicable to the social sciences. In particular, it goes beyond the Core treatment
by including select chapters on games of incomplete information and repeated
games. Recommended chapters are also provided in the Course Guideline
for an instructor who wants to emphasize Private Information or Repeated
Interaction.



            If the class is focused on a particular major, such as economics or political
science, an instructor can augment either the Core or Broad Social Science
treatment with the concepts he or she wants to include and then focus on
the pertinent set of applications. A list of applications, broken down by disci-
pline or topic, is provided on the inside cover. The Biology treatment recog-
nizes the unique elements of a course that focuses on the use of game theory
to understand the animal kingdom.



            Another design dimension to any course is the level of analysis. Although
this book is written with all college students in mind, instructors can still vary
the depth of treatment. The Simple treatment avoids any use of probability,
calculus (which is only in Chapter 6 and the Appendix to Chapter 10), and the
most challenging concepts (in particular, mixed strategies and games of incom-
plete information). An instructor who anticipates having students prepared for
a more demanding course has the option of offering the Advanced treatment,
which uses calculus. Most instructors opting for the Advanced treatment will
elect to cover various chapters, depending on their interests. For an upper-level
economics course with calculus as a prerequisite, for example, an instructor can
augment the Advanced treatment with Chapters 10 (including the Appendices),
11, and 13 and with selections from Chapters 14 and 15.
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COURSE GUIDELINE



            Broad



            Social Private Repeated



            Chapter Core Science Information Interaction Biology Simple Advanced



            1: Introduction to Strategic 



            Reasoning ✔ ✔ ✔ ✔ ✔ ✔ ✔



            2: Building a Model of a 



            Strategic Situation ✔ ✔ ✔ ✔ ✔ ✔ ✔



            3: Eliminating the Impossible: 



            Solving a Game when 



            Rationality Is Common 



            Knowledge ✔ ✔ ✔ ✔ ✔ ✔ ✔



            4: Stable Play: Nash Equilibria 



            in Discrete Games with 



            Two or Three Players ✔ ✔ ✔ ✔ ✔ ✔ ✔



            5: Stable Play: Nash Equilibria 



            in Discrete n-Player Games ✔ ✔



            6: Stable Play: Nash Equilibria 



            in Continuous Games ✔



            7: Keep ’Em Guessing: 



            Randomized Strategies ✔ ✔ ✔ ✔



            8: Taking Turns: Sequential 



            Games with Perfect 



            Information ✔ ✔ ✔ ✔ ✔ ✔ ✔



            9: Taking Turns in the Dark: 



            Sequential Games with 



            Imperfect Information ✔ ✔ ✔ ✔ ✔ ✔ ✔



            10: I Know Something You 



            Don’t Know: Games 



            with Private Information ✔ ✔



            11: What You Do Tells Me Who 



            You Are: Signaling Games ✔ ✔



            12: Lies and the Lying Liars That 



            Tell Them: Cheap Talk Games ✔



            13: Playing Forever: Repeated 



            Interaction with Infinitely 



            Lived Players ✔ ✔ ✔ ✔



            14: Cooperation and Reputation: 



            Applications of Repeated 



            Interaction with Infinitely 



            Lived Players ✔ ✔ 14.3 ✔



            15: Interaction in Infinitely 



            Lived Institutions ✔



            16: Evolutionary Game Theory 



            and Biology: Evolutionarily 



            Stable Strategies ✔



            17: Evolutionary Game Theory 



            and Biology: Replicator 



            Dynamics ✔ ✔
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Resources for Instructors
To date, supplementary materials have been relatively minimal to the instruc-
tion of game theory courses, a product of the niche nature of the course and the
ever-present desire of instructors to personalize the teaching of the course to
their own tastes. With that in mind, Worth has developed a variety of products
that, when taken together, facilitate the creation of individualized resources
for the instructor.



            Instructor’s Resources CD-ROM



            This CD-ROM includes



            ■ All figures and images from the textbook (in JPEG and MS PPT for-
mats)



            ■ Brief chapter outlines for aid in preparing class lectures (MS Word)



            ■ Notes to the Instructor providing additional examples and ways to
engage students in the study of text material (Adobe PDF)



            ■ Solutions to all end-of-chapter problems (Adobe PDF)



            Thus, instructors can build personalized classroom presentations or enhance
online courses using the basic template of materials found on the Instructor’s
Resource CD-ROM.



            Companion Web Site for Instructors



            The companion site http://www.worthpublishers.com/harrington is another
excellent resource for instructors, containing all the materials found on the
IRCD. For each chapter in the textbook, the tools on the site include



            ■ All figures and images from the textbook (in JPEG and MS PPT for-
mats)



            ■ Brief chapter outlines for aid in preparing class lectures (MS Word)



            ■ Notes to the Instructor providing additional examples and ways to en-
gage students in the study of text material (Adobe PDF)



            ■ Solutions to all end-of-chapter problems (Adobe PDF)



            As with the Instructor’s Resource CD-ROM, these materials can be used by in-
structors to build personalized classroom presentations or enhance online
courses.
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Man’s mind, once stretched by a new idea, never regains its original
dimensions. —OLIVER WENDELL HOLMES



            1.1 Who Wants to Be a Game Theorist?
April 14, 2007: What’s this goo I’m floating in? It’s borrrriiiing being here by
myself.



            May 26, 2007: Finally, I get out of this place. Why is that woman smiling at
me? I look like crud. And who’s that twisted paparazzo with a camera?



            June 1, 2007: Oh, I get it. I cry and then they feed me. I wonder what else I
can get them to do. Let’s see what happens when I spit up. Whoa, lots of at-
tention. Cool!



            September 24, 2019: Okay, this penalty kick can win it for us. Will the
goalie go left or right? I think I’ll send it to the right.



            January 20, 2022: I have got to have the latest MP5 player! sugardaddy37
has the high bid on eBay, but how high will the bidding go? Should I bid
now or wait? If I could only get around eBay’s new antisniping software!



            December 15, 2027: This game theory instructor thinks he’s so smart. I
know exactly what he’s asking for with this question. Wait, is this a trick?
Did he think I would think that? Maybe he’s not so dumb, though he sure
looks it; what a geek.



            May 7, 2035: If I want that promotion to sales manager, I’ve got to top the
charts in next quarter’s sales. But to do that, I can’t just do what everyone
else does and focus on the same old customers. Perhaps I should take a
chance by aggressively going after some new large accounts.



            August 6, 2056: If my son keeps getting lousy grades, he’ll never get into a
good college. How do I motivate him? Threaten to ground him? Pay for
grades? Bribe him with a car?



            February 17, 2071: This transfer to the middle of nowhere is just a way to
get me to quit. Maybe I can negotiate a sweet retirement deal with my boss.
I wonder how badly she wants me out of here.



            October 17, 2089: That guy in room 17 always gets to the commons room
first and puts on that stupid talk show. Since when did he own this nursing
home? Tomorrow, I’ll wake up early from my nap and beat him there!



            FROM WOMB TO TOMB, life is a series of social encounters with parents, siblings,
classmates, friends, teammates, teachers, children, neighbors, colleagues, bosses,
baristas, and on and on. In this book, we explore a myriad collection of such
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            interactions and do so with two objectives. One objective is to understand the
manner in which people behave—why they do what they do. If you’re a social
scientist—such as a psychologist or an economist—this is your job, but many
more people do it as part of everyday life. Homo sapiens is a naturally curious
species, especially when it comes to each other; just ask the editors of People and
National Enquirer. Our second objective is motivated not by curiosity, but by ne-
cessity. You may be trying to resolve a conflict with a sibling, engaging in a
sporting contest, competing in the marketplace, or conspiring on a reality TV
show. It would be useful to have some guidance on what to do when interacting
with other people.



            In the ensuing chapters, we’ll explore many different kinds of human en-
counters, all of which illustrate a situation of strategic interdependence. What
is strategic interdependence? First, consider a situation in which what one
person does affects the well-being of others. For example, if you score the win-
ning goal in a soccer game, not only will you feel great, but so will your team-
mates, while the members of the other team will feel lousy. This situation il-
lustrates an interdependence across people, but strategic interdependence is
something more. Strategic interdependence is present in a social situation
when what is best for someone depends on what someone else does. For ex-
ample, whether you kick the ball to the right or left depends on whether you
think the goalkeeper will go to the right or left.



            The presence of strategic interdependence can create a formidable chal-
lenge to figuring out what to do. Suppose Greg and Marcia arrive at a museum
together, but are later separated. Because Greg’s cell phone battery is dead,
each must independently decide where to meet. Since Greg wants to go where
he thinks Marcia will go, he needs to think like Marcia. “Where would I go if
I were Marcia?” Greg asks himself. But as soon as he begins thinking that way,
he realizes that Marcia will go where she thinks Greg will go, which means
that Marcia is asking herself, “Where would I go if I were Greg?” So Greg
doesn’t need to think about what Marcia will do; he needs to think about what
Marcia thinks Greg will do. And it doesn’t stop there. As portrayed in FIGURE 1.1,
each person is thinking about what the other person is thinking about what the
other person is thinking about what the other person is thinking. . . . This prob-
lem is nasty enough to warrant its own name: infinite regress.



            Infinite regress is a daunting property that is exclusively the domain of the
social sciences; it does not arise in physics or chemistry or any of the other
physical sciences. In their pioneering book Theory of Games and Economic
Behavior, John von Neumann and Oskar Morgenstern recognized the singu-
larity of strategic situations and that new tools would be needed to conquer
them:



            The importance of the social phenomena, the wealth and multiplicity of their
manifestations, and the complexity of their structure, are at least equal to
those in physics. It is therefore to be expected—or feared—that mathemati-
cal discoveries of a stature comparable to that of calculus will be needed in
order to produce decisive success in this field.1



            Game theory provides a method to break the chain of infinite regress so
that we can stop banging our heads against the wall and say something useful
(assuming that we haven’t banged our heads for so long that we’ve lost any ca-
pacity for intelligent thought). Showing how game theory can be used to ex-
plore and understand social phenomena is the task this book takes on.
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            1.2 A Sampling of Strategic Situations
SINCE ITS DISCOVERY, game theory has repeatedly shown its value by shedding
insight on situations in economics, business, politics, and international rela-
tions. Many of those success stories will be described in this book. Equally ex-
citing has been the expansion of the domain of game theory to nontraditional
areas such as history, literature, sports, crime, medicine, theology, biology, and
simply everyday life (as exemplified by the chapter’s opening monologue). To
appreciate the broad applicability of game theory, the book draws examples
from an expansive universe of strategic situations. Here is a sampling to give
you a taste of what is in store for you:



            Price-matching guarantees Surf on over to the website of Best Buy,
and you’ll see the following statement: “If you’re about to buy at a Best
Buy store and discover a lower price than ours, let us know and we’ll
match that price on the spot.” A trip to Circuit City’s website reveals a
similar policy: “If you’ve seen a lower advertised price from another local



            FIGURE 1.1 Infinite Regress in Action
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            store with the same item in stock, we want to know about it. Bring it to
our attention, and we’ll gladly beat their price by 10% of the difference.”
Although these policies would seem to represent fierce competition, such
price-matching guarantees can actually raise prices! How can that be?



            Ford and the $5-a-day wage In 1914, Henry Ford offered the unheard-of
wage of $5 a day to workers in his automobile factories, more than double
the going wage. Although we might conclude that Henry Ford was just being
generous with his workers, his strategy may actually have increased the prof-
its of the Ford Motor Company. How can higher labor costs increase profits?



            Nuclear standoff Brinkmanship is said to be the ability to get to the
verge of war without actually getting into a war. This skill was pertinent
to a recent episode in which the United States sought to persuade North
Korea to discontinue its nuclear weapons program. Even if Kim Jong-Il
has no desire to go to war, could it be best for him to take actions which
suggest that he is willing to use nuclear weapons on South Korea? And if
that is the case, should President Bush take an aggressive stance and
thereby call a sane Kim Jong-Il’s bluff, but at the risk of inducing a crazy
Kim Jong-Il to fire off nuclear weapons?



            Jury room After the completion of a trial, the 12 jurors retire to the jury
room. On the basis of their initial assessment, only 2 of them believe that
the defendant is guilty. They start their deliberations by taking a vote. In
turn, each and every juror announces a vote of guilty! How can this hap-
pen? And is there an alternative voting procedure that would have avoided
such an unrepresentative outcome?



            Galileo and the Inquisition In 1633, the great astronomer and scientist
Galileo Galilei was under consideration for interrogation by the Inquisition.
The Catholic Church contended that Galileo violated an order not to teach
that the earth revolves around the sun. Why did Pope Urban I refer
Galileo’s case to the Inquisitors? Should Galileo confess?



            Waiting at an airport gate Some airlines have an open seating policy,
which means that those first in line get a better selection of seats. If the
passengers are comfortably seated at the gate, when does a line start
forming and when should you join it?



            Helping a stranger Studies by psychologists show that a person is less
likely to offer assistance to someone in need when there are several other
people nearby who could help. Some studies even find that the more peo-
ple there are who could help, the less likely is any help to be offered! How
is it that when there are more people to help out, the person in need is
more likely to be neglected?



            Trench warfare in World War I During World War I, the Allied and
German forces would engage in sustained periods of combat, regularly
launching offensives from their dirt fortifications. In the midst of this
bloodletting, soldiers in opposing trenches would occasionally achieve a
truce of sorts. They would shoot at predictable intervals so that the other
side could take cover, not shoot during meals, and not fire artillery at the
enemy’s supply lines. How was this truce achieved and sustained?



            Doping in sports Whether it is the Olympics, Major League Baseball, or
the Tour de France, the use of illegal performance-enhancing drugs such


            

        



        
            

            
1.3 Whetting Your Appetite: The Game of Concentration 5



            as steroids is a serious and challenging problem. Why is doping so ubiqui-
tous? Is doping inevitable, or can it be stopped?



            Extinction of the wooly mammoth A mass extinction around the end
of the Pleistocene era wiped out more than half of the large mammal
species in the Americas, including the wooly mammoth. This event coin-
cided with the arrival of humans. Must it be that humans always have
such an impact on nature? And how does the answer to that question pro-
vide clues to solving the problem of global climate change?



            1.3 Whetting Your Appetite: 
The Game of Concentration
THE VALUE OF GAME THEORY in exploring strategic situations is its delivery of a
better understanding of human behavior. When a question is posed, the tools
of game theory are wielded to address it. If we apply these tools appropriately,
we’ll learn something new and insightful. It’ll take time to develop the tools so
that you can see how that insight is derived—and, more importantly, so that
you can derive it yourself—but you are certain to catch on before this course
is over. Here, I simply offer a glimpse of the kind of insight game theory has
to offer.



            Game theory can uncover subtly clever forms of strategic behavior. To see
what I mean, let’s consider the common card game of Concentration that
many of you undoubtedly have played. Through your own experience, you
may already have stumbled across the strategic insight we’ll soon describe.
The beauty of game theory is that it can provide insight into a situation before
you’ve ever faced it.



            The rules of Concentration are simple. All 52 cards are laid face down on
a table. Each player takes turns selecting 2 cards. If they match (e.g., if both
are Kings), then the player keeps the pair and continues with her turn. If
they do not match, then the cards are returned face down and the turn goes
to the next player. The game is played until all the cards are off the table—
26 matched pairs have been collected—and the player with the most pairs
wins.



            What does it take to win at Concentration? A bit of luck helps. Early in the
game, players have little choice but to choose randomly. Of course, the first
player to move is totally in the dark and, in fact, has less than a 6% chance of
making a match. But once the game gets rolling, luck is trumped by a good
memory. As cards fail to be matched and are turned back over, remembering
where those cards are will lead to future matches. So memory and luck are
two valuable traits to possess (to the extent that one can possess luck). And
then there is, of course, strategy. Strategy, I say? Where is the role for strategy
in Concentration?



            To focus on the strategic dimension to Concentration, we’ll neutralize the
role of memory by assuming that players have perfect memory.2 For those of
you who, like me, lack anything approaching such an enviable trait, consider
instead the following modification to the game: When two cards are turned up
and don’t match, leave them on the table turned up. So as not to confuse our-
selves, we’ll now speak of a player “choosing” a card, and that card may al-
ready be turned up (so that all know what card it is), or it may be turned down
(in which case the card is yet to be revealed).
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            Suppose two players—Angela and Zack—are playing Concentration and face
the following array of cards on the board:



            Board 1



            There are six remaining cards, of which one is known to be a queen. Of the five
unknown cards, one is another queen; assume that the others are two kings and
two 10’s.



            It’s Angela’s turn, and suppose she chooses one of the unknown cards, which
proves to be a king. The board now looks as follows, with the selected card
noted.



            Board 2



            What many people are inclined to do at this point is choose one of the four
unknown cards with the hope of getting another king, rather than select the
card known to be a queen. But let’s not be so hasty and instead explore the pos-
sible ramifications of that move. If Angela flips over one of the other four un-
known cards, there is a one-in-four chance that it is the other king, because, of
those four cards, one is a king, one is a queen, and two are 10’s. Similarly, there
is a one-in-four chance that the card is a queen and a one-in-two chance that it
is a 10.



            What happens if it is a king? Then Angela gets a match and gets to choose
again. If it is instead a queen, then Angela doesn’t get a match, in which case it
is Zack’s turn and he faces this board:



            Board 3
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            Notice that Zack is sure to acquire one pair by choosing the two Queens; he
could get more if he’s lucky. Finally, suppose the second card Angela selects
turns out to be a 10. Then Zack inherits this board:



            Now Zack gets all three remaining pairs! If he chooses any of the three re-
maining unknown cards, he’ll know which other card to select to make a match.
For example, if he chooses the first card and it is a king, then he just needs to
choose the fourth card to have a pair of kings. Continuing in this manner, he’ll
obtain all three pairs.



            TABLE 1.1 summarizes the possibilities when Angela has Board 2—having just
gotten a king—and chooses one of the four remaining unknown cards as her
second card. She has a 25% chance of getting a pair (by getting a king), a 25%
chance of Zack getting at least one pair (by Angela’s getting a queen), and a 50%
chance of Zack getting all three remaining pairs (by Angela’s getting a 10).



            Board 4



            TABLE 1.1 OUTCOMES WHEN ANGELA CHOOSES AN UNKNOWN CARD
AFTER GETTING A KING



            Identity of Second Number of Pairs for Number of Pairs for 



            Card Chosen Chances Angela on This Round Zack on Next Round



            King 25% 1 (maybe more) 0 (maybe more)



            Queen 25% 0 (for sure) 1 (maybe more)



            10 50% 0 (for sure) 3 (for sure)



            Having randomly chosen her first card and found it to be a king, what, then,
should Angela select as her second card? Game theory has proven that the best
move is not for her to choose one of the four remaining unknown cards, but instead
to choose the card that is known to be a queen! It will take us too far afield for me
to prove to you why that is the best move, but it is easy to explain how it could be
the best move. Although selecting the queen means that Angela doesn’t get a pair
(because she’ll have a king and a queen), it also means that she doesn’t deliver as
attractive a board to Zack. Instead, Zack would receive the following board:



            Board 5
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            Notice that Zack is no longer assured of getting a pair. If, instead, Angela had
chosen one of the four unknown cards, there is a 25% chance that she’d have
gotten a pair, but a 75% chance that Zack would have gotten at least one pair.



            What this analysis highlights is that choosing an unknown card has bene-
fits and costs. The benefit is that it may allow a player to make a match—
something that is, obviously, well known. The cost is that, when a player
chooses a card that does not make a match (so that the revealed card remains
on the board), valuable information is delivered to the opponent. Contrary to
accepted wisdom, under certain circumstances it is optimal to choose a card
that will knowingly not produce a match in order to strategically restrict the
information your opponent will have and thereby reduce his chances of col-
lecting pairs in the next round.



            Generally, the value of game theory is in delivering insights of that sort. Even
when we analyze a decidedly unrealistic model—as we just did with players
who have perfect memory—a general lesson can be derived. In the game of
Concentration, the insight is that you should think not only about trying to
make a match, but also about the information that your play might reveal to
the other player—a useful tip even if players’ memories are imperfect.



            1.4 Psychological Profile of a Player
I think that God in creating Man somewhat overestimated his ability.
—OSCAR WILDE



            A STRATEGIC SITUATION IS described by an environment and the people who inter-
act in that environment. Before going any further, it is worth discussing what
defines a person for the purposes of our analysis. If you are asked to describe
someone you know, many details would come to your mind, including the per-
son’s personality, intelligence, knowledge, hair color, gender, ethnicity, family
history, political affiliation, health, hygiene, musical tastes, and so on. In game
theory, however, we can ignore almost all of those details because, in most sit-
uations, understanding or predicting behavior requires knowing just two
characteristics: preferences and beliefs.



            1.4.1 Preferences



            With her current phone contract expired, Grace is evaluating two cell phone
providers: Verizon and AT&T. The companies differ in terms of their pricing
plans and the phones that they offer. (Especially enticing is AT&T’s support
for the iPhone.) A key assumption in this book is that a person can always de-
cide; that is, when faced with two alternatives, someone is able to say which
she likes more or whether she finds them equally appealing. In the context of
cell phone providers, this assumption just means that Grace either prefers
Verizon to AT&T, prefers AT&T to Verizon, or is indifferent between the two
plans. Such a person is said to have complete preferences. (Thus, we are
ruling out people with particular forms of brain damage that cause abulia,
which is an inability to decide; they will be covered in Volume II of this
book—yeah, right.)



            A second assumption is that a person’s preferences have a certain type of
consistency. For example, if Grace prefers AT&T to Verizon and Verizon to
Sprint, then it follows that she prefers AT&T to Sprint. Let’s suppose, however,
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            that were not the case and that she instead prefers Sprint to AT&T; her prefer-
ences would then be as follows:



            AT&T is better than Verizon.



            Verizon is better than Sprint.



            Sprint is better than AT&T.



            Let’s see what trouble emerges for a person with such preferences.
If Grace started by examining Verizon and comparing it with AT&T, she



            would decide that AT&T is better. Putting the AT&T plan alongside the one
from Sprint, she thinks, “Sprint has a better deal.” But just as she’s about to
buy the Sprint plan, Grace decides to compare Sprint with Verizon, and lo and
behold, she decides that Verizon is better. So she goes back and compares
Verizon and AT&T and decides, yet again, that AT&T is better. And if she were
to compare AT&T and Sprint, she’d go for Sprint again. Her process of com-
parison would keep cycling, and Grace would never decide! To rule out such
troublesome cases, it is assumed that preferences are transitive. Preferences
are transitive if, whenever option A is preferred to B and B is preferred to C,
it follows that A is preferred to C.



            The problem with intransitive preferences goes well beyond the possibility
of vacillating ad nauseam: you could end up broke! Suppose Jack has intran-
sitive preferences in that he prefers A to B, B to C, and C to A. Suppose also
that you possess item A and Jack has items B and C. Consider the series of
transactions listed in TABLE 1.2: You propose to Jack that you give him A in ex-
change for B and, say, a dollar. Now, assume that Jack prefers A enough to B
that he would give up B and a dollar in order to obtain A. So now you have B
and a dollar, while Jack has A and C (and is a dollar poorer). You then propose
to give him B in exchange for C and a dollar. Because Jack prefers B to C (say,



            TABLE 1.2 PUMPING JACK FOR MONEY



            What You Have What Jack Has Transaction



            A and $0 B, C, and $99



            A for B and $1



            B and $1 A, C, and $98



            B for C and $1



            C and $2 A, B, and $97



            C for A and $1



            A and $3 B, C, and $96



            A for B and $1



            B and $4 A, C, and $95



            B for C and $1



            C and $5 A, B, and $94



            � � �



            A and $99 B, C, and $0
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            by more than a dollar), Jack will make the trade. Now you possess C and two
dollars. The next step is to offer C in exchange for A and a dollar. Since Jack
prefers A to C (say, by at least a dollar), he’ll make the trade. Now you have A
and three dollars, whereas if you recall, you started with A and no money.
Trading with Jack is a money pump! It gets even better: you can continue to
execute this sequence of trades while accumulating three dollars in each
round. Eventually, you’ll have taken all of Jack’s money. Such is the sad life of
someone whose preferences are not transitive, so take this cautionary tale to
heart and always have your preferences be transitive!



            If a person’s preferences are complete and transitive, then there is a way in
which to assign numbers to all of the feasible items—where the associated
number is referred to as an item’s utility—so that a person’s preferences can
be represented as choosing the item that yields the highest utility. To be more
concrete, suppose there are four cell phone providers available to Grace:
AT&T, Verizon, Sprint, and T-Mobile. Her preferences are as follows:



            AT&T is better than Verizon. Verizon is better than Sprint.



            Sprint and T-Mobile are equally appealing.



            This set of preferences implies the following ordering of
plans: AT&T is best, Verizon is second best, and Sprint
and T-Mobile are tied for third best. The next step is to as-
sign a utility to each of these choices so that choosing the
plan with the highest utility is equivalent to choosing the
most preferred plan. Such an assignment of utilities is
shown in TABLE 1.3.



            We can now describe Grace’s behavior by saying that
she makes the choice which yields the highest utility. If all
four plans are available in her area, we know by her pref-



            erences that she’ll choose AT&T. If we say that she chooses the plan with the
highest utility, it means that she chooses AT&T, because the utility of choos-
ing AT&T is 10, which is higher than 6 from Verizon and 2 from either Sprint
or T-Mobile. Now suppose that AT&T is unavailable in her area, so she can
choose only between Verizon, Sprint, and T-Mobile. Her preferences rank
Verizon higher than the other two, so that is what she will buy. Choosing
Verizon is also what maximizes her utility—it delivers utility of 6—when she
can choose only between Verizon, Sprint, and T-Mobile.



            To ensure that choosing the option with the highest utility is equivalent to
choosing the most preferred option, numbers need to be assigned so that the
utility of option A is greater than the utility of option B if and only if A is pre-
ferred to B and the utility of A is equal to that of B if and only if the individ-
ual choosing is indifferent between A and B. Note that there is no unique way
to do that. Rather than assigning 10, 6, 2, and 2 to AT&T, Verizon, Sprint, and
T-Mobile, respectively, it would have worked just as well to have used 14, 12,
11, and 11 or 4, 3, 0, and 0. As long as the utility is higher for more preferred
items, we’ll be fine.



            There is nothing deep about the concept of utility. The idea is that people
are endowed with preferences which describe how they rank different alter-
natives. If preferences are complete and transitive, then there is a way in
which to assign a number to each alternative that allows a person’s behavior
to be described as making the choice with the highest utility. A list of options



            TABLE 1.3 GRACE’S UTILITY FUNCTION



            Cell Phone Provider Utility



            AT&T 10



            Verizon 6



            Sprint 2



            T-Mobile 2
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            and their associated utilities—such as Table 1.3—is known as a utility func-
tion. A person’s utility function captures all of the relevant information about
the person’s preferences.



            Writing down a person’s preferences begs the question of where they come
from. Why does someone prefer rock and roll to opera? cats to dogs? stripes
to solids? pizza to General Tso’s chicken? Preferences could be determined by
genes, culture, chemicals, personal experience, and who knows what else.
Where preferences come from will not concern us. We’ll be content to take
preferences as given and explore what they imply about behavior.



            1.4.2 Beliefs



            In many situations, the utility received by a person depends not just on the
choices the person makes, but also on the choices of others. For example, many
cell phone providers have designed their plans to create an interdependence be-
tween the choices that people make. For most plans, the price charged per
minute is lower if you are calling someone on the same network (i.e., someone
who has chosen the same provider) than if you are calling someone on another
network. What this means is that the best provider for someone may well de-
pend on the providers used by the people whom they call.



            With this in mind, consider Grace’s deciding on a cell phone plan, knowing
that she spends most of her time calling her best friend Lisa. Although Grace
really likes AT&T (because then she can have an iPhone), it is most critical to
her that she choose the same network as Lisa. A utility function consistent
with these preferences for Grace is shown in TABLE 1.4. Note that Grace’s most
preferred provider is always the provider that Lisa chooses. If Lisa chooses
Sprint, then Sprint yields the highest utility for Grace. (Compare 6 from
Sprint, 5 from AT&T, and 3 from Verizon.) If Lisa chooses Verizon, then
Verizon maximizes Grace’s utility. Given that Grace really likes AT&T, her
highest utility comes when both she and Lisa choose AT&T.



            To make the best choice, Grace will need to form beliefs as to which plan
Lisa will choose. This condition leads us to the second key personal attribute



            TABLE 1.4 GRACE’S UTILITY FUNCTION WHEN IT DEPENDS ON 
LISA’S PROVIDER



            Grace’s Provider Lisa’s Provider Grace’s Utility



            AT&T AT&T 10



            AT&T Verizon 5



            AT&T Sprint 5



            Verizon AT&T 3



            Verizon Verizon 8



            Verizon Sprint 3



            Sprint AT&T 2



            Sprint Verizon 2



            Sprint Sprint 6
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            that is relevant to game theory: a person’s capacity to form beliefs as to what
others will do. While we’ll assume that people are endowed with preferences,
such as those described in Table 1.4, they are not endowed with beliefs.
Indeed, a major function of game theory is to derive reasonable beliefs re-
garding what other players will do.



            There are two processes from which these beliefs might emerge, one smart
and one dumb. The dumb process is simply experience, which is referred to
as experiential learning. By interacting again and again, a person comes to
expect—rightly or wrongly—that another person will do what he’s done in the
past. This process has great universality, as it can be practiced by small kids
and many species in the animal kingdom.



            The smart process for forming beliefs is called simulated introspection.
Introspection is the examination of one’s own thoughts and feelings, while in
simulated introspection a person is simulating the introspective process of
someone else in order to figure out what that individual will do. Simulated in-
trospection is the default method of belief derivation in this book, although
some of what we’ll say can be derived through experiential learning. Because
simulated introspection is subtle and complex, let’s discuss what demands it
puts on a person.



            To have the capacity to simulate the reasoning of others, a person must
have self-awareness, which means being aware of your own existence. It is
not enough to think; a person must be capable of thinking about thinking.
Thinking is, then not just a process, like digestion, but also a mental state. Of
course, thinking about how you think doesn’t necessarily get you closer to fig-
uring out what someone else is thinking; we also need what psychologists call
a theory-of-mind mechanism (ToMM). Possession of a ToMM means that
you attribute thinking to others and attribute a ToMM to others, which means
that you attribute to them the possibility of thinking about you thinking, just
as you can think about them thinking. A ToMM is essential to strategizing and
is what produces the endlessly slippery slope of infinite regress.



            A ToMM is a fascinating capacity and is the basis for all that underlies this
book. It has been argued that a ToMM is so useful for social animals that it is
natural to think of it as the product of evolution. Surviving and thriving in a
community would surely have been enhanced by being able to predict what
others would do.3 Given the advantage that a ToMM bestows, it is natural to
ask whether other primates possess it. Although indirect tests have been con-
ducted on apes and chimpanzees, the evidence is mixed. Interestingly, some
scientists believe that the absence of a ToMM is a feature of autism, in which
case it is possible to be an intelligent human, yet lack a ToMM.



            1.4.3 How Do Players Differ?



            Thus far, we’ve discussed how people are similar: they have well-defined prefer-
ences, self-awareness, and a theory-of-mind mechanism. But how do they
differ? Three forms of individual heterogeneity are especially relevant to game
theory. First, although each person is assumed to have complete and transitive
preferences, those preferences can vary across people. For instance, Grace may
prefer AT&T, while Lisa prefers Verizon. Tony may like the Red Sox and detest
the Yankees, while Johnny is just the opposite. Second, people can have differ-
ent options and opportunities. For example, a wealthy bidder at an auction has
a different set of options than another bidder with lower net worth. Third, people
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            can have different information. Thus, the bidder with less wealth may have a
better evaluation of the item being auctioned off than the wealthier bidder.



            One last trait that deserves mention is skill, which is required both in figuring
out what to do in a strategic encounter and in then executing a plan. Skill em-
bodies many elements, including originality, cleverness, composure, and, as
described by Winston Churchill, that “element of legerdemain, an original and
sinister touch, which leaves the enemy puzzled as well as beaten.”4 How skillful
are players presumed to be, and how much are they allowed to vary in their skill?



            FIGURE 1.2 depicts a range of intellects drawn from fiction. Players aren’t
presumed to be brilliant like James Bond or Albert Einstein, nor are they
going to be in the “dumb and dumber” category like Curly or Mr. Bean. We’re
not out to explain how the Three Stooges would behave when faced with a nu-
clear standoff. We will presume that players have at least a modicum of good
sense and guile and, overall, that they are intelligent.



            Are people presumed to be logical like Mr. Spock from Star Trek, or can they
draw upon their emotions in decision making? While our analysis will be an
exercise in logic, that does not preclude the possibility that people use emo-
tions or “gut feelings” to arrive at a decision. In many cases, we will not be re-
producing how people actually make decisions; rather, we will be describing
what the end result of that process may be. A person may reach a decision
through cold logic or on the basis of emotions rooted in past experiences.5



            The more intriguing issue is whether we allow for variation in the skill of
our players. Can we explore SpongeBob battling wits with Star Wars’ Senator
Palpatine? Or have Mr. Bean and Voldemort exercise their “gray matter” in
conflict? Although it would be exciting to explore such possibilities, they will
not be considered here. A key assumption throughout this book is that people
have comparable levels of skill. The strategic moves considered will take place on
a level playing field. Although a player may have an advantage because she has
more options or better information, no player will be able to “outsmart” an-
other. (In principle, game theory can handle such possibilities, but that line of
inquiry is largely undeveloped.)



            1.5 Playing the Gender Pronoun Game
BEFORE GOING ANY FURTHER in our quest to learn the logic of game theory, there
is a sociopolitical–legal issue that my publisher, priest, and barista have
urged me to raise with you: the use of gender pronouns. Any textbook that



            FIGURE 1.2 A Range of Intellect
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            discusses people in the abstract—such as a book on game theory—must ex-
plain how it intends to use gender pronouns and provide the rationale for
that usage. While this matter is typically discussed in a book’s preface, peo-
ple don’t tend to read the preface (apparently, “preface” means “ignore” in
lots of languages), and every reader needs to know where I stand on this con-
tentious issue.



            To the chagrin of “stupid white men”—as filmmaker Michael Moore de-
scribes them—the people who live in this book are not all males. If they were,
where would the next generation of players come from for my second edition?
Yes, women do live in the abstract world of game theory and will live along-
side men. But allowing cohabitation between the covers of this book still
leaves a decision of how to allocate men and women across our many exam-
ples. I remember a scholarly piece on crime in which the male pronoun was
used to refer to criminals (because most criminals are men) while judges, ju-
rors, attorneys, witnesses, and victims were female. (To be accurate, most
criminals who are caught are men; perhaps women are better about getting
away with it.) Such an approach is disturbing. Might not an impressionable
boy be led to believe that he should turn to a life of crime because that is what
males do? And should we really convey the impression to a girl that crime is
too risky for the female half of the species? Contrary to that approach, this
book will allow both men and women to be deviants, sociopaths, and your
run-of-the-mill perverts.



            An alternative strategy is to deploy tactics utilized in the Gender Pronoun
Game. This is the conversational game by which a person seeks to hide the
gender of his partner. Instead of using “he” or “she” and “him” or “her”, one
either avoids the use of pronouns or uses plural pronouns such as “they” and
“them”. In the heterosexual world, a gay person might strive to avoid reveal-
ing that her partner is of the same gender, and analogously, someone in the
gay community (who is perhaps bisexual) might hide a heterosexual relation-
ship. But these gender-neutral plural pronouns can become awkward (and
drive my editor crazy), which leads me to another strategy: invent some
gender-neutral pronouns. There is no shortage of worthy attempts, including
“shis”, “shim”, “shey”, “shem”, “sheir”, “hisorher”, “herorhis”, and—my per-
sonal favorite—“h’orsh’it” (a colorful blend of “he”, “she”, and “it”).



            After long hours of monklike contemplation with my subconscious in sync
with the Fox Network, I have decided to deal with this issue by mimicking real
life. Just as our species is made up of both men and women, so will the play-
ers occupying the pages of this book. If there is a two-player game, then one
player will be male and the other female. More generally, I’ll just mix them
up—a male here, a female there, a hermaphrodite when I’m getting bored.
Admittedly, I have not counted their respective numbers to ensure an even
gender balance. You the reader are welcome to do so, and once having been
informed of your findings, I would be glad to replace an X chromosome with
a Y or a Y with an X as is needed. In the meantime, I will do my best to be
gender neutral and avoid stepping in h’orsh’it.
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If the human mind was simple enough to understand, we’d be too simple
to understand it. —EMERSON PUGH



            2.1 Introduction
THEY SPEAK OF “DELIVERABLES” in the corporate world as the end product that
is—well, delivered to a customer. So for those who are trying to understand
social phenomena—such as economists, political scientists, and nosy neigh-
bors—or those trying to determine how to behave—such as policymakers,
business owners, and teenagers—game theory has two deliverables. First, it
provides a framework for taking a complex social situation and boiling it
down to a model that is manageable. Second, it provides methods for extract-
ing insights from that model regarding how people do behave or how they
should behave. This chapter focuses on using game theory to model a strate-
gic situation; the next chapter begins our journey solving such models.



            Human behavior typically occurs in an environment that is highly complex,
and this complexity poses a challenge in modeling social phenomena. Deciding
on what to put in a model is like trying to pack for college: there’s just no way
to shove everything you want into that suitcase. In that light, it is useful to dis-
tinguish between literal and metaphorical models. A literal model is a model
that is descriptively accurate of the real-world setting it is intended to repre-
sent. Other than for board games and a few other settings, a literal model of a
social situation would be a bloody mess. In contrast, a metaphorical model is
a vast simplification—a simplified analogy—of the real-world situation; it is
not meant to be descriptively accurate. With a metaphorical model, we try to
simulate the real world in essential ways, not replicate it. The “essential” ways
are those factors thought to be critical to the problem of interest. Factors that
are presumed to be secondary are willfully ignored. Most of the models in this
book and most of the models constructed to understand social phenomena are
metaphorical. Done right, a metaphorical model can yield insights into human
behavior that are applicable to much richer and more realistic situations.



            Whether literal or metaphorical, game theory offers a scaffolding around
which a model can be constructed, and in this chapter we review the two pri-
mary types of scaffolding. The extensive form is a description of the sequence
of choices faced by those involved in a strategic situation, along with what
they know when they choose. In Section 2.2, we consider extensive form
games of perfect information, in which a person always knows what has thus
far transpired in the game. Situations with imperfect information are de-
scribed in Section 2.3, and these models allow a person to lack knowledge
about what other people have chosen so far. The central concept of a strategy
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is introduced in Section 2.3, and this concept provides the foundation for de-
scribing the strategic form of a game in Section 2.4—the second type of scaf-
folding. Though more abstract than the extensive form, the strategic form is
more concise and easier to work with. Common knowledge is a concept perti-
nent to both methods of modeling a strategic situation and is covered in
Section 2.5. Common knowledge deals with what a person knows about what
others know.



            Before we move forward, let me remind you that this chapter is about
building a game. Solving a game will begin with the next chapter, so be pre-
pared for some delayed gratification.



            2.2 Extensive Form Games: Perfect Information
IN SPITE OF ITS NAME, game theory can deal with some fairly dire subjects, one
of which is the criminal activity of kidnapping for ransom. This is a sufficiently
serious and persistent problem in some countries—such as Colombia, Mexico,
and Russia—that companies have taken out insurance against their executives
being held for ransom. Building a model of kidnapping can involve factoring
in a great many considerations. The focus of our task, however, is not so much
on gaining insight into kidnapping, but on learning how to construct a game-
theoretic model.



            Because the objective of game theory is to derive implications about be-
havior, a model should focus on those individuals who have decisions to make.
Our attention will accordingly be on the kidnapper, whom we’ll call Guy, and
the victim’s wife, Vivica, who has been contacted to pay ransom. Although the
victim (whom we’ll name Orlando) is surely affected by what transpires, we
are presuming that the victim has no options. In describing the situation, our
model should address the following questions: When do Guy and Vivica get to
act? What choices are available when they get to act? What do they know



            when they get to act? More information will
be needed to derive predictions about behav-
ior, but the information obtained by answer-
ing these questions is sufficient for starters.



            The model is represented by what is
known as a decision tree, such as that
shown in FIGURE 2.1. A decision tree is read
from top to bottom. (It can also be depicted
to be read from left to right.) Each of the dots
is called a decision node, which represents a
point in the game at which someone has a
decision to make. Coming out of a decision
node is a series of branches, where each
branch represents a different action avail-
able to the decision maker. Choosing a
branch is equivalent to choosing an action.



            At the top of the decision tree, Guy is to
make the initial decision, and his choices are
kidnap (Orlando) and do not kidnap.* If he
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            FIGURE 2.1 Extensive Form of the Kidnapping Game
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            *The name of an action or strategy will typically be italicized
in this book.
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            chooses the latter, then the tree comes to an end, which represents “game
over.” If, instead, he chooses to kidnap Orlando, then Vivica is informed of the
kidnapping and decides whether to pay the ransom. In response to Vivica’s de-
cision, Guy decides whether to release Orlando or kill him. The assumption is
that Guy observes whether ransom is paid prior to making this choice. (How
to handle a simultaneous exchange will be discussed later in the chapter.)



            There is a total of five outcomes to this game, each of which corresponds to
a path through the decision tree or, equivalently, a sequence of actions. These
outcomes are listed in TABLE 2.1. One outcome is for there not to be a kidnap-
ping. If there is a kidnapping, there are four possible outcomes, depending on
whether ransom is paid and whether Orlando is killed or released.



            TABLE 2.1 KIDNAPPING GAME AND PAYOFFS



            Outcome Guy (Violent) Guy Vivica



            No kidnapping 3 3 5



            Kidnapping, ransom is paid, Orlando is killed 4 5 1



            Kidnapping, ransom is paid, Orlando is released 5 4 3



            Kidnapping, ransom is not paid, Orlando is killed 2 2 2



            Kidnapping, ransom is not paid, Orlando is released 1 1 4



            The objective of our model is to make some predictions about how Guy
and Vivica will behave. Although solving a game won’t be tackled until the
next chapter, in fact we don’t have enough information to solve it even if we
knew how. To describe how someone will behave, it’s not enough to know
what they can do (e.g., kill or release) and what they know (e.g., whether ran-
som has been paid); we also need to know what these people care about.
What floats their boat? What rings their bell? What tickles their fancy? You
get the idea.



            A description of what a player cares about takes the form of a ranking of
the five outcomes of the game. Suppose Guy is someone who really just wants
the money and kills only out of revenge for the ransom not being paid. Then
Guy’s best outcome is to perform the kidnapping, Vivica pays the ransom, and
he releases Orlando. Because we assume that he is willing to kill in exchange
for money, his second-best outcome is to perform the kidnapping, have the
ransom paid, and kill Orlando. The third-best outcome is not to kidnap
Orlando, since Guy prefers not to run the risk of kidnapping when ransom is
not to be paid. Of the two remaining outcomes, suppose that if he kidnaps
Orlando and ransom is not paid, then he prefers to kill Orlando (presumably
out of spite for not receiving the ransom). The least preferred outcome is then
that there is a kidnapping, ransom is not paid, and Orlando is released.



            To concisely include Guy’s preferences in our description of the game, we’ll
assign a number to each outcome, with a higher number indicating a more
preferred outcome for a player. This ranking is done in Table 2.1 under the col-
umn labeled “Guy.” These numbers are referred to as payoffs and are in-
tended to measure the well-being (or utility, or welfare, or happiness index) of
a player. For example, the highest payoff, 5, is assigned to the best outcome:
the kidnapping takes place, ransom is paid, and Orlando is released. The worst
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            outcome—the kidnapping takes place, ransom is not paid, and Orlando is re-
leased—receives the lowest payoff, 1.



            Suppose, contrary to what was just assumed, that Guy felt that his chances
of getting caught would be less if Orlando were dead, so that he now always
prefers killing Orlando to releasing him. Then Guy’s payoffs would be as
shown in the column “(Violent) Guy.” The highest payoff is now assigned to
the outcome in which Guy kidnaps and kills Orlando and the ransom is paid.



            What about Vivica? If she cares about Orlando more than she cares about
money, then her most preferred outcome is no kidnapping, and we’ll assign
that the highest payoff of 5. Her least preferred outcome is that Orlando is kid-
napped and killed and ransom is paid, so it receives the lowest payoff of 1. The
payoffs for the other outcomes are shown in the table.



            To ensure that the depiction in Figure 2.1 contains all of the relevant infor-
mation, the payoffs have been included. Each terminal node corresponds to a
particular outcome of the game, and listed below a terminal node are the pay-
offs that Guy and Vivica assign to that outcome; the top number is Guy’s pay-
off and the bottom number is Vivica’s payoff. While we could also list
Orlando’s payoffs—he is surely not indifferent about what happens—that
would be extraneous information. Because our objective is to say something
about behavior, and this model of kidnapping allows only the kidnapper and
the victim’s kin to act, only their payoffs matter.



            This step of assigning a payoff to an outcome is analogous to what was
done in Chapter 1. There we began with a person’s preferences for certain
items (in our example, it was cell phone providers), and we summarized those
preferences by assigning a number—known as utility—to each item. A per-
son’s preferences were summarized by the resulting utility function, and her
behavior was described as making the choice that yielded the highest utility.
We’re performing the same step here, although game theory calls the number
a payoff; still, it should be thought of as the same as utility.



            The scenario depicted in Figure 2.1 is an example of an extensive form
game. An extensive form game is depicted as a decision tree with decision
nodes, branches, and terminal nodes. A decision node is a location in the tree
at which one of the players has to act. Let us think about all of the informa-
tion embodied in Figure 2.1. It tells us which players are making decisions
(Guy and Vivica), the sequence in which they act (first Guy then, possibly,
Vivica, and then Guy again), what choices are available to each player, and
how they evaluate the various outcomes of the game. This extensive form
game has four decision nodes: the initial node at which Guy decides whether
to kidnap Orlando, the decision node at which Vivica decides whether to pay
ransom, and Guy’s two decision nodes concerning whether to kill or release
Orlando (one decision node for when Vivica pays ransom and one for when
she does not). Extending out of each decision node are branches, where a
branch represents an action available to the player who is to act at that deci-
sion node. More branches mean more choices.



            We refer to the decision node at the top of the tree as the initial node (that
is where the game starts) and to a node corresponding to an end to the game
as a terminal node (which we have not bothered to represent as a dot in the
figure). There are five terminal nodes in this game, since there are five possi-
ble outcomes. Terminal nodes are distinct from decision nodes, as no player
acts at a terminal node. It is at a terminal node that we list players’ payoffs,
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            where a payoff describes how a player evaluates an outcome of the game, with
a higher number indicating that the player is better off.



            � SITUATION: BASEBALL, I



            Good pitching will always stop good hitting and vice-versa. —CASEY STENGEL



            One of the well-known facts in baseball is that right-handed
batters generally perform better against left-handed pitch-
ers and left-handed batters generally perform better
against right-handed pitchers. TABLE 2.2 documents this
claim.1 If you’re not familiar with baseball, batting average
is the percentage of official at bats for which a batter gets
a hit (in other words, a batter’s success rate). Right-handed
batters got a hit in 25.5% of their attempts against a right-
handed pitcher, or, as it is normally stated in baseball, their
batting average was .255. However, against left-handed
pitchers, their batting average was significantly higher, namely,
.274. There is an analogous pattern for left-handed batters, who hit .266 against
left-handed pitchers but an impressive .291 against right-handed pitching. Let’s
explore the role that this simple fact plays in a commonly occurring strategic
situation in baseball.



            It is the bottom of the ninth inning and the game is tied between the Orioles
and the Yankees. The pitcher on the mound for the Yankees is Mariano Rivera,
who is a right-hander, and the batter due up for the Orioles is Javy Lopez, who
is also a right-hander. The Orioles’ manager is thinking about whether to sub-
stitute Jay Gibbons, who is a left-handed batter, for Lopez. He would prefer to
have Gibbons face Rivera in order to have a lefty–righty matchup and thus a
better chance of getting a hit. However, the Yankees’ manager could respond
to Gibbons pinch-hitting by substituting the left-handed pitcher Randy
Johnson for Rivera. The Orioles’ manager would rather have Lopez face
Rivera than have Gibbons face Johnson. Of course, the Yankees’ manager has
the exact opposite preferences.



            The extensive form of this situation is
shown in FIGURE 2.2. The Orioles’ manager
moves first by deciding whether to substitute
Gibbons for Lopez. If he does make the substi-
tution, then the Yankees’ manager decides
whether to substitute Johnson for Rivera.
Encompassing these preferences, the Orioles’
manager assigns the highest payoff (which is
3) to when Gibbons bats against Rivera and
the lowest payoff (1) to when Gibbons bats
against Johnson. Because each manager is
presumed to care only about winning, what
makes the Orioles better off must make the
Yankees worse off. Thus, the best outcome for
the Yankees’ manager is when Gibbons bats
against Johnson, and the worst is when
Gibbons bats against Rivera.



            TABLE 2.2



            Batter Pitcher Batting Average



            Right Right .255



            Right Left .274



            Left Right .291



            Left Left .266



            FIGURE 2.2 Baseball
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            � SITUATION: GALILEO GALILEI AND THE INQUISITION, I



            In 1633, the great astronomer and scientist Galileo Galilei was under consid-
eration for interrogation by the Inquisition. The Catholic Church contends
that in 1616 Galileo was ordered not to teach and support the Copernican
theory, which is that the earth revolves around the sun, and furthermore that
he violated this order with his latest book, The Dialogue Concerning the Two
Chief World Systems. The situation to be modeled is the decision of the
Catholic Church regarding whether to bring Galileo before the Inquisition
and, if it does so, the decisions of Galileo and the Inquisitor regarding what
to say and do.



            The players are Pope Urban VIII, Galileo, and the Inquisitor. (Although
there was actually a committee of Inquisitors, we’ll roll them all into one
player.) The extensive form game is depicted in FIGURE 2.3. Urban VIII ini-
tially decides whether to refer Galileo’s case to the Inquisition. If he declines
to do so, then the game is over. If he does refer the case, then Galileo is
brought before the Inquisition, at which time he must decide whether to con-
fess that he did indeed support the Copernican case too strongly in his recent
book. If he confesses, then he is punished and the game is over. If he does not
confess, then the Inquisitor decides whether to torture Galileo. If he chooses



            FIGURE 2.3 Galileo Galilei and the Inquisition
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            To complete the extensive form game, payoff numbers are required. There
are five outcomes to the game: (1) Urban VIII does not refer the case; (2)
Urban VIII refers the case and Galileo initially confesses; (3) Urban VIII refers
the case, Galileo does not initially confess, he is tortured, and then he con-
fesses; (4) Urban VIII refers the case, Galileo does not initially confess, he is
tortured, and he does not confess; and (5) Urban VIII refers the case, Galileo
does not initially confess, and he is not tortured.



            In specifying payoffs, we don’t want arbitrary numbers, but rather ones
that accurately reflect the preferences of Urban VIII, Galileo, and the
Inquisitor. Galileo is probably the easiest. His most preferred outcome is that
Urban VIII does not refer the case. We’ll presume that if the case is referred,
then Galileo’s preference ordering is as follows: (1) He does not confess and
is not tortured; (2) he confesses; (3) he does not confess, is tortured, and does
not confess; and (4) he does not confess, is tortured, and confesses. Galileo
was a 69-year-old man, and evidence suggests that he was not prepared to be
tortured for the sake of principle. Urban VIII is a bit more complicated, be-
cause although he wants Galileo to confess, he does not relish the idea of this
great man being tortured. We’ll presume that Urban VIII most desires a con-
fession (preferably without torture) and prefers not to refer the case if it does
not bring a confession. The Inquisitor’s preferences are similar to those of
Urban VIII, but he has the sadistic twist that he prefers to extract confessions
through torture.



            So, what happened to Galileo? Let’s wait until we learn how to solve such a
game; once having solved it, I’ll fill you in on a bit of history.



            not to torture him, then, in a sense, Galileo has won, and we’ll consider the
game ended. If the Inquisitor tortures poor Galileo, then he must decide
whether to confess.
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            � SITUATION: HAGGLING AT AN AUTO DEALERSHIP, I



            Donna shows up at her local Lexus dealership looking to buy a car. Coming
into the showroom and sauntering around a taupe sedan, a salesperson,
Marcus, appears beside her. After chatting a bit, he leads the way to his cu-
bicle to negotiate. To simplify the modeling of the negotiation process, sup-
pose the car can be sold for three possible prices, denoted pL, pM, and pH,
and suppose pH > pM > pL. (H is for “high,” M is for “moderate,” and L is for
“low.”)



            The extensive form game is depicted in FIGURE 2.4. Marcus initially decides
which of these three prices to offer Donna. In response, Donna can either ac-
cept the offer—in which case the transaction is made at that price—or reject it.
If it is rejected, Donna can either get up and leave the dealership (thereby end-
ing the negotiations) or make a counteroffer. In the latter case, Donna can re-
spond with a higher price, but that doesn’t make much sense, so it is assumed
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            FIGURE 2.4 Haggling at an Auto Dealership
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            that she selects among those prices which are lower than what she was ini-
tially offered (and turned down). For example, if Marcus offers a price of pH,
then Donna can respond by asking for a price of either pM or pL. If Donna has
decided to counteroffer, then Marcus can either accept or reject her counterof-
fer. If he rejects it, then he can counteroffer with a higher price (though it must
be lower than his initial offer). This haggling continues until either Donna
leaves, or an offer is accepted by either Donna or Marcus, or they run out of
prices to offer.



            In terms of payoffs, assume that both Marcus and Donna get a zero payoff
if the game ends with no sale. (There is nothing special about zero, by the way.
What is important is its relationship to the other payoffs.) If there is a trans-
action, Marcus’s payoff is assumed to be higher when the sale price is higher,
while Donna’s payoff is assumed to be lower. More specifically, in the event of
a sale at a price p, Donna is assumed to receive a payoff of pM � p and Marcus
gets a payoff of 2(p � pL). (Why multiply by 2? For no particular reason.)



            Think about what this is saying. If Marcus sells the car for a price of pL,
then his payoff is zero because 2(pL � pL) � 0. He is then indifferent between
selling it for a price of pL and not selling the car. At a price of pM, his payoff
is positive, which means that he’s better off selling it at that price than not
selling it; and his payoff is yet higher when he sells it for pH. For Donna, she
is indifferent between buying the car at a price of pM, and not buying it,
since both give the same payoff (of zero). She prefers to buy the car at a
price of pL, as that price gives her a payoff of pM � pL > 0; she is worse off
(relative to not buying the car) when she buys it at a price of pH, since that
gives her a payoff of pM � pH < 0. (Yes, payoffs can be negative. Once again,
what is important is the ordering of the payoffs.) These payoffs are shown in
Figure 2.4.



            To be clear about how to interpret this extensive form game, consider what
can happen when Marcus initially offers a price of pH. Donna can either
accept—in which case Marcus gets a payoff of 2(pH � pL) and Donna gets a
payoff of pM � pH—or reject. With the latter, she can leave or counteroffer with
either pL or pM. (Recall that we are allowing her to counteroffer only with a
price that is lower than what she has been offered.) If Donna chooses the
counteroffer of pL, then Marcus can accept—resulting in payoffs of zero for
Marcus and pM � pL for Donna—or reject, in which case Marcus has only one
option, which is to counteroffer with pM, in response to which Donna can ei-
ther accept or reject (after which there is nothing left to do). If she instead
chooses the counteroffer pM, then Marcus can accept or reject it. If he rejects,
he has no counteroffer and the game ends.



            It is worth noting that this extensive form game can be represented alter-
natively by FIGURE 2.5. Rather than have the same player move twice in a row,
the two decision nodes are combined into one decision node with all of the
available options. For example, in Figure 2.4, Donna chooses between accept
and reject in response to an initial offer of pM from Marcus, and then, if she
chooses reject, she makes another decision about whether to counteroffer with
pL or leave. Alternatively, we can think about Donna having three options
(branches) when Marcus makes an initial offer of pM: (1) accept; (2) reject and
counteroffer with pL; and (3) reject and leave. Figure 2.5 is a representation
equivalent to that in Figure 2.4 in the sense that when we end up solving these
games, the same answer will emerge.
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            FIGURE 2.5 Simplifying the Extensive Form of the Haggling Game
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            Consider a two-player game in which a father chooses between actions yes, no, and
maybe. His daughter moves second and chooses between stay home and go to the mall.
The payoffs are as follows:



            Outcome Father’s Payoff Daughter’s Payoff



            yes and stay home 8 3



            yes and go to the mall 5 9



            no and stay home 4 1



            no and go to the mall 1 5



            maybe and stay home 7 2



            maybe and go to the mall 2 7



            2.1 CHECK YOUR UNDERSTANDING*



            Write down the extensive form game for this strategic situation.



            *All answers to Check Your Understanding are in the back of the book.
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            2.3 Extensive Form Games: Imperfect Information
RETURNING TO THE KIDNAPPING SCENARIO, suppose we want to model Guy (the kid-
napper) and Vivica (the victim’s kin) as making their decisions without knowl-
edge of what the other has done. The extensive form game in Figure 2.1 as-
sumes that Guy learns whether ransom has been paid prior to deciding what
to do with Orlando (the victim). An alternative specification is that Guy de-
cides what to do with Orlando at the same time that Vivica decides about the
ransom. You could imagine Guy deciding whether to release Orlando some-
where in the city while Vivica is deciding whether to leave the ransom at an
agreed-upon location. How do you set up an extensive form game with that
feature?



            The essential difference between these scenarios is information. In
Figure 2.1, Guy knew what Vivica had done when it was time for him to
make his decision, whereas Vivica did not know what was to happen to
Orlando when she had to decide about paying the ransom. Vivica’s lack of
knowledge was represented by having Vivica move before Guy. Now we
want to suppose that at the time he has to decide about killing or releasing
Orlando, Guy is also lacking knowledge about what Vivica is to do or has
done. Well, we can’t make a decision tree in which Vivica moves after Guy
and Guy moves after Vivica.



            To be able to represent such a situation, the concept of an information set
was created. An information set is made up of all of the decision nodes that
a player is incapable of distinguishing among. Every decision node belongs
to one and only one information set. A player is assumed to know which in-
formation set he is at, but nothing more. Thus, if the information set has
more than one node, then the player is un-
certain as to where exactly he is in the game.
All this should be clearer with an example.



            FIGURE 2.6 is a reformulation of the Kid-
napping game with the new assumption that
Guy doesn’t get to learn whether Vivica has
paid the ransom when he decides what to do
with Orlando. In terms of nodes and
branches, the trees in Figures 2.1 and 2.6 are
identical. The distinctive element is the box
drawn around the two decision nodes associ-
ated with Guy choosing whether to release or
kill Orlando (which are denoted III and IV).
The nodes in that box make up Guy’s infor-
mation set at the time he has to decide what
to do with Orlando. Guy is assumed to know
that the game is at either node III or node IV,
but that’s it; he doesn’t know which of the
two it is. Think about what this means. Not
to know whether the game is at node III or
node IV means that Guy doesn’t know
whether the sequence of play has been “kid-
nap and ransom is paid” or “kidnap and ran-
som is not paid.” Well, this is exactly what we
wanted to model; Guy doesn’t know whether



            FIGURE 2.6 Kidnapping Game When the Exchange
Is Simultaneous. The Box Around Nodes
III and IV Represents the Information Set
at the Point That Guy Has to Decide
What to Do with Orlando
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            the ransom is to be paid when he must decide whether to release or kill
Orlando. The way this situation is represented is that Guy doesn’t know ex-
actly where he is in the game: Is he at node III or node IV?



            In any extensive form game, a player who is to act always has an informa-
tion set representing what he knows. So what about when Vivica moves? What
is her information set? It is just node II; in other words, she knows exactly
where she is in the game. If we want to be consistent, we would then put a box
around node II to represent Vivica’s information set. So as to avoid unneces-
sary cluster, however, singleton information sets (i.e., an information set with
a single node) are left unboxed. In Figure 2.6, then, Guy has two information
sets; one is the singleton composed of the initial node (denoted I), and the
other comprises nodes III and IV.



            Returning to Vivica, since she is modeled as moving before Guy decides
about Orlando, she makes her decision without knowing what has hap-
pened or will happen to Orlando. Do you notice how I’m unclear about the
timing? Does Vivica move chronologically before, after, or at the same time
as Guy? I’ve been intentionally unclear because it doesn’t matter. What mat-
ters is information, not the time of day at which someone makes a decision.
What is essential is that Vivica does not know whether Guy has released or
killed Orlando when she decides whether to pay ransom and that Guy does
not know whether Vivica has paid the ransom when he decides whether to
release or kill Orlando. In fact, FIGURE 2.7 is an extensive form game equiv-
alent to that in Figure 2.6. It flips the order of decision making between
Vivica and Guy, and the reason it is equivalent is that we haven’t changed
the information that the players have when they move. In both games, we’ll
say that Vivica and Guy move simultaneously (with respect to the ransom
and release-or-kill decisions), which is meant to convey the fact that their



            FIGURE 2.7 Extensive Form Equivalent to Figure 2.6
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            information is the same as when they make their decisions at the exact
same time.



            An extensive form game in which all information sets are singletons—
such as the games in Figures 2.1–2.5—is referred to as a game of perfect
information, since players always know where they are in the game when
they must decide. A game in which one or more information sets are not
singletons, such as the game in Figure 2.6, is known as a game of imper-
fect information.



            � SITUATION: MUGGING



            Notorious for being cheap, the comedian Jack Benny would tell the fol-
lowing story: “I was walking down a dark alleyway when someone came
from behind me and said, ‘Your money or your life.’ I stood there frozen.
The mugger said again, ‘Your money or your life.’ I replied, ‘I’m thinking, . . .
I’m thinking.’”



            Simon is walking home late at night when suddenly he realizes that there is
someone behind him. Before he has a chance to do anything, he hears, “I have
a gun, so keep your mouth shut and give me your wallet, cell phone, and
iPod.” Simon doesn’t see a gun, but does notice that the mugger has his hand
in his coat pocket, and it looks like there may be a gun in there. If there is no
gun, Simon thinks he could give the mugger a hard shove and make a run for
it. But if there is a gun, there is a chance that trying to escape will result in
him being shot. He would prefer to hand over his wallet, cell phone, and even
his iPod than risk serious injury. Earlier that evening, the mugger was engag-
ing in his own decision making as he debated whether to use a gun. Because
the prison sentence is longer when a crime involves a gun, he’d really like to
conduct the theft without it.



            The mugging situation just described is depicted as the extensive form
game in FIGURE 2.8. The mugger moves first in deciding between three options:
not to use a gun; bring a gun, but not show it to the victim; and bring a gun



            FIGURE 2.8 Mugging
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            and show it to the victim. In response to each of these actions, Simon has to
decide whether to resist the mugger by doing the “shove and run” (resist) or
by complying with the mugger’s instructions (do not resist). Simon has two in-
formation sets. One is a singleton and is associated with the mugger’s having
and showing a gun. The other information set comprises two nodes, one cor-
responding to the mugger’s having a gun, but not showing it, and the other to
the mugger’s not having a gun. With the latter information set, Simon isn’t
sure whether the mugger’s pocket contains a gun.



            In specifying the payoffs, the best outcome for Simon is that the mugger
does not use a gun and Simon resists; the worst outcome is that the mugger
has a gun and Simon resists. For the mugger, the best outcome is that Simon
does not resist and the mugger doesn’t use a gun in the robbery. The worst out-
come is that he doesn’t use the gun and Simon resists, as then the mugger
comes away empty handed.



            � SITUATION: U.S. COURT OF APPEALS FOR THE FEDERAL CIRCUIT



            When the U.S. Court of Appeals for the Federal Circuit hears a case, a
panel of 3 judges is randomly selected from the 12 judges on the court.
After a case is filed, the parties submit written briefs stating their argu-
ment. If the court decides to hear oral arguments, each party’s lawyer is
given between 15 and 30 minutes. The panel of 3 judges then decides the
case. Let us model a simplified version of this judicial setting when there
is no oral argument.



            One side of the case is represented by attorney Elizabeth Hasenpfeffer,
while attorney Joseph Fargullio represents the other party. Prior to their ap-
pearance, each attorney decides on a legal strategy and writes a brief based on
it. For Ms. Hasenpfeffer, let us denote the strategies as A and B; for Mr. Fargullio,
they’ll be denoted I and II. The briefs are submitted simultaneously, in the
sense that each attorney writes a brief not knowing what the other has writ-
ten. This situation is reflected in FIGURE 2.9, in which Ms. Hasenpfeffer moves
first and Mr. Fargullio moves second, but with an information set that en-
compasses both the node in which Ms. Hasenpfeffer chose A and the one in
which she chose B.



            After reading the two briefs, the three members of the court then vote either
in favor of Ms. Hasenpfeffer’s argument or in favor of Mr. Fargullio’s argu-
ment. This vote is cast simultaneously in that each judge writes down a deci-
sion on a piece of paper. For brevity, the judges are denoted X, Y, and Z. As
depicted, each judge has four information sets, where an information set cor-
responds to the pair of legal strategies selected by the attorneys. Judge X
moves first and thus doesn’t know how judges Y and Z have voted. Judge Y
moves second and thus doesn’t know how Judge Z has voted (since Z is de-
scribed as moving after him), but she also doesn’t know how Judge X has
voted because of the structure of the information sets. Each of Judge Y’s in-
formation sets includes two decision nodes: one for Judge X voting in favor of
Ms. Hasenpfeffer and one for Judge X in favor of Mr. Fargullio. Turning to
Judge Z, we see that each of her information sets comprises the four nodes
that correspond to the four possible ways that Judges X and Y could have
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            voted. Although the judges are depicted as moving sequentially, in fact each
votes without knowledge of how the other two have voted; in other words, the
judges vote simultaneously.



            � SITUATION: THE IRAQ WAR AND WEAPONS OF MASS DESTRUCTION



            Now let’s take on some recent history: the situation faced by Iraq, the United
Nations, and the United States that culminated in the U.S. invasion of Iraq
on March 20, 2003. At issue is whether Sadaam Hussein has weapons of
mass destruction (WMD). As shown in FIGURE 2.10, Iraq is modeled as hav-
ing a choice of possessing or not possessing WMD. Without knowledge of
Iraq’s choice, the United Nations decides whether to request inspections of
Iraq. The United Nations then has one information set, which includes both
of Iraq’s feasible actions: the one when it has WMD and the other when it
does not. If the United Nations chooses not to request inspections, then the
United States decides whether or not to invade Iraq, at which point we’ll
consider the game done. If the United Nations does request inspections, then
the move goes back to Iraq. If Iraq does not have WMD, then it can choose
to deny inspections or allow them. If, instead, Iraq has WMD, then it can
deny inspections, allow inspections, or allow inspections and hide the WMD.
With the last option, suppose Iraq succeeds in preventing inspectors from
finding WMD. Assume that when Iraq does have WMD and does not hide
them from the inspectors, the WMD are found. After Iraq moves in response
to the request for inspections by the United Nations, and the outcome of the
inspections is revealed, the United States moves again regarding whether to
attack Iraq.



            The United States has four information sets. The information set de-
noted I includes the two nodes associated with (1) Iraq having WMD and
the United Nations not choosing inspections, and (2) Iraq not having WMD
and the United Nations not choosing inspections. Although the United
States doesn’t get to observe Iraq’s choice, it does get to observe the UN de-



            cision. Information set II corresponds to the scenario in
which inspections are requested by the United Nations
and allowed by Iraq, but WMD are not found, either be-
cause Iraq does not have them or because it does have
them but has successfully hidden them from the in-
spectors. Information set III denotes the situation in
which the United Nations requests inspections, but
they are refused by Iraq; once again, the United States
doesn’t know whether Iraq has WMD. The lone single-
ton information set for the United States is node IV,



            which is associated with Iraq’s having WMD, the United Nation’s having re-
quested inspections, and Iraq’s having allowing unobstructed inspections,
in which case WMD are found. A similar exercise can be conducted to
describe the one information set of the United Nations and the three in-
formation sets of Iraq (all of which are singletons, as Iraq is the only one
hiding something).



            Now let us return to the Mugging game and
suppose that the mugger not only chooses
whether to use a gun and whether to show it,
but also whether to load the gun with bullets. If
Simon sees the gun, he doesn’t know whether it
is loaded. Write down the extensive form of this
strategic situation. (You can ignore payoffs.)



            2.2 CHECK YOUR UNDERSTANDING


            

        



        
            

            
FIGURE 2.10 Iraq War and WMD. The Abbreviations W and NW Represent War and No War, Respectively
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            2.4 What Is a Strategy?
Victorious warriors win first and then go to war, while defeated warriors
go to war first and then seek to win. —SUN TZU2



            WHAT DO YOU THINK the preceding quote from Sun Tzu means? One interpreta-
tion is that, to be victorious, you should develop a detailed plan prior to going
to battle and then, once in battle, execute that plan. Rather than trying to fig-
ure out a plan over the course of the battle, perform all of your thinking be-
fore one arrow is flung or one cannon is fired.



            The notion of a strategy is central to game theory, and its definition is ex-
actly what Sun Tzu had in mind. A strategy is a fully specified decision rule
for how to play a game. It is so detailed and well specified that it accounts for
every contingency. It is not a sequence of actions, but rather a catalog of con-
tingency plans: what to do, depending on the situation. As was well expressed
by J. D. Williams in an early book on game theory, a strategy is “a plan so com-
plete that it cannot be upset by enemy action or Nature; for everything that the
enemy or Nature may choose to do, together with a set of possible actions for
yourself, is just part of a description of the strategy.”3



            As a conceptual device, we imagine a player choosing a strategy before the
game begins. This strategy could, in principle, be written down as a set of in-
structions and given to another person to play. In other words, having a strat-
egy means doing all of the hard thinking (utilizing intelligence, judgment,
cleverness, etc.) prior to playing the game. The actual play is nothing more
than following the instructions provided by the strategy selected. Of course,
this description of a strategy is an abstraction, since, in practice, surely judg-
ment and acumen are applied in the midst of a strategic situation. However,
you’ll need to accept this definition of strategy if you are to make headway into
gaining insight into strategic situations. It is one of those basic postulates that
is valuable in practice because of its purity in form.



            To be more concrete as to the nature of a strategy in game theory, let us re-
turn to the Kidnapping game in Figure 2.1. What is a strategy for the kidnap-
per? As we’ve just said, a strategy is a complete decision rule—one that pre-
scribes an action for every situation that a player can find himself in. Guy (the
kidnapper) can find himself in three situations: (1) contemplating whether to
kidnap Orlando (i.e., the initial node); (2) having kidnapped Orlando, with ran-
som having been paid by Vivica, and deciding whether to kill or release
Orlando; and (3) having kidnapped Orlando, with ransom not having been paid
by Vivica, and deciding whether to kill or release Orlando. It is not coinciden-
tal that Guy can find himself in three scenarios and he has three information
sets: A “situation” for a player is defined as finding himself at an information
set; hence, a strategy assigns one action to each of a player’s information sets.



            A template for Guy’s strategy is, then,



            At the initial node, _____ [ fill in kidnap or do not kidnap].



            If a kidnapping occurred and ransom was paid, then _____ [ fill in kill
or release].



            If a kidnapping occurred and ransom was not paid, then _____ [ fill in kill
or release].



            There are as many strategies as ways in which to fill in those three blanks.
Exhausting the possibilities, we have eight feasible strategies:
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            1. At the initial node, kidnap.
If a kidnapping occurred and ransom was paid, then release.
If a kidnapping occurred and ransom was not paid, then kill.



            2. At the initial node, kidnap.
If a kidnapping occurred and ransom was paid, then release.
If a kidnapping occurred and ransom was not paid, then release.



            3. At the initial node, kidnap.
If a kidnapping occurred and ransom was paid, then kill.
If a kidnapping occurred and ransom was not paid, then release.



            4. At the initial node, kidnap.
If a kidnapping occurred and ransom was paid, then kill.
If a kidnapping occurred and ransom was not paid, then kill.



            5. At the initial node, do not kidnap.
If a kidnapping occurred and ransom was paid, then release.
If a kidnapping occurred and ransom was not paid, then kill.



            6. At the initial node, do not kidnap.
If a kidnapping occurred and ransom was paid, then release.
If a kidnapping occurred and ransom was not paid, then release.



            7. At the initial node, do not kidnap.
If a kidnapping occurred and ransom was paid, then kill.
If a kidnapping occurred and ransom was not paid, then release.



            8. At the initial node, do not kidnap.
If a kidnapping occurred and ransom was paid, then kill.
If a kidnapping occurred and ransom was not paid, then kill.



            Analogously, we can define a strategy template for Vivica:



            If a kidnapping occurred, then _____ [fill in pay ransom or do not pay ransom]. 



            Since Vivica has just one information set, her strategy is just a single action.
With only two feasible actions and one information set, she then has two fea-
sible strategies:



            1. If a kidnapping occurred, then pay ransom.



            2. If a kidnapping occurred, then do not pay ransom.



            The strategy set for a player is defined to be the collection of all feasible
strategies for that player. In this example, the strategy set for Guy comprises
the eight strategies just listed for him, and the strategy set for Vivica is made
up of two strategies. There are then 16 possible strategy pairs for this game.



            As previously mentioned, all of the hard thinking goes into choosing a strat-
egy, and once one is chosen, play arises from the implementation of that strat-
egy. To see this point more clearly, suppose Guy chooses the following strategy:



            At the initial node, kidnap.



            If a kidnapping occurred and ransom was paid, then release.



            If a kidnapping occurred and ransom was not paid, then kill.



            Suppose also that Vivica chooses the following strategy:



            If a kidnapping occurred, then pay ransom.



            So what will happen? According to Guy’s strategy, he kidnaps Orlando. Vivica
then pays the ransom (as instructed by her strategy), and in response to the
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            ransom being paid, Guy releases Orlando (reading from his strategy). Similarly,
you can consider any of the 16 possible strategy pairs and figure out what the
ensuing sequence of actions is. It’s just a matter of following instructions.



            Before moving on, notice a peculiar feature about some of Guy’s strategies,
namely, that strategies 5 through 8 prescribe do not kidnap and then tell Guy
what to do if he chose kidnap. In other words, it tells him to do one thing, but
also what to do if he doesn’t do what he should have done. In spite of how



            strange that might sound, we’ll allow for this possibility in
a player’s strategy set, for three reasons. First, it’s simpler
to define a strategy as any way in which to assign feasible
actions to information sets than to try to come up with a
more complicated definition that rules out these “silly”
strategies. Second, inclusion of the silly strategies is, at



            worst, some harmless detritus that won’t affect the conclusions that we draw.
And the third reason, which is the most important, I can’t tell you now. It’s not
that I don’t want to, but you’ll need to know a bit about solving games before
you can understand what I want to say. I’ll clue you in come Chapter 4.



            2.5 Strategic Form Games
THE EXTENSIVE FORM IS one type of scaffolding around which a game can be con-
structed. Its appeal is that it describes (1) a concrete sequence with which
players act, (2) what actions they have available and what they know, and (3)
how they evaluate the outcomes, where an outcome is a path through the de-
cision tree. In this section, we introduce an alternative scaffolding that,
though more abstract, is easier to work with than the extensive form. In the
next section, we’ll show how you can move back and forth between these two
game forms so that you may work with either one.



            A strategic form game (which, in the olden days of game theory, was referred
to as the normal form) is defined by three elements that address the following
questions: (1) Who is making decisions? (2) Over what are they making deci-
sions? and (3) How do they evaluate different decisions? The answer to the first
question is the set of players, the answer to the second question is the players’
strategy sets, and the answer to the third question is players’ payoff functions.



            The set of players refers to the collection of individuals who have decisions
to make. The decision is with regard to a strategy, which is defined exactly as
in the previous section. A player’s strategy set is the collection of strategies
from which he can choose. Finally, a player’s payoff function tells us how the
player evaluates a strategy profile, which is a collection of strategies, one for
each of the players. A higher payoff means that a player is better off, and when
we get to solving a game, the presumption will be that each player tries to
maximize his or her payoff.



            Although a player does not intrinsically value strategies—for they are just
decision rules, and you can’t eat, wear, caress, or live in a decision rule—a
strategy profile determines the outcome of the game (e.g., whether there is a
kidnapping), and a player does care about the outcome. One final piece of jar-
gon before we move on: The term n-tuple refers to n of something—for ex-
ample, an n-tuple of strategies in a game with n players. Two of something is
a pair, three of something is a triple, and n of something is an n-tuple. With all
of this jargon, you can now talk like a game theorist!



            For the revised Kidnapping game in Figure 2.6,
write down the strategy sets for Guy and Vivica.



            2.3 CHECK YOUR UNDERSTANDING
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            � SITUATION: TOSCA



            The force of my desire has two aims, and the rebel’s head is not the more pre-
cious. Ah, to see the flames of those victorious eyes smoulder, aching with
love! Caught in my arms, smouldering with love. One to the gallows, the
other in my arms! —BARON SCARPIA FROM THE OPERA TOSCA



            Giacomo Puccini was arguably the last great operatic composer. He died in
1924 after a career that produced such spectacular successes as La Bohème
(the plot of which was recycled for the Broadway musical Rent), Madame
Butterfly, and Turandot. Puccini’s music is the type that leads you to hum or
whistle it after you leave the theater. It clearly runs counter to the popular def-
inition of opera as two heavy-set people 6 inches apart screaming at the top of
their lungs.



            One of his most popular operas is Tosca, which is a story of love, devotion,
corruption, lechery, and murder—in other words, perfect fodder for learning
game theory!4 The main characters are Baron Vitellio Scarpia, the local chief
of police; an attractive woman named Floria Tosca; and Mario Cavaradossi,
her lover. Scarpia has lustful designs on Tosca and has devised a diabolical
plot to act on them. He first has Cavaradossi arrested. He then tells Tosca that
Cavaradossi is to go before the firing squad in the morning and he (Scarpia)
can order the squad to use real bullets—and Cavaradossi will surely die—or
blanks—in which case Cavaradossi will survive. After then hearing Scarpia’s
sexual demands, Tosca must decide whether or not to concede to them.



            Scarpia and Tosca meet that evening after Scarpia has already given his or-
ders to the firing squad. Tosca faces Scarpia and—knowing that Scarpia has
decided, but not knowing what he has decided—chooses between consenting
to his lustful desires or thrusting the knife she has hidden in her garments into
the heart of this heartless man.



            In writing down the strategic form game, we have our two players, Scarpia
and Tosca. The strategy set for Scarpia has two strategies—use real bullets or
use blanks—while Tosca can either consent or stab Scarpia. As de-
picted in FIGURE 2.11, the two strategies for Tosca correspond to
the two rows, while the two strategies for Scarpia correspond to
the two columns. Thus, Tosca’s choosing a strategy is equivalent
to her choosing a row.



            The final element to the strategic form game are the payoffs.
The first number in a cell is Tosca’s payoff and the second num-
ber is Scarpia’s payoff. (We will use the convention that the row
player’s payoff is the first number in a cell.) For example, if Tosca
chooses stab and Scarpia chooses blanks, then Tosca’s payoff is 4
and Scarpia’s payoff is 1. We have chosen the payoffs so that
Tosca ranks the four possible strategy pairs as follows (going from best to
worst): stab and blanks, consent and blanks, stab and real, and consent and
real. Due to her love for Cavaradossi, the most important thing to her is that
Scarpia use blanks, but it is also the case that she’d rather kill him than con-
sent to his lascivious libido. From the information in the opening quote,
Scarpia’s payoffs are such that his most preferred strategy pair is consent and
real, as he then gets what he wants from Tosca and eliminates Cavaradossi as
a future rival for Tosca. His least preferred outcome is, not surprisingly, stab
and blanks.



            FIGURE 2.11 Tosca
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            Figure 2.11 is known as a payoff matrix and succinctly contains all of the
elements of the strategic form game. Tosca is a reinterpretation of the
Prisoners’ Dilemma, which is the most famous game in the entire kingdom of
game theory. I’ll provide the original description of the Prisoners’ Dilemma in
Chapter 4.



            � SITUATION: COMPETITION FOR ELECTED OFFICE



            The word ‘politics’ is derived from the word “poly,” meaning “many,” and the
word “ticks,” meaning “blood sucking parasites. —LARRY HARDIMAN



            Consider the path to the U.S. presidency. The Republican and Democratic can-
didates are deciding where to place their campaign platforms along the polit-
ical spectrum that runs from liberal to conservative. Let’s suppose that the
Democratic candidate has three feasible platforms: liberal, moderately liberal,
and moderate. Let’s suppose that the Republican candidate has three as well:
moderate, moderately conservative, and conservative.



            A candidate’s payoffs are assumed to depend implicitly on the candidate’s
ideological preferences—what platform he would like to see implemented—
and what it’ll take to have a shot at getting elected. Assume that most voters
are moderate. The Democratic candidate is presumed to be liberal (i.e., his
most preferred policies to implement are liberal), but he realizes that he may
need to choose a more moderate platform in order to have a realistic chance
of winning. Analogously, the Republican candidate is presumed to be conser-
vative, and she, too, knows that she may need to moderate her platform. The
payoff matrix is shown in FIGURE 2.12.



            FIGURE 2.12 Competition for Elected Office
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            The payoffs reflect these two forces: a preference to be elected with a plat-
form closer to one’s ideal, but also a desire to be elected. Note that a candidate’s
payoff is higher when his or her rival is more extreme, as this makes it easier
to get elected. For example, if the Democratic candidate supports a moderately
liberal platform, then his payoff rises from 3 to 5 to 9 as the Republican can-
didate’s platform becomes progressively more conservative. Note also that as
one goes from (moderate, moderate) to (moderately liberal, moderately conserva-
tive) to (liberal, conservative), each candidate’s payoff rises, since, for all three
strategy pairs, the candidate has an equal chance of winning (the candidates
are presumed equally distant from what moderate voters want) and prefers to
be elected with a platform closer to his or her own ideology.
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            � SITUATION: THE SCIENCE 84 GAME



            The magazine Science 84 came up with the idea of running the following con-
test for its readership: Anyone could submit a request for either $20 or $100.
If no more than 20% of the submissions requested $100, then everybody
would receive the amount he or she requested. If more than 20% of the sub-
missions asked for $100, then everybody would get nothing.



            The set of players is the set of people who are aware of the contest. The
strategy set for a player is made up of three elements: do not send in a request,
send in a request for $20, and send in a request for $100. Let us suppose that
each player’s payoff is the amount of money received, less the cost of submit-
ting a request, which we’ll assume is $1 (due to postage and the time it takes
to write and mail a submission).



            In writing down player i’s payoff function, let x denote the number of play-
ers (excluding player i) who chose the strategy send in a request for $20 and y
denote the number of players (excluding player i) who chose send in a request
for $100. Then player i’s payoff function is:



            0 if i chooses do not send in a request



            19 if i chooses send in a request for $20 and � .2
y



            x � y � 1



            99 if i chooses send in a request for $100 and � .2
y � 1



            x � y � 1



            �1 if i chooses send in a request for $20 and .2 �
y



            x � y � 1



            �1 if i chooses send in a request for $100 and .2 �
y � 1



            x � y � 1



            For example, if player i requested $20, and no more than 20% of the submis-



            sions requested $100 (i.e., � .2), then she receives $20 from Science 84,



            from which we need to subtract the $1 cost of the submission.
Although it would be great to know what happened, Science 84 never ran



            the contest, because Lloyd’s of London, the insurer, was unwilling to provide
insurance for the publisher against any losses from the contest.



            2.6 Moving from the Extensive Form 
and Strategic Form
FOR EVERY EXTENSIVE FORM GAME, there is a unique strategic form representation
of that game. Here, we’ll go through some of the preceding examples and show
how you can derive the set of players (that one’s pretty easy), the strategy sets,
and the payoff functions in order to get the corresponding strategic form game.



            � SITUATION: BASEBALL, II



            Consider the Baseball game in Figure 2.2. The strategy set of the Orioles’ man-
ager includes two elements: (1) Substitute Gibbons for Lopez and (2) retain
Lopez. As written down, there is a single information set for the Yankees’ man-
ager, so his strategy is also a single action. His strategy set comprises (1) sub-
stitute Johnson for Rivera and (2) retain Rivera. To construct the payoff ma-
trix, you just need to consider each of the four possible strategy profiles and
determine to which terminal node each of them leads.
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            If the strategy profile is (retain Lopez, retain Rivera), then the payoff is 2 for
the Orioles’ manager and 2 for the Yankees’ manager, since Lopez bats against
Rivera. The path of play, and thus the payoffs, are the same if the profile is in-
stead (retain Lopez, substitute Johnson), because substitute Johnson means
“Put in Johnson if Gibbons substitutes for Lopez”. Since the latter event doesn’t
occur when the Orioles’ manager chooses retain Lopez, Johnson is not substi-
tuted. When the strategy profile is (substitute Gibbons, retain Rivera), Gibbons
bats against Rivera and the payoff pair is (3,1), with the first number being the
payoff for the Orioles’ manager. Finally, if the strategy profile is (substitute
Gibbons, substitute Johnson), Gibbons bats against Johnson and the payoff
pair is (1,3). The payoff matrix is then as depicted in FIGURE 2.13.



            FIGURE 2.13 Strategic Form of Baseball Game
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            FIGURE 2.14 Strategic Form of the Galileo and Inquisition Game
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            � SITUATION: GALILEO GALILEI AND THE INQUISITION, II



            Referring back to Figure 2.3, we see that Galileo has two information sets: one as-
sociated with Pope Urban VIII’s referring the case to the Inquisitor and the other
for the situation when it is referred, Galileo does not confess, and the Inquisitor
tortures Galileo. A strategy for Galileo is, then, a pair of actions. We’ll let C/DNC
(Confess/Do Not Confess) denote the strategy for Galileo in which he confesses at
the first information set and does not confess at the second. The other three strate-
gies—C/C, DNC/C, and DNC/DNC—are defined analogously. The Inquisitor has
one information set—when the Pope refers the case and Galileo does not con-
fess—and two actions, all of which gives him two strategies: torture and do not tor-
ture. Urban VIII also has one information set, which is the initial node, and as he
can either refer the case or not, he has two strategies: refer and do not refer.



            As shown in the payoff matrix in FIGURE 2.14, Galileo chooses a row, the
Inquisitor chooses a column, and the Pope chooses a matrix. The first number
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            in a cell is Galileo’s payoff, the second is the Inquisitor’s payoff, and the third is
the Pope’s payoff. In filling out the matrix, consider, for example, the strategy
profile (Refer, DNC/C, Do not torture). The ensuing path is that the Pope refers
the case, Galileo does not confess, and the Inquisitor does not torture Galileo.
The payoffs are (4,2,2), as shown in the figure. Note that if the Pope chooses
not to refer the case, then the payoffs are (5,3,3), regardless of the strategies
chosen by Galileo and the Inquisitor, since they don’t get a chance to act.
Similarly, if the Pope refers and Galileo initially confesses (by choosing either
strategy C/C or strategy C/DNC), then the payoffs are the same whether the
Inquisitor intends to torture or not, because Galileo’s confession means that the
Inquisitor doesn’t get the opportunity to move.



            � SITUATION: HAGGLING AT AN AUTO DEALERSHIP, II



            This game is more complicated than the ones we have considered thus far.
Consider the version in Figure 2.5. Marcus has four information sets: (1) the ini-
tial node, (2) the node associated with his having offered pM and Donna’s having
rejected it and made a counteroffer of pL, (3) the node associated with his having
offered pH and Donna’s having rejected it and made a counteroffer of pM, and (4)
the node associated with his having offered pH and Donna’s having rejected it and
made a counteroffer of pL. Marcus’s strategy template is then as follows:



            At the initial node, offer _____ [fill in pL, pM, or pH].



            If I offered pM and Donna rejected it and offered pL, then _____ [fill in
accept or reject].



            If I offered pH and Donna rejected it and offered pM, then _____ [fill in
accept or reject].



            If I offered pH and Donna rejected it and offered pL, then _____ [fill in
accept or reject and offer pM].



            If you write them all out, you will see that there are 24 distinct strategies for
Marcus—in other words, 24 different ways in which to fill out those four blanks.



            Donna has four information sets, and her strategy template is the following:



            If Marcus offered pL, then _____ [fill in accept or reject].



            If Marcus offered pM, then _____ [fill in accept, reject and offer pL, or reject
and leave].



            If Marcus offered pH, then _____ [fill in accept, reject and offer pL, reject
and offer pM, or reject and leave].



            If Marcus offered pH, I rejected and offered pL, and Marcus rejected and
offered pM, then _____ [fill in accept or reject].



            Donna has 48 strategies available to her. These are a lot of strategies, but keep
in mind the complete nature of a strategy: no matter where Donna finds her-
self in the game, her strategy tells her what to do.



            Suppose Marcus and Donna chose the following pair of strategies. For Marcus:



            At the initial node, offer pH.



            If I offered pM and Donna rejected it and offered pL, then reject.



            If I offered pH and Donna rejected it and offered pM, then accept.


            

        



        
            

            
42 CHAPTER 2: BUILDING A MODEL OF A STRATEGIC SITUATION



            If I offered pH and Donna rejected it and offered pL, then reject and offer pM.



            For Donna:



            If Marcus offered pL, then accept.



            If Marcus offered pM, then accept.



            If Marcus offered pH, then reject and offer pL.



            If Marcus offered pH, I rejected and offered pL, and Marcus rejected and
offered pM, then accept.



            With this strategy pair, let us determine the sequence of play that logically fol-
lows and thereby the associated payoffs. At the initial node, Marcus offers a
price of pH, as prescribed by his strategy. According to Donna’s strategy, she
rejects the offer and counters with a price of pL. In response to that offer,
Marcus’s strategy tells him to reject it and counteroffer with pM (reading from
the bottom line of his strategy). Finally, Donna’s strategy has her accept the
offer of pM. The path of play that emerges is then as follows: Marcus offers a
price of pH, Donna rejects the offer and proposes a price of pL, Marcus rejects
and counters with a price of pM, and Donna accepts. The transaction is then
made at a price of pM. For this strategy pair, the associated payoffs are (pM � pM)
or zero, for Donna and 2(pM � pL), for Marcus.



            2.7 Going from the Strategic Form 
to the Extensive Form
ALTHOUGH EVERY EXTENSIVE FORM GAME has a unique strategic form game associ-
ated with it, the same strategic form game can be associated with more than
one extensive form game. This means that when we move from the extensive
form to the strategic form, we lose some information, but, as we’ll explain, the
lost information is irrelevant.



            Shown in FIGURE 2.15 are two extensive form games, both of which gener-
ate the strategic form game in Figure 2.11. In the game in Figure 2.15(a),



            FIGURE 2.15 Two Extensive Form Games That Generate the Same Strategic Form Game
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            Scarpia moves first and then Tosca moves, but Tosca has only one information
set, which indicates that she doesn’t know what Scarpia chose when she de-
cides between stab and consent. By this time, it ought to be straightforward to
show that this extensive form game produces the strategic form game depicted
in Figure 2.11.



            The game in Figure 2.15(b) is the same as that in Figure 2.15(a), except that
the sequencing of players has been reversed; still, it produces the same strate-
gic form game, and it makes sense that it does. We’ve pre-
viously argued that what matters is not the chronological
order of moves, but rather what players know when they
act. In both of these extensive form games, Scarpia doesn’t
know Tosca’s move when he acts; in the game in Figure
2.15(a), it is because he moves first, and in the game in
Figure 2.15(b), it is because his information set includes both of Tosca’s ac-
tions. Similarly, in both games, Tosca doesn’t know what Scarpia has told the
firing squad when she makes her choice.



            2.8 Common Knowledge
JACK AND KATE ARE TO meet at the French restaurant Per Se in New York City.
Jack has since learned that the restaurant is closed today, so he e-mails Kate,
suggesting that they meet at 7 P.M. at Artie’s Delicatessen, their second-favorite
place. Kate receives the e-mail on her BlackBerry and e-mails back to Jack,
saying she’ll be there. Jack receives her confirmation. Kate shows up at Artie’s
at 7 P.M. and Jack is not there. She wonders whether Jack received her reply.
If he didn’t, then he might not be sure that she had received the message, and
thus he may have gone to Per Se with the anticipation that she would go there.
It’s 7:15, and Jack is still not there, so Kate leaves to go to Per Se. It turns out
that Jack was just delayed, and he’s surprised to find that Kate is not at Artie’s
when he arrives there.



            The problem faced by Jack and Kate is what game theorists call a lack of
common knowledge. Jack knows that Per Se is closed. Kate knows that Per Se is
closed, because she received Jack’s message telling her that. Jack knows that
Kate knows it, since he received Kate’s confirmation, and obviously, Kate knows
that Jack knows it. But Kate doesn’t know that Jack knows that Kate knows that
Per Se is closed, because Kate isn’t sure that Jack received her confirming mes-
sage. The point is that it need not be enough for Jack and Kate to both know
that the restaurant is closed: they may also need to know what the other knows.



            To be a bit more formal here, I’m going to define what it means for an event
(or a piece of information) to be common knowledge. Let E denote this event.
In the preceding example, E is “Per Se is closed and meet at Artie’s.” E is com-
mon knowledge to players 1 and 2 if



            ■ 1 knows E and 2 knows E.



            ■ 1 knows that 2 knows E and 2 knows that 1 knows E.



            ■ 1 knows that 2 knows that 1 knows E and 2 knows that 1 knows that 2
knows E.



            ■ 1 knows that 2 knows that 1 knows that 2 knows E and 2 knows that 1
knows that 2 knows that 1 knows E.



            ■ And so on, and so on.



            Write down the strategic form game for the
Mugging game in Figure 2.8.



            2.4 CHECK YOUR UNDERSTANDING
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            Are we there yet? No, because this goes on ad infinitum. Common knowl-
edge is like the infinite number of reflections produced by two mirrors facing
each other. Here, the “reflection” is what a player knows. Common knowledge,
then, is much more than players knowing something: it involves them know-
ing what the others know, and knowing what the others know about what the
others know, and so forth.



            The concept of common knowledge is quite crucial because an underlying
assumption of most of what we do in this book is that the game is common
knowledge to the players. Each player knows that the game that is being
played, each knows that the others know that the game that is being played,
and so on.



            Of course, here we are talking about an abstraction, for is anything ever
truly common knowledge? Even if we’re sitting beside each other watching tel-
evision, and a weather bulletin flashes along the bottom of the screen, am I
sure that you saw it? Probably. But can I be sure that you saw me watching the
bulletin? Possibly. But can I be sure that you saw me watching you watching
the bulletin? Perhaps not. Although, in reality, knowledge may not hold for the
entire infinite levels of beliefs required to satisfy common knowledge, it may
not be a bad approximation for a lot of settings, in the sense that people act
“as if” something is common knowledge.



            Before we move on, let me describe an intriguing puzzle that conveys the
power of common knowledge. A group of recently deceased individuals stand
before the pearly gates to heaven. St. Peter is waiting for them there. (Bear
with me if you don’t buy into the whole St. Peter shtick.) He tells them that
only saints may enter right away, and a saint is demarcated with a halo over
the head. Those who are not saints, but who try to enter, will be banished to
hell. Those who are not saints and do not try to enter will go to purgatory for
a while and then enter heaven. There is one problem in determining whether
you are a saint: No one sees whether there is a halo over his or her own head,
though each sees the halos over the heads of others. St. Peter provides one last
piece of information: he announces that there is at least one saint in the group.



            St. Peter begins by inviting anyone to walk through the gates. If no one
does, he then asks again, and so forth. Will the saints be able to figure out who
they are? They can if it is common knowledge that there is at least one saint
among them.



            To see how the argument operates, suppose that there is, in fact, exactly one
saint. This is not initially known; everyone knows only that there is at least one
saint. The person who is that singular saint will look around and see no halos
over the heads of the others. Since he knows that there is at least one saint, he
concludes that he must have a halo over his head. He then enters heaven.
Admittedly, that was easy and, in fact, didn’t require common knowledge, but
only knowing that there is at least one saint.



            Now suppose there are instead two saints in the group, and let’s name them
Tyrone and Rita. During the first calling by St. Peter, each person looks around
and sees at least one person with a halo. (Those who are not saints will see two
people with halos.) No one can conclude that he (or she) is a saint, so no one
walks through the gates. Let us remember that each person knows that the
others know that there is at least one saint. That no one walked through the
gates must mean that each person must have seen at least one other person
with a halo, for if the person hadn’t, then she could infer that she is a saint.
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            Since everyone, including a person with a halo, saw at least one person with
a halo, there must be at least two saints. Since Tyrone sees exactly one other
person with a halo (Rita), and he knows that there are at least two saints,
Tyrone concludes he, too, must have a halo. By an analogous logic, Rita draws
the conclusion that she has a halo. They both walk through the gates on the
second calling.



            Okay, we could solve the problem when there are two saints. But can we do
it when there are three saints? Most definitely, and what allows us to do so is
that each person knows that there is at least one saint, each person knows that
everyone else knows that there is at least one saint, and each person knows
that everyone else knows that everyone else knows that there is at least one
saint. Do you dare follow me down this daunting path of logic?



            Suppose the group has three saints, and their names are Joan, Miguel, and
Tamyra. As in the case when there are two saints, no one can initially conclude
that he or she is a saint. Because each person sees at least two halos (Joan,
Miguel, and Tamyra each see two, and everyone else sees three), knowing that
there is at least one saint doesn’t tell you whether you have a halo. So no one
enters during the first calling. Since no one entered then, as we argued before,
everyone infers that everyone must have seen a halo, which means that there
must be at least two saints. So what happens in the second calling? Since there
are in fact three saints, everyone sees at least two halos during the second call-
ing, in which case no one can yet conclude that he or she is a saint. Now, what
can people infer from the absence of anyone entering heaven during the sec-
ond calling? Everyone concludes that everyone, including those folks who
have halos, must have seen at least two halos. Hence, there must be at least
three saints. Since Joan sees only two halos—those above the heads of Miguel
and Tamyra—Joan must have a halo. Thus, she walks through the gates on the
third calling, as do Miguel and Tamyra, who deploy the same logic. The three
saints figure out who they are by the third calling.



            Suppose there are n saints? The same argument works to show that no one
enters until the nth calling by St. Peter, at which time all n saints learn who
they are and enter. To derive that conclusion, it takes n levels of knowledge:
everyone knows that there is at least one saint, everyone knows that everyone
knows that there is at least one saint, everyone knows that everyone knows
that everyone knows that there is at least one saint, and so on, until the nth
level. Hence, if it is common knowledge that there is at least one saint, then
the saints can always eventually figure out who they are.



            It is said that, in order to succeed, it’s not what you know, but whom you
know. However, game theorists would say that it’s not what you know, but
what you know about what others know, and what you know about what oth-
ers know about what you know, and. . . .



            2.9 A Few More Issues in Modeling Games
■ Can a player forget?



            In the movie Memento, the character Leonard Shelby suffers from an in-
ability to create long-term memories due to psychological trauma associated
with his wife’s murder. In spite of this handicap, he is in pursuit of the killer.
Some of the things he learns he writes down so that he’ll have the information
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            later, and the really important stuff he learns he has tattooed on himself.
Whatever information is not written down will be forgotten. Leonard is thus
cognizant of his memory deficiency and, in fact, uses it strategically. At one
point, he writes down the name of someone as the murderer, even though he
knows that that person is not the murderer. But he also knows that he’ll read
it in a few minutes and believe what his note says, because he will have for-
gotten that it is not true. In this way, he is committing himself to soon believ-
ing that he’s found the killer, which will allow him to experience the satisfac-
tion of vengeance when he murders him.



            In the parlance of game theory, Leonard Shelby has imperfect recall, in
that he does not necessarily know things that he previously knew. Although
game theory can allow for that possibility, our attention in this book will be
limited to the case of perfect recall, so a player who knows something at one
point in the game will know it at any later stage of the game. For example, in
the Iraq WMD game, when Iraq decides whether to refuse inspections (when
requested by the United Nations), it remembers whether it had WMD (a move
made at the start of the game). Similarly, in the game involving haggling at the
auto dealership, if Marcus initially made an offer of pH, and Donna refused it
and counteroffered with pL, Marcus remembers that he had originally offered
pH when he decides whether to accept Donna’s offer of pL or reject it and coun-
teroffer with pM. A situation in which you might want to allow for imperfect
recall is the game of Concentration discussed in Chapter 1, since, in fact, the
imperfect memories of players constitute an essential feature of the game.
Alas, that is not a matter we will take on in this book.



            ■ Can a player change the game?



            Consider the kidnapping situation in the movie Ransom. Mel Gibson plays
the character Tom Mullen, whose son, Sean, is kidnapped by a corrupt police
officer named Jimmy Shaker. Initially, the situation operates like a standard
kidnapping. Shaker demands a 2 million dollar ransom. While going to make
the ransom drop, Tom Mullen becomes convinced that the kidnappers have no
intention of releasing his son. He then decides to go to the local television sta-
tion and is filmed live making the following announcement:



            The whole world now knows my son, Sean Mullen, was kidnapped, for ran-
som, three days ago. This is a recent photograph of him. Sean, if you’re
watching, we love you. And this is what waits for the man that took him.
This is your ransom. Two million dollars in unmarked bills, just like you
wanted. But this is as close as you’ll ever get to it. You’ll never see one dol-
lar of this money, because no ransom will ever be paid for my son. Not one
dime, not one penny. Instead, I’m offering this money as a reward on your
head. Dead or alive, it doesn’t matter. So congratulations, you’ve just become
a 2 million dollar lottery ticket, except the odds are much, much better. Do
you know anyone that wouldn’t turn you in for 2 million dollars? I don’t
think you do. But, this is your last chance, if you return my son, alive, un-
injured, I’ll withdraw the bounty. With any luck, you can simply disappear.
Understand. You will never see this money. Not one dollar. So you still have
a chance to do the right thing. If you don’t, well, then, God be with you, be-
cause nobody else on this Earth will be.



            It is clear that Tom Mullen had a “brainstorm” of converting the ransom
into a bounty. Furthermore, it is natural to suppose that this possibility was
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            not one that Jimmy Shaker had considered. In a way, the players started with
the game looking like that in Figure 2.1, but then Tom Mullen “changed” the
game to something else. Unfortunately, game theory does not allow for such
changes or innovations. A key assumption of game theory is that the game is
initially understood and agreed upon by the players; the rules of the game are
common knowledge.



            What we can do, however, is modify the game to that in FIGURE 2.16. John
Mullen now has the option of paying the ransom, offering a bounty, or doing
nothing, in response to each of which Jimmy Shaker has the two options of
releasing or killing Sean Mullen. This game is understood by the players when
they start it and thus does not allow for the possibility of Tom Mullen “sur-
prising” Jimmy Shaker by offering a bounty. True innovation is not a feature
that current game theory can encompass. Thus, the answer is that players are
not allowed to change the game. However, we can always enrich the game and
give players more options.



            FIGURE 2.16 Extensive Form for the Film Ransom
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            ■ Does the game have to be factually accurate?



            If our objective in formulating and then solving a game is to understand be-
havior, then what matters is not what is factually or objectively true, but rather
what is perceived by the players. Their behavior will be driven by their pref-
erences and what they believe, whether those beliefs are in contradiction with
reality or not. Thus, a game ought to represent players’ environment as it is
perceived by them.
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            If a player is a member of a Native American tribe in the 19th century
which believes that a tribal leader has magical powers, we need to recog-
nize that belief—regardless of whether or not it is true—if we are to under-
stand their behavior. Or if a player in the 21st century believes that flying a
plane into a building can improve his well-being in the afterlife, then we
need similarly to recognize that belief, no matter how wrong or misguided
it may be.



            Summary
When the French Impressionist painter Claude Monet viewed a London
building, a French cathedral, or a lily pond in his backyard, he painted, not
reality, but his impression of it. Modeling real-life encounters between peo-
ple is similarly an art form, though admittedly not one worth framing and
hanging on your wall. Real life is complicated, nuanced, and messy, and a
social scientist who wants to understand it must distill its essential features
if he is to construct a simple and parsimonious model. Doing so requires cre-
ativity, insight, and judgment. While game theory cannot bring those attrib-
utes to the table, it can provide the tools for the intelligent observer who has
such traits to build a model that will shed light on why people do the things
they do.



            In this chapter, we have reviewed the two frameworks for constructing a
game-theoretic model of a strategic situation. An extensive form game
uses a tree structure to depict the sequence in which players make decisions
and describes the circumstances surrounding those decisions, including the
actions available to a player and what the player knows regarding what has
happened in the game. That knowledge is represented by an information
set which encompasses all those paths in the game that a player is in-
capable of distinguishing among. The concept of an information set allows
us to model the many different contexts in which decisions are made while
we lack relevant facts. An information set can embody a situation of per-
fect information, in which a player knows all that has transpired thus far
in the game, or one of imperfect information, in which a player has some
uncertainty in regard to what other players have done. Key to describing
behavior is knowing what players care about, so an extensive form game
also describes the well-being, or payoff, that a player assigns to an outcome
of the game.



            A strategic form game has a more concise format than the extensive form
game has. A strategic form game is defined by the set of players, the strategy
set of each player, and the payoff function of each player. A player’s decision
making involves the selection of a strategy from his or her strategy set, where
a strategy is a fully specified decision rule for how to play a game. A payoff
function tells us how a player evaluates any collection of strategies (one for
each of the players in the game).



            As will be revealed in the ensuing chapters, crucial to both predicting be-
havior and prescribing behavior is knowing what each player knows about
the other players, and this knowledge includes what each player believes
about the other players. A central underlying assumption is that the game is
common knowledge to the players. This means not only that players agree


            

        



        
            

            
1. The countries of Oceania and Eurasia are at war.5 As depicted in FIGURE



            PR2.1, Oceania has four cities—Argula, Betra, Carnat, and Dussel—and
it is concerned that one of them is to be bombed by Eurasia. The
bombers could come from either base Alpha, which can reach the cities
of Argula and Betra, or base Beta, which can reach either Carnat or
Dussel. Eurasia decides which one of these four cities to attack. Oceania
doesn’t know which one has been selected, but does observe the base
from which the bombers are flying. After making that observation,
Oceania decides which one (and only one) of its four cities to evacuate.
Assign a payoff of 2 to Oceania if it succeeds in evacuating the city that
is to be bombed and a payoff of 1 otherwise. Assign Eurasia a payoff of
1 if the city it bombs was not evacuated and a zero payoff otherwise.
Write down the extensive form game.



            EXERCISES
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            FIGURE PR2.1



            2. Player 1 moves initially by choosing among four actions: a, b, c, and d.
If player 1 chose anything but d, then player 2 chooses between x and y.
Player 2 gets to observe the choice of player 1. If player 1 chose d, then
player 3 moves by choosing between left and right. Write down the ex-
tensive form of this setting. (You can ignore payoffs.)



            on the game that is being played, but also that each player knows what the
other players believe about the game, and so forth. Common knowledge is
like the perfect circle; it is a concept that does not exist in reality, but nev-
ertheless is a useful abstraction for understanding the world within which
we live.
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            3. Consider a setting in which player 1 moves first by choosing among three
actions: a, b, and c. After observing the choice of player 1, player 2 chooses
among two actions: x and y. Consider the following three variants as to
what player 3 can do and what she knows when she moves:
a. If player 1 chose a, then player 3 selects among two actions: high and



            low. Player 3 knows player 2’s choice when she moves. Write down
the extensive form of this setting. (You can ignore payoffs.)



            b. If player 1 chose a, then player 3 selects among two actions: high
and low. Player 3 does not know player 2’s choice when she moves.
Write down the extensive form of this setting. (You can ignore pay-
offs.)



            c. If player 1 chose either a or b, then player 3 selects among two ac-
tions: high and low. Player 3 observes the choice of player 2, but not
that of player 1. Write down the extensive form of this setting. (You
can ignore payoffs.)



            4. Return to the game involving the U.S. Court of Appeals in Section 2.2.
a. Suppose, at the start of the game, it is known by all that Judge Z will



            read only the brief of Ms. Hasenpfeffer. Write down the correspon-
ding extensive form game. You may exclude payoffs.



            b. Suppose, at the start of the game, it was known by all that Judge X
would vote first and reveal his vote to Judges Y and Z before they vote
simultaneously. Write down the corresponding extensive form game.
You may exclude payoffs.



            5. The city council is to decide on a proposal to raise property taxes.
Suppose Ms. Tuttle is the chair and the Council’s other two members are
Mr. Jones and Mrs. Doubtfire. The voting procedure works as follows:
Excluding the chair, Mr. Jones and Mrs. Doubtfire simultaneously write
down their votes on slips of paper. Each writes either for or against the
tax increase. The secretary of the city council then opens the slips of
paper and announces the vote tally. If the secretary reports that both slips
say for, then the tax increase is implemented and the game is over. If both
vote against, then the tax increase is not implemented and, again, the
game is over. However, if it is reported that the vote is one for and one
against, then Ms. Tuttle has to vote. If she votes for, then the tax increase
is implemented, and if she votes against, then it is not. In both cases, the
game is then over. As to payoffs, if the tax increase is implemented, then
Mrs. Doubtfire and Mr. Jones each receive a payoff of 3. If the tax in-
crease proposal fails, then Mrs. Doubtfire has a payoff of 4 and Mr.
Jones’s payoff is 1. As for Ms. Tuttle, she prefers to have a tax increase—
believing that it will provide the funds to improve the city’s schools—but
would prefer not to be on record as voting for higher taxes. Her payoff
from a tax increase when her vote is not required is 5, her payoff from a
tax increase when her for vote is required is 2, and her payoff from taxes
not being increased is zero (regardless of whether or not she voted). Write
down the extensive form of the game composed of Ms. Tuttle, Mr. Jones,
and Mrs. Doubtfire.



            6. Consider a contestant on the legendary game show Let’s Make a Deal.
There are three doors, and behind two doors is a booby prize (i.e., a prize
of little value), while behind one door is a prize of considerable value, such
as an automobile. The doors are labeled 1, 2, and 3. The strategic situation
starts when, prior to the show, host Monty Hall selects one of the three
doors behind which to place the good prize. Then, during the show, a
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            contestant selects one of the three doors. After its selection, Monty opens
up one of the two doors not selected by the contestant. In opening up a
door, a rule of the show is that Monty is prohibited from opening the door
with the good prize. After Monty Hall opens a door, the contestant is then
given the opportunity to continue with the door originally selected or
switch to the other unopened door. After the contestant’s decision, the re-
maining two doors are opened.
a. Write down an extensive form game of Let’s Make a Deal up to (but



            not including) the stage at which the contestant decides whether to
maintain his original choice or switch to the other unopened door.
Thus, you are to write down the extensive form for when (1) Monty
Hall chooses the door behind which the good prize is placed, (2) the
contestant chooses a door, and (3) Monty Hall chooses a door to
open. You may exclude payoffs.



            b. For the stage at which the contestant decides whether or not to
switch, write down the contestant’s collection of information sets. In
doing so, denote a node by a triple, such as 3/2/1, which describes the
sequence of play leading up to that node. 3/2/1 would mean that
Monty Hall put the good prize behind door 3, the contestant initially
selected door 2, and Monty Hall opened door 1.



            7. For the Iraq War game in Figure 2.10, write down the strategy sets for
the three players.



            8. For the extensive form game in FIGURE PR2.8, derive its corresponding
strategic form.
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            9. Write down the strategic form game for the extensive form game in
FIGURE PR2.9.
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            10. Write down the strategic form game for the extensive form game in
FIGURE PR2.10.



            11. Three extensive form games are shown in FIGURE PR2.11. State which of
them, if any, violate the assumption of perfect recall. Explain your answer.
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            FIGURE PR2.11
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How often have I said to you that when you have eliminated 
the impossible, whatever remains, however improbable, must be the
truth? —SHERLOCK HOLMES IN A STUDY IN SCARLET, BY ARTHUR CONAN DOYLE



            3.1 Introduction
IN CHAPTER 2, WE LEARNED how to construct a game, in both the extensive and
strategic forms. But having built a game, what do we do with it? I say, Let’s
play amateur sleuth and investigate people’s behavior in strategic scenarios.
To do so, we need to know how to solve a game, which is what this chapter is
all about.



            FIGURE 3.1 presents the strategic form of the kidnapping situation whose ex-
tensive form was illustrated in Figure 2.1. Recall that Guy, the kidnapper, has
four strategies. He can either not kidnap Orlando, but in the event that he
does, then kill him (Do not kidnap/Kill); not kidnap Orlando, but in the event
that he does, then release him (Do not kidnap/Release); kidnap Orlando and
kill him (Kidnap/Kill); or kidnap Orlando and release him (Kidnap/Release).
Vivica, who is Orlando’s kin, can either pay the ransom or not. The first num-
ber in a cell is the row player’s payoff (Guy’s payoff), and the second number
is the column player’s payoff (Vivica’s payoff). Recall that payoff numbers are
rank ordered from the least to the most preferred outcome.
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            FIGURE 3.1 Strategic Form of the Kidnapping Game
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            Will there be a kidnapping? If so, will ransom be paid? Will Orlando sur-
vive? Solving this game means answering these questions by selecting among
the eight possible pairs of strategies. We need to weed out unreasonable and
implausible strategy profiles and, ideally, identify a unique compelling one.
The fewer solutions there are, the more precise is our prediction about be-
havior. To derive a solution, we’ll need to assume something about how a


            

        



        
            

            
player selects among his or her various strategies. Of course, what makes this
task challenging (and results in a long textbook!) is the fact that how a player
selects a strategy may well depend on how she thinks other players are select-
ing. This is a complex undertaking not quickly dispensed with, and it is best
that we start at the beginning and start simple.



            The plan is to progressively make more assumptions about players and ex-
plore what we can say about how they’ll behave. We begin with assuming that
players are rational (Section 3.2), then further assume that each player be-
lieves that all players are rational (Section 3.3), and then assume on top of that
that each player believes that all players believe that all players are rational
(Section 3.3). We conclude the chapter by generalizing this sequence of solu-
tion techniques in Section 3.4.



            3.2 Solving a Game when Players Are Rational
IN MODELING A PLAYER’S SELECTION of a strategy, we’ll begin by assuming that play-
ers are rational. A player is rational when she acts in her own best interests.
More specifically, given a player’s beliefs as to how other players will behave,
the player selects a strategy in order to maximize her payoff. Note that ration-
ality has nothing to say about what are reasonable beliefs to hold regarding
what others will do; rationality just says that a player chooses the strategy that
maximizes her payoff, given her beliefs as to the strategies of other players.



            Is it reasonable to assume that people act only in their self-interest? Does
this assumption mean that people are selfish? Although rationality does mean
pursuing your own interests, it places few restrictions on what those interests
might be. It can encompass Ebenezer Scrooge either before Christmas Eve—
when all he cares about is money—or after that momentous night—when he
cares about his fellow human beings. Rationality is a church that welcomes all
people, from the egotistical to the altruistic. To be rational means only to pur-
sue your interests, however they are defined.



            Initially, we will assume a particular implication of rationality: A player will
not use a strategy (call it ) when there is another strategy (call it ) that al-
ways produces a strictly higher payoff, regardless of what strategies are used
by the other players. Thus, a strategy is never the right thing to do, as will
always outperform . It would then be rather stupid to play (whether
you’re Mother Teresa or Paris Hilton). We’ll go even further and assume that
each player believes that other players avoid stupid strategies, that each player
believes that other players believe that players avoid such strategies, and so
forth. In other words, it is common knowledge among players that a player will
not use a particular strategy when there is another strategy that is always
strictly better.



            In Appendix 3.5, we consider the concept of rationalizability, which is a
stronger implication of rationality being common knowledge. Rationalizability
is closer to the essence of what it means to be rational, although, because it is
a rather subtle and complex concept, we make it optional here and leave it for
the more adventuresome student (or the more exacting instructor).



            3.2.1 Strict Dominance



            Let’s revisit Puccini’s opera Tosca, the strategic form game of which is repro-
duced in FIGURE 3.2. Recall from Section 2.5 that Baron Scarpia, the chief of
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            police, has condemned Floria Tosca’s lover Mario Cavaradossi to
death. Scarpia tells Tosca that he’ll have the firing squad use
blank cartridges in exchange for sexual favors from Tosca.
Scarpia first tells the firing squad to use real or blank cartridges,
and then he meets Tosca, at which point she must decide whether
to consent to Scarpia’s demands or stab him. Soon thereafter,
Cavaradossi is brought before the firing squad. Both Tosca and
Scarpia move without knowing what the other has chosen. The
payoffs reflect that Tosca cares foremost that her lover survives
and secondarily that she not consent to Scarpia, and that Scarpia longs to
have relations with Tosca and only secondarily desires to execute Cavaradossi.



            Can we say what these two operatic characters will
do if all we assume is that they are rational? Well, con-
sider Tosca. If Scarpia chooses real, then Tosca’s payoff
from choosing stab is 2 and from choosing consent is 1.
(See FIGURE 3.3.) Thus, she clearly prefers to stab
Scarpia if she expects him to have ordered the firing
squad to use real cartridges. What about if she expects
him to have chosen blank cartridges? Her payoff is 4
from stab and 3 from consent, so, once again, she
prefers stab. Thus, regardless of what Tosca believes
Scarpia will do, stab gives Tosca a strictly higher payoff
than consent. Therefore, Tosca should most definitely not choose consent.
Since she has to do something, she has nothing left to do but to stab Scarpia.
To see this another way, stab is superior to consent regardless of what Scarpia
will do, so a rational Tosca should most surely choose stab.



            By a similar argument, the rationality of Scarpia implies that he will choose
real. If Tosca chooses stab, he earns a payoff of 2 from killing Cavaradossi and
only 1 from not doing so. If Tosca chooses consent, then the payoff from real
is 4, which once again exceeds that from blanks (which is 3). Hence, regard-
less of what he thinks Tosca will do, Scarpia should have the firing squad use
real bullets. In conclusion, game theory makes a very clear (and bloody) pre-
diction that Tosca will stab Scarpia and Scarpia will see that Cavaradossi dies
at the hands of the firing squad.



            The strategy consent is said to be strictly dominated by the strategy stab for
Tosca, which just means that stab delivers a higher payoff than consent for any
strategy of Scarpia.



            ✚ DEFINITION 3.1 A strategy strictly dominates a strategy if the
payoff from is strictly higher than that from for any strategies chosen
by the other players.*



            A strategy that strictly dominates every other strategy for a player is said to
be a dominant strategy. Obviously, with only two strategies, if consent is
strictly dominated for Tosca, then stab must be the dominant strategy.



            ✚ DEFINITION 3.2 A strategy is the dominant strategy if it strictly domi-
nates every other strategy.
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            FIGURE 3.2 The Tosca Game
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            FIGURE 3.3 Tosca’s Payoffs in the Event That
Scarpia Chooses Real Bullets
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            *A more formal mathematical presentation of Definitions 3.1 and 3.2 is provided in Section 3.5, which is
an appendix to this chapter.


            

        



        
            

            
If a strategy is strictly dominated, then it is not optimal for any beliefs re-
garding what other players will do; thus, a rational player will avoid using
such a strategy. Furthermore, if a player has a dominant strategy, then, if he is
rational, he will use it. When each player has a dominant strategy, the unique
reasonable solution is that each player uses his or her dominant strategy.



            A rational player never uses a strictly dominated strategy. A rational
player always uses a dominant strategy.



            Before we apply these new tools to a few other games, take note of an in-
teresting property of the outcome of Tosca. When Tosca stabs Scarpia and
Scarpia has Cavaradossi killed, they each receive a payoff of 2. Now consider
the alternative strategy pair in which Tosca consents and Scarpia has the fir-
ing squad use blanks, so that Cavaradossi survives. Now Tosca and Scarpia
each earn a payoff of 3; they are both better off!



            We see in the Tosca situation an important distinction between individual
rationality and collective rationality: It is individually rational for Tosca to
stab Scarpia (because it is her dominant strategy), and it is individually ra-
tional for Scarpia to use real bullets (because it is his dominant strategy);
however, it is collectively rational—in the sense that everyone would be bet-
ter off—if Tosca and Scarpia were to commit, respectively, to consenting and
using blanks. Thus, what may be in an individual’s best interests need not be
in the best interests of the group. (We’ll have more to say on this matter later
in the book.)



            So, what happens in the opera? Tosca stabs Scarpia and Scarpia uses real
bullets, so that both Cavaradossi and Scarpia die. When she learns that
Cavaradossi is dead, Tosca jumps to her death from the castle’s ramparts. In
spite of the carnage, love wins out over lechery. Or, if this was a tennis match,
the score would be love: 15, lechery: love.
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            � SITUATION: WHITE FLIGHT AND RACIAL SEGREGATION IN HOUSING



            What do you think you are going to gain by moving into a neighborhood
where you just aren’t wanted and where some elements—well—people can get
awful worked up when they feel that their whole way of life and everything
they’ve ever worked for is threatened. —THE (WHITE) KARL LINDER SPEAKING



            TO THE (BLACK) YOUNGER FAMILY IN RESPONSE TO LENA YOUNGER’S PURCHASE OF



            A HOME IN HIS NEIGHBORHOOD, IN A RAISIN IN THE SUN, BY LORAINE HANSBERRY



            The renting or sale of homes and apartments in an all-white neighborhood
to African-Americans was a contentious racial issue in the 1960s. The term
“white flight” refers to the exodus of white families upon the arrival of a few
black families, making the neighborhood “tip” from being all white to all
black. Could white flight occur even if both blacks and whites prefer to have
a racially integrated neighborhood?1



            Suppose that a black family is willing to pay higher rent than a white fam-
ily to live in what is currently an all-white neighborhood. A willingness to pay
higher rent could reflect fewer options for blacks when it comes to attractive
homes and good schools. For a scenario in which there are eight identical
homes in a certain neighborhood, TABLE 3.1 lists the monthly rent that a black
family and a white family are hypothetically willing to pay, depending on how
many black families are in the neighborhood. Notice that both blacks and
whites are willing to pay the highest rent for a (somewhat) racially integrated
neighborhood.



            TABLE 3.1 RENT IN THE HOUSING MARKET



            No. of Black Rent Paid by a Black Rent Paid by a White



            Families Family Family Total Rent



            0 — 100 800



            1 110 105 845



            2 115 110 890



            3 120 100 860



            4 110 90 800



            5 100 75 725



            6 90 75 690



            7 85 70 665



            8 80 — 640



            The column entitled “Total rent” is the sum of the monthly rents collected
by the landlords of the eight homes. For example, if there are three black fam-
ilies, then each black family pays $120/month and each of the five white fam-
ilies pays $100/month, for a total collected monthly rent of $860. Note that the
landlords’ rent is maximized at $890, when two of the homes are rented to
black families.



            The game of interest is not between black and white families, but rather be-
tween the landlords who own the eight homes. Suppose that each home is


            

        



        
            

            
owned by a different person and the payoff of a landlord equals the rent col-
lected. Then, in deciding to whom to rent their property, will the landlords se-
lect strategies that result in a racially integrated neighborhood? Or will their
decisions cause the neighborhood to “tip” from being all white to all black?



            The concept of strict dominance allows us to say what will happen.
Consider the decision faced by an individual landlord, and suppose the other
seven landlords are currently renting to only white families. Then the first
landlord will earn $10 more a month ($110 versus $100) by renting to a black
family. Hence, he will prefer to rent to a black family when the other seven
homes are rented to white families. Now suppose instead that, of the other
seven homes, six are rented to white families and one to a black family. Then
if the landlord in question rents to a black family, he’ll earn $115 (since there
are now two black families in the neighborhood), an amount of money that
exceeds what he can earn by renting to a white family, which is only $105
(when there is only one black family). It is thus to the landlord’s advantage to
rent to a black family when six of the other seven houses are rented to white
families. Continuing in this manner, you can show that, regardless of what the
other seven landlords are doing (in terms of the race of their tenants), an in-
dividual landlord makes more money by renting to a black family. In other
words, renting to a black family strictly dominates renting to a white family.



            The monetary benefit applies to each of the landlords, so if each uses his or
her dominant strategy, then each will rent to a black family. As a result, the
neighborhood shifts from being all white to all black. Notice, however, that if
all the houses are rented to black families, then the landlords end up with a
lower total rent of $640, compared with the $800 they got when they were all
renting to white families. Sadly, then, landlords are poorer and racial integra-
tion is not achieved.



            � SITUATION: BANNING CIGARETTE ADVERTISING ON TELEVISION



            Winston tastes good like a cigarette should!*



            If you grew up in the 1960s, you would know that popular jingle from tele-
vision commercials for Winston cigarettes. In fact, it was so common that
many people (like me!) remember it even though it hasn’t been broadcast for
more than 30 years. Since a federally mandated ban went into effect in 1971,
no advertisements for tobacco products have either been seen or heard on tel-
evision or radio in the United States.



            Typically, a government-imposed restriction is something that a company
disdains. Taking away options usually means limiting avenues for achieving
higher profit. In a game-theoretic setting, however, losing options is not al-
ways bad. Is it possible that the TV and radio ban might have increased the
profits of the tobacco manufacturers?



            Consider Philip Morris and R. J. Reynolds, which were (and still are) the
largest cigarette manufacturers. Most people know their Marlboro and
Winston brands of cigarettes. In considering how much advertising is needed,
it is critical to understand how advertising affects the number of packs of
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            *In response to complaints about grammar from language mavens, Winston responded with a new slogan:
“What do you want, good grammar or good taste?”
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            cigarettes sold. Some studies by economists show that advertising doesn’t
have much of an impact on the number of smokers and instead just shifts the
existing set of smokers among the different brands. But then there is other ev-
idence that advertising dissuades smokers from stopping and lures nonsmok-
ers (in particular, youth) into trying smoking. To keep our model simple, let us
assume that advertising doesn’t affect the total number of packs sold and just
shifts smokers among the different brands.



            Suppose the annual demand for cigarettes is 1,000,000,000 (one billion)
packs and that the market share of a company depends on how much it
spends on advertising relative to what its rival spends. Let ADVPM denote
the advertising expenditures of Philip Morris (PM) and ADVRJR denote the



            C
O



            U
R
TE



            SY
 O



            F 
TH



            E 
A



            D
V



            ER
TI



            SI
N



            G
 A



            R
C
H



            IV
ES


            

        



        
            

            
advertising expenditures of R. J. Reynolds (RJR). Assume that the market
share of PM equals



            This quotient says that PM’s share of all packs sold equals its share of adver-
tising. Such a model is overly simplistic, but all that we really need to assume
is that sales are higher when more is spent on advertising. The total number
of packs sold by PM is then



            1,000,000,000 �



            and by a similar argument, the corresponding number for RJR is



            1,000,000,000 �



            If each pack sold generates a profit of 10 cents (remember, we’re back in
1971), then the profit that PM gets from spending ADVPM dollars is



            0.1 � 1,000,000,000 �



            or



            100,000,000 �



            Analogously, RJR’s profit is



            100,000,000 �



            Our objective is to say something about how much these companies
advertise. To keep things simple, assume that there are just three levels of
advertising: $5 million, $10 million, and $15 million. In that case, the pay-
off matrix is as shown in FIGURE 3.4 (where strategies and payoffs are in millions



            a ADVRJR



            ADVPM � ADVRJR
b � ADVRJR.
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            ADVPM � ADVRJR
b � ADVPM.
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            ADVPM � ADVRJR
b � ADVPM,



            a ADVRJR



            ADVPM � ADVRJR
b .



            a ADVPM



            ADVPM � ADVRJR
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            ADVPM



            ADVPM � ADVRJR
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            FIGURE 3.4 The Cigarette Advertising Game



            45,45 28,57



            57,28 40,40Philip Morris



            R. J. Reynolds



            Spend 5 Spend 10 Spend 15



            60,20 45,30



            20,60



            30,45



            35,35



            Spend 5



            Spend 10



            Spend 15


            

        



        
            

            
Now suppose the ban on TV and radio adver-
tising is put into effect and it has the impact of
making it infeasible for the cigarette companies
to spend $15 million on advertising. That is, the
most that a company can spend using the re-
maining advertising venues is $10 million. In
the context of this simple game, each company’s
strategy set is then constrained to comprise the
choices of spending $5 million and spending
$10 million, as shown in FIGURE 3.5.



            The solution to this game is that both companies spend moderately on ad-
vertising, since spending $10 million strictly dominates spending 5 million.
And what has this intrusive government policy done to their profits? They
have increased! Each company’s profit rises from $35 million to $40 million.



            In the original game, each company had a dominant strategy of spending
$15 million. This heavy advertising tended to cancel out, so each ended up
with 50% of the market. If they both could have restrained their spending to
$10 million, they would each still have had half of the market—thus leaving
them with the same gross profits—and would have spent less on advertising,
which translates into higher net profit.



            By reducing the options for advertising, the TV and radio ban served to re-
strain competition, reduce advertising expenditures, and raise company profits.



            of dollars). For example, if PM spends $5 million and RJR spends $15 million,
then PM’s market share is 5/(5 � 15), or 25%. PM then sells 250 million
packs (0.25 multiplied by 1 billion) and, at 10 cents per pack, makes a gross
profit of $25 million. Once we net out the cost of advertising, PM’s profit (or
payoff) is $20 million.



            TABLE 3.2 shows that a strategy of spending $15 million strictly dominates
spending either $5 million or $10 million. For example, if RJR spends $5 mil-
lion, then PM earns $60 million from spending $15 million (and gets 75% of
the market), while PM earns $57 million with an advertising budget of $10
million and only $45 million by matching RJR’s paltry expenditure of $5 mil-
lion. Similarly, a budget of $15 million for PM outperforms the other two op-
tions when RJR spends $10 million and when it spends $15 million. Thus, PM
prefers the heavy advertising campaign regardless of what RJR chooses, so
heavy advertising is a dominant strategy for PM. Because the same can be
shown for RJR, the prediction is that both cigarette companies inundate our
television sets with attractive men and women spewing forth smoke.
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            TABLE 3.2 SPENDING 15 IS A DOMINANT STRATEGY
FOR PM



            RJR PM Payoff PM Payoff PM Payoff



            Strategy from 15 from 10 from 5



            Spend 5 60 > 57 > 45



            Spend 10 45 > 40 > 28



            Spend 15 35 > 30 > 20



            FIGURE 3.5 Cigarette Advertising Game When TV
and Radio Commercials Are Excluded
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Of course, there’s nothing wrong with that if that is indeed what happened, since
the objective of the ban was to reduce smoking, not lower companies’ profits.



            A rational player never smokes cigarettes. (Okay, I’m making that
one up.)



            3.2.2 Weak Dominance



            Not to be absolutely certain is, I think, one of the essential things in 
rationality. —BERTRAND RUSSELL



            Returning to the world of Italian opera yet again, suppose we
now assume that Scarpia, upon being stabbed by Tosca, does not
care whether Cavaradossi is killed. The resulting payoff matrix is
shown in FIGURE 3.6. Although stab continues to be the dominant
strategy for Tosca (indeed, we haven’t changed her payoffs),
using real bullets no longer strictly dominates using blanks for
Scarpia. Nevertheless, real would seem the reasonable course of
action for Scarpia. If Tosca consents, then Scarpia strictly prefers
to have used real bullets; he receives a payoff of 4 as opposed to
3. If Tosca stabs him, then he doesn’t care, as his payoff is 2 re-



            gardless of what he chooses. Thus, he can’t be any worse off by using real bul-
lets, and he might just be better off. We say that the strategy real weakly dom-
inates the strategy blanks.



            ✚ DEFINITION 3.3 A strategy weakly dominates a strategy if (1) the
payoff from is at least great as that from for any strategies chosen by
the other players; and (2) there are some strategies for the other players
whereby the payoff from is strictly greater than that from .*



            Because most people are cautious and lack absolute confidence as to what
other players will do, it seems prudent to avoid weakly dominated strategies.
Doing so means that you can never be any worse off and you just might end
up being better off. There’ll be no regrets by avoiding weakly dominated
strategies. And if there is a weakly dominant strategy—which means that it
weakly dominates all other strategies—it would be wise to use that strategy.



            A rational and cautious player never uses a weakly dominated
strategy. A rational and cautious player always uses a weakly dominant
strategy.



            3.2.3 Bidding at an Auction



            It’s been 20 years since you’ve graduated from college, and you’ve just sold
your Internet company for a cool $50 million. With all this cash on hand, you
decide to indulge your passion for modern art. An auction house is selling an
Andy Warhol piece that you’ve been coveting for some time. The rules are that
all interested parties must submit a written bid by this Friday at 5 P.M.
Whoever submits the highest bid wins the Warhol piece and pays a price equal
to the bid—a format known as the first-price auction.
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            *A more formal mathematical definition is provided in Section 3.5, which is an appendix to this 
chapter.



            FIGURE 3.6 Revised Tosca Game
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            The Warhol piece is worth $400,000 to you. If you win the item, your pay-
off equals $400,000 less the price you paid, while if you don’t win, your payoff
is zero. Hence, if you end up paying $400,000, you’re no better off, while
you’re better (worse) off if you get it for less (more) than $400,000.



            You’ve just learned that there is only one other bidder: your old college girl
friend, who has recently cashed in stock options after being CEO for a bio-
medical company. You know that she values the piece at $300,000, and fur-
thermore, she knows that you value it at $400,000. (In Chapter 10, we’ll ex-
plore the more realistic case when each bidder’s valuation is known only to
him or her.)



            The auctioneer announces that bids must be in
increments of $100,000 and that the minimum
bid is $100,000. We’ll also assume that the maxi-
mum bid is $500,000. If the bids are equal, the
auctioneer flips a coin to determine the winner.
The strategic form of the first-price auction is
shown in FIGURE 3.7, where strategies and payoffs
are in hundreds of thousands of dollars. For ex-
ample, if you bid 3 and she bids 1, then you win
the auction, pay a price of 3, and receive a payoff
of 1 (� 4 � 3). If you both bid 1, then there is a
50% chance that you’re declared the winner—in
which case your payoff is 3 (from paying a price
of 1)—and a 50% chance that you’re not the win-
ner—in which case your payoff is zero; the ex-
pected payoff is then . (We’ll explain more about expected payoffs in Chapter
7, so if you don’t understand, trust me.)



            How much should you bid? Since bidding 5—which is in excess of what the
piece is worth to you—is strictly dominated by bidding 4, then, clearly, you
don’t want to bid that much. Also, you probably don’t want to bid 4—which is
your valuation of the item—since that is weakly dominated by any lower bid.
If you bid your valuation, you’re assured of a zero payoff, regardless of
whether you win. Thus, it would be better to bid lower and have a chance of
getting a positive payoff. You can then rule out bidding at or above your valu-
ation. The minimum bid of 1 is also weakly dominated. We’ve then eliminated
bids 1, 4, and 5 because they are either strictly or weakly dominated. Can we
say more? Unfortunately, no. Either a bid of 2 or 3 may be best, depending on
what the other bidder submits. If you think she’ll bid 1, then you want to bid
2. If you think she’ll bid 3, then you’ll want to match that bid. You want to
shade your bid below your valuation, but how much to shade depends on what
you think the other bidder will bid.



            That you’d want to shade your bid is not that surprising, since, at a first-price
auction, you want to bid just high enough to win the item (all the while making
sure that the bid is below your valuation). Which bid achieves that objective de-
pends on the other bids submitted. However, a slight modification in the auction
format results in the surprising finding that a bidder’s optimal bid is independent
of how others bid. Devised by Nobel Laureate William Vickrey, the modified for-
mat is like the first-price auction in that the bidder with the highest bid wins, but
it differs from the first-price auction in that the winner pays, not his bid, but the
second-highest bid. Thus, this format is known as the second-price auction.
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            FIGURE 3.7 First-Price Auction
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The strategic form game for the second price auction
is illustrated in FIGURE 3.8. For example, if you bid 3 and
she bids 2, then you win the item and pay a price of 2,
because that is the second-highest bid. In that case, your
payoff is 2 (� 4 � 2). In fact, your payoff is 2 whether
you bid 3, 4, or 5, because the price you pay is not your
bid, but the other bidder’s bid. Your bid only influences
whether or not you win. If you were to bid 1, then, since
she is bidding 2, your payoff would be affected—it is
now zero—since your low bid causes you to lose the
auction.



            Inspection of Figure 3.8 reveals that a bid of 4 weakly
dominates every other bid for you. It would then make
sense for you to bid 4, regardless of how you think your
former girl friend will bid. As for her, a bid of 3 weakly



            dominates every other one of her bids. Note that for each of you, the weakly
dominant bid equals your valuation. This is not coincidental: in every second-
price auction, bidding your valuation weakly dominates every other bid!



            In the first-price auction, the motivation for shading your bid below your
valuation is to lower the price you pay in the event that you win. That strat-
egy doesn’t work in the second-price auction, since the price you pay is not
what you bid, but what someone else bid. Bidding below your valuation only
reduces your chances of winning at a price below your valuation, and that’s
a bad deal.



            Figuring out your optimal bid at a second-price auction is a piece of cake.
A bidder just needs to determine what the item is worth and bid that value.
There is no need for a certified psychologist to help you evaluate the psyche of
other bidders! There is no need for the services of a well-trained game theorist
to tell you how to bid! You just need to know yourself.



            � SITUATION: THE PROXY BID PARADOX AT eBAY



            Have you ever bid for an item at eBay? Since an auction typically take days,
eBay was smart enough to provide a mechanism that doesn’t require a bidder
to hang out online 24/7; instead, you can enter a proxy bid, which works as fol-
lows: As long as the highest bid of the other bidders is below your proxy bid,
you’ll be the top bidder, with a bid equal to the highest bid of the other bid-
ders plus the minimum bid increment. As soon as the highest bid of the other
bidders exceeds your proxy bid, you drop out of the bidding (although you can
always return with a higher proxy bid).



            So what should your proxy bid be? Note that if, at the end of the auction,
you submitted the highest proxy bid, then you win the item and pay a price
equal to the second-highest proxy bid (plus the minimum bid increment). In
this way, the eBay auction has the property of a second-price auction, and
accordingly, you should submit a proxy bid equal to your valuation.
Furthermore, once you’ve submitted such a bid, you can just return to the auc-
tion site at its completion to find out whether you’ve won. How simple!



            This argument for setting your proxy bid equal to your valuation is hit with
a full body slam when it gets in the ring with reality. Contrary to what the the-
ory prescribes, people frequently change their proxy bid over the course of an
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            FIGURE 3.8 Second-Price Auction
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            eBay auction. For example, say Dave enters a proxy bid of $150 for a ticket to
a Rolling Stones concert and, coming back a day later, sees that the highest
bid has reached $180 (so that it exceeds his proxy bid). Dave then changes his
proxy bid to $200. But if it was originally worth $200 to Dave to see Mick
Jagger and his buddies, why didn’t he just submit a proxy bid of $200 at the
start? Why mess around with this lower proxy bid?



            Because the phenomenon of bidders changing their proxy bids happens
fairly often, we cannot summarily dismiss it as “stupid bidding.” The phe-
nomenon represents systematic behavior, and as social scientists, our ob-
jective is to understand it, not judge it. If we accept the idea that the bid-
ders are doing exactly what they intend to do, it’s the theory that’s stupid—
or, to say it more eloquently, our auction model is missing some relevant
factors.



            What could be missing? Several possibilities have been identified, but we
have space to discuss only one. A potentially significant departure between
the model and reality is that eBay runs multiple auctions for the same item.
Think about how this could alter someone’s bidding strategy. Perhaps the
Stones concert is worth $200 to you, which means that you would prefer to
pay anything less than $200 than not get a ticket. But if you’re bidding for a
ticket at an eBay auction, losing the auction doesn’t necessarily mean not
getting a ticket; you might instead participate in another auction for a
Stones ticket.



            To see what difference this new information makes, imagine that you’re
participating at an auction that ends two weeks prior to the concert. If you
win the auction at a price of $199, your payoff is then $1, which is your val-
uation less the price. Although $1 is higher than your payoff from not having
a ticket, which is zero, it may not be higher than your expected payoff from
participating in another auction. You might prefer not to win at $199 in order
to have the option of winning at a lower price in a later auction.



            It isn’t hard to see how this scenario could cause you to
change your proxy bid over time. Suppose that you are
currently watching two auctions and auction I ends to-
morrow and auction II ends in two days. Suppose also
that you have a proxy bid in auction II, but you’re keeping
track of the price in auction I. As just argued, your proxy
bid is not your valuation, but instead something that
depends on what kind of price you think you would need
to pay to win at another auction. If auction I closes at a
higher price than you expected, you may conclude that the
remaining tickets will go for higher prices, and this con-
clusion could cause you to raise your proxy bid at auction
II. Your optimal proxy bid changes over time as you learn
what these tickets are selling for at other eBay auctions.



            The gap between the theory’s prediction and actual be-
havior at eBay auctions indicates a problem, not with
game theory, but rather with the particular game-theoretic
model. Game theory is immensely flexible and, when
combined with an observant and clever mind, can offer
cogent explanations of many social phenomena.



            For the game in FIGURE 3.9, find the strategies
that are strictly dominated and those which are
weakly dominated.
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3.3 Solving a Game when Players Are Rational
and Players Know That Players Are Rational



            [Saddam Hussein] starts out with a very menacing image. It sets you back
a bit. I remember looking at my hands, and I was sweating. I was conscious
that he knew what his reputation was. And he knew that I knew his reputa-
tion. —BILL RICHARDSON



            IN A SECOND-PRICE AUCTION, a player’s optimal bid could be determined without
figuring out what bids others would submit. However, in a first-price auction,
how much a bid should be shaded below your valuation depends on how ag-
gressively you think other bidders will bid. Games commonly require the kind
of thinking that goes into bidding in a first-price auction, in that a player must
prognosticate what others will do.



            In this section, we begin our journey into solving that problem by consid-
ering some games for which it’s not enough to assume players are rational.
However, if we assume just a bit more—such as the assumption that each
player knows that the other players are rational—then reasonable conclusions
can be drawn about how players will behave, at least in some situations.



            � SITUATION: TEAM-PROJECT GAME



            Stanford is sort of a big, incredibly smart high school, the high school that
we never had. We’ve got the jocks, the nerds, the sorority girls, the frat boys,
the indie kids, the preps, the `whatever’ college kids. . . . —TAM VO IN THE



            STANFORD DAILY



            Consider a college class with a diverse array of students, and let’s indulge
ourselves with a few stereotypes. Some of the students are underachieving
jocks who, as long as it means minimal studying, are content to get a grade of
C (fondly known as the “hook”—for looking like one—at my alma mater, the
University of Virginia). Then there are the frat boys and sorority girls who are
satisfied with a B, but are willing to work hard to avoid a lower grade and the
dissatisfaction of their parents. And let us not forget the overachieving nerds
who work hard to get an A and find that the best place for their nose is buried
in a book. (Is there anyone I have not offended?)



            Determining how much effort a student will exert is fairly straightforward
when it comes to an individual assignment such as an exam. The nerd will study
hard, the frat boy will study moderately, and the jock will study just enough to
pass. But what happens when they are thrown together in a team project? The



            quality of the project (and thereby the grade) depends
on what all of the team members do. How much effort
a student should exert may well depend on how hard
other team members are expected to work.



            To keep things simple, let’s consider two-person
team projects and initially examine a team made up of
a nerd and a jock. The associated payoff matrix is
shown in FIGURE 3.10. Each student has three levels of
effort: low, moderate, and high. The grade on the proj-
ect is presumed to increase as a function of the effort
of both students. Hence, a student’s payoff is always
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            FIGURE 3.10 Team-Project Game with a Nerd
and a Jock
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            increasing with the effort of the other student, as an increasing effort by the
other student means a better grade without having to work harder.



            Jocks strongly dislike academic work, so their payoffs are ordered to reflect
a distaste for effort. Regardless of the effort exerted by her nerdy partner (yes,
there are female jocks!), the jock’s payoff is lower when she works harder. For
example, if the nerd exerts a moderate effort, then the jock’s payoff falls from 4
to 3 to 2 as her effort goes from low to moderate to high. You can confirm that
low is the jock’s dominant strategy, since exerting a low effort yields a higher
payoff than any other strategy, regardless of the effort chosen by her partner.



            What about the nerd? The nerd’s payoff increases with effort. Regardless of
the effort of his partner, a nerd prefers to work harder in order to improve the
project’s grade. Thus, a high effort is the dominant strategy for the nerd. The
outcome of the game in Figure 3.10 is then clear: If students are rational (and
sober), then the jock will exert a low effort and the nerd will exert a high ef-
fort. The jock gets a payoff of 5—she does great because she’s matched up with
someone who is willing to work hard—and the nerd gets a payoff of 3 (while
muttering “stupid lazy jock” under his breath).



            Next, consider a frat boy and a nerd being matched up. The payoff matrix is
presented in FIGURE 3.11. As before, the nerd’s pay-
offs increase with effort. The frat boy is a bit more
complicated than the nerd and the jock. He wants a
reasonably good grade and is willing to work hard to
get it if that is what is required, but he isn’t willing
to work hard just to go from a B to an A. The frat
boy then lacks a dominant strategy. If his partner is
lazy, then the frat boy is willing to work hard in
order to get that B. If his partner “busts his buns,”
then the frat boy is content to do squat, as he’ll still
get the B. And if the partner exerts a moderate effort
then the frat boy wants to do the same.



            Simply knowing that the frat boy is rational doesn’t tell us how he’ll behave.
Can we solve this game if we assume more than just that players are rational?
Remember that the game is characterized by common knowledge: the frat boy
knows that he’s matched up with a nerd. (It’s pretty apparent from the tape
around the bridge of his glasses.) Suppose the frat boy not only is rational, but
knows that his partner is rational. Since a rational player uses a dominant strat-
egy when he has one, the frat boy can infer from his partner’s being rational
(and a nerd) that he will exert a high effort. Then, given that his partner exerts
a high effort, the frat boy should exert a low effort. Thus, when a nerd and a frat
boy are matched, the nerd will hunker down and the
frat boy will lounge about. In order to derive this
conclusion, we needed to assume that the nerd and
the frat boy are rational and that the frat boy knows
that the nerd is rational.



            Finally, suppose the frat boy is matched up
with his female counterpart, the sorority girl. The
payoff matrix is given in FIGURE 3.12. Assuming
that the players are rational and that each player
knows that the other is rational is not enough to
solve this game. The trick that solves the game



            FIGURE 3.11 Team-Project Game with a Nerd
and a Frat Boy
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            FIGURE 3.12 Team-Project Game with a Frat
Boy and a Sorority Girl
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between the frat boy and the nerd won’t work here, as neither player has a
dominant strategy. Learning how to solve this situation will have to wait
until Chapter 4.



            � SITUATION: EXISTENCE-OF-GOD GAME



            It is as impossible for man to demonstrate the existence of God as it would
be for Harry Potter to demonstrate the existence of J. K. Rowling.
—AN UPDATING OF A QUOTE BY FREDERICK BUECHNER



            Philosophers have wrestled with the issue of whether God exists for a very
long time. One of the most famous approaches was developed in the mid-17th
century by Blaise Pascal (1623–1662). Pascal was a highly talented mathe-
matician who, at a point in his life, threw aside mathematics to dedicate his
life to the Lord. His take on the issue of belief in God has come to be known
as Pascal’s wager. It goes like this: Suppose you’re not sure about the existence
of God. Then if you fail to believe in God and it turns out God does exist, the
penalty will be mighty severe. (Think of white-hot pitchforks and endless
Brady Bunch reruns.) However, if you believe in God and God does not exist,
the cost to you is rather minimal. Pascal then argues that one should play it
safe and believe in God in order to avoid the excruciatingly horrible outcome.



            There have been many critiques of Pascal’s wager. Can one really “choose”
one’s beliefs? Does God reward beliefs as opposed to actions? Should belief in
God be based, not on faith or love, but on the cold, calculating logic of wagers?
But this is not a text on philosophy or theology; rather, it is about game the-
ory. So my criticism of Pascal’s wager is that the problem, as cast, involves
only one decision maker. Shouldn’t we allow God to be a player? In particular,
suppose we allow God to decide whether or not to reveal Her existence to
Man. What will God do and what will Man do in that instance?2



            God then has two strategies: reveal Herself to Man and hide Her existence.
Man has the two strategies laid out by Pascal: believe in God and do not believe in
God. In describing payoffs, suppose Man cares most about having his belief (or



            disbelief) confirmed. If he believes in God, he wants to see
evidence of God’s existence. If he doesn’t believe in God, he
surely doesn’t want to see evidence of God. Secondarily, Man
prefers to believe in God’s existence. As for God, She cares
most about Man believing in God and secondarily prefers
not revealing Herself. The strategic form of the game is re-
vealed (yes, pun intended) in FIGURE 3.13.



            There is no dominant strategy for Man. If God intends to
reveal Her existence, then Man wants to believe in God. If
God does not intend to reveal Her existence, then Man



            doesn’t want to believe in God. Knowing that Man is rational isn’t enough to tell
us what Man will do. In contrast, God does have a dominant strategy: regard-
less of Man’s belief or disbelief in God, God prefers to hide Her existence. Doing
so yields a payoff of 4 versus 3 for when Man believes in God and a payoff of 2
versus 1 when Man does not. A rational God will then hide Her existence.



            If Man believes that God is rational, then Man knows that God will hide Her
existence, since that is a dominant strategy for God. Given that God hides Her
existence, Man’s optimal strategy is not to believe in God. We conclude that



            70 CHAPTER 3: ELIMINATING THE IMPOSSIBLE: SOLVING A GAME WHEN RATIONALITY IS COMMON KNOWLEDGE



            FIGURE 3.13 Existence-of-God Game
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            the answer to the riddle is that Man should not believe in God and God should
hide Her existence from Man.*



            � SITUATION: BOXED-PIGS GAME



            While this book aims to show how game theory can be used to understand
human behavior, it can explain the behavior of lesser animals as well (which we
explore more fully in Chapters 16 and 17). Let’s consider an experiment in which
two pigs—one large and one small—are placed in a cage. At one end of the cage
is a lever and at the other end is a food dispenser. When the lever is pressed, 10
units of food are dispensed at the other end. Suppose either pig incurs a utility
cost of 2 units (measured in food) from pressing the lever. How the 10 units of
dispensed food is divvied up depends on both who gets to the food dispenser
first and a pig’s size. If the large pig is there first, then it gets 9 units and the
small pig gets only 1 unit. The large pig not only has heft, but also positioning.
(Imagine Shaquille O’Neal posting up against Michael Jackson on the basketball
court.) If, instead, the small pig is there first, it gets 4 of the 10 units, as it con-
sumes some before the large pig arrives to shove it out of the way. If both pigs
get there at the same time, the small pig is presumed to get 3 of the 10 units (per-
haps mostly from eating the food that falls out of the large pig’s mouth).



            Each pig decides whether to press the lever or wait at the dispenser. Those
are the two strategies in their strategy sets. Assuming that a pig’s payoff is the
number of units of food consumed less any disutility from pressing the lever,
the strategic form of the game is shown in FIGURE 3.14.



            FIGURE 3.14 The Boxed-Pigs Game
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            Does the large pig rule the room by being the one that gets to wait at the
dispenser? Actually, no. In this setting, “weakness is strength,” as it is the large
pig that presses the lever while the small pig waits at the dispenser to start
consuming the food. How does that outcome emerge?



            Key to the outcome is that the small pig has a dominant strategy. If the large
pig presses the lever, it is preferable for the small pig to wait at the dispenser,
since it gets more food then and avoids the disutility from pressing the lever;
its payoff is 4 from waiting at the dispenser, compared with 1 from also press-
ing the lever. If, instead, the large pig waits at the dispenser, then the small pig
doesn’t get enough food to justify the bother of pressing the lever. It gets only 1
unit of food, and the cost of pressing the lever is 2 units, so its payoff is �1. It



            *Don’t get sidetracked on such matters as whether rationality—a concept intended for Man—is applicable
to God, or how Man can play a game against someone he’s not sure exists, or whether the result is blas-
phemous because it says that Man should not or will not believe in God. This example is just intended to
be a thought-provoking application of game theory.


            

        



        
            

            
would prefer not to press the lever and get a zero payoff. Thus, if the small pig
is rational (that might sound a bit odd) then it waits at the dispenser regardless
of what the large pig does.



            The large pig does not have a dominant strategy. It prefers to wait at the dis-
penser if the small pig is going to press the lever, but it prefers to press the lever
if the small pig is going to wait at the dispenser. If the large pig believes that
the small pig is rational (now, that most definitely sounds odd!), then the large
pig knows that the small pig will wait at the dispenser. That the small pig won’t
get enough food to make it worth its while to press the lever serves to make it
credible that it won’t press the lever. The large pig then has no choice but to
press the lever, even though this means that the small pig has the advantage of
being at the food first. Of course, once the large pig gets there, it can be assured
of getting enough food to justify having pressed the lever. Thus, if pigs are ra-
tional and each pig believes that the other pig is rational, then the solution is
for the large pig to press the lever and the small pig to wait at the dispenser.



            Is saying “if pigs are rational” like saying “if pigs could fly”? It actually is per-
fectly reasonable to assume that pigs are rational, since this just means that pigs
act in their own best interests; don’t all species? More problematic is assuming that
pigs believe that other pigs are rational; that’s dicey. But before you dismiss this so-
lution, let’s see if it works by comparing the solution with how pigs actually behave.



            The experiment was conducted in a cage measuring about 2.8 meters by 1.8
meters.3 To ensure a strong desire to eat, the pigs were not fed for 24 hours.
Each pig was initially put in a cage by itself in order for it to learn that press-
ing the lever resulted in food being dispensed. Rather than focus on size as the
determining factor, the experimenters determined dominance by putting the
two pigs together in a room with a bowl of food. A pig was classified as dom-
inant if it spent a higher fraction of the time feeding singly from the bowl.



            The results are shown in FIGURE 3.15. On the vertical axis is the number of
times the lever was pressed per 15 minutes. On the horizontal axis is the trial
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            FIGURE 3.15 Experimental Results in the Boxed-Pigs
Game. The Graphs Record the Average
Number of Presses of the Lever (After 10
Trials) During a 15-Minute Period by
Dominant and Subordinate Animals After 24
Hours Without Food when Tested (a)
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            number. Up through trial 10, the pigs were in separate
cages and the dominant pig pressed the lever slightly
more. Starting with trial 10, they were placed in the
same cage—and the results are striking: the dominant
pig increasingly was the one to press the lever.



            I am not claiming that the pigs achieved this outcome
by each pig thinking about what the other pig was think-
ing. A more likely explanation is that they got to it
through trial and error. Indeed, note that their behavior
gets closer and closer to the predicted outcome over time.
Perhaps a few times in which the submissive pig presses
the lever and ends up with nothing but crumbs could well
induce it to stop pressing the lever, and at that point, the
dominant pig learns that the only way it’ll eat anything is
if it presses the lever. Experience can be a substitute for
clever reasoning.



            3.4 Solving a Game when Rationality 
Is Common Knowledge



            Man in Black: All right: where is the poison? The battle of wits has begun.
It ends when you decide and we both drink and find out who is right and
who is dead.



            Vizzini: But it’s so simple. All I have to do is divine from what I know of
you. Are you the sort of man who would put the poison into his own goblet,
or his enemy’s? Now, a clever man would put the poison into his own gob-
let, because he would know that only a great fool would reach for what he
was given. I’m not a great fool, so I can clearly not choose the wine in front
of you. But you must have known I was not a great fool; you would have
counted on it, so I can clearly not choose the wine in front of me.
—FROM THE MOVIE THE PRINCESS BRIDE



            3.4.1 The Doping Game: Is It Rational for Athletes 
to Use Steroids?



            On August 7, 2007, baseball player Barry Bonds hit his 756th career home run,
surpassing the career record of 755 home runs by Henry Aaron. Although this
should be a time of awe and praise for Bonds, the achievement continues to
be tainted by allegations that his stellar performance was partially due to nei-
ther skill nor hard work, but instead to performance-enhancing steroids. A re-
cent book entitled Game of Shadows claims that Bonds engaged in significant
steroid use beginning in 1998.



            Regardless of whether Bonds is guilty or innocent, it is well recognized that
doping is a serious problem in not only professional, but also amateur sports.
The societal challenge is to design a system that deters athletes from using
steroids. Such a system would be good not only for fans, but, more impor-
tantly, the athletes themselves. Taking steroids is intended to give an athlete a
relative advantage over other athletes, but if all athletes use them, then the ad-
vantage is lost. Although the benefit evaporates, the cost remains, because ath-
letes still suffer the health consequences. Game theory can be useful for



            For the game shown in FIGURE 3.16, find the
strategies that are consistent with the players
being rational and each player believing that the
other player is rational.
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investigating how to structure a system of monitoring and punishments to
provide the right incentives.4



            Although we’ll not take on that challenging task here, we can at least iden-
tify the temptations faced by players and how they can affect their behavior.
Consider a setting with three competitive athletes; think of world-class sprint-
ers. They are assumed to differ in both innate skill and their propensity to take
steroids (which could be determined by their desire to win). On the raw-skill
dimension, suppose Maurice is faster than Carl and Carl is faster than Ben. As
to the propensity to take steroids, Ben is more inclined to use them than Carl,
and Carl is more inclined than Maurice. More specifically, Ben will take
steroids regardless of whether Carl and Maurice do. Carl will not take steroids
if no one else does, but in order to remain competitive, he’ll take them if either
Ben or Maurice (or both) does so. Maurice, who is the fastest without per-
formance-enhancing drugs, won’t take steroids unless both Ben and Carl do so.



            These preferences are embodied in the strategic form game illustrated in
FIGURE 3.17, where the first number in a cell is Ben’s payoff and the second
number is Carl’s payoff. Maurice chooses a row, Carl chooses a column, and
Ben chooses a matrix.
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            FIGURE 3.17 The Doping Game
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            FIGURE 3.18 Steroids Is Ben’s Dominant Strategy
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            What will these athletes do? Rationality doesn’t shed any light on what Carl
and Maurice will do, as their usage depends on what the other athletes are ex-
pected to do. However, Ben has a dominant strategy of taking steroids, as shown
in FIGURE 3.18. If neither Carl nor Maurice uses steroids, then Ben’s payoff from
steroid use is 6, which exceeds his payoff of 4 from abstaining. If one of the
other athletes uses steroids (either Carl or Maurice), then steroid use for Ben
means a payoff of 5, versus a payoff of 2 from staying off of them. Finally, if both
Carl and Maurice take steroids, then Ben’s payoff from using steroids is 3, ver-
sus 1 from abstention. Thus, rationality implies that Ben will use steroids.
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            Let us assume not only that these athletes are ra-
tional, but also that each believes that the other two
athletes are rational. This assumption implies that
both Carl and Maurice believe that Ben will use
steroids, since the rationality of Ben implies steroid
use. From the perspective of Carl and Maurice, the
game then looks like that shown in FIGURE 3.19, where
we’ve eliminated the no steroids strategy for Ben. Carl
now has a dominant strategy of taking steroids. Given
that he knows that Ben is going to use them (because
Carl knows that Ben is rational and that steroids is the
dominant strategy for Ben), it follows that Carl
should do so as well, because it is the best strategy for him, regardless of
whether Maurice uses steroids. Maurice still lacks a dominant strategy.



            Thus far, we know that Ben will use steroids—because he is
rational—and that Carl will use steroids—because Carl is ra-
tional and Carl knows that Ben is rational. So, what will
Maurice do? Let us make the assumption that each athlete
knows that athletes know that athletes are rational. What this
assumption buys us is that Maurice knows that Carl knows
that Ben is rational. Hence, Maurice knows that Carl knows
that Ben will use steroids, and, therefore, Maurice knows that
Carl will use steroids. Thus, Maurice eliminates no steroids for
Carl so the situation Maurice faces is as shown in FIGURE 3.20.
Given that Maurice then expects both Ben and Carl to resort to
taking steroids, Maurice finds it optimal to use steroids as
well, since it gives a payoff of 2 as opposed to 1.



            We conclude that if (1) all athletes are rational, (2) each athlete believes that
the other athletes are rational, and (3) each athlete believes that the other ath-
letes believe that the other athletes are rational, then all three of the athletes
use steroids. What is depressing about this conclusion is that two of the three
athletes don’t even want to take steroids and do so only because others are tak-
ing them. Ben’s strong temptation to enhance his performance through chem-
icals results in the other two athletes succumbing as well. This is the challenge
that sports faces today.



            This solution has a ring of truth to it. In Game of Shadows, the authors
contend that Bonds turned to taking steroids only after the 1998 season,
when Mark McGwire and Sammy Sosa were center stage, battling to break
Roger Maris’s single-season home-run record of 61. Both McGwire and Sosa
did in fact surpass 61 home runs; McGwire, who has since been accused of
being “juiced” with steroids, set the new record of 70 home runs. Three years
later, Bonds broke that record with 73 dingers. If Bonds did take steroids, was
it a reaction to remaining competitive with the other top home-run hitters in
baseball?



            Suppose each of the athletes is rational and each believes that
the others believe that he is rational. However, each athlete is unsure whether
the other athletes are rational. For example, Carl is rational and believes that
Maurice and Ben believe he is rational, but Carl isn’t sure whether Maurice and
Ben are rational. Do these beliefs make sense? What can you say about what
each athlete will do?



            FIGURE 3.19 Doping Game when Ben Will Use
Steroids. Maurice Can Now
Deduce That Carl’s Dominant
Strategy Is to Use Steroids
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            FIGURE 3.20 Doping Game when
Both Ben and Carl
Choose to Use Steroids
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3.4.2 Iterative Deletion of Strictly Dominated Strategies



            Up to now, we have progressively used additional levels of knowledge about ra-
tionality in order to solve games. The Tosca game was solved with only the as-
sumption that players are rational. The Existence-of-God game required not
only that the players were rational, but also that each player believed that all
players were rational. (Specifically, we needed God and Man to be rational and
Man to believe that God is rational). And with the Doping game, the athletes’
decisions regarding steroid use could be derived only when all the players were
assumed to be rational, each player believed that all players were rational, and
each player believed that all players believed that all players were rational.
These are all examples of a more general procedure for solving a game—a pro-
cedure known as the iterative deletion of strictly dominated strategies (IDSDS).



            The IDSDS algorithm is defined by the following series of steps:



            Step 1 Delete all strictly dominated strategies from the original game.
(This step is predicated on the assumption that players are ra-
tional.)



            Step 2 Delete all strictly dominated strategies from the game derived after
performing step 1. (This step is predicated on the assumption that
each player believes that all players are rational.)



            Step 3 Delete all strictly dominated strategies from the game derived
after performing step 2. (This step is predicated on the assump-
tion that each player believes that all players believe that all play-
ers are rational.)



            Step 4 Delete all strictly dominated strategies from the game derived
after performing step 3. (This step is predicated on the assump-
tion that each player believes that all players believe that all play-
ers believe that all players are rational.)



            .



            .



            .



            Step t Delete all strictly dominated strategies from the game derived
after performing step t � 1.



            The procedure continues until no more strategies can be eliminated. In a
game with an infinite number of strategies for each player, the procedure
could go on forever, but that is not typical. Usually, after a finite number of
steps, no more strategies can be eliminated. What remains are the strategies
that are said to survive the IDSDS.



            Returning to the chapter-opening quote of Sherlock
Holmes, we see that IDSDS eliminates the “impossible,” and
then whatever remains is what is possible. If only one strategy
remains for each player (note that at least one strategy must
survive), then the game is dominance solvable and the
IDSDS delivers a unique prediction regarding behavior.



            Let’s go through an example to make sure that we under-
stand the procedure. Consider the two-player game illustrated
in FIGURE 3.21.



            For step 1, consider first player 1. Does she have any
strictly dominated strategies? To answer this question, you
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            FIGURE 3.21 Applying the IDSDS
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            could consider each strategy and determine whether there is another strategy
that produces a strictly higher payoff for every strategy of player 2. A shortcut
is to first determine which strategies are optimal for player 1 for some strat-
egy of player 2. Those strategies cannot be strictly dominated, since they are
best in some circumstances.



            In deploying the tactic of first identifying optimal strategies
for player 1, note that if player 2 uses strategy w, then strat-
egy d is optimal for player 1 (giving her a payoff of 5, which
exceeds the payoff from any other strategy). Thus, d cannot be
strictly dominated. If player 2 uses x, then a is best for player
1, so a cannot be strictly dominated. When player 2 uses y,
then c is best, so it is not strictly dominated either. Finally, if
player 2 uses z, then c is best, but we already know that c is
not strictly dominated. Thus far, we’ve learned that a, c, and d
are not strictly dominated for player 1. This leaves only one
remaining strategy to consider, which is b. In fact, b is strictly
dominated by d. So, since player 1 is rational, player 1 will
avoid using b. Thus, as depicted in FIGURE 3.22, we can delete
strategy b from the game in Figure 3.21.



            We’re not finished with step 1, as the same exercise has to be performed on
player 2. Working again with the game in Figure 3.21, we see that if player 1
uses strategy a, then z is best for player 2, in which case z is not strictly dom-
inated. If player 1 uses b, then x is best for player 2, so x is not strictly domi-
nated. If player 1 uses c, then w is optimal for player 2, so w is not strictly
dominated. And if player 1 uses d, then z is again optimal for player 2. Hence,
strategies w, x, and z are not strictly dominated. The remaining strategy, y, is,
however, strictly dominated by z. Since player 2 is rational, we conclude that
he will not use y. We can then scratch out strategy y. (See FIGURE 3.23.)



            Turning to step 2, we show the reduced game in FIGURE 3.24, where strategy
b has been eliminated for player 1 and strategy y has been eliminated for
player 2. Are there any strictly dominated strategies that we can eliminate
from this game? None are strictly dominated for player 1. (Convince yourself.)
For player 2, z strictly dominates x. Note that x was not strictly dominated by
z in the original game, because it produced a higher payoff than z (and any
other strategy) when player 1 used b. However, since b is strictly dominated
for player 1, player 2 doesn’t think that player 1 will use it, because player 2
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            FIGURE 3.23 Eliminating Player 2’s
Strictly Dominated
Strategy
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            FIGURE 3.24 Reduced Game
After One Round
of IDSDS
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believes that player 1 is rational. Hence, b has been eliminated and, along with
it, the reason for keeping x around as a possibly useful strategy. Player 2’s
other strategies remain undominated.



            Since a strategy was eliminated in step 2, the procedure is not over, and we
move to step 3. With the elimination of strategy x for player 2, the game is as
shown in FIGURE 3.25. Recall that no strategies were eliminated for player 1.
Examining Figure 3.25, note that d strictly dominates a for player 1, while c
and d remain undominated. Of course, w and z are still not strictly dominated:
They were not strictly dominated in step 2, and the strategies for player 1 in
step 3 are the same as those in step 2.



            After deleting strategy a, we find that the reduced game is as in FIGURE 3.26,
which brings us to step 4. At this point, no strategy is strictly dominated. Since



            we can’t delete any more strategies, the procedure is
completed. Our conclusion is that strategies c and d for
player 1 and strategies w and z for player 2 survive the
IDSDS. Thus, assuming that rationality is common
knowledge is insufficient to deliver a unique prediction,
but it does allow us to eliminate 12 of the 16 possible



            strategy pairs. All we can say right now is that player 1 will use c or d and
player 2 will use w or z.
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            FIGURE 3.25 Reduced Game After
Two Rounds of IDSDS
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            FIGURE 3.26 Reduced Game After
Three Rounds of IDSDS
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            Summary
This chapter outlines methods for solving a game when players are rational,
players know that players are rational, players know that players know that
players are rational, and so on, and so on. We emphasize the implication that
a rational player will not use a strictly dominated strategy. A strategy is
strictly dominated when another strategy yields a higher payoff, regardless of
what the other players do. Thus, no matter what beliefs a player holds con-
cerning the other players’ strategies, it is never optimal for him to use a strictly
dominated strategy. A dominant strategy is surely the unique compelling way
to play a game, as it strictly dominates every other strategy.



            It is also prudent to avoid playing a weakly dominated strategy. A strategy
is weakly dominated when the use of another strategy is better some of the
time (i.e., for some strategies of the other players) and is at least as good all of
the time. You may end up regretting using a weakly dominated strategy, and
you’ll never regret having avoided it. In some games—such as the second-price



            For the game in Figure 3.16, find the strategies
that survive the IDSDS.



            3.3 CHECK YOUR UNDERSTANDING
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            auction—the presence of a weakly dominant strategy is a good choice for the
cautious player.



            A procedure known as the iterative deletion of strictly dominated strate-
gies (IDSDS) builds on the idea that a rational player does not use a strictly
dominated strategy. The key assumption of IDSDS is that it is common knowl-
edge that players are rational and thus common knowledge that players avoid
using strictly dominated strategies. The IDSDS procedure eliminates each
player’s strictly dominated strategies from the game, resulting in a game with
fewer strategies (if some strategies are indeed strictly dominated and thus can
be deleted). In this smaller game, strictly dominated strategies are again elim-
inated. A strategy that may not be strictly dominated in the original game may
become strictly dominated in the smaller game after some of the other players’
strategies are eliminated. This procedure continues—eliminating strictly dom-
inated strategies and then doing the same for the game that remains—until
none of the remaining strategies are strictly dominated. Strategies that survive
the IDSDS represent the set of possible solutions.



            For some games, such as Tosca, a unique strategy profile can be derived as-
suming only that the players are rational. For that to be the case, each player
must have a dominant strategy. In other games, like the Existence-of-God
game, the derivation of a unique solution requires not only that all players be
rational, but also that all players know that all players are rational. Other
games, such as the Doping game, require yet more: all players know that all
players know that all players are rational. Of course, this procedure of itera-
tively eliminating stupid (that is, strictly dominated) strategies has traction
only if, in the original game, some strategies are indeed stupid. In fact, there
are many games in which no strategies are stupid (we’ll start seeing them in
the next chapter), in which case the iterative deletion of strictly dominated
strategies is incapable of eliminating any of the possible strategy profiles.



            This chapter has delivered some of the subtle insights that game theory of-
fers. In the Tosca game, we showed how players acting in their own best in-
terests can make everyone worse off. In the Cigarette Advertising game, play-
ers having fewer options can make themselves better off. And in the Boxed
Pigs game, a weaker player can outperform a stronger one. The ensuing chap-
ters will provide many more insightful lessons.



            The observant reader will have noticed that we did not solve the game in
Figure 3.1 that led off the chapter. Figuring out what happens in the kidnap-
ping scenario is not feasible with the methods of this chapter, because no
strategies are strictly dominated. Fortunately, game theory has many more
tools up its sleeve, and the next chapter will pull another one out. Like the
show business adage says, “Always leave them wanting more.”



            Sections 3.5 and 3.6 provide additional insight into strict and weak domi-
nance and the advanced topic of rationalizability.



            1. Derive the strategic form of the Mugging game in Figure 2.8 of Chapter
2 (page 29), and determine whether any strategies are either strictly
dominated or weakly dominated.



            EXERCISES
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            2. In the Dr. Seuss story “The Zax,” there is a North-Going Zax and a
South-Going Zax who, on their trek, come to find themselves facing
each other. Each Zax must decide whether to continue in their current
direction or move to the side so that the other may pass. As the story re-
veals, neither of them moves and that stalemate perpetuates for many
years. Write down a strategic form game of this situation.



            3. For the Team-project game, suppose a jock is matched up with a soror-
ity girl as shown in FIGURE PR3.3.
a. Assume that both are rational and that the jock knows that the soror-



            ity girl is rational. What happens?
b. Assume that both are rational and that the sorority girl knows that



            the jock is rational. What happens?
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            4. Consider the strategic form game shown in FIGURE PR3.4.
a. Assume that both players are rational. What happens?
b. Assume that both players are rational and that each believes that the



            other is rational. What happens?
c. Find the strategies that survive the iterative deletion of strictly domi-



            nated strategies.
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            5. For the strategic form game shown in FIGURE PR3.5, derive the strategies
that survive the iterative deletion of strictly dominated strategies.
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            6. Two Celtic clans—the Garbh Clan and the Conchubhair Clan—are set to
battle. (Pronounce them as you’d like; I don’t speak Gaelic.) According
to tradition, the leader of each clan selects one warrior and the two war-
riors chosen engage in a fight to the death, the winner determining which
will be the dominant clan. The three top warriors for Garbh are Bevan
(which is Gaelic for “youthful warrior”), Cathal (strong in battle), and
Duer (heroic). For Conchubhair, it is Fagan (fiery one), Guy (sensible),
and Neal (champion). The leaders of the two clans know the following
information about their warriors, and each knows that the other leader
knows it, and furthermore, each leader knows that the other leader
knows that the other leader knows it, and so forth (in other words, the
game is common knowledge): Bevan is superior to Cathal against Guy
and Neal, but Cathal is superior to Bevan against Fagan. Cathal is supe-
rior to Duer against Fagan, Guy, and Neale. Against Bevan, Guy is best.
Against Cathal, Neal is best. Against Duer, Fagan is best. Against Bevan,
Fagan is better than Neal. Against Cathal, Guy is better than Fagan.
Against Duer, Guy and Neal are comparable. Assuming that each leader
cares only about winning the battle, what can you say about who will be
chosen to fight?



            7. Consider the two-player strategic form game depicted in FIGURE PR3.7.
a. Derive the strategies that survive the iterative deletion of strictly dom-



            inated strategies.
b. Derive the strategies that survive the iterative deletion of weakly dom-



            inated strategies. (The procedure works the same as the iterative dele-
tion of strictly dominated strategies, except that you eliminate all
weakly dominated strategies at each stage.)
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            8. Consider the three-player game shown in FIGURE PR3.8. Player 1 selects a
row, either a1, b1 or c1. Player 2 selects a column, either a2 or b2. Player
3 selects a matrix, either a3 or b3. The first number in a cell is player 1’s
payoff, the second number is player 2’s payoff, and the last number is
player 3’s payoff. Derive the strategies that survive the iterative deletion
of strictly dominated strategies.
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            9. A gang controls the drug trade along North Avenue between Maryland
Avenue and Barclay Street. The city grid is shown in FIGURE PR3.9a. The
gang leader sets the price of the drug being sold and assigns two gang
members to place themselves along North Avenue. He tells each of them
that they’ll be paid 20% of the money they collect. The only decision that
each of the drug dealers has is whether to locate at the corner of North
Avenue and either Maryland Avenue, Charles Street, St. Paul Street,
Calvert Street, or Barclay Street. The strategy set of each drug dealer is
then composed of the latter five streets. Since the price is fixed by the
leader and the gang members care only about money, each member
wants to locate so as to maximize the number of units he sells.
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            FIGURE PR3.9a



            For simplicity, assume that the five streets are equidistant from each
other. Drug customers live only along North Avenue and are evenly dis-
tributed between Maryland Avenue and Barclay Street (so there are no
customers who live to the left of Maryland Avenue or to the right of
Barclay Street). Customers know that the two dealers set the same price,
so they buy from the dealer that is closest to them. The total number of
units sold on North Avenue is fixed. The only issue is whether a customer
buys from drug dealer 1 or drug dealer 2. This means that a drug dealer
will want to locate so as to maximize his share of customers. We can then
think about a drug dealer’s payoff as being his customer share. FIGURE



            PR3.9b shows the customer shares or payoffs. Let us go through a few so
that you understand how they were derived. For example, suppose dealer
1 locates at the corner of Maryland and North and dealer 2 parks his
wares at the corner of Charles and North. All customers who live between
Maryland and Charles buy from dealer 1, as he is the closest to them,
while the customers who live to the right of St. Paul buy from dealer 2.
Hence, dealer 1 gets 25% of the market and dealer 2 gets 75%. Thus, we
see that ( , ) are the payoffs for strategy pair (Maryland, St. Paul). Now,3
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            FIGURE PR3.9b Drug Dealer’s Payoffs Based on Location
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            suppose instead that dealer 2 locates at Charles and dealer 1 at Maryland.
The customer who lies exactly between Maryland and Charles will be in-
different as to whom to buy from. All those customers to his left will pre-
fer the dealer at Maryland, and they make up one-eighth of the street.
Thus, the payoffs are ( , ) for the strategy pair (Maryland, Charles). If
two dealers locate at the same street corner, we’ll suppose that customers
divide themselves equally between the two dealers, so the payoffs are
( , ). Using the iterative deletion of strictly dominated strategies, find
where the drug dealers locate.



            10. Two students are to take an exam, and the professor has instructed them
that the student with the higher score will receive a grade of A and the
one with the lower score will receive a B. Student 1’s score equals x1 �
1.5, where x1 is the amount of effort she invests in studying. (That is, I as-
sume that the greater the effort, the higher is the score.) Student 2’s score
equals x2, where x2 is the amount of effort she exerts. It is implicitly as-
sumed that student 1 is the smarter of the two, in that, if the amount of
effort is held fixed, student 1 has a higher score by an amount of 1.5.
Assume that x1 and x2 can take any value in {0,1,2,3,4,5}. The payoff to
student i is 10 � xi if she gets an A and 8 � xi if she gets a B, i � 1, 2.
a. Derive the strategies that survive the iterative deletion of strictly dom-



            inated strategies.
b. Derive the strategies that survive the iterative deletion of weakly dom-



            inated strategies. (The procedure works the same as the iterative dele-
tion of strictly dominated strategies, except that you eliminate all
weakly dominated strategies at each stage.)



            11. Groucho Marx once said, “I’ll never join any club that would have me for
a member.” Well, Groucho is not interested in joining your investment
club, but Julie is. Your club has 10 members, and the procedure for ad-
mitting a new member is simple: Each person receives a ballot that has
two options: (1) admit Julie and (2) do not admit Julie. Each person can
check one of those two options or abstain by not submitting a ballot. For
Julie to be admitted, she must receive at least six votes in favor of ad-
mittance. Letting m be the number of ballots submitted with option 1
checked, assume that your payoff function is



            1 if m � 6, 7, 8, 9, 10



            0 if m � 0, 1, 2, 3, 4, 5
.



            a. Prove that checking option 1 (admit Julie) is not a dominant strategy.
b. Prove that abstaining is a weakly dominated strategy.
c. Now suppose you’re tired at the end of the day, so that it is costly for



            you to attend the evening’s meeting to vote. By not showing up, you
abstain from the vote. This is reflected in your payoff function having
the form



            1 if m � 6, 7, 8, 9, 10 and you abstained



            if m � 6, 7, 8, 9, 10 and you voted



            0 if m � 0, 1, 2, 3, 4, 5 and you abstained



            if m � 0, 1, 2, 3, 4, 5 and you voted



            Prove that abstaining is not a weakly dominated strategy.
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3.5 Appendix: Strict and Weak Dominance
CONSIDER A GAME WITH n players: 1, 2, . . ., n. Let Si denote player i’s strategy set,
and read as “strategy is a member of ” Let be composed of 
(n � 1)-tuples of strategies for the n � 1 players other than player i. Finally, let
Vi( , ) be the payoff of player i when his strategy is , and the other players
use � ( , . . ., , , . . . ). Then we have the following definitions:



            1. Strategy strictly dominates if and only if



            In other words, yields a strictly higher payoff than , regardless of the
strategies used by the other n � 1 players.



            2. is the dominant strategy if and only if



            That is, strictly dominates every other strategy for player i.



            3. Strategy weakly dominates if and only if



            That is, yields at least as high a payoff as for all strategies of the
other players and yields a strictly higher payoff for some strategies of
the other players.



            3.6 Appendix: Rationalizability (Advanced)
WE BEGAN THIS CHAPTER with the statement that a rational player would not use
a strictly dominated strategy. Since rationality means choosing what is best,
given expectations of other players’ strategies, and since the existence of a
strictly dominated strategy implies the existence of another strategy that
gives a strictly higher payoff regardless of what the other players’ strategies
are, it logically follows that a rational player will not use a strictly dominated
strategy. If, in addition, all players believe that all players are rational, then
each player believes that no other player will use any strictly dominated
strategies. This logic led us to eliminate strictly dominated strategies from
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            Vi(si–, s�i) 7 Vi(s¿i, s�i) for some s�i � S�i.
Vi(si–, s�i) � Vi(s¿i, s�i) for all s�i � S�i, and
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            12. Derive all of the rationalizable strategies for the game shown in FIGURE



            PR3.12.



            FIGURE PR3.12
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            the game that is derived by deleting strictly dominated strategies from the
original game. Continuing in this manner, we derived the strategies that sur-
vive the IDSDS.



            As just described, the IDSDS eliminates what players would not do if ra-
tionality were common knowledge. But what is it that they would do? If, after
using the IDSDS, there is only one strategy remaining for each player, then
this procedure gives us a clear and definitive description as to how players will
behave. For once all that is “impossible” has been eliminated, then “whatever
remains, however improbable, must be the truth.” But suppose multiple
strategies survive the IDSDS? Although we eliminated what is inconsistent
with rationality being common knowledge, is all that remains consistent with
rationality being common knowledge?



            Remember that rationality means acting optimally, given one’s beliefs
about what other players will do. Thus, a strategy is consistent with rational-
ity only if at least some beliefs about the other players’ strategies make that
strategy the best one. Let’s try working directly with that definition and see
what happens.



            Consider a two-player game. If player 1 is rational, then she chooses a strat-
egy that maximizes her payoff, given her beliefs as to the strategy of player 2.
But what are reasonable beliefs for player 1 to hold about player 2’s strategy?
If player 1 believes that player 2 is rational, then she will expect player 2 to use
a strategy that maximizes his payoff, given his beliefs about her strategy.
Should we allow player 1 to expect that player 2 would hold just any old be-
liefs as to what player 1 will do? Not if rationality is common knowledge. If
player 1 believes that player 2 believes that player 1 is rational, then player 1
believes that player 2’s beliefs about player 1’s strategy ought to be consistent
with player 2’s believing that player 1 is rational, which means that player 2
believes that player 1 plays a strategy that is optimal for some beliefs about 2’s
strategy. And of course, it doesn’t end there, but since my head is starting to
hurt, let’s jump to a more general statement.



            ✚ DEFINITION 3.4 A strategy is rationalizable if it is consistent with ra-
tionality being common knowledge, which means that the strategy is optimal
for a player, given beliefs that are themselves consistent with rationality
being common knowledge.



            That’s not a user-friendly definition, so my plan of explaining rationaliz-
ability with more generality may have backfired. So let’s move in
the other direction and work with a particular example. Consider
the game shown in FIGURE A3.1.



            Think about determining whether strategy a is rationalizable
for player 1. Are there beliefs about what player 2 will do that
would make a optimal for player 1? Yes, since a is best if and only
if player 1 believes that player 2 will use x. But does player 2 have
beliefs about what player 1 will do that makes it optimal for player
2 to use x? If not, then it doesn’t make much sense for player 1 to
believe that player 2 will use x (since player 1 believes that player
2 is rational), and without such a belief, there’s not much of an ar-
gument for player 1 to use a. In fact, x is optimal for player 2 if and
only if player 2 believes that player 1 will use b.
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            FIGURE A3.1 Solving a Game for
the Rationalizable
Strategies


            

        



        
            

            
Let’s summarize thus far: It makes sense for player 1 to use a if she believes
that player 2 will use x. It makes sense for player 1 to believe that player 2 will
use x if player 2 believes that player 1 will use b. But then, this just begs another
question: Is it reasonable for player 2 to believe that player 1 will use b? If b is a
poor strategy for player 1, then the belief supporting player 2’s using x is under-
mined and, with it, the argument for player 1 to use a. In fact, b is strictly dom-
inated by c for player 1. If player 1 believes that player 2 believes that player 1
is rational, then player 1 should not believe that player 2 believes that player 1
will use b, and thus we cannot rationalize player 2’s using x and thus cannot ra-
tionalize player 1’s using a. Strategy a is not rationalizable, because it is not op-
timal for player 1 on the basis of beliefs that are themselves consistent with ra-
tionality being common knowledge.



            Now consider strategy c, and let us argue that it is rationalizable. Strategy
c is optimal for player 1 if she believes that player 2 will use z. But is z opti-
mal for player 2, given some beliefs about what player 1 will do? We need that
to be the case in order for player 1 to believe that player 2 will use z, because,
recall that player 1 believes that player 2 is rational and rational players only
use a strategy that is optimal, given their beliefs. If player 2 believes that
player 1 will use d, then playing z is indeed best for player 2. But is it reason-
able for player 2 to believe that player 1 will use d? Yes it is, because d is opti-
mal if player 1 believes that player 2 will play y. Hence, it is reasonable for
player 1 to believe that player 2 believes that player 1 will play d when player
1 believes that player 2 believes that player 1 believes that player 2 will play y.
But is that belief consistent with rationality being common knowledge? (You
might think that this could never end, but just hang in there for one more
round of mental gymnastics.) If player 2 believes that player 1 will play c, then
playing y is optimal for player 2. Hence, it is reasonable for player 1 to believe
that player 2 believes that player 1 believes that player 2 will play y when
player 1 believes that player 2 believes that player 1 believes that player 2 be-
lieves that player 1 will play c. Now, what about that belief? Well take note that
we’re back to where we started from, with player 1 playing c. We can then re-
peat the argument ad infinitum:



            1. Player 1’s playing c is optimal when player 1 believes that player 2 will
play z.



            2. Player 2’s playing z is optimal when player 2 believes that player 1 will
play d.



            3. Player 1’s playing d is optimal when player 1 believes that player 2 will
play y.



            4. Player 2’s playing y is optimal when player 2 believes that player 1 will
play c.



            5. Player 1’s playing c is optimal when player 1 believes that player 2 will
play z.



            6. Repeat steps 2–5.



            After intense use of our “little gray cells” (as the detective Hercule Poirot
would say), we conclude that strategy c is rationalizable for player 1 because it is
optimal for player 1 given beliefs as to what 2 will do and those beliefs are con-
sistent with rationality being common knowledge. Furthermore, all strategies in
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            that cycle are rationalizable using those beliefs. For example, z is optimal for 2 if
2 believes 1 will use d, and 1 using d is optimal if 1 believes 2 will use y, and y is
optimal for 2 if 2 believes 1 will use c, and 1 using c is optimal if 1 believes 2 will
use z, at which point we’re back where we started from. Hence, strategies c and
d are rationalizable for player 1 and y and z for player 2. In fact, one can show
that these are the only rationalizable strategies.



            If you were to apply the IDSDS to this game, you’d find that those strate-
gies which survive the IDSDS are exactly the same as the rationalizable
strategies just derived. Interesting? Coincidence? Not quite. First note that a
rationalizable strategy also survives the IDSDS because being rational implies
not using a strictly dominated strategy. But can a strategy survive the IDSDS
and not be rationalizable? Yes, it is possible, although the technical nature of
that difference is not one that will concern us in this book. Furthermore, in a
wide class of circumstances, the two concepts deliver the same answer. As you
can imagine, the IDSDS is vastly easier to understand and use, which are good
enough reasons for me to make it the focus of our attention. Nevertheless, it
is important to keep in mind that it is the concept of rationalizability that
directly encompasses what it means for a strategy to be consistent with ra-
tionality being common knowledge.
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Nothing in the world is so powerful as an idea whose time has 
come. —VICTOR HUGO



            4.1 Defining Nash Equilibrium
DreamWorks initially threw down the gauntlet in the clash of the ’toon titans
way back in June 2002, claiming a release date of November 5, 2004 for
Sharkslayer. . . . The studio’s staking out of the November date was seen as a
slap at Disney, which has traditionally released its Pixar pictures that month.
Disney . . . kicked up the brinkmanship factor, announcing that Sharkslayer
or no, The Incredibles would also open on November 5. . . . DreamWorks
[then] blinked [as it] moved the release date for its film . . . [to] October 1.1



            IN SPITE OF ITS REFERENCE to a nonlethal passive fowl, Chicken is a dangerous
game. In its classic form, it begins with two cars facing each other in duel-like
fashion (and typically occupied by male teenagers in pursuit of testosterone-
inspired adventures). As the cars come hurtling towards one another, each
driver is frantically deciding whether to swerve to avoid a collision or to hang
tough (hoping that the other will swerve). The goal is to avoid being the first
to swerve, although if both hang tough, then the result is a mangled mess of
metal and flesh. Chicken has been played in many contexts, including contests
between movie executives (with release dates) and between the leaders of the
United States and the former Soviet Union (with nuclear weapons). TABLE 4.1



            lists a few other games of Chicken that have arisen in fact and fiction.
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            Stable Play: Nash Equilibria in Discrete
Games with Two or Three Players



            TABLE 4.1 CHICKEN IN ACTION



            Mode Description



            Tractors Footloose (1984, movie)



            Bulldozers Buster and Gob in Arrested Development (2004, TV)



            Wheelchairs Two old ladies with motorized wheelchairs in Banzai (2003, TV)



            Snowmobiles “[Two adult males] died in a head-on collision, earning a tie in the game of chicken they
were playing with their snowmobiles.” <www.seriouslyinternet.com/278.0.html>



            Film release dates Dreamworks and Disney–Pixar (2004)



            Nuclear weapons Cuban Missile Crisis (1963): “Since the nuclear stalemate became apparent, the Governments
of East and West have adopted the policy which Mr. Dulles calls ‘brinksmanship.’ This is a
policy adapted from a sport which, I am told, is practised by some youthful degenerates. This
sport is called ‘Chicken!’ ” (Bertrand Russell, Common Sense and Nuclear Warfare, 1959)
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            FIGURE 4.1 provides a strategic form representation
of Chicken.* Because neither player has a strictly dom-
inated strategy, the iterative deletion of strictly domi-
nated strategies (IDSDS, Section 3.4.2) won’t help us
solve this game. But don’t forsake hope, as game the-
ory has many more game-solving tricks to offer.



            If you’ve either read the book or seen the movie A
Beautiful Mind, then you know about the brilliant
schizophrenic mathematician John Nash. In his



            doctoral thesis at Princeton University, Dr. Nash made two striking game-
theoretic advances—one of which became known as Nash equilibrium—that
resulted in his winning the Nobel Prize in Economics more than 40 years later.



            To understand what Nash equilibrium is and why it is an appropriate
method for solving a game, let us return to the discussion of the previous
chapter. In the context of a game, a player is rational when he chooses a strat-
egy to maximize his payoff, given his beliefs about what other players will do.
The tricky part is figuring out what is reasonable for a player to believe about
the strategy another player will select. Chapter 3 used the assumption that ra-
tionality is common knowledge among the players to derive those beliefs. For
example, if player 2 has a dominant strategy and player 1 believes that player
2 is rational, then player 1 believes that player 2 will use her dominant strat-
egy. In this manner, we derived player 1’s beliefs regarding player 2’s strategy.



            The approach of Nash equilibrium maintains the assumption that players
are rational, but takes a different approach to nailing down beliefs. What Nash
equilibrium does is require that each player’s beliefs about other players’ strate-
gies be correct. For example, the strategy that player 1 conjectures that player 2
will use is exactly what player 2 actually does use. The definition of Nash equi-
librium is then made up of two components:



            1. Players are rational: Each player’s strategy maximizes his payoff, given
his beliefs about the strategies used by the other players.



            2. Beliefs are accurate: Each player’s beliefs about the strategies used by
the other players are true.



            Condition (1) is innocent enough; it’s condition (2) that is tougher to swallow.
It requires that players be effective prognosticators of the behavior of others. In
some settings, that may be a reasonable assumption; in others, it may not.
Combining the assumptions about behavior—that it is always rational—and be-
liefs—that they are always true—gives us the definition of Nash equilibrium.



            ✚ DEFINITION 4.1 A strategy profile is a Nash equilibrium if each player’s
strategy maximizes his or her payoff, given the strategies used by the other
players.



            With n players, there are, then, n conditions that must be satisfied in order
for a strategy profile to be a Nash equilibrium—one condition for each player



            FIGURE 4.1 The Game of Chicken
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            *You might be tempted to put large negative numbers for the strategy pair in which both participants
choose hang tough, since this means certain injury and possible death. You can do so, but it’ll make no dif-
ference as regards the solution. As long as the payoffs when both hang tough are less than all the other
payoffs in the matrix, our conclusions regarding behavior will be the same. This condition reflects the
property that what matters is the ranking of the payoffs, not their actual values.
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            which ensures that a player’s strategy is optimal, given the other players’ strate-
gies. Thus, all players are simultaneously doing their best. A violation of one or
more of those conditions means that a strategy profile is not a Nash equilib-
rium. Unlike the game of horseshoes, you don’t come “close to a Nash equilib-
rium” by having all but one of the conditions satisfied; it’s either all or nothing.



            An appeal of Nash equilibrium as a solution concept is that it identifies
strategy profiles that are stable in the sense that each player is content to do
what she is doing, given what everyone else is doing. Consider, for instance, a
strategy profile that is not a Nash equilibrium because, say, player 3’s strategy
is not best for her, given what the other players are up to. We would then ex-
pect player 3 to change her strategy once she discovers that it is not optimal.
In contrast, a Nash equilibrium is not subject to such second-guessing, be-
cause players are happy with what they are doing.



            To be more concrete on this point, imagine that players play the same game
over and over. If they are not currently acting according to a Nash equilibrium,
then, after one of the game’s interactions, there will be a player who will learn
that his strategy is not the best one available, given what others are doing. He
will then have an incentive to change his strategy in order to improve his pay-
off. In contrast, if players are behaving according to a Nash equilibrium, they
are satisfied with their actions after each round of interactions. Behavior gen-
erated by a Nash equilibrium is then expected to persist over time, and social
scientists are generally interested in understanding persistent behavior (not
necessarily because unstable behavior is uninteresting, but rather because it
is just much harder to explain).



            Hopefully having convinced you that Nash equilibrium is a worthy solution
concept (and if not, bear with me), let’s put it to use with the game of Chicken.
We begin by considering the four strategy pairs and asking whether each is a
Nash equilibrium.



            ■ (hang tough, hang tough). If driver 2 chooses
hang tough, then driver 1’s payoff from swerve
is 1 and from hang tough is 0. (See FIGURE 4.2.)
Thus, driver 1 prefers to swerve (and live with
a few clucking sounds from his friends) than
to hang tough (and learn whether or not there
is an afterlife). Thus, hang tough is not best for
player 1, which means that player 1’s Nash
equilibrium condition is not satisfied. Hence,
we can conclude that (hang tough, hang tough)
is not a Nash equilibrium. (It is also true that
driver 2’s strategy of hang tough is not best for
her either, but we’ve already shown this strat-
egy pair is not a Nash equilibrium.)



            ■ (swerve, swerve). If driver 1 chooses swerve,
then driver 2’s payoff from swerve is 2 and
from hang tough is 3. (See FIGURE 4.3.) Driver 2
thus prefers hang tough if driver 1 is going to
chicken out. Since swerve is not the best strat-
egy for driver 2, (swerve, swerve) is not a Nash
equilibrium either.



            FIGURE 4.3 Chicken: Highlighting Driver 2’s
Payoffs when Driver 1 Chooses
Swerve
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            FIGURE 4.2 Chicken: Highlighting Driver 1’s
Payoffs when Driver 2 Chooses
Hang Tough
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            ■ (swerve, hang tough). If driver 2 chooses hang tough, swerve is the best
strategy for driver 1, as it produces a payoff of 1 compared with 0 from
hanging tough. Consequently, the requirement that driver 1’s strategy is
best for him is satisfied. Turning to driver 2, we see that hang tough is best
for her, because it yields a payoff of 3, rather than 2 from swerve. The con-
dition ensuring that driver 2’s strategy is optimal for her is satisfied as
well. Because each driver is choosing the best strategy, given what the
other driver is expected to do, (swerve, hang tough) is a Nash equilibrium.



            ■ (hang tough, swerve). By logic similar to that in the preceding case, this
strategy pair is a Nash equilibrium, too.



            Summing up, there are two Nash equilibria in this game: (swerve, hang
tough) and (hang tough, swerve). Both predict that there will be no car crash
and, furthermore, that one and only one driver will swerve. However, Nash
equilibrium doesn’t tell us which driver will swerve.



            Perhaps the best way to play Chicken is to com-
mit to not swerving by eliminating swerve from your
strategy set and, most importantly, making this
known to the other driver. FIGURE 4.4 illustrates what
the game would look like if driver 1 were to elimi-
nate swerve from his strategy set. The game now has
only one Nash equilibrium: driver 1 hangs tough
and driver 2 chickens out.



            A tactic similar to that illustrated in Figure 4.4
was taken in a naval encounter about 20 years ago.



            Let’s listen in on the radio conversation between the two participants.2



            1: “Please divert your course 15 degrees to the north to avoid a collision.”



            2: “Recommend that you change your course 15 degrees to the south to
avoid a collision.”



            1: “This is the captain of a U.S. navy ship. I say again, divert your course.”



            2: “No, I say again, divert your course.”



            1: “This is the aircraft carrier Enterprise; we are a large warship of the U.S.
navy. Divert your course now!”



            2: “This is a lighthouse. Your call.”



            We have several tasks ahead of us in this chapter. Having defined Nash equilib-
rium, we want to learn how to solve games for Nash equilibria and begin to ap-
preciate how this concept can be used to derive an understanding of human be-
havior. Our analysis commences in Section 4.2 with some simple two-player games
that embody both the conflict and mutual interest that can arise in strategic situa-
tions. To handle more complicated games, the best-reply method for solving for
Nash equilibria is introduced in Section 4.3 and is then applied to three-player
games in Section 4.4. Finally, Section 4.5 goes a bit deeper into understanding what
it means to suppose that players behave as described by a Nash equilibrium.



            4.2 Classic Two-Player Games
THE MAIN OBJECTIVE OF this chapter is to get you comfortable both with the con-
cept of Nash equilibrium and with deriving Nash equilibria. Let’s warm up
with a few simple games involving two players, each of whom has at most



            FIGURE 4.4 Chicken when Driver 1 Has
Eliminated Swerve as a Strategy
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            three strategies. As we’ll see, a game can have one Nash equilibrium, several
Nash equilibria, or no Nash equilibrium. The first case is ideal in that we pro-
vide a definitive statement about behavior. The second is an embarrassment
of riches: we cannot be as precise as we’d like, but in some games there may
be a way to select among those equilibria. The last case—when there is no
Nash equilibrium—gives us little to talk about, at least at this point. Although
in this chapter we won’t solve games for which there is no Nash equilibrium,
we’ll talk extensively about how to handle that problem in Chapter 7.



            You may be wondering whether there is an “easy-to-use” algorithm for solving
Nash equilibria. Chapter 3, for example, presented an algorithm for finding
strategies consistent with rationality being common knowledge: the iterative
deletion of strictly dominated strategies (IDSDS). Unfortunately, there is no such
method for solving Nash equilibrium. For finite games—that is, when there is a
finite number of players and each player has a finite number of strategies—the
only universal algorithm is exhaustive search, which means that one has to
check each and every strategy profile and assess whether it is a Nash equilibrium.
We will, however, present some shortcuts for engaging in exhaustive searches.



            A useful concept in deriving Nash equilibria is a player’s best reply (or best
response). For each collection of strategies for the other players, a player’s
best reply is a strategy that maximizes her payoff. Thus, a player has not just
one best reply, but rather a best reply for each configuration of strategies for
the other players. Furthermore, for a given configuration of strategies for the
other players, there can be more than one best reply if there is more than one
strategy that gives the highest payoff.



            ✚ DEFINITION 4.2 A best reply for player i to (s1, . . ., si�1, si�1, . . ., sn)
is a strategy that maximizes player i’s payoff, given that the other n � 1
players use strategies (s1, . . ., si�1, si�1, . . ., sn).



            A Nash equilibrium can be understood as a strategy profile which ensures
that a player’s strategy is a best reply to the other players’ strategies, for each
and every player. These are the same n conditions invoked by Definition 4.1,
but we’re just describing them a bit differently.



            � SITUATION: PRISONERS’ DILEMMA



            During the time of Stalin, an orchestra conductor was on a train reading a mu-
sical score. Thinking that it was a secret code, two KGB officers arrested the
conductor, who protested that it was just Tchaikovsky’s Violin Concerto. The
next day, the interrogator walks in and says, “You might as well confess, as
we’ve caught your accomplice Tchaikovsky, and he’s already talking.”



            The Prisoners’ Dilemma, which we previously considered under the guise
of the opera Tosca, is the most widely examined game in game theory. Two
members of a criminal gang have been arrested and placed
in separate rooms for interrogation. Each is told that if one
testifies against the other and the other does not testify, the
former will go free and the latter will get three years of jail
time. If each testifies against the other, they will both be
sentenced to two years. If neither testifies against the other,
each gets one year. Presuming that each player’s payoff is
higher when he receives a shorter jail sentence, the strate-
gic form is presented in FIGURE 4.5.



            FIGURE 4.5 The Prisoners’ Dilemma
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            This game has a unique Nash equilibrium, which is that both players choose
testify. Let us first convince ourselves that (testify, testify) is a Nash equilibrium.
If criminal 2 testifies, then criminal 1’s payoff from also testifying is 2, while it
is only 1 from remaining silent. Thus, the condition ensuring that criminal 1’s
strategy is optimal is satisfied. Turning to criminal 2, we see that, given that
criminal 1 is to testify, she earns 2 from choosing testify and 1 from choosing
silence. So, the condition ensuring that criminal 2’s strategy is optimal is also
satisfied. Hence, (testify, testify) is a Nash equilibrium.



            Let us make two further points. First, the Prisoners’ Dilemma is an example
of a symmetric game. A two-player game is symmetric if players have the same
strategy sets, and if you switch players’ strategies, then their payoffs switch.
For example, if the strategy pair is (testify, silence), then the payoffs are 4 for
criminal 1 and 1 for criminal 2. If we switch their strategies so that the strat-
egy pair is (silence, testify), the payoffs switch:  now criminal 1’s payoff is 1
while criminal 2’s payoff is 4. A trivial implication of the symmetric condition
is that players who choose the same strategy will get the same payoff.



            An important aspect of symmetric games is that if a symmetric strategy
profile—such as (testify, testify)—is optimal for one player, it is also optimal for
the other player. If criminal 1’s strategy is optimal (given what criminal 2 is
doing), then it must also be the case that criminal 2’s strategy is optimal (given
what criminal 1 is doing). By the symmetry in the game and the consideration
of a symmetric strategy profile, the equilibrium conditions for the players are
identical. Thus, for a symmetric strategy profile in a symmetric game, either
all of the Nash equilibrium conditions hold or none do. Now that we know this
property, it is sufficient to show that if testify is optimal for criminal 1 (given
that criminal 2 chooses testify), testify must also be optimal for criminal 2.



            For a symmetric strategy profile in a symmetric game, if one player’s
strategy is a best reply, then all players’ strategies are best replies.



            Note also that testify is a dominant strategy. Regardless of what the other
criminal does, testify produces a strictly higher payoff than silence. With a little
thought, it should be clear that if a player has a dominant strategy, then a Nash
equilibrium must have her using it. For a player’s strategy to be part of a Nash
equilibrium, the strategy must be optimal, given the strategies used by the
other players. Because a dominant strategy is always the uniquely best strategy,
then it surely must be used in a Nash equilibrium. It follows that if all players
have dominant strategies—as in the Prisoners’ Dilemma—the game has a
unique Nash equilibrium in which those dominant strategies are used. Thus,
(testify, testify) is the unique Nash equilibrium in the Prisoners’ Dilemma.
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If a player has a dominant strategy, a Nash equilibrium requires that
the player use it. If all players have a dominant strategy, then there is a unique
Nash equilibrium in which each player uses his or her dominant strategy.



            � SITUATION: A COORDINATION GAME—DRIVING CONVENTIONS



            We next look at an example of a coordination game, which has the property
that players have a common interest in coordinating their actions. A coordi-
nation game that most adults engage in every day is the choice of the side of
the road upon which to drive. It’s not really that important whether everyone
drives on the left (as in England and Japan) or on the right (as in the United
States and Chile), but just that we agree to a standard.



            The game between two drivers is represented in
FIGURE 4.6. It is easy to verify that there are two
Nash equilibria. One has both Thelma and Louise
driving on the left, and the other has both driving
on the right. If Louise drives on the left, then
Thelma’s payoff from doing the same is 1, while it is
�1 from driving on the right. Thus, left is indeed
best for Thelma, given that Louise is choosing left.
The same argument verifies that Louise’s driving on
the left is best, given that Thelma drives on the left.
In fact, since this is a symmetric game, I can invoke the magic words—“by
symmetry”—to conclude that Louise’s strategy of left is optimal as well. This
makes (left, left) a Nash equilibrium. An analogous argument allows us to
conclude that (right, right) is a Nash equilibrium.



            In contrast, (left, right) is not a Nash equilibrium. Given that Louise is driv-
ing on the right, Thelma’s payoff from driving on the left is �1, while she can
do better by driving on the right and getting a payoff of 1. It is straightforward
also to argue that (right, left) is not a Nash equilibrium.



            Nash equilibrium doesn’t tell us which standard a population of drivers will
settle upon; instead, it tells us only that they will settle upon some standard.
History shows that societies do settle upon a driving convention, and which side
of the road it is can vary across time and space. It is estimated that about 75% of
all roads have the custom of driving on the right.3 Although today everyone con-
forms to a driving convention because it’s the law, conventions developed long
before they were legislated (and, indeed, long before automobiles came on the
scene). Generally, the law just codified a custom that had developed on its own.



            Suppose an American driver and an English driver are driving
towards each other on neutral ground. Each is driving a car from her own
country. All of this is common knowledge. On which side of the road will each
drive? Will it turn into a game of Chicken? Is Nash equilibrium a good predictor?



            � SITUATION: A GAME OF COORDINATION AND CONFLICT—TELEPHONE



            In the driving conventions game, there were two Nash equilibria and the play-
ers were indifferent between them: driving on the right was just as good as
driving on the left. Now let us consider a setting that also has two equilibria,
but the players rank them differently.
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            FIGURE 4.6 Driving Conventions
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            Colleen is chatting on the phone with Winnie and suddenly
they’re disconnected. Should Colleen call Winnie or should
Winnie call Colleen? Colleen and Winnie are the players, and they
have a strategy set composed of call and wait. Each is willing to
call the other if that is what it takes to continue the conversation,
but each would prefer the other to do so. If they both try to call
back, then the other’s phone is busy and thus they don’t reconnect.
Obviously, if neither calls back, then they don’t reconnect either.
The strategic form game is shown in FIGURE 4.7.*



            The strategy pair (call, call) is not a Nash equilibrium, since, for
example, Colleen earns 0 from call, but a higher payoff of 3 from wait. Thus,
Colleen’s strategy of call is not optimal should Winnie choose call. Nor is (wait,
wait) a Nash equilibrium, since, for example, Winnie earns 1 from choosing
wait and a higher payoff of 2 from choosing call should Colleen choose wait.
Thus, Winnie’s strategy is not optimal, given what Colleen is doing.



            A strategy pair that is a Nash equilibrium has one player calling back while
the other waits. Consider the strategy pair (call, wait), so that Colleen is to
call. Given that Winnie is waiting for Colleen’s call, Colleen prefers to call, as
it delivers a payoff of 2 while waiting has a payoff of only 1. And if Winnie an-
ticipates that Colleen will call her, then Winnie prefers to wait for Colleen’s
call. For Winnie, waiting delivers a payoff of 3, whereas should she call, the
payoff is 0.



            If the telephone game is symmetric (and it is), we can infer by symmetry from
(call, wait) being a Nash equilibrium that (wait, call) is also a Nash equilibrium
(where now it is Winnie who is to call). To see why, first convince yourself that
this is a symmetric game. If the strategy pair is (call, wait), then Colleen gets a
payoff of 2 and Winnie gets 3. If we switch the strategies so that the strategy pair
is (wait, call), then Colleen now gets a payoff of 3 and Winnie gets 2.
Furthermore, they have the same payoff when they choose the same strategy.
This symmetry implies that the Nash equilibrium condition for Winnie at strat-
egy pair (wait, call) is the same as the Nash equilibrium condition for Colleen at
(call, wait), and the Nash equilibrium condition for Colleen at (wait, call) is the
same as the Nash equilibrium condition for Winnie at (call, wait). Thus, if, at
(call, wait), Colleen finds it optimal to choose call, then Winnie must find it op-
timal to choose call at strategy pair (wait, call); the conditions are exactly the
same. Either both conditions hold or neither does. Similarly, if, at (call, wait),
Winnie finds it optimal to choose wait, then Colleen must find it optimal to
choose wait at (wait, call).



            In sum, by virtue of the game being symmetric, either both (wait, call )
and (call, wait) are Nash equilibria or neither are. Since we’ve shown that
(call, wait) is a Nash equilibrium, then, by symmetry, (wait, call ) is a Nash
equilibrium.



            If a game is symmetric, but the equilibrium is asymmetric, how
do players coordinate? How would you coordinate in the telephone game?
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            FIGURE 4.7 The Telephone Game



            *This is the same game as the well-known “Battle of the Sexes,” though recast in a more gender-neutral
setting. The original game was one in which the man wants to go to a boxing match and the woman wants
to go to the opera. Both would prefer to do something together than to disagree.
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            � SITUATION: AN OUTGUESSING GAME—ROCK–PAPER–SCISSORS



            Lisa: Look, there’s only one way to settle this: Rock–Paper–Scissors.



            Lisa’s Brain: Poor predictable Bart. Always picks rock.



            Bart’s Brain: Good ol’ rock. Nothin’ beats that!



            (Bart shows rock, Lisa shows paper)



            Bart: Doh!
—FROM THE EPISODE “THE FRONT,” OF THE SIMPSONS.



            How many times have you settled a disagreement by using
Rock–Paper–Scissors? In case you come from a culture that doesn’t use this
device, here’s what it’s all about. There are two people, and each person moves
his hands up and down four times. On the fourth time, each person comes
down with either a closed fist (which signals her choice of rock), an open hand
(signaling paper), or the middle finger and forefinger in the shape of scissors
(no explanation required). The winner is determined as follows: If one person
chooses rock and the other scissors, then rock wins, since scissors break when
trying to cut rock. If one person chooses rock and the other paper, then paper
wins, as paper can be wrapped around rock. And if one person chooses paper
and the other scissors, then scissors wins, since scissors can cut paper. If the
two players make identical choices, then it is considered a draw (or, more typ-
ically, they play again until there is a winner).



            If we assign a payoff of 1 to winning, �1 to losing, and
0 to a draw, then the strategic form game is as described
in FIGURE 4.8. Contrary to Bart’s belief, rock is not a dom-
inant strategy. While rock is the unique best reply
against scissors, it is not the best reply against paper. In
fact, there is no dominant strategy. Each strategy is a
best reply against some strategy of the other player.
Paper is the unique best reply against rock, rock is the
unique best reply against scissors, and scissors is the
unique best reply against paper.



            Without any dominated strategies, the IDSDS won’t
get us out of the starting gate; all strategies survive the IDSDS. So, being good
game theorists, we now pull Nash equilibrium out of our toolbox and go to
work. After much hammering and banging, we chip away some of these strat-
egy pairs. We immediately chip off (rock, rock), as Bart ought to choose paper,
not rock, if Lisa is choosing rock. Thus, (rock, rock) now lies on the floor, hav-
ing been rejected as a solution because it is not a Nash equilibrium. We turn to
(paper, rock), and while Bart’s strategy of paper is a best reply, Lisa’s is not, since
scissors yields a higher payoff than rock when Bart is choosing paper. Hence,
(paper, rock) joins (rock, rock) on the floor. We merrily continue with our work,
and before we know it, the floor is a mess as everything lies on it! None of the
nine strategy pairs is a Nash equilibrium.



            You could check each of these nine strategy pairs and convince yourself that
that claim is true, but let me offer a useful shortcut for two-player games.
Suppose we ask whether Lisa’s choice of some strategy, call it y, is part of a
Nash equilibrium. (I say “part of,” since, to even have a chance at being a Nash
equilibrium, there must also be a strategy for Bart.) For y to be part of a Nash
equilibrium, Bart must choose a strategy (call it c) that is a best reply to Lisa’s



            FIGURE 4.8 Rock–Paper–Scissors
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            choosing y. Choosing such a strategy ensures that Bart’s Nash equilibrium con-
dition is satisfied. To ensure that Lisa is also acting optimally, we then need to
derive her best reply to Bart’s choosing c (which, recall, is his best reply to Lisa’s
choosing y). Now suppose that Lisa’s best reply to c is actually y, which is the
strategy we started with for Lisa. Then we have shown that y is indeed part of
a Nash equilibrium and the equilibrium is, in fact, (c, y). However, if Lisa’s best
reply to Bart’s choosing c is not y, then we conclude that y is not part of any
Nash equilibrium. In that case, in one fell swoop we’ve eliminated all strategy
profiles involving Lisa’s choosing y. Putting it pictorially, this is what we need
to happen for Lisa’s playing y to be part of a Nash equilibrium:



            Lisa plays y S Bart’s best reply to y is c S Lisa’s best reply to c is y.



            To put this algorithm into action, let us ask whether Lisa’s choosing rock is
part of a Nash equilibrium. If Bart thinks that Lisa is going to choose rock, then
he wants to choose paper. Now, if Bart chooses paper, then Lisa wants to choose
scissors. Since this option is different from what we initially assumed that Lisa
would choose, which was rock, we conclude that there is no Nash equilibrium
in which Lisa chooses rock. Hence, none of the strategy profiles in which Lisa
chooses rock—namely, (rock, rock), (paper, rock), and (scissors, rock)—are Nash
equilibria. Now let’s do the same trick on the strategy paper for Lisa in order to
determine whether her choosing paper is part of an equilibrium. If Lisa chooses
paper, Bart’s best reply is scissors, and Lisa’s best reply to Bart’s selection of scis-
sors is rock, not paper. Hence, Lisa’s using paper is not part of any Nash equilib-
rium, so we can eliminate (rock, paper), (paper, paper), and (scissors, paper) as
Nash equilibria. Finally, using the same method, we can show that Lisa’s choos-
ing scissors is not part of any Nash equilibrium. In this manner, we’ve proven
that there is no Nash equilibrium for the game of Rock–Paper–Scissors.



            Rock–Paper–Scissors is an example of an outguessing game. In an out-
guessing game, maximizing your payoff requires that you outguess the other
player (or players). That is, you want to do what they don’t expect. If the other
player thinks that you’re going to play strategy x, and she responds by playing
b, then you don’t want to play x in response to her playing b; instead, you want
to respond with something else. For example, if Lisa thinks that Bart is going
to play rock, then she’ll play paper, in which case Bart doesn’t want to do as Lisa
expects. Instead, he should play scissors, not rock. (Unfortunately, Bart isn’t
that smart, but you have to blame Matt Groening for that, not game theory.)



            As it turns out, outguessing games arise in many situations. Sports and mil-
itary conflicts are two prominent examples; we’ll investigate them quite ex-
tensively in Chapter 7. However, be forewarned: if you intend to enter the USA
Rock–Paper–Scissors League (yes, there is such a thing), game theory really
can’t help you design a winning strategy.



            That Rock–Paper–Scissors is not just a kid’s game was recently demonstrated
by the two leading auction houses: Christie’s and Sotheby’s. The owner of an art
collection worth in excess of $20 million decided to determine which auction
house would sell his collection—and, consequently, earn millions of dollars in
commissions—on the basis of the outcome of a round of Rock–Paper–Scissors.4



            Rather than play the game in the traditional way, however, with physical hand
movements, an executive for Christie’s and an executive for Sotheby’s each
wrote down one of the three strategies on a piece of paper. Christie’s won, choos-
ing rock to beat Sotheby’s scissors. 
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            CONFLICT AND MUTUAL INTEREST IN GAMES



            Rock–Paper–Scissors is a game of pure conflict. What do I mean by that?
Well, take note of an interesting property of the payoff matrix in Figure 4.8:
Players’ payoffs always sum to the same number (which happens to be
zero). For example, if both Bart and Lisa choose rock, then each gets zero,
so the sum of their payoffs is zero. If Bart chooses paper and Lisa chooses
rock, then Bart gets 1 and Lisa gets �1, which once again sums to zero. For
every strategy pair, the sum of their payoffs is zero. This type of game is
known as a constant-sum game, because the payoffs always sum to the
same number. When that number happens to be zero, the game is called a
zero-sum game.



            So think about what this implies. Since payoffs must sum to the same num-
ber, if some strategy pair results in a higher payoff for Bart, then it must re-
sult in a lower payoff for Lisa. Thus, what makes Bart better off has to make
Lisa worse off, and analogously, what makes Lisa better off has to make Bart
worse off. It is in that sense that Rock–Paper–Scissors is a game of pure con-
flict. In fact, all constant-sum games have this property.



            Contrast this game with driving conventions. Here we have the opposite of
Rock–Paper–Scissors, in the sense that there is no conflict at all. A strategy
pair that makes driver 1 better off—such as (left, left) compared with (left,
right)—also makes driver 2 better off; they both get a payoff of 1 rather than
0. This is a game of mutual interest, as the rankings of strategy pairs by their
payoffs coincides for the players.



            Chicken and the telephone game lie between these two extremes. Those
strategic settings do provide grounds for mutual interest. In Chicken, both
players want to avoid (hang tough, hang tough); they both prefer (swerve, hang
tough) and (hang tough, swerve). But there is also room for conflict, as they
disagree as to how they rank (swerve, hang tough) and (hang tough, swerve);
driver 1 prefers the latter and driver 2 prefers the for-
mer. Similarly, with the telephone game, both Colleen
and Winnie agree that one of them calling is preferable
to either both of them waiting or both calling, but they
disagree as to who should call. Colleen prefers that it be
Winnie, while Winnie prefers it to be Colleen. They
share a common interest in coordinating on exactly one
person calling, but their interests depart—they are in
conflict—when it comes to who that person should be.



            Knowing whether players’ interests are entirely in
conflict, partially in conflict, or entirely in common can
provide some insight into which strategy profiles are
Nash equilibria. So, when you come to a game, think
about the interests of the players before launching into
a robotic search for solutions. Your ruminations may
offer some valuable shortcuts.



            4.3 The Best-Reply Method
AS THE CELEBRATED TV chef Emeril Lagasse would say, “Let’s kick it up a notch!”
by adding a third player to the mix. But before doing so, I’ll share a useful
shortcut with you for deriving Nash equilibria.



            For the game in FIGURE 4.9, find all Nash
equilibria.



            FIGURE 4.9
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            Recall that a player’s best reply is a strategy that maximizes his pay-
off, given the strategies used by the other players. We can then think of
a Nash equilibrium as a strategy profile in which each player’s strategy
is a best reply to the strategies the other players are using. Stemming
from this perspective, the best-reply method offers a way of finding all
of the Nash equilibria. Rather than describe it in the abstract, let’s walk
through the method for the two-player game in FIGURE 4.10.



            For each strategy of Diane, we want to find Jack’s best replies. If Diane
uses x, then Jack has two best replies—b and c—each of which gives a
payoff of 2 that exceeds the payoff of 1 from the other possible strategy,
a. If Diane uses y, then Jack has a unique best reply of a. And if Diane uses



            z, then c is Jack’s only best reply. To keep track of these best replies, circle those of
Jack’s payoffs associated with his best replies, as shown in FIGURE 4.11.



            Next, perform the same exercise on Diane by finding her best replies in re-
sponse to each of Jack’s strategies. If Jack uses a, then both x and y are Diane’s
best replies. If Jack uses b, then Diane’s best reply is x. Finally, if Jack uses c,
then y is Diane’s best reply. Circling the payoffs for Diane’s best replies, we now
have FIGURE 4.12.



            FIGURE 4.10 Jack and Diane’s
Strategies
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            FIGURE 4.12 Diane’s and Jack’s Best
Replies (Circled). Two
Strategy Pairs Are Nash
Equilbria: (b,x) and (a,y)



            FIGURE 4.11 Jack’s Best Replies
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            Since a Nash equilibrium is a strategy pair in which each player’s strategy
is a best reply, we can identify Nash equilibria in
Figure 4.12 as those strategy pairs in which both pay-
offs in a cell are circled. Thus, (b,x) and (a,y) are Nash
equilibria. We have just used the best-reply method to
derive all Nash equilibria.



            Before we explore how the best-reply method is
used in three-player games, let’s deploy it in Rock–
Paper–Scissors. Marking each of Lisa’s and Bart’s best
replies, we have FIGURE 4.13. For example, if Lisa
chooses rock, then Bart’s best reply is paper, so we cir-
cle Bart’s payoff of 1 earned from the strategy pair
(paper, rock). Note that no cell has two circled payoffs,
indicating that there is no Nash equilibrium; this is
the same result we derived earlier.



            FIGURE 4.13 Best Replies (Circled) for Bart
and Lisa’s Game of Rock–
Paper–Scissors. There Is No
Nash Equilibrium
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            4.4 Three-Player Games



            � SITUATION: AMERICAN IDOL FANDOM



            Alicia, Kaitlyn, and Lauren are ecstatic. They’ve just landed tickets to attend
this week’s segment of American Idol. The three teens have the same favorite
among the nine contestants that remain: Ace Young. They’re determined to
take this opportunity to make a statement. While IMing, they come up with a
plan to wear T-shirts that spell out “ACE” in large letters. Lauren is to wear a
T-shirt with an big “A,” Kaitlyn with a “C,” and Alicia with an “E.” If they pull
this stunt off, who knows—they might end up on national television! OMG!



            While they all like this idea, each is tempted to wear instead an attractive
new top just purchased from their latest shopping expedition at Bebe. It’s now
an hour before they have to leave to meet at the studio, and each is at home
trying to decide between the Bebe top and the lettered T-shirt. What should
each wear?



            In specifying the strategic form of this game, we assign a payoff of 2 if they
all wear their lettered T-shirts (and presumably remember to sit in the right
sequence). This payoff is higher than the one they get from wearing the Bebe
top, which is 1. Finally, wearing a lettered T-shirt when one or both of the
other girls do not yields a payoff of 0, as the wearer realizes the worst of all
worlds: she doesn’t look alluring and they don’t spell out ACE.



            The strategic form is shown in FIGURE 4.14.* Lauren’s choice is represented
as selecting a row—either wearing the T-shirt with the letter “A” or her Bebe
top—while Kaitlyn chooses a column and Alicia chooses a matrix.



            FIGURE 4.14 American Idol Fandom
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            Using the best-reply method to solve this game, consider the situation faced
by Lauren. If Alicia wears her T-shirt with E and Kaitlyn wears hers with C,
then Lauren’s best reply is to do her part and wear the T-shirt with A. So, we
circle Lauren’s payoff of 2 in the cell associated with strategy profile (A, C, E),
as shown in FIGURE 4.15. If, instead, Kaitlyn chooses Bebe and Alicia wears E,
then Lauren’s best reply is to wear her Bebe top and receive a payoff of 1, so
we circle that payoff for Lauren. If Alicia wears her Bebe top and Kaitlyn
wears C, then Lauren’s best reply is again to wear her Bebe top, so we circle
Lauren’s payoff of 1. Finally, if both of the other two girls choose their Bebe



            *This game is a 21st-century teen girl version of the Stag Hunt game due to Jean-Jacques Rousseau in On
the Origins and Foundations of Inequality among Men (1755). In that setting, hunters can work together to
catch a stag (rather than spell out ACE) or hunt individually for hare (rather than wear a Bebe top).
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            tops, then Lauren optimally does so as well, which means that we now circle
Lauren’s payoff of 1 in that instance. Performing this same exercise for Kaitlyn
and Alicia, we end up with Figure 4.15.



            Examining the figure, we find that there are two Nash equilibria—that is,
two strategy profiles in which all three payoffs are circled—signifying that all
three teens are choosing best replies. One equilibrium is when Lauren wears A,
Kaitlyn wears C, and Alicia wears E, which, to the delight of Ace Young, spells
out his name on American Idol. The other equilibrium occurs when each tosses
her lettered T-shirt aside and instead wears that eye-catching top from Bebe.



            Note that the players rank the Nash equilibria the same: all prefer wearing
the T-shirts spelling out ACE than wearing Bebe shirts. The situation differs
from that pertaining to driving conventions, in which players are indifferent
among equilibria, and also from that in the Chicken and telephone games, in
which players ranked equilibria differently.



            � SITUATION: VOTING, SINCERE OR DEVIOUS?



            A company has three shareholders. Shareholder 1 controls 25% of the shares,
shareholder 2 controls 35%, and shareholder 3 controls 40%. The company
has offers from two other companies, denoted A and B, to purchase it. There
is also a third option, which is to decline both offers. Shareholder 1 ranks the
three choices, from the most to least preferred, as follows: accept A’s offer, ac-
cept B’s offer, and accept neither offer (which we’ll denote option C).
Shareholder 2’s ranking is B, then C, then A; and shareholder 3’s ranking is C,
then B, then A. The rankings are summarized in TABLE 4.2.



            Assume that a shareholder gets a payoff of 2 if his most preferred choice is
implemented, a payoff of 1 for his second choice, and a payoff of 0 for his third



            TABLE 4.2 SHAREHOLDERS’ PREFERENCES



            Shareholder 1st Choice 2nd Choice 3rd Choice



            1 A B C



            2 B C A



            3 C B A



            FIGURE 4.15 The Best-Reply Method Applied to American Idol Fandom. There
Are Two Nash Equilibria (Two Strategy Profiles in Which all Three
Payoffs Are Circled)
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            choice. The three shareholders cast their votes simultaneously. There are 100
votes, allocated according to share ownership, so shareholder 1 has 25 votes,
shareholder 2 has 35 votes, and shareholder 3 has 40 votes. Shareholders are
required to allocate their votes as a bloc. For example, shareholder 1 has to cast
all of her 25 votes for A, B, or C; she cannot divvy them up among the projects.
The strategy set for a player is then composed of A, B, and C. Plurality voting
is used, which means that the alternative with the most votes is implemented.



            To derive the payoff matrix, let us first determine how votes translate into a
plurality winner. For example, if shareholders 1 and 2 vote for alternative B,
then B is the winner, with either 60 votes (if shareholder 3 votes instead for A
or C) or 100 votes (if 3 votes for B as well). FIGURE 4.16 shows the plurality win-
ner for each of the 27 different ways in which the three players can vote.



            The next step is to substitute the associated payoff vector for each alterna-
tive in a cell in Figure 4.16. For example, if B is the winner, then shareholder
1’s payoff is 1 (since B is his second choice), shareholder 2’s payoff is 2 (since
B is his first choice), and  shareholder 3’s payoff is 1 (since B is his second
choice). Substitution, then,  gives us FIGURE 4.17.



            In making statements about how these shareholders might vote, a natural
possibility to consider is what political scientists call sincere voting. The term



            FIGURE 4.17 Strategic Form of
the Voting Game



            FIGURE 4.16 Plurality Winners
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            is used when a voter casts his vote for his first choice. In this case, it would
mean that shareholder 1 casts her 25 votes for A, shareholder 2 casts his 35
votes for B, and shareholder 3 casts her 40 votes for C. As a result, choice C
would be approved, since it received the most votes. But is sincere voting a
Nash equilibrium? Is it optimal for shareholders to vote sincerely? Actually,
no. Note that shareholder 1 prefers choice B over C. Given that shareholders
2 and 3 are voting sincerely, shareholder 1 can instead engage in (shall we call
it) devious voting and vote for choice B rather than A. Doing so means that B
ends up with 60 votes—being supported by both shareholders 1 and 2—and
thus is approved. Shifting her votes from her most preferred alternative, A, to
her next most preferred alternative, B, raises shareholder 1’s payoff from 0 to 1.
Hence, sincere voting is not a Nash equilibrium for this game.



            Although it can be shown that it is always optimal to vote sincerely when
there are only two alternatives on the ballot, it can be preferable to vote for
something other than the most preferred option when there are three or more
options, as we just observed. The intuition behind this assertion is that the most
preferred option may not be viable—that is, it won’t win, regardless of how you
vote. In the event that your first choice can’t win, its reasonable to start think-



            ing about which remaining choices could prevail, depend-
ing on various voting scenarios, and, among those choices,
vote for the one that is most preferred. In the case we have
just examined, with shareholders 2 and 3 voting for B and
C, respectively, shareholder 1 can cause B to win (by cast-
ing her votes for B) or cause C to win (by casting her votes
for either A or C). The issue, then, is whether she prefers B
or C. Since she prefers B, she ought to use her votes strate-
gically to make that option the winner.



            Having ascertained that sincere voting does not pro-
duce a Nash equilibrium, let’s see if the best-reply method
can derive a strategy profile that is a Nash equilibrium.
Start with shareholder 1. If shareholders 2 and 3 vote for
A, then shareholder 1’s payoff is 2, whether she votes for
A, B, or C. (This statement makes sense, since alternative
A receives the most votes, regardless of how shareholder 1
votes.) Thus, all three strategies for shareholder 1 are best
replies, and in FIGURE 4.18 we’ve circled her payoff of 2 in
the column associated with shareholder 2’s choosing A
and the matrix associated with shareholder 3’s choosing
A. If shareholder 2 votes for B and shareholder 3 votes for
A, then shareholder 1’s best reply is to vote for A or C
(thereby ensuring that A wins); the associated payoff of 2
is then circled. If shareholder 2 votes for C and share-
holder 3 votes for A, then, again, shareholder 1’s best
replies are A and B. Continuing in this manner for share-
holder 1 and then doing the same for shareholders 2 and
3, we get Figure 4.18.



            Now look for all strategy profiles in which all three pay-
offs are circled. Such a strategy profile is one in which
each player’s strategy is a best reply and thus each player is
doing the best he or she can, given what the others players



            FIGURE 4.18 Best-Reply Method Applied
to the Voting Game. There
Are Five Nash Equilibria
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            are doing; in other words, it is a Nash equilibrium. Inspecting Figure 4.18, we
see that there are five strategy profiles for which all three players are using best
replies and thus are Nash equilibria: (A, A, A), (B, B, B), (C, C, C), (A, C, C), and
(B, B, C). Note that the equilibria lead to different outcomes: (A, A, A) results in
offer A’s being accepted, since all are voting for A. (B, B, B) and (B, B, C) result
in offer B’s being accepted, and (C, C, C) and (A, C, C) lead to C’s being chosen.



            We have rather robotically derived the set of Nash equilibria. Although use-
ful, it is more important to understand what makes them equilibria. Consider
equilibrium (A, A, A). Why is it optimal for shareholders 2 and 3 to vote for
their least preferred alternative? The answer is that neither shareholder is piv-
otal, in that the outcome is the same—alternative A wins—regardless of how
each votes. Now consider shareholder 2. If she votes for A, then A wins with 100
votes; if she votes for B, then A still wins (though now with only 65 votes); and
if she votes for C, then A still wins (again with 65 votes). It is true that share-
holders 2 and 3 could work together to achieve higher payoffs: if they both vote
for B, then B wins and shareholders 2 and 3 get payoffs of 2 and 1, respectively,
which is better than 0 (which is what they get when A wins). But such coordi-
nation among players is not permitted. Nash equilibrium requires only that
each player, acting independently of others, can do no better.*



            Equilibrium (A, A, A) has another interesting property: shareholders 2 and 3
are using a weakly dominated strategy in voting for A. As shown in TABLE 4.3, vot-
ing for A is weakly dominated in voting for B for shareholder 2: all of the payoffs
in the column “2 votes for B” are at least as great as those in the column “2 votes
for A,” and in some of the rows the payoff is strictly greater. So, regardless of how
shareholders 1 and 3 vote, voting for B gives shareholder 2 at least as high a pay-
off as does voting for A. Of course, when shareholders 1 and 3 vote for A—as they
do at Nash equilibrium (A, A, A)—a vote for A and a vote for B result in the same
payoff of 0 for shareholder 2, so she is acting optimally by voting for A. However,



            *Note that, in each of the five Nash equilibria, at least one shareholder is not pivotal. With (B, B, B) and
(C, C, C), all three players are not pivotal, just as with (A, A, A). With (A, C, C), shareholder 1 is not piv-
otal, although shareholders 2 and 3 are pivotal, since each could result in A’s winning if they voted for A.
With (B, B, C), shareholder 3 is not pivotal, although shareholders 1 and 2 are.



            TABLE 4.3 PAYOFFS TO PLAYER 2



            1’s Strategy 3’s Strategy 2 Votes for B 2 Votes for A



            A A 0 � 0



            A B 2 
 0



            A C 1 � 0



            B A 2 
 0



            B B 2 � 2



            B C 2 
 1



            C A 0 � 0



            C B 2 � 2



            C C 1 � 1
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            there are other votes by shareholders 1 and 3 (e.g., when one of them votes for A
and the other for B) for which shareholder 2 does strictly better by voting for B
rather than A.



            We then find that a player using a weakly dominated strategy is not ruled
out by Nash equilibrium. Though voting for B always generates at least as high
a payoff for shareholder 2 as does voting for A (and, in some cases, a strictly
higher payoff), as long as A gives the same payoff that voting for B does for the
strategies that shareholders 1 and 3 are actually using, then A is a best reply
and thereby consistent with Nash equilibrium.



            A Nash equilibrium does not preclude a player’s using a weakly
dominated strategy.



            � SITUATION: PROMOTION AND SABOTAGE



            Suppose you are engaged in a contest in which the person with the highest
performance wins a prize. Currently, you’re in second place. What can you do
to improve your chances of winning? One thought is to work hard to improve
your performance. But what might prove more effective is engaging in a “dirty
tricks” campaign to degrade the performance of the current front-runner. The
goal is to end up on top, and that can be done either by clawing your way up
or by dragging those ahead of you down.



            Such destructive forms of competition arise regularly in the political arena.
The next time the U.S. presidential primaries roll around, pay attention to the
campaigning. Candidates who are behind will talk about not only what a good
choice they are for President, but also what a bad choice the front-runner is.
They generally don’t waste their time denigrating the other candidates—just
the one who is currently on top and thus is the “one to beat.” It has been sug-
gested that sabotage by weaker competitors has arisen as well in nondemo-
cratic governments. For example, although Zhao Ziyang appeared destined to
become the leader of the Chinese Communist Party after Deng Xiao-Ping died
in 1997, two more minor figures—Jiang Zemin and Li Peng—took control in-
stead. Sabotage may have been at work.



            To explore when and how a front-runner can be dethroned through dirty
tricks, consider a setting in which three players are competing for a promotion.5



            Whoever has the highest performance is promoted. Each contestant has one unit
of effort that she can allocate in three possible ways: she can use it to enhance
her own performance (which we’ll refer to as a “positive” effort) or to denigrate
one of the two competing players (which we’ll refer to as a “negative” effort).



            Before the competition begins, player i’s performance equals vi. If a player ex-
erts a positive effort, then she adds 1 to her performance. If exactly one player ex-
erts a negative effort against player i, then player i’s performance is reduced by
1. If both players go negative against her, then player i’s performance is reduced
by 4. Hence, the marginal impact of a second person’s being negative is more
detrimental than the impact of one person’s being negative. This idea seems plau-
sible, since one person making negative remarks may be dismissed as a fabrica-
tion, but two people saying the same thing could be perceived as credible.



            How effort affects performance is summarized in TABLE 4.4. For example, if
player i exerts a positive effort and the other two players exert a negative effort
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            against her, then her final performance is vi � 3, going up 1 through her posi-
tive effort, but down 4 by the two units of negative effort directed against her.



            Suppose players care intrinsically, not about performance, but rather about
promotion. More specifically, a player’s payoff is specified to be the probability
that she is promoted. If a player ends up with a performance higher than those
of the other two players, then she is promoted with probability 1, so her payoff
is 1. If her performance is highest, but she is tied with one other player, then
each has probability of being promoted, and thus each has a payoff of . If all
three players end up with the same performance, then each receives a payoff
of . Finally, if a player’s performance is below that of another player, then her
payoff is 0, since her probability of gaining the promotion is 0.



            Assume that v1 � 2 and v2 � 0 � v3 so that player 1 is the front-runner. To
start the analysis, let’s be a bit idealistic and consider the “no dirty tricks”
strategy profile, in which each player exerts a positive effort, so that player i’s
final performance is vi � 1. This scenario translates into a final performance
of 3 for player 1 (since she began with 2) and 1 for both players 2 and 3 (since
each of them began with 0). Hence, player 1 is promoted. We see, then, that if
all exert a positive effort in order to boost their own performances, then the
player who was initially ahead will end up ahead and thus be promoted. Let’s
now assess whether this is a Nash equilibrium:



            ■ Player 1: First note that player 1’s strategy is clearly optimal, since her
payoff is 1 (recall that it is the probability of being promoted) and that is
the highest feasible payoff. Thus, there can’t be a strategy for player 1
that delivers a higher payoff.



            ■ Player 2: Player 2’s payoff from a positive effort is 0, since he is definitely
not promoted, as his performance of 1 falls short of player 1’s perform-
ance of 3. Alternatively, he could exert a negative effort against player 3,
but that isn’t going to help, since the real competition for player 2 is
player 1 and going negative against 3 doesn’t affect 1’s performance. The
final alternative is for player 2 to exert a negative effort against player 1,
in which case player 1’s performance is 2 instead of 3, while player 2’s
performance is 0 instead of 1 (since he is no longer exerting a positive ef-
fort on his own behalf). In that case, player 2 is still not promoted. We
then find that player 2 is indifferent among all three of his strategies,
since all deliver a zero payoff. Thus, because there is no strategy that
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            TABLE 4.4 PERFORMANCE OF PLAYER i



            Amount of Positive Amount of Negative



            Effort by i Effort Against i Performance



            0 0 vi



            0 1 vi � 1



            0 2 vi � 4



            1 0 vi � 1



            1 1 vi



            1 2 vi � 3


            

        



        
            

            
yields a strictly higher payoff, player 2 is satisfied with exerting a posi-
tive effort.



            ■ Player 3: The situation of player 3 is identical to that of player 2. They
face the same payoffs and are choosing the same strategy. Thus, if going
positive is optimal for player 2, then it is optimal for player 3.



            ■ In sum, all three players choosing a positive effort is a Nash equilibrium
and results in the front-runner gaining the promotion.



            In now considering a strategy profile in which some negative effort is ex-
erted, let’s think about the incentives of players and what might be a natural
strategy profile. It probably doesn’t make much sense for player 2 to think
about denigrating player 3, because the “person to beat” is player 1, as she is in
the lead at the start of the competition. An analogous argument suggests that
player 3 should do the same. Player 1 ought to focus on improving her own per-
formance, since she is in the lead and the key to winning is maintaining 
that lead.



            Accordingly, let us consider the strategy profile in which player 1 promotes
herself, while players 2 and 3 denigrate player 1. The resulting performance is
�1 for player 1 (because her performance, which started at 2, is increased by 1
due to her positive effort and lowered by 4 due to the negative effort of the
other two players) and 0 for players 2 and 3 (since no effort—positive or
negative—is directed at them, so that their performance remains at its initial
level). Because players 2 and 3 are tied for the highest performance, the pay-
offs are 0 for player 1 and each for players 2 and 3. Now let’s see whether we
have a Nash equilibrium:



            ■ Player 1: Unfortunately for player 1, there’s not much she can do about
her situation. If she exerts a negative effort against player 2, then she
lowers 2’s performance to �1 and her own to �2. Player 3’s performance
of 0 results in her own promotion, so player 1 still loses out. An analo-
gous argument shows that player 1 loses if she engages instead in a neg-
ative effort targeted at player 3: now player 2 is the one who wins the
promotion. Thus, there is no better strategy for player 1 than to exert a
positive effort.



            ■ Player 2: If, instead of denigrating player 1, player 2 goes negative against
player 3, then player 1’s performance is raised from �1 to 2, player 2’s per-
formance remains at 0, and player 3’s performance is lowered from 0 to
�1. Since player 1 now wins, player 2’s payoff is lowered from to 0, so
player 2’s being negative about player 1 is preferred to player 2’s being neg-
ative about player 3. What about player 2’s being positive? This does raise
his performance to 1, so that he now outperforms player 3 (who still has a
performance of 0), but it has also raised player 1’s performance to 2, since
only one person is being negative against her. Since player 1 has the high-
est performance, player 2’s payoff is again 0. Thus, player 2’s strategy of
being negative against player 1 is strictly preferred to either player 2’s
being negative against player 3 or player 2’s being positive.



            ■ Player 3: By an argument analogous to that used for player 2, player 3’s
strategy of being negative against player 1 is optimal.



            ■ In sum, player 1’s going positive and players 2 and 3 denigrating player
1 is a Nash equilibrium. Doing so sufficiently lowers the performance of
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            player 1 (Zhao Ziyang?) such that the promotion goes to either player 2
(Jiang Zemin?) or player 3 (Li Peng?). The front-runner loses. As Wayne
Campbell, of Wayne’s World, would say, “Promotion . . . denied!”



            The promotion game, then, has multiple Nash equilibria (in fact, there are
many more than we’ve described), which can have very different implications.
One equilibrium has all players working hard to enhance their performance,
and the adage “Let the best person win” prevails. But there is a darker solu-
tion in which the weaker players gang up against the favorite and succeed in
knocking her out of the competition. The promotion then goes to one of those
weaker players. Perhaps the more appropriate adage in that case is the one at-
tributed to baseball player and manager Leo Durocher: “Nice guys finish last”.



            For the game in FIGURE 4.19, find all Nash equilibria.
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            4.5 Foundations of Nash Equilibrium
THUS FAR, WE’VE OFFERED two approaches to solving a game: iterative deletion of
strictly dominated strategies and Nash equilibrium. It is natural to wonder
how they are related, so we’ll address this issue next. Then there is the matter
of how a strategy is interpreted in the context of Nash equilibrium. As it turns
out, a strategy plays double duty.



            4.5.1 Relationship to Rationality Is Common Knowledge



            To explore the relationship between those strategies which survive the itera-
tive deletion of strictly dominated strategies (IDSDS) and Nash equilibria, let’s
start with an example. Consider a Nash equilibrium for a three-player game in
which player 1 uses strategy x, player 2 uses strategy y, and player 3 uses strat-
egy z. Do these strategies survive the IDSDS? It’s pretty easy to argue that none
are eliminated on the first round: Since x is a best reply against player 2’s
using y and player 3’s using z, x is most definitely not strictly dominated.
Analogously, since y is a best reply for player 2 when player 1 uses x and player
3 uses z, y is not strictly dominated. Finally, since z is a best reply for player 3
when players 1 and 2 use x and y, respectively, z is not strictly dominated.
Thus, x, y, and z are not eliminated in the first round of the IDSDS.


            

        



        
            

            
What will happen in the second round? Although some of player 2’s and
player 3’s strategies may have been eliminated in the first round, y and z were
not, and that ensures that x is not strictly dominated. The same argument ex-
plains why y is still not strictly dominated for player 2 in the second round and
why z is still not strictly dominated for player 3. Thus, x, y, and z survive two
rounds. Like the Energizer Bunny, this argument keeps going and going . . . it
works for every round! Thus, if (x, y, z) is a Nash equilibrium, then those
strategies survive the IDSDS. Although we have demonstrated this property
for a three-player game, the argument is general and applies to all games.



            While every Nash equilibrium is consistent with IDSDS, can a strategy sur-
vive the IDSDS, but not be part of a Nash equilibrium? Absolutely, and in fact,
this chapter is loaded with examples. In the American Idol fandom game, all of
the strategies survive the IDSDS, since none are strictly dominated. Thus, the
IDSDS says that any of the eight feasible strategy profiles could occur. In con-
trast, only two strategy profiles—(A, C, E) and (Bebe, Bebe, Bebe) (try saying
that real fast!)—are Nash equilibria. Another example is Rock–Paper–Scissors,
in which all strategy profiles are consistent with IDSDS, but none are Nash
equilibria. Nash equilibrium is a more stringent criterion than IDSDS, since
fewer strategy profiles satisfy the conditions of Nash equilibrium.



            All Nash equilibria satisfy the iterative deletion of strictly
dominated strategies and thereby are consistent with rationality’s being
common knowledge. However, a strategy profile that survives the IDSDS need
not be a Nash equilibrium.



            FIGURE 4.20 depicts how Nash equilibria are a subset of
the strategy profiles that survive the IDSDS, which are
themselves a subset of all strategy profiles. However, for
any particular game, these sets could coincide, so that, for
example, the set of Nash equilibria might be the same as
those strategy profiles which survive the IDSDS, or the
strategies that survive the IDSDS might coincide with the
set of all strategy profiles.



            4.5.2 The Definition of a Strategy,
Revisited



            To better understand the role of a strategy in the context
of Nash equilibrium, think about specifying both a strat-
egy for player i—denoted si and intended to be his deci-
sion rule—and a conjecture that player i holds regarding
the strategy selected by player j—denoted sj(i)—which rep-
resents what i believes that j is going to play. A strategy
profile ( , . . ., ) is then a Nash equilibrium if, for all i,



            1. maximizes player i’s payoff, given that he believes
that player j will use sj(i), for all j i.



            2. sj(i) � , for all j i.



            is then playing a dual role in a Nash equilibrium. As specified in condition
1, it is player i’s decision rule. In addition, as described in condition 2, is
player j’s (accurate) conjecture as to what player i will do.
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            FIGURE 4.20 Relationship Between Nash
Equilibria and the Strategies
That Survive the IDSDS



            Nash
equilibria



            All strategy 
profiles



            IDSDS strategy 
profiles


            

        



        
            

            
Summary 111



            Recall from Section 2.3 that we required that a strategy specify what a
player should do at every possible information set; that is, a strategy must
specify behavior even at an information set that cannot be reached, given the
prescribed behavior for some preceding information set. For example, in the
kidnapping game, the kidnapper’s strategy had to specify whether to release or
kill the victim, even if at the initial node that strategy prescribed that he not
perform the kidnapping. A strategy must meet this requirement because of the
dual role of an equilibrium strategy. A player will have a conjecture as to how
another player is going to behave, even if that player did not behave as pre-
dicted. For example, the victim’s kin will have a conjecture as to whether the
kidnapper will release or kill the victim, even if the kin originally predicted
that the kidnapper would not perform the kidnapping. Just because a player
did not behave as you expected doesn’t mean that you don’t have beliefs as to
what will happen in the future.



            At a Nash equilibrium, a strategy has two roles—decision rule and conjec-
ture—in which case it’s important that the strategy be fully specified; it must
specify behavior at every information set for a player. A Nash equilibrium
strategy both prescribes—being a player’s decision rule—and describes—being
another player’s conjecture about that player’s decision rule.



            Summary
A rational player chooses a strategy that maximizes her payoff, given her be-
liefs about what other players are doing. Such an optimal strategy is referred
to as a best reply to the conjectured strategies of the other players. If we fur-
thermore suppose that these conjectures are accurate—that each player is cor-
rectly anticipating the strategy choices of the other players—then we have a
Nash equilibrium. The appeal of Nash equilibrium is that it identifies a point
of “mutual contentment” for all players. Each player is choosing a strategy
that is best, given the strategies being chosen by the other players.



            In many games, the iterative deletion of strictly dominated strategies
(IDSDS) has no traction, because few, if any, strategies are strictly dominated.
Nash equilibrium is a more selective criterion; thus, some games might have
only a few Nash equilibria while having many more strategy profiles that sur-
vive the IDSDS. Generally, Nash equilibrium is a more useful solution concept,
for that very reason. Nevertheless, as we found out by way of example, a game
can have many Nash equilibria, a unique Nash equilibrium, or none at all.



            In deriving the Nash equilibria for a game, one can approach the problem
algorithmically, but also intuitively. The best-reply method was put forth as
a procedure for deriving Nash equilibria, even though it can be cumbersome
when players have many strategies to choose from. Intuition about the play-
ers’ incentives can be useful in narrowing down the set of likely candidates for
Nash equilibrium.



            Games can range from pure conflict to ones where players have a mutual
interest. Constant-sum games involve pure conflict, because something that
makes one player better off must make other players worse off. An example is
the children’s game Rock–Paper–Scissors, which is also an example of an out-
guessing game whereby each player is trying to do what the other players
don’t expect. At the other end of the spectrum are games in which the interests
of the players coincide perfectly, so that what makes one player better off
makes the others better off as well. This property describes driving conventions,


            

        



        
            

            
a coordination game in which players simply want to choose the same ac-
tion. Then there are games that combine conflict and mutual interest, such as
the telephone game, Chicken, and American Idol fandom. In these games, un-
derstanding the incentives of a player—how best a player should react to what
another player is going to do—can provide insight into what strategy profiles
are apt to be Nash equilibria.



            112 CHAPTER 4: STABLE PLAY: NASH EQUILIBRIA IN DISCRETE GAMES WITH TWO OR THREE PLAYERS



            1. One of the critical moments early on in the The Lord of the Rings trilogy is
the meeting in Rivendale to decide who should take the ring to Mordor.
Gimli the dwarf won’t hear of an elf doing it, while Legolas (who is an elf)
feels similarly about Gimli. Boromir (who is a man) is opposed to either of
them taking charge of the ring. He is also held in contempt, for it was his
ancestor who, when given the opportunity to destroy the ring millennia
ago, chose to keep it instead. And then there is Frodo the hobbit, who has
the weakest desire to take the ring, but knows that someone must throw it
into the fires of Mordor. In modeling this scenario as a game, assume there
are four players: Boromir, Frodo, Gimli, and Legolas. (There were more, of
course, including Aragorn and Elrond, but let’s keep it simple.) Each of
them has a preference ordering, shown in the following table, as to who
should take on the task of carrying the ring.



            EXERCISES



            Of the three nonhobbits, each prefers to have himself take on the task.
Other than themselves and Frodo, each would prefer that no one take
the ring. As for Frodo, he doesn’t really want to do it and prefers to do
so only if no one else will. The game is one in which all players simulta-
neously make a choice among the four people. Only if they all agree—a
unanimity voting rule is put in place—is someone selected; otherwise,
no one takes on this epic task. Find all symmetric Nash equilibria.



            2. Consider a modification of driving conventions, shown in FIGURE PR4.2, in
which each player has a third strategy: to zigzag on the road. Suppose, if a
player chooses zigzag, the chances of an accident are the same whether the
other player drives on the left, drives on the right, or zigzags as well. Let
that payoff be 0, so that it lies between �1, the payoff when a collision oc-
curs for sure, and 1, the payoff when a collision does not occur. Find all
Nash equilibria.



            PREFERENCE RANKINGS FOR THE LORD OF THE RINGS



            Person First Second Third Fourth Fifth



            Boromir Boromir Frodo No one Legolas Gimli



            Gimli Gimli Frodo No one Boromir Legolas



            Legolas Legolas Frodo No one Gimli Boromir



            Frodo Legolas Gimli Boromir Frodo No one
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            3. Return to the team project game in Chapter 3, and suppose that a frat boy
is partnered with a sorority girl. The payoff matrix is shown in FIGURE



            PR4.3. Find all Nash equilibria.



            4. Consider the two-player game illustrated in FIGURE PR4.4.
a. For each player, derive those strategies which survive the iterative



            deletion of strictly dominated strategies.
b. Derive all strategy pairs that are Nash equilibria.



            5. Consider the two-player game depicted in FIGURE PR4.5.
a. Derive those strategies which survive the iterative deletion of strictly



            dominated strategies.
b. Derive all strategy pairs that are Nash equilibria.
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            FIGURE PR 4.2 Modified Driving Conventions 
Game



            FIGURE PR4.3 Team Project
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            FIGURE PR4.5
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            6. Return to the “white flight” game in Chapter 3. Now suppose that four of
the eight homes are owned by one landlord, Donald Trump, and the other
four are owned by a second landlord, John Jacob Astor. A strategy is the
number of black families to whom to rent. Construct the payoff matrix and
find the set of Nash equilibria. (Although you’re surely familiar with
Donald Trump, John Jacob Astor has the noteworthy property of possibly
being the first millionaire in U.S. history. Centuries before The Donald ar-
rived on the real-estate scene in New York, Astor was wealthy beyond be-
lief due to his New York City landholdings.)



            7. Return to the kidnapping game, whose strategic form is shown in FIGURE



            PR4.7. Find all of the Nash equilibria.



            FIGURE PR4.7 Kidnapping
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            3,5 3,5Guy 
(kidnapper)



            Vivica (kin of victim)



            Pay ransom Do not pay ransom



            4,1 2,2



            5,3 1,4



            Do not kidnap/Kill



            Do not kidnap/Release



            Kidnap/Kill



            Kidnap/Release



            8. Queen Elizabeth has decided to auction off the crown jewels, and there
are two bidders: Sultan Hassanal Bolkiah of Brunei and Sheikh Zayed Bin
Sultan Al Nahyan of Abu Dhabi. The auction format is as follows: The
Sultan and the Sheikh simultaneously submit a written bid. Exhibiting
her well-known quirkiness, the Queen specifies that the Sultan’s bid must
be an odd number (in hundreds of millions of English pounds) between 1
and 9 (that is, it must be 1, 3, 5, 7, or 9) and the Sultan’s bid must be an
even number between 2 and 10. The bidder who submits the highest bid
wins the jewels and pays a price equal to his bid. (If you recall from
Chapter 3, this is a first-price auction.) The winning bidder’s payoff equals
his valuation of the item less the price he pays, while the losing bidder’s
payoff is zero. Assume that the Sultan has a valuation of 8 (hundred mil-
lion pounds) and the Sheikh has a valuation of 7.
a. In matrix form, write down the strategic form of this game.
b. Derive all Nash equilibria.



            9. Find all of the Nash equilibria for the three-player game in FIGURE PR4.9.



            10. Return to the game of promotion and sabotage in Section 4.4.
a. Determine whether the following strategy profile is a Nash equilib-



            rium; (i) player 1 is negative against player 2, (ii) player 2 is negative
against player 3, and (iii) player 3 is negative against player 1.



            b. Find a Nash equilibrium in which player 2 wins the promotion with
certainty (probability 1).



            11. When there are multiple Nash equilibria, one approach to selecting
among them is to eliminate all those equilibria which involve one or
more players using a weakly dominated strategy. For the voting game in
Figure 4.17, find all of the Nash equilibria that do not have players using
a weakly dominated strategy.



            12. Recall the example of Galileo Galilei and the Inquisition in Chapter 2.
The strategic form of the game is reproduced in FIGURE PR4.12. Find all
of the Nash equilibria.
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            FIGURE PR4.9
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            FIGURE PR4.12
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            13. Find all of the Nash equilibria for the three-player game shown in 
FIGURE PR4.13.



            FIGURE PR4.13
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            4.6 Appendix: Formal Definition of Nash Equilibrium
CONSIDER A GAME WITH n players: 1, 2, . . . , n. Let Si denote player i’s strategy set,
and read as “strategy is a member of Si.” Let S�i be composed of all 
(n � 1)-tuples of strategies for the n � 1 players other than player i, and let
Vi(s�i, s��i) be the payoff of player i when his strategy is and the other play-
ers use s��i � (s�1, . . ., s�i�1, s�i�1, . . ., s�n). Then for all i � 1, 2, . . ., n, a strategy
profile (s*



            1, . . ., s*
n) is a Nash equilibrium if s*



            i maximizes player i’s payoff, given
that the other players use strategies (s*



            1, . . ., s*
i�1, s*



            i�1, . . ., s*
n). More formally,



            (s*
1, . . ., s*



            n) is a Nash equilibrium if and only if for all i � 1, 2, . . ., n,



            Vi(s
*
1, . . ., s*



            n) Vi(s
*
1, . . ., s*



            i�1, si, s*
i�1, . . ., s*



            n) for all si Si.
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5.1 Introduction
IN THIS CHAPTER, WE GO beyond two- and three-player games to consider a richer
array of settings. This means examining not only games with more than three
players, but also games with an unspecified number of players. By the latter,
I mean that there are n players, where n could be 2, 3, 10, 50, . . . you name it.
But whatever its value, n is fixed and known to the players. In some games,
the equilibrium looks the same regardless of the value that n takes, while in
other games the number of players drastically alters their behavior.



            Before embarking on the next leg of our voyage on the sea of strategic rea-
soning, it is helpful to know where our ship is heading. In the games of this
chapter, all players have the same strategy sets and thus face the same choices.
In Section 5.2, players also have identical payoff functions, which means that
the game is symmetric. Then, in Section 5.3, players are allowed to have dif-
ferent tastes, as reflected in distinct payoff functions. Whether symmetric or
asymmetric, in some games equilibrium behavior may mean that all players
act the same. In other games—even symmetric ones—players act differently.
In fact, a symmetric game need not have a symmetric equilibrium (i.e., all
players choosing the same strategy). Similarly, an asymmetric game need not
have an asymmetric equilibrium.



            Two important forces, tipping and congestion, can determine whether play-
ers make identical or different choices when faced with the same type of de-
cision. Tipping reflects the tendency of a player to be increasingly attracted to
a strategy when more players choose it. For example, suppose you are a
teenager (which shouldn’t be difficult for some of you) who, in deciding what
to wear, wants to “fit in.” In comparing clothes from Abercrombie & Fitch and
The Gap, the more of your friends who opt for the former, the more appealing
that choice becomes to you. In a game, when enough players choose a partic-
ular strategy, it can “tip the balance” so that all (or most) players want to
choose that same strategy (hence the term “tipping”). At some point in recent
years, tipping in the teenage fashion world caused The Gap to lose its position
as the leading clothing chain to other retailers, such as Abercrombie & Fitch
(which, by the time of the publication of this book, might have lost its appeal).
When players’ payoffs have this tipping property, extreme equilibria—whereby
a high fraction of all players choose the same strategy—are frequently ob-
served. The adage “The more, the merrier” reflects tipping at work.1



            Congestion is the opposite of tipping: The more people who use a strategy,
the less attractive it becomes. Each workday, commuters engage in a game
with congestion when they decide on the route to take to work. The more peo-
ple who take a particular route, the slower is traffic on that route, and thus the
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            less desirable it is to a commuter. Yogi Berra probably said it best when asked
about a popular restaurant: “No one goes there anymore; it’s too crowded.”
The irony of that statement highlights what equilibrium often looks like in a
game with congestion: not everyone makes the same choice—for it would be
“too crowded” if they did—and this is true even when the game is symmetric.



            You should keep tipping and congestion in mind as we investigate various
games. Foreshadowing our analysis, tipping is present in the games of
Operating Systems and Civil Unrest; while in the games of Internship, Entry,
and The Sneetches (which ought to be required reading in any game theory
class), the operative force is congestion. Though not every game has either tip-
ping or congestion, recognizing when one of those effects is present can be
useful in suggesting what an equilibrium might look like—and that can save
you a lot of time in solving a game. All those millions of years of evolution
ought to allow us hominids to replace the brute force of exhaustive search
with some clever reasoning.



            5.2 Symmetric Games
A GAME IS SYMMETRIC when (1) all players have the same strategy sets; (2)
players receive the same payoff when they choose the same strategy; and (3)
if you switch two players’ strategies, then their payoffs switch as well. An ex-
ample is provided in FIGURE 5.1. The strategy pair (moderate, low) results in
players 1 and 2 having payoffs of 2 and 3, respectively. Now switch their strate-
gies so that the pair is (low, moderate). Then the payoffs for players 1 and 2
have similarly switched to 3 and 2, respectively. This is because, for any strat-



            egy pair in a symmetric game, swapping strategies
means swapping payoffs.



            Now change the labels of player 2’s strategies, as
shown in FIGURE 5.2. It should be clear that the game
is unaltered in any meaningful way; it’s still sym-
metric. We just need to recognize that left for player
2 is equivalent to low for player 1 and so forth. What
is critical is that players have the same number of
strategies and that we can match up their strategies
so that they satisfy the two conditions on payoffs
mentioned in the previous paragraph.



            As we explore various symmetric games, here’s a
useful property to keep in mind: Consider an n-
player symmetric game, and suppose we find an
asymmetric Nash equilibrium, which means that
not all players use the same strategy. If we find one
asymmetric Nash equilibrium, then there are an-
other asymmetric Nash equilibria to be found.
For example, (moderate, low) is a Nash equilibrium
for the game in Figure 5.1, and so is (low, moder-
ate)—a necessary implication of symmetry. The con-
dition ensuring that it is optimal for player 1 to use
moderate given that player 2 uses low is exactly (and
I mean exactly) the same as the condition ensuring
that it is optimal for player 2 to use moderate given



            n � 1



            FIGURE 5.1 A Symmetric Game.
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            FIGURE 5.2 The Symmetric Game of Figure
5.1 with Strategies Renamed
for Player 2
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            that player 1 uses low. And the condition ensuring that it is optimal for
player 2 to use low given that player 1 uses moderate is the same condition
ensuring that it is optimal for player 1 to use low given that player 2 uses
moderate. Thus, if (low, moderate) is a Nash equilibrium, then so is (moder-
ate, low).



            In a symmetric game, if a strategy profile is a Nash equilibrium, then
so is a strategy profile that has players swap strategies. That is, in a two-player
symmetric game, if (s , s ) is a Nash equilibrium, then so is (s , s ). And in a
symmetric three-player game, if (s , s , s ) is a Nash equilibrium, then so are 
(s , s , s ), (s , s , s ), (s , s , s ), ( s , s , s ), and (s , s , s ).



            With this piece of insight, the discovery of one asymmetric equilibrium in
a symmetric game tells you that there are other asymmetric equilibria and
even tells you what they look like. Not a bad trick, eh?



            � SITUATION: THE SNEETCHES



            Now, the Star-Belly Sneetches



            Had bellies with stars.



            The Plain-Belly Sneetches



            Had none upon thars.2



            Dr. Seuss’ story “The Sneetches” starts out with some of
these fictional creatures having a star on their belly and
the others not. The star-bellied sneetches were esteemed—
reveling in frankfurter roasts—and those without stars led
a morose life. Though perhaps unfair, the sneetches’ world
was stable: neither the haves nor the have-nots sought to
upset the status quo. But stability turned to turmoil when
Sylvester McMonkey McBean rolled into town with his
machine that could put stars on and take them off. Do you
recall what happened? How McBean’s machine changed
the equilibrium in the land of sneetches?



            To explore this Seussian world, let us suppose that
there are n sneetches and n is odd. Suppose also that
initially less than half of the sneetches have stars. With
the arrival of Sylvester McMonkey McBean and his Star-
Off and Star-On machines, each sneetch must decide what to do with his or
her belly.* Each of the sneetches who were born with stars must decide
whether to retain the star or have it taken off. Likewise, each of the sneetches
with “none upon thars” must decide whether to have a star put on or remain
starless.



            The story is unclear as to why a star bestows esteem upon its wearer—indeed,
the point of the story is that what determines status can be quite arbitrary—but



            ¿–‡–¿‡¿‡–‡¿––‡¿
‡–¿



            ¿––¿



            *The gender pronoun issue here is particularly dicey, as I don’t even know if sneetches have different gen-
ders and, if so, how many. Perhaps sneetches are hermaphrodites or asexual, or, like some amphibians,
they change their gender during their lifetime. Or perhaps I should stop trying to be so politically correct
and just get on with the story.
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            we’ll assume that whatever is rarer is prized. Let m denote the number of
sneetches with stars on their bellies at the end of the day. If then hav-
ing a star is esteemed (since fewer sneetches have stars than don’t), and in that
case, each sneetch with a star gets a payoff of 1 and each lacking a star gets a
payoff of 0. If, instead, then not having a star is esteemed, so each
sneetch with a star gets a payoff of 0 and each without one gets a payoff of 1.
Contrary to the story, suppose Sylvester McMonkey McBean provides his serv-
ices for free.*



            Note that a sneetch’s payoff depends only on whether or not she has a star
and how many sneetches altogether have stars. Also since the use of the Star-
On and Star-Off machines is free, it actually doesn’t matter whether a sneetch
was born with a star. The payoffs are summarized in TABLE 5.1.



            n/2 6 m,



            m 6 n/2,



            *In the story, McBean initially charged the sneetches without a star $3 to have a star put on and then
charged the original star-bellied sneetches $10 to have a star removed. After that, I suspect the price con-
tinued to rise. An exercise at the end of the chapter has you derive equilibrium when a price is charged.



            TABLE 5.1 PAYOFF TO A SNEETCH



            What’s on the Sneetch’s Total Number of Sneetches 



            Belly? with Stars (m) Payoff



            Star 1



            Star 0



            Nothing 0



            Nothing 1n
2 6 m



            m 6 n
2



            n
2 6 m



            m 6 n
2



            What is a stable configuration in this society? That is, when are all
sneetches content with their bellies? To answer this question requires deriving
Nash equilibria. We can think of each sneetch’s strategy set as including star
and nothing, and the objective is to find a strategy profile whereby each and
every sneetch cannot do better by doing something different.



            Accordingly, consider a strategy profile whereby so that fewer
than half of the sneetches choose to be star bellied. For those sneetches who
choose to have a star, each is clearly acting optimally, since its payoff is 1 and
that’s the highest payoff there is. But what about the sneetches who
have chosen not to have a star? Well, they each have a zero payoff. To deter-
mine whether they can do better, there are two cases to consider.



            In the first case, the number of sneetches with stars is not only less than
n/2, but also less than That is, or, equivalently,



            An example is the top row in FIGURE 5.3 where and
A sneetch who originally planned not to have a star would increase



            the number of star-bellied sneetches from m to if, instead, she got a
star. This situation is shown in the bottom row in Figure 5.3. Since we have
supposed that it is still the case that star-bellied sneetches are
in the minority. (Again, see Figure 5.3.) This means that a sneetch without a
star can go from being one of the majority without a star (and earning a pay-
off of 0) to being one of the minority with a star (and earning a payoff of 1).



            m � 1 6 n/2,



            m � 1
m � 2.



            n � 7m � 1 6 n/2.
m 6 (n/2) � 1,(n/2) � 1.



            n � m



            m 6 n/2,
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            Because any of the starless sneetches would then prefer to have a star, this
case is not a Nash equilibrium. In sum, if, at the end of the day, the number
of star-bellied sneetches is less than then this strategy profile is
not a Nash equilibrium.



            In the second case, we continue to suppose that so that star-bellied
sneetches are rarer, but now assume that their number exceeds that
is, Since we are then assuming both and



            these inequalities can be combined to yield 
But this just means that we are supposing that the number m of star-bellied
sneetches equals (Recall that n is odd.) That is, m is the highest in-
teger less than half of n. An example is shown in the top row of FIGURE 5.4,
where and, therefore, So, is this case an equilibrium? We already
know that the sneetches with stars can’t do any better. A sneetch without a star
is getting a zero payoff, since more than half of the sneetches have chosen not
to have stars. But because if one of those starless sneetches
now chooses to have a star, then there would be or 
sneetches with stars. With one sneetch having changed her mind, there would
be more sneetches with stars than without, which would mean the star-bellied
sneetches now have a zero payoff. This becomes clear if we move from the top
to the bottom row in Figure 5.4. Since having a star doesn’t raise the sneetch’s
payoff, the sneetch is content not to have a star. In other words, when (n � 1)/2



            (n � 1)/2,((n � 1)/2) � 1,
m � (n � 1)/2,



            m � 3.n � 7



            (n � 1)/2.



            (n/2) � 1 6 m 6 n/2.m 6 n/2,
(n/2) � 1 6 m(n/2) � 1 6 m.



            (n/2) � 1;
m 6 n/2,



            (n/2) � 1,



            FIGURE 5.3 A Starless Sneetch Gets a Star (n � 7, m � 2)



            FIGURE 5.4 A Starless Sneetch Gets a Star (n � 7, m � 3)
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            sneetches have a star and don’t, a starless
sneetch is “damned if she does and damned if she does-
n’t”: the sneetch will be in the majority, regardless of what
she does. A starless sneetch can then do no better than to
remain starless.



            In conclusion, there is a Nash equilibrium in which
sneetches have stars. By an analogous argu-



            ment, there is also a Nash equilibrium in which
sneetches have stars. (Convince yourself.) We



            then have two stable configurations for a society of
sneetches: either have stars (and it is the star-
bellied sneetches who are esteemed), or have
stars (and it is the starless sneetches who are esteemed).



            � SITUATION: AIRLINE SECURITY



            Security is only as strong as its weakest link. And so if they get on in a foreign
air carrier or if they target a foreign air carrier, it is going to be—could be a ter-
rible tragedy again. So we need to make sure that there is a uniform raising of
the level of security in a way that makes sense. —KENNETH QUINN, FEDERAL



            AVIATION ADMINISTRATION COUNSEL AND CHAIR OF THE PAN AM 103 TASK FORCE.3



            An airline’s security is dependent not just on what security measures it
takes but also on the measures taken by other airlines, because bags that are
transferred will have been checked by another airline. When Pam Am 103
blew up over Lockerbie, Scotland, in 1988, the suitcase containing the bomb
had been checked in Malta and transferred in Frankfurt and London, when it
was then placed on the Pam Am jet. The bag had not been screened in either
the Frankfurt Airport or Heathrow.4



            As the opening quote suggests, a major challenge to airport security is that
it is only as good as its weakest point. If every airline but one has tight secu-
rity, then it is going to be that one deficient airline which determines the air-
port’s safety. A game known as the weakest link coordination game captures
some of the incentives faced by airlines in such a situation. Let’s explore it.



            Suppose there are airlines and each has the strategy set {1,2,3,4,5,6,7},
where each number represents a level of security expenditure by an airline and
a higher number means more resources put into security. Let denote the
strategy of airline i, and suppose the cost associated with its security measures
is Naturally, more intense security measures are more expensive.



            Although the cost of those measures is incurred only by the airline that pays
for them, the benefit provided may be shared by all airlines, for the reasons
just described. We will assume that the overall level of security is deter-
mined by the “weakest link” and, more specifically, is measured by 



            where min is the smallest (or minimum) of these
n numbers. Airline i’s payoff is then this common benefit less its personal cost:



            Before trying to find Nash equilibria, let’s first understand the incentives of
airlines. Suppose min so that airline i doesn’t have the low-5s1, . . . , sn6,si 7



            50 � 20 � min5s1, . . . , sn6 � 10 � si.



            5s1, . . . , sn6min5s1, . . . , sn6, 50 � 20 �



            10 � si.



            si



            n � 2



            (n � 1)/2
(n � 1)/2



            (n � 1)/2



            (n � 1)/2



            (n � 1)/2



            Now suppose there are two tattoos that can be
placed on a sneetch’s belly: a star or a bar.
There are seven sneetches in total, and they
simultaneously decide whether to have a star, a
bar, or nothing on their belly. There can now be
as many as three cliques in Sneetchland: those
with stars, those with bars, and those with noth-
ing. Assume that a sneetch’s payoff is 1 when
the size of the clique of which he is a member
is no larger than the clique to which any other
sneetch belongs. Otherwise, the payoff is 0. For
example, if there are two sneetches with stars,
two with nothing, and three with bars, then
those with a star or nothing have a payoff of 1.
Find as many Nash equilibria as you can.
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            est security expenditure. Then if airline i reduces its expenditure by one unit
(from to the overall security level is unaffected, since
min is unchanged (because airline i did not initially have the
weakest security). However, the airline’s cost is now reduced by 10 from



            to which means that its payoff is higher by 10. So, when
an airline does not have the lowest security expenditure, it can always raise its
payoff by reducing its measures by one unit. Doing so lowers its cost without
altering the effective security level. This principle leads us to the conclusion
that it is not optimal for an airline to have higher security measures than the
least secure airline. Hence, at a Nash equilibrium, all airlines must have the
minimum level of security expenditure, which means that all must have the
same level of expenditure. If there are any Nash equilibria, they must then be
symmetric. (Note that we have not yet shown that there are symmetric equi-
libria, only that there are no asymmetric equilibria.)



            Understanding that we need to focus on symmetric strategy profiles, sup-
pose each airline chooses the same security measures and let denote this
common strategy. Since the decision problem is the same for all airlines, we
can focus just on airline 1. Airline 1’s payoff from choosing given that all
other airlines choose is



            The issue is whether airline 1 can do better by having more stringent or less
stringent security measures than 



            Suppose airline 1 were to choose a higher level of security, denoted 
Then the minimum security level among all airlines remains at so airline 1’s
payoff is



            which is necessarily lower than This formula is just a repetition of
what we showed earlier. An airline doesn’t want to spend more on security than
another airline, because doing so results, not in more security, but just higher
cost.



            Next, suppose airline 1 considers weaker security measures—say, where
The minimum security level then declines from to , and airline 1’s



            payoff is



            This payoff is less than (since which is what airline 1 gets
by instead choosing Thus, an airline has no incentive to set its security
measures below the common security level of the other airlines.



            We conclude that it is a Nash equilibrium for all airlines to choose .
Offering more intense security than raises an airline’s cost without increas-
ing actual security, while offering weaker measures reduces actual security
below which swamps any cost savings. Since can be any element of an
airline’s strategy set, there are, then, seven Nash equilibria, one for each of the
seven possible strategies.
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            What is both interesting and disturbing about this result is that Nash equi-
librium can mean either that all airlines choose the strictest security measures
or that they choose the slackest security measures. Furthermore, the airlines
are not indifferent among these equilibria. All are jointly better off with an
equilibrium that has each airline spend more on security. The payoff to an air-
line when all choose security measures is and this payoff is in-
creasing in If then each airline’s payoff is 60, while the payoff is 120
when



            Economists have conducted laboratory experiments with college students
to learn how people actually behave in such a setting.5 The payoff is exactly as
just specified and is measured in cents. For example, if all of the students
choose strategy 5, then each receives a payoff of $1.00. If all but one choose
strategy 7 and one chooses strategy 3, then those with strategy 7 each earn 40
cents and the one with strategy 3 earns 80 cents. For a given set of students
(drawn from Texas A&M undergraduates), the game was played for 10 rounds
(so each student has an opportunity to earn as much as $12.00). There were
between 14 and 16 subjects in a trial (so n is 14, 15, or 16).



            Aggregating across the seven trials conducted (each with a different pool of
subjects), TABLE 5.2 reports the distribution of choices in the first and last
(10th) rounds. There is a variety of choices in the first round, which is not un-
expected. Different students could have different initial beliefs about which
equilibrium is the relevant one. One student might believe that other students
will have a minimum choice of 6 and thus choose 6 himself, while a less opti-
mistic student might assume that others would choose a minimum of 4, in
which case she’ll choose 4.



            s¿ � 7.
s¿ � 1,s¿.



            50 � 10s¿,s¿



            TABLE 5.2 EXPERIMENTAL RESULTS FOR THE WEAKEST LINK
COORDINATION GAME



            Round 1, Percent of Subjects Round 10, Percent of Subjects



            Action Choosing that Action Choosing that Action



            7 31% 7%



            6 9% 0%



            5 32% 1%



            4 16% 2%



            3 5% 2%



            2 5% 16%



            1 2% 72%



            In the initial round, 31% of the students chose the highest strategy, and 88%
chose strategy 4 or higher. Only 2% chose the lowest strategy. By way of com-
parison, had the students simply made random choices, each strategy would be
selected 14.3% of the time. (There are seven strategies, and Higher
strategies were chosen more frequently than randomness would suggest. That’s
encouraging. But as the game was played again and again, it became a “race to
the bottom.” There was a gradual movement to lower strategies, so that by the
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            end of the fourth round, the minimum choice in every trial
was strategy 1. By round 10, strategy 1 was selected by 72%
of the students. Their behavior was converging to the worst
equilibrium.*



            � SITUATION: OPERATING SYSTEMS: MAC OR WINDOWS?



            Well, the idea that the more users you get, the more valuable
something is, is even stronger today when it’s so easy for
people to connect up and build communities. I do think it
goes back [to Windows]. As more people used Windows it
became sort of a standard thing that people would learn; as
people used Office they would do add-ons. Everyone who had an Office-for-
matted document who wanted to exchange it as an attachment with some-
body else was kind of encouraging that person. And so these network effects,
that was really [the] business model that created Microsoft. —BILL GATES6



            Since the early 1980s, most consumers in developed countries have had to
make a choice between doing their computing on a Windows-based PC or on
a product of Apple. The PC was originally developed by IBM, with micro-
processors built by Intel and an operating system designed by Microsoft (first
DOS and then Windows). In contrast, Apple supplied both hardware and soft-
ware components, initially with Apple II and then with the Mac. Apple hit the
market before IBM, but eventually the PC would dominate. Today, about 95%
of personal computers run the Windows operating system.



            Although most product markets are not dominated by a single product—
unlike the market for operating systems—dominance is not uncommon when
there are network effects. A product has network effects if its value to a con-
sumer is greater when more consumers use it. Classic examples are commu-
nication networks such as telephone and e-mail. For example, e-mail is not of
much value if no one else has it, and furthermore, its value increases as more
and more people can be accessed with it. The case of operating systems is a
more indirect version of network effects, but no less important. As more peo-
ple use an operating system, more applications are written for it—word pro-
cessing, spreadsheets, games, etc.—that increase the value a consumer attaches
to using the operating system.



            The decision as to which operating system to buy is a game played not among
two, or ten, or even a hundred people, but millions of people. Nevertheless, the
choice has all of the essential ingredients of a strategic setting, in that the best
operating system for someone depends on what she thinks other consumers will
do. No consumer wants to use an operating system that is “stranded” with few
applications.



            Suppose, then, that there are people contemplating which operating
system to purchase. Each has a strategy set composed of Mac and Windows.
The payoff to buying a Mac is assumed to be where m is the
number of people who choose Mac. The payoff for choosing Windows is



            100 � 10 � m,



            n � 2



            *Before you cancel that airline reservation, keep in mind that an important departure from reality in these
experiments is that the participants were not allowed to communicate with one another. Permitting such
communication prior to play could make it more likely that players would coordinate on the best equi-
librium, in which all choose strategy 7.



            Assume that the effective security level is now
determined by the highest (not the lowest)
security measures chosen by airlines. Letting
max{s1, . . . , sn} denote the highest of the airlines’
strategies, we find that airline i’s payoff is now



            50 � 20 � max{s1, . . . , sn} � 10 � si.



            Assuming the same strategy sets, find all Nash
equilibria.



            5.2 CHECK YOUR UNDERSTANDING
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            where w is the number of consumers who buy Windows. Assume for
simplicity that everyone buys one or the other, so that 



            Note that the value of an operating system is higher when more people buy
it. The part of a consumer’s payoff that depends on how many people buy the
good—which is for a Mac and for Windows—measures
the network effect. A second property is that the Mac is presumed to have
superior features, and they are worth 100 in terms of payoff.



            One Nash equilibrium has every consumer buying the superior Mac sys-
tem, and that system then becomes the standard. To prove this claim, consider
the strategy profile in which everyone buys a Mac. Given that the other 
consumers buy a Mac, a consumer receives a payoff of from
doing so, but a payoff of only from buying Windows. Since



            it is optimal to buy a Mac. Because both the game and the
strategy profile are symmetric, this conclusion applies to each and every con-
sumer. It is then a Nash equilibrium for every player to choose Mac.



            It can also be a Nash equilibrium, however, for the inferior Windows sys-
tem to prevail. If all other consumers buy Windows, then the payoff to a con-
sumer from doing likewise is while the payoff from buying a Mac is
110 (since, in that case, If



            10 � n � 110, or equivalently, n � 11,



            then it is better to do as everyone else does and buy Windows. When there are
at least 11 consumers, the advantage that Windows has from a bigger network
effect exceeds the additional value coming from the superior Mac technology.
Hence, every consumer then chooses Windows.



            In sum, there is always a Nash equilibrium in which all consumers use a
Mac, but if then there is also a Nash equilibrium in which all con-
sumers use Windows. That equilibrium outcomes are extreme—either all go with
the Mac or all go with Windows—is because network effects are a form of tipping.
To see this more clearly, assume that there are 20 people FIGURE 5.5(n � 20).
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10 � n,



            100 � 10 � n 7 10,
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            10 � (n � m)10 � m



            w � n � m.
10 � w,



            FIGURE 5.5 Mac vs. Windows
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            shows the relationship between payoff and the number of users of a system.
On the horizontal axis is the number of adopters of Windows; a value for w
corresponds to w consumers choosing Windows and buying a Mac.
The vertical axis measures the associated payoff for a Windows user and a
Mac user. For example, if then the payoff for using Windows is



            and for using a Mac is Reflecting net-
work effects, as the number of Windows users rises, then the payoff for using
Windows increases and for using a Mac declines.



            Suppose now that, of the other 19 consumers, 15 have chosen Windows. A
consumer then gets a payoff of 160 from also choosing Windows (because, with
her choice of Windows, there are now 16 Windows users) and a payoff of 150
from choosing a Mac. The consumer will then prefer Windows. The logic for
Windows is even more compelling if, instead, 16 of the other 19 consumers use
Windows. Now Windows delivers a payoff of 170, while the payoff from choos-
ing Mac is only 140. In Figure 5.5, the gap between the Windows payoff and the
Mac payoff rises as the number of Windows users goes from 16 to 17 and so on.



            As long as a consumer thinks that at least 15 other consumers will choose
Windows, she’ll choose Windows as well. If all consumers reason this way,
then, in fact, all 20 consumers will buy Windows, and it will become the dom-
inant operating system. However, if a consumer believes that only 14 other
consumers will buy Windows, then he will prefer a Mac. Figure 5.5 shows
that, with 14 users of Windows, the Mac payoff is 160, while the Windows pay-
off is 150 (because, with this consumer, there are now 15 buying Windows).
Since fewer consumers are expected to buy Windows, the relative attractive-
ness of a Mac rises: as indicated in Figure 5.5, the gap between the Mac pay-
off and the Windows payoff gets larger as w shrinks.



            The tipping point is 15. If, on the one hand, each consumer believes that 15 or
more other consumers will buy Windows, then each and every consumer will buy
Windows. If, on the other hand, each consumer believes that 14 or fewer other
consumers will buy Windows, then each and every consumer will buy a Mac.
Depending on those beliefs, the market can tip to one standard or the other.



            Consumers’ expectations are, then, critical when a product has network ef-
fects. If most consumers come to believe that most consumers will buy a par-
ticular product, then those beliefs will prove self-fulfilling, as all will, indeed,
buy that product. So how does a company convince consumers that its prod-
uct will be the popular one? Although advertising can help, it isn’t sufficient:
a consumer who is swayed by an advertisement must also know that many
other consumers are being thus swayed. That is, one wants to make it com-
mon knowledge that the product is compelling. Junk mail—of either the paper
or electronic variety—won’t do the trick. It may reach a lot of people, but those
people who are reached don’t know how many other people have been simi-
larly contacted.



            Perhaps the best generator of common knowledge in the United States is a
commercial during the Super Bowl.7 It is not simply that the Super Bowl is
the most widely watched program, but that almost everyone knows that al-
most everyone is watching it. During the 1986 Super Bowl, the Discover card
was advertised extensively, and it is a classic case of a product with network
effects. Retailers will accept the Discover card only if many consumers use it,
and many consumers will use it only if many retailers accept it. Thus, the
more consumers who use the card, the more retailers will accept it, which will



            160(� 100 � 6 � 10).140(� 14 � 10)
w � 14,
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            induce yet more consumers to use it, which will induce more retailers to ac-
cept it, and so on. Better yet, the Mac was introduced with a 60-second com-
mercial during the 1984 Super Bowl.



            � SITUATION: APPLYING FOR AN INTERNSHIP



            It’s the middle of the spring semester, and you’re thinking about applying for a
summer internship. You’ve narrowed your prospects down to two investment
banking firms: JP Morgan (JPM) in New York and Legg Mason (LM) in
Baltimore. You, as well as everyone else, prefer the JPM internship, but you are
hesitant to apply for two reasons. First, there is only one summer intern posi-
tion at JPM for someone from your school, while there are three at LM. Second,
you know that everyone else finds the JPM internship more attractive, and this
is likely to make it harder to land a position. Suppose, due to time constraints,
you can apply to only one of the internships. Which one should you choose?



            Suppose 10 students from your school are interested in an investment
banking internship at either JPM or LM. Everyone has the same preferences,
and each assigns a value of 200 to a JPM internship and a value of 100 to an
LM internship. A student’s payoff from applying for a JPM internship is 200
only if she is assured of getting it, which is the case only if she is the lone per-
son to apply. The payoff is lower than 200 when more than one apply and gen-
erally decreases the more that apply. Analogously, a student’s payoff from ap-
plying for an LM internship is 100 only if she is assured of getting it, which is
the case only if no more than three people apply. (Recall that there are three
openings at LM.) When there are more than three applicants, the payoff from
applying decreases with an increasing number of applicants.



            The payoffs for the internship game are listed in TABLE 5.3 and plotted in
FIGURE 5.6. The more students who apply to JPM, the lower is the payoff to each



            TABLE 5.3 PAYOFFS FOR THE INTERNSHIP GAME



            Number of Applicants Payoff to a JPM Payoff to an LM



            to JPM Applicant Applicant



            0 — 30



            1 200 35



            2 100 40



            3 65 45



            4 50 50



            5 40 60



            6 35 75



            7 30 100



            8 25 100



            9 20 100



            10 15 —
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            of those applicants. Since more applicants to JPM means fewer applicants to
LM, the payoff for applying to LM increases with the number of students com-
peting for a position at JPM. Contrast this game with the Operating Systems
game. As shown in Figure 5.5, the more consumers who choose Windows, the
higher is the payoff to each of them. Thus, although tipping is at work in the
Operating Systems game, congestion characterizes the Internship game.



            To derive a Nash equilibrium, let’s first suppose that no one applies to JPM.
Then the payoff to each of those 10 LM applicants is 30, which is considerably
less than the payoff for being the lone JPM applicant, which is 200. Hence, all
students applying to LM is not an equilibrium. Next, consider a strategy pro-
file in which 1 student applies to JPM and the other 9 apply to LM. Again, any
of those LM applicants would do better by applying to JPM: Applying to JPM
raises the payoff from 35 (the payoff to an LM applicant when there is only
one JPM application) to 100 (the payoff to a JPM applicant when there are two
JPM applicants).



            More generally, in considering a strategy profile in which m students apply
to JPM, a student who is intending to apply to LM is comparing the payoff from
being one of applicants to LM and one of applicants to JPM. As
depicted in Figure 5.6, when the payoff for applying to JPM is higher,
in which case it is not optimal for this applicant to apply to LM. As long as the
number of applicants to JPM is less than 4, we do not have an equilibrium.



            Now let’s start with the other extreme: suppose all 10 students apply to
JPM. Then each has a payoff of 15, which falls well short of the payoff of 100
from applying to LM. Indeed, as long as more than 4 students apply to JPM,
an applicant to JPM would do better by applying to LM. If the strategy profile
has m students applying to JPM, then, when the payoff for being one
of m applicants to JPM is less than the payoff for being one of ap-
plicants to LM, in which case a JPM applicant ought to switch his application.



            We’ve shown that any strategy profile in which fewer than 4 or more than
4 students apply to JPM is not a Nash equilibrium. This leaves one remaining



            10 � m � 1
m 7 4,



            m 6 4,
m � 110 � m



            FIGURE 5.6 Payoffs to Applying to JP Morgan and to Legg
Mason
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            possibility: exactly 4 students apply to JPM and 6 apply to LM. In that case,
the payoff to both a JPM applicant and an LM applicant is 50. If one of the
students who is intending to apply to JPM switches to LM, then her payoff de-
clines to 45 (see Figure 5.6), and if one of those students who is intending to
apply to LM switches to JPM, then his payoff declines to 40. Thus, because any
student is made worse off by changing her strategy, exactly 4 students apply-
ing to JPM is a Nash equilibrium.



            Hence, in this scenario, although all students have the same options and the
same preferences, they make different choices in the equilibrium situation.
Four students apply to JP Morgan—and compete for the one available posi-
tion—and 6 apply to Legg Mason—and compete for the three available slots
there. Asymmetric behavior emerges from a symmetric game because of con-
gestion effects. The more students who apply for a position, the tougher it is
to land a position (as reflected in a lower payoff), and thus the less attractive
it becomes to apply.



            5.3 Asymmetric Games
A GAME CAN BE ASYMMETRIC because players have distinct roles and thus differ-
ent strategy sets. In a kidnapping scenario (such as that explored in Chapter 2),
the kidnapper’s choices are whether to release or kill the victim, while the vic-
tim’s kin has to decide whether or not to pay ransom. Even when all players
face the same set of alternatives, a game can be asymmetric because the play-
ers have different payoffs. For example, in choosing between operating sys-
tems, all consumers face the same choices, but they may differ in how they
evaluate them. Some may attach a lot of value to a Mac, while others put a lot
of weight on having the most popular system, whatever that might be. That is
the source of asymmetry we explore in this section: players have different pay-
offs, while facing the same choices and the same information. Let’s see what
difference preferences can make.



            � SITUATION: ENTRY INTO A MARKET



            During the dot-com boom of the late 1990s, the online retailing scene was
growing by leaps and bounds. More and more consumers were going online,
and at the same time, new online services were popping up. Representative of
these dynamics is FIGURE 5.7, which reports the growth in the number of B2B
exchanges (i.e., sites that acted as an intermediary between businesses want-
ing to buy and businesses wanting to sell products or services).8 Initially, the
number of exchanges rose at an increasing rate. Then, beginning around 2001,
there was a sharp downturn in the number of B2B exchanges. This pattern is
quite typical for an industry in its incipiency. FIGURE 5.8 shows the same pat-
tern among automobile manufacturers in the early part of the 20th century—
a sharp rise and then a decline.9



            Although explaining why the number of companies rises and then falls re-
quires a model too complicated for this book, we can at least explore the de-
cision to enter a market and the determination of how many sellers there are
once all of the entry and exit settles down.
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            Consider a new market that has just opened up—for example, the online book
market in the mid-1990s. (Amazon.com began selling books online in July 1995.)
Assume that there are five firms that might enter the market; let us uncreatively
label them companies 1, 2, 3, 4, and Jeff (okay, actually 5). To operate in this mar-
ket, a firm must incur the cost of entry, which you can think of as the cost of cre-
ating a website, putting together a fulfillment structure, and advertising the site.



            FIGURE 5.7 B2B Online Exchanges, 1993–2004
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            FIGURE 5.8 Automobile Manufacturers, 1895–1938
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            As shown in TABLE 5.4, the prospective entrants face different
costs of entry. Company 1 is the most efficient, in that its entry cost
is only 100,* while company 5 is the least efficient, with an entry
cost of 210. A company may have a lower entry cost because the
owner can do his own programming or the company is a subsidiary
to a conventional retailer (like bn.com, which entered as part of
Barnes & Noble), allowing it to draw on some of the fulfillment
technology already in place.



            Having described the cost of entry, let’s now consider the benefit
of entering the market. Each retailer anticipates earning a profit
upon entry. However, that profit is lower when there are more com-
peting sites. Assume that all retailers would earn the same gross



            profit (i.e., the profit before netting out the cost of entry).
TABLE 5.5 reports the gross profit that each would earn and
shows how it depends on how many retailers there are. If
only one company enters the market, then that company has
a monopoly (“mono” from Latin for “alone” or “single”) and
earns a profit of 1,000. If, instead, two companies enter (so
that we have a duopoly), then each earns 400. Note that total
industry profit has declined from 1,000 to 800 with the pres-
ence of a second retailer. This is because, not only do two
retailers have to share the market, but competing for con-
sumers will lead them to reduce their prices and, with it,
their profit. If there are three retailers (a “triopoly”), then
each company earns 250, and so forth.



            As these firms simultaneously decide whether to enter the market, each
company’s strategy set is composed of enter and do not enter. A company’s pay-
off is zero if it does not enter and is its net profit (gross profit minus the cost
of entry) if it enters. For example, if company 2 enters and, say, two other com-
panies enter, then company 2’s payoff is Using the informa-
tion in Tables 5.4 and 5.5, TABLE 5.6 reports the various payoffs.



            Note that no strategy is strictly dominated, although, for company 1, enter
weakly dominates do not enter. The former strategy delivers a strictly higher
payoff when three or fewer other companies enter and the same payoff when



            90(� 250 � 160).



            *Never mind the units—they could be thousands of dollars, millions of shekels, billions of lekë.



            TABLE 5.4 HETEROGENEOUS
COST OF ENTRY



            Company Entry Cost



            1 100



            2 160



            3 180



            4 200



            5 210



            TABLE 5.5 COMMON GROSS PROFIT



            Number of Profit per Total Industry



            Companies Company Profit



            1 1,000 1,000



            2 400 800



            3 250 750



            4 150 600



            5 100 500



            TABLE 5.6 PAYOFF TO A COMPANY FROM ENTRY 



            Number of Other Companies that Enter



            Company 0 1 2 3 4



            1 900 300 150 50 0



            2 840 240 90 �10 �60



            3 820 220 70 �30 �80



            4 800 200 50 �50 �100



            5 790 190 40 �60 �110
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            four other companies enter. For each of the other companies, enter is the
best reply when two or fewer companies enter, but do not enter is the best
reply when three or four other companies enter. Thus, for each company, ei-
ther strategy is a best reply for some strategy configuration of the other four
companies.



            Let’s find the set of Nash equilibria. Rather than consider a particular strat-
egy profile, suppose we start by thinking about how many entrants there will
be at a Nash equilibrium:



            ■ Is there a Nash equilibrium with no entrants? No, because the gross
profit for the first entrant is 1,000 and that exceeds all companies’ entry
costs. Thus, if all of the other companies chose do not enter, then enter
would be optimal for a company. Hence, it cannot be a Nash equilibrium
for all companies to choose do not enter.



            ■ Is there a Nash equilibrium with only one entrant? Once again, the an-
swer is “no,” since the gross profit for the second entrant is 400 and that
exceeds all companies’ entry costs. Thus, if we consider a strategy profile
in which one company enters and the other four do not, any of those
other four companies could increase its payoff by entering. Hence, it is
not an equilibrium for only one of the firms to enter.



            ■ Is there a Nash equilibrium with two entrants? Again, the answer is “no,”
by the same argument (although we’re getting “warm”). Consider a strat-
egy profile in which two companies choose enter and the other three
choose do not enter. Then each of the latter earns zero. Now examine col-
umn 2 in Table 5.6. All of the payoffs are positive, so, regardless of which
three companies chose do not enter, a company can earn a positive pay-
off from also entering.



            ■ Is there a Nash equilibrium with three entrants? There is, indeed. In fact,
there are six of them: (1) companies 1, 2, and 3 enter; (2) companies 1, 2,
and 4 enter; (3) companies 1, 2, and 5 enter; (4) companies 1, 3, and 4
enter; (5) companies 1, 3, and 5; and (6) companies 1, 4, and 5 enter.
Consider the first strategy profile. Each of those entrants earns a positive
payoff from entering; company 1 earns 150, company 2 earns 90, and
company 3 earns 70. Entry is then optimal. As for companies 4 and 5—
which have chosen do not enter—if you examine column 3 in Table 5.6,
you can see that entry would result in a negative payoff: for company
4 and for company 5. Thus, the strategy profile in which companies
1, 2, and 3 enter and companies 4 and 5 stay out is a Nash equilibrium.
One can similarly confirm each of the other five strategy profiles, as well
as confirm that any other strategy profile that has three companies enter
(such as companies 3, 4, and 5) is not a Nash equilibrium.



            How did I figure out that those six strategy profiles are equilibria? It was
not through exhaustive search (I’m far too lazy for that), but from thinking
about the companies’ incentives. First, note that it cannot be an equilibrium
to have three companies enter and not to have company 1 be one of them. If
company 1 is not one of the three entrants, then its payoff is zero, but it can
then earn 50 by entering. Hence, if there is a Nash equilibrium with three en-
trants, company 1 must be one of them. Next, note that any of the other four
companies earns a positive payoff from entry when there are two other
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            entrants (all of the payoffs are positive in column 2) and that each earns a
negative payoff from entry when there are three other entrants (excluding the
payoff to company 1, all of the payoffs are negative in column 3). From this
state of affairs, we can conclude that any strategy profile in which company 1
enters and two other companies enter is a Nash equilibrium.



            ■ Is there a Nash equilibrium with more than three entrants? The gross
profit for a company when there are four entrants is 150, but only one
company has an entry cost that doesn’t exceed 150. Hence, if four com-
panies enter, then at least one of them must have a negative payoff,
which means that it is better for it to not enter. This logic is also appar-
ent from Table 5.6, in which only one company has a nonnegative pay-
off under column 3 or column 4. There is, then, no Nash equilibrium
with more than three entrants.



            An interesting property of equilibrium is that the most efficient companies
need not be the ones that enter. The most efficient equilibrium is the one in



            which companies 1, 2, and 3 enter, since they have the
lowest entry costs. However, there are also equilibria in
which companies 4 and 5 enter instead of companies 2
and 3. Given that companies 4 and 5 are anticipated en-
tering (along with company 1), entry becomes unprof-
itable for companies 2 and 3, even though if they were to
change places with companies 4 and 5, they would make
more money than 4 and 5.



            � SITUATION: CIVIL UNREST



            How is it that a small group of people can oppress a large population?
Having the support of the military is certainly important, as is having con-
trol of the media and economic resources. But what is arguably most im-
portant is coordination failure. In a nondemocratic society, the controlling
faction is always a small fraction of a country’s population. If the populace
were to rise up and oppose the ruling body, few dictatorships could survive.
The challenge is having people coordinate so that mass demonstrations
happen.



            Suppose a country is composed of 500 citizens, each of whom is deciding
whether to protest. The benefit to protesting is where m is the num-
ber of citizens who participate in the protest. This specification captures the
reasonable notion that a bigger protest will be more influential. The benefit of
protesting is shared by all those who protest and is the feeling of empower-
ment that it yields.



            The cost of protesting is a personal one—for example, the risk of being im-
prisoned. Here, we’ll suppose that people are different as to how they weigh
this cost. To keep things simple, suppose there are three types of individuals
in this society (see TABLE 5.7.) There are 100 radicals in the country, and they
have the lowest cost of protesting, namely, 6,000. The progressives, who also
number 100, each incur a cost of 8,000 by protesting. Finally, there are 300
bourgeois who, while still desiring revolt, are not too bad off and have the
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            Eliminate company 1 from the Entry game so that
only companies 2, 3, 4, and 5 simultaneously 
decide whether to enter. The payoffs are still as
stated in Table 5.6. Find all Nash equilibria.
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            most to lose from a failed revolution. To them, the cost of participating in
demonstrations is 20,000.



            The payoff to a citizen equals zero if he doesn’t protest and is the benefit,
less his cost if he does protest. This means that a radical will protest



            if and only if



            Solving this expression for m, we find that Thus, if a radical believes
that another 120 people will protest, then she’ll protest as well and receive a
payoff of 50 (If 119 other people are expected to protest,
then her payoff from protesting is zero and she’s indifferent between protest-
ing or not.) Analogously, a progressive will protest when she expects m to be
large enough to satisfy the inequality



            or equivalently, 



            Hence, due to the higher cost incurred, a progressive requires a bigger antici-
pated demonstration to draw him out than does a radical. Finally, it takes an
anticipated protest size of 400 to induce the bourgeois to protest:



            or equivalently, 



            The minimum protest size necessary to induce a person to attend demonstra-
tions will be referred to as her critical mass. The relevant information is shown
in Table 5.7.



            In solving for Nash equilibria, a useful property to note is that if it is op-
timal for a progressive to protest, then it is also optimal for a radical to do
so. In other words, you won’t see progressives at a demonstration without
also seeing radicals. To establish this claim, recall that a progressive will
find it optimal to protest when he expects 160 people to protest, while it
takes only 120 people to induce a radical to protest. Thus, if there are
enough people to bring out the progressives, there also are enough to draw
out the radicals. Intuitively, a progressive and a radical realize the same
benefit, but since the latter has a lower cost, a radical will always protest
when a progressive does. Using the same type of argument, we can see
that if a bourgeois finds it optimal to protest, then so do radicals and
progressives.



            From the preceding scenario, the candidates for Nash equilibrium are that
(1) no one protests, (2) only radicals protest, (3) only radicals and progressives



            m � 400.50 � m � 20,000 � 0



            m � 160.50 � m � 8,000 � 0,



            (� 50 � 121 � 6,000).



            m � 120.



            50 � m � 6,000 � 0.



            50 � m,



            TABLE 5.7 CIVIL UNREST



            Type of Citizen Number of Citizens Personal Cost Critical Mass



            Radicals 100 6,000 120



            Progressives 100 8,000 160



            Bourgeois 300 20,000 400
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            protest, and (4) everyone protests. The case of no one protesting is clearly an
equilibrium: if a radical expects no one to participate, then his payoff from
protesting is which is worse than the zero payoff
from staying home. Protesting is even less attractive to a progressive and a
bourgeois.



            What about only radicals protesting? If all radicals protest, then there is a
total of 100 protestors, so each radical’s payoff is 
That’s not good enough to make protesting optimal: there just aren’t enough rad-
icals in society to sustain an equilibrium protest with only their participation.
However, if both radicals and progressives protest, then a progressive’s payoff is



            Hence, all of the progressives are out there demon-
strating, and we know that the radicals will be out there with them. By contrast,
a bourgeois wants no part of such a demonstration, as his payoff from protest-
ing is It is then an equilibrium for only radicals
and progressives to protest.



            Finally, it is also an equilibrium for everyone to protest. If a bourgeois ex-
pects all other citizens to participate, the payoff from joining them is



            which makes protesting optimal. It is then opti-
mal for the radicals and progressives to participate as well.



            In sum, equilibrium can involve the total absence of demonstrations, a
modest demonstration with 40% of the citizens, and massive demonstrations
with full participation. How deep into a society a protest will draw depends on
the citizens’ expectations. If they expect a massive protest, then there’ll be one;
if they expect no turnout, then that is what there will be. It is all about expec-
tations and, from the citizens’ perspective, about coordinating on the belief
that there will be a high level of participation.



            Some of the issues just raised were central to the mass protests that led
to the collapse of the authoritarian regime of the German Democratic
Republic (GDR).10 Amidst increasing dissatisfaction with the quality of life
and the absence of basic freedoms, the people of the GDR city of Leipzig
launched a growing series of protests beginning in September 1989. They
all took place on Monday because, around 6:00 in the evening, people
would come out of church after religious services. They would then cross
the central square of Karl-Marx-Platz and pick up more people as they
walked through the city. On September 25, more than 6,000 people partici-
pated and called for political liberalization. By the following Monday, the
protests had risen to almost 18,000. Then came the critical protest the
Monday after that:11



            On October 9 a third demonstration took place against the background of
an ominous rumor that spread quickly through Leipzig (and was later con-
firmed): [general secretary Erich] Honecker himself had signed the
Schießbefehl (order to shoot) for a Chinese solution to the protest. . . . At
5:45 P.M., just fifteen minutes before the end of the peace prayers, the po-
lice and the military withdrew, and about sixty thousand unarmed, fright-
ened, and yet determined people demonstrated peacefully. . . . The demon-
stration broke the back of the regime. . . . Over 100,000 people demon-
strated on October 16; 245,000 on October 23; about 285,000 on October
30; and 325,000 on November 6. Meanwhile, mass demonstrations
erupted all over the GDR.



            5,000(� 50 � 500 � 20,000),



            �9,950(� 50 � 201 � 20,000).



            2,000(� 50 � 200 � 8,000).



            �1,000(� 50 � 100 � 6,000).



            �5,950(� 50 � 1 � 6,000),
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            TABLE 5.8 shows the growth of protests throughout the GDR. These protests
had no leader and were the creation of many people acting on their own, but
presumably with the anticipation that others would do the same. The power
of the people ruled the day, as these protests led to the fall of the Berlin Wall
and the unification of East and West Germany.



            A Mass Demonstration at the Berlin Wall



            TABLE 5.8 PUBLIC PROTESTS IN GDR, SEPTEMBER 1989–
FEBRUARY 1990



            Date Number of Events Turnout Average Turnout



            September 1989 7 16,500 3,300



            October 1989 32 1,431,500 49,347



            November 1989 28 3,268,900 136,204



            December 1989 21 903,082 5,443



            January 1990 26 1,782,567 81,026



            February 1990 20 464,346 35,719



            5.4 Selecting among Nash Equilibria
MANY OF THE GAMES examined in this chapter have multiple Nash equilibria.
Multiplicity is problematic because the more equilibria there are, the less pre-
cise are our statements about behavior. This is a matter that has drawn much
effort within the game theory community and will continually draw our
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            *The section is designed to be read without having read what precedes it in Chapter 5. References to
games in Chapter 5 have been placed in clearly demarcated digressions.



            **The economist Joel Sobel suggested that, in practice, it should be the person who makes the initial call
who calls back, because that person is assured of having the other person’s phone number.



            attention in this book. In this section, we raise some general issues
regarding how to handle multiple equilibria.*



            It is important to distinguish various types of multiplicity, since
some are innocuous and some are not. Consider first the multiplic-
ity of Nash equilibria in the telephone game (Section 4.2), which is
reproduced in FIGURE 5.9. This game has two Nash equilibria, one in
which Colleen calls (and Winnie waits) and the other with Winnie
calling (and Colleen waiting). The outcome of the game is the same
for the two equilibria in the sense that one person calls and the other
person waits, although the roles played by the players varies. Such a



            multiplicity is not of great concern to us (with one caveat, discussed shortly),
because the general description of the outcome is the same across equilibria.
Other games with a similar type of multiplicity include Chicken (Section 4.1)
and driving conventions (Section 4.2).



            This same type of multiplicity arose in The Sneetches and the
Internship game. In the latter, any strategy profile with 4 students applying to
JP Morgan and 6 to Legg Mason is a Nash equilibrium. There are, in fact, 210
Nash equilibria, since there are 210 ways to allocate 10 students so that 4 apply
to JP Morgan. Both of these games have a congestion effect, and indeed,
multiple asymmetric Nash equilibria are typical in symmetric games with
congestion effects. Because the payoff for using a strategy decreases with the
number of players that use it, it is often the case that there is an asymmetric
equilibrium—and in a symmetric game, if there is one asymmetric equilibrium,
then there are more, all with the same mix of strategies (so many players use
strategy 1, so many use strategy 2, etc.) and all differing only in terms of which
player uses which strategy.



            Multiplicity of Nash equilibria in which the distribution of strategies is the
same—just the identity of the player using the strategy varies—does raise one
source of concern, however: How do players coordinate on a particular Nash
equilibrium when there are more than one? How do Colleen and Winnie co-
ordinate as to who calls?** How do the drivers in Chicken coordinate on who
swerves? If players were to play this game again and again, some common set
of beliefs might develop and would result in play converging on a particular



            Nash equilibrium. But that approach doesn’t help us if our
task is to predict behavior the first time that they play. There
is no resolution of this issue at this time.



            Now consider the modified driving conventions game
shown in FIGURE 5.10 between two drivers who are accus-
tomed to driving on the right side of the road. There are two
Nash equilibria—both drivers drive on the right and both
drivers drive on the left—but the outcomes are different in
terms of the payoffs they deliver. Both drivers would prefer to
drive on the right, though driving on the left is also an equi-
librium. Multiplicity also arose in the American Idol fandom
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            FIGURE 5.10 Driving Conventions with
Two American Drivers
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            and voting games (Section 4.4), and, similarly, it made a big difference in the
outcome. In these cases, different equilibria have quite different predictions.



            This type of multiplicity tends to occur in games with tipping.
It can be an equilibrium for all players to choose one particular strategy and
an equilibrium for them all to choose some other strategy, because much of
what influences the attractiveness of a strategy is its popularity. Such is the
case in the operating systems game: Everyone choosing Windows is an
equilibrium, as is everyone choosing a Mac; consumers, however, prefer the
latter equilibrium. 



            When equilibria have different implications, game
theory offers a few tricks that can, in some such games,
result in a selection from the set of Nash equilibria.
Consider the game illustrated in FIGURE 5.11. This game
has three Nash equilibria: one with both Scooter and
Brownie choosing low, a second with Scooter choosing
high and Brownie choosing medium, and a third with
Scooter choosing medium and Brownie choosing high.
Before you are tempted to select (low, low) because it
is symmetric—and the game is symmetric—take note
that the strategy low is weakly dominated by the strat-
egy high. Thus, a cautious player ought to avoid low.



            One selection device is to give preference to undominated Nash equilib-
ria: Nash equilibria in which players are not using weakly dominated strate-
gies. This approach results in the elimination of (low, low), although there are
still two Nash equilibria that remain. Returning to the voting game (Section
4.4), we see that it had five Nash equilibria, but all but one of them had one
or more voters using a weakly dominated strategy. In that game, there is a
unique undominated Nash equilibrium, and it has shareholders 1 and 2 vot-
ing for option B and shareholder 3 voting for C. As practice, I’d recommend
going back to the voting game and verifying that claim.



            Another selection criterion commonly used is based upon payoff dominance
and what economists call the Pareto criterion. A strategy profile satisfies pay-
off dominance if there is no other strategy profile for which each player has
a strictly higher payoff. Although Nash equilibrium is based upon individual
rationality—in that each player is doing what is best for him, given what oth-
ers are doing—payoff dominance is based upon collective rationality—in that
it involves choosing a strategy profile that is best for everyone. The selection
criterion is that one use payoff dominance in conjunction with Nash equilib-
rium. To only use the former could mean choosing a strategy profile that vio-
lates individual rationality. The proposed criterion is called equilibrium pay-
off dominance, which means focusing on Nash equilibria for which there is
no other Nash equilibrium in which each player has a strictly higher payoff.
An equilibrium satisfying this property is called a payoff-dominant Nash
equilibrium.



            Equilibrium payoff dominance tells us to focus on the equilibrium (right,
right) for the game in Figure 5.10, because it results in a higher payoff for both
drivers relative to the equilibrium (left, left). By this criterion, the unique so-
lution in the American Idol fandom game is that all three girls wear the let-
tered T-shirts.
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            The equilibrium payoff dominance criterion has a lot of power
in the airline security game. That game has seven Nash equilibria, which can be
ranked in terms of payoffs. The equilibrium with all airlines choosing the most
intense security measures has the highest payoff for each player among all of
the Nash equilibria. This criterion can also be used to yield a unique solution in
the operating systems game.



            One rationale for the use of equilibrium payoff dominance is that if players
were to meet beforehand and communicate, it would be in their mutual in-
terest to coordinate on an equilibrium with that property. They know that
agreeing on anything but Nash equilibrium is not credible; that is, one or
more players would diverge from the agreement. Players should then be real-
istic and consider only those agreements that are self-enforcing, which means
that it is in each player’s interest to comply and thus doesn’t require institu-
tions such as the courts and the police to enforce it. Among all the self-
enforcing agreements (i.e., the Nash equilibria), all players can agree that they
should focus on the payoff-dominant ones.



            The game in FIGURE 5.12 has two Nash
equilibria: (top, left) and (bottom, right). (top, left) is the payoff-
dominant Nash equilibrium. However, bottom weakly dominates
top for player 1, and right weakly dominates left for player 2, so
(bottom, right) is the undominated Nash equilibrium. Which
equilibrium do you think is more compelling?



            In his 1961 landmark book, Strategy of Conflict, Nobel Laureate
Thomas Schelling introduced the concept of a focal point. Like
pornography and jazz, a focal point is difficult to formally de-
fine. As Justice Potter Stewart said in a judicial decision, “I can’t



            define it for you, but I know pornography when I see it,” and as the legendary
trumpeter Louis Armstrong proclaimed, “If you have to ask what jazz is, you’ll
never know.” In spite of a focal point not being easily definable, it is a power-
fully compelling concept.



            To understand what is meant by a focal point and how it can help with the
selection of a Nash equilibrium, one must first recognize that games do not
occur in a vacuum; they occur with rich societal context. The players are peo-
ple with a history, and some of this history is common knowledge to them.
Although strategies may be assigned labels such as “top” and “bottom,” in ac-
tual contexts they have concrete descriptions, like “Meet at the train station”
and “Meet at the ballpark.” In terms of who the players are and what strate-
gies they might adopt, there may be one prominent Nash equilibrium, which
thereby becomes an obvious selection, or focal point. But for players to set-
tle upon it, it’s not sufficient that each player perceive it as conspicuous: the
conspicuousness itself must be common knowledge.



            To see how this idea might work, let’s return to our driving conventions
game, but now suppose the issue is on which side of the
sidewalk to walk. In London, since the law is to drive on
the left, the focal point would be to walk on the left.
Indeed, that is what seems to be the case, and I have had
many awkward moments on London pavements to
prove it!
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            Find the payoff-dominant Nash equilibria in the
game of Civil Unrest.
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            Summary
This chapter has tackled games in which all players face the same choice,
whether it be a consumer choosing the type of computer system to buy, a citi-
zen deciding whether to protest, a sneetch contemplating having a star tattoo,
or a company deciding whether to enter a market. Much of the analysis was
done without specifying exactly how many players there are. Some strategy pro-
files (such as buying a Mac) are equilibria regardless of how many players there
are, while others (such as buying Windows) depend on the number of players.



            If, in addition to all players having the same choice, it is assumed that they
all have the same payoffs, then the game is symmetric. A symmetric game
need not imply that equilibrium play has everyone doing the same thing. Also,
the presence of a symmetric equilibrium can depend on whether payoff func-
tions have the property of tipping or congestion. In tipping, the relative at-
tractiveness of using a strategy is greater when more players use it, while in
congestion, a strategy is less attractive when more players use it. Games with
tipping tend to result in equilibria in which everyone (or almost everyone)
does the same thing. For example, if enough people buy a Mac, then it’ll be
more attractive to also be a Mac user, there will be lots of software written for
the Mac, and you can easily exchange files with other users. An equilibrium
then has everyone being Mac people. Similarly, if enough people buy
Windows, then that’ll be the preferred operating system. By contrast, when
congestion is present, identical people can make different choices. For in-
stance, students applying for an internship don’t all want to apply to the same
investment banking firm, because the competition will then be fierce.
Equilibrium entails students applying to different companies. Though faced
with the same situation, people may act differently.



            Multiplicity of Nash equilibria is a common property of the games examined
in this chapter. Indeed, each had more than one Nash equilibrium. More gen-
erally, multiplicity is routinely encountered in game theory. We explored a few
criteria for selecting among multiple equilibria with the goal of identifying a
unique solution. Among the criteria that have been proposed are to give pref-
erence to undominated Nash equilibria—thereby ruling out equilibria in
which players use weakly dominated strategies—and to give preference to
payoff-dominant Nash equilibria—thereby dropping equilibria for which
there is another equilibrium that delivers a higher payoff to every player. In
some games a unique solution emerges, but in many games that is not the case.



            Identifying a criterion that always delivers a unique solution is the “holy
grail” of game theory. Some game theorists find this task unrealistic and sug-
gest that pursuing it turns one into a Don Quixote, while others see it as a chal-
lenge of the first order and worthy of King Arthur. Regardless of your view, all
game theorists would prize such a criterion because yielding precise predic-
tions and explanations is ultimately what game theory is all about.



            1. The magazine Science 84 planned to announce a contest in which any-
one could submit a request for either $20 or $100. If fewer than 20% of
the submissions requested $100, then everybody would receive what
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            they requested. If 20% or more asked for $100, then everybody would get
nothing. Although the magazine wound up not running the contest, be-
cause Lloyds of London was unwilling to insure against losses, we can
still analyze what equilibrium would predict. Suppose 100,000 people
might participate in the contest, and assume that payoffs are measured
in money.
a. Assume that every possible participant submits a request for either



            $20 or $100. Find a Nash equilibrium.
b. Now suppose that a request form comes only with the purchase of



            Science 84 and that the magazine costs $21.95. Then each person’s
strategy set has three elements: do not buy the magazine, buy the mag-
azine and submit a request for $20, and buy the magazine and submit
a request for $100. Suppose zero value is attached to the magazine.
Find a Nash equilibrium.



            c. Consider again the situation described in part (b), but now suppose
the magazine costs $19.95. Find a Nash equilibrium.



            2. Someone at a party pulls out a $100 bill and announces that he is going
to auction it off. There are other people at the party who are po-
tential bidders. The owner of the $100 bill puts forth the following pro-
cedure: All bidders simultaneously submit a written bid. Everyone (not
just the highest bidder) pays his bid, and the bidder with the highest bid
gets the $100 bill (assuming that the highest bid is positive). If m people
submit the highest bid, then each receives a share of the $100. Each
person’s strategy set is so bidding can go as high as
$1,000. If denotes the bid of player j and is the max-
imum (or highest) of the n bids, then the payoff to player i is



            where m is the number of bidders whose bid equals 
Find all Nash equilibria.



            3. It is the morning commute in Congestington, DC. There are 100 drivers,
and each driver is deciding whether to take the toll road or take the back
roads. The toll for the toll road is $10, while the back roads are free. In
deciding on a route, each driver cares only about income, denoted y, and
his travel time, denoted t. If a driver’s final income is y and his travel
time is t, then his payoff is assumed to be (where we have made the
dollar value of one unit of travel time equal to 1). A driver’s income at
the start of the day is $1,000. If m drivers are on the toll road, the travel
time for a driver on the toll road is assumed to be m (in dollars). In con-
trast, if m drivers take the back roads, the travel time for those on the
back roads is 2m (again, in dollars). Drivers make simultaneous deci-
sions as to whether to take the toll road or the back roads.
a. Derive each player’s payoff function (i.e., the expression that gives us



            a player’s payoff as a function of her strategy profile.)
b. Find a Nash equilibrium.



            4. Return to The Sneetches in Section 5.2. 
Of the n sneetches, let k denote the number of sneetches born with stars
and assume Now suppose Sylvester McMonkey McBean charges
a price of p to either get a star removed (if the sneetch was born 



            k 6 n
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            max5b1, . . . , bn6.
�bi  if bi 6 max5b1, . . . , bn6
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m � bi if bi � max5b1, . . . , bn6
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            with one) or added (if the sneetch was born without one). Assume that
A sneetch’s payoff is as described in Table 5.1, except that



            you have to subtract p if he used either the Star-On or Star-Off machine.
Find all Nash equilibria.



            5. Suppose several friends go out to dinner with the understanding that the
bill will be divided equally. The problem is that someone might order
something expensive, knowing that part of the cost will be paid by oth-
ers. To analyze such a situation, suppose there are n diners and, for sim-
plicity, they have the same food preferences. The accompanying table
states the price of each of three dishes on the menu and how much each
person values it. Value is measured by the maximum amount the person
would be willing to pay for the meal.



            0 6 p 6 1.



            DINING DILEMMA



            Dish Value Price Surplus



            Pasta Primavera $21.00 $14.00 $7.00



            Salmon $26.00 $21.00 $5.00



            Filet Mignon $29.00 $30.00 �$1.00



            Surplus is just the value assigned to the meal, less the meal’s price. The
pasta dish costs $14 and each diner assigns it a value of $21. Thus, if a
diner had to pay for the entire meal, then each diner would buy the pasta
dish, since the surplus of $7 exceeds the surplus from either salmon or
steak. In fact, a diner would prefer to skip dinner then to pay the $30 for
the steak, as reflected by a negative surplus. A player’s payoff equals the
value of the meal she eats, less the amount she has to pay. The latter is
assumed to equal the total bill divided by the number of diners. For ex-
ample, if there are three diners and each orders a different meal, then
the payoff to the one ordering the pasta dish is



            the payoff for the person ordering the salmon is



            and the payoff to whoever is ordering the steak is



            Not surprisingly, the people who order the more expensive meal do bet-
ter, since all pay the same amount.
a. Suppose there are two diners What will they order (at a Nash



            equilibrium)?
b. Suppose there are four diners What will they order (at a



            Nash equilibrium)?
(n � 4).



            (n � 2).



            29 � a14 � 21 � 30
3



            b � 7.33.



            26 � a14 � 21 � 30
3



            b � 4.33,



            21 � a14 � 21 � 30
3



            b � 21 � 21.67 � �0.67,
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            6. Consider again the entry game from Section 5.3, but now suppose the
five potential entrants are identical in that each faces the same entry cost
of $300. Given the total number of companies in the market, the accom-
panying table reports a company’s net profit (or payoff) if it enters. As be-
fore, the payoff from staying out of the market is zero, and each company
can choose either enter or do not enter. Find all Nash equilibria.



            ENTRY GAME WITH IDENTICAL COMPANIES



            Number of Firms Gross Profit per Firm Net Profit per Firm



            1 1,000 700



            2 400 100



            3 250 �50



            4 150 �150



            5 100 �200



            7. There is a rough neighborhood with residents. Each resident has
to decide whether to engage in the crime of theft. If an individual
chooses to be a thief and is not caught by the police, he receives a pay-
off of W. If he is caught by the police, his payoff is Z. If he chooses not
to commit theft, he receives a zero payoff. Assume that All
n residents simultaneously decide whether or not to commit theft. The
probability of a thief being caught equals , where m is the number of
residents who choose to engage in theft. Thus, the probability of being
caught is lower when more crimes are committed and the police have
more crimes to investigate. The payoff from being a thief, given that



            other people have also chosen to be thieves, is then



            Find all Nash equilibria.



            8. Consider the game in FIGURE PR5.8.
a. Find all Nash equilibria.
b. Provide an argument for selecting among those equilibria.



            9. Consider the game in FIGURE PR5.9.
a. Find all Nash equilibria.
b. Provide an argument for selecting among those equilibria.



            am � 1
m



            b W � a 1
m
b Z.



            m � 1



            1
m



            W 7 0 7 Z.



            n � 2



            2,2 1,2



            0,0



            2,1



            3,1



            2,2Player 1



            Player 2



            0,0



            0,0



            1,3



            x y z



            a



            b



            c
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            b



            c
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            10. Consider a country with n citizens, and let be the value that citizen i at-
taches to protesting. Enumerate the citizens so that citizen 1 attaches
more value to protesting than citizen 2, who attaches more value than cit-
izen 3, and so forth: where citizen n attaches no
value to protesting. Assume that the cost of protesting is the same for all
citizens and is where and m is the number of protestors. Then the
payoff to citizen i from protesting is while the payoff from not
protesting is zero. Assume that Find all Nash equilibria.



            11. n pre-med students are planning to take the MCAT. Each student must
decide whether to take a preparatory course prior to taking the test. Let



            denote the choice of student i, where indicates that she will not
take the course and indicates that she will take the course. A stu-
dent cares about her ranking in terms of her MCAT score and whether
or not she took the prep course. Let denote student i‘s MCAT score and



            denote the ranking of student i among the n students who took the
test. Specifically, equals 1 plus the number of students who scored
strictly higher than student i. To clarify this specification, here are three
examples: If for all then (In other words, if nobody’s
score is higher than that of student i, then her rank is 1.) If for all



            then (In other words, if student i has the lowest score, then
her rank is n.) Finally, if then 



            Now, assume that student i’s payoff equals 
where Note that taking the prep course entails a cost to



            a student equal to c. Note also that a student adds to her payoff by an
amount b if her rank increases by 1. Student i’s score is assumed to be
determined from the formula where and is
related to the innate ability of the student and is what she would score
if she did not take the prep course. If she takes the prep course, she adds
to her score by an amount z. Assume that



            This means that student 1 is, in a sense, smarter than student 2, student 2
is smarter than student 3, . . . , student is smarter than student 
and students and n are equally smart. The final assumption is



            In this game, there are n students simultaneously deciding whether or
not to take the MCAT preparatory course. Derive a Nash equilibrium.



            ai�1 � z 7 ai for all i � 1, 2, . . . , n � 1.



            n � 1
n � 1,n � 2



            a1 7 a2 7 p 7 an�1 � an.



            aiz 7 0.ai 7 0si � ai � xiz,



            b 7 c 7 0.xic,
b(n � ri) �r3 � r4 � 3, r5 � 5.



            r1 � 1, r2 � 2,s1 7 s2 7 s3 � s4 7 s5,
ri � n.j 	 i,



            si 6 sj



            ri � 1.j 	 i,si � sj



            ri



            ri



            si



            xi � 1
xi � 0xi



            v1 � c 6 0.
vi � ( c



            m),
c 7 0c



            m



            v1 7 v2 7 p 7 vn(� 0),



            vi
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6.1 Introduction
IN THE GAMES EXAMINED thus far in this book, the number of strategies has been
severely limited. In some contexts, this is quite natural: A driver decides whether
to drive on the right or left (the driving conventions discussed in Chapter 2) or
whether to swerve or hang tough (the game of Chicken in Chapter 2); a citizen
either joins a protest or not (the game of Civil Unrest in Chapter 5); and a com-
pany either enters a market or not (Chapter 5). In other contexts, a large array
of options is more natural. For example, when we explored bidding at an auc-
tion (Chapter 2), a bidder was restricted to choosing from among five possible
bids, but in reality, there are many feasible bids. Similarly, in the Team Project
game (Chapter 3), there were three levels of effort that a student could exert—
low, medium, and high—but if we measure effort by the amount of time spent
on a project, there are, in fact, many possible levels. In particular, when a per-
son is choosing an amount of money or an amount of time, she’ll typically have
many options available.



            In this chapter, we explore games that allow for many strategies. What do
we mean by “many”? The numerical system of the Bushmen of the Botswana
contains the numbers one through six, with numbers in excess of six lumped
into the category of “many.”1 That notion of “many” will hardly suffice for our
purposes. Our interpretation of “many” will far exceed seven; in fact, it will be
infinity! Of course, an infinite number of strategies can be rather complicated
to keep track of, so we’ll assume that strategies have the property that they can
be ordered from lowest to highest; more specifically, a strategy set is a set of
numbers. A number may represent a price, how many hours to work, or even
something less obviously quantifiable, such as the quality of a company’s
product. As long as we can rank the various options—for example, from low
to high quality—we can then assign numbers to them, where, say, a higher
number means higher quality.



            One example of an infinite set of numbers is the set of natural numbers: 1,
2, 3, . . . . However, the notion of “many” that we want to assume has the ad-
ditional property that between any two strategies is a third strategy. This prop-
erty is not a property of the natural numbers; for example, there is no natural
number between 73 and 74. A set of numbers that does have this property is
the real numbers—for instance, all of the numbers (not just the integers) be-
tween 2 and 10. Denoted as [2,10], this interval includes such numbers as
5.374, 8/3 and (i.e., 3.141592653589793238462643383279502884197 . . .).



            The real numbers comprise both the rational and the irrational numbers. A
rational number is any number that can be represented by a fraction of two
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            integers.* For example, is a rational number, as is 1.712, which is the same
as the fraction An irrational number is a number that cannot be repre-
sented by a fraction, which means that it has a decimal expansion that neither
terminates nor is periodic.** is an irrational number. Combining all rational
and irrational numbers gives us the set of real numbers.



            In this chapter, a strategy set will be either an interval of real numbers or the
entire set of real numbers. We use what is referred to as a continuous strategy
set, which has no gaps—no missing numbers. You might wonder why we need
so many strategies. The reason is that, although the set of rational numbers is
certainly large, it is a clunky set to work with because it contains lots of gaps.
The greatest value of having a strategy set be an interval of real numbers, how-
ever, is that it allows us to wield the 17th-century mathematical miracle of cal-
culus. This we do in Section 6.3 with great efficacy, although the games in
Section 6.2 do not need or use calculus.



            In Section 6.2, we consider two classic competitive models, one from eco-
nomics—stores competing for customers’ business through the prices they
charge—and the other from politics—candidates competing for elected office
through their campaign platforms. Alhough you might imagine that searching
for a few Nash equilibria amidst an infinite number of strategy profiles is
harder than trying to find a needle in a haystack, a bit of clever reasoning will
allow us to quickly dispense with all but a few possibilities. But the pièce de ré-
sistance of this chapter occurs in Section 6.3, where we show how calculus can
be used to easily derive Nash equilibria. In that optional section, first the gen-
eral method is described, together with the conditions that a game must satisfy
in order for the method to work. Then the method is applied to explore market
competition and to understand how the actions of human beings might have
led to the extinction of the woolly mammoth. Finally, we investigate the logic
behind matching grants and how they can increase charitable donations.



            6.2 Solving for Nash Equilibria Without Calculus
WITH AN INFINITE NUMBER of strategies, an exhaustive search for Nash equilibria
will not work. Considering each strategy profile and asking whether it is a
Nash equilibrium will take . . . well, forever! We need to be cleverer than that.
Although there is no universal algorithm for solving games with infinite strate-
gies—no “plug and chug” method that will always work—there are steps we
can take that can, in certain instances, make our task vastly easier.



            The trick is to focus on understanding the decision problem faced by a
player in a game. We need to get “inside the head” of a player and figure out
his incentives. If you were that player, what would you do? How can a player
improve his payoff? How does a player best respond to what other players are
doing? Once you’ve gained some understanding of a player’s situation, you
may have the insight to begin lopping off lots and lots of strategy profiles.



            To gain that understanding, one method that often works is to “dive into the
problem.” Choose a strategy profile—any strategy profile—and ask whether it
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1000.
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            *The use of the term “rational” here is totally different from how we’ve been using it with respect to
behavior.



            **For example, equals .25, which terminates, and equals .142857142857142857 . . . , which repeats the
sequence 142857.
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            is a Nash equilibrium. Unless you’re extraordinarily lucky, it will not be an
equilibrium. What you then need to do is understand why it is not an equilib-
rium, for the answer you get may be applicable to many other strategy pro-
files. Though this approach may seem rather mystical, you’ll have a better ap-
preciation for it when you see it at work in a few examples.



            � SITUATION: PRICE COMPETITION WITH IDENTICAL PRODUCTS



            Suppose you’re vacationing in Niagara Falls and figure that it’s time to pick up
a few souvenirs for family and friends. You wander over to the string of sou-
venir shops at Clifton Hill, all selling basically the same stuff: Niagara Falls
pens (tilt it and the person in the barrel goes over the falls), Niagara Falls re-
frigerator magnets, Niagara Falls snow globes—you name it. As you browse
from store to store, you notice that they charge pretty much the same price.
Coincidence? Collusion? Competition? What’s up?



            To analyze this situation, suppose there are two souvenir shops offering the
same products. To keep things simple, we’ll focus on just one of those prod-
ucts. Each shop orders the product from the same manufacturer in China at
a per-unit cost of $10. For example, if Wacky Tacky Souvenir Shop (or shop 1,
for short) sells 13 units of the item, then its total cost is $130. Tasteless
Trinkets (aka shop 2) faces the same cost.



            Shoppers survey both stores and, since the
goods are identical, buy from the one with the
lowest price (although a shopper may not buy at
all if prices from both stores are too high).
Assume that the lower the price, the greater is
the number of shoppers who will buy. The rela-
tionship between price and the number of units
sold is summarized in the concept of a market
demand curve, which is plotted in FIGURE 6.1. If
the lowest price among the two shops is then
the number of units sold is 



            The next step is to define the demand for an
individual shop. Since consumers base their
decision only on price, if shop 1 has a lower
price than shop 2 then all con-
sumers buy only from shop 1, so shop 1 sells



            units. If, however, shop 1’s price is
higher than shop 2’s price then no
shoppers buy from shop 1, so it doesn’t sell any units. Finally, if both shops set
the same price, then total demand is assumed to be split equally between them.
For example, if both charge $40, then shoppers want to buy 60 
units and each shop sells 30 units. Summarizing this description, we note
that shop 1’s demand curve, denoted takes the form



            Shop 2’s demand curve is analogously defined.



            D1(p1, p2) � •100 � p1 if p1 6 p2



            (1
2)(100 � p1) if p1 = p2



            0 if p2 6 p1



            .
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            (� 100 � 40)



            (p2 6 p1),
100 � p1



            (p1 6 p2),



            100 � p.
p,



            FIGURE 6.1 The Market Demand Curve for Souvenirs
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            Let’s look more closely at shop 1’s demand
curve by plotting it when shop 2 charges a
price of 40. (See FIGURE 6.2.) Notice the jump
in the curve at a price of 40. For a price
slightly above 40, shop 1 sells nothing; for a
price slightly below 40, it sells all 60 units
being demanded. At the same price of 40, it
gets half of market demand, or 30 units, rep-
resented by the colored dot (as opposed to
the open circles).



            In specifying a shop’s strategy set, a strat-
egy is a price, and prices are allowed to take
any value in the interval [0,100]. Finally, sup-
pose that each shop cares only about how
much money it makes. Shop 1’s profit equals
the revenue shop 1 collects—which is the
price it charges times the number of units
it sells, or —minus its cost,
which equals 10 times the number of units it



            sells, or Shop 1’s payoff (or profit) function is then



            which is plotted in FIGURE 6.3 when Shop 2’s payoff function is analo-
gously defined:



            This game is known as the Bertrand price game, because it was developed by
Joseph Bertrand in 1883.



            A candidate for Nash equilibrium is any
pair of prices from the interval [0,100]. Let’s
see if we can start eliminating some possibili-
ties. If a firm prices the product below its cost
of 10 and sells any units, then its payoff is neg-
ative. Such a price cannot be optimal, be-
cause, by pricing at 10, a shop can always en-
sure a zero payoff, regardless of the other
shop’s price. Thus, if the lowest price being
charged is less than 10, the shop with the low-
est price is not pricing optimally. From this ar-
gument, we can conclude that any strategy
pair in which either of the shops price below
10 is not a Nash equilibrium.



            We just managed to eliminate an infinite
number of strategy pairs as candidates for a
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            FIGURE 6.2 Shop 1’s Demand Curve when Shop 2
Charges a Price of 40
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            FIGURE 6.3 Shop 1’s Payoff Function when Shop 2
Charges a Price of 40
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Nash equilibrium! The only problem is that
we’re still left with an infinite number: all
price pairs for which price is at least as great
as 10. To simplify matters, from here on we’ll
limit our attention to symmetric strategy
pairs—strategy pairs in which both shops
charge the same price.



            Consider any symmetric strategy pair ex-
ceeding 10. Suppose, for example, both shops
price the product at Then the payoff
function faced by shop i is depicted in FIGURE



            6.4 when the other shop charges a price 
of In that case, shop i earns a positive
payoff of since it
sells units at a per-unit profit of



            Let’s compare this with a price of
where When is really small, the profit earned from each unit



            sold is about the same between pricing at and at (cf., e.g., and
However, with a price of the number of units sold is al-



            most twice as large (cf. and As a result, the pay-
off from pricing at exceeds that from pricing at when is really small:



            The preceding argument identifies a powerful incentive for a shop to under-
cut the price of its rival: doing so allows it to double its demand compared
with matching its rival’s price, with almost no reduction in its profit per unit.
But as long as one shop undercuts, the other shop is not going to be content,
since it’ll then have zero sales. Thus, any symmetric price pair in which the
price exceeds a cost of 10 is not a Nash equilibrium, since both firms have an
incentive to charge a slightly lower price instead.



            To summarize, we first argued that a symmetric price pair below 10 is not
a Nash equilibrium and then argued that a symmetric price pair above 10 is
not a Nash equilibrium. This leaves only one possibility: both shops price at
10. Is that a Nash equilibrium? By symmetry, we need only consider one of the
shops, so let it be shop 1. With its rival pricing at 10, shop 1 sells 45 units by
also pricing at 10, but its payoff is zero because it is selling at cost. It can in-
stead price above 10, but then it doesn’t sell any units—since all shoppers buy
from shop 2—so shop 1’s payoff is again zero. It can price below 10 and cap-
ture the entire market, but now it is losing money on each unit it sells, which
means that its payoff is negative. Thus, shop 1 cannot do any better than to
price at cost, given that its rival does the same. We have a
Nash equilibrium!



            What is striking about this result is that competition is
incredibly intense even though there are only two shops. A
price equal to cost of 10 is the lowest level consistent with
them operating. If the price were below 10, then a shop
would prefer to shut down than to incur losses. This sce-
nario is a consumer’s dream world! However, life is not al-
ways so grand for consumers: in Chapter 14, we’ll see how,
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            FIGURE 6.4 Shop i ’s Payoff Function when the
Other Shop Charges a Price of p�
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            Now suppose there are three shops in Clifton Hill,
all selling the same product. The game is exactly
as just specified, with the addition that if all three
shops set the same price, each receives one-third
of market demand. Find both symmetric and
asymmetric Nash equilibria.



            6.1 CHECK YOUR UNDERSTANDING
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            in a more realistic description of the environment, stores can get around com-
petition and sustain a much higher price.



            If you go to the online sporting goods sites of Dick’s Sporting
Goods, <www.dickssportinggoods.com>, Fogdog.com <www.fogdog.com>, and
Sports Authority <www.sportsauthority.com>, you’ll notice that the products
have not only identical prices (competition at work!), but also identical store
product numbers (say what?). What is going on here? (This is one conundrum
for which there is an answer.2)



            � SITUATION: NEUTRALIZING PRICE COMPETITION WITH PRICE-MATCHING
GUARANTEES



            Best Buy: “Store Price Guarantee—If you’re about to buy at a Best Buy
store and discover a lower price than ours, let us know and we’ll match that
price on the spot.”3



            Circuit City: “Price Guarantee—If you’ve seen a lower advertised price from an-
other local store with the same item in stock, we want to know about it. Bring
it to our attention, and we’ll gladly beat their price by 10% of the difference.”4



            Some retail stores have the policy that if you can find one of their products
cheaper elsewhere, they’ll match that lower price. This practice—known as a
price-matching guarantee—has been used by electronics stores, office super-
stores, supermarkets, tire dealers, and many more retailers. On the surface, the
practice seems like highly competitive behavior. Won’t it drive prices down? In
fact, it can drive prices up! A bit of game theory ought to convince you.



            Consider the same two shops that were competing to sell identical goods in
the previous example. Suppose these stores have each instituted a price-
matching guarantee. This means that shop 1 will sell at a price of when



            (so that its sticker price is not higher than its rival’s sticker price), but
will charge only when (so that the low-price guarantee kicks in).
Although shop 1 may choose to price the good at the good may actually sell
for the lower of the two shops’ prices, which is denoted for the
minimum of and 



            Shop 1’s payoff function is then



            and similarly for shop 2:



            With the low-price guarantee, note that both shops end up selling at the
same price—lowest one posted—and each gets 50% of sales. This certainly
sounds like it ought to result in low prices. But before jumping to conclu-
sions, we need to carefully consider a store’s incentives when it comes to set-
ting prices.



            It’ll prove useful to first derive how a shop would price if it were the only
shop on the street. In that case, its payoff function would be
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which is plotted in FIGURE 6.5. Notice that the payoff function is hill shaped
and reaches its highest level at a price of 55. A shop that is a monopolist would
then price at 55, sell 45 units, and make a profit of or
2,025.



            Let’s focus on deriving symmetric Nash
equilibria and consider a strategy pair in
which both stores price at where



            so that the price lies between
the cost and the monopoly price. FIGURE 6.6



            depicts the payoff function faced by shop 1
when The blue curve is shop 1’s
profit when it is a monopolist, and the red
curve is shop 1’s profit given that shop 2 prices
at When (i.e., shop 1’s price is not
higher than shop 2’s price), shop 1 sells at 
and gets half of the total profit of



            the red curve is half the
distance between the blue curve and zero.
(Recall that shop 2 will be selling at as well
because of the low-price guarantee.) When



            shop 1 sells at (matching shop 2’s
price because of its guarantee), and its payoff
is The payoff func-
tion is flat in that case, because, regardless of
the sticker price shop 1 ends up selling the good for shop 2’s lower price of 



            Notice in Figure 6.6 that any price at or above is a best reply for shop 1,
as its payoff is then maximized. In particular, is a best reply. Since the strat-
egy pair is symmetric and the game is symmetric, it is also the case that is
a best reply for shop 2. Thus, both shops charging a price of is a Nash equi-
librium, regardless of whether is 10, 55, or any price in between.



            There are, then, many symmetric Nash equilibria when shops are commit-
ted to price-matching guarantees. However, if we focus on payoff-dominant
Nash equilibria, then the solution is that both shops charge 55, because that
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            FIGURE 6.5 A Shop’s Payoff Function If It Were the
Only Shop on Clifton Hill
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            FIGURE 6.6 The Blue Curve Is the Total Profit If
Both Shops Priced at p1 (or If Shop 1
Were a Monopolist), and the Red Curve
Is Shop 1’s Profit when Shop 2 Prices at
p� and Both Shops Have Price-Matching
Guarantees
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            is the Nash equilibrium that yields the highest payoff to both players. But no-
tice that 55 is the monopoly price! With price-matching guarantees, competi-
tion between shops evaporates, and they end up charging the same price as
when there is only one shop.



            To understand this surprising result, go back to the previous model without
price-matching guarantees and consider stores’ incentives. Charging an iden-
tical price above cost wasn’t an equilibrium for the two shops, because each
had an incentive to undercut its rival’s price. Undercutting would double a
store’s sales with only a trivial fall in profit per unit sold. But with price-
matching guarantees, undercutting doesn’t work. Even if shop 1 sets a lower
price than shop 2, customers who would have bought from shop 2 still do so,
since shop 2 will match shop 1’s lower price. All that shop 1 has done by un-
dercutting is to cause it to sell at a lower price to the same set of shoppers.
Thus, price-matching guarantees destroy the incentive to undercut a rival’s
price and allow shops to sustain higher prices. What appears to enhance com-
petition actually destroys it!



            One study of the adoption of price-matching guarantees by supermarkets
found that the practice did indeed raise prices.5 In 1983, Big Star, a North
Carolina grocer, introduced a price-matching policy and published a weekly
circular (known as the Price Finder) that listed the prices of over 9,000 prod-
ucts. For these products, Big Star guaranteed to match the prices of Food
Lion, its primary rival. In 1985, another competitor, Winn-Dixie, introduced a
similar policy, once again promising to match the prices of Food Lion. The
theory predicts that the prices for the products listed in the Price Finder should
go up more than the prices for those not listed in the Price Finder, because the
former, but not the latter, were subject to price-matching guarantees. Well,
that is what occurred. Although the average effect was not large—it was about
2%—it was there; and some items were affected considerably. For example,
prior to the adoption of price matching, Maxwell House Coffee sold for $2.19
at Food Lion, $2.29 at Winn-Dixie, and $2.33 at Big Star. After its adoption, all
three were selling Maxwell House for $2.89.



            � SITUATION: COMPETING FOR ELECTED OFFICE



            Earlier this week, I watched the last of the presidential debates, and by the
end of it I was ready to change the channel in disgust. Neither George Bush
nor John Kerry seemed to be saying anything original, or anything that had-
n’t been heard before. By the end of it, I couldn’t help but feel like I was
watching Tweedle-Dum and Tweedle-Dee dancing around in Alice &
Wonderland, except here, maybe we’d be better off calling them Tweedle-
Dumb and Tweedle-Dumber.6



            Candidates running for elected office compete in many ways—advertising
on television, gaining endorsements, giving stump speeches—but perhaps the
most significant method of competition lies in the positions they take on the
issues. To model this form of competition, suppose there is just one issue and
a position on that issue is represented by a number in the interval [0,1]. For
example, the issue could be taxes, where a higher number indicates a higher
tax rate. Or it could be how funds are allocated between welfare programs and
defense expenditures, with a higher number corresponding to more defense


            

        



        
            

            
6.2 Solving for Nash Equilibria Without Calculus 155



            and less welfare. Or we could imagine that candidates aren’t so much taking
positions, but rather conveying their ideology. A position of 0 could corre-
spond to the “far left” (very liberal) and of 1 to the “far right” (very conserva-
tive), with a moderate position being represented by 



            In describing the strategic form of this game, the players are candidates
D(emocratic) and R(epublican), and each has a strategy set of [0,1]. Let de-
note the position (or strategy) of candidate Taking a rather cynical
view, let us assume that candidates care only about being elected and not
about the positions they take. To write down a candidate’s payoff function, we
then need to describe how strategies (i.e., positions of the two candidates) de-
termine the electoral outcome. Doing this will take a bit of work.



            Suppose each voter has an ideal position from the position space [0,1].
Furthermore, suppose there are many voters evenly distributed over [0,1] in
terms of their ideal positions. In other words, the number of voters whose
most preferred position is .3 is the same as the number whose most preferred
position is .72, and so forth. Assume that all voters vote and cast their votes
for the candidate whose announced position is closest to their ideal one. There
is then no question about the credibility of a candidate’s announced position:
voters believe what is said. Perhaps this idealistic assumption offsets the cyn-
ical one about the candidates’ preferences!



            Now, consider the case when candidate D’s
position is to the left of candidate R’s: 
(See FIGURE 6.7.) Voters who lie to the left of can-
didate D’s position (i.e., their ideal position is
lower than vote for her, since is closer to
their ideal than is Analogously, those voters
who lie to the right of vote for candidate R.
What about the voters between and 
(Pundits refer to them as “swing voters.”)
Consider the voter who is smack-dab in the mid-
dle—the one located at Since the voter at is equidis-
tant between the two candidates’ positions, he’s indifferent between them.
Thus, swing voters who lie to the left of are closer to and vote
for candidate D. Analogously, those who are to the right of vote
for candidate R.*



            With this information, we can figure out how positions determine an elec-
toral outcome. If then candidate D’s share of the vote is 
as all voters to the left of vote for D. Hence, if 
then less than half of the voters vote for candidate D, and candidate R wins.
If, instead, then more than half of the voters vote for candi-
date D, and candidate D wins. If , then the preceding argument applies
if one switches around the two candidates. Finally, if then, since the
candidates have taken identical positions, the vote is split equally.



            In writing down candidates’ payoff functions, assume that the payoff to
winning the election is 2 while the loser’s payoff is 0. What if both candidates
receive the same number of votes? This happens when either both candi-
dates take the same position or In those situations, we’ll(xD � xR)/2 � 1



            2.



            xD � xR,
xR 6 xD



            1
2 6 (xD � xR)/2,



            (xD � xR)/2 6 1
2,(xD � xR)/2



            (xD � xR)/2,xD 6 xR,



            (xD � xR)/2
xD(xD � xR)/2



            (xD � xR)/2(xD � xR)/2.



            xR?xD



            xR



            xR.
xDxD)



            xD 6 xR.



            i � D, R.
xi



            1
2.



            *Although the voter located at is indifferent, it doesn’t matter what he does, since there is an infi-
nite number of voters.
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            FIGURE 6.7 The Determination of a Winner in the
Campaign
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            assume that each candidate has an equal chance of winning, so the associ-
ated payoff is 1.



            Using the preceding analysis that describes how positions affect vote totals, we
can now write down a payoff function. If then candidate D’s payoff is



            and if then



            The payoff function for candidate R is analogously defined.
As an initial step toward understanding the incentives of candidates, con-



            sider the pair of positions shown in FIGURE 6.8. The two candidates
shown are relatively liberal—both are located to the left of —but candidate D
is more liberal than candidate R: Voters vote as described at the
bottom of Figure 6.8, with all voters whose ideal position is to the right of



            voting for candidate R. Candidate R then wins by garnering more
than half of the vote. If candidate D instead took a position between and 
(say, in the figure), she would gather more than half of the votes and thus
raise her payoff from 0 to 2; this is the voting outcome described at the top of
Figure 6.8. Thus, is not a Nash equilibrium, since candidate D can do
better than to espouse x¿D.



            (x¿D, x¿R)



            x0
D



            1
2x¿R



            (x¿D � x¿R)/2



            x¿D 6 x¿R 6 1
2.



            1
2



            (x¿D, x¿R)



            μ 2 if 12 6
xD � xR



            2  and xR 6 xD



            1 if 
xD � xR



            2 = 1
2 or xD = xR.



            0 if 
xD � xR



            2 6 1
2 and xR 6 xD



            xR � xD,



            μ 0 if 
xD � xR



            2 6 1
2 and xD 6 xR



            1 if 
xD � xR



            2 = 1
2 or xD = xR,



            2 if 12 6
xD � xR



            2  and xD 6 xR



            xD � xR,



            FIGURE 6.8 A Candidate Does Better by Locating Between the Other
Candidate’s Position and When Candidate D Chooses
Voting Is Described at the Bottom. When Candidate D
Chooses Voting Is Described at the Topx0
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            More generally, if, say, candidate D is taking a position different from 
then candidate R can ensure victory by locating between and candidate D’s
position. But this means that candidate D loses for sure. However, a strategy
that results in certain loss is clearly not optimal for candidate D, because she
can always gain at least a tie (with a payoff of 1) by taking the exact same po-
sition as candidate R. We then conclude that if either or both candidates are
located away from the pair of positions is not a Nash equilibrium.1
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            We have managed to eliminate all strategy
pairs but one: In that case, the
candidates split the vote and each receives a
payoff of 1. Now, consider candidate D’s
choosing a different position, say, in FIGURE



            6.9. This results in her share of the vote drop-
ping from to which means that
her payoff declines from 1 to 0. This argu-
ment works as well for candidate R, so both
candidates locating at constitutes a unique
Nash equilibrium.



            Even though there are two candidates, electoral competition results in vot-
ers having no choice: both candidates support the same position! What at-
tracts candidates to that moderate position is that it is the most preferred po-
sition of the median voter; half of the voters are more liberal than the median
voter and half are more conservative. A candidate who strays from the median
voter is taking an unpopular stance that the other candidate can capitalize on
to ensure victory. This result is known as policy convergence, since the candi-
dates converge on the same platform.



            As is typically the case with a simple model, the result it delivers is extreme.
In reality, candidates do not offer identical or even near-identical positions. The
departure of reality from theory is at least partly due to some important ele-
ments that are absent from the model. Most candidates don’t just care about
winning; they also care about the policies they would implement if elected.
Also, we assumed that all voters vote but, in fact, voter turnout can well depend
on the positions taken. A candidate may take an extreme position to induce vot-
ers with similar views to turn out. In spite of these weaknesses of the model,
still it delivers the insight that, in trying to win an election, there is a force
drawing candidates closer together in their positions. That general tendency is
well apt to be true even if it doesn’t result in full policy convergence.



            6.3 Solving for Nash Equilibria 
with Calculus (Optional)
IN THIS SECTION, GAMES are considered in which calculus can be used to solve for
Nash equilibria. We’ll start with a general treatment of the subject and then
move on to a few examples. Some students will prefer this sequence, while
others may find it more user friendly to first have a concrete example before
taking on the more abstract. My suggestion is to read through this section, but
don’t fret if it doesn’t all make sense. If, indeed, that is the case, then, after
reading the first example, come back and reread this material.



            Recall that a player’s best reply function describes a strategy that maxi-
mizes his payoff, given the strategies of the other players. In formally defining
a best-reply function, let represent player i’s payoff function in
an n-player game. Once you plug a strategy profile into out
pops a number which is the payoff that player i assigns to that strategy pro-
file. A best reply for player i to other players using 
is a strategy that maximizes 



            A player can have more than one best reply to a particular configuration of
other players’ strategies; it just means that there is more than one strategy that
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            generates the highest payoff. In the games analyzed in this section, a player al-
ways has a unique best reply. So let



            denote the unique best reply for player i, given the strategies chosen by the
other players. If we let denote the strategy set of player i, then sat-
isfies the following condition:*



            BRiSin � 1



            BRi(s1, . . . , si�1, si�1, . . . , sn)



            *Recall that is read as “ is a member of ”.Sisisi � Si



            [6.1]for all si � Si.Vi(s1, . . . , si�1, BRi, si�1, . . . , sn) � Vi(s1, . . . , si�1, si, si�1, . . . , sn)



            The strategy profile is a Nash equilibrium when each player’s
strategy is a best reply to the strategies of the other players:



            A Nash equilibrium is then a strategy profile that satisfies the preceding n
equations. Solving for a Nash equilibrium means solving these n equations for
n unknowns, There may be no solution, one solution, a finite num-
ber of solutions, or even an infinite number of solutions.



            To pursue this solution method, each player’s best-reply function must first
be derived by solving Equation (6.1) for Suppose, then, that [0,1], so
that choosing a strategy means choosing a number from the interval [0,1].
Suppose further that takes the shape shown in FIGURE 6.10. Here we are fix-
ing the strategies of all players but i at



            and then plotting how player i’s payoff depends on It is not difficult to see
that player i’s best reply is



            A key property of in Figure 6.10 is that it is hill shaped, with being its
acme. Now, here’s the critical observation: The slope of the payoff function at



            is zero, as shown by the flat tangent. Generally, when the payoff func-
tion is hill shaped, the optimal strategy is the point at which the slope of the
payoff function is zero. Let’s convince ourselves of this claim before showing
how we can use this property.



            Consider a strategy, such as where the slope is positive. A positive
slope means that the payoff function is increasing in Thus, cannot be
a best reply, because player i earns a higher payoff with a slightly bigger
strategy. Now consider a strategy where the slope is negative, such as ins–i
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            Figure 6.10. Since the payoff function is decreasing in i’s strategy, cannot
be a best reply, because player i earns a higher payoff with a slightly smaller
strategy. It is only at the point where the slope is zero that the payoff is
maximized.



            It is at this stage that we introduce the wonder developed by Gottfried
Wilhelm Leibniz and Sir Issac Newton in the late 17th century. Calculus pro-
vides an easy way in which to derive the slope of a function. That slope is sim-
ply the function’s first derivative, which is denoted symbolically as



            By the previous argument, the best reply for player i is defined as the strategy
that makes the derivative equal to zero:



            More generally, for any strategies of the other players, the best-reply func-
tion, is the solution of the following equation:



            Remember that this equation determines the best reply if the payoff function
for player i is hill shaped. For those who can’t get enough of calculus, a con-
dition which ensures that the payoff function is hill shaped is that the second
derivative of the payoff function is always negative:
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            When this last condition holds, the payoff function is said to be strictly con-
cave. If all this is a bit too abstract for you, it ought to become clearer as we
look at two examples.



            But before moving to these examples, it is worth noting that, with infinite
strategy sets, a Nash equilibrium is assured of existing under certain condi-
tions. Assume that each player’s strategy set is an interval of real numbers with
a lowest value and a highest value—for example, the interval [0,10]. Assume
also that players’ payoff functions are smooth (the curves representing them
have no kinks), continuous (the curves have no jumps), and hill shaped (tech-
nically speaking, the curves are strictly concave). The first two conditions en-
sure that the derivative we are seeking exists. Then, under the stated assump-
tions, there always exists a Nash equilibrium. Furthermore, if the game is
symmetric, then a symmetric Nash equilibrium exists.



            Note that the method described here will not work with the games in
Section 6.2. To take a derivative, a function has to be differentiable, which
requires that it be continuous and have no kinks. The payoff function for
the situation of price competition with identical products is not continu-
ous: there is a jump when a shop matches the price of its competitor.
Although there are no jumps in the payoff functions in the Price-Matching
Guarantees game, there is a kink when one shop matches the other’s price.
(See Figure 6.6.) Nevertheless, calculus can still be handy even in those
games. We’ll observe the truth of the latter statement in the last example in
this section, which explores the power of matching grants in generating
charitable donations.



            � SITUATION: PRICE COMPETITION WITH DIFFERENTIATED PRODUCTS



            Our first example in this chapter was the case of shops selling the same goods.
In that simple setting, consumers cared only about price, so if one store
charged a lower price, they would all buy from it. In most markets, however,
companies offer distinct products. You can buy Coke only from Coca-Cola, a
Big Mac just from McDonalds, and a Dell computer from Dell alone. Of
course, you can buy similar products from other companies, such as a Pepsi,
a Whopper, and an HP computer. Nevertheless, even if a Big Mac costs more
than a Whopper, some people will choose to buy a Big Mac because they pre-
fer its flavor and shape. Similarly, there are those who prefer the Whopper and
would buy it even if it were more expensive. These are markets in which prod-
ucts are said to be differentiated.



            So let us explore price competition between Dell and HP in the PC market.*
Taking account of the properties just mentioned, assume that the demand for
Dell computers (i.e., how many units it sells) is of the following form:



            Let’s think about the properties of this formula. The higher the price of a Dell
PC, the fewer of them are sold. This makes sense, as some people decide not



            DDell(PDell, PHP) � 100 � 2PDell � PHP.



            *To model the PC market properly, one would need to include all manufacturers, as well as relevant sub-
stitutes, such as the Mac (not to be confused with the Big Mac). To keep things simple, we’ll focus on just
two suppliers in that market.
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            to buy a PC or switch from buying a Dell to an HP. Furthermore, the higher
the price of an HP, the more PCs Dell sells, since some prospective HP buyers
choose instead to buy a Dell.



            The revenue that Dell earns is equal to the number of units it sells multi-
plied by the price it charges:



            Finally, assume the cost of manufacturing and distributing a Dell PC is 10 per
unit. Dell then makes a profit of for each unit it sells, so its total
profit (and payoff) is



            [6.2]



            We define HP’s total profit analogously, but assume that HP has a higher cost
of 30:



            [6.3]



            The strategic form of the game is as follows: There are two players—Dell
and HP—and a strategy is a price. Let the common strategy set be the in-
terval [0,100]. The payoff functions are as described in Equations (6.2)
and (6.3).



            To find the Nash equilibria, we’ll derive each firm’s best-reply function.
Take the case of Dell. FIGURE 6.11 plots Dell’s payoff function in relation to
Dell’s price if Note that Dell’s best reply is 45, as that is the price thatPHP � 60.



            VHP(PDell, PHP) � (PHP � 30)(100 � 2PHP � PDell).



            VDell(PDell, PHP) � (PDell � 10)(100 � 2PDell � PHP).
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            PDell � DDell(PDell, PHP) � PDell � (100 � 2PDell � PHP).



            FIGURE 6.11 Dell’s Payoff Function when HP Prices at 60
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            maximizes Dell’s payoff (which reaches a level of 2,450). Note also that the
slope of the payoff function is zero at Contrast this scenario with
Dell’s charging a price of, say, 25, where the slope of the payoff function is pos-
itive. This means that Dell’s payoff is increasing. For example, raising 
from 25 to 26 raises Dell’s payoff from 1,650 to 1,728. Thus, the best reply can-
not be anywhere that the payoff function is increasing. Nor can it be optimal
to choose a price where the slope is negative. For example, lowering the price
from 55 to 54 raises the payoff from 2,250 to 2,288. Thus, the best reply is
where the slope is zero, so that a higher payoff cannot be had by either rais-
ing or lowering the price.



            What we know thus far is that Dell’s best reply is the price at which the
slope of the payoff function is zero. Since the slope of a function is simply its
first derivative, the payoff-maximizing price is that price which makes the first
derivative equal to zero:



            Solving this equation for yields Dell’s best-reply function:



            Voilà! Just as a check, substitute 60 for the price of an HP PC, and you’ll find
that the answer shown in Figure 6.11.



            FIGURE 6.12 plots Dell’s best-reply function against the price charged by HP.
Note that it increases as a function of HP’s price: The higher the HP price, the
greater is the number of consumers that want to buy Dell and stronger demand



            PDell � 45,



            PDell �
120 � PHP



            4
 or BRDell � 30 � .25PHP.



            PDell



             � 120 � 4PDell � PHP � 0.



             
0VDell(PDell, PHP)



            0PDell
� 100 � 2PDell � PHP � 2PDell � 20 � 0



            PDell



            PDell � 45.



            30



            45



            0 60
pHP



            pD
el



            l



            30 � .25pHP



            FIGURE 6.12 Dell’s Best-Reply Function Plotted
Against the Price Charged by HP
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            for its product allows Dell to charge a higher price. Dell is able to extract more
money out of consumers because their alternative—buying an HP computer—
is not as attractive when is higher.



            Performing the same series of steps, we derive the best-reply function for HP:



            Add a dash of algebra to this stew of best-reply functions, and we can con-
coct a meal of Nash equilibrium. A price pair is a Nash equilib-
rium when both computer manufacturers are simultaneously choosing best
replies:



            [6.4]



            [6.5]



            There are two equations and two unknowns. We want to find the pair of prices
that satisfies both equations. The pair of prices we seek is depicted in FIGURE 6.13



            as the intersection of the two best-reply functions. At that price pair, each com-
pany’s price is a best reply.



            Algebraically, we can solve the simultaneous equations (6.4) and (6.5) as
follows. Substitute the right-hand side of (6.5) for in (6.4):
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            FIGURE 6.13 The Nash Equilibrium Is Where the Two
Best-Reply Functions Intersect
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            Now we have one equation in one unknown. Next, perform a few algebraic
manipulations:



            Rounding up, the equilibrium price of a Dell com-
puter is 42.67. Substituting this price into HP’s
best-reply function gives us the price for HP:



            There is, then, a unique Nash equilibrium—
since there is only one solution to the pair of



            equations (6.4) and (6.5)—and it has Dell pricing at 42.67 and HP pricing at
50.67. Newton and Leibniz, take a bow.



            � SITUATION: TRAGEDY OF THE COMMONS—THE EXTINCTION 
OF THE WOOLLY MAMMOTH



            At the end of the Pleistocene era, there was a mass extinction of more than half of
the large-mammal species in the Americas, including the woolly mammoth. One
prominent hypothesis is that the extinction was caused by hunting. Evidence of a
large human population in the Americas dates to around 13,400 years ago, and it
was roughly only 1,200 years later that the wave of extinctions occurred.



             P̂HP � 50.67.



             P̂HP � 40 � .25 � 42.67,



             P̂Dell � 42.67.



             P̂Dell(1 � .0625) � 40,



             P̂Dell � 30 � 10 � .0625P̂Dell,



            Now assume that both Dell and HP have a marginal cost
of 20. Dell’s payoff function is



            while HP’s payoff function is



            Find all Nash equilibria.



            VHP(PDell, PHP) � (PHP � 20)(100 � 2PHP � PDell).



            VDell(PDell, PHP) � (PDell � 20)(100 � 2PDell � PHP),



            6.2 CHECK YOUR UNDERSTANDING



            Hunting a Woolly Mammoth



            TH
E 



            G
R
A



            N
G



            ER
 C



            O
LL



            EC
TI



            O
N



            , N
EW



             Y
O



            R
K


            

        



        
            

            
6.3 Solving for Nash Equilibria with Calculus (Optional) 165



            A recent computer simulation modeling the interaction between primitive
humans and their environment supports this hypothesis.7 One of those simu-
lations is shown in FIGURE 6.14; the thick black line represents the size of the
human population, and each of the other lines represents a species hunted by
humans. Most of those species saw their population size go to zero—which
means extinction—and the median time between human beings’ arrival and
extinction was 1,229 years, strikingly close to the evidence.



            FIGURE 6.14 The Size of the Human Population (Thick Black Line) 
and Prey Species (Thin Gray Lines)



            To explore how humans may have hunted species into extinction, let’s go
back in time to the ice age and see what mischief primitive hunters can get
into. Suppose there are n hunters and each hunter decides how much effort to
exert in hunting woolly mammoths. Let denote the effort of hunter i, and as-
sume that so that the strategy set comprises all nonnegative (real) num-
bers. (One could imagine that effort is the number of hours exerted, in which
case putting some upper bound on the strategy set would be appropriate.)



            The total number of mammoths that are killed depends on how much ef-
fort is exerted by all hunters. Letting denote the com-
bined effort of all hunters, we find that the total number of mammoths killed
(measured, say, in pounds) is which is plotted in FIGURE 6.15.
Note that E increases and then decreases with total effort. There are two
forces at work here. For a given population size of mammoths, more effort by
hunters means more dead mammoths. However, because there are then fewer
mammoths to reproduce, more effort also results in a smaller population of
mammoths to kill. When total effort is sufficiently low slightly(E 6 500),
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            more effort means more mammoth meat; the first force is then bigger than the
second one. When total effort is sufficiently high slightly more ef-
fort means less mammoth meat, so the second force is the dominant one. A
total effort exceeding 500 is a point of overexploitation: humans are killing
mammoths faster than they can replenish themselves.



            What we’ve described thus far is how total effort determines the total num-
ber of kills. There is still the matter of how the meat is allocated among the
hunters. An egalitarian approach would be for each hunter to get the same
share, Some might say that a more equitable approach would
be for a hunter who exerts more effort to get more meat. This approach could
be carried out by the judgment of the tribal leader, assuming that he observes
all the hunters’ efforts. Alternatively, suppose that hunters are acting individ-
ually (or in small groups) and consume the meat of the mammoths they actu-
ally kill, in which case a hunter who exerts more effort kills more and thus eats
more.



            Going with the equitable approach, we find that the fraction of meat re-
ceived by hunter i is assumed to equal his fraction of the total effort:



            Total output is and i’s share of it is Finally, we need to net
out the personal cost of effort to hunter i, which is assumed to equal A
hunter’s payoff function is then



            Fixing the effort of the other hunters, we portray the payoff function for
hunter i in FIGURE 6.16. Note that it is hill shaped.*
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            Vi(e1, . . . , en) � ei 31,000 � (e1 � e2 � p � en) 4 � 100ei.
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b E(1,000 � E) � ei(1,000 � E).



            E(1,000 � E)/n.
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            FIGURE 6.15 The Relationship Between Effort in
Hunting Woolly Mammoths and the
Amount of Mammoth Meat
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            With the game now constructed, the next step is to derive a hunter’s best-
reply function. We can do this by taking the derivative of his payoff function
with respect to his effort and setting that derivative equal to zero:



            [6.6]



            Next, we solve equation (6.6) for to get the best-reply function:



            A Nash equilibrium is n effort levels that satisfy the n equations which en-
sure that each hunter is maximizing his payoff:



            [6.7]



            Notice that the best-reply function has the same form for all hunters; it is 450
minus half of the total effort of all other hunters. Since the game is symmet-
ric, this result is not surprising. Let’s then make our life easier by looking for
a symmetric Nash equilibrium.



            A symmetric Nash equilibrium is a common effort level, call it whereby
if the other hunters choose then it is optimal for hunter i to do so ase*,n � 1
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            FIGURE 6.16 The Payoff Function for Hunter i


            

        



        
            

            
well. Substituting for in Equation (6.7), we have n identical equa-
tions, all of the form



            Now we have to solve only one equation in one unknown:



            A Nash equilibrium, then, has each hunter exert an effort of 
For example, if there are 9 hunters, then a hunter chooses an effort of 90. Note
that a hunter’s effort is less when there are more hunters. If there are 10
hunters rather than 9, then each exerts only about 82 units of effort. Less ef-
fort is exerted because more hunters are chasing the same set of mammoths.
A hunter might then find it more productive to hunt smaller game, such as
rabbits, or gather vegetables.



            It is also interesting to consider the combined effort of all hunters, which
is and thus equals This combined effort is plotted in FIGURE



            6.17, where one can see that it increases with the number of hunters.*
Although each hunter hunts less when there are more hunters, the addition



            of another hunter swamps that effect, so the total
effort put into hunting goes up. Furthermore,
there is overexploitation of the resource of mam-
moths; that is, collectively, hunters hunt past the
point that maximizes mammoth meat. Meat pro-
duction is maximized when the total effort is 500.
(See Figure 6.15.) However, the total equilibrium
effort exceeds that value as long as there are at
least two hunters:
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            FIGURE 6.17 The Relationship Between the
Number of Hunters and the Total
Amount of Effort when All Hunters
Choose Their Equilibrium Level of
Effort
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            The resource of woolly mammoths is overexploited by hunters. The exces-
sive hunting of mammoths is an example of what Garrett Hardin dubbed the
tragedy of the commons.8 A tragedy of the commons is a situation in which
two or more people are using a common resource and exploit it beyond the
level that is best for the group as a whole. Overfishing Chilean sea bass, exces-
sive deforestation of the Amazon jungle, and extracting oil too fast from a com-
mon reservoir are examples of the tragedy of the commons. Interdependence
between players (and what economists call an “externality”) is at the heart of
this problem. When a hunter kills a woolly mammoth, he doesn’t take into ac-
count the negative effect his action will have on the well-being of other hunters
(i.e., they’ll have fewer mammoths to kill). As a result, from the perspective of
the human population as a whole, each hunter kills too many mammoths.



            Surely the most important current example of the tragedy of the commons
is global climate change. According to the U.S. Environmental Protection
Agency, “Since the beginning of the industrial revolution, atmospheric con-
centrations of carbon dioxide have increased by nearly 30%, methane concen-
trations have more than doubled, and nitrous oxide concentrations have risen
by about 15%.”9 During that same period, the average surface temperature of
the planet has increased by to 1 degree Fahrenheit and sea level has risen 4–8
inches. Those are the facts about which there is little disagreement. Where
controversy lies is whether the atmospheric changes have caused the rise in
temperature. If, indeed, it has, then the only way to solve this tragedy of the
commons is through coordinated action that limits behavior, such as was pro-
posed with the Kyoto Accord.



            � SITUATION: CHARITABLE GIVING AND THE POWER OF MATCHING GRANTS



            In this final example, payoff functions are not hill shaped and, in fact, are not
even continuous. This means that the method used in the previous two exam-
ples will not work here. So why do I present this example? First, it is a re-
minder that you should not willy-nilly use the calculus-based approach de-
scribed at the start of Section 6.3. Such an approach requires that the payoff
function be differentiable (continuous and with no kinks) and hill shaped. You
must make sure that it satisfies those properties before applying that method.
Second, even when the method cannot be used, calculus can still be useful in
deriving a player’s best reply function.



            Suppose a philanthropist wants to raise $3,000,000 for his favorite charity.
Though he is quite wealthy, this sum is too much even for him. In order to
spur others to contribute, he establishes a matching grant whereby he’ll do-
nate $1,000,000 if $2,000,000 is raised from other donors. Anything less than
$2,000,000, and he’ll contribute nothing. This is hardly a novel scheme, as
many charities and nonprofit organizations use it. Indeed, National Public
Radio often uses similar schemes during its fund drives. Game theory shows
how matching grants can generate more donations.



            Suppose there are 10 prospective donors who are simultaneously deciding
how much to contribute. Let denote the donation of donor i and be the
sum of all donations excluding that of donor i:



            s�i � s1 � p � si�1 � si�1 � p � s10.
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            Assume that a donor’s strategy set is the interval from 0 to 500,000, measured
in dollars. The donor i’s payoff is specified as



            and is made up of two parts: is the benefit derived from money
going to a worthy cause and depends only on the total contribution; is the
personal cost for making a contribution.



            If there were no matching grant, would any contributions be made?
Without a matching grant, donor 1’s payoff function is



            This payoff function is not hill shaped with respect to a donor’s strategy. In
fact, it is much simpler than that. Taking the first derivative of 
with respect to we have



            A donor’s payoff, then, always decreases with her contribution. For each dollar she
contributes, the personal cost to her is $1 and the benefit she attaches to it is only
20 cents. Thus, her payoff declines by 80 cents (or of a dollar) for every dollar
she contributes; the more she gives, the worse she feels. Contributing nothing is
then optimal. Since this is true regardless of the other donors’ contribution, a zero
contribution is the dominant strategy. Finally, because donor 1 is no different from
the other nine donors, they have a zero contribution as a dominant strategy as
well. There is then a unique Nash equilibrium in which all 10 donors contribute
nothing. Our fund-raising campaign is off to a rather inauspicious start.



            Now suppose there is a matching grant. Then donor 1’s payoff function
looks like this:
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5)(s1 � p � s10 � 1,000,000) � s1 if 2,000,000 � s1 � p � s10



            .



            If total contributions fall short of 2,000,000, then the payoff is the same as
without a matching grant. However, if they reach that 2,000,000 threshold,
then each donor’s payoff jumps by the amount or 200,000. At
this jump, the payoff function is not continuous and thus not differentiable,
so we can’t just start taking derivatives. A bit more care is required, but calcu-
lus will still come in handy.



            Let’s derive a donor’s best-reply function. (Since the game is symmetric,
donors have the same best-reply function.) Consider donor 1, and let



            denote the sum of the contributions of the other 9
donors. First note that if then the matching grant occurs re-
gardless of donor 1’s contribution, so her payoff is
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            for all values of The derivative of this expression with respect to is 
thus, donor 1’s payoff always decreases with her donation. Hence, the optimal
contribution is the lowest feasible contribution, which is zero.



            Now suppose so the other donors are not contributing
enough to get the matching grant. As long as donor 1’s contribution results in
total contributions falling short of the 2,000,000 threshold—that is, if



            —then donor 1’s payoff is



            the derivative of which is so her payoff strictly decreases with her contribu-
tion. Consequently, if donor 1 is not going to give enough to get the matching
grant, then she ought to give zero. Next, suppose her contribution is sufficient
to achieve the matching grant—that is, Her payoff is then



            Again, the derivative is so her payoff is higher when she contributes less.
Thus, conditional on giving enough to get the matching grant, donor 1 would
find it best to give the smallest amount that does so, which is 



            To summarize, if then donor 1’s best reply is either zero or
the minimum amount required to get total contributions to 2,000,000. A cou-
ple of examples should solidify the logic behind this statement. Suppose



            so that donor 1’s payoff function is as shown in FIGURE 6.18.
If then total contributions fall short of the 2,000,000 goal, and
in that range donor 1’s payoff is
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            FIGURE 6.18 Donor 1’s Payoff Function If Her
Optimal Donation Is 100,000, Which Results in the
1,000,000 Matching Grant Kicking In
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            When hits 100,000, the payoff jumps to 500,000 as the 1,000,000 matching
grant kicks in:
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            FIGURE 6.19 Donor 1’s Payoff If Her
Optimal Donation Is Zero



            s�1 � 1,650,000.
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5
b(100,000 � 1,900,000 � 1,000,000) � 100,000 � 600,000 � 100,000 � 500,000.



            For donor 1’s payoff is decreasing once more:



            As Figure 6.18 indicates, donor 1’s optimal donation is 100,000, which is the
minimum amount required to get the matching grant.



            Now suppose instead that In this case, it’ll take a donation
of 350,000 from donor 1 to get the matching grant. As depicted in FIGURE 6.19,
donor 1 then prefers to contribute nothing. As before, her payoff declines until
it reaches a level such that total contributions equal 2,000,000. At that point,
it jumps from a payoff of 50,000 to 250,000 and again declines thereafter.
Donor 1’s payoff is maximized with a zero contribution. A donation of 350,000
to get the matching grant is just too much for any donor.
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            When the other donors have not given enough to get the matching grant,
we have narrowed a donor’s optimal contribution to being either zero or the
minimum amount needed to get the grant. The next step is to compare these
two options and determine when one is preferred over the other. Assuming
that we calculate that donor 1 prefers to contribute so that
total contributions just reach 2,000,000 rather than contribute zero when
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            The left-hand side of this inequality is the payoff from contributing
and the right-hand side is that from contributing zero.



            Solving the inequality for we get



            Thus, if then donor 1 optimally donates and
secures the matching grant. If then donor 1 contributes
zilch. She is indifferent between those two options when (and
we will suppose she contributes 250,000).



            By symmetry, this argument works for any donor. Thus, the best-reply func-
tion for donor i is



            as depicted in FIGURE 6.20.
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            FIGURE 6.20 The Best-Reply Function for Donor i
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            Using the best-reply function, let’s focus on finding symmetric Nash equi-
libria. We want to find a donation amount such that if the other 9 donors do-
nate that amount, then it is optimal for an individual donor to do likewise.
Figure 6.20 shows that one symmetric equilibrium is a zero donation. If each
of the other 9 donors contribute zero, then and, according to donor i’s
best-reply function, his optimal donation is similarly zero.



            Is there an equilibrium in which donors make a nonzero donation? Recall
that if a donor contributes, her optimal contribution is the minimum amount
necessary to achieve the 2,000,000 threshold in total donations. With 10
donors and given our focus on a symmetric strategy profile, this means that
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            each donor contributes 200,000. In that case, (as the other 9
donors are each giving 200,000), and we can see in Figure 6.20 that an indi-
vidual donor finds it optimal to respond with 200,000 as well. Hence, it is a
Nash equilibrium for each donor to contribute 200,000 and thereby ensure
that the matching grant kicks in.



            Without the presence of a matching grant, the only equilibrium has no con-
tributions being made. Thus, by offering to donate 1,000,000 if at least 2,000,000
in donations is raised, there is now an equilibrium in which donors contribute
a total of 2,000,000 in order to get the matching grant. What the matching grant
does is juice up the marginal impact of a donation. Given that the other donors
contribute 1,800,000 in total, a contributor who gives 200,000 actually increases
contributions by 1,200,000, so the matching grant induces her to contribute.
Since this logic applies to all donors, each sees himself as making that incre-
mental donation which brings forth the matching grant.



            Summary
This chapter explored games with continuous strategy sets, as represented
by an interval of real numbers. With an infinite number of strategy profiles,
the exhaustive search is not a viable method for finding Nash equilibria. In
Section 6.2, we showed how you can eliminate many strategy profiles as can-
didates for Nash equilibria by understanding players’ incentives. In the exam-
ple of price competition with identical products, each firm has an incentive
to slightly undercut its rival’s price when that price exceeds the firm’s cost for
the product. Because this undercutting incentive is present as long as shops
price above cost, no strategy profile with price above cost is a Nash equilib-
rium. Using this idea allowed us to eliminate many possibilities and ulti-
mately led us to the conclusion that shops pricing at cost is the unique Nash
equilibrium.



            In Section 6.3, we introduced a method for using calculus to solve for Nash
equilibria. When a player’s payoff function is differentiable (continuous and
with no kinks) and hill shaped, his best reply is that strategy at which the first
derivative of his payoff function (with respect to his strategy) is zero. If the de-
rivative is positive (negative), then a player can increase his payoff by raising
(lowering) his strategy. Only when the derivative is zero is that not possible
and thus the payoff is maximized. This realization gave us an equation that
could be easily solved for a player’s best-reply function. All the players’ best-
reply functions could then be used to solve for a Nash equilibrium.



            The calculus-based method just described was used to solve for Nash equi-
librium in two games—first, when companies offer differentiated products
and compete by choosing price, and second, when primitive humans exert an
effort in hunting. An example exploring charitable donations reminded us that
if we are to deploy the calculus-based method, it must first be determined that
the payoff function is differentiable and hill shaped.



            A common feature of Nash equilibria is that they are not payoff dominant
among the set of all strategy profiles. That is, all players could be made bet-
ter off relative to a Nash equilibrium if they all changed their strategies in a
particular way. This is because, while each player individually maximizes
her own payoff, she ignores the consequences of her strategy selection for
the payoffs of other players. Players then do not act in their best collective
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            interests, as represented by the tragedy of the commons, in which a re-
source is overexploited from a joint perspective (e.g., animals are hunted to
the point of extinction, congestion on the roads leads to a traffic jam, and
air pollutes the environment). A remedy for this tragedy is for players to co-
ordinate in reducing their use of a resource. Although such coordination is
inconsistent with Nash equilibrium for the games examined in this chapter,
we’ll see later in Chapters 13–15 how a richer formulation can allow such co-
ordination to occur.



            Exercises 7–12 require calculus.



            1. A game theorist is walking down the street in his neighborhood and
finds $20. Just as he picks it up, two neighborhood kids, Jane and Tim,
run up to him, asking if they can have it. Because game theorists are
generous by nature, he says he’s willing to let them have the $20, but
only according to the following procedure: Jane and Tim are each to
submit a written request as to their share of the $20. Let t denote the
amount that Tim requests for himself and j be the amount that Jane re-
quests for herself. j and t are required to be chosen from the interval
[0,20]. If then the two receive what they requested, and the
remainder, is split equally between them. If, however,



            then they get nothing, and the game theorist keeps the $20.
Tim and Jane are the players in this game. Assume that each of them has
a payoff equal to the amount of money that he or she receives. Find all
Nash equilibria.



            2. In some presidential elections, there is a serious third-party candidate.
In 1992, Ross Perot, running as an independent against Democratic
nominee Bill Clinton and Republican nominee George Bush, garnered a
respectable 19% of the vote. More recent third-party presidential at-
tempts were made by Ralph Nader as the Green Party nominee in 2000
and 2004. In light of such instances, consider a model of electoral com-
petition with three candidates, denoted D, R, and I(ndependent). As in
Section 6.2, each candidate chooses a position from the interval [0,1]. A
candidate receives a payoff of 1 if he receives more votes than the other
two candidates (so that he wins for sure), a payoff of if he is tied with
one other candidate for the most votes, a payoff of if all three candi-
dates share the vote equally, and a payoff of zero if his share of the vote
is less than another candidate’s (so that he loses for sure). Assume that
voters vote for the candidate whose position is nearest their own. Is it a
Nash equilibrium for all three candidates to locate at 



            3. Return to the Price Competition with Identical Products game of
Section 6.2. Now assume that shop 2 has a cost of 15, while shop 1 still
has a cost of 10. Make the (admittedly arbitrary) assumption that if both
shops set the same price, then all shoppers buy from shop 1. Shop 1’s
payoff function is



            e (p1 � 10)(100 � p1) if p1 � p2



            0 if p2 6 p1
,



            1
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            1
3



            1
2



            j � t 7 20,
20 � j � t,



            j � t � 20,
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            while shop 2’s payoff function is



            Find all Nash equilibria.



            4. Return to the Price-Matching Guarantees game of Section 6.2.
a. Suppose both shops set the same price and the price exceeds 55. Is



            this situation a Nash equilibrium?
b. Suppose both shops set the same price and the price is less than 10.



            Is this situation a Nash equilibrium?
c. Derive all undominated symmetric Nash equilibria.



            5. Two manufacturers, denoted 1 and 2, are competing for 100 identical
customers. Each manufacturer chooses both the price and quality of its
product, where each variable can take any nonnegative real number. Let



            and denote, respectively, the price and quality of manufacturer i’s
product. The cost to manufacturer i of producing for one customer is



            Note in this expression that the cost is higher when the quality
is higher. If manufacturer i sells to customers, then its total cost is



            Each customer buys from the manufacturer who offers the
greatest value, where the value of buying from manufacturer i is



            higher quality and lower price mean more value. A man-
ufacturer’s payoff is its profit, which equals If one
manufacturer offers higher value, then all 100 customers buy from it. If
both manufacturers offer the same value, then 50 customers buy from
manufacturer 1 and the other 50 from manufacturer 2. Find all symmet-
ric Nash equilibria.



            6. For the Charitable Donations game in Section 6.3, find all Nash equilibria.



            7. For a two-player game, the payoff function for player 1 is



            and for player 2 is



            Player 1’s strategy set is the interval [0,100] and player 2’s strategy set is
the interval [0,50]. Find all Nash equilibria.



            8. An arms buildup is thought to have been a contributing factor to World
War I. The naval arms race between Germany and Great Britain is par-
ticularly noteworthy. In 1889, the British adopted a policy for maintain-
ing naval superiority whereby they required their navy to be at least two-
and-a-half times as large as the next-largest navy. This aggressive stance
induced Germany to increase the size of its navy, which, according to
Britain’s policy, led to a yet bigger British navy, and so forth. In spite of
attempts at disarmament in 1899 and 1907, this arms race fed on itself.
By the start of World War I in 1914, the tonnage of Britain’s navy was
2,205,000 pounds, not quite 2.5 times that of Germany’s navy, which, as
the second largest, weighed in at 1,019,000 pounds.10 With this scenario
in mind, let us model the arms race between two countries, denoted 1
and 2. The arms expenditure of country i is denoted and is restrictedxi



            V2(x1, x2) � x2 � 20x1x2.



            V1(x1, x2) � x1 � 10x1x2



            qi(pi � 10 � 5xi).
1,000 � xi � pi;



            qi(10 � 5xi).
qi



            10 � 5xi.



            xipi



            e0 if p1 � p2



            (p2 � 15)(100 � p2) if p2 6 p1
.


            

        



        
            

            
Exercises 177



            to the interval [1,25]. The benefit to a country from investing in arms
comes from security or war-making capability, both of which depend on
relative arms expenditure. Thus, assume that the benefit to country 1 is



            so it increases with country 1’s expenditure relative to total
expenditure. The cost is simply so country 1’s payoff function is



            and there is an analogous payoff function for country 2:



            These payoff functions are hill shaped.
a. Derive each country’s best-reply function.
b. Derive a symmetric Nash equilibrium.



            9. Players 1 and 2 are playing a game in which the strategy of player i is de-
noted and can be any nonnegative real number. The payoff function
for player 1 is



            and for player 2 is



            These payoff functions are hill shaped. Find all Nash equilibria.



            10. The wedding anniversary of a husband and wife is fast approaching, and
each is deciding how much to spend. Let denote the amount that the
husband spends on his wife and the amount the wife spends on her
husband. Assume that they have agreed that the most each can spend is
500. A players’ strategy set is then the interval [0,500]. A spouse enjoys
giving a bigger gift, but doesn’t like spending money. With that in mind,
the husband’s payoff function is specified to be



            The payoff function can be understood as follows: The benefit from ex-
changing gifts is captured by the term Since “men are
boys with bigger toys,” this benefit increases with the size of the wife’s gift:



            The “warm glow” the husband gets from giving his wife a gift is reflected
in the term which increases with the size of his gift:



            0(50gH � (1
4)gHgW)



            0gH
� 50 � a1



            4
b gW 7 0.



            50gH � (1
4)gHgW,



            0(50gH � (1
4)gHgW)



            0gW
� a1



            4
b gH 7 0.



            50gH � (1
4)gHgW.



            VH(gH, gW) � 50gH � a1
4
b gHgW � a1



            2
b(gH)2.



            gW



            gH



            V2(z1, z2) � (80 � z1 � z2)z2.



            V1(z1, z2) � (100 � z1 � z2)z1



            zi



            V2(x1, x2) � 36 a x2



            x1 � x2
b � x2.



            V1(x1, x2) � 36 a x1



            x1 � x2
b � x1,



            x1,
36(



            x1
x1 � x2
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            Alas, where there are benefits, there are costs. The personal cost to the
husband from buying a gift of size is represented by the term



            or in his payoff function. Thus, we subtract this cost
from the benefit, and we have the husband’s payoff function as de-
scribed. The wife’s payoff function has the same general form, though
with slightly different numbers:



            These payoff functions are hill shaped.
a. Derive each spouse’s best-reply function and plot it.
b. Derive a Nash equilibrium.
c. Now suppose the husband’s payoff function is of the same form as the



            wife’s payoff function:



            Find a Nash equilibrium. (Hint: Don’t forget about the strategy sets.)



            11. Players 1, 2, and 3 are playing a game in which the strategy of player i is
denoted and can be any nonnegative real number. The payoff function
for player 1 is



            for player 2 is



            and for player 3 is



            These payoff functions are hill shaped. Find a Nash equilibrium.



            12. Players 1, 2, and 3 are playing a game in which the strategy of player i is
denoted and can be any nonnegative real number. The payoff function
for player 1 is



            for player 2 is



            V2(y1, y2, y3) � y2 � y1y2 � (y2)2,



            V1(y1, y2, y3) � y1 � y1y2 � (y1)2,



            yi



            V3(x1, x2, x3) � x1x2x3 �
1
2



            (x3)2.



            V2(x1, x2, x3) � x1x2x3 �
1
2



            (x2)2,



            V1(x1, x2, x3) � x1x2x3 �
1
2



            (x1)2,



            xi



            VH(gH, gW) � 50gH � 2gHgW � a1
2
b(gH)2.



            VW 
(gH, gW) � 50gW � 2gHgW � a1



            2
b (gW)2.



            �(gH)2,�gH � gH,
gH
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            and for player 3 is



            These payoff functions are hill shaped. Find a Nash equilibrium. (Hint:
The payoff functions are symmetric for players 1 and 2.)



            V3(y1, y2, y3) � (10 � y1 � y2 � y3)y3.
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“Obviously the Intruder had acted at night first, then had come out into
the open during the day, when Roberto remained awake in his cabin.
Should he now revise his plans, giving the impression of sleeping in the
daytime and staying awake at night? Why? The other would simply alter
his strategy. No, Roberto should instead be unpredictable, make the
other unsure, pretend to be asleep when he was awake while he was
asleep. . . . He had to try to imagine what the other thought he thought,
or what the other thought he thought the other thought he thought. . . .”1



            7.1 Police Patrols and the Drug Trade
DETERMINED TO CRACK DOWN on the drug trade, a city mayor puts more officers
out on patrol to disrupt the business of drug dealers. A drug dealer in a neigh-
borhood can work his trade either on a street corner or in the park. Each day,
he decides where to set up shop, knowing that word about his location will
travel among users. Because a good snitch is lacking, word does not travel to
the police. The police officer on the beat then needs to decide whether she will
patrol the park or the street corners, while not knowing where the drug dealer
is hanging out that day.



            The decisions of the officer and the dealer determine the extent of drug
trades that day. Assume that, without disruption by the police, 100 trades will
occur. A dealer’s payoff equals the number of trades he consummates. For the
officer, her payoff is the number of trades she disrupts (which is simply 100
minus the number of trades that occur). If they both end up in the park—the
officer patrolling there and the drug dealer selling there—only 40 trades occur,
which means that 60 trades are disrupted. Given the size of the park, there is
still a fair amount of activity. As shown in FIGURE 7.1, the officer’s payoff is then
60 and the dealer’s payoff is 40. If the drug dealer is in the park, but the offi-
cer is out on the streets, then 100 drug deals go down, so the officer’s payoff is
zero and the dealer’s is 100. If the officer is patrolling the streets and the dealer
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            FIGURE 7.1 Police Patrol and the Drug Trade
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            is out on a street corner, then only 20 trades occur. Finally, if the dealer is on
a street corner, but the officer is patrolling the park, then 90 trades occur.
(Some drug traffic is disrupted due to patrolling police cars.) All of these pay-
offs are illustrated in Figure 7.1.



            There is no Nash equilibrium in this game. For example, if the drug dealer is
planning to be in the park, then that is where the officer will go. But if the offi-
cer is expected to be in the park, then the drug dealer will take to the streets.



            This game is an example of an outguessing game, which was introduced in
Chapter 4. Each player wants to choose a location that is unanticipated by the
other player. A drug dealer would not want to always go to the park, because
such predictability would induce the police officer to patrol the park and dis-
rupt the dealer’s business. For the same reason, the dealer would not want to
always be on a street corner. What seems natural is for the drug dealer to
switch his location around—sometimes be on a corner, sometimes in the park.
But can we say exactly how he should switch his locations? And given that the
dealer is moving his location around, what should the officer do? Clearly, an
officer doesn’t want to be predictable either, for if she is always in the park,
then the dealer can conduct a brisk business by staying on a street corner.



            The objective of this chapter is to learn how to solve outguessing games
and, more generally, to derive solutions in which players randomize their be-
havior. To achieve that objective, we’ll need to know how to model decision
making under uncertainty, which is analyzed in the next section. With that
knowledge, we then return in Section 7.3 to the drug trade situation and show
how to solve it. Further examples, along with some tips for arriving at a solu-
tion, are provided in Section 7.4, while more challenging games are solved in
Section 7.5. In Section 7.6, a special property of solutions with randomized
play is derived for games of pure conflict.



            7.2 Making Decisions under Uncertainty
IF THE DRUG DEALER IS making a random decision between going to the park and
selling on a street corner, a police officer who is deciding where to patrol faces
an uncertain outcome. If she patrols the park, the extent of her success in dis-
rupting the drug traffic depends on whether the dealer plies his trade in the
park that day. To determine an optimal strategy, the police officer has to eval-
uate options when the outcome is uncertain. Figuring out an approach to
modeling decision making under uncertainty is the task of this section.



            The first step is to quantify the uncertainty. This is done through the con-
cepts of probability and expectation, which are covered in Section 7.2.1. These
concepts are then applied in Section 7.2.2, in a method for comparing alter-
natives under uncertainty. Finally, in Section 7.2.3, we discuss the important
issue of the interpretation of a payoff (or utility) when there is uncertainty.



            7.2.1 Probability and Expectation



            The intelligence community has jargon to describe the likelihood of different
events.2 To say that an event—such as a country’s developing a nuclear
weapon in the next five years—is of the lowest likelihood is to call the event
“conceivable.” To assert that the event is more likely, but the chance of it hap-
pening is less than 50%, is to describe the event as “possible.” The event is
“probable” if its occurrence is just over 50%, and it is “likely” when it is in the
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            60–70% range. At around 80%, the event is “almost certain,” and to convey the
highest likelihood, one says that there is “no doubt” that the event will occur.



            In spite of the appeal of such terms, we’ll need to quantify uncertainty more
precisely. For this purpose, the concept of probability comes in rather handy.
To learn what probability is, let’s visit Las Vegas and play some roulette.
(Although, since you’ll need to use probability throughout this chapter, what
you learn in Vegas cannot stay in Vegas.)



            An American roulette wheel has 38 numbers: 0, 00, and 1 through 36. A ball
spins around in the roulette wheel and will eventually land in one of 38 com-
partments, each having a different number.* The number that “is hit” on a par-
ticular spin is considered a random event, which means that it is effectively
unpredictable. Of course, in principle, a person might be able to predict where
the ball will land on the basis of the strength with which it was propelled, how
fast the wheel was turning, and where the ball started from. (The keen gam-
bler might also want to bring in other variables, such as the temperature and
humidity of the room.) But, in effect, the ball’s landing spot is beyond human
and even machine control.



            Although we can’t predict where the ball lands, we can observe what hap-
pens. So, let’s watch the roulette wheel and keep track of how often a number
is hit. After 1,000 trials, suppose that number 17 has been hit 30 times. Then
the frequency with which 17 has been hit is 30, and its relative frequency—
its frequency relative to the total number of spins—is or .03. In the next
1,000 spins, we find that 17 is hit 24 times, for a relative frequency of .024 for
those second 1,000 spins, giving a relative frequency of .027 for the first 2,000
spins. Let’s just keep spinning the wheel and writing down what happens. As
the number of spins goes to infinity, we call the relative frequency with which
17 is hit to be the probability of 17 occurring. If this roulette wheel is “fair”—
each number has the same chance of occurring—then the relative frequency
of 17 after many trials is close to (recall that a roulette wheel has 38 num-
bers) and is the probability of 17 occurring.



            Hence, the probability of an event is the frequency of that event over an in-
finite number of trials. Thus defined, probability is an abstract concept, because
we cannot conduct an infinite number of trials and truly measure it. The prob-
ability distribution for a random event is the collection of probabilities for all
of the possible outcomes of the random event. In the roulette example, the ran-
dom event is a particular number being hit, the possible outcomes are the 38
numbers, and the probability distribution is a collection of 38 probabilities.



            A legitimate probability distribution satisfies two properties. First, each
probability lies between 0 and 1, where 0 denotes that there is no chance of
the event in question occurring and 1 denotes that it is certain to occur.
Second, the sum of the probabilities over all possible events equals 1. Think
about the roulette wheel; the ball must fall somewhere. Thus, if we add up the
probabilities of all of the numbers, they must sum to 1. If that weren’t true—
suppose they summed to .98—then we’re saying that there is a 2% chance that
the number is neither 0, nor 00, nor 1, nor 2, . . . , nor 36. But this doesn’t make
sense, since we stipulated at the outset that the ball has to fall on one of the



            1
38



            30
1,000



            *Because the casino pays off only when the ball lands on one of the nonzero numbers, this approach gives
the house a 5.26% advantage. By contrast, the European roulette wheel has only 37 numbers, just one of
which is zero, giving the house only a 2.70% advantage.
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            38 numbers on the wheel. Of course, you might say that the ball could fly out
of the wheel and land on the floor, which is a physical possibility. In that case,
we should expand the set of possible outcomes to include “landing on the
floor” as well as the 38 numbers. Once that outcome is taken account of, the
sum of the probabilities over those (now) 39 events must equal 1. In other
words, something has to happen, and if we’ve properly specified the feasible
set of events, then it must be one of those 39 events.



            Two (or more) random events are said to be independent when the out-
come of one event has no bearing on the likelihood of the outcome of the other
event. Let’s consider an example. Suppose we have two roulette wheels, one
American and one European, both of which are fair. We define two events: the
number hit with the American wheel and the number hit with the European
wheel. What is the probability of getting a 9 on the ball spun in the American
wheel and a 23 on the ball spun in the European wheel? Because what hap-
pens on the American wheel doesn’t affect what happens on the European
wheel (and vice versa), these events are independent, and the probability dis-
tribution for the number hit on the European wheel is the same regardless of
the number hit on the spin of the American wheel.



            When two events are independent, the joint probability of those two events
is simply the probability of each event multiplied together. For example, the
probability of getting a 9 on the American wheel and a 23 on the European
wheel equals the probability of getting a 9 on the American wheel multiplied
by the probability of getting a 23 on the European wheel, or 



            But events are not always independent. Suppose, for example, two people are
going to take a test. A person’s score on the test is the random event of interest.
If they are strangers, their scores will probably be independent; that is, one per-
son’s score provides no information about the score of the other. But suppose
they are friends and they studied together, choosing to focus on the same mate-
rial. In that case, their scores would not be independent. If one of them scores
well, it may indicate that he studied the right material, and since the other per-
son studied the same material, she is likely to have gotten a good score, too.



            A random variable is a random event that takes numerical values.
Tomorrow’s high temperature is a random variable, as is the closing value of
the Dow Jones Index. The expected value (or expectation) of a random vari-
able is the weighted sum of the possible realizations of that random variable,
where the weight attached to a realization is the probability of that event. For
example, suppose you lay wagers of $10 on number 14 and $5 on number 32
at the roulette table. The random variable of interest is the amount of your
winnings. With an American roulette wheel, because the house pays out $36
for each dollar wagered on an individual number, the expected value of the
amount of winnings is



            ( 1
38) � ( 1



            37).



            �
540
38



            � 14.21.a 1
38
b � 10 � 36 � a 1



            38
b � 5 � 36 � a36



            38
b � 0 � a 1



            38
b � 360 � a 1



            38
b � 180



            The probability is that the wheel comes up 14, in which case you win $360
(having bet $10), and with probability , the wheel comes up 32 and you win
$180. With the remaining probability of , the number is neither 14 nor 32,
and you receive zero. Thus, the expected value of your winnings is .540
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            In light of the definition of probability, the expected value of a random vari-
able can be thought of as the average value after an infinite number of trials.
If you make the preceding wager once, you’ll end up with either nothing, $180,
or $360. If you repeat the wager for many spins of the wheel, then your aver-
age winnings will be , or about $14.21. Since this amount is less than your
average bet of $15, you can expect to lose money, and that is how a casino
makes money.



            7.2.2 Preferences over Uncertain Options



            It’s Saturday night and Diana is trying to decide where to go to dinner. She
could go to the usual place—Furio’s Grill—which serves reliable food at a mod-
est price. She’s been there many times and knows what it’s like. Or she could
try the new upscale restaurant Tapenade, which was given a great review by the
local food critic. But she’s not sure whether it’ll be as great as the review sug-
gests. She could end up with an overpriced meal or a meal to remember.



            TABLE 7.1 lists Diana’s payoff (or utility) from each of the possible restaurant
experiences. (For the present, ignore the column labeled “alternative pay-
offs.”) Furio’s Grill rates a payoff of 100; she’s gone there many times and it’s
a known entity. If Tapenade lives up to the review, the payoff is 180. If
Tapenade turns out to be overpriced and pretentious, the payoff is only 60. On
the basis of past experience with this food critic, Diana believes that there is a
60% chance that Tapenade will deliver a spectacular meal.



            540
38



            TABLE 7.1 DIANA DECIDING ON A RESTAURANT



            Restaurant Quality of Meal Probability Payoffs Alternative Payoffs



            Furio’s Grill Solid 1.0 100 100



            Tapenade Good but overpriced 0.4 60 60



            Tapenade Spectacular 0.6 180 120



            So, what will Diana choose? Answering that question requires a theory of
how people make choices when there is uncertainty. If faced with three certain
choices—a meal at Furio’s Grill, a good meal at Tapenade, and a spectacular
meal at Tapenade—Diana’s choice would be a spectacular meal at Tapenade,
as it delivers the highest payoff: 180. But those are not her choices. She can ei-
ther go to Furio’s Grill and get a sure thing of a meal or “roll the dice” at
Tapenade and leave either elated or ripped off.



            Recall from Chapter 1 that when a person’s preferences are complete and
transitive, her behavior can be described as choosing the option with the high-
est payoff (or utility).* Under uncertainty, there is a related axiom: For a par-
ticular set of conditions (which we will implicitly assume, but I will not de-
scribe), a person’s choice can be described as choosing the outcome with the
highest expected payoff. Since the payoff is a random variable, the expected
payoff can be calculated with the formula illustrated in Section 7.2.1. The



            *Preferences are complete when a person can always say which of two alternatives is preferred or that they
are equally good; preferences are transitive when, if A is preferred to B and B is preferred to C, then A is
preferred to C.
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            expected payoff from Furio’s Grill is simply 100, since there is no uncertainty.
For Tapenade, it is Thus, by the expected-payoff
criterion, Diana chooses Tapenade over Furio’s Grill.



            We will always assume that, when faced with alternatives involving random
outcomes, a player will choose the alternative that delivers the highest ex-
pected payoff.



            7.2.3 Ordinal vs. Cardinal Payoffs



            In the situations explored in Chapters 2 through 6, a player’s choice depended
only on the ranking of her alternatives. For example, let’s return to the situa-



            tion in Tosca (Section 2.5), reproduced here as FIGURE 7.2. Tosca’s
payoff is 4 when she stabs Scarpia and he has the firing squad
use blanks (allowing her lover Cavaradossi to survive), 3 when
she consents to Scarpia’s sexual demands and he uses blanks, 2
when she stabs Scarpia and he uses real bullets (killing
Cavaradossi), and 1 when she consents and he uses real bullets.
In Chapter 2, we concluded that Tosca stabs Scarpia because that
strategy is a dominant one. If Scarpia chooses blanks, Tosca’s
payoff is 4 from choosing stab and only 3 from choosing consent.
If Scarpia chooses real, then, again, stab is better, since its payoff



            is 2, as opposed to 1 from consent.
For current purposes, what’s important to note is that the optimality of stab



            for Tosca doesn’t change when we alter her payoffs, as long as we keep the
ranking of the outcomes the same. For example, if the payoff of 3 from the
outcome (consent, blanks) is changed to 3.99, Tosca would still find it best to
stab Scarpia. Or if the payoff of 2 from (stab, real) for Tosca is lowered to
1.001, stab is still a dominant strategy.



            Payoffs are said to be ordinal when the only information they contain is how
a person ranks the various alternatives. In particular, no meaning is attached to
the relative magnitude of the payoffs. That 3.99 is closer to 4 than 3 is to 4 is of
no significance. Being that these are ordinal payoffs, all that matters is that 3.99
is less than 4 (just as 3 is less than 4), and thus Tosca prefers the outcome (stab,
blanks) to (consent, blanks). To make reasonable predictions of Tosca’s behavior,
we just need to have the correct ranking of outcomes for her.



            When choices involve uncertain outcomes, it is no longer sufficient to know
how a player ranks the various outcomes. To see why, it is best to start with an
example. Returning to Table 7.1, consider the “alternative payoffs” for Diana.
They differ from the original payoffs only in the payoff associated with a spec-
tacular meal at Tapenade, which is now 120 rather than 180. The two sets of
payoffs yield the same ranking. Whether Diana attaches a payoff of 120 or 180
to having a spectacular meal at Tapenade, having a meal there is her first
choice. Now let’s consider the choice between Furio’s Grill and Tapenade when
there is uncertainty as to the quality of the meal at Tapenade. With the original
payoffs, the expected payoff from Tapenade was 132, so Diana went there. With
the alternative payoffs, the expected payoff is now 
and since this is less than 100, she chooses Furio’s Grill. The change in the pay-
off attached to a spectacular meal at Tapenade altered Diana’s choice, even
though we left the ranking unchanged.



            The take-away from that example is that, when we are faced with uncertain
prospects, the payoff levels matter, not just the ranking of outcomes implied



            .4 � 60 � .6 � 120 � 96,



            .4 � 60 � .6 � 180 � 132.
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            by them. Payoffs indicate not just the ranking, but also the intensity of prefer-
ence. Reducing Diana’s payoff from 180 to 120 reduces the intensity of her de-
sire for a spectacular meal at Tapenade. At 120, it is not quite as compelling,
compared with a meal at Furio’s. When the relative magnitudes of payoffs
have information, the payoffs are said to be cardinal.



            When we are trying to write down reasonable ordinal payoffs for a player,
we just need to get the ranking “right” in the sense that it is an accurate de-
scription of how such a player would actually order the outcomes. But when
we’re dealing with cardinal payoffs—which we are when there is uncer-
tainty—the task before us is considerably more demanding. Now we need to
get the relative sizes of the payoffs right if we are to properly describe the in-
tensity of a person’s preferences.*



            7.3 Mixed Strategies and Nash Equilibrium
EQUIPPED WITH A METHOD for making choices under uncertainty, we return in
Section 7.3.1 to the conflict between the police officer and the drug dealer, in-
troducing a solution method that allows players to randomize. Some general
properties of this solution method are then presented in Section 7.3.2.



            7.3.1 Back on the Beat



            Armed with the expected-payoff criterion, we can return to exploring what the
police officer and the drug dealer will do. The payoffs in Figure 7.1 are now
interpreted to be cardinal and thus reflect intensities of preferences. Because
the dealer’s payoff is assumed to equal the number of drug deals that go down,
a bigger number does indeed mean a more desirable outcome. The officer, too,
attaches greater value to a bigger number, since her payoff is the number of
trades prevented.



            To derive a solution when players are allowed to randomize their behavior,
the first step is to redefine the game to allow for this possibility. Recall that
each player has two strategies: streets and park. We will now call these pure
strategies. Each player has the option of drawing upon his pure strategies at
random, something we call a mixed strategy. More specifically, for this game
a mixed strategy is a real number from the interval [0,1], where this number
is the probability of choosing streets.** For the police officer, let p denote the
probability that she patrols the streets and let be the probability that
she is in the park. Analogously, a mixed strategy for the drug dealer is repre-
sented by the probability d of choosing streets, and the probability of
choosing park.



            1 � d



            1 � p



            *Any affine transformation of payoffs will leave unaltered the behavior implied by the expected payoff cri-
terion. An affine transformation is a transformation arrived at by the addition of a constant to each and
every payoff and/or a multiplication of each and every payoff by a positive number. For example, if we
added 63 to each of Diana’s three payoffs, then her choice of restaurant under uncertainty would not
change. Or if we multiplied each of her three payoffs by 71, then the choice would again not change. In
effect, changing the scale doesn’t affect what happens. If payoffs are measured in dollars, than measuring
them in pennies (so that they are multiplied by 100) has no effect on one’s choice. Scale changes of this
sort are like those with temperature: it doesn’t matter whether the temperature is measured in Fahrenheit
or Celsius; one feels just as hot or cold. It is the same with payoffs.



            **If you skipped Chapter 6 and you’re unfamiliar with the set of real numbers—of which the interval rang-
ing from 0 to 1 is an example—then you should read Section 1 of that chapter. It’s quick, easy, and math-
ematically exciting!
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            TABLE 7.2 OUTCOMES IN THE POLICE PATROL AND DRUG TRADE GAME



            Officer’s Dealer’s Officer’s Dealer’s



            Choice Choice Probability Payoff Payoff



            streets streets p � d 80 20



            streets park p � (1 � d ) 0 100



            park streets (1 � p) � d 10 90



            park park (1 � p) � (1 � d ) 60 40



            To complement these new strategy sets, we need to redefine how strategies
are evaluated. First, we replace the payoffs in Figure 7.1 with expected pay-
offs. To derive expected payoffs, we begin by writing down the probabilities as-
signed to the various outcomes, given a strategy pair (p, d). These probabili-
ties are shown in TABLE 7.2. Because the randomization by the police officer
and the drug dealer are independent, the probability of, say, the joint event of
both going to the park is the probability that the police officer patrols the park
multiplied by the probability that the drug dealer operates in the park.



            � 60 � 60p � 50d � 130pd.



            VPO(p, d) � p � d � 80 � p � (1 � d) � 0 � (1 � p) � d � 10 � (1 � p) � (1 � d) � 60



            For example, with probability both the police officer and the drug
dealer are on the streets, in which case the officer’s payoff is 80. Turning to the
drug dealer, his expected payoff is



            p � d,



            � 40 � 60p � 50d � 130pd.



            VDD(p, d) � p � d � 20 � p � (1 � d) � 100 � (1 � p) � d � 90 � (1 � p) � (1 � d) � 40



            To summarize, we’ve changed the game in Figure 7.1 in two ways. First, a strat-
egy is now a randomization over the two pure strategies—known as a mixed
strategy—and the strategy set is all of the different ways to allocate probability
across those pure strategies. Second, a mixed strategy profile is evaluated accord-
ing to the expected payoff it generates. This transformed game is referred to as
the randomized version of the game. So, what do we gain from this transfor-
mation? The answer is that although there is no Nash equilibrium for the origi-
nal game in Figure 7.1, there is a Nash equilibrium for its randomized version.



            To derive the solution to the randomized version, let’s first plot the expected
payoffs to the police officer from her two pure strategies and show their de-
pendence on a value for d (i.e., on the drug dealer’s mixed strategy). Note that
a pure strategy is just the special (and degenerate) case of a mixed strategy.
Thus, the pure strategy streets corresponds to the condition and the pure
strategy park to the condition In that case,



            VPO(1, d) � 60 � 60 � 50d � 130d � 80d.



            p � 0.
p � 1



            Given a strategy pair (p, d), the expected payoff to the police officer, denoted
is thenVPO(p, q),
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            This expected payoff is plotted in FIGURE 7.3 along
with the expected payoff for choosing park,
namely,



            Using Figure 7.3, we can derive the police of-
ficer’s best-reply function that describes her op-
timal value for p for each value of d. As is clear
from that figure, when she prefers to pa-
trol the park (i.e., the expected payoff from 
exceeds that from In other words, if the
drug dealer is sufficiently unlikely to ply his
trade on the streets (specifically, then
the police officer prefers to patrol the park.



            Thus far, we’ve shown that if then
is preferred to Next, we want to



            show that if then is also preferred
to any other value of p; that is,



            [7.1]



            To do so, we rearrange the police officer’s expected payoff as follows:



            VPO(0, d) 7 VPO(p, d) for all p 7 0.



            p � 0d 6 6
13,



            p � 1.p � 0
d 6 6



            13,



            d 6 6
13),



            p � 1).
p � 0



            d 6 6
13,



            VPO(0, d) � 60 � 50d.



            FIGURE 7.3 Expected Payoffs for the Police Officer
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            The last line of this equation says that her expected payoff from strategy p
equals the probability of patrolling the streets multiplied by the expected pay-
off from being on the streets, plus the probability of patrolling the
park multiplied by the expected payoff when she does so. Figure 7.3
tells us that when ,



            [7.3]



            Now we perform a few algebraic manipulations on equation (7.3):



            The last line is exactly equation (7.1) and what we wanted to show.
This result should not be surprising. Since is a weighted average



            of and (see equation (7.2)), if exceeds 
then exceeds a weighted average of and . To
conclude, if then yields a strictly higher expected payoff than
any and thus is the unique best reply for the police officer.p 7 0



            p � 0d 6 6
13,



            VPO(0, d)VPO(1, d)VPO(0, d)
VPO(1, d),VPO(0, d)VPO(0, d)VPO(1, d)



            VPO(p, d)



             VPO(0, d) 7 VPO(p, d).



             VPO(0, d) 7 (1 � p) � VPO(0, d) � p � VPO(1, d),



             p � VPO(0, d) 7 p � VPO(1, d),



             VPO(0, d) 7 VPO(1, d),



            VPO(0, d) 7 VPO(1, d).



            d 6 6
13



            VPO(0, d)
VPO(1, d)



            [7.2]



             � p � VPO(1, d) � (1 � p) � VPO(0, d).



             � p � 3d � 80 � (1 � d) � 0 4 � (1 � p) � 3d � 10 � (1 � d) � 60 4 VPO(p, d) � p � d � 80 � p � (1 � d) � 0 � (1 � p) � d � 10 � (1 � p) � (1 � d) � 60
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            By the same brand of logic, we can show that if then (choos-
ing streets for sure) not only yields a strictly higher expected payoff than 
but does so also for any and thus is the unique best reply for the police
officer. Intuitively, if the drug dealer is sufficiently likely to be on the streets,
then that is where the police officer wants to be.



            The sole remaining case is when In that situation, the expected payoff
from choosing the pure strategy streets and the pure strategy park are the same.
Furthermore, the expected payoff is the same for any value of p. This is so because



            Recall that so the second
term on the second line is zero. Since 
is the same for all p, every value for p in [0,1] is a
best reply.



            Pulling together the preceding results, we plot
the police officer’s best reply in FIGURE 7.4. The
horizontal line running from 0 to 1 at in-
dicates that all values for p are best replies in
that case.



            The drug dealer’s best reply can be derived
analogously and is plotted in FIGURE 7.5, along
with the best reply of the police officer. (As prac-
tice, go ahead and derive it.) When the
pure strategy of selling on the streets is
the unique best reply for the drug dealer. If it is
sufficiently unlikely that the police will be pa-
trolling the streets, then that is where the drug
dealer wants to be. If then the pure strat-



            egy of being in the park is the unique
best reply. And when the drug dealer
is indifferent between his two pure strate-
gies, which implies that any value for d is a
best reply.



            Recall that a strategy profile is a Nash
equilibrium when each player’s strategy is a
best reply to the other players’ strategies.
Letting and denote the
best replies of the police officer and the drug
dealer, respectively, we see that is a
Nash equilibrium when



            This is nothing more than the intersection of
the two best-reply functions, which is de-
picted in Figure 7.5. Given that the drug
dealer chooses the mixed strategy the
mixed strategy is a best reply for the policep*



            d*,



            p* � BRPO(d*) and d* � BRDD(p*).



            (p*, d*)



            BRDD(p)BRPO(d)
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13,
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p 7 5
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p 6 5
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13
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13)
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13)



             � VPO(0, 6
13) � p � 3VPO(1, 6



            13) � VPO(0, 6
13) 4 VPO(p, 6



            13) � p � VPO(1, 6
13) � (1 � p) � VPO(0, 6
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13.
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p � 0,
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13,



            FIGURE 7.4 Best Reply for the Police Officer
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            FIGURE 7.5 Nash Equilibrium for the Police Patrol and
Drug Trade Game
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            officer.* Furthermore, given that the police officer
chooses the mixed strategy the mixed strategy is a
best reply for the drug dealer. It is clear from Figure 7.5
that there is a unique Nash equilibrium, and it has the
police officer patrolling the streets of the time and the
drug dealer on the streets of the time.



            7.3.2 Some General Properties of a Nash
Equilibrium in Mixed Strategies



            Let’s review what we just covered. For a given game,
let denote the number of pure strategies of player
i. In formulating the randomized version of a game, a
strategy is a randomization of a player’s pure strate-
gies. Thus, a mixed-strategy for player i assigns a probability to each of her



            pure strategies. The mixed-strategy set comprises every -tuple of num-
bers that lie in the interval [0,1] and sum to 1. In other words, the mixed-
strategy set encompasses all ways over which the player’s pure strategies
can be randomized. Note that the mixed-strategy set includes pure strate-
gies as well. Each player evaluates a particular mixed-strategy profile by
using the associated expected payoff. A Nash equilibrium for the random-
ized version of a game is a mixed-strategy profile whereby each player’s
mixed strategy maximizes her expected payoff, given the other players’
mixed strategies.**



            Before moving on to some applications—since that is where all of the
excitement is—a few general points on mixed-strategy Nash equilibria
are worth noting. The first point is credited to John Nash, whom we orig-
inally met back in Chapter 4. Recall that a finite game is a game with a
finite number of players and, for each player, a finite number of (pure)
strategies.



            Existence of a Nash Equilibrium: Every finite game has a Nash
equilibrium in mixed strategies.3



            This is a highly useful property. It tells us that it is always worth looking for a
Nash equilibrium in mixed strategies because, if we’ve conducted the analysis
correctly, we’re sure to find one. It may be an equilibrium in pure strategies or
one that has at least one player randomizing.



            Having established that there is always at least one Nash equilibrium,
we note the next point, which was contributed by Robert Wilson of
Stanford University and tells us something about how many equilibria
there are.



            Number of Nash Equilibria: In almost all finite games, there is a
finite, odd number of Nash equilibria in mixed strategies.4
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            Find a Nash equilibrium in mixed strategies for
the game in FIGURE 7.6.
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            *That there are many other best replies for the police officer is not relevant. Recall that Nash equilibrium
requires only that there be no other strategy that gives a strictly higher payoff. There can be other strate-
gies that give the same payoff.



            **A more precise, but notationally intensive, treatment of the preceding discussion is provided in the ap-
pendix to this chapter.
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            For all but a few peculiar finite games, the number of Nash equilibria is
odd. Whoa, now this property buries the needle on the weirdometer! Weird,
but again useful: Unless you happen to be working with one of those pecu-
liar games, then, if you’ve found, say, two equilibria, you know that there
must be at least one more lurking about. For example, we previously found
two pure-strategy Nash equilibria for the driving conventions game in
Section 4.2. Wilson’s insight suggests that there are probably more, and, in
fact, one can show that there is a third Nash equilibrium in which Thelma
and Louise randomize.



            7.4 Examples
THIS SECTION PRESENTS SOME examples to help you become more comfortable
with deriving mixed-strategy Nash equilibria—which is admittedly no easy
feat—and to show their relevance in yielding solutions for a variety of strate-
gic contexts. Let’s begin with a few tips on solving for mixed-strategy Nash
equilibria.



            For the Drug Trade game, equilibrium had the drug dealer on the streets
with probability and in the park with probability While it seems reason-
able for the drug dealer to randomize so as to keep the police off balance, in
another respect you have to wonder how it can be optimal to let some random
device determine how he behaves. How can it be optimal to let a flip of a coin
determine what you should do?



            Although it is generally the case that flipping a coin is not the best way to
make a decision, there is an exception: It is perfectly reasonable to randomize
over a collection of options when you are indifferent among those options. If
being on the streets and being in the park deliver the same expected payoff,
then the drug dealer doesn’t care which he does and is perfectly content to let
a random device determine his fate. Well, that is exactly the case with a Nash
equilibrium in which players randomize. When the police officer is patrolling
the street corners with probability the drug dealer’s payoff is from either
of his pure strategies:



            Drug dealer’s payoff from streets:



            Drug dealer’s payoff from park:



            In that case, choosing to be on a street corner with probability is quite op-
timal for the drug dealer (as is any other mixed strategy).



            If it is optimal to randomize over some collection of pure strategies,
then a player must receive the same expected payoff from each of those pure
strategies.



            This piece of insight gives us a valuable method for finding mixed-strategy
Nash equilibria. If the drug dealer is to randomize, then the police officer
must choose a mixed strategy that makes the dealer indifferent between his al-
ternatives. That is, the equilibrium strategy for the police officer is that value
for p which equates the dealer’s expected payoff from his two pure strategies:



            p � 20 � (1 � p) � 90 � p � 100 � (1 � p) � 401 p � 5
13.
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            To then find the drug dealer’s equilibrium strategy, you need to derive the value
for d that makes the police officer indifferent between her two pure strategies:



            Admittedly, it may seem a bit strange that we are using the police officer’s
payoffs to determine the drug dealer’s equilibrium strategy and the drug
dealer’s payoffs to determine the police officer’s equilibrium strategy. But it is
important to keep in mind the nature of a Nash equilibrium in mixed strate-
gies. A player randomizes optimally only when he is indifferent toward the
strategies to be randomized. This method thus calls for finding a strategy for
a player that makes the other player indifferent among his own pure strategies
(or some subset of pure strategies).



            Since solving for Nash equilibria in mixed strategies can entail lots of annoy-
ing algebra, any trick that simplifies the game is worth learning. Here is one
trick that works for some games: If a player has a strictly dominated (pure)
strategy, then it must be assigned zero probability by a Nash equilibrium mixed
strategy. For remember, a player is never committed to doing what the random
device suggests that he do. Thus, for it to be optimal to do as prescribed by the
random device, the pure strategy must give the highest payoff among all pure
strategies, which cannot be so if the strategy is strictly dominated.



            Prior to trying to solve for mixed-strategy Nash equilibria, we should delete
all strictly dominated strategies. The set of mixed-strategy Nash equilibria for
that reduced game will then be the same as the set for the original game, since
all we’ve done is delete the pure strategies that aren’t going to be used (i.e., are
going to be assigned zero probability). By the same argument, if there is now
a strictly dominated strategy in that reduced game, a Nash equilibrium strat-
egy must assign it zero probability, since, given the strategies that might be
used by the other players, the strictly dominated strategy is inferior to some
other pure strategy. Thus, a Nash equilibrium mixed strategy assigns zero
probability to strategies that are strictly dominated for the game derived by
first deleting all strictly dominated strategies from the original game. This,
then, gives us a potentially yet smaller game upon which we can apply the
same argument to conclude that strictly dominated strategies for it will be as-
signed zero probability. Following this line of logic, we see that strategies
which do not survive the iterative deletion of strictly dominated strategies
(IDSDS) must be given zero probability by a Nash equilibrium strategy.



            If a pure strategy does not survive the iterative deletion of strictly
dominated strategies, then a Nash equilibrium strategy assigns it zero
probability.



            Our recommendation, then, is first to apply the IDSDS to eliminate all
those strategies which will be assigned zero probability anyway, and then,
upon the game that remains, look for mixed-strategy Nash equilibria.



            � SITUATION: AVRANCHES GAP IN WORLD WAR II



            One of the most momentous events in twentieth-century military history
was the invasion of Normandy in 1944. Instrumental in the defeat of Nazi



            d � 80 � (1 � d) � 0 � d � 10 � (1 � d) � 601 d � 6
13.
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            Germany, it has been described in many books and portrayed in numerous
films, including Stephen Spielberg’s Saving Private Ryan. Strategy had a
central role in what was known by its code name of Operation Overlord,
particularly with regard to its date and location. The Germans anticipated
that there would be an invasion; the question was when and where. Using
double agents and radio communications they knew would be intercepted
by the Germans, the Allied command deceived the Germans into thinking
that the invasion would occur elsewhere in France (at Pas de Calais) and in
Norway.



            Strategy was at work not only at this grand level, but at the local level, with
many commanding officers facing individual strategic situations as the battle
unfolded. One of these strategic situations arose in the Avranches Gap, a part
of the French coast, and involved General Omar Bradley, who was command-
ing the U.S. First Army, and Field Marshall Gunther von Kluge of the German
Seventh Army.5



            The particular issue that’ll concern us is what Bradley should do with a re-
serve of four divisions south of the gap. Bradley saw himself as having two op-
tions. First, he could use the troops to reinforce the gap and thus make it more
difficult for the German Army to break the gap if the Germans chose to attack.
Second, he might move the reserves eastward, with the intent of harassing the
Germans. In his own words,6



            Either we could play safe on the hinge by calling back those last four divi-
sions to strengthen Hodges’ defenses at Mortain and thus safeguard the
lifeline of our Brittany forces, or we could take a chance on an enemy break-
through at Mortain and throw those four divisions against his open flank in
an effort to destroy the German Seventh Army.
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            As for General von Kluge, we don’t know what was going on in his mind,
but two reasonable options were to attack the gap and to withdraw. This is
how Bradley described it:7



            [T]he German Command was faced with a perplexing decision . . . Either he
could withdraw the loose left flank, straighten his north–south line, and hold
it intact for an orderly retreat to the Seine, or he could gamble an Army by
striking for Avranches in an effort to close our gap and peg the loose end of
his line back to the sea. . . .



            The geography of the situation, along with the four possible outcomes, is de-
picted in FIGURE 7.7.



            FIGURE 7.7 Possible Troop Deployments at the Avranches Gap



            GAP HOLDS WEAK PRESSURE ON GERMAN WITHDRAWAL



            Bradley: Reserve to reinforce gap.
von Kluge: Attack gap.
Estimated Outcome: U.S. forces would repulse attack to
hold gap.



            Bradley: Reserve to reinforce gap.
von Kluge: Withdraw.
Estimated Outcome: U.S. forces would be deployed for
attack which did not come.



            Bradley: Order reserve eastward.
von Kluge: Withdraw.
Estimated Outcome: U.S. forces ideally deployed for
harassment of German withdrawal.



            Bradley: Order reserve eastward.
von Kluge: Attack gap.
Estimated Outcome: Germans may break through to cut gap
and cut off the U.S. Third Army.
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            A payoff matrix associated with this strategic setting
is shown in FIGURE 7.8. The best outcome for Bradley is
for von Kluge to withdraw and Bradley to send the
troops eastward to harass the German forces. The
worst outcome for Bradley—and consequently the best
for von Kluge—is to send the troops eastward while
von Kluge attacks, since Bradley’s troops would then be
unavailable for repelling the attack. Von Kluge’s worst
outcome is to attack when Bradley has kept the re-



            serves there to reinforce the gap, because von Kluge’s defeat then becomes
quite likely.*



            It should not be difficult to see that there is no Nash equilibrium in pure
strategies for this game. If von Kluge is expected to choose attack, then
Bradley’s best reply is reinforce. But if Bradley is expected to choose reinforce,
then von Kluge prefers withdraw. If, instead, von Kluge is expected to choose
withdraw, then Bradley would like to choose eastward, but if that is so, then
von Kluge should attack, not withdraw. There is no stable pair of pure strate-
gies in which each commander is choosing optimally, given what the other
commander is to do.



            To look for a Nash equilibrium in mixed strategies, let r denote the probabil-
ity that Bradley chooses reinforce and be the probability that he chooses
eastward. For von Kluge, a denotes the probability that he chooses attack and



            is the probability that he chooses withdraw. If von Kluge is to randomize,
then he must be indifferent between his two pure strategies, which means that



            where the left-hand expression is the expected payoff from attack and the
right-hand expression is the expected payoff from withdraw. Solving this
equation for r gives us Thus, if Bradley allocates equal probability to
sending the troops eastward and using them to reinforce his position, then
von Kluge’s expected payoff is the same from either attacking or withdrawing.



            If Bradley is to find it optimal to randomize—whether it is to send the
troops eastward with probability or some other probability—he must be in-
different between his two pure strategies:



            Hence, if von Kluge attacks with probability then Bradley’s expected payoff
is indeed the same whether or not he sends the troops eastward. Thus, if 
then is a best reply (as is any other mixed strategy for Bradley).
Furthermore, is a best reply to since we already showed that von
Kluge is content to randomize when Bradley is as likely to send the troops
eastward or not. In sum, and is a Nash equilibrium, so both com-
manders are randomizing.



            So, what is the rest of the story? Well, it’s a bit more complicated than our
analysis suggests (since there proved to be a third player). Von Kluge chose to
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            FIGURE 7.8 The Situation at Avranches Gap
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            *Although these are reasonable ordinal payoffs, it isn’t clear that they are reasonable cardinal payoffs.
However, our primary purpose in presenting this game is to learn how to use the solution concept of
mixed-strategy Nash equilibrium, so let’s not dwell on this issue.
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            withdraw, but then was overruled by Adolf Hitler, who insisted that he attack.
Von Kluge did as ordered, the attack failed, and, in retreat, von Kluge commit-
ted suicide. But the story doesn’t end there. Recently, it was revealed that
Bradley may have known of von Kluge’s plans because of the Allied force’s
ability to intercept and decipher secret German messages.8 A proper analysis
of the Avranches Gap awaits a yet more subtle and complex model.



            � SITUATION: ENTRY INTO A MARKET



            Suppose a new market has just opened up and four prospective companies
are contemplating entry into it. The cost of entry to a company varies across
the companies and is listed in TABLE 7.3. Once they have entered,
all companies earn the same gross profit, which depends only on
how many competitors there are; the companies’ gross profits are
listed in TABLE 7.4. A company’s payoff from choosing enter is its
gross profit minus the cost of entry. The payoff from do not enter
is zero.



            Before beginning to derive mixed-strategy Nash equilibria, we
should determine whether the game can be simplified. One way to do
that is to check for strictly dominated strategies, since we know that
such strategies are assigned zero probability by a Nash equilibrium
strategy. In fact, do not enter is strictly dominated by enter for com-
pany 1: Regardless of how many other companies decide to enter the
market, company 1’s payoff from entry is positive, since its gross
profit is never less than 150 and its cost of entry is only 100. Thus,
any Nash equilibrium will give zero probability to do not enter for
company 1, which means that company 1 will use the pure strategy
enter. In other words, enter is a dominant strategy for company 1.



            Next, note that if company 1 enters, then company 4’s payoff
from entry is negative regardless of what companies 2 and 3 do.
Even if the latter two companies don’t enter, company 4’s payoff is



            which is less than the payoff from staying out
of the market. At a Nash equilibrium, company 4 uses the pure strat-
egy do not enter.



            Having just gone through two rounds of the iterative deletion of
strictly dominated strategies, we have then surmised that, at a Nash
equilibrium, company 1 chooses enter and
company 4 chooses do not enter. The game
which remains is that faced by companies 2
and 3, and is described in FIGURE 7.9.



            This game has two pure-strategy equilib-
ria: (enter, do not enter) and (do not enter,
enter). To sum up, the four-player game has
two pure-strategy Nash equilibria: (1) com-
panies 1 and 2 enter, and companies 3 and 4
stay out; and (2) companies 1 and 3 enter,
and companies 2 and 4 stay out.



            Recall that, for most finite games, there is a finite and odd number of Nash
equilibria. Thus far, we’ve found two equilibria; there should be more. Moreover,



            �100(� 400 � 500),



            TABLE 7.3 HETEROGENEOUS
COST OF ENTRY



            Firm Entry Cost



            1 100



            2 300



            3 300



            4 500



            TABLE 7.4 COMMON GROSS
PROFIT



            Number of Gross Profit



            Entrants per Entrant



            1 1000



            2 400



            3 250



            4 150



            FIGURE 7.9 Entry Game After the IDSDS
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            since all of the pure-strategy equilibria have been found, any remaining Nash
equilibria must entail one or more companies randomizing.



            Returning to Figure 7.9, suppose companies 2 and 3 randomize in their
entry decisions, and let be the probability that firm chooses enter.
Then the value for that makes company 2 indifferent between entering and
not entering is defined by



            [7.4]



            where the left-hand expression is the expected payoff
from enter and the right-hand value of zero is the payoff
from do not enter. If company 3 enters, which occurs with
probability then entry by company 2 means that there
are three companies in the industry (don’t forget that
company 1 also enters), in which case company 2’s pay-
off is With probability company 3 doesn’t
enter, so company 2’s payoff from entering is 100. Solving
equation (7.4) for we get Also, because the sit-
uations faced by companies 2 and 3 are symmetric, the
same exercise can be conducted to show that if 
then company 3 is indifferent between its two strategies.



            We have thus discovered a third Nash equilibrium in
which company 1 enters for sure, companies 2 and 3
each enter with probability and company 4 does not
enter. We see, then, that a Nash equilibrium can have



            some, but not all, players randomizing.



            7.5 Advanced Examples
THE PRECEDING EXAMPLES ALL came down to solving for mixed-strategy equilibria
when there are two players and each player has two strategies. In this section,
we take on some more challenging games that, hopefully, are sufficiently
thrilling scenarios to warrant the challenge. The first example is a classic when
it comes to mixed strategies: the penalty kick in soccer. Retaining the assump-
tion of two players—here, it is a goalkeeper and a kicker—we now allow for
three pure strategies: The kicker can send the ball to the left, to the middle, or
to the right, while the keeper can dive to the left or to the right or stay in the cen-
ter. A popular setting for an outguessing situation arises in “slash ’em-up”
films—films in which the killer is in pursuit of his next victim. Modeling the
classic teenager gore fest Friday the 13th, we assume that there are three play-
ers: the killer and two teenagers. The teenagers decide whether to try to escape
through the front or back door, and the killer decides whether to lurk near the
front or back door. The final example examines what psychologists call the “by-
stander effect” and does so in a model with an arbitrary number of players. This
is not an outguessing game, and in fact, there are asymmetric Nash equilibria
in pure strategies, but the only symmetric equilibrium is in mixed strategies.



            � SITUATION: PENALTY KICK IN SOCCER



            After 120 minutes of play, the 2006 World Cup Final between France and Italy
came down to penalty kicks (or PKs). With Italy leading 4–3 in PKs, Fabio
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            e3 � (�50) � (1 � e3) � 100 � 0,
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            Find a Nash equilibrium in mixed strategies for
the game in FIGURE 7.10.
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            Grosso of Italy was poised 12 yards away from French goalkeeper Fabien
Barthez, who crouched along the goal line, ready to defend. Grosso stepped
into the ball and sent it rocketing to the right corner of the goal, while Barthez
guessed wrong and dove to the left. Italian players rejoiced, while the French
players dropped to the field in disbelief and disappointment.



            At the heart of this situation is the mind game between the kicker and the
goalkeeper. Where does the kicker kick the ball? Where does the goalkeeper
lunge? This strategic situation is far from unique to soccer and takes analogous
forms in many other sports. In baseball, what type of pitch does the pitcher
throw (fast ball, splitter, curve ball, slider, etc.) and what type of pitch does the
batter prepare for? In football, does the defense blitz and does the offense call
a play anticipating a blitz? In tennis, does the server put the ball down the mid-
dle or down the line and what direction does the other player anticipate? These
are all outguessing games that make strategy, and not just skill, relevant.



            In modeling the penalty kick in soccer, suppose the
kicker and the goalkeeper are exclusively deciding on di-
rection: In what direction should the kicker kick the ball,
and in what direction should the keeper dive. The possi-
bilities are left, center, and right, where all directions are
from the perspective of the kicker. (For the goalkeeper,
center means not diving.) Assume that the payoff to the
kicker is the probability of scoring and the payoff to the
goalkeeper is the probability of the kicker not scoring.
The payoff matrix is shown in FIGURE 7.11.



            Roughly speaking, these frequencies of success are
consistent with actual play.9 If the goalkeeper guesses
wrong—for example, going to the right when the kicker sends the ball to the
left—a goal is scored about 95% of the time. If the goalkeeper dives in the correct
direction, then about 35% of the time a goal is not scored. Both players going to
the center is a fairly rare occurrence, and we round down by assuming that a goal
is not scored for sure in that instance.



            A Penalty Kick in the 2006 World Cup Final



            FIGURE 7.11 Penalty Kick
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            It is clear that this game does not have a pure-strat-
egy Nash equilibrium. For example, if Barthez always
dove to the right, then a kicker such as Grosso would
know to kick the ball to the center or left. But if Grosso
was expected to do that, then Barthez would not want to
dive to the right. TABLE 7.5 shows the actual frequency of
outcomes between the kicker and goalkeeper; not sur-
prisingly, they both tend to mix it up in their choices.
The key to success here is not to be predictable.



            A mixed strategy for the kicker is a probability of
going left (denoted a probability of going center (de-
noted and a probability of going right (denoted 
Since values for and nail down a
mixed strategy for the kicker, with 
Analogously, let and denote the probability of
the goalkeeper going to the left, center, and right, re-
spectively. Then values for and define a mixed strat-
egy for the goalkeeper, with 



            A Nash equilibrium could entail the kicker random-
izing either over two of his strategies (say, left and right)
or over all three. Let us conjecture that there is a Nash
equilibrium with each player assigning positive proba-
bility to all three of their pure strategies. For that to be
the case, the kicker’s expected payoffs from shooting to



            the left, center, and right must be the same. Following are each of those
expected payoffs:



            gc � 1 � gl � gr.
grgl



            grgc,gl,
kc � 1 � kl � kr.



            krklkl � kc � kr � 1,
kr).kc),



            kl),



            TABLE 7.5 ACTUAL CHOICES OF KICKERS
AND GOALKEEPERS*



            Frequency 



            Kicker Goalkeeper    (Percent)



            Left Left 19.6



            Left Center 0.9



            Left Right 21.9



            Center Left 3.6



            Center Center 0.3



            Center Right 3.6



            Right Left 21.7



            Right Center 0.5



            Right Right 27.6



            *Recall that “right” means that the kicker sent the ball in his natural
direction and “left” means that he sent it opposite to his natural
direction. For example, 19.6% of outcomes are listed as left/left.
This means that 19.6% of outcomes had a right-footed kicker send
the ball to the left or a left-footed kicker send it to the right and, in
both instances, the goalkeeper went in the same direction as the ball.



            We want to find a strategy for the goalkeeper—that is, values for and —
whereby all three payoffs for the kicker are equal. Equating equations (7.5) and
(7.7), we see that the payoffs from choosing left and right must be the same:



            Thus, at a Nash equilibrium, the goalkeeper must dive to the left and to the right
with equal probability. In other words, if the kicker is to be indifferent between
kicking the ball to the left and to the right, then the goalkeeper must have equal
probability of diving to the left and to the right. Let this common probability be
denoted g; Substituting g for and in equations (7.5)–(7.7), we
find that the kicker’s payoff is now from choosing either left or right
and is 1.9g from choosing center. The payoff for left (or right) and center must be
the same if the kicker is to be indifferent among his three choices:



            In sum, a Nash equilibrium strategy has the goalkeeper go to the left with
probability .43, go to the right with probability .43, and remain in the center



            .95 � .3g � 1.9g1 g �
.95
2.2



            � .43.



            .95 � .3g
grglgl � g � gr.



            .95 � .3gl � .95 � .3gr1 gl � gr.



            grgl



            Payoff to kicker from left: [7.5]



            Payoff to kicker from center: [7.6]



            Payoff to kicker from right: [7.7]gl � .95 � (1 � gl � gr) � .95 � gr � .65 � .95 � .3gr.



            gl � .95 � (1 � gl � gr) � 0 � gr � .95 � .95(gl � gr),



            gl � .65 � (1 � gl � gr) � .95 � gr � .95 � .95 � .3gl,
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            with probability .14. Only with those probabilities is the kicker indifferent as
to where he sends the ball.



            Of course, for the goalkeeper to find it optimal to randomize among his
three alternatives, each of them must produce the same expected payoff. The
same sequence of steps can be used to derive the strategy for the kicker that
will make the keeper indifferent. Doing so reveals that the kicker sends the ball
to the left with probability .43, to the right with probability .43, and to the cen-
ter with probability .14.



            With these equilibrium strategies, the probability that a goal is scored can
be calculated as follows:



            The first of the three terms says that the goalkeeper dives to the right with
probability .43. In that event, if the kicker also goes to the right (which occurs
with probability .43), then a goal is scored 65% of the time; if the kicker goes
to the center (which occurs with probability .14), then a goal is scored 95% of
the time; and if the kicker goes to the left (which occurs with probability .43),
then a goal is scored 95% of the time. The second and third terms pertain to
when the goalkeeper stays in the center and dives to the left, respectively. Our
simple theory then predicts that a goal is scored about 82% of the time.



            Another prediction of this theory is that the probability of scoring is equal-
ized between the various options. A kicker is content to randomize between
kicking the ball to the left and kicking it to the right only if the chances of
making a goal are approximately the same. A study supports the prediction of
equalization:10 For 22 different kickers, the frequency of scoring when the ball
was kicked in a kicker’s natural direction was 82.68%, where “natural direc-
tion” means that a right-footed kicker kicks it to the right or center and a left-
footed kicker kicks it to the left or center. Kicking it in the other direction (for
example, a right-footed kicker kicks it to the left) resulted in a goal being
scored 81.11% of the time. Statistically speaking, 82.68% and 81.11% are in-
distinguishable. As predicted, the likelihood of scoring is the same regardless
of the direction.



            � SITUATION: SLASH ’EM UP: FRIDAY THE 13TH



            In Friday the 13th, a young boy named Jason Voorhees drowned in 1957 while
attending Crystal Lake Camp. Two camp counselors were then mysteriously
murdered the next year. The camp has now reopened in 1979 after having
been closed for many years. The village wacko warns that there will be mur-
ders, but no one listens. Will he prove to be right? Jason, attired with hockey
mask and confidently gripping a large, sharp knife, is stalking two of the camp
counselors, Beth and Tommy, in the main house. Will they survive, or will
Jason do them in?



            Beth and Tommy are separated in the main house and thus must independ-
ently decide whether to make a run for the front door or hightail it for the



            � .82044.



            � .43 � (.43 � .95 � .14 � .95 � .43 � .65)



            .43 � (.43 � .65 � .14 � .95 � .43 � .95) � .14 � (.43 � .95 � .14 � .0 � .43 � .95)
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            back door. Similarly, Jason is trying to decide whether to lurk in the shadows
in the front hallway or lie in wait in the back hallway. Their preferences are
pretty simple. The best outcome for both Beth and Tommy is to choose the
same exit while Jason chooses a different one. This outcome gets a payoff of
3 if they escape through the front door and 2 if they exit through the back
door; the front door is better because it is closer to the main road. From Beth
and Tommy’s perspective, the next-best outcome is if all three choose the same
exit. In a two-on-one situation, escape is still possible; this outcome is as-
signed a payoff of 0.



            The remaining outcomes are evaluated differently by Beth and Tommy. For
Tommy, the next-best outcome is for Beth and Jason to choose the same exit,
while Tommy chooses a different one; Tommy thus evades Jason. The worst
outcome for Tommy is when he and Jason choose the same exit (and Beth
chooses a different one); the payoff for Tommy in this case is �4. For Beth, the
payoffs for these two outcomes are reversed.



            Finally, we come to Jason, whose best outcome is either for Jason and Beth
(but not Tommy) to choose the same exit or for Jason and Tommy (but not Beth)
to choose the same exit. Jason’s payoff is 2 in those cases. Jason’s worst outcome
is when Beth and Tommy choose the same exit and Jason chooses the other one;
the payoff is then From Jason’s perspective, the outcome in which all three
players choose the same exit lies in the middle and has a payoff of 0.



            The payoffs are summarized in FIGURE 7.12. Tommy chooses a row, Beth
chooses a column, and Jason chooses a matrix. The first payoff in a cell is
Tommy’s, the second payoff is Beth’s, and the third is Jason’s. This is only partly
an outguessing game, in that Beth and Tommy want to outguess Jason (and
vice versa), but Beth and Tommy would like to coordinate on the same exit.
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            FIGURE 7.12 Friday the 13th



            0,0,0



            1,�4,2



            �4,1,2



            2,2,�2



            Front 
Tommy



            Beth



            Jason, Front



            Front Back



            3,3,�2



            �4,1,2



            1,�4,2



            0,0,0



            Front 
Tommy



            Beth



            Jason, Back



            Front Back



            BackBack



            There is no pure-strategy Nash equilibrium. To derive a Nash equilibrium
in mixed strategies, let t denote the probability that Tommy chooses Front, b
denote the probability that Beth chooses Front, and j denote the probability
that Jason chooses Front. Let’s begin by calculating Jason’s expected payoff
from going to the front hallway:



            [7.8]� �2 � 4t � 4b � 6tb.t � b � 0 � t � (1 � b) � 2 � (1 � t) � b � 2 � (1 � t) � (1 � b) � (�2)



            The terms of this equation are as follows: With probability both Tommy
and Beth try to escape through the front door, and if Jason is there as well,
Jason’s payoff is 0. With probability Tommy goes to the front doort � (1 � b),



            t � b,
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            and Beth to the back door, in which case Jason can attack Tommy, for which
Jason’s payoff is 2. The third term is the analogous situation in which Jason
finds Beth instead of Tommy in the front hallway. Finally, with probability



            both Beth and Tommy escape out the back as Jason waits
at the front, so Jason’s payoff is Jason’s expected payoff from lurking in
the back hallway is similarly defined:



            [7.9]



            If Jason is to randomize between waiting in the front and waiting in the
back, his payoff from those two alternatives must be the same. Equating equa-
tions (7.8) and (7.9) and solving, we have



            [7.10]



            Thus, at a Nash equilibrium, the probability of Tommy going to the front plus
the probability of Beth going to the front must sum to 1 if randomizing is to
be optimal for Jason.



            Turning to Tommy, his expected payoff from trying to escape through the
front door is



            It, instead, he goes for the back door, his expected payoff is



            For Tommy to find it optimal to randomize, it must be true that



            [7.11]



            Since the situations faced by Tommy and Beth are symmetric, an analogous
condition is derived for her:



            [7.12]



            Combining equations (7.10), (7.11), and (7.12), is a Nash equilib-
rium if



            If those three conditions hold, then all three players are content to randomize.
The last two conditions imply that Combining this equation with the first
condition, yields Thus, Tommy and Beth are equallyt* � 1



            2 � b*.t* � b* � 1,
t* � b*.



             7j* � 6t* � t*j* � 1.



             7j* � 6b* � b*j* � 1,



            t* � b* � 1,



            (t*, b*, j*)



            7j � 6t � tj � 1.



            7j � 6b � bj � 1.1 � 2b � 5j � 2bj � �4b � 2j � 3bj1



            �4b � 2j � 3bj.
b � j � 1 � (1 � b) � j � 2 � b � (1 � j) � (�4) � (1 � b) � (1 � j) � 0 �



            1 � 2b � 5j � 2bj.
b � j � 0 � (1 � b) � j � (�4) � b � (1 � j) � 3 � (1 � b) � (1 � j) � 1 �



            �2 � 4t � 4b � 6tb � 2t � 2b � 6tb1 t � b � 1.



            2t � 2b � 6tb.
t � b � (�2) � t � (1 � b) � 2 � (1 � t) � b � 2 � (1 � t) � (1 � b) � 0 �



            �2.
(1 � t) �  (1 � b),
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            likely to make a mad dash for the front and for the back. Given this equal likeli-
hood, we can use equation (7.12) to derive Jason’s equilibrium strategy:



            Jason then goes to the front hallway with probability 
So, what is the probability that both Tommy and Beth escape? It is the prob-



            ability that both go to the front door and Jason is hiding at the back door, or



            plus the probability that Tommy and Beth go to the back door and Jason is at
the front door, or



            Since this sum is , there is a 25% chance that both Tommy and Beth get out
of the house unharmed—but even if they do, there is always Friday the 13th,
Part 2.



            � SITUATION: BYSTANDER EFFECT



            There is an infamous episode in 1964 in which Kitty Genovese was attacked
near her apartment building in New York City. In spite of her screams report-
edly having been heard by 38 people, no one came to her aid. Although shock-
ing, the lack of response is not entirely surprising and has come to be called
the bystander effect. Laboratory and field studies by psychologists have shown
that a person is less likely to offer assistance to someone in need when the per-
son is in a group than when alone. All those people who heard Kitty
Genovese’s cries knew that many others heard them as well. Some studies
even find that the more people there are who could help, the less likely help is
to occur.11 Let us show that these observations are consistent with equilibrium
behavior in a simple game-theoretic model.12



            Suppose there are people who are faced with the decision of whether
to help someone in need of assistance. Each simultaneously chooses between
helping the victim (help) and ignoring the victim (ignore). We presume that
people are like minded and that each person cares about whether the victim
is helped, but also that helping is personally costly. A person’s payoffs can take
four possible values, as shown in FIGURE 7.13.
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            FIGURE 7.13 Payoff to a Player in the Bystander Game
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            Unlike what we assumed in previous games, we’re not saying exactly what
the payoffs are; we just represent them symbolically by letters. a, b, c, and d
are allowed to take any numerical values, as long as they satisfy two condi-
tions: and For example, and is fine,
while and is ruled out.



            What do these assumptions on payoffs imply about preferences? First,
means that a person prefers to help a victim if no one else intends to do



            so. However, since , a person prefers not to help if someone else intends
to do so. People are then willing to help, but they don’t want to bother doing
so if someone else will do it.



            This game has n pure-strategy Nash equilibria, each of which has one per-
son helping and the other people staying out of the fray. There are 
equilibria because they differ by the identity of the person who does the help-
ing. For example, consider a strategy profile in which player 1 helps and play-
ers ignore. By helping, player 1’s payoff is a, and by not helping, his
payoff is lower, at d, since his lack of help means that the victim receives no
assistance, given that the other players are not intending to help. Thus,
player 1’s strategy is optimal. Turning to any one of the other players, her pay-
off from ignore is b, and that exceeds the payoff from helping, which is c. This
is then, indeed, a Nash equilibrium.



            These equilibria are, of course, asymmetric in that the entirety of the bur-
den of helping falls on one person. A more symmetric solution can be found
by deriving an equilibrium in mixed strategies. Suppose each person chooses
to help with some common probability p. A symmetric equilibrium is a value
for p—call it —such that if each of the other players help with proba-
bility then it is optimal for a player also to help with probability This
means that if each of the other players helps with probability then a
player is indifferent between helping and ignoring and thus is content to ran-
domize with any probability, including 



            Given that the other players each help with probability p, the ex-
pected payoff to a player from helping is as follows:



            Expected payoff from help [7.13]



            Since each of the other players ignores with probability and since their
choices are independent, the probability that all of them ignore is 
multiplied times, or In the event that none of the other
players help, this player receives a payoff of a from helping. With probability



            at least one of the other players helps, and the payoff
to this player from also helping is only c.* This explains the expected payoff
in (7.13).



            What is the payoff if this player instead chooses to ignore the victim?



            Expected payoff from ignore [7.14]



            Again, given their mixed strategies, all of the other players ignore with proba-
bility If this player also chooses ignore, then the payoff is only d,(1 � p)n�1.



            � (1 � p)n�1 � d � 31 � (1 � p)n�1 4 � b.



            n � 11 � (1 � p)n�1,



            (1 � p)n�1.n � 1
1 � pn � 1
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            � (1 � p)n�1 � a � 31 � (1 � p)n�1 4 � c.
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            d � 1c � 4,b � 3,a � 5,
d � 1c � 2,b � 3,a � 4,b 7 c.a 7 d



            *Note that either the victim is helped by at least one of the other players, or the victim is helped by
none of them. Hence, the sum of the probabilities of these two events must equal 1. Since the probability
of the latter event is the probability of the former event must be 1 � (1 � p)n�1.(1 � p)n�1,
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because he feels bad for the victim’s having been neglected. With probability
at least one of the other players helps, so the payoff for ignore



            is b.
The equilibrium strategy is then the value for p that equates equations



            (7.13) and (7.14) so that a player is content to randomize:



            Performing some algebraic manipulations on this equation, we can solve for
the symmetric equilibrium mixed strategy:



            To analyze the properties of this equilibrium, assume that 
and so that the expression in (7.15) is



            This equilibrium probability is plotted in FIGURE 7.14 against the number of
players in the game. The probability that a person
helps is lower when there are more people who can
help, which is the first property from the psychologi-
cal studies that we wanted to show.



            Although each person is less likely to help, there are
also more people who could help. Accordingly, it isn’t
immediately clear whether having a bigger group
makes it more or less likely that at least one person of-
fers assistance. To answer this question, however, we
just need to calculate the probability that at least one
of the n players will help, which is or



            and is plotted in FIGURE 7.15. Quite amaz-
ingly, more people make it less likely that the victim is
helped!*



            1 � (1
4)



            n
n�1,



            1 � (1 � p*)n,



            p* � 1 � (1
4)



            1
n�1.



            d � 1,c � 2,
b � 3,a � 4,



             p* � 1 � c b � c



            (a � d) � (b � c)
d 1



            n�1



            .



             1 � p* � c b � c



            (a � d) � (b � c)
d 1



            n�1



            ,



             3 (1 � p*)n�1 4 1
n�1 � c b � c



            (a � d) � (b � c)
d 1



            n�1



            ,



             (1 � p*)n�1 �
b � c



            (a � d) � (b � c)
,



             (1 � p*)n�1 3 (a � d) � (b � c) 4 � b � c,



             (1 � p*)n�1a � c � (1 � p*)n�1c � (1 � p*)n�1d � b � (1 � p*)n�1b,



             (1 � p*)n�1a � 31 � (1 � p*)n�14  c � (1 � p*)n�1d � 31 � (1 � p*)n�1 4  b,



            (1 � p*)n�1a � 31 � (1 � p*)n�1 4  c � (1 � p*)n�1d � 31 � (1 � p*)n�1 4  b.



            p*



            1 � (1 � p)n�1,
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            n



            1



            1 2 3 4 5 6 7 8 9 10
0



            FIGURE 7.14 Probability of a Person Helping



            *It is worth noting that these two properties hold for any values of a, b, c,
and d, as long as and b 7 c.a 7 d



            [7.15]
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            7.6 Games of Pure Conflict and Cautious Behavior
RECALL THAT A TWO-PLAYER constant-sum game is a game in which the two play-
ers’ payoffs always sum to a constant. Since this property implies that a
change in behavior which raises one player’s payoff must lower the other
player’s payoff, constant-sum games are situations of pure conflict. In other
words, what is good for one player is bad for the other.



            Consider the situation faced by Sherlock Holmes and his arch-nemesis,
Professor Moriarty, in Sir Arthur Conan Doyle’s story The Final Solution.
Holmes inflicted serious and perhaps irreparable damage upon Moriarty’s
crime ring and Moriarty is in hot pursuit to wreak vengeance. Holmes’s initial
escape route was to proceed by train from London to Dover and from there to
the continent. As the train pulls out, he notices Moriarty on the platform.
Holmes rightly infers that his adversary, who has similarly seen Holmes, will
secure a special train to overtake him. Holmes is faced with the decision of ei-
ther going to Dover or disembarking at Canterbury, which is the only interme-
diate station. Moriarty, whose intelligence allows him to recognize these pos-
sibilities, has the same set of options.



            Holmes believes that if they should find themselves
on the same platform, it is likely that he’ll be killed by
Moriarty. If Holmes reaches Dover unharmed, he can
then make good his escape. Even if Moriarty guesses
correctly, Holmes prefers Dover, as then, if Moriarty
does fail, Holmes can better escape to the continent.
The strategic form of the game is shown in FIGURE 7.16.
Note that it is a game of pure conflict, since the payoffs
always sum to 100.



            If you have read many Sherlock Holmes stories,
you know that he is both brilliant and arrogant.*



            n



            1



            1 2 3 4 5 6 7 8 9 10
0



            FIGURE 7.15 Probability of at Least One Person Helping



            *Well, . . . “self-assured,” Holmes might say.



            20,80 90,10



            70,30 10,90
Holmes



            Moriarty



            Dover



            Canterbury



            Dover Canterbury



            FIGURE 7.16 The Final Solution
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            While it would be uncharacteristic of him to take a conservative tack in han-
dling a strategic situation, he is smart enough to know that Moriarty may
well be his match. So, rather than think about Holmes formulating a conjec-
ture about what Moriarty would do and then choosing a best reply, let us pre-
sume that he takes a more cautious route in selecting a strategy.



            Suppose, then, that Holmes believes that whatever strategy he selects,
Moriarty will have foreseen it and will act so as to minimize Holmes’ expected
payoff. That he anticipates his payoff being minimized may reflect Holmes’s pes-
simism about the situation, but also keep in mind that, since this is a constant-
sum game, Moriarty minimizing Holmes’s payoff is equivalent to Moriarty
maximizing his own payoff. Having anticipated this response from Moriarty,
Holmes then wants to choose the mixed strategy that maximizes his own ex-
pected payoff. In other words, he exercises caution by optimizing against his
pessimistic beliefs. What we’ve just described Holmes as choosing is what is
known as his maximin strategy. More generally, a maximin strategy maxi-
mizes a player’s payoff, given that the other players are expected to respond by
choosing strategies to minimize that player’s payoff.



            To derive Holmes’s maximin strategy, a bit of notation is required. Let
be Holmes’s expected payoff should he choose a mixed strategy of



            (where is the probability that he goes to Dover) and Moriarty chooses
the pure strategy (which is that Moriarty goes to either Dover or
Canterbury).* The maximin strategy for Holmes is a mixed strategy that solves
the following problem: Choose to maximize when is chosen
to minimize , given what is. If we let be the value for 
that minimizes , then Holmes’ problem can be restated as choosing



            to maximize Thus, in choosing Holmes anticipates that
Moriarty will use and thereby minimize Holmes’s expected payoff.
Whatever Holmes does, Moriarty will anticipate it and act accordingly.



            To solve this problem, first consider Holmes’s expected payoff when
Moriarty chooses to go to Dover:



            If Moriarty chooses Canterbury, Holmes’s expected payoff is



            The expected payoffs are plotted in FIGURE 7.17 for all of the feasible values for
Recall that we’re presuming that whatever value for that Holmes



            chooses, Moriarty will figure it out and choose the station that minimizes
Holmes’s expected payoff. Consequently, Holmes faces the lower envelope of
the two lines shown, which is the bold line. For example, if Holmes sets



            then he anticipates an expected payoff of since
Moriarty’s choosing Canterbury will minimize Holmes’s payoff.



            There is a clear maximum for Holmes in Figure 7.17, and it occurs where
the two lines intersect. We can then solve for his maximin strategy as follows:



            70 � 50pH � 10 � 80pH1 pH � 6
13.



            10 � 80 � (1
4) � 30,pH � 1



            4,



            pHpH.



            VH(pH, Canterbury) � pH � 90 � (1 � pH) � 10 � 10 � 80pH.



            VH(pH, Dover) � pH � 20 � (1 � pH) � 70 � 70 � 50pH.



            b(pH)
pH,VH(pH, b(pH)).pH



            VH(pH, sM)
sMb(pH)pHVH(pH, sM)



            sMVH(pH, sM)pH



            sM



            pHpH



            VH(pH, sM)



            *In looking at Holmes’s problem, there is no loss of generality in supposing that Moriarty is limited to
choosing a pure strategy.
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            Thus, is the mixed strategy that maxi-
mizes Holmes’s expected payoff, given that what-
ever mixed strategy Holmes chooses, Moriarty
responds so as to minimize Holmes’s expected
payoff. is called the maximin strategy
because it maximizes Holmes’s minimum pay-
off, as depicted in Figure 7.17.



            Before moving on, note that our cautious
Holmes strictly prefers to randomize, which was
never the case with the noncautious play of a
Nash equilibrium. If a player randomizes at a
Nash equilibrium—say, with respect to Dover
and Canterbury—then his expected payoff from
that mixed strategy is the same as he gets from
choosing the pure strategy Dover, the pure strat-
egy Canterbury, or indeed any other randomiza-
tion over the two pure strategies. With a Nash
equilibrium, a player is choosing a strategy, hold-
ing the other player’s strategy fixed. That is not the
situation with the cautious play associated with a maximin solution. Holmes
is not taking Moriarty’s strategy as fixed; rather, he expects Moriarty to re-
spond to Holmes’s choice of a mixed strategy by choosing that which mini-
mizes Holmes’s expected payoff. If another player is able to anticipate what
you are going to do, then it may be strictly preferable to randomize.



            If this point isn’t clear yet, imagine that Holmes chose Dover. Then Moriarty
would choose Dover and Holmes’ payoff would be 20. If Holmes chose
Canterbury, then, in minimizing Holmes’s payoff, Moriarty would choose
Canterbury and Holmes’s payoff would be 10. Now consider Holmes flipping a fair
coin between Dover and Canterbury so that each is chosen 50% of the time. From
Figure 7.17, we can see that Moriarty would choose Dover (when and
Holmes’ expected payoff is Thus, Holmes does better to ran-
domize than to use either pure strategy. Randomizing has Moriarty catching
Holmes in Dover 50% of the time, in which case Holmes’ payoff is 20, but 50% of
the time Holmes gets off at Canterbury and earns a payoff of 70 by escaping
Moriarty. Some unpredictability is desirable here and a mixed strategy delivers it.



            Having solved for Holmes’s maximin strategy, now suppose Moriarty is sim-
ilarly cautious, so that he chooses a mixed strategy, denoted (the probabil-
ity that he goes to Dover), that maximizes his expected payoff, given that he
anticipates Holmes choosing Dover or Canterbury so as to minimize
Moriarty’s expected payoff. Then if Holmes goes to Dover, Moriarty’s expected
payoff from is



            and if Holmes goes to Canterbury, it is



            Plotting these equations in FIGURE 7.18, we find that Moriarty’s expected pay-
off (given that Holmes chooses between Dover and Canterbury so as to make



            pM � 30 � (1 � pM) � 90 � 90 � 60pM.



            pM � 80 � (1 � pM) � 10 � 10 � 70pM,



            pM



            pM



            70 � 50 � (1
2) � 45.



            pH � 1
2)



            pH � 6
13



            pH � 6
13
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            FIGURE 7.17 Deriving Holmes’s Maximin Solution
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            Moriarty as worse off as possible) is the bold
line. The maximin strategy for Moriarty is then



            Summing up, if both Holmes and Moriarty
are not as cocky as they seem and have the cau-
tious mind-set we have hypothesized them to
have, then Holmes will go to Dover with proba-
bility while Moriarty will go to Dover with
probability This strategy pair is the maximin
solution to the game.



            Now we come to the interesting part. Suppose
we instead look for a Nash equilibrium in mixed
strategies. That is, Holmes chooses a mixed
strategy to maximize his expected payoff, given
that he correctly anticipates Moriarty’s mixed
strategy, and similarly, Moriarty chooses a mixed
strategy to maximize his expected payoff, given
that he correctly anticipates Holmes’s mixed
strategy. Then, using the method described pre-



            viously in this chapter, we can show that the unique mixed-strategy Nash equi-
librium has Holmes go to Dover with probability and Moriarty go to Dover
with probability For example, given that Moriarty uses this mixed strategy,
Holmes’s expected payoff from going to Dover is



            and from going to Canterbury is



            Thus, Holmes is indifferent between the two pure strategies and between any
randomization over them. It follows that Holmes’s going to Dover with prob-
ability is a best reply to Moriarty’s going to Dover with probability , and
one can show the same for Moriarty.



            Note, then, that the Nash equilibrium is exactly the same as the maximin so-
lution! Both players acting cautiously results in them choosing the best strat-
egy under correct beliefs about what the other will do. In other words, there is
no cost to being cautious, because a player who acts in that manner ends up
using a best reply to what the other player is doing. This is no coincidence.



            Maximin Property: For any two-player game of pure conflict, the
maximin solution is a Nash equilibrium. Furthermore, if a two-player game of
pure conflict has a Nash equilibrium in which both players randomize (i.e., they
don’t use pure strategies), then each player’s Nash equilibrium strategy is also
his maximin strategy.



            The articulation of the maximin property is credited to John von Neumann,
one of the great mathematicians of the twentieth century. His contributions
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            FIGURE 7.18 Deriving Moriarty’s Maximin Solution
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            span far beyond pure mathematics to include physics and computer science.
Particularly dear to our hearts is that in 1944, he, along with Oskar
Morgenstern, wrote the first classic book in game theory, Theory of Games and
Economic Behavior.



            Summary
Prior to this chapter, a player was modeled as deterministically choosing how
to behave as reflected in his choice of a pure strategy. In some contexts, how-
ever, it is natural to consider the possibility of randomized play. To encompass
such an option, the randomized version of a game was developed. A strat-
egy for a player is now a mixed strategy, which assigns a probability to each
of the player’s pure strategies. In evaluating a profile of mixed strategies, a
player calculates the expected payoff using the probabilities implied by the
mixed strategies and the payoffs from the original game. An attractive prop-
erty of the randomized version of a game is that it always has a solution; that
is, there is always a Nash equilibrium in mixed strategies.



            We explored two classes of games in which randomized play is especially
appealing. One class is outguessing games—games in which a player wants
to do what is unanticipated by other players. Because a player wants to be
unpredictable, randomly selecting a pure strategy is one method for accom-
plishing that goal. Examples of outguessing games are adversarial situa-
tions such as those which arise in sports (Penalty Kick), crime (Police
Patrol and Drug Trade), war (Avranches Gap), and summer camp (Friday
the 13th).



            A second class of situations is symmetric games with congestion—games in
which a strategy becomes increasingly less attractive the more players who
choose it. Examples of these games in this chapter are Market Entry and the
Bystander Game. Although games with congestion may have asymmetric
pure-strategy Nash equilibria, they typically do not have symmetric pure-strat-
egy equilibria. In light of the symmetry of the game, a symmetric solution has
some appeal, and these games often have a symmetric Nash equilibrium with
mixed strategies.



            At a Nash equilibrium, a player who uses a mixed strategy is necessarily in-
different among the pure strategies over which she randomizes. All of the pure
strategies assigned positive probability must yield the highest expected payoff,
and it is for that reason that a player is content to let a random device deter-
mine how she behaves. If that weren’t the case, then, after performing the ran-
domization, a player might decide to ignore what was recommended and
choose a better strategy. This equilibrium property of indifference is highly
useful in solving for mixed-strategy Nash equilibria.



            A player’s maximin strategy was defined to be that strategy which max-
imizes his payoff when he makes the highly cautious assumption that,
whatever strategy he chooses, the other players will act in the worst way
possible for him. For two-player games of pure conflict, a maximin solu-
tion, whereby both players use a maximin strategy, is also a Nash equilib-
rium. Thus, regardless of whether a player is pessimistic (thinking that the
other player has outsmarted him) or optimistic (thinking that he has cor-
rectly anticipated the other player’s strategy), the proper behavior is the
same.
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            1. Reproduced in FIGURE PR7.1 is the telephone game from Section 4.2.
Find all Nash equilibria in mixed strategies.



            2. The count is three balls and two strikes, and the bases are empty. The
batter wants to maximize the probability of getting a hit or a walk, while
the pitcher wants to minimize this probability. The pitcher has to decide
whether to throw a fast ball or a curve ball, while the batter has to de-
cide whether to prepare for a fast ball or a curve ball. The strategic form
of this game is shown in FIGURE PR7.2. Find all Nash equilibria in mixed
strategies.



            EXERCISES



            3. It’s spring break and you’re traveling south on Interstate 95, heading to-
ward Fort Lauderdale. Do you travel the legal limit of 65 miles per hour,
or do you crank it up to 80 and hope that there’s no speed trap? And
what about the state police? Do they set a speed trap or instead head into
town and find out whether the “Hot and Fresh” neon sign is lit up at the
Krispy Kreme? (Ouch, that’s a cheap shot!) The police like to nab speed-
ers, but they don’t want to set a speed trap if there aren’t going to be any
speeders to nab. A strategic form for this setting is shown in FIGURE



            PR7.3. The driver can either go the legal limit of 65 mph or speed at 80
mph. The police officer can set a speed trap or head into town and grab
some of those delicious high-carb doughnuts. The best outcome for the
driver is that she speeds and isn’t caught; the payoff for that case is 70.
The worst outcome is that she speeds and is nailed by the police, for
which the payoff is 10. If she chooses to drive the legal limit, then her
payoff is 40 and is the same regardless of what the state police do. (In
other words, the driver doesn’t care about the caloric intake of the
trooper.) As for the police officer, his best outcome is setting a speed trap
and nailing a speeder, giving him a payoff of 100. His worst outcome is
sitting out there in a speed trap and failing to write a ticket; this outcome
delivers a payoff of only 20. His payoff is 50 when he chooses to go to
the Krispy Kreme. Find all Nash equilibria in mixed strategies.
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            FIGURE PR7.1 The Telephone
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            4. A mugger and a victim meet on a dark street. The mugger previously de-
cided whether to bring a gun and, if he did, whether to show it during
the robbery. If the mugger does not show a gun—either because he doesn’t
have one or has one and hides it—then the victim has to decide whether
to resist. (Note that if the mugger does have a gun and shows it, then the
victim’s payoff is 5 regardless of the strategy chosen, because the victim’s
strategy is what to do if no gun is shown.) The strategic form of this sit-
uation is shown in FIGURE PR7.4. Note that all payoffs have been speci-
fied, except for the mugger’s payoff when he chooses to have a gun and
show it. Find a condition on x whereby there is a Nash equilibrium in
which the mugger randomizes over the two pure strategies gun, hide and
no gun and the victim randomizes over resist and do not resist.
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            5. For the Penalty Kick game in Section 7.5, find a Nash equilibrium in
which the kicker randomizes only over the pure strategies left and right,
so that zero probability is given to center.



            6. For the game illustrated in FIGURE PR7.6, find all mixed-strategy Nash
equilibria.



            7. Find all Nash equilibria in mixed strategies for the game shown in FIGURE



            PR7.7.
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            8. It is the closing seconds of a football game, and the losing team has just
scored a touchdown. Now down by only one point, the team decides to
go for a two-point conversion that, if successful, will win the game. The
offense chooses between three possible running plays: run wide left, run
wide right, and run up the middle. The defense decides between defend-
ing against a wide run and a run up the middle. The payoff to the de-
fense is the probability that the offense does not score, and the payoff to
the offense is the probability that it does score. Find all mixed-strategy
Nash equilibria. (See FIGURE PR7.8.)



            FIGURE PR7.8 Two-Point Conversion
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            9. The childhood game of Rock–Paper–Scissors is shown in FIGURE PR7.9.
(If you’re unfamiliar with this game, see Section 4.2.) Show that each
player’s assigning equal probability to his or her three pure strategies is
a symmetric Nash equilibrium.



            10. Each of three players is deciding between the pure strategies go and
stop. The payoff to go is where m is the number of players that
choose go, and the payoff to stop is 55 (which is received regardless of
what the other players do). Find all Nash equilibria in mixed strategies.



            11. A total of companies are considering entry into a new market. The
cost of entry is 30. If only one company enters, then its gross profit is
200. If more than one company enters, then each entrant earns a gross
profit of 40. The payoff to a company that enters is its gross profit minus
its entry cost, while the payoff to a company that does not enter is 60.
Find a symmetric Nash equilibrium in mixed strategies.



            12. Sadaam Hussein is deciding where to hide his weapons of mass destruc-
tion (WMD), while the United Nations is deciding where to look for
them. The payoff to Hussein from successfully hiding WMD is 5 and
from having them found is 2. For the UN, the payoff to finding WMD is
9 and from not finding them is 4. Hussein can hide them in facility X, Y,
or Z. The UN inspection team has to decide which facilities to check.
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            Because the inspectors are limited in terms of time and personnel, they
cannot check all facilities.
a. Suppose the UN has two pure strategies: It can either inspect facili-



            ties X and Y (both of which are geographically close to each other) or
inspect facility Z. Find a Nash equilibrium in mixed strategies.



            b. Suppose the UN can inspect any two facilities, so that it has three
pure strategies. The UN can inspect X and Y, X and Z, or Y and Z. Find
a Nash equilibrium in mixed strategies.



            7.7 Appendix: Formal Definition of Nash 
Equilibrium in Mixed Strategies
CONSIDER ANY FINITE GAME—a game in which there are a finite number of play-
ers and each player has a finite number of (pure) strategies. If player i has
pure strategies, then let her set of pure strategies be represented by



            Now consider the randomized version of that game so that a
(mixed) strategy for a player assigns a probability to each of her pure strate-
gies. Let denote the probability player i assigns to pure strategy A mixed
strategy is then numbers, each of which lies in the interval [0,1] and whose
sum equals 1. In other words, is a mixed strategy as long as



            Player i’s (mixed) strategy set consists of all of the values for that
satisfy the preceding conditions. Let Pi denote the (mixed) strategy set for
player i. Remember that a pure strategy is a special case of a mixed strategy,
so we’ve added to what is possible with randomization.



            Another key specification of the randomized version of a game is that a
player evaluates a mixed-strategy profile by calculating the expected payoff.
Let us generally define this payoff for a two-player game. represents
the payoff to player 1 when she chooses pure strategy and player 2 chooses
pure strategy With this representation, we can define her expected payoff
when player 1 uses mixed strategy and player 2 uses mixed strat-
egy *



            For player 2, the expected payoff is



            When players randomize as a part of using mixed strategies, the presumption
is that the two random events—the pure strategy selected by player 1 and the
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            pure strategy selected by player 2—are independent. That is why the probabil-
ity that player 1 uses and player 2 uses is 



            With this notation, we can now formally define the conditions for a Nash
equilibrium in mixed strategies. For a two-player game, the mixed strategy
pair and is a Nash equilibrium if the following con-
ditions are satisfied:



            [7.16]



            and



            [7.17]



            Equation (7.16) is the condition which ensures that player 1’s mixed strategy
is optimal, and equation (7.17) is the condition guaranteeing that player 2’s
mixed strategy is optimal. For example, (7.16) says that, given that player 2
uses there is no other mixed strategy which gives a higher ex-
pected payoff than for player 1.
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8.1 Introduction
THE FOCUS OF THE PRECEDING chapters has been solving strategic form games. We
now turn to handling extensive form games, such as Chapter 2’s Kidnapping
game, which is reproduced here as FIGURE 8.1. As a bit of refresher on the ex-
tensive form, recall that each dot is a decision node and, at each of them, a
player has to make a choice among the branches (or actions) coming out of
that node. In games of perfect information, which is what we explore in this
chapter, a strategy for a player assigns an action to each decision node. Thus,
for Guy, a strategy is a triple of actions, since he has three decision nodes,
while for Vivica a strategy is a single action.*



            The concept of Nash equilibrium can be applied directly to the extensive
form, but it’s easier to first derive its strategic form and then derive the Nash
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            Taking Turns: Sequential Games 
with Perfect Information



            *Recall that an information set is a collection of decision nodes whereby a player knows that she is at one
of those decision nodes, but knows nothing more. In a game of perfect information, each information set
is made up of a single decision node, so a player always knows where she is in a game when it is time for
her to move. Hence, we will use the terms “decision node” and “information set” interchangeably in this
chapter. For further review on extensive form games of perfect information, reread Sections 2.1 to 2.3.
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            FIGURE 8.1 The Extensive Form of the Kidnapping
Game (from Chapter 2)
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            equilibria for it. Since the Nash equilibria for the extensive form and for the
strategic form coincide, this is a legitimate way to proceed.



            Pursuing that approach, we show the strategic form corresponding to
Figure 8.1 in FIGURE 8.2. In stating a strategy for Guy, we let the first action
(kidnap or do not kidnap) be what he does at the initial node, the second ac-
tion (kill or release) be what he does when Vivica pays ransom, and the third
action (kill or release) be what he does when Vivica does not pay ransom.
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            FIGURE 8.2 The Strategic Form for the Kidnapping Game



            Considering each of the 16 strategy pairs, we find that there are five pure-
strategy Nash equilibria. (Kidnap/Release/Kill, Pay ransom) is one of them, and
it has Orlando being kidnapped, Vivica paying ransom, and Orlando being
released. Then there are four Nash equilibria in which no kidnapping
takes place: (1) (Do not kidnap/Kill/Kill, Do not pay ransom); (2) (Do not
kidnap/Kill/Release, Do not pay ransom); (3) (Do not kidnap/Release/Kill, Do not
pay ransom); and (4) (Do not kidnap/Release/Release, Do not pay ransom). In
each of these cases, Guy chooses not to kidnap Orlando because Vivica has no
intention of paying ransom. These four equilibria differ only in terms of what
Guy’s strategy prescribes later in the game in the event that he performs a kid-
napping which, in equilibrium, he does not.



            For the Kidnapping game, Nash equilibrium isn’t particularly precise. It
predicts that there could be a kidnapping or not; that is, some equilibria have
Orlando being kidnapped, and others do not. But are all Nash equilibria cre-
ated equal? In fact, there is something troublesome about the four equilibria
that result in no kidnapping. They all involve Vivica’s making a not very cred-
ible threat and Guy’s believing it. Guy doesn’t kidnap Orlando because he be-
lieves that Vivica will not pay the ransom. However, Vivica’s strategy is opti-
mal only because Guy doesn’t engage in a kidnapping, so her payoff is the
same regardless of what her strategy is. But suppose, contrary to Guy’s strat-
egy, he did end up kidnapping Orlando. Would Vivica persist with the threat
not to pay ransom? She knows Guy’s preferences—specifically, that Guy
prefers to kill Orlando when ransom is not paid (the payoff is 2, versus 1 from
releasing him) and that he prefers to release Orlando when ransom is paid
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            (the payoff is 5, versus 4 from killing him). Thus, it would seem to be in her
best interest to pay the ransom and thereby induce the release of Orlando.
Now, Guy knows all this as well, so, regardless of what Vivica says she would
do, he ought to believe that she would pay ransom if Orlando were kidnapped,
as that is the only way to induce Guy to release Orlando.



            To sum up, the four Nash equilibria sustaining the “no kidnapping” out-
come aren’t very convincing. They are predicated upon Guy’s believing that
Vivica would act irrationally by not paying ransom in the event of a kidnap-
ping. But Vivica is only bluffing that she would not pay ransom, and Guy
should call that bluff. The lone equilibrium that results in a kidnapping does
not call for Vivica to make an irrational move or for Guy to believe that she
would make an irrational move. We are then inclined to conclude that the
most compelling Nash equilibrium is (Kidnap/Release/Kill, Pay ransom).



            This and the ensuing chapter are concerned with solving extensive form
games and, in particular, ruling out those Nash equilibria which are sustained
by believing that another player would make an irrational move, or what game
theorists call an incredible threat (but where “incredible” means “not credi-
ble,” as opposed to “awesome”). This chapter focuses on games involving per-
fect information and a solution concept which formalizes the argument that
led us to eliminate the four Nash equilibria in the kidnapping game. More
specifically, we will learn about backward induction, a method for solving a
game whose solution is known as subgame perfect Nash equilibrium.



            8.2 Backward Induction and Subgame 
Perfect Nash Equilibrium
RECALL THAT A STRATEGY is a contingency rule that prescribes an action for each
information set for a player. Nash equilibrium requires that each player’s strat-
egy be optimal, given the other players’ strategies. Of course, what a strategy
calls for at a decision node that is not reached cannot matter for a player’s pay-
off; the action assigned to a contingency matters only if one is called upon to
implement it. Thus, a Nash equilibrium does not require that the prescribed
action be optimal for all contingencies, but rather only for those reached over
the course of equilibrium play (i.e., the sequence of play that occurs when
players use their equilibrium strategies).



            To make this point more concrete, consider the strategy profile
(Kidnap/Release/Kill, Pay ransom). Equilibrium play involves a kidnapping oc-
curring, in which case Vivica’s strategy must prescribe the best action in re-
sponse to a kidnapping (which is to pay ransom). Since the contingency in
which Vivica pays ransom also occurs, Guy’s strategy must prescribe what is
best in that case (which is to release Orlando). Now contrast this strategy pro-
file with the strategy profile (Do not kidnap/Kill/Kill, Do not pay ransom), for
which equilibrium play predicts no kidnapping. Vivica’s strategy, which pre-
scribes what she does in the event of a kidnapping, is not required to call for
an optimal action in that event, because a kidnapping doesn’t occur when
Guy’s equilibrium strategy assigns do not kidnap at the initial node. Note that
Vivica’s payoff is the same regardless of her strategy. (Check if you’re not con-
vinced.) Similarly, Guy’s strategy doesn’t have to call for an optimal decision
in the event of a kidnapping and Vivica paying ransom, since that contingency
doesn’t occur either.
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            The key point here is that Nash equilibrium does not require that a strategy
prescribe an optimal action for those decision nodes which are not reached
during the course of equilibrium play. If a particular contingency is never re-
alized, then it doesn’t make any difference to a player what strategy is assigned
for that contingency. What Nash equilibrium does require is that each player’s
strategy prescribe an optimal action for all decision nodes that are reached
during equilibrium play.



            A Nash equilibrium strategy, then, is optimal only in a restricted sense. The
idea behind a subgame perfect Nash equilibrium is to extend the required op-
timality of a player’s action to all contingencies, not just those which occur
along an equilibrium path. So, for example, subgame perfect Nash equilib-
rium would require Vivica’s behavior to be optimal in the event that there is a
kidnapping, even if Guy’s strategy is, say, Do not kidnap/Kill/Release, which
leads to no kidnapping during equilibrium play.



            Subgame Perfect Nash Equilibrium for Games of Perfect Information: For a game
of perfect information, a strategy profile is a subgame perfect Nash equilibrium if,
at each decision node, it assigns an action that maximizes a player’s payoff.*



            A more formal definition of subgame perfect Nash equilibrium is provided
in the next chapter, which covers games of both perfect and imperfect infor-
mation. Here and now, we focus on games of perfect information. Our ap-
proach is to build a strategy for a player piece by piece while presuming that
other players act optimally. Recall that a strategy assigns an action to each of
a player’s information sets. The strategy template for Guy is



            At the initial node, ______ [fill in kidnap or do not kidnap].



            If a kidnapping occurred and ransom was paid, then ______ [fill in kill or
release].



            If a kidnapping occurred and ransom was not paid, then ______ [fill in kill
or release].



            A particular strategy, then, fills in the preceding three blanks. Vivica’s strategy
template is



            If a kidnapping occurred, then _______ [fill in pay ransom or do not pay
ransom].



            The method of backward induction involves filling in each player’s strategy
template by starting at the game’s final decision node(s), deriving optimal be-
havior, and then continuing to work backward up the tree to the initial node.
In this manner, a subgame perfect Nash equilibrium is constructed. It is easi-
est to understand the method with an example.



            For the game of Kidnapping, go to the final two decision nodes associated
with Guy’s deciding whether to kill or release Orlando. For each of those
nodes, determine Guy’s optimal action. For the decision node associated with
Vivica’s having paid ransom, Guy’s best action is release; and for the decision
node associated with Vivica’s having not paid ransom, Guy’s best action is kill.
We have then derived Guy’s actions at those two decision nodes, thereby hav-
ing filled in the bottom two blanks in Guy’s strategy template.



            *Why this solution concept is called “subgame perfect Nash equilibrium” will be explained in Chapter 9.
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            The next step is, for each of those two decision nodes, to replace the tree that
comes out of it (which consists of the branches kill and release in either case) with
the payoffs associated with Guy’s optimal action. This replacement process is de-
picted in FIGURE 8.3. The presumption is that when each of those decision nodes
is reached Guy will choose the optimal action, so we might as well just replace
those branches with the payoffs associated with Guy’s making such a choice.
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            FIGURE 8.3 The Procedure of Backward Induction



            The process is then repeated for Vivica’s decision node. We compare the pay-
offs associated with her paying and not paying ransom. We then see that
Vivica’s optimal action is to pay ransom. Thus, we’ve found
Vivica’s best action for her lone decision node and thereby have
her subgame perfect Nash equilibrium strategy. Substituting the
tree coming out of Vivica’s decision node with the payoffs in-
duced by derived behavior then gives us the game in FIGURE 8.4.
The game has thus been solved backwards such that there is one
decision node remaining, which is whether Guy kidnaps. Guy’s
optimal action is to kidnap.



            As just constructed, a subgame perfect Nash equilibrium
(which happens to be the unique one for this game) has Guy
choose kidnap at the initial node, release at the information set
associated with Vivica’s having paid ransom, and kill at the in-
formation set associated with Vivica’s having not paid ransom.
For Vivica, her subgame perfect Nash equilibrium strategy is
pay ransom. Thus, the unique subgame perfect Nash equilib-
rium is (Kidnap/Release/Kill, Pay ransom) which is what we previously argued
is the compelling Nash equilibrium—that is, the lone one not reliant upon
Vivica’s incredible threat not to pay ransom.
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            FIGURE 8.4 Solving Through
Backward Induction Up
to Guy’s Initial Choice
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            We have just gone through the solution method of backward induction.
Working backward through the extensive form, we used inductive reasoning to
lead us to the solution.



            The Backward Induction Algorithm for Games of Perfect Information:



            1. For each of the final decision nodes, solve for optimal behavior.



            2. For each of those decision nodes, replace the part of the tree beginning with
that decision node with the associated payoffs, assuming optimal play.



            3. Repeat steps 1 and 2 for this reduced game until the initial decision node
is reached.



            Implicit in subgame perfect Nash equilibrium is the idea that a player an-
ticipates that other players will subsequently act optimally. For example, when
we solved for Vivica’s optimal action using the game in Figure 8.3, we assumed
that she implicitly anticipates that, whatever she does, Guy will respond opti-
mally. Specifically, when she thinks about paying ransom, she expects Guy to
release Orlando; when she thinks about not paying ransom, she expects
Orlando to be killed. In both cases, this is what would be best for Guy. Thus,
incredible threats are eliminated by always presuming that a player does what
is best, regardless of where he or she is in the game.



            For a game of perfect information, this procedure always delivers an an-
swer. At each decision node, there is always an optimal action, which means
that you can always identify the payoffs you should use to replace that part of
the tree. Because at no point does the procedure get stuck, you can always
solve the game back to the initial node. Put another way, backward induction
recovers all subgame perfect Nash equilibria and there always exists at least
one subgame perfect Nash equilibrium.



            Existence of a Subgame Perfect Nash 
Equilibrium: In a game of perfect information, there is at
least one subgame perfect Nash equilibrium.



            Although the existence of a subgame perfect Nash
equilibrium is assured for a game of perfect information,
that equilibrium is unique is not assured: multiple sub-
game perfect Nash equilibria may exist when, at a given
decision node, there is no single optimal action. This sit-
uation arises in the game of Racial Discrimination and
Sports (Section 8.3.4).



            The following property is worth noting:



            Every subgame perfect Nash equilibrium is a 
Nash equilibrium, but not every Nash equilibrium is a
subgame perfect Nash equilibrium.



            This is another way of saying that requiring a subgame
perfect Nash equilibrium is a more stringent criterion
than requiring a Nash equilibrium. A Nash equilibrium
requires that prescribed behavior be optimal for those



            For the game in FIGURE 8.5, solve for the sub-
game perfect Nash equilibria.
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            decision nodes reached along the equilibrium path, but a subgame perfect Nash
equilibrium requires, in addition, that prescribed behavior be optimal for those
decision nodes which are not reached. By way of example, (Kidnap/Release/Kill,
Pay ransom) is both a subgame perfect Nash equilibrium, and a Nash equilib-
rium, but the other four Nash equilibria are not subgame perfect Nash equilibria.



            8.3 Examples
TO ASSIST US IN GAINING some fluency in using backward induction, this section
provides a range of examples involving misconduct. In the first example, the
Cuban Missile Crisis, the Soviet Union’s misconduct is planting nuclear mis-
siles in Cuba. The issue is how the United States can get the missiles out of
there without starting a nuclear war. In the second case, we explore how
Enron executives are manipulated by a prosecutor through the strategic use
of a plea bargain. In the last example, the misbehavior of a racially biased
baseball team owner is shown to be penalized by the strategizing of an astute
racially neutral owner when it comes to drafting amateur athletes.



            � SITUATION: CUBAN MISSILE CRISIS



            Meeting of Joint Chiefs of Staff (JCS), 10:00 A.M. on October 16, 1962:1



            Chairman, JCS, says he will see the President at 11:45. 



            General McKee: Once the missile sites become operational, Castro can
threaten retaliation for any offensive move by the U.S. delaying action until
the missiles are set up could touch off nuclear war. 



            General Shoup: Soviets might be attempting to pose a nuclear threat to the
U.S. without running a risk of nuclear retaliation against the Soviet Union. 



            JCS agrees the threat is so serious as to require the U.S. to take out the mis-
siles by military effort. 



            General Wheeler favors air attack without warning, to be followed by invasion. 



            General McKee foresees a possibility of avoiding the need for invasion by ef-
ficient application of air strikes and naval blockade.



            On October 14, 1962, the United States confirmed the presence of Soviet nu-
clear missiles in Cuba. It was the time of the Cold War, and the United States
and the Soviet Union (U.S.S.R.) were archrivals, each with the capacity to wreak
destruction on an unprecedented scale. The Soviet Union had now placed these
weapons less than 100 miles from the U.S. coastline. FIGURE 8.6 shows the range
of Soviet SS-4 medium-range ballistic missiles (MRBMs) and SS-5 intermediate-
range ballistic (IRBMs). The strategic challenge for President John F. Kennedy
and his advisers was to get the missiles out of Cuba before they became opera-
tional, which the CIA estimated would be in about 10 days.2



            The sequence of decisions facing the U.S. and Soviet leaders is shown in
FIGURE 8.7.3 The U.S. initially decides whether to blockade the island—so as to
prevent any additional Soviet ships from reaching Cuba—or to perform an air
strike to destroy the missiles before they become operational. If the latter op-
tion is taken, then the strategic situation is over, while the choice of a block-
ade throws the decision to the U.S.S.R., which must then decide between re-
taining the missiles or withdrawing them. If it chooses the latter, then the
United States again decides whether to perform an air strike.


            

        



        
            

            
As reflected in the payoffs, the United States
most prefers that the Soviets withdraw the missiles
without an air strike, as an air strike runs the risk
of escalating the conflict. Nevertheless, the United
States would prefer to destroy the missiles than
allow them to remain. The U.S.S.R. most prefer
being able to maintain the missiles, but want to
avoid an air strike.



            We’ll use backward induction to solve for a
subgame perfect Nash equilibrium. We start
with the final U.S decision node, which is
reached when the United States blockades and
the U.S.S.R. retains its missiles. In that situa-
tion, the United States optimally performs an air
strike. This is depicted in FIGURE 8.8, where there
is an arrow going down the branch “Air strike.”
Hence, if the United States’ second decision
node is reached, then the resulting payoffs are
(3,1), because the U.S. will optimally engage in
an air strike.



            Moving up the tree, we come to the decision node of the U.S.S.R. It can ei-
ther withdraw the missiles and receive a payoff of 3 or retain them and receive
a payoff of 1, because the U.S.S.R. anticipates that the U.S. will respond with
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            FIGURE 8.6 Range of Soviet Missiles in Cuba
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            FIGURE 8.7 Cuban Missile Crisis
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            an air strike. Since withdrawing the missiles
yields a higher payoff, an arrow is placed along
that action. Finally, we come to the initial deci-
sion node. If the United States chooses a block-
ade, then, as indicated by the arrows, the
U.S.S.R. will respond by withdrawing the mis-
siles. The payoff for the United States from a
blockade is then 4. Because an air strike delivers
a payoff of 2, the United States optimally per-
forms a blockade.



            There is, then, a unique subgame perfect
Nash equilibrium in which the U.S. strategy is to
blockade and, if the U.S.S.R. does not withdraw
the missiles, then destroy them with an air
strike. The optimal Soviet strategy is, however,
to withdraw the missiles if the United States
blockades Cuba.



            In reality, the United States did construct a
naval blockade and the U.S.S.R. backed down by
removing the missiles. But that is not all that
took place during the crisis. On October 26,
Soviet leader Nikita Khrushchev sent a letter that proposed removing the mis-
siles if the United States pledged not to invade Cuba. But then, the next day,
Khrushchev made a new demand that the United States also withdraw its
Jupiter missiles from Turkey, which, analogously to the case of Cuba, were
within close reach of the U.S.S.R. The standard historical view is that Robert
Kennedy, the president’s brother and close advisor (as well as attorney gen-
eral), made a trollop ploy* by ignoring Khrushchev’s second demand and in-
forming him that the United States accepted his (original) demand not to in-
vade Cuba. However, with the recent declassification of documents, it is now
believed that use of the trollop ploy was an invention by the Kennedy admin-
istration to cover up the fact that it did acquiesce to the second demand and
removed U.S. missiles from Turkey.4



            � SITUATION: ENRON AND PROSECUTORIAL PREROGATIVE



            Founded in 1985 by Kenneth Lay, Enron was lauded by Forbes as one of the
most innovative companies in the country. With (reported) revenue exceed-
ing $100 billion, it was seventh on the Fortune 500 list in 2000. News about
financial improprieties then began seeping out, and eventually it was re-
vealed that Enron was a financial house of cards kept afloat through sleight
of hand and chicanery. Enron stock, which hit a high in excess of $90 per
share in August 2000, had fallen below $1 by late 2001 as the company en-
tered into bankruptcy proceedings. Indictments soon began, and numerous
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            FIGURE 8.8 Subgame Perfect Nash Equilibrium
for the Cuban Missile Crisis



            ∗In nineteenth-century London, trollop was the name given to a streetwalking prostitute. As a gentleman
walked by, trollops would drop their handkerchiefs and the gentleman would pick up the handkerchief of
the one he desired. In this manner, communication was indirect and is referred to as a “trollop ploy.” In
the Cuban Missile Crisis, Khrushchev “dropped” two demands and the Kennedy administration “picked
up” the one they liked best.


            

        



        
            

            
228 CHAPTER 8: TAKING TURNS: SEQUENTIAL GAMES WITH PERFECT INFORMATION



            company executives either pled guilty or were convicted, including CEO
Jeffrey Skilling and Lay. While waiting to appeal the decision, Lay died of a
heart attack at the age of 64. Enron remains a notable case in the history of
white-collar crime.5



            In pursing a complex case like this one, prosecutors adopted a strategy of
“dealing” their way up the corporate ladder. In exchange for testimony
against higher level executives, an implicated employee would “cut a deal.”
For example, David Delainey, who was a midlevel executive, was indicted
and, in exchange for leniency, cooperated with prosecutors. He reportedly
provided information relevant to the prosecution of Chief Financial Officer
Andrew Fastow, who was the mastermind (and beneficiary) of much of the
financial shenanigans. Fastow then pled guilty—agreeing to a 10-year prison
sentence—and provided evidence against Skilling, among others. In doing so,
he avoided a trial with the risk of a much longer sentence. Residing at the top
of the corporate hierarchy, Skilling and Lay had no one more significant to
sell out.



            The extensive form of this situation is shown in FIGURE 8.9 and involves the
prosecutor, Delainey, and Fastow as players. The prosecutor moves first by de-
ciding whether to offer a deal to Delainey, offer a deal to Fastow, or make no
deal at all. If she does offer a deal, then the person to whom the deal is made
decides whether to accept it. If the deal goes to Fastow, then the game is over.
If the deal goes to Delainey and he rejects it, then the game is over (because
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            FIGURE 8.9 Prosecution of Enron Officers
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            the prosecutor just goes to trial). If Delainey accepts the deal, then the prose-
cutor decides whether to propose a deal with Fastow. Keep in mind that the
prosecutor is in a better position vis-à-vis Fastow, since he now has Delainey’s
testimony. The game ends with Fastow accepting or rejecting the proposed
deal. The payoffs are based on the prosecution attaching more importance to
convicting higher level executives and thus being willing to agree to shorter
prison sentences if that is what is required. The executives are driven by min-
imizing their jail time and thus will provide evidence if that is what it takes.
In other words, there is “no honor among thieves.”



            This game can be solved with the use of backward induction, as follows
(because we derive optimal behavior, you might find it helpful to add arrows
to Figure 8.9 in the manner done with Figure 8.8):



            1. At the final decision node, Fastow decides whether to accept or reject
the deal. Since his payoff from accepting is 2 and from rejecting is 1, it
is optimal for him to “cut a deal.”



            2. Moving up the tree, we see that the prosecutor’s decision is whether to
offer Fastow a deal (given that she already offered one to Delainey and
it was accepted). Her payoff from offering a deal is 5 (under the implicit
assumption that Fastow will optimally accept it) and from not doing so
is 4. Hence, she makes a deal with Fastow in exchange for his testimony.



            3. At the decision node in which Delainey is offered a deal, he will opti-
mally accept it, since it delivers a payoff of 2 whereas declining has a
payoff of 1. (Note that Delainey’s payoff from accepting the deal is actu-
ally the same regardless of what subsequently happens, because all he
cares about is his own prison sentence and not whether Fastow cuts a
deal.)



            4. At the decision node in which Fastow is initially offered a deal, he opti-
mally declines it. Doing so delivers a payoff of 3, whereas taking the deal
has a payoff of 2. (Without Delainey having cut a deal at this stage, the
prosecutor’s case against Fastow is too weak, in Fastow’s view.)



            5. At the initial decision node, the prosecutor offers either a plea to
Delainey (which has a payoff of 5), a plea to Fastow (which has a pay-
off of 1, since it’ll be declined by Fastow), or a plea to neither (with a
payoff of 1). She optimally proposes a deal to Delainey. Implicit in her
doing so is that Delainey will accept it, which will induce Fastow to cut
a deal.



            The sequence of play associated with subgame perfect Nash equilibrium is
then for the prosecutor to offer a deal to Delainey, who accepts it, where upon
the prosecutor offers a deal to Fastow, who accepts it. In this way, the case is
built to prosecute Skilling and Lay.



            � SITUATION: RACIAL DISCRIMINATION AND SPORTS



            Until the Brooklyn Dodgers chose to play Jackie Robinson in 1947, major league
baseball was devoid of African-Americans. Effectively barred from playing, tal-
ented black baseball players would play in the Negro Leagues. The breaking of
the racial barrier gave the Dodgers an advantage in terms of talent—with such
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            black ballplayers as Roy Campanella, Joe Black, and Don Newcombe in addi-
tion to Robinson—and induced other teams to similarly draw upon the great tal-
ent pool that was being neglected. Nevertheless, it was only in 1959 that the last
major league baseball team—the Boston Red Sox—finally integrated when it
played Pumpsie Green at second base.



            To explore some implications of racial bias, consider a situation that all
major sports annually experience: the draft of amateur athletes, typically fresh
out of high school or college.6 Suppose there are two teams, the Dodgers and
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            the Red Sox, and four ballplayers to be drafted, denoted 1, 2, 3, and 4.
Ballplayers are distinguished by race and talent (which is summarized with a
“skill rating”), as reported in TABLE 8.1. In terms of talent, ballplayer 1 is bet-
ter than ballplayer 2, who is better than ballplayer 3, who is better than
ballplayer 4. Ballplayers 1 and 4 are black, while ballplayers 2 and 3 are white.
Each team is interested in drafting players so as to maximize the sum of their
value to the team. The Dodgers are race blind, as they attach higher value to
a ballplayer who is more skilled, irrespective of race. In contrast, let’s assume
that the Red Sox care about both race and talent. They attach the highest
value to the two best white ballplayers.



            TABLE 8.1 SKILL AND RACE OF BASEBALL PLAYERS



            Ballplayer Skill Rating Race Value to Dodgers Value to Red Sox



            1 30 Black 30 20



            2 25 White 25 25



            3 22 White 22 22



            4 20 Black 20 10



            The draft has the two teams take turns choosing players, as depicted in the
extensive form game in FIGURE 8.10. This year, the Dodgers get to pick first and
can choose any of the four ballplayers. Among the three remaining ballplay-
ers, the Red Sox choose one. Among the two remaining ballplayers, the
Dodgers select one and the Red Sox get the final ballplayer.



            Although the extensive form may have many more branches than previous
games have had in this chapter, the method of backward induction works the
same. Consider the final 12 decision nodes associated with the Dodgers mak-
ing their second selection. At that stage of the draft, optimal play means
choosing the most skilled remaining ballplayer. (However, as we’ll see, this
need not be true earlier in the draft.) At the decision node associated with the
Dodgers having chosen ballplayer 1 in the first round and the Red Sox having
chosen ballplayer 2, the Dodgers can choose between ballplayers 3 and 4. They
optimally select ballplayer 3, as this means that they end up with ballplayers
1 and 3, for a payoff of 52 (which is the sum of the two ballplayers’ values),
while the Red Sox get ballplayers 2 and 4 and thus a payoff of 35. We then sub-
stitute for that part of the tree with the payoffs (52, 35) as shown in FIGURE



            8.11(a). This procedure is repeated for the other 11 decision nodes of the
Dodgers.



            Given the game in Figure 8.11(a), the Red Sox have four decision nodes and
we need to solve for optimal play for each of them. Consider the decision node
associated with the Dodgers having chosen ballplayer 2 in the first round.
Then the Red Sox’s optimal play is to choose either ballplayer 3 or ballplayer 4,
as both deliver a payoff of 32. If they choose ballplayer 3, then the Dodgers
choose ballplayer 1 in the next round, in which case the Red Sox end up with
ballplayers 3 and 4. If the Red Sox instead choose ballplayer 4, then the
Dodgers choose ballplayer 1 in the next round, so again the Red Sox end up
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            FIGURE 8.10 The Baseball Draft
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            with ballplayers 3 and 4. With either choice, the payoffs are the same: 55 for
the Dodgers and 32 for the Red Sox. Doing the same exercise with the other
three decision nodes, we derive the game in FIGURE 8.11(b).



            We have now solved the game up to the point at which the Dodgers need to
make their initial selection. Figure 8.11(b) shows that they could choose
ballplayer 1, which will induce the Red Sox to respond optimally by selecting
ballplayer 2 (the most talented white ballplayer), after which the Dodgers select
ballplayer 3. By initially choosing the most talented ballplayer (ballplayer 1),
the Dodgers end up with ballplayers 1 and 3, for a payoff of 52. If they choose
ballplayer 2 in the first round, then the Red Sox will respond by choosing 3,
followed by the Dodgers selecting ballplayer 1.* In that case, the Dodgers end
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            FIGURE 8.11 Backward Induction in the Baseball Draft Game



            *This is one sequence of equilibrium play. There is another in which the Red Sox respond by choosing
ballplayer 4 instead of ballplayer 3.
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            up with the two most skilled ballplayers and a higher payoff of 55. By choos-
ing ballplayer 3 in the first round, the Dodgers’ payoff is 52 and by choosing
ballplayer 4, their payoff is 50. Hence, the optimal choice for the Dodgers is to
choose, not the most skilled ballplayer in the first round, but rather the most
skilled white ballplayer.



            Although it might appear that the Dodgers are racially prejudiced—for they
initially chose an inferior white ballplayer—in fact they are racially blind.
They are not blind, however, to the fact that the Red Sox are racially biased,
and being strategically astute, the Dodgers use that bias to their advantage:
The Dodgers end up with the two most talented ballplayers by first drafting
the best white ballplayer, knowing that the most talented ballplayer will still
be available later in the draft, since the Red Sox will pass him by because he’s
black. Thus, the Dodgers are taking advantage of the biases of the Red Sox to
secure a more talented team. That may be the best way to battle racial bias:
Make those who have it suffer from it.



            It is worth noting that there are multiple subgame perfect Nash equilibria.
Without writing down the entire strategy profile (it is a 13-tuple for the
Dodgers and a 4-tuple for the Red Sox), we can see that this multiplicity
comes from the absence of a unique optimal action at some information sets.
For example, there is one subgame perfect Nash equilibrium that has the Red
Sox choose ballplayer 3 after the Dodgers chose ballplayer 2 in the first
round, and there is another subgame perfect Nash equilibrium that has the
Red Sox choose ballplayer 4 after the Dodgers chose ballplayer 2 in the first



            round. However, all subgame perfect Nash equi-
libria result in the Dodgers ending up with
ballplayers 1 and 2.



            Long after the racial barrier in baseball had
been breached, was racism absent from the deci-
sions of teams? If, in fact, baseball management
were devoid of racial bias, we would expect black
and white ballplayers to have the same average
performance. In contrast, if there was a bias
against black athletes, then an owner or general
manager would choose a black ballplayer only
when he was sufficiently better than a white
ballplayer. It follows that a telltale sign of racial
bias is that black ballplayers perform better than
white ballplayers.



            Evidence from 1947 to 1975 shows that, on
average, black players did tend to be better per-
formers. TABLE 8.2 reports statistics for three
periods of play. If you’re not familiar with base-
ball, a higher number in any of these categories
is an indicator of better performance. Even
in the early 1970s, 25 years after Jackie
Robinson’s arrival, black hitters had a higher
batting average, hit with greater power, and
stole more bases. Performance measures for
pitchers tell a similar story. Although there may
be another explanation for this performance



            For the game in FIGURE 8.12, solve for the sub-
game perfect Nash equilibria.



            8.2 CHECK YOUR UNDERSTANDING
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            differential, it is supportive of the hypothesis that racial bias in baseball has
persisted.



            8.4 Waiting Games: Preemption and Attrition



            “The average American spends two to three years of his or her life waiting
in line.”7



            HARRY POTTER AND THE Half-Blood Prince is opening in your town, and you’re de-
ciding when to show up at the theater. You want to make sure that you get
both a ticket and a good seat, but you don’t enjoy standing in line. How early
should you arrive? Now suppose you’re in the theater waiting in line yet again,
though at the concession counter. The movie is about to start. Do you continue
waiting—hoping some people in front of you will bail out—or do you give up
and go to your seat without popcorn and drink in hand? The setting now
moves to the airport, where you are waiting at the gate to board your flight on
Southwest Airlines. Because Southwest has open seating (“first come, first
served”), you’re debating whether to get in the queue or remain comfortably
seated. Now suppose you’re online at home watching an item up for auction
at eBay. The auction closes in one hour, and you’re deciding whether to place
your bid now or hold off and bid near the close.



            All of these situations are common in that the decision is about timing.
When do you get in line? When do you get out of line? When do you bid? These
are inherently strategic situations, as your decision depends on what you think
others are going to do. If you think that a lot of intense Harry Potter fans will
be going to the theater, then you’ll be inclined to show up earlier. If the people
in front of you in that concession line are chatting about having missed lunch,
you’ll be more inclined to give in and go to your seat. If you look around the
Southwest Airlines gate and see many people comfortably engaged in conver-
sation, you’ll be more inclined to hold out longer before getting in line.



            In this section, we consider strategic situations in which players are decid-
ing about timing. These situations can vary according to whether it is advan-
tageous to move earlier than other people—as the case of getting in line at the
movie theater—or to move later—as you’re bidding at eBay. The first situation



            TABLE 8.2 PERFORMANCE AND RACE IN BASEBALL



            Batting Slugging Home Stolen



            Years Race Average Average Hits* Runs* Bases*



            1947–1960 White .261 .393 144 13 4



            Black .280 .455 154 20 10



            1961–1968 White .251 .380 138 14 4



            Black .269 .421 148 17 14



            1969–1975 White .251 .369 138 12 5



            Black .272 .419 149 16 16



            *Average per 550 at bats. Source: Kolpin and Singell (1993).
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            is known as a preemption game, since the objective is to try to preempt others
by moving before them. More specifically, a preemption game is a game in
which each player decides when to take an action and a player’s payoff is
higher when (1) acting before others and (2) waiting longer before acting. For



            example, with open seating at Southwest Airlines, one would like to
sit as long as possible and then be first in line. There is a tension,
however, in that the longer one holds off, the more likely it is that
someone will preempt you and act first. As we’ll see, equilibrium
play involves players acting impatiently in the sense that they don’t
wait long enough before acting.



            In contrast, a war of attrition is a timing game in which a
player’s payoff is higher when (1) other players act earlier and (2) ac-
tions are taken earlier. In particular, if a player is to act, he prefers
that he do it earlier. In the concession line, you prefer other people
to act first by leaving the line, but if you are to leave the line empty
handed, you’d prefer that it be done now rather than later. Again,
there is a tension in that the longer one holds off waiting for some-



            one else to act, the more costly it is. Equilibrium
play involves players being too patient, waiting
too long before acting.



            8.4.1 Preemption



            Consider the open-seating scenario with
Southwest Airlines. Although the waiting game
at the airport gate involves many passengers,
we’ll keep it simple by having just two passen-
gers who sequentially decide whether to stay
seated or get in line. Assume that as soon as one
passenger gets in line, the other follows. (She
anticipates yet more passengers, whom we are
not modeling, getting in line.) The value to being
first in line is 30 and being second is 20. The
cost associated with staying in line is shown in
TABLE 8.3. The longer one waits, the higher is the
cost. Furthermore, the cost of another unit of
time is greater the longer one has been waiting.
For example, if one has been waiting for one
unit, then the cost of a second unit is



            while if one has been waiting for
two units, then the cost of a third unit is



            A passenger’s payoff is the value
attached to his or her place in line, less the cost
of waiting in line.



            The extensive form is in FIGURE 8.13 and has
passenger 1 initially deciding between acting
(i.e., getting in line) and waiting. If she acts,
then the game is over and the payoffs are 
for her (the value to being first, 30, less the wait-
ing cost of 45) and for passenger 2 (20, less
the waiting cost of 45). If passenger 1 waits,
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            TABLE 8.3 COST OF WAITING
IN LINE



            Units of Time 



            Spent in Line Cost



            1 5



            2 12



            3 21



            4 32



            5 45



            FIGURE 8.13 Waiting Game
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            then passenger 2 decides whether or not to act. If he waits, then it is passen-
ger 1’s turn again, and so forth. This sequence of events continues for at most
five rounds. If, at the final decision node, passenger 2 decides to wait, then we
will assume that the person to be first in line is randomly determined, in
which case each passenger’s payoff is (where there
is no waiting cost).



            Now, let us solve this game by using backward induction. If everyone has
held off getting in line, so that passenger 2 is at his final decision node, then
he’ll scurry to be first in line, with a payoff of 30, rather than wait and have
only a 50% chance of being first (which has a payoff of 25). In light of that an-
ticipated behavior, at her final decision node passenger 1 will get in line, since
doing so delivers a payoff of 25 as opposed to waiting and ending up second
in line (with a payoff of 20). By the backward induction argument, passenger
1 recognizes that if she waits then passenger 2 will optimally jump up and get
in line. Going back to passenger 2’s second decision node, he’ll act and get a
payoff of 18 rather than wait, in which case passenger 1 gets ahead of him in
the next round. At passenger 1’s second decision node, she can get in line and
get a payoff of 9 or wait and get a payoff of 8, so she acts. At passenger 2’s first
decision node, he actually chooses to wait, with a payoff of rather than get
in line, with a payoff of �2. The additional cost of waiting in line for four
units, rather than three units, is sufficiently great to deter him from getting in
line even though he knows that passenger 1 will be first in line. At passenger
1’s initial decision node, she clearly wants to wait. Whether she gets in line
now or waits, she ends up first in line because passenger 2 will wait in the next
round. Thus, she prefers to wait so as to reduce to the amount of time she
spends in line. The unique subgame perfect Nash equilibrium play is for pas-
sengers to wait during the first two rounds and the line to start forming in
round 3 with passenger 1.



            The preceding scenario exhibits a general property of equilibrium play in
preemption games: players act too soon. In equilibrium, the payoffs are 9 for
passenger 1 and for passenger 2. Contrast these payoffs with those re-
ceived when they wait five rounds and passenger 2 is first in line. He’ll be bet-
ter off with a payoff of 30, but so will passenger 1, who has a payoff of 20,
since she avoids waiting in line. This inefficiency—not waiting long enough—
arises because each passenger has a tendency to “jump the gun,” which leads
them to form the line too early.



            An astounding example of this preemption effect arose in the market for med-
ical interns and residents. Since around the start of the 20th century, hospitals
have hired medical school graduates as medical interns, thereby providing cheap
labor for the hospitals and training for the students. Hospitals were frequently
grabbing the best students by preempting other hospitals:



            One form in which this competition manifested itself was that hospitals at-
tempted to set the date at which they would finalize binding agreements with
interns a little earlier than their principal competitors. As a result, the date
at which most internships had been finalized began to creep forward from
the end of the senior year of medical school. This was regarded as costly and
inefficient both by the hospitals, who had to appoint interns without know-
ing their final grades or class standings, and by the students and medical
schools, who found that much of the senior year was disrupted by the
process of seeking desirable appointments.8
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By the early 1940s, the timing of the market had advanced to the start of
the junior year! Hospitals were signing employment contracts a full two years
in advance of when the medical students were to work as interns. This pre-
emption inefficiency was rectified only when the hospitals jointly agreed to a
common calendar for this market in the late 1940s.



            8.4.2 War of Attrition



            As the name suggests, a war of attrition is derived from a type of military con-
flict. Two sides are engaged in continual warfare, and each is hanging on with
the hope that the other will soon retreat or surrender; each strives to outlast
the other. A classic example is the Western Front in World War I, where op-



            posing armies were dug into their trenches, the German Army
on one side and the British and French armies on the other.
This theater was characterized by little movement, battles that
lasted for months, and a steady stream of casualties. Each side
incurred heavy costs as it waited for the enemy to capitulate.



            A two-player war of attrition is shown in FIGURE 8.14. The
value to acting first is zero, while the value to having the other
player act first is 100. There is also a cost of 10 for each round
that no one acts. Analogously to the modeling of preemption, if
no one has acted by the end of the game, then the payoffs are
based on a random determination of who must act.*



            Using backward induction, notice that at each decision node
the subgame perfect Nash equilibrium has a player wait rather
than act. For example, at his second decision node, player 1 waits
with the anticipation that player 2 will wait—which brings forth
a payoff of 10—rather than act and get a payoff of All of this
waiting, however, results in much of the value to the strategic sit-
uation—which is 100—being frittered away to the point where
the total payoff is only 20 (with each player receiving 10).



            This is a common property of equilibrium play in wars of
attrition: Players wait too long, as each holds out rather than
be the one to make the move. A more desirable outcome
would be for them to flip a coin to decide who should act, and
then, once the decision is made, the person should act imme-
diately. This approach would give them an expected payoff of



            which greatly exceeds the equilibrium payoff of 10,
the difference being the cost of waiting. The problem with the “flip the coin”
scheme is that it is not enforceable. If the coin flip had, say, player 1 act, then
player 1 would say “The heck with it” and wait, according to equilibrium play.



            The owners and players in Major League Baseball have engaged in a war of
attrition on several occasions. Having failed to reach an agreement on a labor
contract, baseball players engaged in a work stoppage that resulted in the can-
cellation of 86 games in 1972, 712 games in 1981, and 938 games in
1994–1995.9 In spite of these ongoing economic costs, each side held out with
the hope that the other side would make the necessary concessions for a new
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            FIGURE 8.14 Preemption Game
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            *Since players would have waited through four rounds, each player’s expected payoff when no one acts is
as a player receives a payoff of (0 less the cost of waiting, 40) when he
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            labor contract to be signed. As both owners and players came to learn, a war
of attrition can be costly.



            8.5 Do People Reason Using Backward Induction?
UNDERSTANDING HOW PEOPLE BEHAVE is a hard problem. The task of this textbook
is to show how game theory can help solve that problem, but in doing so, I do
not want to delude you into thinking that the problem has been solved. Using
game theory and other tools, social scientists are making progress, but there
is still much we do not know. To breed a healthy dose of skepticism, we next
offer two critiques of backward induction. The first critique is that, in some
strategic situations, the predictions of backward induction do not match up
well with how people actually behave. This evidence is reviewed in Section
8.5.1. In Section 8.5.2, the logical underpinnings of backward induction are
investigated, which raises concerns about what backward induction is really
presuming.



            8.5.1 Experimental Evidence and Backward Induction



            It’s the closing seconds of a basketball game. You’re dribbling and must decide
whether to shoot or pass the ball to a teammate. If you pass, then your team-
mate similarly has to decide whether to shoot or pass. The more passes that
are made before a shot is taken, the more likely it is that the player who takes
the shot will be open, and thus the more likely it is that he’ll make the shot to
win the game. It is also the case, however, that each player would like to be the
one to take (and hopefully make) the shot.



            Suppose there is only enough time for at most three passes between teammates
LeBron and Larry. The extensive form game is shown in FIGURE 8.15. LeBron can
shoot and receive a payoff of 4 or pass the ball to Larry. Larry can then either shoot
and get a payoff of 6, or pass the ball back to LeBron. LeBron can then shoot and
get a payoff of 8, or pass back to Larry, who, due to the
time remaining, will shoot and receive a payoff of 10.



            From the team’s perspective, it is better to make
more passes before shooting, but backward induc-
tion delivers a very different prediction. Start with
the final decision node, in which LeBron decides
whether to shoot or make one final pass to Larry.
Since he receives a payoff of 8 by shooting, but only
7 by passing, he shoots. Going back to Larry’s deci-
sion node, he can shoot and get a payoff of 6, or pass
and get a payoff of 5. (Larry knows that if he passes
the ball to LeBron, then LeBron will shoot.) Thus,
Larry prefers to make the shot himself as soon as he
gets a chance. At the initial decision node, if LeBron
shoots, he gets a payoff of only 4, but that is better
than passing to Larry, which provides a payoff of 3
(LeBron knows that Larry will take the shot.) The
subgame perfect Nash equilibrium has a player
shoot at each decision node, and this means that
LeBron shoots immediately rather than passing to
set up a better shot.



            FIGURE 8.15 Last-Second Shot in a Basketball
Game
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            The basketball situation is a variant of a game known as Centipede.10



            Drawing its extensive form horizontally as in FIGURE 8.16, we see that the re-
sulting figure is shaped like a centipede, and therein lies the source of its
name. The game starts with two piles of money. Player 1 decides between
grabbing the large pile—in which case player 2 gets the small pile and the
game is over—or leaving it there. If the large pile is left there, more money is
added to both piles and it is now player 2’s turn to make the same decision:
grab the large pile or leave it there. In Figure 8.16, the large pile initially has
40 cents and the small pile has 10 cents. If the large pile is left there, the
amount of money is doubled, so, at the second decision node, the large pile
has 80 cents and the small pile has 20 cents. Each time the money is left on
the table, the amounts are doubled. With the version shown in Figure 8.16, the
game goes on for at most six moves. If, at the final decision node, player 2
leaves the money, then it doubles one last time and player 1 automatically gets
the larger pile. (For the time being, ignore the percentages listed on the grab
branches.)
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            FIGURE 8.16 Centipede Game



            Assume that a player’s payoff is measured by how much money she re-
ceives, and we’ll use backward induction to solve the game. At the final deci-
sion node, player 2 will grab the large pile, as he prefers $12.80 to $6.40.
Moving back to the penultimate decision node, player 1 can either grab the
large pile and receive $6.40, or leave it there and get $3.20. That she would get
$3.20 presumes that player 1 believes that player 2 will act optimally and grab
the large pile at the next node. Continuing to work backwards, we find that it
is always optimal for a player to take the large pile when given the chance.
Thus, backward induction implies that player 1 grabs the 40 cents at the start
of the game and there it ends.



            Backward induction offers a precise solution for the Centipede game. The
only problem is that people don’t act that way—or at least not exactly that way.
The game shown in Figure 8.16 was conducted 281 times with real money and
real-live undergraduate students as subjects.11 Of the trials that reached the ith



            node, the percentage listed on the grab branch in Figure 8.16 indicates how
often the person took the money rather than leave it there. For example, at the
first decision node, player 1 took the 40 cents in only 2 of the 281 trials, which
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            is about 1% of the trials. Of the 279 trials that reached the second decision
node, player 2 grabbed the money in 18 of them, which is about 6% of the
time.



            The theory predicts that a player will grab the large pile of money whenever
given the opportunity. This prediction implies that player 1 will grab the 40
cents at the first decision node, but that actually occurred in fewer than 1% of
the trials. However, the frequency with which the large pile is grabbed steadily
increases as the game progresses, so the observed behavior gets closer to what
is predicted when there are fewer nodes left. By the fifth decision node, player
1 grabs the large pile 73% of the time. However, even at the last decision node,
when player 2 is choosing between $12.80 and $6.40, the latter is chosen in
15% of the trials!



            Should we then conclude that people don’t use backward induction in their
reasoning? Not necessarily: backward induction is just one ingredient in our
theory, and the incongruity between prediction and practice may be due to
some other poorly chosen ingredient. Let’s consider some of the possible sus-
pects. But before doing so, let me ask, Why do you think people act differently
from what the theory predicts? Give that some thought before continuing to
read.



            It is certainly possible that people don’t deploy backward induction or that
they are limited in the extent to which they use it. It is noteworthy that when
there are only two decision nodes left, 73% of the trials conform to the theory’s
prediction that player 1 will grab the $6.40, which is not a bad performance
for the theory. In that situation, player 1 has to look forward only one move—
prognosticating what player 2 will do—in order to figure out her optimal
move. When there are three decision nodes left, player 2 has to look forward
two moves, which is a more challenging exercise. At that node, only 53% of
the trials conform to the theory. The more decision nodes that remain, the big-
ger is the departure from what people do and what the theory predicts.
Perhaps people engage in some limited backward induction.



            Another ingredient of the theory that is worthy of reevaluation is the pay-
offs. The experimenter controls how much money is at stake, but not the ac-
tual payoffs of players. The theory is based on the assumption that a person
cares only about how much money is received, but suppose people have dif-
ferent preferences? Suppose they care about more than money? On this point,
it is rather telling that some people—though not many—chose not to grab the
money at the final decision node even though that meant choosing $6.40 over
$12.80. Either they made a mistake, or these dollar amounts do not accurately
reflect the payoffs.



            One thought is that people care not only about how much money they re-
ceive, but also about how much money the other person receives. The possi-
bility that some people are altruists—they like other people receiving more
money (or feel bad about taking advantage of someone else)—may have impli-
cations even for people who are not altruists. Suppose you are unsure of
whether the person with whom you are matched is an altruist. If she is an al-
truist, then she won’t grab the money in the next round, which behooves you
not grab it in this round, since you can let it build up and then grab it. Hence,
a selfish backward-induction reasoner will let the money lie on the table for
some number of rounds if she is uncertain as to whether she is matched with
someone like herself or someone who is altruistic.
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            8.5.2 A Logical Paradox with Backward Induction



            Let’s put aside the experimental evidence and reexamine the logic of the backward-
induction argument. Suppose the game is properly specified and is as described
in Figure 8.16. Then, according to the argument of backward induction, once
the fifth decision node is reached, player 1 will grab the $6.40 because if he
doesn’t, then player 2 will grab the money in the next round and leave player 1
with only $3.20. But why does player 1 expect player 2 to grab it? Because player
1 believes that player 2 is rational and that is what a rational player would do.
Now let’s move back to the fourth decision node. If player 2 doesn’t grab the
$3.20, she expects player 1 to grab it in the next round. The reason is that player
2 believes that player 1 believes that player 2 is rational, so player 2 believes that
player 1 believes that player 2 will grab the large pile of money at the sixth de-
cision node. With such a belief, player 2 expects player 1 to grab it at the fifth
decision node because player 2 believes that player 1 is rational and thus prefers
$6.40 to $3.20. Hence, player 2 will act at the fourth decision node and acquire
$3.20. Continuing with this logic, rationality is common knowledge among play-
ers 1 and 2 implies that player 1 will grab the 40 cents at the start of the game.



            Now comes the conundrum. In arguing that player 1 should grab the large
pile once it has reached $6.40, a key premise is that player 1 believes that player
2 is rational and thus that player 2 would grab the large pile if it were allowed
to grow to $12.80. But if rationality is common knowledge, then how did the
game get all the way to the fourth decision node? Rationality is common knowl-



            edge implies that it shouldn’t get past the first deci-
sion node, much less get to the fourth. So isn’t the
fact that the large pile exceeds 40 cents evidence
that rationality is not common knowledge? And if
so, why, then, is it reasonable to suppose that player
1 believes that player 2 is rational? Player 2 has
passed up the money before—otherwise, player 1
wouldn’t be faced with the decision of whether to
take the $6.40 pile—so might she not pass it up
again if it were $12.80? And if she would, then
shouldn’t player 1 pass it up when it is $6.40, so that
he can end up with $25.60?



            This paradox is especially self-evident in the ex-
tensive form game illustrated in FIGURE 8.17. Jon
moves first, and if he chose b, then Jane gets to
move, after which Jon moves again. In deriving her
optimal strategy, Jane needs to forecast what Jon
would do if she chose x and what Jon would do if
she chose y. Using backward induction, she predicts
that Jon will play d in response to Jane’s playing x—
which results in Jane’s payoff being 5—and that Jon
will play c in response to Jane’s playing y—which
results in Jane’s payoff being 3. Hence, Jane will
choose x if Jon chose b at the initial decision node.



            Note, however, that Jon earns 10 by choosing a,
while his payoff can’t be higher than 8 by choosing
b, and in fact, it is only 6 when the ensuing play is
optimal. In other words, any strategy that assigns a
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            FIGURE 8.17 Is Backward Induction Consistent
with Rationality Being Common
Knowledge?
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            to Jon’s initial decision node strictly dominates any strategy that assigns b.
Thus, if the game reaches Jane’s decision node, then she knows that Jon chose
a strictly dominated strategy. In that case, should Jane anticipate that Jon will
respond in an optimal manner to what Jane does?



            One argument in favor of the backward-induction solution starting from
Jane’s decision node is that Jon intended to act rationally, but simply made a
mistake at the initial decision node; he meant to choose a, but chose b in error.
If we think that further mistakes are unlikely, then Jane’s best model of how
Jon will respond to her actions is that he will respond optimally. But perhaps
more mistakes are likely. Maybe Jon is drunk or off of his medication, and that
is why he chose b, in which case further mistakes may occur. What are your
thoughts on this conundrum?



            Summary
This chapter began by pointing out a deficiency in Nash equilibrium as a solu-
tion concept. In an extensive form game, Nash equilibrium requires only that
a player’s strategy prescribe an optimal action for those information sets (or, in
a game of perfect information, decision nodes) which are reached during the
course of equilibrium play. Since a player’s payoff depends solely on actions im-
plemented, there is no cost to assigning an inappropriate action to a contin-
gency that isn’t expected to occur. In other words, it is costless to make a bluff
that is not called. A Nash equilibrium strategy could then assign a nonoptimal
action to a decision node that is not reached during equilibrium play. The con-
cern this creates is that a strategy profile could be a Nash equilibrium only be-
cause of incredible threats. That is, a player’s strategy is optimal only because
of what another player threatens to do, but if that player’s bluff were called, it
would not be optimal for him to go through with the threat.



            This inadequacy led us to consider a more stringent solution concept which
would rule out Nash equilibria that are dependent on incredible threats. For a
game of perfect information, subgame perfect Nash equilibrium extends the re-
quirement of optimality from those decision nodes reached during the course of
equilibrium play to all decision nodes. The algorithm of backward induction pro-
vides a method for deriving subgame perfect Nash equilibria by solving for opti-
mal behavior at the final decision node(s) and then working one’s way up the tree,
all along presuming that later play is optimal. In a game of perfect information,
this algorithm always produces at least one subgame perfect Nash equilibrium.



            A general class of sequential games involving timing was considered in
which players face a series of decisions regarding whether to act or wait.
Examples include when to queue up at an airport gate and when a labor union
should call off a work stoppage. In a game of preemption, there is an advan-
tage to moving before other players do, but it is also the case that it is costly
to move earlier in time. The best outcome for a player would be to wait until
the end and then be the first to move. The temptation that each player has to
preempt others results in a payoff-dominated outcome in which players move
too soon. In contrast, a war of attrition is characterized by a second-mover
advantage. A player wants the others to move first, but in waiting for that to
happen, the player incurs a cost. In that situation, the ideal outcome for the
player is for others to act immediately. The temptation to wait in the hope that
others will move results in all players waiting too long.
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            In spite of the appeal of backward induction in that it rules out what seem
to be unreasonable Nash equilibria, two criticisms have been leveled at the
method and at subgame perfect Nash equilibria. First, in some experiments—
such as those conducted on the Centipede game—people are observed to act
contrary to equilibrium predictions. Although this lack of agreement between
theory and reality may be due to other elements of the model (such as what we
assume about peoples’ preferences), it may be the case that their reasoning
process does not fully conform to backward induction. Second, there is a logi-
cal inconsistency with backward induction. In applying the concept, you are
engaged in a thought experiment concerning what is best for a player if a cer-
tain point in the game is reached. In determining what is best, the presumption
is made that other players will subsequently act optimally. However, it is possi-
ble that the only way the game could have reached its current point is through
nonoptimal play. This thought experiment may then require maintaining two
almost contradictory ideas: only nonoptimal play could have brought the game
to the current point, yet we presume that future play will be optimal. The
American novelist F. Scott Fitzgerald once said, “The test of a first-rate intelli-
gence is the ability to hold two opposed ideas in mind at the same time and still
retain the ability to function.” With that in mind, let us note that, in spite of its
warts, backward induction is a compelling prescription for how one should
play a game and is currently our best description of how people actually play.



            1. Return to the situation described in Chapter 2 in which Galileo Galilei
might be confronted by the Inquisition. Let us describe what actually tran-
spired. First, Pope Urban VIII referred Galileo to the Inquisition, and he was
brought to trial on April 12, 1633. After verbal persuasion from the com-
missary general of the Inquisition, Galileo confessed that he had gone too
far in supporting the Copernican theory in one of his books (even though
he hadn’t). Galileo was then given an “examination of intention,” which in-
volves showing the instruments of torture to the accused. The final hearing
by the Inquisition was held on June 22, 1633, at which time the 69-year-old
Galileo pleaded for mercy because of his “regrettable state of physical un-
wellness.” With the threat of torture and imprisonment lurking in the back-
ground, the Inquisitors forced Galileo to “abjure, curse, and detest” his
work. Galileo complied in every way and was convicted and sentenced to
life imprisonment and religious penances. Due to his age (and possibly his
fame), the sentence was commuted to house arrest. He was allowed to re-
turn to his villa near Florence, where he would remain for the last years of
his life. That is history, and now we turn to our simple modeling of it. The
extensive form game in Figure 2.3 is reproduced here as FIGURE PR8.1.
a. Find all Nash equilibria. (Hint: First derive the strategic form game.)
b. Find all of the subgame perfect Nash equilibria.
c. For each Nash equilibrium that is not a subgame perfect Nash equi-



            librium, explain why it is not a subgame perfect Nash equilibrium.



            2. There were still pirates in the 1980s, although they tended to appear in
corporate boardrooms rather than the open seas. These swashbuckling
financiers would engage in a “hostile takeover” by acquiring a company
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            through the purchase of shares on the open market and against the will
of the target company’s existing management (thus making the takeover
“hostile”). Such investors were known as “raiders” and included people
such as T. Boone Pickens, Sir James Goldsmith, Henry Kravis, and
Victor Posner. All this was fictionalized in the movie Wall Street, with
Michael Douglas portraying the raider Gordon Gekko, who famously es-
poused “Greed is good.” The time was full of jocular jargon, as manage-
ment could consume a “poison pill” by taking on a costly financial struc-
ture that would make it difficult to consummate a hostile takeover. In
some cases, a raid could be fought against by buying a raider’s shares
back at a premium; this tack became known as “greenmail,” a takeoff on
blackmail. To get a gist of the strategizing that occurred between a
raider and management, consider FIGURE PR8.2. The raider makes an ini-
tial stock purchase, in response to which management decides whether
to buy the shares back at a premium (pay greenmail) or not. If no green-
mail is paid, then the raider decides whether to purchase additional
shares in order to take control of the target company.
a. Find all subgame perfect Nash equilibria.
b. Find a Nash equilibrium that is not a subgame perfect Nash equilib-



            rium, and explain why it is not a subgame perfect Nash equilibrium.



            3. Return to the Kidnapping game from the film Ransom (first discussed
in Chapter 2), which is reproduced here as FIGURE PR8.3. Solve for all
subgame perfect Nash equilibria.
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            FIGURE PR8.2 Greenmail
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            FIGURE PR8.3 Extensive Form for the Film Ransom
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            4. Benjamin Franklin once said, “Laws too gentle are seldom obeyed; too
severe, seldom executed.” To flush out what he had in mind, the game in
FIGURE PR8.4 has three players: a lawmaker, a (typical) citizen, and a
judge. The lawmaker chooses among a law with a gentle penalty, one with
a moderate penalty, and a law with a severe penalty. In response to the
law, the citizen decides whether or not to obey it. If she does not obey it,
then the judge decides whether to convict and punish the citizen. Using
subgame perfect Nash equilibrium, find values for the unspecified pay-
offs (those with letters, not numbers) that substantiate Franklin’s claim
by resulting in a lawmaker’s choosing a law with a moderate penalty.



            5. Nobel Laureate Thomas Schelling once proposed a solution to the
problem of how a kidnappee can induce his kidnapper to release him
after the kidnappee has learned the identity of the kidnapper. Let’s re-
turn to the kidnapping scenario, but instead have the players be Guy
(kidnapper) and Orlando (kidnappee). The problem is that one would
expect Guy to be inclined to kill Orlando once Orlando sees Guy’s
face, since then Orlando, if released, would be able to help the police
capture Guy. The situation is as depicted in FIGURE PR8.5. Guy starts



            FIGURE PR8.4 Punishments: Severe or Gentle?
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            off by deciding whether to kidnap Orlando. Orlando then decides
whether to reveal some incriminating details about himself that are
unknown to the rest of the world. (Perhaps Orlando stole funds from
his church or had an affair unbeknownst to his wife.) Then Guy de-
cides whether to kill or release Orlando. If he releases Orlando, then
Orlando has to decide whether to inform the police of his kidnapper’s
identity. If he does, and if Orlando revealed his dirty secret to Guy,
Guy must then decide whether to share that secret with the world.
Find the unique subgame perfect Nash equilibrium, and you’ll find
Schelling’s proposed solution.



            FIGURE PR8.5 Revised Kidnapping Situation
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            6. In 1842, the Sangamo Journal of Springfield, Illinois, published letters
that criticized James Shields, the auditor of the State of Illinois. Although
the letters were signed “Rebecca,” Shields suspected that it was state leg-
islator Abraham Lincoln who penned the letters. As shown in FIGURE



            PR8.6, Shields considered challenging Lincoln to a duel, and, as history
records, Shields did challenge Lincoln. In response to a challenge,
Lincoln could avoid the duel, or, if he chose to meet Shields’s challenge,
he had the right to choose the weapons. We will also allow Lincoln to de-
cide whether to offer an apology of sorts. (Actually, it proved to be a bit
more complicated than that, so allow me some poetic license here. An
“apology of sorts” means making some remarks that could provide an
honorable retreat for Shields—something which Lincoln ultimately did.)
If he decides to go forward with a duel, then Lincoln has four choices:
propose guns, propose guns and offer an apology, propose swords, and
propose swords and offer an apology. (Shields was known to be a good
shot, so Lincoln chose cavalry broadswords of the largest size, as it gave
the, 6-foot, 4-inch, Lincoln a sizable advantage against the much shorter
Shields.) In response to any of the four choices, Shields must decide to
either go forward with the duel or stop the duel. (In the latter case,
Shields accepts Lincoln’s apology if, indeed, Lincoln offered one.) Find all
subgame perfect Nash equilibria. As a closing note, Lincoln once said, “If
all the good things I have ever done are remembered as long and as well
as my scrape with Shields, it is plain I shall not be forgotten.”



            7. An infamous event that came to be known as the Saturday Night
Massacre took place during the second term of the presidential admin-
istration of Richard Nixon. Though no one was fired upon, many were
effectively fired from their high-level positions in the federal govern-
ment. The Nixon White House was in the midst of covering up crimes
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            committed by close aides to the president. As part of the investigation,
Attorney General Elliot Richardson (who was not part of the cover-up)
named Harvard Law professor Archibald Cox as a special prosecutor.
During the investigation, President Nixon was acutely concerned with
Cox’s investigation and contemplated ordering Richardson to fire Cox
(expressed as the initial decision node in FIGURE PR8.7). When Nixon’s in-
tent was expressed to Richardson, the latter conveyed that if he did fire
Cox, he might feel compelled to resign, but also that he might be in-
clined not to fire Cox and, in that case, might also resign. Richardson’s
four possible combinations of firing Cox or not and resigning or not are



            FIGURE PR8.7 Saturday Night Massacre
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            depicted in the extensive form. If Richardson did choose to resign and not
fire Cox, then Nixon would still be left with the matter of getting rid of Cox.
And if Richardson chose not to fire Cox and did not resign, then Nixon
would have to decide whether to fire Richardson. Upon Richardson’s de-
parture, Deputy Attorney General William Ruckelshaus would assume the
position of acting attorney general and would face the same four options
as Richardson. If Ruckelshaus also chose to resign and not fire Cox, then
Solicitor General Robert Bork would become acting attorney general, and
again, he would have the same four choices. To simplify matters, we’ll not
model Bork, even though what happened was that Richardson refused to
fire Cox and resigned and Ruckelshaus did the same, at which point Bork
came in and did fire Cox and did not resign. Find all subgame perfect Nash
equilibria.



            8. Seven goblins are deciding how to split 100 galleons. The goblins are named
Alguff, Bogrod, Eargit, Griphook, Knadug, Ragnuk, and Uric, and they’ve
been rank-ordered in terms of magical power, with Alguff the weakest and
Uric the strongest. The game starts with Alguff, who proposes an allocation
of the 100 galleons coins, where an allocation is an assignment of an
amount from {0,1, . . . , 100} to each goblin and where the sum across gob-
lins equals 100. All goblins then vote simultaneously, either “yea” or “nay,”
on the allocation. If at least half of them vote in favor of the allocation, then
it is made and the game is over. If less than half vote for the proposed allo-
cation, then the other goblins perform a spell on Alguff and transform him
into a house elf for a week. In that event, it is Bogrod’s turn to put forth an
allocation for the remaining six goblins. Again, if at least half vote in favor,
the allocation is made; if not, then Bogrod is made into a house elf for a
week and it is Eargit’s turn. This procedure continues until either an alloca-
tion receives at least half of the votes of the surviving goblins or all but Uric
have been transformed into house elfs, in which case Uric gets the 100
galleons. Assume that the payoff to a goblin is if he is made into a
house elf and that it equals the number of galleons if he is not. Using the so-
lution concept of subgame perfect Nash equilibrium, what happens? (Focus
on subgame perfect Nash equilibria in which a goblin votes against an allo-
cation if he is indifferent between voting for it and against it.)



            9. Consider the four-player game displayed in FIGURE PR8.9. Find all subgame
perfect Nash equilibria.



            10. Their rich uncle left 100 pounds of gold to Todd and Steven. The negotiat-
ing process for allocating the treasure between them was also laid out in
their uncle’s will. They have three rounds by which to come to an agree-
ment. In an odd (even) round, Todd (Steven) is required to propose an al-
location. (Isn’t it clever how Todd moves in odd rounds and Steven moves
in even rounds?) In response to a proposal, the other nephew can accept or
reject it. If he accepts the proposal, the process is ended and the proposed
allocation is made. If he rejects the proposal, the game moves to the next
round. Failure to agree by the end of the third round means that all of the
gold goes to charity, so none of it lands in the pockets of Todd and Steven.
Furthermore, at the end of each round in which an agreement has not been
reached, a fraction of the allotment of gold is given to charity, where



            Thus, there are 100d pounds of gold at the beginning of round
2 (after an agreement was not reached in the first round) and only 
pounds of gold at the beginning of round 3 (after an agreement was not
reached in the first two rounds). In other words, there is a cost to delaying
agreement and, of course, a cost to ever failing to agree. Each nephew’s
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            payoff equals the number of pounds of gold he ends up with, so neither
cares about the other or about their uncle’s favorite charity. For nota-
tional purposes, assume that a proposal in round t is a value for 
where is the share of the remaining amount of gold for Todd and,
therefore, Steven’s share is Note that and thus is any
number between 0 and 1 inclusive. Find a subgame perfect Nash equi-
librium.



            11. Consider the following passage from Midnight in the Garden of Good and
Evil:12



            There’s a woman here, a grande dame at the very apex of society and one
of the richest people in the Southeast, let alone Savannah. She owns a
copper mine. She built a big house in an exclusive part of town, a
replica of a famous Louisiana plantation house with huge white
columns and curved stairs. You can see it from the water. Everybody
goes ‘Oooo, look!” when they pass by it. I adore her. She’s been like a
mother to me. But she’s the cheapest woman who ever lived! Some
years ago she ordered a pair of iron gates for her house. They were
designed and built especially for her. But when they were delivered she
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            pitched a fit, said they were horrible, said they were filth. “Take them
away,” she said, “I never want to see them again!” Then she tore up the
bill, which was for $1,400—a fair amount of money in those days. The
foundry took the gates back, but they didn’t know what to do with
them. After all, there wasn’t much demand for a pair of ornamental
gates exactly that size. The only thing they could do was to sell the iron
for its scrap value. So they cut the price from $1,400 to $190. Naturally,
the following day the woman sent a man over to the foundry with $190,
and today those gates are hanging on her gateposts where they were
originally designed to go. That’s pure Savannah. And that’s what I mean
by cheap. You mustn’t be taken in by the moonlight and magnolias.
There’s more to Savannah than that. Things can get very murky.



            Using backward induction, can you explain where the foundry went wrong?



            12. The haggling game from Chapter 2 is reproduced as FIGURE PR8.12. Solve
for all subgame perfect Nash equilibria for which a player chooses ac-
cept whenever that is an optimal action. That is, if a player’s payoff is
maximized by either choosing accept or choosing some other action, he
or she chooses accept.
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9.1 Introduction
IT IS NOW TIME TO consider games with imperfect information. Recall that these
are games in which a player is not always sure as to what has transpired when
it is time to make a decision. In technical jargon, in a game with imperfect in-
formation, some information sets contain more than one decision node. Similar
to what we discovered in Chapter 8, a Nash equilibrium for a game with imper-
fect information can be unreasonable because it has a player believing an in-
credible threat (i.e., the threat by a player to act against her best interests). As in
games with perfect information, our goal towards identifying a compelling so-
lution is to rule out Nash equilibria predicated upon incredible threats.



            The approach is to extend the solution concept introduced in Chapter 8 so
that it can be applied to games with imperfect information. Achieving this end
will prove to be a bit more complicated, given the richer information structure
of a game with imperfect information. We’ll first illustrate the approach with
an example and then more formally generalize the method in Section 9.2. The
reader who needs a refresher on games with imperfect information should re-
turn to Section 2.3 before proceeding.



            Let us return to the Kidnapping game, in
which the kidnapper (Guy) and the victim’s
kin (Vivica) move simultaneously when de-
ciding, respectively, whether to release the
kidnappee (Orlando) and whether to pay
ransom. The extensive form from Chapter 2
is reproduced here as FIGURE 9.1.



            Were the algorithm introduced in Chapter
8 to be applied, we’d need to derive optimal
behavior for Guy at his last two decision
nodes. Consider, however, the following diffi-
culty: The decision node associated with Guy
having performed a kidnapping and Vivica
having paid ransom, denoted node III, is part
of an information set that also includes node
IV. Therefore, Guy doesn’t know whether he’s
at node III or node IV (i.e., he doesn’t know
whether or not Vivica has paid ransom), and
it isn’t clear what are reasonable beliefs for
Guy to have as to where he is in the game.



            So that we may better understand the dif-
ficulty we face, examine FIGURE 9.2, which
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            FIGURE 9.1 The Kidnapping Game with Simultaneous
Ransom and Release Decisions


            

        



        
            

            
The strategic form for the game in Figure 9.3 is provided in FIGURE 9.4 to
help us solve for a Nash equilibrium. This game has a unique Nash equilib-
rium in which Vivica does not pay ransom and Guy kills Orlando. Thus, if
there is a kidnapping, then ransom will not be paid and Orlando will be
killed.



            Moving back to the initial node (at which Guy
is contemplating the idea of a kidnapping), we
see that Guy can expect not to receive ransom
and that he’ll murder Orlando. He then antici-
pates a payoff of 2 if he performs the kidnapping,
which presents him with the situation depicted in
FIGURE 9.5. It’s clear that he’ll prefer not to kidnap
Orlando and instead receive a payoff of 3. By the
preceding analysis, the solution to the game in
Figure 9.1 is the strategy profile (Do not
kidnap/Kill, Do not pay ransom).
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            carves out the part of the game that we’re currently investigating. This
carved-out game “starts” with an information set that is not a singleton.
The game commences with something having transpired—what Vivica
has done—but we don’t know just what has happened. Game theory is
not well suited to handling such murkiness, and indeed, the “game” in
Figure 9.2 doesn’t look like anything we’ve seen before.



            At this stage, let’s throw up our hands and admit that we can’t solve
for behavior starting at Guy’s information set. Accepting defeat, we
climb up the tree to consider Vivica’s information set at node II.
Because node II is a singleton, none of the problems just discussed
arise. Also, because we haven’t solved for Guy’s ensuing play (whether
he kills or releases the victim), solving for Vivica’s behavior will require
solving for Guy’s at the same time. This will not pose a problem, since



            this part of the game, which is shown in FIGURE 9.3, is recognizable as a game.
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Guy After the Kidnapping
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            9.2 Subgame Perfect Nash Equilibrium
HERE WE PROVIDE A MORE formal, generalized description of the method de-
ployed in Section 9.1. The essence of the approach is to identify those parts of
a game which “look like a game” that we can independently solve and then re-
quire that players act optimally (in the sense that their play is consistent with
Nash equilibrium) for each “game within a game.”



            Think back to the last chapter. With a game of perfect information, subgame
perfect Nash equilibrium required that a player act optimally at every informa-
tion set and, in determining optimal play, presumed that other players would act
likewise further down the tree. As illustrated with the game in Figure 9.1, this
procedure cannot be used starting from just any information set when the game
is one with imperfect information. We can’t, for instance, start from an informa-
tion set that is not a singleton. May we then conclude that we may analyze any
part of a game that commences at singleton informa-
tion sets? Unfortunately, even singleton information
sets can pose difficulties, as is the case in the game
shown in FIGURE 9.6.



            Focus on the situation starting from player 1’s hav-
ing chosen action a. In that case, player 2 needs to
choose between x and y and then player 3 must decide
between c and d. The problem is that if player 2 chooses
y, what are player 3’s beliefs as to where she is in the
game? She cannot distinguish between the path of a
leading to y versus the path of b leading to x. That this
is not a well-defined game is made clear in FIGURE 9.7,
which carves out the part of the game we’re examining.
We don’t know what to say about how player 3 should
behave because it isn’t clear what 3 should believe as to
where she is in the game. And since 3’s behavior is not
clear, it’s hard to say what player 2 should do. All this
leads up to defining what it means for a part of an ex-
tensive form game to itself be a well-defined game. This
will require a bit of formalism regarding the different
components of an extensive form game.



            We define a subtree as a nonterminal node to-
gether with all ensuing nodes. The Kidnapping game
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in Figure 9.1 has four subtrees, which are circled in FIGURE



            9.8. A regular subtree is a type of subtree—specifically,
one that contains all information sets that have at least one
node in the subtree. To be a regular subtree, a subtree that
includes one node of an information set must include all
nodes of that information set. For the game in Figure 9.1,
there are two regular subtrees, which are circled in FIGURE



            9.9. Subtree 3 in Figure 9.8 is not a regular subtree, be-
cause it includes node III but not node IV; that is, it in-
cludes some, but not all, nodes of Guy’s information set. For
analogous reasons, subtree 4 is not a regular subtree. A
subgame is a regular subtree together with the associated
payoffs.



            A subgame looks like a game; it is a “game within a game.”
The key to avoiding ill-defined games (such as those shown in
Figures 9.2 and 9.7) is to limit our attention to a part of a
game that is sufficiently encompassing such that if it includes
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            FIGURE 9.7 An Ill-Defined Part of the
Extensive Form Game



            3



            2



            0 



            2 



            0



            1 



            1 



            1



            c



            x y



            d



            3



            2 



            3 



            1



            1 



            2 



            0



            c d



            FIGURE 9.8 Four Subtrees in the Kidnapping Game
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            one node of an information set, then it includes all nodes
of that information set. To find a subgame, we just have
to start with a final decision node and keep going up the
tree until the preceding condition is satisfied.



            For a strategy profile to be a subgame perfect Nash
equilibrium, it must induce Nash equilibrium play for
every subgame. To be more exact, we define a substrategy for a subgame to
be that part of a strategy which prescribes behavior only for information sets
in that subgame. Consider, for example, the strategy profile (Kidnap/Release,
Pay ransom), where, in FIGURE 9.10, we’ve highlighted the action that this
strategy profile calls forth at each of the three information sets in the game.



            The substrategies of this strategy profile that pertain to the subgame begin-
ning with Vivica’s information set (shown in Figure 9.3) include only those ac-
tions relevant to that subgame. Thus, the substrategy profile is (Release, Pay
ransom), where Guy chooses release at his information set and Vivica chooses
pay ransom at her information set.



            How many subtrees and regular subtrees are
there in the game in Figure 9.6?



            9.1 CHECK YOUR UNDERSTANDING



            FIGURE 9.9 Two Regular Subtrees in the Kidnapping Game
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Subgame Perfect Nash Equilibrium: A strategy profile is a subgame perfect Nash
equilibrium if, for every subgame, its substrategy profile is a Nash equilibrium.



            The idea is quite simple. A strategy profile implies certain contingency plans
at every subgame, where a subgame is a “game within a game.” For each of
those subgames, we can ask whether the implied contingency plans are reason-
able in the sense that all players are acting in their best interests; that is, we ask
whether those plans form a Nash equilibrium. A subgame perfect Nash equi-
librium requires equilibrium play at every subgame. Note that this definition
applies to all extensive form games—those with perfect information as well as
those with imperfect information.



            The backward-induction algorithm commences by solving the final sub-
game(s) of a game for Nash equilibrium behavior. Then you replace each sub-
game with the Nash equilibrium payoffs, defining a new (and smaller) exten-
sive form game. In this new game, you perform the same two steps: solve for
Nash equilibrium for the final subgame(s), and replace each subgame with the
Nash equilibrium payoffs. You continue this process, moving back up the tree
until you reach the initial node. In this manner, a subgame perfect Nash equi-
librium is constructed subgame by subgame.



            � SITUATION: BRITISH INTELLIGENCE



            Let’s explore an example to make these abstract concepts concrete. If you’ve
read any James Bond novels, then you know that the head of British intelli-
gence is clandestinely known as M, while an agent given the 00 classification
has a “license to kill.” Consider the situation faced by M when she must choose
an agent to perform a particularly critical and dangerous mission. As shown
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            FIGURE 9.10 The Actions That the Strategy Profile (Kidnap/
Release, Pay Ransom) Calls Forth at Each of
the Three Information Sets in the Game
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            in FIGURE 9.11, she has the option of assigning agent 003, agent 007, or both of
them. Whoever is given the task must decide between approaching the mis-
sion with dedication or zeal, where the latter implies a willingness to sacrifice
one’s life.



            To solve the game, begin with the information set faced by agent 007 when
only he has been chosen by M. As should be clear, agent 007 optimally takes
on the task with zeal, so we replace this subgame with the Nash equilibrium
payoffs (5, 4, 3).



            Next, consider the subgame in which agent 003 is the only agent assigned
to the mission. Agent 003 similarly chooses to perform with zeal, so the sub-
game is replaced with the payoffs (4, 3, 4).



            The third subgame to evaluate is when M has as-
signed both agents. The strategic form of the game
faced by agents 003 and 007 is shown in FIGURE 9.12



            (where we have dropped M’s payoffs, since they are
not relevant in deriving behavior for this subgame).
This game has a unique Nash equilibrium in which
both agents choose dedication. The rationale behind
the payoffs is that each agent is willing to act with
zeal if the mission depends only on him (as we found
in analyzing the previous two subgames), but if both
agents are assigned, then each believes it is sufficient
to pursue the mission with dedication. This subgame
is then replaced with the equilibrium payoffs (3, 7, 7).



            With the three subgames solved and each of them replaced with the associ-
ated Nash equilibrium payoffs, M now faces the situation described in FIGURE



            9.13. The Nash equilibrium for this one-player game is the assignment of only
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            agent 007. As reflected in M’s payoffs, he prefers agent 007 to agent 003 (per-
haps the former is more skilled), and he prefers to have a single agent with zeal
to two agents operating at a less intense level.



            In sum, there is a unique subgame perfect Nash equilibrium, and it is de-
scribed by the following strategy profile: M assigns agent 007 to the mission, 007
attacks the problem with zeal if he is the only one assigned and with dedication
if agent 003 is also assigned, and 003 goes at it with zeal if he is the only one as-
signed and with dedication if agent 007 is also assigned.



            It might help in understanding the concept of subgame perfect Nash equi-
librium if we also show how a Nash equilibrium can fail to be a subgame per-
fect one. For this purpose, consider the strategy profile (007 & 003, Dedica-
tion/Dedication, Dedication/Dedication), which is a Nash equilibrium, but
not a subgame perfect Nash equilibrium. Let us begin by convincing ourselves
that it is a Nash equilibrium.



            At this strategy profile, M’s payoff is 3. If she instead had chosen only agent
007, then her payoff would be 2, as 007 chooses dedication whether he is the only
agent assigned or not. If she had chosen only agent 003, then her payoff would
be 1, as 003 would choose dedication. Thus, M’s strategy of choosing both agents
is indeed optimal. Now, if M chooses both agents, then 007’s payoff from dedica-
tion/dedication is 7, from zeal/dedication is 7 (since it calls for the same action
when M is assigning both agents), and from either dedication/zeal or zeal/zeal is
5. Thus, agent 007’s strategy also is optimal. Analogously, one can show that
agent 003 strictly prefers dedication/dedication to dedication/zeal and zeal/zeal,
while zeal/dedication yields the same payoff. Accordingly, because each player’s
strategy is optimal given the other two players’ strategies, then (007 & 003, Ded-
ication/Dedication, Dedication/Dedication) is a Nash equilibrium.



            To show that (007 & 003, Dedication/Dedication, Dedication/Dedication)
is not a subgame perfect Nash equilibrium, it is sufficient to find one subgame
whereby the substrategy profile (007 & 003, Dedication/Dedication, Dedica-
tion/Dedication) for that subgame is not a Nash equilibrium. Toward that end,
consider the subgame in which M assigns only agent 003. This is a one-player
game involving 003, and the relevant substrategy of Dedication/Dedication
has him choose dedication. However, dedication yields a payoff of 2, while
choosing zeal results in a payoff of 4. In other words, agent 003’s strategy



            FIGURE 9.13 The Situation Faced by M After the Three
Final Subgames Have Been Solved for
Equilibrium Choices
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            has him choose dedication in the event that he is the only agent assigned to
the task but, in fact, it would be optimal for him to choose zeal.*



            Finally, note that it is only because M believes the incredible threat that
each agent would not choose zeal if he were the only agent assigned that
makes it optimal for M to use both agents. If M instead believed that agent 007
would act optimally by choosing zeal if he were the only agent on the job, then
M would assign only agent 007. Indeed, this is what happens at the unique
subgame perfect Nash equilibrium that we just derived.



            *This same argument can be used to show that agent 007’s substrategy at the subgame in which he is the
only agent working is also not optimal. That would also have sufficed to prove that (007 & 003, Dedica-
tion/Dedication, Dedication/Dedication) is not a subgame perfect Nash equilibrium.



            The Mugging game from Chapter 2 is reproduced here as FIGURE 9.14. The mugger
first decides between having a gun and, if he chooses to have one, whether or not
to show it to the victim, who is Simon. Upon either seeing a gun or not, Simon de-
cides whether or not to resist the mugger. Find all subgame perfect Nash equilibria.



            FIGURE 9.14 The Mugging Game
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            9.3 Examples
BEFORE MOVING ON TO some examples, let’s consider briefly the question of
whether a subgame perfect Nash equilibrium will always exist in games with
imperfect information and, if so, whether there may be more than one. Recall
from Chapter 8 that subgame perfect Nash equilibria exist for every game with
perfect information. Unfortunately, no such claim can be made with respect
to games with imperfect information. If a subgame has no Nash equilibrium
(in pure strategies), there can be no subgame perfect Nash equilibrium (in
pure strategies). However, analogously to what was covered in Chapter 7, if we
allow players to randomize, then there will be a subgame perfect Nash equi-
librium in mixed strategies.
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            On the issue of the number of equilibria, we know that a game with perfect
information has multiple subgame perfect Nash equilibria when, at some de-
cision node, two actions produce the same maximal payoff. The problem of
multiplicity of equilibria is more acute in games with imperfect information.
Multiple subgame perfect Nash equilibria can occur even when all actions re-
sult in different payoffs, as we’ll observe in the OS/2 game. This situation,
however, is nothing new to us, because, back in Chapters 4 and 5, we found
multiple Nash equilibria for many games. And since the multiplicity of Nash
equilibria can carry over to subgames, multiple subgame perfect Nash equilib-
ria are not uncommon.



            When, in fact, there are multiple subgame perfect Nash equilibria, they can
all be derived by repeatedly using the method described in the previous sec-
tion. Thus, if a subgame is reached for which there are multiple Nash equilib-
ria, you should choose one of those equilibria and replace the subgame with
the associated equilibrium payoffs. Then you march up the tree until you
reach the initial node. The process gives you just one of the subgame perfect
Nash equilibria. You must then return to the subgame that has multiple Nash
equilibria, select another one of those equilibria, and repeat the exercise. The
next example shows how this is done.



            � SITUATION: OS/2



            I suppose this poor fellow has been dead for a long time, but perhaps nobody
remembered to pick up the corpse. . . . OS/2 died from neglect and lack of
will. And yes, backing away from OS/2 was a pragmatic move, since IBM
could not compete with Microsoft or its tactics. But how amazing to see a
company that large cowed into submission by a bunch of whippersnappers
in Washington who already had taken IBM to the cleaners when they con-
vinced the Goliath to let them own PC-DOS at the outset. The death of OS/2
must be humiliating for IBM.1



            When IBM decided to enter the personal computer (PC) market in 1981, it
was determined to make its product the industry standard. Because there were
already home computers on the market, IBM pursued a plan of getting its prod-
uct to the market quickly, before some other home computer became the stan-
dard. Rather than develop the PC all in-house, which was the company’s more
typical approach, IBM outsourced key components, including the microproces-
sor and operating system. For the latter, IBM turned to a small company named
Microsoft operated by Paul Allen and Bill Gates.



            To meet IBM’s needs, Microsoft purchased QDOS (“Quick and Dirty Operating
System”) from Seattle Computer Products for $50,000, performed a few modifi-
cations, and delivered the resulting product to IBM as MS-DOS (“Microsoft Disk
Operating System”). Then, in arguably the worst business decision of the twenti-
eth century, IBM allowed Microsoft to retain the copyright to MS-DOS. IBM fore-
cast that money would come from the sale of PCs rather than the operating sys-
tem itself. History, however, saw it differently: the PC became somewhat of a
commodity—with easy entry and many competitors producing highly similar
products—while Microsoft became the dominant firm in the software market by
virtue of the network effects generated by its operating system.*



            *For more on network effects, go to “Situation: Operating Systems: Mac or Windows?” in Section 5.2.
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            Once recognizing its blunder, IBM began to develop its own operating sys-
tem—initially in conjunction with Microsoft—which was released under the
name OS/2 in 1987. At that point, Microsoft had introduced early versions of
Windows, which represented the main competition for OS/2. In spite of IBM’s
being the leading PC manufacturer, and even though OS/2 ran faster and was
more stable than Windows, few consumers wanted to buy a PC with OS/2 if
there was little software available to run on it; most software at that time had
been developed to run on Windows. Promoting OS/2 when its competitor
Windows had a large stock of compatible software was a big challenge for IBM.



            To get a sense of the strategic situation that IBM faced in deciding whether
to develop its own operating system, consider the extensive form game shown
in FIGURE 9.15. IBM initially decides whether or not to develop OS/2. If it chooses



            FIGURE 9.15 The OS/2 Game
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To solve for the subgame perfect Nash equilibria, first consider the three-
player subgame that follows from IBM’s having developed OS/2. The strategic
form of this game is shown in FIGURE 9.16, where the first payoff is for software
company 1, the second payoff for company 2, and the last for company 3. We
have dropped IBM’s payoffs because it does not make a decision in this subgame.



            There are two Nash equilibria (in pure strategies); one
has all three companies developing software for OS/2,
and the other has none of them doing so.



            With two Nash equilibria for this subgame, a deri-
vation of all subgame perfect Nash equilibria requires
solving for the remainder of the game twice. Begin by
supposing that the Nash equilibrium is the one in
which all three companies develop software to run on
OS/2. The situation faced by IBM is then as shown in
FIGURE 9.17. It can choose not to develop OS/2, in
which case its payoff is zero, or develop it and earn a
payoff of 20 based on the anticipation of plenty of
software being written for it. IBM’s optimal decision
is obviously to develop OS/2. The strategy profile
(Develop OS/2, Develop, Develop, Develop) is then
one subgame perfect Nash equilibrium.



            Now consider the other Nash equilibrium at the
three-player subgame that has the three companies
not develop applications for OS/2. The situation
faced by IBM is as shown in FIGURE 9.18, and the
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            to do so, then three software companies are assumed to simultaneously decide
whether or not to develop software to run on OS/2. Implicit in the payoffs is that
OS/2 will be appealing to consumers if there are at least two applications. Thus,
the success of OS/2 depends on enough compatible software being written.



            FIGURE 9.16 The Situation Faced by Software Companies
1, 2, and 3 After OS/2 Is Developed by IBM
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            FIGURE 9.17 The Situation Faced by IBM When
the Three Companies Develop
Software for OS/2
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            Nash equilibrium for this one-player game is not to
develop OS/2. This gives us a second subgame per-
fect Nash equilibrium: (Do not develop OS/2, Do
not develop, Do not develop, Do not develop).



            Subgame perfect Nash equilibrium play can then
result in two quite distinct outcomes: One has IBM
introducing OS/2 in anticipation of all three compa-
nies developing applications for it, which they do;
the other has IBM ditching the operating systems
project because it doesn’t expect applications to be
written for OS/2.



            What actually happened? IBM introduced OS/2,
but as time revealed, few applications were written
for it. In spite of its heft in the computer industry,
even IBM could not shake the dominant position of
Windows and the business acumen of Microsoft.
Although history then runs counter to either sub-
game perfect Nash equilibrium, equilibrium play
will conform to history if we allow players to use
mixed strategies.*



            Suppose we start with the three-player subgame among the software devel-
opers, and let us conjecture that it has a symmetric Nash equilibrium in which
each company randomizes. Let d denote the probability that a company chooses
to develop software. For software company 1 to find it optimal to randomize, it
must receive the same expected payoff from either of its pure strategies, develop
and do not develop. Suppose companies 2 and 3 each develop software with
probability d. Hence, with probability both of them develop software; with
probability neither develops software; and with probability 
one of them develops software.** The expected payoff to company 1 from devel-
oping software is then



            Equating this payoff to 0, which is the payoff from not developing software,
we solve for d and find that Thus, each of the three software companies
choosing develop with probability is a symmetric Nash equilibrium.



            Given this Nash equilibrium in the three-player subgame, the expected pay-
off to IBM from developing OS/2 is***



            Because the payoff for not developing OS/2 is 0, IBM finds it optimal to de-
velop OS/2. However, in doing so, IBM is uncertain as to how much software
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            FIGURE 9.18 The Situation Faced by IBM
When the Three Companies Do
Not Develop Software for OS/2
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            *The remainder of this example requires knowledge of the material in Chapter 7.



            **With probability , company 2 develops software and company 3 does not, and with probability
company 2 does not develop software and company 3 does. Thus, the probability that only one



            of them develops software is the sum of those two probabilities, or 
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            will be written for it. If at least two companies write applications that run on
OS/2, an event that occurs with probability , then OS/2 will succeed.* But
with probability , fewer than two applications are written, and OS/2 will fail.
History, as we know, has given us the latter realization.



            � SITUATION: AGENDA CONTROL IN THE SENATE



            The U.S. Senate is considering three alternative versions of a bill, which we’ll
denote A, B, and C. The preferences of the 100 senators are shown in TABLE 9.1.
Ten senators prefer bill A and have bill B as their second choice. Bill B is the
first choice of 44 senators, whose second choice is bill C. Finally, 46 senators
rank bill C first and bill A second.



            50
64



            10
64



            TABLE 9.1 PREFERENCES OF THE SENATORS



            Type of Number of



            Senator 1st Choice 2nd Choice 3rd Choice Senators



            I A B C 10



            II B C A 44



            III C A B 46



            The procedure for selecting a bill for passage is a three-stage process:



            ■ Stage 1: The leader of the Senate sets the agenda by selecting two bills
for a vote. His choice is then either A and B, A and C, or B and C.



            ■ Stage 2: Given the pair of bills selected by the Senate leader, the 100
members vote simultaneously.



            ■ Stage 3: Whichever bill receives more votes in stage 2 is then matched
with the third bill, and the Senate votes simultaneously on those two
bills, with the majority winner being the bill that is passed.



            For example, suppose the Senate leader chooses bills A and C. Then, in stage
2, each Senator votes for either A or C. If A draws more votes, then A is matched
with B in stage 3. If A receives a majority of votes in stage 3, then A is passed,
while if B receives a majority of votes, then B becomes law. With 100 players,
the extensive form game is far too massive to write down in tree format, so we’ll
have to be satisfied with the preceding description. Finally, assume that a sen-
ator’s payoff equals 2 if his most preferred bill is passed, 1 if his second-most
preferred bill is passed, and 0 if his least preferred bill is passed.



            Our focus is on deriving subgame perfect Nash equilibria for which it is opti-
mal for senators to vote sincerely; that is, in deciding between two bills, a Senator
votes for the bill he ranks higher. For example, if A and C are the two bills on the
floor, then a type I senator votes for A and type II and III senators vote for C.



            A stage 3 subgame has the 100 senators simultaneously cast votes for the two
bills under consideration (where one of the bills won a majority in stage 2 and
the other is the one that was excluded by the Senate leader in stage 1). These



            *The probability that three applications are written is and the probability that two applications
are written is so the sum of the probabilities is .10
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            final subgames are distinguished by the path that led to them, which is defined
by two things: the Senate leader’s initial selection of which two bills to consider
and how Senators cast their votes between the two bills. Although there are
many such subgames, all that is important for deriving an equilibrium is know-
ing which two bills were proposed in stage 1 and which bill received more votes
in stage 2 (and, for the sake of simplicity, let us ignore ties). Accordingly,



            ■ Consider a stage 3 subgame in which the Senate leader proposed bills A
and B in stage 1 . . .



            — . . . and A received more votes in stage 2. Then the senators must now
decide between A and C in stage 3. With sincere voting, C wins, as 90
Senators prefer it. (See Table 9.1.) Note that sincere voting is optimal,
since the bill that passes is independent of how an individual senator
votes and, therefore, so is his payoff.



            — . . . and B received more votes in stage 2.* Then the senators must decide
between bills B and C. With sincere voting, B wins, as 54 senators prefer it.



            ■ Consider a stage 3 subgame in which the Senate leader proposed bills A
and C in stage 1 . . .



            — . . . and A received more votes in stage 2. Then, with sincere voting
with respect to bills A and B, A wins by a vote of 56–44.



            — . . . and C received more votes in stage 2. Then, with sincere voting
with respect to bills B and C, B wins by a vote of 54–46.



            ■ Consider a stage 3 subgame in which the Senate leader proposed bills B
and C in stage 1 . . .



            — . . . and B received more votes in stage 2. Then, with sincere voting
with respect to bills A and B, A wins by a vote of 56–44.



            — . . . and C received more votes in stage 2. Then, with sincere voting
with respect to bills A and C, C wins by a vote of 90–10.



            With these Nash equilibrium outcomes to the stage 3 subgames, let us move
back to the stage 2 subgames. As already reasoned, sincere voting is optimal.
Hence, if the Senate leader initially selected bills A and B, then A wins with 56
votes; if he selected bills A and C, then C wins with 90 votes; and if it were bills
B and C that were first up for a vote, then B wins with 54 votes.



            With all this in mind, we now go back to the first stage of the game, which
is when the Senate leader chooses the pair of bills to be voted upon. In light
of the preceding analysis, this is what will transpire, depending on his choice:



            ■ If bills A and B are put on the agenda in stage 1, then A wins by a vote of
56–44 (as derived). Then, in stage 3 (or the second round of voting), bill
A goes against bill C, and C prevails by a vote of 90–10 (as derived).
Hence, bill C ultimately passes if the Senate leader initially puts bills A
and B on the agenda.



            ■ If bills A and C are put on the agenda in stage 1, then C wins by a vote of
90–10. Then, in the second round of voting, bill C goes against bill B, and
B prevails by a vote of 54–46. Hence, bill B ultimately passes if the Senate
leader initially puts bills A and C on the agenda.



            *If Senators voted optimally in stage 2, then B should not have received more votes than A. But remem-
ber that we have to be sure that play is consistent with Nash equilibrium for every subgame.
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            ■ If bills B and C are put on the agenda in stage 1, then B wins by a vote
of 54–46. Then, in the second round of voting, bill B goes against bill A,
and A prevails by a vote of 56–44. Hence, bill A ultimately passes if the
Senate leader initially puts bills B and C on the agenda.



            What is optimal behavior for the Senate leader depends on his preferences.
If he has type I preferences, then he most desires bill A to pass, in which case
he’ll first have the Senate vote between bills B and C. The outcome will be that
C loses out, and then B will lose in stage 3 to bill A. If, instead, the Senate
leader has type II preferences, then he’ll have bills A and C duke it out in stage
2. Bill C will win, but then will lose to bill B. And if the Senate leader has type
III preferences, he’ll put bills A and B on the agenda. Although A will win, it
will lose to C in stage 3.



            Regardless of the Senate leader’s preferences, then, subgame perfect Nash
equilibrium results in his most preferred bill passing by virtue of clever ma-
nipulation of the agenda. Whatever is his most preferred bill, he should ini-
tially have the Senate vote between the other two bills and then have the win-
ner of that vote go against his preferred bill. That strategy will always result in
the latter’s being approved. Note that this approach works even if the Senate
leader has type I preferences, which are shared by only nine other members
of the Senate. You have just witnessed the power of controlling the agenda.



            9.4 Commitment
AS PART OF EVERYDAY LIFE, we often try to avoid commitments. Commitment
means limiting future options, in which case it is reasonable to either post-
pone or avoid them altogether. That logic does not always apply in a strategic
setting, however: commitment can be desirable because it limits or constrains
what you can or will do in the future. The benefit arises not from how it af-
fects your behavior, but rather in how others respond to knowing that you
have bound yourself to act in a certain way.



            In this section, we flesh out the value of commitment in two business set-
tings. The first situation is faced by many a successful entrepreneur: now that
her enterprise has succeeded, how does she keep others from imitating what
she’s done and eroding her business’ profitability? The second situation deals
with a historical puzzle: why were Dutch traders more active than British
traders in the East India trade in the seventeenth century? As we will argue, it
was due, not to ships or technology, but rather to contracts that committed
Dutch traders to being more aggressive.



            9.4.1 Deterrence of Entry



            Consider a market in which a single company is operating profitably. Perhaps
it is a new market and this company was the first to enter. The challenge to
the established company is to deter the entry of competitors. Let’s see how
commitment can achieve that goal.



            If the established company were to continue to enjoy a monopoly, let us
suppose it would expect to earn a profit (or a payoff) of 1,000. Eyeing this mar-
ket is a lone potential entrant that, if it chose to enter, would face the compet-
itive environment described by FIGURE 9.19. For simplicity, each company can
choose to set its price at one of three levels: low, moderate, or high. Nash
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            equilibrium predicts that both companies will choose a moderate price (in
fact, this is a dominant strategy) and each earns a profit of 400.



            In deciding whether to enter this market, a prospective company must take
account of not only the anticipated profit it would make—which has just been
shown to be 400—but also the cost of entry, which is assumed to be 350. This
350 may represent the cost of building a manufacturing plant or setting up a
store. An entrant can then expect to earn a net profit of 50, which is the post-
entry (gross) profit of 400 less the cost of entry of 350. Assuming that this
prospective company would earn zero from not entering the market, it would
be optimal for it to enter, since, if it anticipated that companies would price in
accordance with Nash equilibrium, it would find entry profitable.



            The preceding description of events is embodied in the extensive form
game shown in FIGURE 9.20. The potential entrant moves first, deciding



            FIGURE 9.19 Post-Entry Game (Gross Profit)
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            FIGURE 9.20 The Entry Game
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            whether to enter the market. If it chooses do not enter, then the established
company earns a monopoly profit of 1,000 and the potential entrant earns zero.
If the potential entrant instead chooses enter, then the two companies make si-
multaneous price decisions. (The potential entrant is now the “new company”
in Figure 9.19.) Note that the payoffs to the entrant in Figure 9.20 are the values
from Figure 9.19 after subtracting the entry cost of 350.



            In describing how companies will behave, we implicitly used the method of
backward induction. That is, we derived Nash equilibrium behavior for the sub-
game that followed the entry of the potential entrant; this subgame had both
companies choosing a moderate price. We then replaced that subgame with the
Nash equilibrium payoffs: 400 for the established company and 50 for the po-
tential entrant. This leaves us with a one-player game in which the potential en-
trant decides whether to enter. It has a Nash equilibrium of enter. Thus, the
unique subgame perfect Nash equilibrium is (Enter/Moderate, Moderate).



            Entry of the potential entrant is most unfortunate for the established com-
pany, since its profit is only 400, compared with 1,000 if it could somehow man-
age to prevent the potential entrant from entering. Interestingly, there is a Nash
equilibrium in which entry is deterred: the strategy profile (Do not enter/Moder-
ate, Low). Given that this strategy has the potential entrant not enter, the payoff
to the established company is 1,000 regardless of its strategy, since its strategy
states the price to set if there is entry. Thus, a plan to set a low price in the post-
entry game is an optimal strategy for the established company. Given that the
established company is to price low in response to the potential entrant’s actu-
ally entering the market, the potential entrant’s highest payoff if it were to enter
is (which requires setting a moderate price). Because this payoff is lower
than the payoff from not entering, Do not enter/Moderate is optimal for the po-
tential entrant (as are Do not enter/Low and Do not enter/High).



            Thus, we have a Nash equilibrium in which entry is deterred by the threat of
low pricing by the established company. However, this threat is not credible and
thus ought not to be believed by the potential entrant. In other words, although
(Do not enter/Moderate, Low) is a Nash equilibrium, it is not a subgame perfect
Nash equilibrium. The substrategy profile for the subgame in which companies
compete in price, namely, (Moderate, Low), is not itself a Nash equilibrium. Only
a poorly trained game theorist—one versed in Nash equilibrium, but not in sub-
game perfection—would recommend that the established company deter entry
by making the (idle) threat of pricing low.



            Breaking outside of the model described in Figure 9.20, we ask, Is there a way
in which entry can be deterred? One suggestion comes from the New York
garbage-hauling business, in which the established companies were controlled by
organized crime. Soon after a company began to enter the market, an employee
found a dog’s severed head in his mailbox with the note “Welcome to New York.”2



            But let us think of a more legitimate and less gruesome manner of discouraging
entry, preferably one that is approved by the New York State Bureau of Tourism.



            Another avenue is for the established company to figure out how to commit
itself to pricing aggressively if entry occurs. If the entrant were to anticipate a
low price for the established company, then it would not enter the market, be-
cause the resulting gross profit of 325 would be insufficient to cover the cost of
entry. So, how might the established company convince the new company that
it would set a low price?



            Well, let us suppose there is a new production technology that, though expen-
sive at a cost of 500, serves to significantly lower the cost of producing each unit
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            by, for example, requiring fewer inputs (such as less energy). If the established
company were to adopt this new technology, then if the potential entrant ac-
tually entered the market, the competitive environment would be as described
in FIGURE 9.21. This environment differs from that of Figure 9.19 because of
the lower cost of production for the established company. (Note that the pay-
offs shown in Figure 9.21 have not subtracted the cost of the investment; we
shall do this in a moment.) The gross profit of the new company is the same
as before, since it is not directly affected by the production cost of the estab-
lished company; it is affected only by the price that the established company
charges. The gross profit of the established company is uniformly higher, since
the established company produces at a lower cost.



            The key difference between the post-entry situations in Figures 9.19 (with-
out investment) and 9.21 (with investment) is that the established company is
more inclined to price low having made the cost-reducing investment de-
scribed. Without the investment, the dominant strategy for the established
company was to choose a moderate price. Now it prefers to price low when
the new company prices either low or moderately (while it still prefers a mod-
erate price when the new company prices high). The Nash equilibrium for the
post-entry game in Figure 9.21 has the established company setting a low
price and the new company setting a moderate price.



            The possibility that the established company can invest in the new technol-
ogy is taken into account in the extensive form game depicted in FIGURE 9.22.
The established company moves first by either making the cost-reducing in-
vestment or not. The potential entrant observes that decision prior to deciding
whether it ought to enter. If it does not enter, then the established company
earns 1,000 (if it did not invest) or 700 (if it did invest).* If the new company
enters the market, then the two companies compete by simultaneously choos-
ing a price. Note that the payoff for the potential entrant is its gross profit
minus the cost of entry (if it entered) and the payoff for the established com-
pany is its gross profit minus the cost of investment (if it invested).



            To solve for the subgame perfect Nash equilibria for the game shown in
Figure 9.22, we first solve for the Nash equilibria for each of the final two sub-
games in which the two companies compete in price. Doing so and replacing
the subgames with the (unique) Nash equilibrium payoffs gives us the situa-
tion portrayed in FIGURE 9.23. Solving for the final two subgames in the tree
shows that the potential entrant will enter if the investment was not made—
preferring a payoff of 50 to 0—and will not enter if the investment was made—



            FIGURE 9.21 The Post-Entry Game After Investment
(Gross Profit)
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            *It is presumed that cost-reducing investment raises gross monopoly profit from 1,000 to 1,200—because
of the lower production cost—but the investment cost of 500 needs to be netted out. This gives us 700.


            

        



        
            

            
FIGURE 9.22 The Entry–Investment Game
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            preferring a payoff of 0 to Working back up to the established company’s
decision, the established company can expect to earn a payoff of 400 by not
investing—since entry has occurred and both companies price at a moderate
level—but a payoff of 700 by investing—since the potential entrant’s entry is
deterred.



            In sum, the unique subgame perfect Nash equilibrium is as follows: The es-
tablished company invests. If the potential entrant then enters the market, the
established company sets a low price. Had the established company not in-
vested and the potential entrant entered, then the established company would
have set a moderate price. Turning to the potential entrant’s strategy, we see
that if the established company invested, then the potential entrant would not
enter, but if, by mistake, it does enter, then it sets a moderate price. If the es-
tablished company did not invest, then the potential entrant enters and still
sets a moderate price.



            The key to this entry deterrence strategy is credibly conveying to the poten-
tial entrant that the established company will price low in response to the po-
tential entrant’s entry; thus, the potential entrant can expect entry to be unprof-
itable. The way the established company makes an aggressive pricing policy
credible is by altering its preferences for low prices. Adopting a technology that
lowers its production cost makes lower prices more appealing. Hence, invest-
ment changes the established company’s preferences in the post-entry situation,
and in this manner it is credibly committed to pricing low in response to entry.



            Now suppose, in contrast to the previous game, the established company’s
investment was not observed by the potential entrant at the time of its entry
decision (though it is observed after entry). This game is depicted in FIGURE



            9.24 (in which we’ve already substituted the price subgames with their Nash
equilibrium payoffs). Now do not invest strictly dominates invest for the es-
tablished company, and the Nash equilibrium is for there to be no investment
and entry occurs. If, then, investment is to deter entry, it is essential that the
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            FIGURE 9.23 The Entry–Investment Game After Having Solved for the Final
Two Subgames
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            potential entrant, prior to deciding on entry, learns that the established com-
pany has invested. In other words for commitment to a low price to deter
entry, the potential entrant must be aware of the commitment.



            The importance of an act of commitment being common knowledge is
well exemplified in the 1964 classic movie Dr. Strangelove or: How I
Learned to Stop Worrying and Love the Bomb. A U.S. bomber is mistakenly
heading towards the Soviet Union to drop its nuclear payload and is beyond
the point of recall. Unfortunately, the United States has only now learned
that the Soviet Union has a doomsday machine that will detonate in re-
sponse to a nuclear attack:



            U.S. President Muffley: The doomsday machine? What is that?



            Soviet Ambassador DeSadeski: A device which will destroy all human
and animal life on earth.



            U.S. President Muffley: I’m afraid I don’t understand something, Alexi. Is
the Premier threatening to explode this if our planes carry out their attack?



            Soviet Ambassador DeSadeski: No sir. It is not a thing a sane man would
do. The doomsday machine is designed to trigger itself automatically.



            U.S. President Muffley: But surely you can disarm it somehow.



            Soviet Ambassador DeSadeski: No. It is designed to explode if any at-
tempt is ever made to untrigger it.



            U.S. President Muffley: But, how is it possible for this thing to be triggered
automatically, and at the same time impossible to untrigger?



            Dr. Strangelove: Mr. President, it is not only possible, it is essential. That
is the whole idea of this machine, you know. Deterrence is the art of produc-
ing in the mind of the enemy . . . the fear to attack. And so, because of the
automated and irrevocable decision making process which rules out human



            FIGURE 9.24 The Entry–Investment Game Wherein the Potential Entrant 
Is Unaware of the Established Firm’s Investment Decision
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            meddling, the doomsday machine is terrifying. It’s simple to understand.
And completely credible, and convincing. (Turning to DeSadeski.) But the
whole point of the doomsday machine is lost if you keep it a secret! Why didn’t
you tell the world, eh?



            Soviet Ambassador DeSadeski: It was to be announced at the Party
Congress on Monday. As you know, the Premier loves surprises.



            9.4.2 Managerial Contracts and Competition: 
East India Trade in the Seventeenth Century



            The importation of spices and silk from East India to Europe was a lucrative
business in the seventeenth century.3 Even with the high cost of transportation—
about 7% of voyages never returned—profit margins were high, as these items
could be sold for five times their cost. Trade was dominated by the British and
Dutch, which is not surprising given their general superiority in naval affairs at
the time. What is puzzling is why the Dutch were noticeably more active than the
British. For example, in 1622 the Dutch transported 2.28 million pounds of pep-
per, exceeding Britain’s supply of 1.615 million pounds by more than 40%.



            Dutch East India Company



            One intriguing hypothesis is that the difference rested in contracts—in how
the British and Dutch traders were compensated for their services. The argu-
ment is that the manner in which the Dutch traders were rewarded not only
led them to send out more ships on the East India trade route, but because
they were more aggressive, British traders were induced to send out fewer
ships. To see the argument behind this hypothesis, let me put forth a simple
model for your consideration.
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            Suppose the shareholders of British trading companies and those of Dutch
trading companies care only about profit—about how much money is made.
A trading company, however, is not directly operated by the shareholders, but
rather by a manager, and what determines the manager’s behavior is how he
is compensated. If his compensation is a share of the company’s profit, then
he’ll try his best to maximize profit, because the more profit there is, the
higher is his salary. What is interesting is that, in a strategic situation, it could
be in the best interests of profit-seeking shareholders to have their managers
not care about profit! Only in the subtle and surprising world of strategic rea-
soning could such a statement prove true.



            In this game, suppose there are just two shipping companies, one that is
British and one that is Dutch. In each company, shareholders decide on a con-
tract to give to their manager. Suppose that there are two feasible contracts: (1)
a manager’s pay equals some fraction of the company’s profit; (2) his pay equals
some fraction of the company’s revenue. Revenue—how much money is collected
from the sale of a good—equals, say, the price per pound times the number of
pounds sold. Profit equals revenue minus cost, where cost is what the company
had to pay out to get the items to Europe. Cost includes the cost of buying the
items in India and the cost of transporting them back to Europe. Profit is what
shareholders get and thus is what they are interested in maximizing.



            Now, suppose further that once contracts are given to the managers (and
presumably agreed to by them), they are known to both managers. While each
manager then knows whether the other manager is paid a fraction of profit or
of revenue, the amount of compensation is not yet determined. At that point,
each manager decides on the number of voyages his company will undertake,
which then determines the supply of the good, say, pepper. For simplicity, as-
sume there are just three supply levels: low, moderate, and high. The profit and
revenue from each of the nine possible strategy pairs is shown in TABLE 9.2.
For example, if the British choose a moderate number of voyages and the
Dutch a high number, then the British company earns profits of 60,000 on rev-
enue of 112,500 (hence, its cost is 52,500), while the Dutch company earns
profits of 67,500 on revenue of 135,000.



            TABLE 9.2 PROFIT AND REVENUE IN THE EAST INDIA TRADE



            British British Dutch Dutch 



            British Dutch Profit Revenue Profit Revenue



            Low Low 80,000 120,000 80,000 120,000



            Low Moderate 70,000 110,000 87,500 137,500



            Low High 62,500 100,000 85,000 150,000



            Moderate Low 87,500 137,500 70,000 110,000



            Moderate Moderate 75,000 125,000 75,000 125,000



            Moderate High 60,000 112,500 67,500 135,000



            High Low 85,000 150,000 62,500 100,000



            High Moderate 67,500 135,000 60,000 112,500



            High High 57,500 120,000 57,500 120,000
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            Now suppose both the British and Dutch managers are compensated on the
basis of profit and, to be concrete, each receives a wage equal to 1% of profit.
Then the game faced by managers is as shown in FIGURE 9.25, where their pay-
offs are presumed to equal their monetary compensation.* This game has a
unique Nash equilibrium in which both managers choose to launch a moder-
ate number of voyages. Each manager earns pay of 750, and each trading
company earns a profit of 75,000 (referring back to Table 9.2).**



            FIGURE 9.25 The East India Trade Game When Each Manager’s
Payoff Equals 1% of Profit
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            Now suppose the Dutch manager’s pay is a share of revenue—specifically, 
of 1% of revenue. The British manager continues to receive pay equal to 1%
of profit. Thus, the Dutch manager ignores the cost of buying and transport-
ing the goods. He determines the number of voyages so as to generate the
highest revenue from selling imported items in Europe. The new strategic
form game faced by the two companies’ managers is shown in FIGURE 9.26.***
This game has a unique Nash equilibrium whereby the British manager
chooses a low number of voyages and the Dutch manager chooses a high num-
ber of voyages. The British trading company then earns a profit of 62,500 (on
100,000 of revenue), and the Dutch company earns a profit of 85,000 (on
150,000 of revenue).
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            FIGURE 9.26 The East India Trade Game When the Dutch Manager’s
Payoff Equals of 1% of Revenue and the British
Manager’s Payoff Equals 1% of Profit
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            *The payoffs, then, equal 1% of the profit entries in Table 9.2.



            **To be correct, shareholders receive 75,000, less the 750 paid to the manager. However, the amount of
managerial compensation is very small in this example, and our conclusions are unaffected if we choose
to ignore it, which we will.



            ***The payoffs for the British manager are the same as in Figure 9.25, while the payoffs for the Dutch
manager equal of 1% of the revenue entries in Table 9.2.1
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            A couple of interesting points are worth noting. First, not only do the Dutch
earn more revenue than the British, but they also make more profit, even
though the Dutch manager is interested in revenue, not profit. Furthermore,
the Dutch company earns more money than when the manager was concerned
about profit. For the game in Figure 9.25, when the Dutch manager cared only
about profit (because his pay was a share of profit), the Dutch company
earned a profit of 75,000, but now it earns 85,000 with a manager who cares
only about revenue (because his pay is a share of revenue). The Dutch share-
holders thus earn more profit by having their manager import an amount that
maximizes revenue, not profit. How can this be?



            The sleight of hand that led to this striking result is how the British trading
company responds to the Dutch manager’s caring about revenue, not profit.
Were the British to continue to make a moderate number of voyages, then
switching the Dutch manager to a revenue-based contract would lead to too
much being imported and lower profit. Given that the British manager
chooses moderate, Dutch profit would go from 75,000 to 67,500 when the
revenue-driven Dutch manager chooses high rather than moderate. But, for-
tunately for the Dutch, the British know that the Dutch manager will import
a lot, so they pull back on how much they import in order not to flood the mar-
ket and depress prices. This is why the new Nash equilibrium has the British
import a low amount, given that the Dutch import a high amount. The com-
mitment to import a lot—which is made credible by having the Dutch man-
ager be compensated by how much he imports (not how much money he
makes for shareholders)—induces the British to import less, and that serves to
raise the profit of the Dutch trading company.



            In a strategic setting, a player can be better off by committing
himself to some future behavior if this commitment is made known to the other
players.



            Summary
In solving a game, the task is always to find the most compelling strategy pro-
file: what we think intelligent players would do. As originally pointed out in
Chapter 8, Nash equilibrium need not always be compelling, in spite of each
player using a strategy that is best, given other players’ strategies. The opti-
mality of a player’s strategy could depend on the belief that if the player did
something different, then another player would respond in an irrational man-
ner. The anticipation of an irrational move was referred to as an incredible
threat, and it was argued that Nash equilibria predicated upon incredible
threats are not compelling because a player whose bluff was called would not
find it optimal to go through with the threatened response. In that case, such
a threat should not be believed by other players.



            The more stringent solution concept of subgame perfect Nash equilibrium
rules out Nash equilibria involving incredible threats, initially introduced for
games with perfect information in Chapter 8. In the current chapter, we pro-
vided a generalized definition of subgame perfect Nash equilibrium that ap-
plies to extensive form games with perfect or imperfect information.



            Implementing subgame perfect Nash equilibrium is a two-step process.
First, you must identify the parts of a game that are themselves a well-defined
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            1. For the game in FIGURE PR9.1, derive all subgame perfect Nash equilibria.



            EXERCISES



            2. In FIGURE PR9.2, a variant of the OS/2 game is provided that differs in the
structure of information sets as well as in some of the payoffs. Now if
IBM develops OS/2, software company 1 moves first in deciding whether



            FIGURE PR9.1 
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            game. A “game within a game” is called a subgame. For the second step, we
defined a substrategy profile as the part of a strategy profile that pertains to
a subgame, and then we required that the substrategy profile form a Nash
equilibrium for that subgame. Thus, subgame perfect Nash equilibrium man-
dates that players act optimally at every subgame, even those that are not
reached if everyone were to act according to the subgame perfect Nash equi-
librium. In this manner, when a player considers the ramifications of a partic-
ular move, she presumes that all players will respond in their best interests,
not according to some idle threat.



            In a game-theoretic context, commitment refers to a decision with some
permanency that has an impact on future decision making. It may mean mak-
ing an investment that influences the payoffs from various future actions or
constraining the actions that can be chosen in the future. Commitment can be
valuable in a strategic setting because of how it affects what other players do.
A publicly observed commitment can bind a player to act a certain way in the
future and can thereby induce other players to adjust their behavior in a way
that may be desirable from the perspective of the player making the commit-
ment. Understanding how commitment functions is a valuable piece of insight
that game theory delivers.
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            to develop an application, and then, after its choice has been revealed,
companies 2 and 3 act simultaneously.
a. Derive all subgame perfect Nash equilibria.
b. Derive a Nash equilibrium that is not a subgame perfect Nash equilib-



            rium, and explain why it is not a subgame perfect Nash equilibrium.



            3. “I can’t come with you,” said Hermione, now blushing, “because I’m al-
ready going with someone.” “No, you’re not!” said Ron. “You just said that
to get rid of Neville.” “Oh, did I?” said Hermione, and her eyes flashed dan-
gerously. “Just because it’s taken you three years to notice, Ron, doesn’t
mean no one else has spotted I’m a girl”4



            It is the week before the Yule Ball Dance, and Victor and Ron are each
contemplating whether to ask Hermione. As portrayed in FIGURE PR9.3,



            FIGURE PR9.2 Revised OS/2 Game
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            Victor moves first by deciding whether or not to approach Hermione.
(Keep in mind that asking a girl to a dance is more frightening than a rogue
bludger). If he gets up the gumption to invite her, then Hermione decides
whether or not to accept the invitation and go with Victor. After Victor (and
possibly Hermione) have acted, Ron decides whether to conquer his case
of nerves (perhaps Harry can trick him by making him think he’s drunk
Felix Felicis) and finally tell Hermione how he feels about her (and also in-
vite her to the dance). However, note that his information set is such that
he doesn’t know what has happened between Victor and Hermione. Ron
doesn’t know whether Victor asked Hermione and, if Victor did, whether
Hermione accepted. If Ron does invite Hermione and she is not going with
Victor—either because Victor didn’t ask, or he did and she declined—then
Hermione has to decide whether to accept Ron’s invitation. At those deci-
sion nodes for Hermione, she knows where she is in the game, since she is
fully informed about what has transpired. The payoffs are specified so that
Hermione would prefer to go to the dance with Ron rather than with
Victor. Both Ron and Victor would like to go with Hermione, but both
would rather not ask if she is unable or unwilling to accept. Use the con-
cept of subgame perfect Nash equilibrium to find out what will happen.



            FIGURE PR9.3 Yule Ball Dance
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            4. For Exercise 3 on the Yule Ball Dance, now assume that, before he de-
cides whether to ask Hermione, Ron observes whether or not Victor
asked her. However, if Victor does invite Hermione, Ron does not know
her answer to Victor when he decides whether to invite her himself.
a. Write down the extensive form game.
b. Derive all subgame perfect Nash equilibria.



            5. In Tom Clancy’s novel Hunt for Red October, the Soviet Union has devel-
oped a submarine named Red October that can run “silently” and
thereby escape detection. On its maiden voyage, the ship’s captain,
Marko Ramius, has decided to defect, because he believes that this tech-
nology risks war by destroying the balance of power between the United
States and the U.S.S.R. He has put together a set of officers who are
loyal to him and have agreed to defect as well. However, the captain is
concerned that an officer may change his mind during the voyage and,
furthermore, that an officer may be more inclined to change his mind if
he thinks that other officers will do so. The captain is then considering
writing a letter—to be delivered to the Soviet government after the sub-
marine has departed from its base—stating his plan to defect. The exten-
sive form of this game is shown in FIGURE PR9.5.



            FIGURE PR9.5 Hunt for Red October
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            The captain initially decides whether or not to send the letter. After re-
vealing his decision to his officers (once they are all out to sea), the offi-
cers, which, for the sake of parsimony, are limited to Captain Second
Rank Borodin and Lieutenant Melekhin, simultaneously decide between
continuing with the plan to defect or reneging on the plan and insisting
that the submarine return to the Soviet Union. The payoffs are such that
all three players would like to defect and would prefer that it be done
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            without the letter being sent (which results in the Soviet government
sending out another submarine to sink Red October).
a. Derive all subgame perfect Nash equilibria.
b. Explain why the captain would send the letter.



            6. Let us return to examining the competition occurring for the East India
trade.
a. Consider the game faced by the British and Dutch managers when



            both are given contracts that compensate them with of 1% of rev-
enue. The strategic form game is shown in FIGURE PR9.6. Find the
Nash equilibria.



            1
2



            FIGURE PR9.6 Revised East India Trade Game
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            b. Now consider the game between the British and Dutch shareholders
as to what kind of contracts to give their managers. Assume that they
simultaneously choose between a contract that gives the manager 1%
of profit and one that gives him of 1% of revenue. Assume, as be-
fore, that the shareholders’ payoff is profit (and we ignore the trivial
amount that they pay to their managers). After a pair of contracts is
selected, the two contracts are revealed to both managers, and the
managers then choose between supply levels of low, moderate, and
high. Find all subgame perfect Nash equilibria.



            7. Consider the extensive form game shown in FIGURE PR9.7. The top payoff at
a terminal node is for player 1. Find all subgame perfect Nash equilibria.
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            8. Consider the extensive form game portrayed in FIGURE PR9.8. The top
number at a terminal node is player 1’s payoff, the middle number is
player 2’s payoff, and the bottom number is player 3’s payoff.
a. Derive the strategy set for each player. (Note: If you do not want to list



            all of the strategies, you can provide a general description of a player’s
strategy, give an example, and state how many strategies are in the
strategy set.)



            b. Derive all subgame perfect Nash equilibria.
c. Derive a Nash equilibrium that is not a subgame perfect Nash equilib-



            rium, and explain why it is not a subgame perfect Nash equilibrium.
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            9. Consider the extensive form game shown in FIGURE PR9.9. The top num-
ber at a terminal node is player 1’s payoff and the bottom number is
player 2’s payoff.
a. Describe the general form of each player’s strategy.
b. Derive all subgame perfect Nash equilibria.



            10. Consider the extensive form game in FIGURE PR9.10. The top number at
a terminal node is player 1’s payoff, the second number is player 2’s pay-
off, the third number is player 3’s payoff, and the bottom number is
player 4’s payoff.
a. Derive the strategy set for each player or, alternatively, state a repre-



            sentative strategy for a player.
b. Derive all subgame perfect Nash equilibria.



            11. One of the most exciting plays in baseball is the “suicide squeeze.” The
situation involves a runner on third base and fewer than two outs. As
soon as the pitcher is in his windup and committed to throwing the ball
to home plate, the runner makes a mad dash for home plate. The batter’s
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            task is to square up and bunt the ball away from home plate so that no
one has the chance to field the ball and tag the runner out. The other
team can obstruct this play by performing a “pitchout”: the pitcher in-
tentionally throws a pitch so wide off the plate that the batter is inca-
pable of getting his bat on the ball. The catcher, knowing that the
pitchout is coming, steps over to catch the pitch and easily tags the run-
ner out coming from third base. Of course, the manager for the team at
bat may sense that a pitchout is planned and call off the suicide squeeze.
If the other manager does call for a pitchout, but there is no suicide
squeeze, he has put the pitcher in a more difficult situation, because the
batter’s count of balls and strikes will now be more to the batter’s favor.



            Suicide Squeeze in Baseball



            Let’s consider such a situation as faced by two excellent and strate-
gic-minded managers: Tony LaRussa (who is an avid believer in the
play) and Joe Torre. The situation is as depicted in FIGURE PR9.11. To
simplify matters, we’ll assume that the current count on the batter is,
say, two balls and one strike, so that Torre, whose team is pitching, can
(realistically) call at most one pitchout. Initially, the two managers
move simultaneously, with Torre deciding whether to call for a
pitchout and LaRussa deciding whether to execute a suicide squeeze.
If there is a pitchout and a suicide squeeze, the outcome will be disas-
trous for LaRussa and spectacular for Torre; the latter gets a payoff of
10, the former 0. If there is a pitchout and no suicide squeeze, then
LaRussa’s payoff is 8 and Torre’s is 2. If there is a suicide squeeze and
no pitchout, then the outcome is exactly as LaRussa wants, and his
payoff is 9, with Torre receiving 1. Finally, if there is no pitchout and
no suicide squeeze, then the strategic situation is presumed to con-
tinue with the next pitch, when again Torre can call for a pitchout and
LaRussa can execute a suicide squeeze. Find a subgame perfect Nash
equilibrium in mixed strategies.
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“Who knows what evil lurks in the hearts of men?” —THE SHADOW



            10.1 Introduction
IN MODELING A STRATEGIC SITUATION as a game, a key assumption is that the game
is common knowledge to the players. Each player knows who is participating,
what their options are, and how they evaluate outcomes. While such a descrip-
tion is a good approximation for some contexts—such as the strategic game
played with your siblings in the race to the bathroom in the morning—there
are many other contexts in which common knowledge is violated in a blatant
manner and, furthermore, this lack of knowledge can be quite influential in
determining behavior. For example, suppose you walk into an auto dealership
to negotiate with a salesperson. What price you should offer depends not only
on how much the car is worth to you, but on how much you think the dealer-
ship is willing to sell it for. The problem is that you don’t know the lowest price
at which they’re willing to sell, and they don’t know the highest price you’re
willing to pay. This is a scenario in which some information is private to the
players.



            There are many real-world settings in which people have some information
that is known only to them. Modeling and solving such strategic settings
proved intractable until a brilliant Hungarian mathematician named John
Harsanyi made a major breakthrough in the late 1960s. Harsanyi figured out
how to take a situation in which players had private information and convert it
into a game that is common knowledge without losing the private-information
aspect, thereby transforming it from something we don’t know how to solve
into something we do. Sounds like magic, doesn’t it? As with most magic
tricks, however, it becomes obvious once it is explained. Nonetheless, its obvi-
ousness does not diminish its value.



            10.2 A Game of Incomplete Information: 
The Munich Agreement
BEFORE MAKING THE CONTRIBUTION to game theory for which he received the
Nobel Prize in Economics, Harsanyi had already revealed himself to be a per-
son of great resourcefulness and courage. As a Hungarian Jew in 1944, he es-
caped from a train station and thereby avoided deportation to a Nazi concen-
tration camp. Then, as the Hungarian government was becoming increasingly
oppressive, he illegally emigrated in 1950 by escaping across relatively un-
guarded marshy terrain. In light of such personal challenges and triumphs, it
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            is only appropriate that we first apply the methods he pioneered to analyze an
important diplomatic event preceding World War II.



            Let us turn back the clock to 1938. Nazi Germany had annexed Austria, and
it was believed that Adolf Hitler was considering a similar action against
Czechoslovakia’s Sudetenland. With the Great War (now known as World War I)
a recent memory, Europeans feared a repeat of such misery and horror. In an
effort to preserve the peace, Prime Minister Neville Chamberlain of Great
Britain traveled to Munich, Germany, to reach an agreement with Hitler. On
September 28, 1939, Chamberlain and Hitler signed the Munich Agreement,
giving Germany the Sudetenland in exchange for Hitler’s promise that he
would go no further. A chunk of Czechoslovakia had been delivered as a con-
cession to forestall war. Of course, peace proved to be an illusion. Germany
would enter Prague the following spring and invade Poland a year later, start-
ing World War II.



            In deciding whether to propose and then sign this agreement, Chamberlain
was uncertain as to the ultimate intentions of Hitler. Was Hitler only seeking
additional lebensraum (“living space”) for the German people? If so, then per-
haps a concession such as the Sudetenland would placate him and indeed
avoid war. Or was Hitler concocting a more grandiose plan to invade much of
Europe?



            The situation in Munich can be cast as the extensive form game in FIGURE



            10.1. Chamberlain moves first by deciding whether to offer concessions or
stand firm. The presumption is that Hitler will accept the concessions, and our
attention will focus on the decision regarding the pursuit of war. The prefer-
ences of Chamberlain are clear: His most preferred outcome is to stand firm
whereupon Hitler avoids war, while his least preferred outcome is to provide
concessions but then Hitler goes to war. Having been offered concessions,
Hitler is given more time to prepare his war machine; thus, we shall suppose
that Chamberlain finds that outcome less desirable than standing firm and
going to war.
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            FIGURE 10.1 The Munich Agreement Game with Unknown Payoffs 
for Hitler
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            The challenge with analyzing this situation lies with Hitler’s payoffs. While
Hitler is presumed to know them, Chamberlain does not. And without know-
ing Hitler’s payoffs, how can Chamberlain determine what Hitler will do?



            As we ponder a solution to this conundrum, let us contemplate the possi-
bilities that might have been racing through Chamberlain’s mind. One thought
is that Hitler is amicable, as reflected in the payoffs presented in FIGURE 10.2(a).
We refer to Hitler as amicable because his most preferred outcome is to gain
concessions and avoid war. Note, however, that if Chamberlain stands firm,
Hitler will go to war in order to gain additional land. Thus, if Chamberlain re-
ally did face an amicable Hitler and knew this fact, then he ought to provide
concessions.



            Hitler (far right) and Chamberlain (far left) Meeting in Munich
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            The other possibility is that Hitler is belligerent, as summarized by the pay-
offs in FIGURE 10.2(b). Here, Hitler has a dominant strategy of going to war, al-
though he prefers to do so after receiving concessions. If this is the game
Chamberlain is playing, then he would do better to stand firm.



            In actuality, Chamberlain was uncertain as to whether he was playing the
game described in Figure 10.2(a) or the one in Figure 10.2(b). This situation
is known as a game of incomplete information. Recall that a game of imper-
fect information is a game in which players know the game they’re playing,
but at some point in the game, a player does not know where he is in the game;
that is, he doesn’t know the past choice of some player. In contrast, a game of
incomplete information is a game in which players do not know the game they
are playing; some aspect of the game is not common knowledge. Although this
game could take various forms, in this chapter we’ll generally limit our atten-
tion to when it pertains to lack of information about another player’s payoffs.



            The trick to solving a game of incomplete information is to convert it to a
game of imperfect information—that is, transform it from something we don’t
know how to solve into something we do know how to solve!1 This is done by
introducing a new player referred to as Nature. Nature is intended, not to refer
to trees, fleas, and bees, but rather random forces in players’ environment.
Nature takes the form of exogenously specified probabilities over various ac-
tions and is intended to represent players’ beliefs about random events. In the
context at hand, Nature determines Hitler’s preferences (or payoffs) and thus
the game that is being played, as is shown in FIGURE 10.3.



            Nature is modeled as moving first by choosing whether Hitler is amicable
or belligerent. This move by Nature is not observed by Chamberlain—thereby
capturing his lack of knowledge as to what Hitler’s payoffs are—but is ob-
served by Hitler—since Hitler knows his own preferences. It is important to
assume that the probabilities assigned by Nature to these two possibilities are
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            FIGURE 10.2 (a) The Munich Agreement Game When Hitler Is Amicable. (b) The Munich Agreement
Game When Hitler Is Belligerent
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            common knowledge, and here we assume that there is a 60% chance that
Hitler is amicable and a 40% chance that he is belligerent.*



            The extensive form game in Figure 10.3 is a well-defined game of imperfect
information. This game is common knowledge, although when Chamberlain
moves, he lacks knowledge of Nature’s choice. To solve it for Nash equilibria,
first note that a strategy for Hitler is a quadruple of actions, since he has four
information sets describing what has been done by Nature and Chamberlain:
(amicable, concessions), (amicable, stand firm), (belligerent, concessions), and
(belligerent, stand firm). A strategy for Hitler is then of the following form:



            If I am amicable and Chamberlain offered concessions, then ____ [fill in
war or no war].



            If I am amicable and Chamberlain stood firm, then ____ [fill in war or
no war].



            If I am belligerent and Chamberlain offered concessions, then ____ [fill in
war or no war].



            If I am belligerent and Chamberlain stood firm, then ____ [fill in war or
no war].
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            FIGURE 10.3 The Munich Agreement Game When Nature Determines Whether
Hitler Is Amicable or Belligerent



            *Game theory doesn’t tell us what these probabilities ought to be, so here we make an arbitrary assump-
tion in order to get onto the business of learning how to solve a game of incomplete information. One
could imagine these probabilities being formed on the basis of a person’s education, life experiences, par-
enting, and other factors.
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            This means that Hitler’s strategy set is made up of 16 strategies: all of the ways
in which to fill in those four blanks with his two feasible actions.



            Hitler’s optimal strategy is straightforward to derive. If he is amicable (as
chosen by Nature), then he should choose no war when Chamberlain offers
concessions and war when Chamberlain stands firm. If Hitler is belligerent,
then he should go to war regardless of what Chamberlain does. Thus, the op-
timal strategy for Hitler is (No war, War, War, War).



            What should Chamberlain do, given this strategy for Hitler? A strategy for
Chamberlain is a single action, as he has only one information set. Given
Chamberlain’s uncertainty as to Hitler’s preferences, he isn’t sure how Hitler
will respond to his action. Thus, Chamberlain will need to calculate expected
payoffs in evaluating his two strategies.*



            Chamberlain’s expected payoff from providing concessions is



            With probability .6, Nature chose Hitler to be amicable, in which case Hitler—
as prescribed by his optimal strategy—will avoid war if Chamberlain offers
concessions; Chamberlain’s payoff is 3 in that event. With probability .4, Hitler
is belligerent—which, according to his strategy, means that he’ll go to war—so
the payoff to Chamberlain is 1 from providing concessions. The calculations
result in an expected payoff of 2.2 by appeasing Hitler with the Sudetenland.
If, instead, Chamberlain stands firm, his expected payoff is



            Standing firm causes both Hitler types to go to war, so the payoff is 2.
Chamberlain’s optimal strategy, then, is to offer concessions, since the ex-
pected payoff is higher at 2.2. In sum, we contend that a solution to this game
has Chamberlain offer concessions, in which case Hitler avoids war if he is
amicable and goes to war if he is belligerent.



            10.3 Bayesian Games and Bayes–Nash Equilibrium
IN THIS SECTION, WE DESCRIBE somewhat more systematically how to solve a game
of incomplete information. As we saw in Section 10.2, the idea is to convert a
game of incomplete information into a game of imperfect information, which
is known as a Bayesian game. A Bayesian game modifies a standard game by
having an initial stage at which Nature determines the private information held
by players. The recipe for this transformation involves three easy steps.



            Constructing a Bayesian Game



            Step 1: In a game of incomplete information, a player lacks some relevant
information about the person with whom she is interacting. A first
step in the construction of a Bayesian game is to specify the pos-
sible answers to the question, “Who is this player?” Information
that is private information to a player (and thus not known by
other players) is referred to as the player’s type, and the collection



            .6 � 2 � .4 � 2 � 2.



            .6 � 3 � .4 � 1 � 2.2.



            *Expected payoffs were discussed in Section 7.2.
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            of feasible types is the type space. Typically, a player’s type is his
payoffs, in which case the type space is the collection of possible
payoffs for that player. In the Munich Agreement game, the Hitler
type space included two payoff configurations that we labeled am-
icable and belligerent.*



            Step 2: Having specified the type space, the next step is to determine each
player’s type. Of course, the player’s type has already been set be-
fore you meet him; Hitler was either amicable or belligerent when
Chamberlain showed up in Munich. However, in a Bayesian game,
we need to “turn back the clock” to when a player did not know
his type (i.e., prior to learning the information that is private to
him). The game must begin with a player as a tabula rasa (blank
slate). At that stage, random forces (Nature) determine each
player’s type and “write” on that blank slate. A probability is as-
signed to each type, and that probability measures the likelihood
of Nature choosing that type for a player. We assume that these
probabilities are common knowledge to the players.



            Step 3: The third step in constructing a Bayesian game is to define strat-
egy sets. Recall that a strategy is a completely specified decision
rule chosen before the game begins. A strategy in a Bayesian game
is conceived as being selected before Nature moves. Because a
strategy prescribes an action for each situation in which a player
can find himself, a strategy states what to do, given Nature’s
choice as to the player’s type and whatever else a player may know
(with regard to whatever actions have been chosen by other play-
ers). The situation is analogous to planning your reincarnation:
What will I do if I come back as a horse or a snake or a dung fly?
(Oh, please don’t let me come back as a dung fly!)



            You might wonder about Step 3. Hitler is of a particular type—in fact, we
know now that he was belligerent—so why does he need to develop a strategy
for his amicable self? This step is really designed to assist Chamberlain in his
decision making. Chamberlain must calculate the strategy Hitler uses if he is
amicable and the strategy he uses if he is belligerent. With such a calculation,
and with beliefs about whether Hitler is amicable or belligerent, Chamberlain
can formulate beliefs about what Hitler will do and thus be able to devise an
optimal strategy.



            Having performed the necessary modifications to a game of incomplete in-
formation in order to convert it into a Bayesian game of imperfect informa-
tion, we next seek to solve the game. A commonly used solution method is
Bayes–Nash (or Bayesian) equilibrium, which is a strategy profile that pre-
scribes optimal behavior for each and every type of a player, given the other
players’ strategies, and does so for all players.



            To distinguish Bayes–Nash from Nash equilibrium, recall that a strategy pro-
file is a Nash equilibrium when each player’s strategy is optimal, given the other
players’ strategies. This requirement gives us a total of n conditions, one for each



            *Private information can be about more than payoffs; it can be about strategy sets, about the set of play-
ers, or even about a players’ beliefs. However, we will focus our attention on private information about
payoffs.
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            of the n players. Now consider a Bayesian game, and let denote the number
of types of player i. Then, for player i’s strategy to be part of a Bayes–Nash equi-
librium, it must be optimal for each of those types. That is, for each type of
player i, the prescribed behavior must be optimal. There are then conditions
that must be satisfied if we are to conclude that player i’s strategy is optimal.
Whatever type a player proves to be, the prescribed behavior must be optimal.



            The preceding is an introductory description of Bayes–Nash equilibrium; a
more formal definition is provided in an appendix at the end of the chapter. If
you prefer not to venture into “notationland,” a few stimulating examples ought
to elucidate the concept with less pain. It is to those examples that we now turn.



            � SITUATION: GUNFIGHT IN THE WILD WEST



            It is 1875 in Dodge City, Kansas, and there is a dispute in the local saloon.
Marshal Wyatt Earp arrives to restore order when one of the men steps back
and pulls his hand away from his body as if he’s ready to draw. The decision
faced by Earp and the stranger is whether to draw immediately or instead wait
and draw only in response to the other’s pulling out his gun. The shooting tal-
ents of Earp are known, but Earp doesn’t know the skill of the stranger. Is he
a gunslinger or just a plain cowpoke?



            If, in fact, the stranger is a gunslinger and Earp knows it, then both Earp
and the stranger would see themselves as playing the game depicted in FIGURE



            10.4(a). Because Earp would like to avoid a shootout, his most preferred out-
come is that he and the stranger choose wait so that a gunfight is avoided. His
least preferred outcome is that the stranger draw and Earp has waited. Given
that the stranger is a gunslinger, Earp is apt to be killed. Note that Earp’s best
reply is to match what he thinks the stranger will do: wait if he thinks the
stranger will not draw and draw if he thinks the stranger will draw. In con-
trast, the stranger has a dominant strategy, which is draw. He surely wants to
do so if he thinks Earp will draw, but he wants to do so even if Earp doesn’t
draw, as he can then add to his reputation as a gunslinger (which obviously is
not sufficiently well established, since Earp doesn’t know who he is).



            mi



            mi



            mi



            FIGURE 10.4 (a) The Gunfight Game When the Stranger Is a Gunslinger. 
(b) The Gunfight Game When the Stranger Is a Cowpoke



            Draw



            Stranger (gunslinger)



            2,3 



            1,4



            3,1 



            8,2



            Wait



            Wyatt Earp
Draw 



            Wait



            (a)



            Draw



            Stranger (cowpoke)



            5,2 



            6,3



            4,1 



            8,4



            Wait



            Wyatt Earp
Draw 



            Wait



            (b)



            Alternatively, suppose the stranger is a cowpoke. Then, under complete in-
formation, the two men would be playing the game in FIGURE 10.4(b). In that
game, Earp’s dominant strategy is wait. Even if the stranger draws, Earp be-
lieves that he could fire first if the stranger is a cowpoke. In this situation, he
defends himself without being seen as having provoked the stranger. The cow-
poke recognizes that his skill is not as great as Earp’s and will draw only if he
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            thinks Earp is planning to do so. The cowpoke’s optimal strategy is to do what-
ever he thinks Earp will do.



            This game is a game of incomplete information, because Earp doesn’t know
if he’s playing the game in Figure 10.4(a) or the one in Figure 10.4(b). Without
knowledge of whom he’s facing, it’s hard to say what Earp should do. Similarly,
it’s hard to say what the stranger should do if he’s a cowpoke, for what is best
for a cowpoke is to match what Earp is to do. But Earp’s uncertainty as to
whom he is facing means that the cowpoke is uncertain as to what he believes
Earp will think he’ll do and thus the cowpoke is uncertain as to what Earp will
choose.



            To settle matters, Sheriff Harsanyi rolls into town and converts this game
of incomplete information into a game of imperfect information. (See FIGURE



            10.5.) Nature moves first to determine whether the stranger is a gunslinger—
an event that is assumed to occur with probability .75—or a cowpoke, which
occurs with probability .25. Earp does not observe Nature’s move, and in this
way we capture the fact that Earp is uncertain as to the stranger’s skills and
intentions. Earp has a single information set; thus, his strategy set includes
draw and wait. As for the stranger, he does get to observe Nature—a feature
which captures the fact that the stranger knows whether he’s a gunslinger or
a cowpoke—but does not get to observe Earp’s action; Earp and the stranger
move simultaneously. The stranger has two information sets, one for when
Nature makes him a gunslinger and the other for when he is a cowpoke. The
stranger’s strategy set encompasses four strategies: (draw, draw), (draw, wait),



            FIGURE 10.5 A Bayesian Gunslinger Game
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            (wait, draw), and (wait, wait); the first action is what to do if he is a gunslinger,
the second is what to do if he is a cowpoke.



            In deriving a Bayes–Nash equilibrium, note that it must have the
stranger choosing draw when he is a gunslinger, because that is a dominant
move in that case. Since we can then eliminate (wait, draw), and (wait,
wait) for the stranger, there are four remaining candidates for Bayes–Nash
equilibria:



            A. Earp chooses draw and the stranger chooses (draw, wait).



            B. Earp chooses wait and the stranger chooses (draw, wait).



            C. Earp chooses draw and the stranger chooses (draw, draw).



            D. Earp chooses wait and the stranger chooses (draw, draw).



            Strategy profile A is clearly not a Bayes–Nash equilibrium. If Earp is to
draw, then the stranger—whether a gunslinger or a cowpoke—will want to
draw. Yet, (draw, wait) has the stranger draw only if he is a gunslinger. Note
that neither is strategy profile D, a Bayes–Nash equilibrium: If Earp waits, then
the stranger wants to wait if he is a cowpoke. We have thus ruled out strategy
profiles A and D.



            Next, consider strategy profile B, in which Earp waits and the stranger
draws if he is a gunslinger and doesn’t draw if he is a cowpoke. The following
are the three conditions that need to be satisfied for strategy profile B to be a
Bayes–Nash equilibrium:



            1. Earp’s choosing wait maximizes his expected payoff, given that the
stranger chooses draw with probability .75 (because, with probability
.75, he is a gunslinger and, according to the stranger’s strategy of (draw,
wait), he’ll draw) and the stranger chooses wait with probability .25
(because, with probability .25, he is a cowpoke and, according to the
stranger’s strategy of (draw, wait), he’ll wait).



            2. If the stranger is a gunslinger, then draw maximizes his payoff, given
that Earp chooses wait.



            3. If the stranger is a cowpoke, then wait maximizes his payoff, given that
Earp chooses wait.



            Condition 1 ensures that Earp’s strategy is optimal, and conditions 2 and 3
ensure that the stranger’s strategy is optimal for both possible types. First,
note that condition 2 is indeed satisfied: The gunslinger prefers to draw (re-
gardless of what Earp does). Next, note that condition 3 is satisfied, because,
when he is a cowpoke, the stranger wants to avoid a gunfight with Earp, so he
waits, since he expects Earp to wait.



            Turning to condition 1, Earp’s expected payoff from drawing is



            With probability .75, the stranger is a gunslinger—in which case he draws
(according to the stranger’s strategy)—and the payoff to Earp is 2. With prob-
ability .25, the stranger is a cowpoke—in which case he waits—and Earp’s pay-
off is 4 from drawing. His expected payoff from waiting is instead



            .75 � 1 � .25 � 8 � 2.75.



            .75 � 2 � .25 � 4 � 2.5.


            

        



        
            

            
Condition 3 is then satisfied, since the expected payoff
from waiting exceeds the expected payoff from drawing.



            In the Munich Agreement game, it was unnecessary for
Hitler to know what Chamberlain believed about Hitler’s
payoffs. This was because Hitler observed Chamberlain’s
move, and all Hitler needed to know to make an optimal
choice was his type and what Chamberlain chose. Hence, solving that game only
required specifying Chamberlain’s beliefs as to Hitler’s type. The Gunfight game
is different. Since Earp and the stranger move simultaneously and the stranger’s
optimal move depends on what he thinks Earp will do, specifying Earp’s beliefs
about the stranger’s type is insufficient. The cowpoke needs to know what Earp’s
beliefs are so that he can figure out what Earp will do. In this setting, it is im-
portant that we make the assumption that the probabilities assigned to the
stranger’s type are common knowledge between Earp and the stranger.



            10.4 When All Players Have Private 
Information: Auctions
THUS FAR, WE’VE EXPLORED SITUATIONS in which only one player has private infor-
mation: Chamberlain did not know Hitler’s true preferences, but Hitler knew
all about Chamberlain; Earp did not know the stranger’s skill and intentions,
whereas the stranger knew all about Earp. However, there are many situations
in which all players have private information. It is to such settings we turn for
the remainder of the chapter.



            A classic situation in which these informational conditions arise is an auc-
tion. Each bidder knows how much she is willing to pay, but does not know
how high other bidders are willing to go. In deciding how to bid, a bidder must
prognosticate how others will bid, and that depends on the valuation they at-
tach to the good, which is known only to them. Here, we will model this situa-
tion as a Bayesian game and draw some implications about bidding behavior.



            Our exploration will take place within the confines of the first-price, sealed-
bid auction. Recall that, in a first-price, sealed-bid auction, bidders simultane-
ously submit written bids and the one who submits the highest bid wins the
item and pays a price equal to her bid. This type of auction will be explored in
two distinct informational settings. The first setting is known as independent
private values and assumes that the value of the good is unrelated across bid-
ders. That is, each bidder shows up with a valuation, and that valuation is
what the item is worth to her if she wins it. A bidder’s type is her valuation.
The game is called a game of independent private values because each value is
private or specific to a bidder and bidder’s values are independent random vari-
ables. The second informational setting is known as common value and as-
sumes that all bidders value the item equally, but when they are bidding, they
are uncertain about what that value is. Each bidder has his own signal or es-
timate of its value, and that is what he knows when he bids. A bidder’s type is
then his signal of this common value. An example would be a group of art
dealers bidding on some work of art with the intent of reselling it. The true
value is what it’ll sell for in the future, and that is the same for all bidders.



            We explore these two informational settings here in an introductory way. A
richer model of equilibrium-bidding behavior (one that requires the use of cal-
culus) is included in an appendix at the end of the chapter.
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            Determine whether strategy profile C is a
Bayes–Nash equilibrium.



            10.1 CHECK YOUR UNDERSTANDING
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            � SITUATION: INDEPENDENT PRIVATE VALUES AND SHADING YOUR BID



            On November 11, 1994, Bill Gates bought a piece of scientific history at auc-
tion: the Codex Leicester. This oddly named item is a folio of scientific obser-
vations written by Leonardo da Vinci almost a half a millennium ago. It was
the property of the Earl of Leicester and his descendants from 1717 until 1980,
when the industrialist Armand Hammer purchased it. After Hammer’s death,
his estate put it up for auction. Gates’s winning bid of $30,800,000 set a record
price for a nonliterary manuscript.



            So let us suppose that an object—perhaps the Codex Leicester—is up for
auction and there are two bidders: Bill and Charlene. The auctioneer uses a
first-price, sealed-bid auction requiring bidders to submit written bids simul-
taneously, with the highest bidder winning the item and paying a price equal
to her bid. Let us suppose that if the bidders submit the same bid, the auction-
eer flips a coin to determine the winner.



            A player’s type is his valuation of the item up for auction, and to keep the sit-
uation simple, we’ll assume that there are just two possible types: a valuation
of 50, with probability .6; and a valuation of 100, with probability .4. Nature be-
gins by choosing each bidder’s type. Given that their types are independent,
there is a 36% chance that both Bill and Charlene have the low valuation of 50
(since a 16% chance that both have the high valuation of 100,
and a 48% chance that one of the bidders has the low valuation and the other
has the high valuation. Each bidder learns only his or her own valuation, and
then the two players submit their bids simultaneously. We’ll assume that a bid
comes in increments of tens: 10, 20, 30, . . . . If he wins the auction, a bidder’s
payoff is his valuation less his bid (which, with a first-price, sealed-bid auction,
is the price of the item), while his payoff is zero if he loses the auction.



            A strategy is a pair of bids that assigns a bid in the event that a bidder’s val-
uation is 50 and a bid in the event that the valuation is 100. Suppose both bid-
ders use the following strategy: Bid 40 if the valuation is 50, and bid 60 when
the valuation is 100. Let us determine whether this symmetric strategy pair is
a Bayes–Nash equilibrium. Toward that end, let us derive beliefs that, say, Bill
holds regarding Charlene’s bid. Given that Bill believes that Charlene will use
the preceding strategy, and given that Bill thinks that there is a 60% chance that
Charlene has a low valuation, then Bill believes that there is a 60% chance that
Charlene will submit a bid of 40 and a 40% chance that she will submit a bid
of 60. With these beliefs about Charlene’s bids, we can assess the optimality of
Bill’s bidding strategy.



            Suppose Bill’s valuation is 50. He knows that Charlene will bid either 40 or 60.
His strategy prescribes a bid of 40, which results in an expected payoff of



            This expression is derived as follows: With probability .6, Charlene has a low
valuation and bids 40. Because Bill is submitting the same bid, he then has a
50% chance of winning the auction. (Recall that the auctioneer flips a coin
when both bidders submit the same bids.) In that event, his payoff is 
or 10, since his valuation is 50 and he pays a price of 40. With probability .4,
Charlene has a high valuation and bids 60, which means that she outbids Bill’s
bid of 40.



            50 � 40,



            .6 � .5 � (50 � 40) � .4 � 0 � 3.



            .36 � .6 � .6),
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            Thus, for a bid of 40 to be optimal when the valuation is 50, the expected
payoff from any other bid must not exceed 3. If bidder 1 bids below 40, then
he is sure to lose, in which case his payoff is zero. If he bids 50, then his pay-
off is again zero, because he either loses or wins, but pays a price equal to his
valuation. And if he bids above 50, his payoff is either zero (if he loses) or neg-
ative (if he wins). Thus, a bid of 40 is optimal if Bill’s valuation is 50.



            Now suppose Bill’s valuation is 100. His prescribed bid is 60, which yields
an expected payoff of



            Optimality then requires that any other bid generate a payoff no higher than
32. Let us begin by showing how we can quickly dismiss bids below 40 and
above 70. If Bill bids below 40, then he is sure to lose (since Charlene bids ei-
ther 40 or 60) and his payoff is zero, a strategy that is clearly inferior to bid-
ding 60 and getting an expected payoff of 32. If Bill bids 70, then he is sure to
win—because Charlene never bids higher than 60—and thus his payoff is 30.
A bid above 70 only lowers his payoff, since the probability of winning is no
higher—it is already equal to 1 from a bid of 70—and a higher bid just means
paying a higher price.



            The preceding analysis leaves us with bids of 40, 50, and 70 as possibly at-
tractive alternatives to the prescribed bid of 60. The associated expected pay-
offs are as follows:



            Note that all of these expected payoffs fall short of the expected payoff of 32
from bidding 60. Hence, if bidder 1’s valuation is 100, then a bid of 60 is in-
deed optimal. By symmetry, the analysis also applies to Charlene. Therefore,
it is a Bayes–Nash equilibrium for a bidder to bid 40 when the bidder’s valua-
tion is 50 and to bid 60 when the bidder’s valuation is 100.



            The most interesting behavior here occurs when a bidder has a high valua-
tion, for then a bid of 60 is submitted and it is well below the valuation of 100.
Bidding below your valuation is called “shading your bid.” By bidding lower, a
bidder raises the payoff in the event that she has the highest bid and wins the
auction. However, a lower bid also reduces the chances of having the highest
bid. The trade-off between these two factors determines a bidder’s optimal bid.



            This trade-off is depicted in TABLE 10.1 for a bidder with a valuation of 100.
A bid of 40 has a 30% chance of winning because there is a 60% chance that
the other bidder has a low valuation and bids 40 as well,
in which case the auctioneer flips a coin to determine the
winner. At 60 the payoff in the event of win-
ning is quite high. If, instead, the bid is higher, at 50, the
payoff in the event of winning falls to 50, but the chance
of winning rises to 60% (as now the bidder wins for sure
when the other bidder has a low valuation). As a result,
the expected payoff is higher, at 30, with a bid of 50,



            (� 100 � 40),



             Expected payoff from a bid of 70 � .6 � (100 � 70) � .4 � (100 � 70) � 30.



             Expected payoff from a bid of 50 � .6 � (100 � 50) � .4 � 0 � 30.



             Expected payoff from a bid of 40 � .6 � .5 � (100 � 40) � .4 � 0 � 18.



            .6 � (100 � 60) � .4 � .5 � (100 � 60) � 32.



            For the Bayesian game just described, consider
a symmetric strategy profile in which a bidder
bids 40 when the valuation is 50 and bids 70
when the valuation is 100. Determine whether
this strategy pair is a Bayes–Nash equilibrium.



            10.2 CHECK YOUR UNDERSTANDING
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            compared with an expected payoff of 18 from a bid of 40. The optimal bid is
60, and note that it maximizes neither the probability of winning nor the pay-
off in the event of winning. Rather, it balances these two factors in such a way
as to produce the highest expected payoff.



            � SITUATION: COMMON VALUE AND THE WINNER’S CURSE



            Imagine that you are a senior manager of an oil company, such as Texaco, and
you’re considering the purchase of an oil lease that would give Texaco the right
to extract oil from some location in the Gulf of Mexico. In order to get an esti-
mate of the amount of oil in the ground, and thus of the value of the lease, you
decide to hire an engineering firm. There are two available firms: Geological
Consultants and Acme Engineering. Through the industry grapevine, you’ve
learned that one of them consistently provides optimistic estimates and the
other pessimistic estimates, although you don’t know which is which, so you
assign equal probability to each firm’s being the optimistic one. Thus, with
probability , Geological Consultants overestimate the true amount of oil in
the ground and Acme Engineering underestimates it, and with probability ,
the underestimate comes from Geological Consultants and the overestimate
from Acme Engineering.



            Let v denote the true value of the oil lease, and suppose v lies in {10,
11, . . . , 100}. Then the optimistic firm is assumed to provide an estimate, or
signal, of the value of the oil lease, while the pessimistic firm pro-
vides a signal Suppose you choose Geological Consultants and re-
ceive a signal s. Since you don’t know whether Geological Consultants is the
optimistic or pessimistic firm, you know that there is a 50% chance that the
true value is (when Geological Consultants is actually the optimistic
firm) and a 50% chance that the true value is (when Geological
Consultants is actually the pessimistic firm). For example, if the signal is 10,
then the true value of the lease is 12 with probability and 8 with probabil-
ity . More generally, your beliefs on the true value after having received a
signal s are as follows:



            Prob˛(v˛|˛˛s) � e  if v � s � 2



             if v � s � 2
.



            1
2



            1
2



            s � 2
s � 2



            s � v � 2.
s � v � 2



            1
2



            1
2



            TABLE 10.1 SHADING YOUR BID, HIGH-VALUATION BIDDER



            Probability of Payoff If the Expected



            Bid Winning Bidder Wins Payoff



            30 0 70 0



            40 .3 60 18



            50 .6 50 30



            60 .8 40 32



            70 1 30 30



            80 1 20 20



            1
2
1
2
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            Prob is the probability you assign to the true value being v, conditional
on having received an estimate of s.



            Suppose Texaco is the only company negotiating with the owner of the oil
lease. The owner sets a price and makes a take-it-or-leave-it offer. How high a
price is Texaco willing to pay if it is interested in maximizing its expected pay-
off? The expected value of the oil lease is



            so the expected payoff from buying it at a price p is Texaco is then will-
ing to pay at most s. Although the signal could prove to be either too high or
too low, it accurately measures the true value, on average, so Texaco is willing
to pay a price up to its signal. If it buys only when then Texaco’s ex-
pected profit is positive.



            Now suppose Exxon is also in discussions with the owner. With two inter-
ested parties, the owner decides to conduct a first-price, sealed-bid auction.
What should Texaco bid? Let us show that bidding an amount equal to its sig-
nal or even a little below it is guaranteed to lose money!



            In modeling this situation as a Bayesian game involving these two bidders,
we suppose that Nature moves by choosing the oil lease’s true value, which lies
in the set {10, 11, . . . , 100}. Given the value of v, a bidder’s type is its signal.
Assume that Exxon uses one of the engineering firms and Texaco uses the
other. Then, with probability , Texaco gets a signal of (if it ends up with
the optimistic engineering firm) and Exxon gets a signal of , and with
probability , Texaco gets a signal of (if it ends up with the pessimistic
engineering firm) and Exxon gets a signal of All this is common knowl-
edge. According to the first-price, sealed-bid auction, each bidder submits a
bid from the set {1, 2, . . . , 100} after learning its own type (i.e., its signal). The
bidder who submits the highest bid wins the item and pays a price equal to its
bid. If the two firms submit identical bids, then each has a 50% chance of win-
ning the item. A bidder’s payoff is 0 if it loses the auction and is if it wins,
where b is its winning bid. Thus, a bidder learns the true value after the auc-
tion (or, more accurately, after extracting oil from the property).



            Our objective here is to show, not what equilibrium bidding looks like, but
rather what it doesn’t look like. Consider a symmetric strategy of bidding



            so that a bidder bids slightly less than its estimate of the value of the oil
lease. Note that this bidding rule has two reasonable properties: (1) A bidder
bids less than the expected value of the lease (which we already showed is s);
and (2) a bidder bids higher when its signal is higher.



            What is Texaco’s expected payoff from this bidding rule, given that Exxon
is anticipated to use that same rule? To be a Bayes–Nash equilibrium, a bid of



            must maximize a bidder’s expected payoff for every type, which means
every value of s. Consider, for example, in which case Texaco’s bid is
19. In calculating the expected payoff, we use the beliefs that there is a 50%
chance that the true value is 22 and that there is a 50% chance that the true
value is 18. If it is the latter, then Texaco has the overestimate and Exxon has
the underestimate (specifically, 16), which means that Texaco’s bid of 19 beats
Exxon’s bid of 15, and thereby Texaco wins the auction. Now comes the bad
news: Texaco has paid too much. It realizes a payoff of since the true value
is 18 and the price paid is 19. Now suppose that the true value is 22 rather



            �1,



            s � 20,
s � 1



            s � 1,



            v � b



            v � 2.
v � 21



            2



            v � 2
v � 21



            2



            p 6 s,



            s � p.



            a1
2
b(s � 2) � a1
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b(s � 2) � s,
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            than 18. Since Texaco has a signal of 20, Exxon must have a signal of 24 and
thus bids 23, a bid that exceeds Texaco’s bid of 19. So Texaco loses the auction.



            Summing up these two cases, we see that Texaco’s expected payoff from a
bid of 19 (when its signal is 20) is



            More generally, the expected payoff (conditional on signal s)  when both play-
ers use this bidding rule is



            Thus, on average, an oil company loses money even though it is bidding below
its signal and the signal is expected to be equal to the value of the oil lease!



            When Texaco was the only prospective buyer, paying a price below its sig-
nal meant a positive expected payoff, since it was then paying a price below
the expected value of the oil lease. At the end of the day, it might end up with
a positive profit (if its estimate turned out to be low) or a negative profit (if
it turned out to be high), but Texaco expected to earn a positive profit. If, in-
stead, Texaco is participating in an auction, then, as we have just shown,
bidding below its signal can mean either zero profit (if it loses the auction)
or a negative profit (if it wins the auction), so that expected profit is nega-
tive. At work here is one of the most dreaded forces in the auction world: the
winner’s curse.



            The winner’s curse refers to the phenomenon by which winning an auc-
tion can be bad news. It can arise whenever the value of the good is common
to all bidders and each bidder receives an inexact estimate of that value. If bid-
ders use the same bidding rule, and it always increases a bidder’s estimate,
then the fact that a bidder won means that he had the highest estimate among
all bidders. Thus, unbeknownst to the bidder when he was bidding, the act of
winning reveals that he had the rosiest forecast of the item’s value, which, on
average, will prove to exceed the true value. (In the current example, winning
means learning that you used the engineering firm that overestimates in
which case your signal exceeds the true value for sure.) Winning the auction
tells you that your estimate of the true value was excessively high, and therein
lies the bad news.



            Fortunately, game theory offers a cure for the winner’s curse. The trick is to
bid under the assumption that your signal is the highest signal among all bid-
ders, for that is exactly the situation in which you’ll find yourself in the event
that you win the auction. Thus, you want to determine the expected value of
the object if it turns out that your signal is the highest among all bidders’ sig-
nals, and then you want to bid appropriately, given that expected value. In the
preceding example, this strategy implies that a bidder should not bid above



            For if you prove to have the higher signal, then you hired the optimistic
engineering firm, in which case the true value is Bidding above that
value is sure to result in losses. Exactly what you should bid is a harder ques-
tion and is dealt with in Appendix 10.7, which describes a different formula-
tion of the common-value auction.



            In practice, do bidders suffer from the winner’s curse? One study investi-
gated whether major oil companies such as Exxon, British Petroleum, and



            s � 2.
s � 2.
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2
b � 3 (s � 2) � (s � 1) 4 � �
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b � (18 � 19) � a1
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            Texaco fall prey to it or instead are strategically astute in their bidding.2 Up
for auction were the mineral rights to properties that lay 3 to 200 miles off-
shore and were owned by the U.S. government. These properties were typi-
cally auctioned off in tracts of about 5,000 acres, and companies bid on them
with the intent of extracting oil. The evidence shows that executives at most of
the companies are indeed well trained in strategic reasoning, as they generally
did manage to avoid the winner’s curse. Their bids were about one-third of the
expected value of the oil lease, conditional on their estimate of its value being
the largest estimate among all bidders. This meant that, conditional on sub-
mitting the highest bid and winning the auction, their bid generated a positive
expected profit. One notable exception was Texaco, whose bidding behavior
not only suffered from the winner’s curse, but also resulted in a bid that was
higher then the estimated value of the oil lease! In our simple example, it is as
if Texaco bid above its signal s, a strategy that, winner’s curse aside, is assured
of incurring losses! Hopefully, Texaco has either replaced those executives or
enrolled them in a remedial game theory course.



            10.5 Voting on Committees and Juries
ANOTHER COMMON SETTING INVOLVES private information when a group of people
has to reach some joint decision. Each person comes to a meeting with some
particular information that is known only to her, and a common device for
reaching a decision is voting. First we consider some strategic issues in a com-
mittee when people have different amounts of information and they vote si-
multaneously. Then we explore a jury setting in which jurors have different
opinions about the defendant’s guilt and engage in sequential voting to deter-
mine an outcome.



            10.5.1 Strategic Abstention



            They say it is your civic duty to vote. But does voting always result in the most
desired social outcome? Could it actually be best for society that you lounge
in a cafe on Election Day, never exerting your democratic voice? As we will
show, in some instances it can be in both your interests and those of society
for you to be politically lethargic.



            Consider a committee of three people who have to decide whether to main-
tain the current (status quo) policy or adopt a new policy that has been pro-
posed.3 The three committee members have the same preferences in the sense
that, if they had full information about the new policy, they would either all be
for or all be against its adoption. The problem is that some or all members are
not fully informed as to the efficacy of the proposed policy. If the committee
chooses the policy that proves to be best, then each member receives a payoff
of 1, while if they choose the wrong policy, then the payoff is 0.



            Each member can be one of two types: informed and uninformed. An un-
informed member is uncertain as to which policy is best and, more specifi-
cally, assigns probability p to the status quo being better, where 
Thus, without any further information, an uninformed member prefers the
status quo, as it delivers an expected payoff of or p, while
the new policy’s expected payoff is or If, instead,
the member is informed, then she knows which policy is better.



            1 � p.p � 0 � (1 � p) � 1,
p � 1 � (1 � p) � 0,
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2 6 p 6 1.
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            Nature moves first by determining which policy is best and, also, each
member’s knowledge. To ensure that an uninformed member has beliefs con-
sistent with the inclination of Nature, suppose that, with probability p, Nature
chooses the status quo as the better policy. After the better policy is deter-
mined, then, with probability q, the identity of that policy is revealed to a
member. Hence, with probability q, a member is an informed type. With prob-
ability she is uninformed and thus uncertain as to which policy is best,
but thinks it is more likely that the status quo is best (assigning probability p
to that being the case).



            After Nature makes these four moves—determining the best policy and the
three members’ types—those members simultaneously vote. Each member can
either vote for the status quo, vote against the status quo, or abstain. If a ma-
jority of votes is against the status quo, then the new policy is adopted; other-
wise, the status quo is maintained. (Hence, the status quo wins in the case of a
tie.) After the policy is implemented, members learn whether they made the
right choice (and get a payoff of 1) or the wrong choice (and get a payoff of 0).



            In this Bayesian game, a strategy is a pair of actions: whether and how to
vote when one is informed and whether and how to vote when one is unin-
formed. A symmetric Bayes–Nash equilibrium is a strategy that maximizes a
player’s expected payoff when she is informed and maximizes it when she is
uninformed, given that the other two members use the same strategy and
given beliefs as to the other members’ knowledge about which policy is better.



            Let us begin by arguing that it is weakly dominant for a member to vote for
the policy that is best when she is informed. By voting for the policy that is
best, member 1 either doesn’t change the outcome—as when members 2 and
3 both vote the same—or causes her preferred policy to pass when it wouldn’t
otherwise—in the case when members 2 and 3 split their votes between the
status quo and the new policy. In the first case, member 1’s payoff is no lower
by voting in favor of the better policy (compared with voting against it or ab-
staining), and in the latter case her payoff is strictly higher. We conclude that
it is weakly dominant for an informed member to participate and vote for the
policy she thinks is best.



            Now we come to the interesting scenario. Suppose a member is unin-
formed as to which policy is best. Is it always optimal to vote? Or can it be
best to abstain?



            Let us first consider a symmetric strategy profile in which, when informed,
a member votes for the best policy and, when uninformed, she votes for the
status quo. (Recall that an uninformed member thinks the status quo is more
likely to be best.) This means that member 1 anticipates members 2 and 3 al-
ways voting (regardless of whether they are informed). It follows that member
1’s vote makes a difference only when the other two members split their votes,
one voting for the status quo and the other against it. However, this scenario
means that someone is voting for the alternative, which implies that that per-
son must be informed that it is the best policy. (Recall that we are considering
a symmetric strategy profile in which uninformed voters vote for the status
quo.) Thus, if member 1, when uninformed, votes for the status quo, then the
wrong policy is implemented. He would have done better by instead voting for
the alternative policy. Hence, it cannot then be optimal for an uninformed
voter to participate and vote for the status quo. That is, if members 2 and 3
vote for the status quo when uninformed, then it is not optimal for member 1
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            to vote for the status quo when uninformed. This bit of reasoning proves that
it is not a symmetric Bayes–Nash equilibrium for a member to vote for the sta-
tus quo when uninformed, in spite of the fact that she thinks it is more likely
that the status quo is best.



            Another candidate for a Bayes–Nash equilibrium is the symmetric strategy
profile in which, when uninformed, a member votes against the status quo
and, when informed, votes for the best policy. However, this can also be shown
not to be a Bayes–Nash equilibrium. The proof is similar to the one just given.



            The remaining candidate for a symmetric Bayes–Nash equilibrium is for an
uninformed member to abstain when uninformed and, when informed, vote
for the best policy. Suppose member 1 follows this strategy and anticipates the
other two members doing so as well. If member 2 or member 3 (or both) votes,
then, according to their strategies, they must be informed. In that case, the
best policy is implemented, in which case member 1 gets the maximal payoff
of 1 by abstaining. If neither member 2 nor member 3 votes, then both are un-
informed. Then, by abstaining, member 1 ensures the status quo (since that is
what happens when there is a tie). If member 1 were to vote, it would be op-
timal for her to vote for the status quo, since she thinks it is more likely to be
the best policy. Hence, the status quo results whether member 1 abstains or
not. Thus, abstention is optimal when the member is uninformed, given that
the other two members also abstain when uninformed.



            In sum, for a committee member to abstain when uninformed and to vote
for the best policy when informed is the unique symmetric Bayes–Nash equi-
librium in this game. In spite of voting being costless, it can be optimal not to
cast a vote. The reasoning behind this statement is simple: When a member is
uninformed, it is better to abstain and let the informed members determine
the outcome. Thus, only the uninformed should be entitled to avoid the polls,
which means that if you’re going to hang out in a café on Election Day, you
should be reading People and not the New York Times.



            10.5.2 Sequential Voting in the Jury Room



            Now suppose you’re on a jury. The trial has ended, and you and the other ju-
rors retire to the jury room. The foreperson begins the deliberations by taking
a vote. The jurors are collected around a table, and, in turn, each announces a
vote of guilty or not guilty. Let’s number jurors by their order in the sequence,
so that juror 1 declares her vote first, then juror 2, and so forth until we reach
juror 12.4



            On the basis of what transpired during the trial, each juror enters the jury
room with an assessment of the guilt or innocence of the defendant. This as-
sessment—which they realize is an inexact signal of the truth—is a juror’s
type.* Now, suppose that, in casting her vote, a juror wants to do so on the
basis of everything she knows at the time. For juror 1, all she knows is her own
assessment from the trial. In contrast, by witnessing how juror 1 voted, juror
2 may be able to infer juror 1’s assessment. If so, then juror 2 not only has his
own assessment, but also juror 1’s assessment. Similarly, juror 3 may be able



            *To properly define this game as a Bayesian game, we would need to assign a probability to a juror’s being
of the “guilty” type (i.e., he enters the jury room believing that the defendant is guilty) or of the “innocent”
type. It turns out that our analysis holds regardless of what those probabilities are, so we don’t bother to
specify them.
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            to infer the assessments of jurors 1 and 2 and thus would have three assess-
ments. Assume that a juror prefers to (1) vote guilty if the number of guilty as-
sessments exceeds the number of innocent assessments, (2) vote not guilty if
the number of innocent assessments exceeds the number of guilty assess-
ments, and (3) vote according to her own assessment when the number of
guilty assessments equals the number of innocent assessments. By (3), a juror
gives her own assessment more weight in this evaluation process.*



            A Bayesian strategy for juror 1 assigns a vote—guilty or not guilty—that de-
pends on her assessment (or type): guilty or innocent. A strategy for juror 2 as-
signs a vote that depends on his assessment and the vote of juror 1. A strategy
for juror 3 assigns a vote that depends on his assessment and the votes of ju-
rors 1 and 2, and so forth. Let us now construct a Bayes–Nash equilibrium.



            Juror 1’s optimal strategy is easy, because she has only her own assessment
to weigh. If she comes out of the trial believing that the defendant is guilty, then
she votes guilty; if she believes that he is innocent, then she votes not guilty.



            Juror 2 observes juror 1’s vote and, furthermore, is presumed to know juror
1’s strategy. Although he does not observe juror 1’s assessment—which is private
to juror 1—he is able to infer it, since, according to juror 1’s strategy, she votes
in line with her assessment. Thus, if juror 1 voted guilty, then juror 2 infers that
juror 1’s assessment is that the defendant is guilty. Now suppose juror 2’s inde-
pendent assessment is that the defendant is guilty. Then juror 2 should clearly
vote guilty, since he has two guilty assessments. If, instead, juror 2’s independ-
ent assessment is innocent, then he has one guilty assessment (that of juror 1)
and one assessment of innocence (his own). As specified, a juror prefers to vote
according to his own assessment in those circumstances and thus votes not
guilty. Regardless of how his assessment lines up with juror 1’s inferred assess-
ment, we see that juror 2’s Bayes–Nash equilibrium strategy is to vote according
to his own assessment. How juror 1 votes doesn’t influence what juror 2 does.



            So far, nothing is surprising: The first two jurors vote guilty if and only if
their individual assessments of the testimony and evidence are that the defen-
dant is guilty. Is there much to be learned by examining juror 3’s optimal be-
havior? Indeed, there is. Juror 3 observes the votes of jurors 1 and 2, and ac-
cording to the equilibrium strategies just derived for them, each casts a vote
consistent with her or his independent assessment. There are two situations
to consider: jurors 1 and 2 voted the same, and jurors 1 and 2 voted differently.
Let us examine each situation in turn:



            ■ Suppose that jurors 1 and 2 voted differently. Juror 3 should then vote
according to her own independent assessment. For example, suppose
juror 1 voted guilty and juror 2 voted not guilty. Juror 3 then infers that
juror 1’s assessment is of guilt and juror 2’s is of innocence. If juror 3’s
assessment is guilty, then there are two assessments that say guilty, so
juror 3 should vote guilty. If juror 3’s assessment is innocent, then there
are two assessments that say innocent, so juror 3 should vote not guilty.
Thus, when jurors 1 and 2 split their votes, juror 3 should vote accord-
ing to her own independent evaluation.



            *Although we have not explicitly mentioned payoffs, they can be easily introduced. For example, suppose
a juror’s payoff when the number of assessments of guilt exceeds the number of assessments of innocence
is 10 if she votes guilty and 5 if she votes not guilty. Hence, a vote of guilty in those circumstances maxi-
mizes her payoff.
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            ■ Suppose now that jurors 1 and 2 voted the same. If they both voted
guilty, then, using her conjecture of the two jurors’ strategies, juror 3 in-
fers that each of them believes that the defendant is guilty on the basis
of her own and his own assessment of the trial. If juror 3’s own assess-
ment is also guilty, then, clearly, she should vote guilty. But even if juror
3’s assessment is innocent, she’ll vote guilty because there are two guilty
assessments and only one of innocence. More generally, if jurors 1 and 2
voted the same, then juror 3 should cast the same vote because the two
independent assessments of those jurors override juror 3’s assessment.
Juror 3 should ignore her own personal evaluation in voting.



            Juror 3’s Bayes–Nash equilibrium strategy then has her vote depend on the
votes cast by jurors 1 and 2 when they voted the same. Only when they voted dif-
ferently is it optimal for juror 3 to use her own evaluation when casting her vote.



            Continuing in this manner, we can construct the Bayes–Nash equilibrium
voting rule for jurors 4 through 12. But let us instead jump to a striking and
disturbing implication. Suppose that when the 12 jurors enter the jury room
after the trial, 10 of them believe that the defendant is innocent and only 2 be-
lieve that he is guilty of the crime of which he has been accused. Then, in spite
of the preponderance of belief in favor of innocence, the initial vote could have
all 12 jurors voting guilty! And this is in spite of each juror voting conscien-
tiously on the basis of the best information available!



            The argument is as follows: Suppose the two jurors who believe that the de-
fendant is guilty happen to be jurors 1 and 2, who vote before the others. Let
us use the equilibrium voting strategies we have just derived. Juror 1 votes
guilty, obviously. Juror 2 also votes guilty, because, as we have derived it, his
optimal strategy is to vote in line with his evaluation, uninfluenced by juror 1’s
vote. When it comes to juror 3, she’ll vote guilty, as is prescribed by her strat-
egy. She is able to infer from the first two jurors’ votes that each of them be-
lieves that the defendant is guilty, and those two assessments override her own
assessment. Thus, she votes guilty, irrespective of her evaluation of the testi-
mony and evidence. When it comes to juror 4, he’ll know that juror 3 has ig-
nored her own assessment, because that is what juror 3’s strategy has her do
when jurors 1 and 2 vote the same. Thus, all that juror 4 can infer is that ju-
rors 1 and 2 hold guilty assessments. Juror 4 is then in the same situation as
juror 3 and consequently will vote guilty. This argument works for jurors 5
through 12 as well, so we end up with all 12 jurors voting guilty! However,
those 12 votes are not based on 12 independent evaluations, because jurors 3
through 12 ignored their evaluations when voting. The guilty verdict is due
solely to the first two jurors believing that the defendant is guilty!



            Are jurors 3 through 12 nothing more than sheeple?* To the contrary, they
did not mindlessly mimic how the first two jurors voted. They engaged in
rather sophisticated reasoning when they drew inferences about the evalua-
tions of the jurors that preceded them. Those 10 jurors voted on the basis of
the best information they had at the time. To do so required that they draw
upon the independent evaluations of jurors who voted before them to the ex-
tent that those evaluations could be properly inferred from those jurors’ votes.



            *This term is a blend of “sheep” and “people” and is used to refer to someone who simply does what oth-
ers do, without thinking.
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            This phenomenon is known as an informational cascade or informational
herding. It refers to a situation in which people act sequentially and the infor-
mation revealed by the behavior of the first few people overrides the signal that
each person has, so that their behavior becomes independent of that private
signal; instead, their behavior is determined solely by the information revealed
by the behavior of those who acted previously. Once a player ignores his own
information, his behavior provides no additional information and applies to all
ensuing players. Thus, we find that highly uniform behavior—such as all jurors
casting guilty votes—can rest on only a small number of signals. In our exam-
ple, that behavior rests on the signal that the first two jurors truly believe that
the defendant is guilty on the basis of the testimony and evidence.



            An important conclusion here is that the voting procedure can matter a lot.
For example, suppose that, instead of voting sequentially, the foreperson had
the jurors vote simultaneously by writing their votes on a slip of paper. Each
juror’s optimal voting strategy is to vote according to his or her own assess-
ment right after the trial. Then, since we assumed that 10 jurors believed that
the defendant was innocent, the vote will be 10–2 in favor of not guilty—a
quite different outcome from a guilty verdict!



            Summary
This chapter considers a common and crucial feature of many strategic set-
tings: A person may know something about him- or herself that others do not
know. This scenario frequently arises in the form of a player’s payoffs being
private information. As originally cast, the game is not common knowledge,
because, for example, one player doesn’t know another player’s payoffs. We
refer to such a game as having incomplete information. The trick to solving
a game of incomplete information is to convert it into a game of imperfect in-
formation. The initial move in the game is now made by random forces, la-
beled Nature, that determine each player’s type, where a type encompasses all
that is privately known to a player. This Nature-augmented game, which is
known as a Bayesian game, is common knowledge, since, at its start, no
player knows his type and thus has no private information. What is commonly
known is that Nature will determine players’ types. What also is commonly
known are the probabilities used by Nature in assigning a player’s type.



            The solution concept used for Bayesian games in this chapter is
Bayes–Nash equilibrium. Analogous to Nash equilibrium, it posits that each
player’s strategy is required to maximize his expected payoff, given other play-
ers’ strategies, but this definition is supplemented in two ways. First, a player
doesn’t know other players’ types and thus doesn’t know what other players
will do. However, if a player (accurately) conjectures another player’s strategy
and has beliefs about the other player’s type, he can then form beliefs regard-
ing how another player will behave. Second, given those beliefs, a player’s
strategy must prescribe an optimal action, and it must do so for every possible
type of that player.



            Examples of equilibrium behavior explored in this chapter included a gun-
fight in which one gunfighter does not know the skill of the other, negotiations
in which a person does not know the ultimate objectives of the person on the
other side of the table, committees in which a member does know how informed
other committee members are, and auctions in which a person’s valuation of the
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            object up for auction is known only to him. These are only a few of the various
strategic situations characterized by private information. You face many such
scenarios everyday.



            It is worth noting that the last game examined, involving sequential voting
in the jury room, was distinctive in an important dimension. In all of the other
games in this chapter, a player with private information either moved at the
same time as other players (the auction) or moved after other players (the
Munich Agreement). This meant that other players did not have an opportu-
nity to infer the player’s private information from his behavior. But in the jury
room game, a juror who observed another juror’s vote prior to having to cast
her own vote might be able to infer what that other juror believes. It is exactly
that kind of informational setting which will occupy us in the next chapter.
Fascinating nuances and subtleties are introduced, as you’ll soon learn.



            1. Greg is deciding whether to ask Marcia out on a date. However, Greg
isn’t sure whether Marcia likes him, and he would rather not ask if he
expects to be rejected. Whether Marcia likes Greg is private information
to her. Thus, her preferences regarding Greg constitute her type. Greg
does not have any private information. Assume that there is a 25%
chance that Marcia likes Greg. The Bayesian game is shown in FIGURE



            PR10.1. Should Greg ask Marcia? Find a Bayes–Nash equilibrium that
answers this question.



            EXERCISES
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            2. Consider a gunfight between Bat Masterson and William “Curly Bill”
Brocius. Both of the men have private information regarding their skill
with a six-shooter. Nature moves first by determining each gunfighter’s
skill. He can have either a fast draw or a slow draw. There is a 65%
chance that Bat is fast and a 60% chance that Curly Bill is fast. After
each gunfighter learns his type—though remaining uncertain about the
other gunfighter’s type—he chooses between draw and wait. If both wait,
then the payoff is 50. If both draw and (1) they are of the same type (ei-
ther both fast or both slow), then each has a payoff of 20; and (2) they
are of different types, then the fast gunfighter has a payoff of 30 and the
slow one of If one draws and the other waits and (1) they are of the
same type, then the one who drew has a payoff of 30 and the other a pay-
off of (2) the one who draws is fast and the other is slow, then the
one who drew has a payoff of 30 and the other a payoff of and (3)
the one who draws is slow and the other is fast, then each has a payoff
of 20. If at least one chooses draw, then there is a gunfight.
a. Is it consistent with Bayes–Nash equilibrium for there to be a gunfight



            for sure? (That is, both gunfighters draw, regardless of their type.)
b. Is it consistent with Bayes–Nash equilibrium for there to be no gun-



            fight for sure? (That is, both gunfighters wait, regardless of their
type.)



            c. Is it consistent with Bayes–Nash equilibrium for a gunfighter to draw
only if he is slow?



            3. Consider a first-price, sealed-bid auction in which a bidder’s valuation
can take one of three values: 5, 7, and 10, occurring with probabilities .2,
.5, and .3, respectively. There are two bidders, whose valuations are in-
dependently drawn by Nature. After each bidder learns her valuation,
they simultaneously choose a bid that is required to be a positive inte-
ger. A bidder’s payoff is zero if she loses the auction and is her valuation
minus her bid if she wins it.
a. Determine whether it is a symmetric Bayes–Nash equilibrium for a



            bidder to bid 4 when her valuation is 5, 5 when her valuation is 7, and
6 when her valuation is 10.



            b. Determine whether it is a symmetric Bayes–Nash equilibrium for a
bidder to bid 4 when her valuation is 5, 6 when her valuation is 7, and
9 when her valuation is 10.



            4. Consider a first-price, sealed-bid auction, and suppose there are only
three feasible bids: A bidder can bid 1, 2, or 3. The payoff to a losing bid-
der is zero. The payoff to a winning bidder equals his valuation minus
the price paid (which, by the rules of the auction, is his bid). What is pri-
vate information to a bidder is how much the item is worth to him;
hence, a bidder’s type is his valuation. Assume that there are only two
valuations, which we’ll denote L and H, where Assume
also that each bidder has probability .75 of having a high valuation, H.
The Bayesian game is then structured as follows: First, Nature chooses
the two bidders’ valuations. Second, each bidder learns his valuation,
but does not learn the valuation of the other bidder. Third, the two bid-
ders simultaneously submit bids. A strategy for a bidder is a pair of ac-
tions: what to bid when he has a high valuation and what to bid when
he has a low valuation.
a. Derive the conditions on H and L whereby it is a symmetric



            Bayes–Nash equilibrium for a bidder to bid 3 when he has a high val-
uation and 2 when he has a low valuation.



            H 7 3 7 L 7 2.
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Exercises 315



            b. Derive the conditions on H and L whereby it is a symmetric
Bayes–Nash equilibrium for a bidder to bid 2 when he has a high val-
uation and 1 when he has a low valuation.



            c. Derive the conditions on H and L whereby it is a symmetric
Bayes–Nash equilibrium for a bidder to bid 3 when he has a high val-
uation and 1 when he has a low valuation.



            d. Derive the conditions on H and L whereby it is a symmetric
Bayes–Nash equilibrium for a bidder to bid 1 when he has either a
high valuation or a low valuation.



            5. Consider the Bayesian game in FIGURE PR10.5. Nature chooses the type of
player 1, where type H occurs with probability p and type L with proba-
bility Player 1 learns his type and then chooses either action x or
action y. Simultaneously, player 2 chooses either action a or action b.
a. Assume that Find a Bayes–Nash equilibrium.
b. For each value of p, find all Bayes–Nash equilibria.



            p � .75.
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            6. Two U.S. senators are considering entering the race for the Democratic
nomination for U.S. president. Each candidate has a privately known
personal cost to entering the race. Assume that the probability of having
a low entry cost, is p and the probability of having a high entry cost,



            is Thus, the type space has just two values. A candidate’s pay-
off depends on whether he enters the race and whether the other sena-
tor enters as well. Let be a candidate’s payoff when he enters and the
other senator does as well (so that there are two candidates), be a can-
didate’s payoff when he enters and the other Senator does not (so that
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fL,
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            there is one candidate), and 0 be the payoff when he does not enter.
Assume that



            a. Derive the conditions whereby it is a symmetric Bayes–Nash equilib-
rium for a candidate to enter only when she has a low personal cost
from doing so.



            b. Derive the conditions whereby it is a symmetric Bayes–Nash equilib-
rium for a candidate to enter for sure when she has a low personal
cost and to enter with some probability strictly between 0 and 1 when
she has a high personal cost.



            c. Find some other Bayes–Nash equilibrium distinct from those de-
scribed in (a) and (b).



            7. Assume that two countries are on the verge of war and are simultane-
ously deciding whether or not to attack. A country’s military resources
are its type, and their relevance is summarized in a parameter which in-
fluences the likelihood that they would win a war. Suppose the type
space is made up of two values: and where A
country is type with probability q and type with probability 
Consider a country of type p (which equals either or If it chooses
to attack and it attacks first, then it believes it’ll win the war with prob-
ability xp, where x takes a value such that If the two coun-
tries both attack, then the probability that a type p country wins is p. If
a type p country does not attack and the other country does attack, then
the probability of victory for the type p country is yp, where y takes a
value such that Finally, if neither country attacks, then
there is no war. A country is then more likely to win the war the higher
is its type and if it attacks before the other country. A country’s payoff
when there is no war is 0, from winning a war is W, and from losing a
war is L. Assume that 
a. Derive the conditions for it to be a symmetric Bayes–Nash equilib-



            rium for a country to attack regardless of its type.
b. Derive the conditions for it to be a symmetric Bayes–Nash equilib-



            rium for a country to attack only if its type is 



            8. Consider a first-price, sealed-bid auction with three bidders. The payoff
to a bidder is 0 when he does not win the item at auction and is the value
of the item less his bid (which is the price he pays) when he is the win-
ner. If two or more bidders submit the highest bid, then the winner is
randomly determined. Assume that the item has the same value to all
three bidders, but they receive different signals as to its value. Nature de-
termines the true value, which is denoted v and can take three possible
values: 4, 5, and 6. Each of these values is chosen with probability The
signals sent to the three bidders are v, and that is, one bid-
der receives a signal that is too low another receives a signal
that is too high and the third receives a signal that is “just right”
(v). Each bidder learns only his own signal, which is the bidder’s type. If



            then one bidder is given a signal of 3, another bidder is given av � 4,
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(v � 1),
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            signal of 4, and the last bidder is given a signal of 5. If then one
bidder is given a signal of 4, another bidder is given a signal of 5, and
the last bidder is given a signal of 6. If then one bidder is given a
signal of 5, another bidder is given a signal of 6, and the last bidder is
given a signal of 7. Thus, if a bidder’s signal is, say, 5, then he doesn’t
know if the true value is 4 (in which case he has the highest signal), 5 (in
which case he has the accurate signal), or 6 (in which case he has the
lowest signal). Given the value, each bidder has an equal chance of re-
ceiving one of the three signals. Assume that the minimum increment in
bidding is 1, so that the set of feasible bids is {0, 1, . . . , 10}.
a. Show that the following symmetric strategy profile is a Bayes–Nash



            equilibrium:



            v � 6,



            v � 5,



            b. Show that there is no symmetric Bayes–Nash equilibrium in which a
bidder’s bid is strictly increasing. That is, if b(s) is a bidder’s bid, given
that her signal is s, and if



            then this strategy is not a symmetric Bayes–Nash equilibrium.



            9. The Newlywed Game was a popular game show broadcast from 1966 to
1974. On this show, four recently married couples are queried about one
another to see how well each spouse knows the other. Each of the hus-
bands is asked a series of questions while his wife is offstage in a sound-
proof room. The wives would then return, and each would be asked the
same questions. The objective is for the answers of the husband and wife
to match. In the second round, they would reverse roles. The couple with
the most matched answers wins. Questions asked ran along these lines:
What animal does your mother-in-law remind you of? Would your
spouse say that your last kiss was ho hum; so so; or ooh, la la? In what
room of the house does your spouse most like making whoopee? Let us
now suppose the husband is asked the question, What drink would best
describe your wife on your wedding night: a sloe gin fizz, a Shirley
Temple, or a zombie? The husband responds with one of those three
choices, and when she is asked the same question, the wife responds
with one of the same three choices. If their choices match, a
husband–wife pair has a payoff of 100; if they don’t match, the pair has
a payoff of 0. In casting this as a Bayesian game, suppose the husband’s
type is which one he believes is true: sloe gin fizz, Shirley Temple, or
zombie, where the associated probabilities are and respectively.
The wife’s type is which one she believes is true: sloe gin fizz, Shirley
Temple, or zombie. The sloe gin fizz occurs with probability the1
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            Shirley Temple with probability and the zombie with probability 
Players’ types are independently drawn.*
a. Find a Bayes–Nash equilibrium.
b. Find a Bayes–Nash equilibrium in which the husband always an-



            nounces the truth.



            10. Players 1, 2, and 3 are involved in a game requiring some coordination.
Each chooses among three options: A, B, and C. Nature determines
which of these options is the best one to coordinate on, where equal
probabilities of are assigned to A, B, and C’s being the best one. If all
three choose the option that Nature deems best, then each receives a
payoff of 5. If all three choose the same option, but it is not the one that
Nature deems best, then each receives a payoff of 1. If players do not all
choose the same option, then each has a zero payoff. Player 1 learns
which option is best (i.e., she learns Nature’s choice). The three players
then simultaneously choose an option. Find a Bayes–Nash equilibrium.
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            10.6 Appendix: Formal Definition 
of Bayes–Nash Equilibrium
SUPPOSE A GAME INVOLVES simultaneous moves whereby player i selects an ac-
tion, denoted from the feasible set of actions for him, which is denoted 
Nature moves by choosing each player’s type, where player i’s type, generically
denoted comes from the set Each player learns his type (and only his
type), and then the players simultaneously choose actions. A strategy for a
player assigns an action to each of his possible types.



            In choosing an action, a player needs to have beliefs about other players’
types. Define



            to be the array of all players’ types, excluding player i, and let be the type
space for those players. denotes the probability that player i as-
signs to conditional on knowing his own type. If players’ types are inde-
pendent random variables, then does not depend on But types may
be correlated. This was the case in Section 10.4 on Common Value and the
“Winner’s Curse” example, where both bidders’ estimates depend on the true
value and thus are positively correlated. In that case,



            With such beliefs over other players’ types and a conjecture about other
players’ strategies, a player can derive beliefs regarding what other players will
do. Let denote the strategy of player j. Then is player j’s action when



            The probability that player i assigns to player j’s choosing, say, action 
is the probability that player j is a type that chooses —that is, the probabilitya¿
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            *This is a simplifying, but not very reasonable, assumption, because one would think that if the husband
found his wife to be, say, a sloe gin fizz, then it is more likely that the wife found herself to be that way as well.
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            that takes a value whereby Combining beliefs about another
player’s type with a conjecture regarding that player’s strategy allows the deri-
vation of beliefs about that player’s action.



            Given the types of the players and the actions selected, let player i’s payoff
be denoted In many examples, a player’s payoff depends
only on the actions of players and his own type, but here we also allow for the
possibility that it depends directly on other players’ types. Of course, it de-
pends indirectly on other players’ types, since another player’s type determines
the action selected.



            is a Bayes–Nash equilibrium if and only if
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            each type of player i, the action assigned by his strategy is required to max-
imize his expected payoff, where the expectation is over other players’ types
(and thereby their actions). This condition must hold for all players.



            10.7 Appendix: First-Price, Sealed-Bid Auction 
with a Continuum of Types
PREVIOUSLY, WE CONSIDERED SOME simple formulations of the first-price, sealed-
bid auction when bidders’ values are independent of each other and when they
are common. In this appendix, we enrich the models by assuming that there
is an infinite number of valuations that a bidder might have. Allowing for a
continuum of bidder types will permit us to use calculus to derive equilibrium
bidding rules.



            10.7.1 Independent Private Values



            Assume that there are bidders, and let denote how much bidder i val-
ues the good.5 If bidder i wins the item and pays a price p, then her payoff is



            Each bidder’s value is a random draw from the interval [0,1] according
to the uniform cumulative distribution function



            [10.1]



            Thus, each valuation in [0,1] has equal likelihood, and the probability that a
bidder’s valuation is less than or equal to is or A bidder’s valuation
is private information, but it is common knowledge that each bidder’s value is
drawn from [0,1] according to a uniform distribution.



            The Bayesian game proceeds as follows: Nature simultaneously chooses n
valuations for the n bidders and reveals only to bidder i. Then the bidders
simultaneously submit bids. The winning bidder is the one who submitted the
highest bid, and she pays a price equal to her bid.
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            Consider the following symmetric strategy profile in which a bidder whose
valuation is v submits a bid



            Let us prove that this is a symmetric Bayes–Nash equilibrium. That is, if each of
the other bidders’ valuations are drawn from a uniform distribution over [0,1]
and bidder j bids then it is optimal for bidder i to bid This
condition must hold for all values of (i.e., all types of bidder i). Since the game
is symmetric, if the condition holds for one bidder, then it holds for all bidders.



            To verify this claim, consider bidder i’s expected payoff, which we denote as
since it depends on his valuation and bid. His expected payoff equals



            the probability that he wins, multiplied by the payoff in the event that he wins;
that is,



            [10.2]



            where is the probability that bidder i outbids all
other bids. (We need not worry about ties, as they’ll occur with zero probabil-
ity.) Given that bidder j uses the bidding rule we can substitute



            for in the probability expression in (10.2):



            Since bidders’ valuations are independent draws, it follows that
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            Using (10.1), we have



            Inserting this result into (10.3) yields



            Finally, putting this expression into (10.2), we have derived bidder i’s expected
payoff, given the strategies used by the other bidders and the probability dis-
tribution over their valuations:
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            To find bidder i’s optimal bid, we just need to derive the first-order condition:*



            *For a review of this principle, return to Section 6.3. The validity of the approach relies on the payoff being
hill shaped with respect to the player’s bid, which is indeed true here.
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            The optimal bid for bidder i is that value for which satisfies (10.4).
Simplifying and rearranging (10.4), one can solve for 



            This is exactly what we wanted to show. If all other bidders use this bidding
rule, then it is optimal for bidder i to use it as well.



            Each bidder then proportionately shades her bid by Clearly, a bidder
doesn’t want to bid her valuation, since, even if she wins the auction, she pays
a price equal to what it is worth to her; her payoff is then zero whether or not
she wins. By instead bidding below her valuation, either she loses—in which
case her payoff is 0—or she wins—in which case her payoff is positive. Hence,
her expected payoff is positive if she bids below her valuation, which is better
than bidding her valuation. The issue is how much to shade one’s bid below
one’s valuation. The lower the bid, the higher is the payoff in the event that one
wins but the lower is the probability that one wins. The equilibrium solution
is for each bidder to submit a bid equal to a fraction of his valuation.
Since is increasing in n, the more bidders there are, the higher is a bid-
der’s bid. This makes sense, since more bidders mean more competition, in
which case a bidder doesn’t want to shade her bid as much, in order to have a
reasonable chance of winning.



            10.7.2 Common Value



            Suppose there are bidders. The true value of the object being auctioned
is v and is the same for all bidders. Each bidder gets a noisy (or inexact) sig-
nal of v that is chosen by Nature from the interval [0,1] according to a uniform
distribution. The cumulative distribution function on bidder i’s signal, de-
noted is



            The signal of bidder i is known only to him; thus, a bidder’s signal is his type
and the type space is [0,1]. It is common knowledge that each bidder’s signal
is independently drawn from [0,1] according to F. Finally, it is assumed that
the true value is randomly determined by Nature in that it is assumed to equal
the average of all bidders’ signals:
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            Bidders participate in a first-price, sealed-bid auction, which means that if
bidder i wins, then his realized payoff is where is his bid, though he
doesn’t learn v until after he has won.



            In deriving a Bayes–Nash equilibrium, let us conjecture that it is linear in a
bidder’s signal. That is, there is some value for such that
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            Bidder i’s expected payoff is the probability that he wins (i.e., his bid is higher
than all other bids) times his expected payoff, conditional on having submit-
ted the highest bid:



            [10.7]



            is bidder i’s expected valuation, conditional not
only on his signal, but also on knowing that he submitted the highest bid. This
latter fact says something about the signals of the other bidders and thus
about the true value of the object.



            Now let us use the property that the other bidders are conjectured to use
the bidding rule in (10.6). Substitute for in (10.7):



            Next, substitute the expression for v from (10.5):
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            The second line follows from the fact that bidder i knows so that 
but does not know The third line is due to signals being independent ran-
dom variables. Using the uniform distribution on we see that bidder i’s ex-
pected payoff becomes
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            Bidder i chooses to maximize (10.8). The first-order condition isbi
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            Solving this equation for we obtain



            [10.9]



            Recall that we conjectured that the symmetric equilibrium bidding rule is
for some value of Equation (10.9) is indeed linear, and furthermore,



            we can now solve for by equating to the coefficient multiplying in (10.9):



            Solving this equation for we get



            In conclusion, a symmetric Bayes–Nash equilibrium has a bidder using the rule
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“For there is nothing covered that shall not be revealed; neither hid, that
shall not be known.” —THE BIBLE, KING JAMES VERSION: LUKE, CHAPTER 12.



            11.1 Introduction
IN MANY STRATEGIC SITUATIONS, a player knows something that another player
would like to know. When Neville Chamberlain was negotiating with Adolf
Hitler, he would have liked to have known Hitler’s true intentions. When Wyatt
Earp was deciding whether to draw his weapon, he would have liked to have
known the skill of the stranger he was facing. When bidding at an auction, a
bidder would like to know how much the item is valued by other bidders (and
thus how high they might bid). A player makes the best decision she can in
light of the information she has, but she would sure like to know more about
those on the other side of the strategic divide.



            In some scenarios, a player may have the opportunity to learn something
about what another player knows. For example, suppose Hitler had been un-
certain about Chamberlain’s payoffs in terms of his willingness to go to war.
Although Hitler cannot read Chamberlain’s mind, he can observe whether
Chamberlain offers concessions, and that could provide some insight into
Chamberlain’s payoffs. Or consider a bargaining scenario that might occur at
an auto dealer. How badly the buyer wants to buy the car may be unknown to
the seller, but the seller may be able to infer something from the initial offer
that the buyer makes. Why do you think car dealers often ask what you’re will-
ing to pay for the car? They want you to reveal information about your will-
ingness to pay, while concealing information about the price at which they’re
willing to sell the car.



            In this and the ensuing chapter, we model and analyze such scenarios. The
basic model is known as a signaling game and involves two players: the sender
and the receiver. The sender’s type is private information to her and is thus un-
known to the receiver. The sender chooses an action and may thereby be “signal-
ing” or “sending” information to the receiver. The receiver observes the sender’s
action and then chooses an action himself. However, what action is best for the
receiver depends on the sender’s type. (It may also depend on the sender’s action.)



            To see what kind of mischief can occur in a signaling game, consider a sit-
uation that you’re apt to find yourself in upon graduation. A person accepts a
position as a management trainee. On the basis of a period of close observa-
tion, a manager decides whether to permanently hire the trainee. One of the
attributes to be learned during this training period is how hard someone is
willing to work. To keep matters simple, imagine there are two types of
worker: lazy and industrious. A lazy person is inclined to put in the standard
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            40-hour workweek, while the industrious person’s natural tendency is to put
in a more intense 60 hours.



            Suppose the manager wants to retain only an industrious employee. Of course,
whether she is lazy or industrious, the trainee would like to be permanently hired.
So what should she do to enhance the chances of that happening if she is, in fact,
lazy? Although she is not willing to work 60 hours a week every week, even a lazy
person may be willing to put in extra time during the training period if it will con-
vince her manager that she is industrious and thus worthy of permanent employ-
ment. Now, suppose a lazy employee does work long hours. The manager, being
at least as clever as a lowly trainee, should recognize that a management trainee
who works 60 hours a week is not necessarily industrious, but could in fact be a
lazy person masquerading as industrious. In that case, the manager cannot infer
the worker’s type from her effort during the training period.



            Now consider a trainee who is industrious. If she is clever, she’ll realize that
even a lazy type will put in 60 hours in order to avoid conveying the fact that
she is lazy. So, what should an industrious person do? Work 80 hours! The in-
dustrious employee may have to go overboard to distinguish herself from a
lazy type. For the manager to infer from an 80-hour workweek that the trainee
is indeed industrious, it is critical that a lazy type not be willing to work 80 hours,
even if it means being hired.



            Signaling games tend to involve a lot of subtle strategies. In our example, a
lazy trainee is trying to fool the manager, while an industrious trainee is trying to
distinguish herself from someone who is lazy, and the manager is trying to sort
all this out in an attempt to determine which employee he should retain. The pri-
mary goal of this chapter is to learn how to solve for situations involving signal-
ing and draw insights into behavior. In the next section, we review a solution
method for signaling games, and we apply it to the management trainee scenario.
In Section 11.3, we’ll consider diverse scenarios involving signaling, from used-
car markets, to being on the brink of nuclear war, to entering into marriage.



            11.2 Perfect Bayes–Nash Equilibrium
THERE ARE THREE STAGES to a signaling game:



            Stage 1: Nature chooses the sender’s type.



            Stage 2: The sender learns her type and chooses an action.



            Stage 3: The receiver observes the sender’s action, modifies his beliefs about
the sender’s type in light of this new information, and chooses an
action.



            A strategy for the sender assigns an action to each possible type, and a re-
ceiver’s strategy assigns an action to each possible action of the sender. The
proposed method for solving such a game goes under the grandiose title of
perfect Bayes–Nash equilibrium. The reason for such a moniker is that perfect
Bayes–Nash equilibrium is to Bayes–Nash equilibrium as (subgame) perfect
Nash equilibrium is to Nash equilibrium (which sounds like an answer to a
question on the SAT).



            Perfect Bayes–Nash equilibrium is founded on two key concepts: sequential
rationality and consistent beliefs. Sequential rationality means that, at each
point in a game, a player’s strategy prescribes an optimal action, given her beliefs
about what other players will do. Wherever she finds herself in the game, a
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            player acts to maximize her expected payoff, given her beliefs, just as is speci-
fied with subgame perfect Nash equilibrium. In the particular context of a sig-
naling game, sequential rationality requires that a sender’s strategy be optimal
for each of her types (just as with Bayes–Nash equilibrium) and that a receiver’s
strategy be optimal in response to each of the sender’s possible actions.



            Note that sequential rationality requires optimal behavior, given beliefs. As
you can imagine, beliefs can’t be just any old thing, but rather should be clev-
erly derived in light of the strategic behavior of other players. In a signaling
game, a receiver starts with a set of beliefs about a sender’s type—which are
referred to as his prior beliefs and are the probabilities given by Nature—and
then he gets to observe the sender’s action before having to act himself.
Because the sender’s action may contain information about the sender’s type,
the receiver then modifies his original beliefs to derive a set of posterior beliefs
(or beliefs conditional on the sender’s action). A receiver has consistent beliefs
if his posterior beliefs are consistent with the sender’s acting in her own best
interests. In other words, a receiver should ask, “Having observed the sender’s
behavior, what types of sender would act in such a way?”



            To flesh out the concept of consistent beliefs, FIGURE 11.1 presents three dif-
ferent strategies for a sender. In this example, there are four sender types, la-
beled greedy, frugal, miserly, and generous. The prior beliefs of the receiver as-
sign probability .2 to the sender being greedy, .4 to being frugal, .1 to being
miserly, and .3 to being generous. Suppose the available actions for the sender
are A, B, C, D, E, and F.



            FIGURE 11.1 (a) Separating Strategy. (b) Pooling Strategy. (c) Semiseparating (or Semipooling)
Strategy
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            With the strategy in Figure 11.1a, a greedy type chooses action B, a frugal
type chooses D, a miserly type chooses A, and a generous type chooses E.
Knowing (or conjecturing) that this is the sender’s strategy and having
observed the sender’s action, what can the receiver infer? Well, if the receiver
witnesses action A, then he knows that the sender must be miserly, since,
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            according to the sender’s strategy, only a miserly type chooses A. Similarly, if
the receiver observes action B, then the sender must be a greedy type, and so
forth. As each type chooses a distinct action, when it is observed, the action
perfectly reveals the sender’s type. This is an example of a separating strat-
egy—a strategy that assigns a distinct action to each type of player. Hence, the
receiver can “separate out” each player’s type from her observed play.



            Behavior is not always so revealing, however, for consider the pooling strat-
egy in Figure 11.1b. In this case, the sender’s strategy prescribes the same ac-
tion regardless of her type: She chooses action E whether she is greedy, frugal,
generous, or miserly. The receiver learns nothing about the sender’s type from
her behavior. With a pooling strategy, all sender types “pool together” in
choosing the same action, regardless of the sender’s actual type.



            Figure 11.1c offers something in between the extremes of separating and pool-
ing strategies. The sender chooses action C whenever she is greedy, frugal, or
miserly, and she chooses action F only when she is generous. If the receiver ob-
serves action F, he is then able to infer that the sender is generous. If the receiver
observes action C, then he can eliminate the possibility that the sender is gener-
ous, but nothing more; the receiver is left with the possibilities that the sender is
greedy, that the sender is frugal, and that the sender is miserly. The sender’s be-
havior then provides partial, but not full, information as to her type. This strategy
is an example of a semiseparating strategy or semipooling strategy (depending
on whether you find the glass half full or half empty), which is a strategy that nei-
ther has each type chose a distinct action nor has all types chose the same action.



            At a minimum, consistent beliefs require that a receiver’s posterior beliefs
assign zero probability to types that would not have chosen the observed ac-
tion. Then there is still the matter of assigning probabilities to the remaining
types that are consistent with the observed behavior. This assignment is trivial
with a separating strategy (such as that shown in Figure 11.1a), since, after
eliminating all types inconsistent with the observed action, we see that a sin-
gle type remains. In that situation, the receiver assigns a probability of 1 to
that type. For example, if the receiver observes action B, then the receiver’s
posterior beliefs assign a probability of 1 to the sender’s being a greedy type.



            It is also rather straightforward to derive consistent beliefs for when the
sender uses a pooling strategy, such as that depicted in Figure 11.1b. Because
there is no information in the sender’s behavior—all types choose the same ac-
tion—the receiver’s posterior beliefs are the same as his prior beliefs, which
are the probabilities that Nature attached to the various sender types.



            The least obvious case arises with a semiseparating strategy, like that in Figure
11.1c. If the receiver observes the sender choosing action C, he should assign
probability zero to the sender’s being generous. But how should he distribute the
probabilities across the three types—greedy, frugal, and miserly—that are antic-
ipated to choose C? To answer that question, we bring in the wonderfully useful
result developed by Reverend Thomas Bayes in the eighteenth century.*



            Suppose the receiver starts by believing that a sender may be one of n pos-
sible types, {1, 2, . . . , n}, and he assigns the prior probability to the sender’s
being of type i. The receiver then learns that the sender’s type lies in a subset T



            pi



            *Described next is a special case of Bayes’s rule for when the information received is that a sender is or is
not of a particular type. The more general description of the rule is provided in an appendix, where you
will also learn why you should always switch curtains when you are on Let’s Make a Deal. In this chapter,
familiarity with the more general version is needed only for the Brinkmanship game.
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            of {1, 2, . . . , n}. In the example, T is {greedy, frugal, miserly}, as the receiver
learned that the sender is not the generous type. For each type not in T, the re-
ceiver’s posterior beliefs are given zero probability. For a type i in T, Bayes’s
rule has the posterior probability equal the prior probability, divided by the
sum of the probabilities for all of the types in T. In the example, the sum of
the probabilities is .7 so the posterior probability of the
sender’s being greedy is or to being frugal is and to being miserly is 
Note that Bayes’s rule leaves the relative probabilities unchanged. For exam-
ple, with the prior beliefs, the probability of the sender’s being frugal was
twice as large as her being greedy (.4 versus .2). Having learned that the sender
is not generous, the receiver assigns posterior probabilities of and for
greedy and frugal, so it is still the case that it is twice as likely that the sender
is frugal than greedy. This makes sense, since all the receiver has learned is
that the sender is not the generous type; otherwise, he has learned nothing
about the relative likelihood of her being greedy, frugal, or miserly.



            Because sequential rationality requires that a receiver’s strategy be optimal
in response to any action selected by the sender, it is then necessary to specify
posterior beliefs for the receiver, for every action of the sender. That this can be
a dicey issue becomes clear upon a consideration of the strategy in Figure 11.1a.
What are consistent beliefs for the receiver if he observes the sender choose
action F? The problem is that, according to the receiver’s conjecture of the
sender’s strategy, no sender type should choose F. The receiver can’t assign
zero probability to all sender types, as the sender must be of some type. In
such a situation, the requirement of consistency places no restriction on be-
liefs. The beliefs we will write down for such “surprising events” are admit-
tedly arbitrary, since we have nothing to guide us in the matter.



            To sum up, a perfect Bayes–Nash equilibrium for a signaling game is de-
fined by a strategy for the sender, a strategy for the receiver, and a set of be-
liefs for the receiver (beliefs about the sender’s type, conditional on the ob-
served action of the sender) that satisfy the following conditions:



            ■ For each type of the sender, the sender’s strategy prescribes an action
that maximizes the sender’s expected payoff, given how the receiver will
respond.



            ■ For each action of the sender, the receiver’s strategy prescribes an action
that maximizes the receiver’s expected payoff, given the receiver’s poste-
rior beliefs about the sender’s type.



            ■ The receiver’s beliefs about the sender’s type, conditional on having ob-
served the sender’s action, are consistent with the sender’s strategy and
with Bayes’s rule. This condition applies only to those actions which, ac-
cording to the sender’s strategy, she chooses for some type.



            � SITUATION: MANAGEMENT TRAINEE



            Let’s take this solution concept out for a spin by returning to the management
trainee scenario. To do so, we’ll need to be more specific about payoffs and be-
liefs. Suppose the payoff to the trainee from being hired is 130 and from not
getting a position is 70. She has three options in terms of the amount of effort—
40, 60, and 80 hours—and the personal cost to her depends on her type, as ex-
pressed in TABLE 11.1. The trainee’s payoff is the value of being hired (or not),
less the personal cost of effort. For example, if a lazy type works 60 hours and
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            gets the position, then her payoff is while her payoff if she
doesn’t get the position is The manager’s payoff is 100 from hir-
ing an industrious worker, 25 from hiring a lazy worker, and 60 from hiring no
one. Thus, he’d prefer to leave the position open than to hire someone who is lazy.



            Prior to observing the trainee’s effort, the manager assigns probability .75
that the trainee is lazy and .25 that she is industrious. These beliefs have the
implication that, unless the manager is able to acquire more information
about the trainee’s type, he’ll not hire her: The expected payoff from hiring her
is which is less than the payoff of 60 from leav-
ing the position open. Finally, note that a strategy for the trainee assigns an
action—work 40, 60, or 80 hours—to each possible type—lazy or industri-
ous—while a strategy for the manager assigns an action—hire or fire—to each
possible action of the trainee—work 40, 60, or 80 hours. This Bayesian game
is depicted in FIGURE 11.2.
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            TABLE 11.1 PERSONAL COST OF EFFORT



            Type 40 Hours 60 Hours 80 Hours



            Lazy 50 75 120



            Industrious 30 50 80



            FIGURE 11.2 The Management Trainee Game
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            To learn how to apply the solution of perfect Bayes–Nash equilibrium, con-
sider the following collection of strategies and beliefs:



            ■ Trainee’s strategy:



            If lazy, then work 40 hours.



            If industrious, then work 80 hours.



            ■ Manager’s strategy:



            If the trainee worked 40 or 60 hours, then do not hire her.



            If the trainee worked 80 hours, then hire her.



            ■ Manager’s beliefs:



            If the trainee worked 40 hours, then assign a probability of 1 to her being
lazy.



            If the trainee worked 60 hours, then assign a probability of .6 to her being
lazy and .4 to her being industrious.



            If the trainee worked 80 hours, then assign a probability of 1 to her being
industrious.



            To determine whether this is a perfect Bayes–Nash equilibrium, start with
the trainee’s strategy. Given the manager’s strategy, the payoffs from various
actions are shown in TABLE 11.2. For example, if the trainee is lazy and works
60 hours, her payoff is since she incurs a personal cost of 75 and is not
hired (as dictated by the manager’s strategy). Given that the trainee is lazy, it
is indeed optimal for her to work 40 hours, as a payoff of 20 exceeds that of



            and that of However, if the trainee is industrious, she should work
80 hours. Doing so means a payoff of 50—since she is hired—and working less
results in a lower payoff because she is not hired. Thus, the trainee’s strategy
is optimal for both of her types, given the manager’s strategy.
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            TABLE 11.2 TRAINEE’S PAYOFF (GIVEN THE MANAGER’S
RESPONSE)



            Type 40 Hours 60 Hours 80 Hours



            Lazy 20 �5 10



            Industrious 40 20 50



            With regard to assessing the optimality of the manager’s strategy, let us
first convince ourselves that his beliefs are consistent. If the trainee worked
40 hours, the manager’s beliefs assign a probability of 1 to her being lazy,
which is indeed consistent with the trainee’s strategy, since only a lazy trainee
works 40 hours. If he observed her work 80 hours, then, again, his beliefs are
on target by assigning a probability of 1 to her being industrious, because, ac-
cording to the trainee’s strategy, only an industrious type works 80 hours.
Finally, when the trainee is observed to work 60 hours, beliefs can be any-
thing, since such behavior is in contradiction to the trainee’s strategy.
Arbitrarily, we suppose that the manager assigns a 60% chance to the trainee’s
being lazy.
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            The next step is to use those consistent beliefs to deter-
mine whether the manager’s strategy is sequentially ra-
tional. Consider each of the possible actions by the
trainee. If the trainee worked 40 hours, then, given that
the manager believes that she is lazy for sure, his payoff
from hiring her is 25 and from firing her is 60, so he
prefers to fire her, as his strategy prescribes. If, instead,
the trainee worked 60 hours, then, on the basis of the
manager’s posterior beliefs, his expected payoff from hir-
ing her is and from firing her is
60. So far, so good; it is indeed optimal to fire the trainee
if she worked 40 or 60 hours. Finally, if the trainee
worked 80 hours, then the manager believes that she is
industrious, in which case it is better to hire her—and
earn a payoff of 100—than to fire her—and earn a payoff
of 60. The manager’s strategy is then optimal for each
possible action of the trainee. Accordingly, this scenario
is a perfect Bayes–Nash equilibrium.



            Notice that the perfect Bayes–Nash equilibrium dis-
cussed in this example is a separating equilibrium, since
the sender’s type is revealed through the action chosen.
Working 80 hours reveals that the trainee is industrious,
and putting in a modest 40 hours indicates that she is
lazy. Another separating strategy is for the industrious
type to work 60 hours while the lazy type works only 40,



            a scenario that is considered in Check Your Understanding 11.2. However, this
is not a perfect Bayes–Nash equilibrium, because the lazy type would prefer
to work 60 hours and mimic an industrious type in order to be hired. Then, to
effectively signal his type, the industrious trainee needs to work 80 hours.



            To effectively signal her type, a sender who is of an attractive type
(such as being industrious) may need to distort her behavior in order to prevent
being mimicked by a less desirable type (such as being lazy).



            The game in Figure 11.2 also has a pooling equilibrium in which the trainee
works the same, regardless of her type. Consider the following strategy profile
and set of beliefs:



            ■ Trainee’s strategy: Work 40 hours whether lazy or industrious.



            ■ Manager’s strategy: Do not hire her (regardless of how hard she worked).



            ■ Manager’s belief: Assign a probability of .75 to the trainee being lazy (re-
gardless of how hard she worked).



            Given that the manager won’t hire her in any case, it is clearly best for the
trainee to put in the minimum 40 hours. Note that the manager’s posterior be-
liefs are the same as his prior beliefs. When he observes the trainee put in a
40-hour workweek, these beliefs are consistent with the trainee’s strategy,
since both trainee types work only 40 hours. Because no information is re-
vealed by the trainee’s effort, beliefs remain unchanged. When the trainee
works 60 or 80 hours, beliefs can be anything, and we arbitrarily have decided
to make them the same as the prior beliefs. The last matter is the sequential



            .6 � 25 � .4 � 100 � 55



            Consider again the previous strategy profile, but
now suppose that when the manager observes
that the trainee works 60 hours, he assigns
probability p to her being the lazy type. (In the
preceding analysis, we supposed that p � .6.)
Find all values of p such that this strategy pro-
file and set of beliefs is a perfect Bayes–Nash
equilibrium.



            11.1 CHECK YOUR UNDERSTANDING



            Consider a strategy profile in which the industri-
ous type works 60 hours and the lazy type
works 40 hours. The manager hires the trainee
if she works at least 60 hours and fires her if
she works 40 hours. The manager assigns a
probability of 1 to the trainee’s being lazy when
she works 40 hours and a probability of zero to
her being lazy if she works 60 or 80 hours.
Show that this situation is not a perfect
Bayes–Nash equilibrium.



            11.2 CHECK YOUR UNDERSTANDING
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            rationality of the manager’s strategy. Given his beliefs, it is indeed optimal not
for him to hire the trainee if and only if



            The left-hand side is the value of not hiring her, and the right-hand side is the
expected payoff from hiring her. Thus, it is also an equilibrium for both
trainee types to pool by working the minimum amount.



            11.3 Examples
THE REMAINDER OF THE CHAPTER considers a series of examples of increasing diffi-
culty. The Lemons game considers the market for used cars and permits the
sender (who is an owner of a car) to be of three possible types (corresponding
to the true quality of the car). The Courtship game allows for both the sender
and receiver to have private information. Finally, the possibility of a sender
using a mixed strategy is considered in the Brinkmanship game. Besides show-
ing you how to solve signaling games, these applications will draw out some
general lessons about strategic behavior in information-deprived environments.



            � SITUATION: LEMONS AND THE MARKET FOR USED CARS



            A ubiquitous source of private information in any economy is that between
the owner of a product, such as an automobile or a house, and a prospective
buyer. Although a buyer can physically inspect the product, such inspections
often fail to uncover flaws known to the seller. Indeed, a concern for a
prospective buyer of, say, an automobile, is that the seller is choosing to sell it
because she knows that it is a “lemon.” A buyer may then be stuck with an in-
ferior car, not by accident, but by the seller’s mischievous design. An impor-
tant issue is whether this asymmetric information between a buyer and a
seller may prevent worthwhile transactions from taking place. Let us use a bit
of game theory to delve into the functioning of the used-car market.1



            Suppose the car for sale can be one of three quality levels: low, moderate, or
high. The seller knows the true quality, but the buyer does not; thus, a seller’s
type is the car’s quality.* The buyer initially believes that there is a 20% chance
that the car is of high quality, 50% that it is of moderate quality, and 30% that
it is of low quality. Using these probabilities, Nature determines the seller’s
type. The seller then decides whether to put the car up for sale and, if so, what
price to set (which can take any positive integer). If the car is for sale, the
buyer observes the price and decides whether or not to buy it. For simplicity,
the usual give-and-take of negotiating is not modeled; the seller instead makes
a take-it-or-leave-it offer. A seller’s strategy, then, assigns a price to each qual-
ity of the car. A buyer’s strategy tells him whether to accept or decline each
possible price (in the event that the car is for sale).



            If the car is sold, the seller’s payoff is the price paid. If the car is not sold,
then the seller’s payoff is the value she attaches to the car, which is listed in



            60 � .75 � 25 � .25 � 100 � 43.75.



            *Keep in mind that the car’s quality is not observable to the buyer. We are then considering a particular
year and model of a car, and what the buyer doesn’t know is whether there are any problems with, say, the
transmission or brakes.
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            TABLE 11.3. If the buyer purchases the car, the buyer’s payoff is the value of the
car to him, minus the price paid. The value of the car to the buyer depends on
the car’s true quality, which is revealed only upon using the car after purchase.
Thus, the buyer may not know the car’s value to him at the time of the pur-
chase. If he doesn’t buy the car, then his payoff is zero.



            Table 11.3 tells us that, with complete information, there is always a basis
for a sale to be made, in that the buyer values the car more than the seller
does. If the car is of high quality, the buyer values it at 24,000 while the seller
values it at only 20,000. If the car is of moderate quality, the buyer values it at



            more than the seller does, and if it is of low qual-
ity, the buyer values it at more than the seller does.
The question is whether asymmetric information between the buyer and seller
will prevent a sale from taking place.



            A natural first question to ask is whether higher quality cars sell for more.
For example, consider a separating strategy in which the owner of a car posts
a price of when the car is of high quality, a price of when the car is of
moderate quality, and a price of when the car is of low quality, where



            Given this strategy for the seller, consistent beliefs for the
buyer would assign a probability of 1 to the car’s being of high quality when
he sees a price of a probability of 1 to the car’s being of moderate quality
when he sees a price of and a probability of 1 to the car’s being of low
quality when he sees a price of The buyer is then willing to buy at the high
price if (so that the price of the car inferred to be of high quality
is no higher than the value of a high-quality car to the buyer), at the moderate
price if and at the low price if For example, if



            and then the buyer will buy at each of
those prices.



            Now we come to the dilemma. The seller’s strategy is not optimal. The
owner of a low-quality car sells it for 10,500—as such a low price signals a
low-quality car—and reaps a payoff of 10,500, but if she instead posted a price
of 22,000, so as to mislead the buyer into thinking that the car is of high qual-
ity, she raises her payoff to 22,000.



            What we have just shown is that higher quality cars cannot sell for more.
The intuition is simple: If a higher quality car sold for more then the owner of
a low-quality car would mimic the pricing behavior of the owner of a high-
quality car in order to mislead buyers and sell it for a higher price. It is just as
easy for the owner of a low-quality car to post a high price as it is for the
owner of a high-quality car. The lesson to learn is that, in the used-car market,
price is not a credible signal of quality.



            Pl � 10,500,Pm � 17,000,Ph � 22,000,
Pl � 12,000.Pm � 18,000,



            Ph � 24,000
Pl.



            Pm,
Ph,



            Ph 7 Pm 7 Pl.
Pl



            PmPh



            2,000 (� 12,000 � 10,000)
3,000 (� 18,000 � 15,000)



            TABLE 11.3 USED-CAR MARKET



            Quality Probability Value to Seller Value to Buyer



            High .20 20,000 24,000



            Moderate .50 15,000 18,000



            Low .30 10,000 12,000
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            Another possibility is that all cars sell for the same price. To explore this
case, consider a pooling strategy in which the seller sets the same price—
denote it —whether the car is of low, moderate, or high quality:*



            ■ Seller’s strategy: Price at whether the car is of low, moderate, or high
quality.



            ■ Buyer’s strategy:



            —If then buy the car.



            —If then do not buy the car.



            ■ Buyer’s beliefs: For any price, the car is believed to be of low quality with
probability .3, moderate quality with probability .5, and high quality with
probability .2.



            The objective is to find a price for a used car—that is, a value for —whereby
the preceding scenario is an equilibrium. Beginning with the buyer’s beliefs, the
consistency requirement applies only when the observed price is because
that is the only price ever selected, according to the seller’s strategy. And since
a seller charges regardless of the car’s quality, the buyer’s posterior beliefs
must be the same as his prior beliefs. Thus, these beliefs are consistent. When



            beliefs can be anything, and we’ve made them the same as the buyer’s
prior beliefs. The buyer then learns nothing about the car’s quality from the
price that the seller charges.



            Turning now to the buyer’s strategy, we see that it is optimal to buy at a
price of if and only if



            [11.1]



            For example, with probability .2, the car is of high quality, in which case the
car is valued at 24,000 by the buyer and her payoff is Solving
(11.1) for we find that That is, the expected value of the car to
the buyer, which is 17,400, must be at least as great as the price she is paying.
Thus, if this state of affairs is to be an equilibrium, the seller’s price must not
exceed 17,400, or the buyer will not buy.



            To complete the analysis, we need to determine whether the seller’s strategy
is optimal. According to the seller’s strategy, his payoff is For each seller
type, this payoff must be at least as great as the car’s value to the seller:



            This sequence of inequalities corresponds to when the car is of high, moder-
ate, and low quality, respectively. Thus, must be at least as great as 20,000.



            Houston, we have a problem: For the seller to be willing to sell the car when
it is of high quality, the price must be at least 20,000; for the buyer to be will-
ing to buy the car when she’s unsure whether it is of low, moderate, or high qual-
ity, the price cannot exceed 17,400. One doesn’t need a Ph.D. in mathematics to
know that there is no number that both exceeds 20,000 and is less than 17,400.
The conclusion to draw is that there is no value for such that it is a perfect
Bayes–Nash equilibrium for all quality types to sell at the same price.



            P



            P



            P � 20,000, P � 15,000, and P � 10,000.



            P.



            P � 17,400.P,
24,000 � P.



            .2 � (24,000 � P) � .5 � (18,000 � P) � .3 � (12,000 � P) � 0.



            P



            P 	 P,



            P



            P,



            P



            P 7 P,



            P � P,



            P



            P



            *It can be shown that if this is not an equilibrium for some value of then there is no pooling equilibrium.P,
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            To summarize, we’ve shown that cars cannot sell for different prices (our
first result) or for the same price (our second result). What are we left with?
Recall that a seller has an option not to sell his car at all. So consider a semi-
separating strategy for the seller and the following candidate for a perfect
Bayes–Nash equilibrium:



            ■ Seller’s strategy:



            —If the car is of low or moderate quality, then price it at 



            —If the car is of high quality, then do not put the car up for sale.



            ■ Buyer’s strategy:



            —If then buy the car.



            —If then do not buy the car.



            ■ Buyer’s beliefs:*



            —If then the car is believed to be of low quality with probability
.375, moderate quality with probability .625, and high quality with
probability 0.



            —If then the car is believed to be of low quality with probability 1.



            This time, let’s start with the seller. A seller with a moderate-quality car
finds it optimal to sell if and only if since only then is he getting
a price at least as high as what the car is worth to him. Note that if



            then an owner of a low-quality car also finds it optimal to sell.
If the car is of high quality, it is optimal to keep the car off the market if
and only if Summing up, the seller’s strategy is optimal when



            As to the buyer’s beliefs, if she sees a car on the market at a price of then,
according to the seller’s strategy, the car must be of low or moderate quality.
Consistency then requires that a probability of zero be attached to high qual-
ity, and, using Bayes’s rule, we find that the posterior probability that the car
is of low quality is and that it is of moderate quality is



            Given those beliefs, the buyer’s strategy of buying at a
price is optimal if and only if



            or, equivalently, **
Summing up, a buyer—who knows only that the car is of low or moderate



            quality—is willing to pay a price as high as 15,750, while a seller is willing to
sell the car when it is of moderate quality if the price is at least 15,000. Thus,
if takes a value between 15,000 and 15,750—for example, 15,499—then the
preceding strategy profile and set of beliefs do indeed constitute a perfect
Bayes–Nash equilibrium. Houston, we’ve fixed the problem!



            P



            P � 15,750.



            .625 � (18,000 � P) � .375 � (12,000 � P) � 0,



            P
.625 (� .5/(.3 � .5)).



            .375 (� .3/(.3 � .5))



            P,
15,000 � P � 20,000.



            P � 20,000.



            P � 15,000,



            P � 15,000,



            P 7 P,



            P � P,



            P 7 P,



            P � P,



            P.



            *Technically, we should also specify the buyer’s beliefs about quality conditional on the event that the car
is not up for sale. Note that consistency implies that those beliefs assign a probability of 1 to the car’s being
of high quality, since, according to the seller’s strategy, only an owner of a high-quality car would keep it
off the market. However, since the buyer has no action to take in the event that there is no car to be sold,
there is little point in writing those beliefs down.



            **For completeness, we also need to check that the buyer’s strategy is optimal when the price is different
from It is straightforward to show that it is.P.
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            There is an insightful lesson here about the implica-
tions of asymmetric information for the efficient func-
tioning of a market. Under complete information, the
sale of a high-quality car to a buyer can make both
sides of the transaction better off. For example, at a
price of 21,000, the buyer gets a car that is worth
24,000 to her (thus, she is better off by an amount of 3,000) while the seller
receives a price that is 1,000 more than it is worth to him. Unfortunately,
there is no equilibrium in which high-quality cars are sold. They are kept off
the market because the seller is unable to sell them for a high enough price.
Since all cars on the market must sell for the same price, the presence of
lower quality cars reduces the price that a buyer is willing to pay, but at that
price, the owner of a high-quality car doesn’t want to sell it. In this way, asym-
metric information between buyers and sellers results in bad cars driving
good cars out of the market.



            � SITUATION: COURTSHIP



            One of the most significant rituals in human society is courtship: the process
of becoming familiar and, in some cases, intimate with another with the in-
tent to establish a long-term relationship.



            A socially and biologically significant dimension to courtship is the role and
timing of sexual relations. Does it occur before the engagement? Between the
time of the engagement and the wedding? Only after the wedding? Social and
ethical norms have historically defined acceptable sexual behavior in
courtship. Mid-twentieth century U.S. norms generally did not include sexual
relations before marriage. In fact, until the pioneering Kinsey Reports of the
1940s, the general perception in the United States was that sexual relations
generally did not take place prior to marriage. The Kinsey surveys revealed to
the contrary, however, that nearly half of engaged parties in the United States
had sexual relations.



            Acting on impulses to be sexually intimate prior to marriage carried a cost
for a woman at a time when chastity was a perceived requirement of a bride.
That premarital sexual relations were fairly common suggests that the prom-
ise or likelihood of marriage (through engagement) lessened the risk for the
woman. But what prevented a man from announcing his intent to marry in
order to have sexual relations, but then not follow through with marriage?
And what about the man who actually was sincere in his intent to marry? How
could he signal his sincerity credibly? It would have had to have been a signal
that an insincere man would not mimic. We’ll use the tools of game theory to
explore these and other serious social questions.2



            The private information in this setting is whether the man—whom we shall
call Jack—cares deeply about the woman—whom we shall call Rose—and
thus would like to marry her, and, similarly, whether Rose cares deeply about
Jack and would like to marry him. Only each person knows whether he or she
truly loves the other, and this love occurs with probability p, where 
Thus, the probability that they are “meant for each other” is or —that
is, the probability that Jack loves Rose and Rose loves Jack. Note that we are
enriching the usual signaling game, since the receiver in this case, Rose, also



            p2p � p,
0 6 p 6 1.



            Find a perfect Bayes–Nash equilibrium whereby
only low-quality cars are sold.



            11.3 CHECK YOUR UNDERSTANDING
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            has private information. The methods we will develop will work for both
receivers and senders.*



            Jack and Rose face the following sequence of decisions: Jack starts by de-
ciding whether to propose being intimate. However, since words are cheap,
we’ll suppose that Jack offers a gift at the time he makes this request. In re-
sponse to the offer of a gift, Rose either accepts or declines, where it is under-
stood that accepting the gift means having intimate relations. After this se-
quence of events plays out, they either marry (if they love each other) or not
(if one or both does not love the other). The marriage decision—which will not
be explicitly modeled and instead is implicit in the payoffs—is assumed to be
independent of whether the couple has sexual relations.



            The payoffs to the array of possible outcomes are shown in TABLE 11.4.
Jack’s payoff depends on whether his gift is accepted (and they have sexual
relations) and whether they love each other (and thus marry). Jack wants to
be intimate with Rose regardless of whether he loves her. The gain in his
payoff from having sexual relations is The cost of the gift to Jack is



            (which is incurred only if it is accepted by Rose). However, if he ends
up marrying her, he will receive some pleasure from her having the gift, so
the net cost to him is only in that event. If he and Rose prove to be in love
and thus marry, Jack assigns a value of to marriage. Summing up, if
he has sexual relations with Rose and they marry (because it turns out that
they love each other), then his payoff is If he has sexual rela-
tions, but marriage does not ensue, then his payoff is If he marries
without premarital intimacy, then his payoff is m. Finally, if he neither has
sexual relations nor marries, then his payoff is zero. Remember that mar-
riage occurs only when they both love each other; it is determined by fate,
not choice.



            s � c.
m � s � c



            2.



            m 7 0



            c
2



            c 7 0
s 7 0.



            *The game is then made up of three stages: (1) Nature chooses both the sender’s type and the receiver’s
type; (2) the sender learns his type and chooses an action; and (3) the receiver learns her type, observes
the sender’s action, modifies her beliefs in light of this new information, and chooses an action. A strat-
egy for the sender assigns an action to each possible type, while the receiver’s strategy assigns an action
to each possible pair consisting of receiver type and sender action.



            TABLE 11.4 PAYOFFS IN THE COURTSHIP GAME



            Jack Loves Rose Loves Jack’s Rose’s 



            Gift and Sex? Rose? Jack? Payoff Payoff



            Yes Yes Yes m � s � v



            Yes Yes No s � c v � u



            Yes No Yes s � c v � u



            Yes No No s � c v � u



            No Yes Yes m m



            No Yes No 0 0



            No No Yes 0 0



            No No No 0 0



            m � s � c
2
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            Like Jack, Rose values their being in love and marrying by an amount m.
But she would like to avoid being intimate with someone for whom marriage
is not in their future. Rose’s payoff from accepting the gift and having sexual
relations with Jack and then marrying him is where is the
value of the gift. However, her payoff from having sexual relations and then
not marrying Jack (which occurs either if she doesn’t love him and/or he does-
n’t love her) is where which can be considered the cost of being
unchaste. Her payoff is zero from no intimacy and no marriage.



            Note that the preferences of Jack and Rose differ with respect to sexual re-
lations and the gift. The gift is a cost to Jack and a benefit to Rose. As to sex-
ual relations, Jack desires intimacy regardless of whether he and Rose prove
to be in love, while Rose prefers having relations only if they are to marry
(which occurs only if they are in love).



            The Bayesian game is shown in FIGURE 11.3. Nature moves first by deter-
mining whether Jack loves Rose and whether Rose loves Jack. As reflected in



            u 7 0,v � u,



            v 7 0m � s � v,



            FIGURE 11.3 The Courtship Game



            Rose loves Jack 
Probability � p



            Jack loves Rose 
Probability � p



            Jack does not
love Rose 
Probability � 1 � p



            Rose does not 
love Jack 
Probability �  1 � p



            Nature



            Nature



            Accept



            Gift No gift Gift No gift



            Decline



            m 



            m



            m 



            m



            s � c



            Rose



            Rose



            Jack



            Jack



            v � u



            Accept Decline



            0 



            0



            0 



            0



            0 



            0



            0 



            0



            Rose loves Jack 
Probability � p



            Rose does not 
love Jack 
Probability �  1 � p



            Accept



            Gift
No gift Gift No gift



            Decline



            s � c



            v � u



            s � c



            v � u



            Accept Decline



            0 



            0



            0 



            0



            m � s �



            m � s � v



            c
2
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            their information sets, Jack knows whether he loves Rose when he decides
whether to propose that they be intimate, but he doesn’t know Rose’s feelings.
If Jack proposes, Rose doesn’t know Jack’s true feelings (does he really love
me?) when she must decide whether to be intimate with him, although she
does know how she feels about Jack.



            Consider, then, the following strategy profile and set of beliefs:



            ■ Jack’s strategy:



            —If I love Rose, then offer her a gift.



            —If I do not love Rose, then do not offer her a gift.



            ■ Rose’s strategy:



            —If I love Jack and he offers me a gift, then accept it.



            —If I do not love Jack and he offers me a gift, then do not accept it.



            ■ Rose’s beliefs:



            —If Jack offers a gift, then he loves me with a probability of 1.



            —If Jack does not offer a gift, then he does not love me with a probabil-
ity of 1.



            To determine whether the preceding scenario is a perfect Bayes–Nash equi-
librium, first consider Jack’s strategy. If he does not love Rose, his strategy has
him not offer a gift, which is an optimal strategy when



            [11.2]



            The payoff from not offering a gift is zero, since in this case he isn’t intimate
with her and, in addition, he doesn’t marry her (since he doesn’t love her). If
he offers a gift, then, with probability p, Rose loves him, in which case she’ll
accept the gift (according to her strategy), although again, they won’t marry
(because Jack doesn’t love her). His payoff is then which is the value at-
tached to sexual relations less the cost of the gift. With probability she’ll
decline the gift because she doesn’t love him, and his payoff is then zero. Thus,
not offering a gift when he doesn’t love her is optimal for Jack when the gift is
too expensive: 



            Now suppose Jack loves Rose. His strategy has him offer a gift, which is op-
timal when



            [11.3]



            The expression on the left of the inequality is the expected payoff from of-
fering a gift, and the expression on the right of the inequality is the payoff
from not doing so. By Rose’s strategy, she accepts the gift only when she
loves Jack. Thus, if the gift is offered, it is accepted with probability p, and
Jack’s payoff is as he gets s from being intimate and m from
marrying Rose (they are in love), and is the net cost of the gift. With prob-
ability Rose doesn’t love him, and because she declines the gift and
there is no wedding, Jack’s payoff is zero. If he does not offer a gift, he’ll still
marry Rose in the event that she loves him—which occurs with probability



            1 � p,



            c
2



            m � s � (c
2),



            or, equivalently, 2s � c.



            p � am � s �
c
2
b � (1 � p) � 0 � p � m � (1 � p) � 0,



            c � s.



            1 � p,
s � c,



            0 � p � (s � c) � (1 � p) � 0, or, equivalently, c � s.
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            p—and receive zero otherwise. Thus, if Jack loves Rose, then offering her a
gift is optimal when it is not too expensive: 



            Combining equations (11.2) and (11.3), we see that perfect Bayes–Nash
equilibrium requires that If the gift is too expensive, then Jack
won’t be willing to give it just to have sexual relations with Rose. If the gift is
sufficiently inexpensive, he is willing to offer it to his future bride in exchange
for being intimate prior to marriage.



            Now let’s consider Rose’s strategy. First, note that her beliefs are consistent.
Given Jack’s strategy, she perfectly infers his feelings from his behavior; she
believes that Jack would offer the gift only if he loves her. Thus, if Rose loves
Jack and is offered a gift from him, she optimally accepts when



            which is indeed true (since both s and v are positive). The offering of a gift sig-
nals that he loves her, and given that she loves him, she receives a payoff of



            from accepting the gift and having sexual relations (recognizing
that they will marry). If she declines and still expects to marry him, her pay-
off is m. She then chooses to accept the gift.



            Now suppose Rose does not love Jack. Her strategy has her decline the gift,
which is indeed optimal when



            The payoff from declining is zero. By accepting, her payoff is since she
values the gift v but is left an unchaste single woman (which incurs a cost of u).
For it to be optimal to turn Jack down, we must have The gift cannot
be too valuable to Rose, because if it were, then she would accept it even if she
had no intent of marrying Jack.



            In sum, it is a perfect Bayes–Nash equilibrium for Jack to offer the gift to
Rose only if he loves her and for Rose to accept it only if she loves him. This
is so when (1) Jack would not be willing to pay for the gift just to have sex



            (2) the gift is not too expensive, so Jack would be willing to give it to
Rose if he expects her to be his wife and (3) Rose does not value the
gift so much that she would be willing to accept it without the expectation of
marriage The gift, then, should be expensive, but not too expensive,
and also should be extravagant (so that Rose doesn’t value it too much).



            Let us explore when these conditions hold. First, note that Jack desires in-
timacy with Rose regardless of whether he loves her; his payoff rises by s from
such intimacy. What differs between the two types of Jack (sincere or insin-
cere) is what that intimacy costs him. For an unloving (or insincere) Jack, the
cost is the price c of the gift. For a loving (or sincere) Jack, the cost is lower,
at , since he knows that Rose will accept the gift only if she loves him as well,
and he derives value from a gift going to his future bride. FIGURE 11.4 plots the
cost c of the gift to the insincere Jack, and its cost to the sincere Jack for var-
ious values of c. Also plotted is the value s of intimacy.



            The difference between the cost of the gift to an insincere Jack and to a sin-
cere Jack is the vertical distance between the lines c and ; in the figure, for
example, that difference is depicted when the price of the gift is Note that
the differential in the cost rises with the price tag of the gift, c. When the gift
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            0 � v � u, or, equivalently, u � v.



            m � s � v



            m � s � v � m, or, equivalently, s � v � 0,
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            c � 2s.
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            is not sufficiently pricey (i.e., then there is no separating equilibrium.
The problem is that Jack—whether sincere or not—would be willing to offer a
gift to Rose if it would induce her to be intimate. The gift from an insincere
Jack, however, is too cheap to signal Jack’s love credibly. However, if the gift is
pricey (but not too pricey), the difference between the cost of the gift to an in-
sincere Jack and to a sincere Jack is sufficiently great that only the sincere
Jack would be willing to give it, which occurs when *



            There is a general lesson here about what it takes for there to be a separat-
ing equilibrium. What is important is not that the gift be expensive, but rather
that it be more expensive to Jack when he doesn’t love Rose than when he
does. It is the differential cost between the types of Jack that matters. Contrast
this game with the Used Car game, in which the value of posting a higher price
is the same regardless of the seller’s type. In that case, the impact of the seller’s
price on his payoff did not vary with the car’s quality, so the owner of a low-
quality car would be just as inclined to post a high price as the owner of a
high-quality car. Due to the ease with which mimicking occurs, a separating
equilibrium did not occur.



            s � c � 2s.



            c 6 s),



            FIGURE 11.4 The Cost of Signaling One’s Love with a Gift



            c (Insincere Jack)



            c (Price of  the gift)



            Gift is too
inexpensive



            Gift is
priced just



            right



            Gift is too expensive



            Differential cost
of a gift priced



            at c9



            c
2 (Sincere Jack)



            0



            s



            2ss c�



            Pe
rs



            on
al



             c
os



            t 
of



             t
he



             g
ift



            *When the gift is really expensive then neither type of Jack offers it, so, again, there is no sepa-
rating equilibrium.
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            A sender of a particular type can effectively distinguish himself from
other types by choosing an action that is relatively more costly for the other
types, so that they would prefer not to choose that action. It is then important
for signaling that the cost of an action vary with the sender’s type.



            The personal cost that a woman incurred with a sham engagement was real
enough that, in the United States, many states had laws regarding “breach of
promise” in which a woman could sue a fiancé who had broken off their en-
gagement.3 The threat of a lawsuit may well have deterred some sham engage-
ments. However, these laws began being repealed in the 1930s, so that a jilted
woman could not sue—and it is rather interesting that it was around that time
that the custom of offering a diamond engagement ring arose. A diamond ring
may have been that expensive and extravagant gift in our model which al-
lowed premarital sexual relations to occur, as documented by the Kinsey
Reports. (It is indeed interesting that it is the engagement ring, not the wed-
ding ring, that has precious stones.) A man intent on marriage may be content
to provide the diamond ring to a woman whom he intends to be his wife, but
a man who is interested only in having a sham engagement would find a dia-
mond ring an excessively steep price to pay.



            � SITUATION: BRINKMANSHIP



            But behind the love of luxury, say North Korea watchers, lies a savvy dicta-
tor schooled in the art of brinkmanship. “The guy is not irrational. The
North Koreans always carefully map these things out in advance,” says for-
mer U.S. diplomat Joel Wit, who negotiated nuclear issues with the North.
Indeed, the North plays up its erratic image when useful. “They’re trying to
convince us they’re the nuttiest people on Earth and that they’ll put 1 mil-
lion men into the DMZ tomorrow,” says a senior U.S. official.4



            John Foster Dulles, who was secretary of state in the 1950s, commented
that the ability to get to the verge without getting into war is the necessary art
of brinkmanship. With the United States struggling to control the developing
nuclear weapons program of North Korea, it is as much a necessary art in
2006, as in 1956, as in 1456. Of concern to the United States is that North
Korea might actually use such weapons on South Korea or some other coun-
try. Although no sane leader would do that—for doing so would bring massive
retaliation from far greater powers—indeed, that is the question: Is Kim Jong-il
sane? How should the United States act in light of such uncertainty? While we
can’t provide an answer that could be used by an American president, we can
nevertheless set the scene by using game theory and thereby identify some rel-
evant considerations.*



            The players are U.S. President George W. Bush and North Korean dictator
Kim Jong-il. The sequence of decisions they face is described in FIGURE 11.5.
Nature begins by determining whether Kim is sane or crazy, where the proba-
bility that he is crazy is .25. After learning his mental state, Kim decides
whether to stand firm in developing nuclear weapons or to cave to the demands
of the United States and the United Nations. If he caves, then the crisis (and



            *This example will require having mastered the general form of Bayes’s rule described in the appendix.
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            game) is over. If he stands firm, then the United States must decide whether it’ll
stand firm or cave. If the United States caves, then, again, the game is over. If
the United States stands firm, then North Korea decides whether or not to take
a hostile action (such as launching nuclear weapons).



            As just described, Kim is one of two possible types: sane or crazy. If sane,
he ranks the four possible outcomes as follows (going from best to worst): He
stands firm and Bush caves, he caves, both he and Bush stand firm and he
avoids war, and both he and Bush stand firm and he goes to war. In contrast,
if Kim is insane, then his preference ordering is as follows: He stands firm and
Bush caves, both he and Bush stand firm and he goes to war, both he and Bush
stand firm and he avoids war, and he caves. The key difference is that a crazy
Kim is willing to go to war if someone does not back down.



            In describing a perfect Bayes–Nash equilibrium, the two leaders are allowed
to randomize. Because Bush has only one information set, his (mixed) strategy
is the probability that he stands firm. As for Kim, he has four information sets.
A strategy for him describes what to do when he is at the initial information set
(stand firm or cave?) and what to do if he stands firm and the United States
doesn’t cave (go to war or not?), depending on his type (sane or crazy).



            FIGURE 11.5 The Brinkmanship Game Between George W. Bush and 
Kim Jong-il
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            Consider a strategy pair of the following form:



            ■ Kim Jong-il’s strategy:



            —If crazy, then choose stand firm, and if both North Korea and the
United States chose stand firm, then choose war.



            —If sane, then choose stand firm with probability k, and if both
North Korea and the United States chose stand firm, then choose
no war.



            ■ George Bush’s strategy: Choose stand firm with probability b.



            Since beliefs need to be part of the specification of a perfect Bayes–Nash
equilibrium, let us derive beliefs for Bush that are consistent with Kim’s strat-
egy. Suppose Bush observes him stand firm. Then, if Bush cannot infer
the dictator’s type, because although Kim will stand firm for sure if he’s crazy,
he’ll stand firm with probability k even when he’s sane. Here, we need to de-
ploy Bayes’s rule to tell us what Bush’s beliefs should be. By that rule, we have
(where “sf” denotes “stands firm”)



            Prob(Kim is crazy given that he stood firm)



            k 7 0,



            �
.25 � 1



            .25 � 1 � .75 � k
�



            .25



            .25 � .75k
.



            �
Prob(crazy) � Prob(sf given that he is crazy)



            Prob(crazy) � Prob(sf given that he is crazy) � Prob(sane) � Prob(sf given that he is sane)



            If a sane Kim never chooses to stand firm (i.e., then



            so that Bush can perfectly infer that Kim is crazy from the North Korean
dictator’s having stood firm. As k rises, so that it is more likely that a sane
leader stands firm, then the probability that the North Korean leader is
sane, given that he stood firm, goes up. It reaches its maximum value of .75
when Not coincidentally, this value equals the prior probability, be-
cause if Kim chooses to stand firm for sure, regardless of his type, then the
fact that he stood firm provides no information as to his mental state. In
that situation, Bayes’s rule has the posterior beliefs being identical to the
prior beliefs.



            If, instead, Bush observes that Kim caved, then his posterior beliefs put a
probability of 1 on the leader’s being sane, since a crazy leader never caves.
This result follows from Bayes’s rule as well:



            Prob(Kim is crazy given that he caved)



            k � 1.



            .25
.25 � .75 � 0



            � 1,



            k � 0),



            �
.25 � 0



            .25 � 0 � .75 � (1 � k)
� 0.



            �
Prob(crazy) � Prob(caves given that he is crazy)



            Prob(crazy) � Prob(caves given that he is crazy) � Prob(sane) � Prob(caves given that he is sane)
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            These consistent beliefs are then added to the given strategy pair:



            ■ George Bush’s beliefs:



            —If Kim Jong-il chose stand firm, then he is crazy with probability



            —If Kim Jong-il chose cave, then he is crazy with probability 0.



            Now let us find values for b and k such that the given strategy pair, along
with the preceding beliefs, form a perfect Bayes–Nash equilibrium. Given that
North Korea has stood firm, Bush is content to randomize if and only if



            [11.4]



            He receives a payoff of 5 from caving (regardless of Kim’s type). From stand-
ing firm, he gets a payoff of 3 if Kim is crazy (since war then ensues) and a
payoff of 6 if Kim is sane (because war is avoided). Solving (11.4) for k, we ob-
tain Thus, if Kim chooses to stand firm with probability .67 when he
is sane (and always stands firm when he is crazy), then Bush receives the same
expected payoff whether he caves or stands firm.



            Finally, we turn to Kim’s strategy. It is easy to show that his strategy is op-
timal when he is crazy. Initially caving gives him his lowest payoff; thus, it is
clearly preferable for him to stand firm. In the event that Bush responds by
standing firm, then going to war results in a higher payoff of 5 than the pay-
off of 3 from avoiding war.



            Now suppose Kim is sane. If he finds himself having to decide about war—
if both he and Bush stood firm—then it is indeed optimal for him to avoid war
and get a payoff of 5 (compared with a payoff of 1 from going to war). The
only remaining information set to consider is when Kim must decide between
standing firm and caving. Recall that we are supposing that he randomizes at
that information set. (In particular, we’ve shown that he must stand firm with
probability .67 for Bush to be willing to randomize.) For that to be optimal for
Kim, it must be true that



            [11.5]



            The left-hand side expression is Kim’s payoff from caving, and the right-hand
side expression is his expected payoff from standing firm (which depends on
the likelihood that Bush stands firm or caves). Solving (11.5) for b, we find that



            Equilibrium then requires that Bush has a 60% chance of standing firm.
To sum up, the equilibrium prediction is that Kim Jong-il will stand firm



            for sure if he is crazy, and if he is sane, there is still a 67% chance of him doing
so. In response to North Korea’s standing firm, there is a 60% chance that
George Bush will stand firm. In response to a standoff—that is, neither coun-
try has caved—only a crazy Kim Jong-il goes to war.



            Summary
This chapter has focused on encounters with two important features: People
have private information and they move sequentially. The significance of se-
quential moves is that a person who moves first may reveal information about



            b � .6.



            7 � b � 5 � (1 � b) � 10.



            k � .67.



            5 � a .25



            .25 � .75k
b � 3 � a .75k



            .25 � .75k
b � 6.
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.25 � .75k.
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            what it is she knows that other players do not. A player who moves second
may then be able to glean information about a player’s type from her observed
behavior and use that information in deciding what to do. But if that is what
is going on, then the player who moves first may adjust her behavior with the
intent to mislead those who are drawing inferences from it. An objective of the
chapter was to sort out these various forces and identify solutions in which all
players are acting in their best interests and no players are fooled. This doesn’t
necessarily mean that a player can figure out what another player knows, but
it does mean that he won’t be duped into believing something false.



            This analysis was conducted in the context of a signaling game, which is the
simplest structure that embodies these various features. A signaling game in-
volves a player, known as the sender, who has some private information and
moves first by choosing an action. The action is observed by a second player,
known as the receiver, who, after updating his beliefs as to the first player’s pri-
vate information, selects an action as well. The solution concept utilized was a
perfect Bayes–Nash equilibrium. Roughly speaking, a strategy pair and a pos-
terior set of beliefs for the receiver regarding the first player’s private informa-
tion constitute a perfect Bayes–Nash equilibrium if each player (1) is acting
optimally, given her beliefs (sequential rationality) and (2) the receiver’s pos-
terior beliefs, which are conditional on the sender’s action, take proper account
of the optimal behavior of the sender (consistent beliefs). In other words, the
receiver recognizes the incentives the sender has to mislead him when he up-
dates his beliefs in response to the sender’s observed behavior.



            An equilibrium may entail the sender’s behavior (1) perfectly revealing all
that she knows (known as a separating equilibrium), (2) partially revealing
what she knows (semiseparating, or semipooling, equilibrium), or (3) re-
vealing nothing at all (pooling equilibrium). A separating equilibrium arises
in the Courtship game, in which the offering of an expensive gift by a suitor
reveals to his fiancé that he truly loves her, and in the Management Trainee
game, in which a trainee’s level of effort reveals how hardworking she is. A
semiseparating equilibrium occurs in the Used Car game in that an owner
puts her car up for sale only if it is of low or moderate quality. Because the
seller’s price is independent of quality, the buyer does not know whether the
car’s quality is low or moderate, but does know that it is not of high quality,
since an owner of a high-quality car chooses not to put it on the market.
Partial information is also revealed in the Brinkmanship game, as Kim Jong-
il’s standing firm in response to American threats reveals neither that he is
crazy nor that he is sane, but allows President Bush to update his beliefs and
raise the probability that Kim is crazy.



            What general lessons emerge from this analysis about signaling? One lesson
is that whether there is an equilibrium whereby the sender’s behavior is inform-
ative depends on how the sender’s type influences his preferences regarding ac-
tions. A separating equilibrium is unlikely to exist when the sender’s action has
the same impact on his payoff irrespective of his type. For example, selling at
a higher price is of equal value to an owner of a high-quality car and one of a
low-quality car; in both cases, the seller’s payoff is the price at which the car
sells. Hence, an owner of a low-quality car is inclined to mimic the price set by
an owner of a high-quality car. We then found that the price posted for the used
car is independent of the car’s quality and thus is uninformative of its quality.
In comparison, in the Courtship game, giving an expensive gift to a woman is
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            less costly to a man if he loves her and thus anticipates marrying her. In that
setting, the gift is a credible signal of his love.



            This analysis leads us to a second lesson: For a player to successfully signal
her type, she may need to distort her behavior in order to prevent other types
from imitating her behavior. Thus, in the Management Trainee game, an in-
dustrious worker had to work harder than usual in order to distinguish her-
self from a lazy worker. Indeed, an industrious type has to work so hard that
a lazy worker would choose not to mimic her even if it meant that the man-
ager was fooled into thinking that the lazy worker was industrious.



            1. Return to the Lemons game in Section 11.3, and consider the same
structure, except suppose there are just two quality levels: low and high.
The buyer initially assigns probability q to a car’s being of high quality
and probability to its being of low quality. If the seller sells the car,
then her payoff is the price the buyer paid. If the car is not sold, assume
that it is worth $10,000 to the seller if it is of high quality and $6,000 if
it is of low quality; those are the payoffs. The value of the car to the
buyer is $12,000 if it is of high quality and $7,000 if it is of low quality.
If the buyer purchases the car, then the buyer’s payoff is the car’s value—
which is 12,000 or 7,000—less the price paid; his payoff is zero if he does
not buy the car. Find values for q such that there is a perfect Bayes–Nash
equilibrium with pooling.



            2. For the Courtship game in Section 11.3, find a pooling perfect
Bayes–Nash equilibrium.



            3. A retailer sells a product that is either of low or high quality, where qual-
ity is measured by the likelihood that the product works. Assume that
the probability that the high-quality product functions properly is h and
that the probability that the low-quality product functions properly is l,
where A manufacturer’s type is the quality of its prod-
uct—low or high—where the consumer attaches a probability r to the
product’s being of high quality, Both quality types cost the re-
tailer an amount c (which is a cost incurred only if the product is sold).
After Nature determines the quality of the retailer’s product, the retailer
makes two simultaneous decisions: the price to charge and whether to
offer a money-back warranty. A retailer’s price can be any nonnegative
number. The warranty has the feature that if the product doesn’t work—
which occurs with probability for a high-quality good and proba-
bility for a low-quality good—then the retailer must return to the
consumer what she paid for the good. A retailer’s payoff is his expected
profit. Thus, if he sells the good at a price p without a warranty, then his
payoff is If he sells it with a warranty, then his expected payoff is



            if the product is of high quality and if it is of low
quality. After observing the product’s price and whether or not it has a
money-back warranty, a lone consumer decides whether to buy it. In
specifying the consumer’s payoff, first note that if the product works,
then the consumer realizes a value of while if it doesn’t work,
then the product is of zero value. If she buys it at a price p, then her pay-
off is (1) if the product works, (2) if the product doesn’t work�pv � p



            v 7 0,



            l � p � ch � p � c
p � c.



            1 � l
1 � h



            0 6 r 6 1.



            0 6 l 6 h 6 1.



            1 � q
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            and it lacks a warranty, and (3) zero if the product doesn’t work and it
does have a warranty. A consumer’s payoff is zero if she doesn’t buy the
good. Finally, assume that Find a perfect Bayes–Nash
equilibrium in which the retailer chooses a warranty only when he has
a high-quality product and the consumer buys the good whether or not
it has a warranty. (Hint: The retailer sells the product for a lower price
when it does not have a warranty.)



            4. President George Bush is in a strategic confrontation with Iraq’s leader
Sadaam Hussein. Hussein’s type determines whether or not he has
weapons of mass destruction (WMD), where the probability that he has
WMD is w, After learning his type, Hussein decides whether
or not to allow inspections. If he allows inspections, then assume that
they reveal WMD if Hussein has them and do not reveal WMD if he
doesn’t. If he doesn’t allow inspections, then uncertainty about whether
he has WMD remains. At that point, George Bush decides whether or not
to invade Iraq. The extensive form of this game is shown in FIGURE PR11.4.
Note that Bush learns Hussein’s type if Hussein allows inspections, but
remains in the dark if he does not.



            0 6 w 6 3
5.



            0 6 c 6 l � v.



            Hussein’s payoffs are such that, regardless of whether he has WMD, his
ordering of the outcomes (from best to worst) are as follows: no inspec-
tions and no invasion, inspections and no invasion, no inspections and
invasion, and inspections and invasion. Thus, Hussein prefers not to
allow inspections, but is most motivated to avoid an invasion. Bush’s
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            FIGURE PR11.4 The WMD Game
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            preference ordering depends very much on whether Hussein has WMD.
If Hussein has WMD, Bush wants to invade; if he does not, then he
prefers not to invade. Find consistent beliefs for Bush and values for b
and h, where and such that the following strategy
pair is a perfect Bayes–Nash equilibrium:



            ■ Hussein’s strategy:
—If I have WMD, then do not allow inspections.



            —If I do not have WMD, then allow inspections with probability h.



            ■ Bush’s strategy:
—If Hussein allows inspections and WMD are found, then invade.



            —If Hussein allows inspections and WMD are not found, then do
not invade.



            —If Hussein does not allow inspections, then invade with proba-
bility b.



            5. We’ll now show how a college degree can get you a better job even if it
doesn’t make you a better worker. Consider a two-player game between
a prospective employee, whom we’ll refer to as the applicant, and an em-
ployer. The applicant’s type is her intellect, which may be low, moderate,
or high, with probability and respectively. After the applicant
learns her type, she decides whether or not to go to college. The personal
cost in gaining a college degree is higher when the applicant is less in-
telligent, because a less smart student has to work harder if she is to
graduate. Assume that the cost of gaining a college degree is 2, 4, and 6
for an applicant who is of high, moderate, and low intelligence, respec-
tively. The employer decides whether to offer the applicant a job as a
manager or as a clerk. The applicant’s payoff to being hired as a man-
ager is 15, while the payoff to being a clerk is 10. These payoffs are in-
dependent of the applicant’s type. The employer’s payoff from hiring
someone as a clerk is 7 (and is the same regardless of intelligence and
whether or not the person has a college degree). If the applicant is hired
as a manager, then the employer’s payoff increases with the applicant’s
intellect, from 4, to 6, to 14, depending on whether the applicant has low,
moderate, or high intellect, respectively. Note that the employer’s payoff
does not depend on whether or not the applicant has a college degree.
The extensive form of this game is shown in FIGURE PR11.5. Find a per-
fect Bayes–Nash equilibrium in which students of low intellect do not go
to college and those of moderate and high intellect do.



            6. The owner of a new restaurant is planning to advertise to attract cus-
tomers. In the Bayesian game, Nature determines the restaurant’s qual-
ity, which is either high or low. Assume that each quality occurs with
equal probability. After the owner learns about quality, he decides how
much to advertise. Let A denote the amount of advertising expenditure.
For simplicity, assume that there is a single consumer. The consumer ob-
serves how much advertising is conducted, updates her beliefs about the
quality of the restaurant, and then decides whether or not to go to the
restaurant. (One can imagine that A is observed by noticing how many
commercial spots are on local television and how many ads are in the
newspaper and on billboards.) Assume that the price of a meal is fixed
at $50. The value of a high-quality meal to a consumer is $85 and of a
low-quality meal is $30. A consumer who goes to the restaurant and
finds out that the food is of low quality ends up with a payoff of �20,
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            which is the value of a low-quality meal, 30, less the price paid, 50. If the
food is of high quality, then the consumer receives a value of 35



            Furthermore, upon learning of the high quality, a consumer
anticipates going to the restaurant a second time. Thus, the payoff to a con-
sumer from visiting a high-quality restaurant is actually 70 
For the restaurant owner, assume that the cost of providing a meal is 35
whether it is of low or high quality. If the restaurant is of high quality,
the consumer goes to the restaurant, and the restaurant spends A in ad-
vertising, then its profit (and payoff) is 
If the restaurant is of low quality, the consumer goes to the restaurant,
and the restaurant spends A in advertising, then its profit is



            These payoffs are summarized in the following
table. If the consumer does not go to the restaurant, then her payoff is
zero and the owner’s payoff is �A.



            (50 � 35) � A � 15 � A.



            2 � (50 � 35) � A � 30 � A.
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            FIGURE PR11.5 The College Signaling Game
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            a. Find a separating perfect Bayes–Nash equilibrium.
b. At a separating perfect Bayes–Nash equilibrium, what is the maxi-



            mum amount of advertising that a restaurant conducts? What is the
minimum amount?



            c. Find a pooling perfect Bayes–Nash equilibrium.
d. At a pooling perfect Bayes–Nash equilibrium, what is the maximum



            amount of advertising?



            7. Consider the signaling game in FIGURE PR11.7. Nature chooses one of
three types for the sender, and after learning her type, the sender
chooses one of three actions. The receiver observes the sender’s action,
but not her type, and then chooses one of two actions. Find a semisepa-
rating perfect Bayes–Nash equilibrium in which the sender chooses the
same action when her type is or and chooses a different action when
her type is t3.
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            8. For the signaling game in FIGURE PR11.8, find all separating perfect
Bayes–Nash equilibria.



            9. Consider the signaling game in FIGURE PR11.9.
a. Find all separating perfect Bayes–Nash equilibria.
b. Find all pooling perfect Bayes–Nash equilibria.
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            11.4 Appendix: Bayes’s Rule and Updating Beliefs
CONSIDER A COLLEGE WITH 4,000 students: 2,100 women and 1,900 men. TABLE



            A11.1 breaks down the student body in terms of gender and the general
area of their major, of which there are four categories: undeclared, human-
ities, social sciences, and physical sciences. The categories are mutually ex-
clusive, which means that a person falls into exactly one category—no
more, no less.



            TABLE A11.1 POPULATION OF STUDENTS AT A COLLEGE



            Social Physical



            Undeclared Humanities Sciences Sciences Total



            Male 250 350 600 700 1,900



            Female 150 450 900 600 2,100



            Total 400 800 1,500 1,300 4,000



            The table can be used to assign probabilities to the characteristics of a ran-
domly selected student. For example, the probability that a randomly selected
student is a woman is as there are 2,100 female students out of a
student body of 4,000. Similarly, the probability that a randomly selected stu-
dent has a major in the social sciences is as there are 1,500 social
science majors out of 4,000.



            Now suppose you meet a female student at the gym and want to start up
a conversation with her. With that goal in mind, it would be useful to make
an intelligent guess as to her major. So, what is the probability that her
major is in the physical sciences? That is, what is the probability that this
student’s major is in the physical sciences, conditional on knowing that she
is a woman?



            To answer this question, first note that asking “What is the probability
that a student’s major is in the physical sciences, given that she is a woman”
is the same as asking “What is the probability that a randomly selected stu-
dent from the population of female students has a major in the physical sci-
ences.” Thus, we want to focus on the population of female students; hence,
look at the middle row in Table A11.1. From the entries in this row, we can
conclude that the answer is That is, out of 2,100 female stu-
dents, 600 have a major in the physical sciences, and since it is assumed
that each female student has an equal chance of being at the gym, there is
a 28.6% chance that the student you met has a major in the physical
sciences.



            You have unknowingly just deployed Bayes’s rule. To be a bit more formal
about matters, let x and y be two random events. In the preceding example,
the random events are a student’s gender and a student’s major. Let 
denote the probability that (e.g., the probability that a student is a fe-
male), denote the probability that and (e.g., the prob-
ability that a student is a female and the student’s major is in the physical
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            sciences), and denote the probability that conditional on
(e.g., the probability that a student’s major is in the physical sciences,



            given that the student is a female). Bayes’s rule describes the following rela-
tionship between these three probabilities:



            [11.6]



            This is exactly what we have already calculated, where



            Prob( y¿�˛˛x¿) �
Prob(x¿, y¿)
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.
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            Prob(student is a female) �
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            Prob(student is a female and student’s major is in the physical sciences) �
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            4,000



            Prob(student’s major is in the physical sciences, given that student is a female) �
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4,000
2,100
4,000
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600



            2,100
.



            In using Bayes’s rule, the following properties may prove useful. Suppose
there are only two possible values for y: and First note that



            [11.7]



            This equation is due to mutual exclusivity. When either or
because y takes on only those two values. Substitute the right-hand



            side of (11.7) into the denominator of (11.6):



            [11.8]



            We can flip around the roles of x and y in (11.6) so that we are now examining
the probability that conditional on 



            Multiply both sides by 
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            Now substitute (11.9) and (11.10) into the denominator of (11.8):



            This is an alternative formula for calculating with Bayes’s rule.
Bayes’s rule is handy not only when you meet people at the gym, but also if



            you should be a contestant on Let’s Make a Deal. On this show, a contestant se-
lects one of three doors. Behind one of the doors is a great prize—say, a brand-
new automobile—while behind the other two doors are mediocre or even un-
wanted prizes (such as an ornery donkey). Although the show’s host, Monty
Hall, knows what’s behind each door, the contestant does not. Prior to the
show, the car was randomly placed behind one of the doors, so the contestant
initially assigns probability to (its being behind) Door Number 1, to Door
Number 2, and to Door Number 3.



            The contestant begins by selecting a door. Because she is indifferent as to
which one she selects, we can suppose it is Door 1. However, before Door 1
is opened, Monty Hall opens up one of the two doors not selected. Now,
here’s a crucial fact: Monty Hall never opens up the door with the car. This
means that if Door 2 has the car, then Monty opens Door 3, and if Door 3
has the car, then he opens Door 2. If Door 1 has the car, he can open either
Door 2 or 3 (and we’ll assume that each has an equal chance of being
opened).



            Suppose Monty opens Door 2. He then makes an offer that has stymied
many a contestant: Do you want to keep Door 1 or instead switch to Door
3? After that selection is made, the doors are opened and the contestant
learns what she has won. The contestant wants to switch only if it is more
likely that the car is behind Door 3. So, what should she do? If this contest-
ant had read Section 11.4, she would know that the answer is obvious:
Switch doors!



            To prove this claim, let’s start with the unconditional probabilities regarding
where the car lies:
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3
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3
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3
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Prob( y¿) � Prob(x¿|˛y¿)
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.



            To determine whether the contestant ought to change doors, it is necessary to
calculate the probability that Door 1 has the car, conditional on Monty’s having
opened Door 2. Here we can use Bayes’s rule:



            [11.11]



            The denominator can be represented as
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            Next, let us calculate each of those two terms in the sum:



            [11.13]
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            .



            � Prob(Monty opens Door 2, given that Door 1 has car) � Prob(Door 1 has car)
Prob(Monty opens Door 2 and Door 1 has car)



            Note that, in the previous calculation, if Door 1 has the car, then Monty opens
Door 2 with probability and Door 3 with probability 



            Next, note that if Door 3 has the car, then Monty has to open Door 2 by the
rule that he never opens a door with the grand prize. Using this fact, we have



            1
2.1
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            Substituting (11.13) and (11.14) into (11.12) yields



            [11.15]



            Finally, substitute (11.13) and (11.15) into (11.11):



            After Monty Hall opens Door 2, the contestant knows that the car is behind
either Door 1 or Door 3. Since we’ve just shown that Door 1 is given a condi-
tional probability of it follows that Door 3 has a conditional probability of



            Thus, the contestant should always switch doors! There is information in
the fact that Monty avoided Door 3. If Door 3 has the prize, Monty must avoid
it, and that he did avoid it is encouraging information about Door 3. All that
is intuitive, but the beauty of Bayes’s rule is that it tells us exactly how to use
that information in updating our beliefs.
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“Talk is cheap, it don’t cost nothin’ but breath.”1



            12.1 Introduction
THE PREVIOUS CHAPTER CONSIDERED situations in which an individual’s behavior
could signal information that was known only to him. A suitor can credibly
signal his love for a woman by offering her an expensive and extravagant gift.
A management trainee can credibly signal how industrious she is by working
long hours. A company can credibly signal the quality of its product by offer-
ing a money-back warranty. In all of these cases, behavior conveyed informa-
tion because the action chosen was costly and its cost varied with a player’s
type. A diamond ring signaled true love because only someone in love would
be willing to spend so much. Working long hours signaled a trainee’s work
ethic because someone who was innately lazy would find that too distasteful.
And a company which knew that its product was of low quality would find it
too expensive to offer a warranty, since it would have to return a customer’s
money far too frequently.



            Signaling scenarios will be covered in this chapter as well, but to keep you
intrigued, we’ll make one important twist: The action taken is costless. By
“costless,” we mean that it doesn’t affect the payoff of the player who is choos-
ing it (or any other player, for that matter). It is then necessarily the case that
the cost of an action is the same across player types, since it is zero for all ac-
tions and all player types.



            Although your initial reaction might be to wonder how a costless action
could make any darn difference, in fact we use costless actions every day to in-
fluence the behavior of others. What are these magical costless actions?
Words. It may be a commercial on television trying to convince you to buy a
car. Or the campaign promises of a candidate for electoral office. It could be
the repair work that the auto mechanic says needs to be done or something as
mundane as the text message sent to a friend to coordinate a time and place
for dinner. It could even be that e-mail from the wife of a recently deposed
general in Nigeria.**



            A costless action is referred to as a message, and signaling games with mes-
sages have been dubbed cheap talk games. The key assumption is that there is
no cost to sending misleading messages (“lying”); thus, we make no presumption
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            Lies and the Lying Liars That Tell Them:*
Cheap Talk Games



            *This is the title of Al Franken’s book of political satire. He is also known for the pithy, sardonic, and ex-
istential treatise Rush Limbaugh is a Big Fat Idiot.



            **According to the Internet Complaint Center, people continue to be duped by this ruse and suffer an av-
erage loss in excess of $5,000 per person. As P. T. Barnum said, “There’s a sucker born every day.”
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            that messages are truthful. Because talk is cheap, one may wonder when mes-
sages are informative. Addressing that issue is the primary objective of this chap-
ter. When should you buy a stock on the basis of an analyst’s recommendation?
When should you believe a presidential candidate’s campaign pledge not to raise
taxes? When can you believe an auto mechanic who says that your car needs a
new transmission? Informative messages can have a significant impact on how
people behave, but when they are devoid of substantive content, they are indeed
nothing more than breath.



            There are two distinct scenarios in which messages may make a differ-
ence—a message can “signal information” or “signal intention.” The first is
of the sort explored in Chapter 11: A player has private information about,
say, payoffs and sends a message that may influence other players’ beliefs
about those payoffs and thus how they act. A second class of situations deals
instead with games of complete information. Here, a player’s message does
not convey anything about the game itself; features of the game are known
to all players. Instead, what the message may signal is a player’s intended
play. This is especially relevant in games with multiple Nash equilibria. For
example, recall the telephone game from Chapter 4, in which Colleen and
Winnie are cut off during their phone conversation and have to decide
whether to call the other back or wait for the other to call. Each would like
the other to do the dialing, but is willing to call back if that is what it takes
to reconnect. In that game, there were two pure-strategy Nash equilibria:
Colleen calls back and Winnie waits; and Winnie calls back and Colleen
waits. Communication at the start of the original call can help the players
settle on one of those equilibria. There is also a symmetric mixed-strategy
Nash equilibrium in which each player randomizes. Although the latter
equilibrium has the appeal of treating players symmetrically, it may period-
ically result in their failing to coordinate. As we’ll see, cheap talk preceding
the telephone game may allow each player to signal her intentions and
thereby coordinate better on an outcome.



            In the next section, we consider what it means to communicate in a game-
theoretic world (which is a bit different from the real world). Section 12.3 then
explores the content of messages when players attempt to signal information.
The role of communication in signaling intentions is examined in Section
12.4. We also explore how the predictions of theory match up with experimen-
tal evidence. It turns out that the predicted effects of allowing players to com-
municate are strongly supported by how people actually behave.



            12.2 Communication in a Game-Theoretic World
While campaigning, Ohio Senator Tom Corwin was asked at a rally, “What
about the tariff question?” Senator Corwin replied, “Glad you asked that,
mister. I know some in this audience are for a high tariff and others are
against a high tariff. After considerable thought on the subject, I want every-
one in this hall to know—so am I!”2



            THIS SECTION HAS THREE basic points. First, a message is not limited to words;
just about anything that one player can do which is observable by others can
be a message. Second, the information content of a message need not coincide
with the literal meaning of the message. A message’s meaning is to be derived,
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            not presumed. Third, although a player may desire to deceive others, there is
no lying when players are at an equilibrium. The desire to deceive does not re-
sult in deception, but it can prevent information from being revealed. These
points will be fleshed out in the ensuing applications.



            What is communication? Communication involves one player “sending a
message” to another player. A message can take many forms. It could involve
the spoken or written word. If you are in a Chinese restaurant in New York
and you want to order kung pao chicken, you’ll say to the server, “I’ll have
kung pao chicken.” If you’re in Shanghai and you don’t understand Chinese
(and the server doesn’t understand English), you can still, of course, say “I’ll
have kung pao chicken” but it is unlikely to have the intended effect. If, how-
ever, the menu is in both Chinese and English, you could point to the item on
the menu. The physical gesture of pointing is a message.



            A message can be any (costless) action that one person can take and an-
other person can perceive (i.e., be made aware of through one’s senses). A mes-
sage can be spoken (and thus heard) or involve a physical gesture (and thus be
seen or felt). In the film The Sting, members of a confidence ring would signal
to each other with a flick of a finger along their nose. Similarly subtle hand
gestures have been set up between a bidder and an auctioneer in order for a
bidder to signal his acceptance of a bid without tipping off other bidders in
the room as to whom is making the bid. Or the message could be placing a
hanger on your dorm room door so that your roommate knows you have
“company.” The space of messages encompasses a wide array of utterances
and gestures that have the capacity to convey information.



            A message sent is not necessarily information delivered, however. This
brings us to the issue of the meaning of a message. Of course, words have a
literal meaning—just look it up in a dictionary—but we know that words can
be deliberately chosen to be vague, misleading, and even downright deceptive.
A person can say one thing while knowing something quite different. For suc-
cessful communication to occur, two conditions must be met. First, there
must be a shared understanding of the literal meaning of the message. For ex-
ample, in the United States, shaking one’s head from side to side is a gesture
with a literal meaning of “no.” But in some parts of India, the exact same phys-
ical gesture means “yes.” When I first communicated with a graduate student
fresh from India (who went on to become a superb game theorist), communi-
cation was far from perfect, as we lacked that shared understanding.



            A common language—that is, a shared understanding of the literal mean-
ing of a message—is a necessary, but not sufficient, condition for information
to traverse from one person to another. This fact leads us to the second condi-
tion: that there is no incentive for the sender of a message to deceive the re-
ceiver. When running for office in 1988, George H. W. Bush made an unam-
biguous pledge: “Read my lips . . . no new taxes!” Though linguistically crystal
clear, what this message implied about future behavior was far murkier, be-
cause voters suspected that Bush might make such an utterance regardless of
his true intentions. This suspicion was revealed in a contemporaneous Gallup
poll in which 68% of those surveyed believed that he would raise taxes if
elected. Apparently, voters were trying to read his mind, not just his lips.



            Information, then, is conveyed when two people have a common language
and lack the desire to deceive each other. Deception is central to this chapter.
We’ll be interested in understanding when deception is at work and how it
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            influences the information content of messages conveyed. The most important
point for you to recognize at this stage is that the meaning of a message is
something to be solved as part of a game’s solution.



            Messages that are linguistically clear can be uninformative, and messages
that are far removed from formal languages can be teeming with juicy infor-
mation. To highlight how messages can be quite arbitrary and yet informative,
the absence of words can convey information. When the U.S. Congress held
hearings on steroid use in Major League Baseball®, one of the witnesses was
Mark McGwire, who had been accused by a former teammate of having used
steroids. His silence on the matter spoke volumes:



            In a room filled with humbled heroes, Mark McGwire hemmed and hawed
the most. His voice choked with emotion, his eyes nearly filled with tears,
[and] time after time he refused to answer the question everyone wanted to
know: Did he take illegal steroids when he hit a then-record 70 home runs
in 1998—or at any other time?3



            Neither denying nor confirming it, he led many people to believe that he had
taken steroids. His failure to deny the charges was informative: If he had not
taken steroids, it would have been in his best interest to say so.



            The final question we want to address here is, What does it mean to lie? To
fib? To equivocate? To prevaricate? According to Webster’s, “to lie” is “to make
an untrue statement with intent to deceive.” The issue is not what is literally
so, but what is the intended inference to be drawn by others. Let me offer an
example close to home (in fact, my home!). In response to certain questions,
my younger daughter replies “maybe” when the true answer is “no.” For ex-
ample, if I asked her, “Have you done your chores?” she would invariably re-
spond “maybe.” But I clearly took that as a “no” because, if she had done
them, she would have said “Yes, Dad, now quit buggin’ me.” When my daugh-
ter says “maybe,” she is not lying, because it is common knowledge between
us that it means “no,” which is the truthful answer to my question. To lie, one
must intend to mislead with the anticipation of success.



            In the game-theoretic models we’ll explore, there is often an incentive to
deceive, so a player would like to lie. However, in equilibrium, there will be
no lying, because, in equilibrium, any such incentive is taken account of by
the other players. Although our analysis will not allow a player to be duped,
that doesn’t mean that the truth is revealed: The incentive to deceive can pre-
vent information from being revealed. If a detective asks a murder suspect
whether he committed the crime, his answer is unlikely to be informative: If
the suspect did not do it, he’ll say he didn’t do it; but if the suspect did do it,
he’ll also say he didn’t do it. The detective is not deceived, although he re-
mains in the dark.



            The absence of the phenomenon of lying in game-theoretic models is unfor-
tunate, for people in real life often do succeed with deception. Sadly, game the-
ory can shed no light on lying, as our players are just too smart for that. It can-
not, for example, explain a critical moment in Shakespeare’s King Lear. King
Lear is the aging king of Britain and is deciding what to do with his kingdom.
He asks each of his three daughters to tell him how much she loves him.
Flattering answers are put forth by the two older ones, Goneril and Regan,
while Cordelia remains silent, for she lacks the words to describe how much
she loves her father. Lear’s response is to disown Cordelia and give his kingdom
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            to Goneril and Regan. Soon he learns that the flattering responses were lies and
that silence hid true love. Now, while King Lear might not learn about each
daughter’s love at a game-theoretic equilibrium, neither will he be duped.



            12.3 Signaling Information
Florence, Italy—Italy’s leading designers may soon learn to their sorrow that
noisy applause doesn’t mean a jingling cash register. Of the 50 American
buyers at the Pitti Palace show of spring fashions, several admitted off the
record that they never clap for the haute couture creations that they like best.
They don’t want their competitors to know what they will order. At the same
time, these buyers confessed they applauded enthusiastically for sportswear,
boutique items and gowns that they wouldn’t consider featuring in their
own stores.4



            A CHEAP TALK GAME has three stages:



            Stage 1: Nature chooses the sender’s type.



            Stage 2: The sender learns her type and chooses a message.



            Stage 3: The receiver observes the sender’s message, modifies his beliefs
about the sender’s type in light of this new information, and
chooses an action.



            What makes this a cheap talk game rather than any other type of signaling
game is that the message chosen by the sender affects neither the sender’s pay-
off nor the receiver’s payoff. Their payoffs are determined only by the sender’s
type and the receiver’s action. Of course, a message can indirectly affect pay-
offs, influencing the receiver’s action by altering her beliefs about the sender’s
type. For that to happen, though, the sender’s type must influence the re-
ceiver’s payoff—and not just the sender’s payoff. We shall assume that to be the
case in our examples.



            � SITUATION: DEFENSIVE MEDICINE



            In a recent survey of physicians, 93% reported altering their clinical behav-
ior because of the threat of malpractice liability. Of them, 92% used “assur-
ance behavior” such as ordering tests, performing diagnostic procedures,
and referring patients for consultation; and 43% reported using imaging
technology in clinically unnecessary circumstances.5



            A common situation in which cheap talk appears is when we rely upon ad-
vice from an expert. An auto repair shop says that your car needs a major re-
pair. Your stockbroker recommends a stock. Your doctor tells you that you
need a diagnostic test. When should you follow this advice? When is the ex-
pert truthfully conveying what she knows? And when is she instead trying to
induce you to do something in her best interests and not yours?



            Consider a patient who has a particular symptom and goes to his doctor for
an examination.6 The doctor evaluates the patient and then decides whether or
not to recommend an expensive test—or example, an MRI (magnetic resonance
imaging). If it is not recommended, then the patient has no decision to make. If
an MRI is recommended, then the patient must decide whether to get it. The pa-
tient recognizes that the test may be beneficial, but also that it is personally costly,
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            perhaps because it is not fully covered by insurance or it requires taking time off
from work or is uncomfortable. The doctor cares about the patient, though per-
haps not exclusively. She might recommend the test even when it is near useless,
because doing so serves to avoid potential malpractice suits. The patient is aware
of the possibility that his doctor will engage in such defensive medicine.



            The Bayesian game’s extensive form is shown in FIGURE 12.1. Nature moves
first by determining the value of the test to the patient. With probability the
patient’s condition is such that the test is beneficial; with probability the test
is useless. The value of the test is known only to the doctor, who learns it after
examining the patient. Upon determining the value of the test to the patient, the
doctor decides whether to recommend it. If she does not, then the patient de-
cides whether to take the test. If she does, then the patient decides whether to
pursue the recommendation.
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            FIGURE 12.1 The Doctor–Patient Game



            If he takes the test, the patient’s payoff is 5 when it is beneficial and when
it is not. If he doesn’t take the test, then his payoff is zero. Thus, the patient
wants to take the test only when it is beneficial, although figuring out when
that is the case requires assessing the veracity of the doctor’s recommendation.
The doctor’s payoff from conducting the test is where v is the value of
the test to the patient and If the test is beneficial to the patient, thena � 0.
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            if it is not beneficial, then a is the value of the test to the doctor
from a malpractice standpoint. If then the interests of the patient and
the doctor coincide and their payoffs are identical; thus, the doctor wants to
conduct the test if and only if it is in the patient’s best interests. However, if



            then there may be a conflict of interest, in that the doctor may prefer
that the test be conducted even when it is not beneficial to the patient. Finally,
assume that the payoff to the doctor is zero if the test is not conducted.



            First note that there is a pooling perfect Bayes–Nash equilibrium in which
the doctor should not be believed:



            ■ Doctor’s strategy: Recommend the test whether or not it is beneficial to
the patient.



            ■ Patient’s strategy: Ignore the doctor’s recommendation.



            ■ Patient’s beliefs: Whether or not the doctor recommends the test, the test
is beneficial with probability .



            This equilibrium is known as a babbling equilibrium: The doctor’s message is
no more informative than inane babble. A babbling equilibrium is a pooling
equilibrium in a cheap talk game. Given that the doctor’s strategy has her
make the same recommendation—“Take the test”—regardless of her type, her
message is entirely uninformative. The patient’s beliefs are then consistent, as
they are the same as his prior beliefs. With those beliefs, the expected payoff
from taking the test when it is recommended is



            which is less than the payoff from not taking the test. Since the patient is not
going to take the test, the doctor’s payoff is zero whether or not she recom-
mends it, in which case recommending the test is just as good as not doing so.
This equilibrium is not very heartening, as the doctor’s advice is worthless (be-
cause it doesn’t depend on the patient’s true condition)—and, of course, the
advice is appropriately ignored by the patient.



            In fact, every cheap talk game has a babbling equilibrium. If the receiver
believes that the sender’s message is independent of the sender’s type, then the
receiver will ignore the message and just use his prior beliefs in deciding how
to behave. But if the receiver acts in such a manner—ignoring the sender’s
message—then the sender is indifferent as to what is said, since it doesn’t in-
fluence the receiver’s behavior (and all messages have the same cost, which is
zero). Any message for any type will suffice, including sending the same mes-
sage for all types.



            For every cheap talk game, there is always a babbling equilibrium.



            The interesting issue is whether there is also an equilibrium in which mes-
sages actually contain information. Let us then consider the following candi-
date for a separating perfect Bayes–Nash equilibrium:



            ■ Doctor’s strategy: Recommend the test if and only if it is beneficial to the
patient.



            ■ Patient’s strategy: Follow the doctor’s recommendation.
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            ■ Patient’s beliefs:



            If the doctor recommends the test, then the test is beneficial with proba-
bility 1.



            If the doctor does not recommend the test then the test is useless with
probability 1.



            This strategy profile results in a desirable outcome, as the doctor always
makes the recommendation that is best for the patient and the patient trusts
the doctor. What we need to assess is when it is an equilibrium. It should be
apparent that the patient’s beliefs are consistent. (If it is not apparent, you
should schedule some office hours with your instructor.) Given that the test is
recommended only when it is beneficial, the patient’s strategy is clearly opti-
mal. This statement leaves us assessing the sequential rationality of the doc-
tor’s strategy. Suppose, in fact, that the test is beneficial. Then the doctor’s pay-
off from recommending the test is because, according to the patient’s
strategy, the patient will follow the doctor’s recommendation. Since the payoff
is zero from not recommending the test, the doctor’s strategy is optimal if and
only if which is indeed true (because Not surprisingly, if the
test benefits the patient and protects against malpractice, the doctor clearly
wants to recommend it. The problematic scenario is when the test is not ben-
eficial to the patient. The strategy has the doctor not recommend it then, so
her payoff is zero. Recommending it yields a payoff of so not recom-
mending it is optimal when 



            When an equilibrium with truthful recommendations exists (as
does a babbling equilibrium). When, instead, there is only a babbling
equilibrium, so the doctor’s recommendations are necessarily uninformative.
There is a general principle at work here. When the doctor’s interests
coincide perfectly with those of the patient, in that the doctor wants him to
take the test only when it makes the patient better off. However, as a in-
creases, the interests of the doctor and the patient increasingly diverge be-
cause the doctor’s recommendation is driven more and more by avoiding
malpractice, while the patient is interested solely in the efficacy of the test.
Thus, when a is small (i.e., the doctor cares chiefly about the patient’s
well-being and her recommendations are truthful. When, instead, a is large
(i.e., the doctor’s interests are dominated by malpractice concerns
and she makes recommendations that do not inform the patient about his
condition.



            Generally, the more the interests of the parties coincide, the more likely it
is that there is an equilibrium in which messages are informative. When their
interests are perfectly coincident, what is good for the sender is good for the
receiver, in which case the sender has no incentive to mislead the receiver; in-
deed, it would be like misleading oneself. That intuition continues to work
even when interests are not perfectly coincident, as long as they are not too
disparate. Now consider a setting in which interests are totally opposite, such
as a zero-sum game. In that setting, something that is better for the sender is
necessarily worse for the receiver. The sender will then try to mislead the re-
ceiver, in which case the receiver should not believe the sender’s message.
Since, in equilibrium, no one is misled, the result is that messages aren’t be-
lieved. More generally, if interests are sufficiently different, then messages are
uninformative.7
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            The more coincident the interests of the sender and the receiver are,
the more likely it is that messages are informative. When their interests are
sufficiently similar, there is an equilibrium in which messages are informative.
When their interests are sufficiently dissimilar, all equilibria have uninformative
messages.



            For the cheap talk game in FIGURE 12.2, find two separating equilibria and two babbling equilibria.
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            � SITUATION: STOCK RECOMMENDATIONS



            In recent years, a controversial issue in the securities industry is the conflict
of interest which arises within a company that provides both investment ad-
vice and investment banking. At any point in time, a company like Starbucks
will be covered by investment firms such as Merrill Lynch, whose analysts will
provide a recommendation of “buy,” “hold,” or “sell” to their clients. If
Starbucks wants to raise financial capital by issuing and selling stock, it may
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            FIGURE 12.3 The Analyst–Investor Game
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            use the investment banking services of such a company. Because Starbucks
doesn’t like to have a sell recommendation placed on its stock, will Merrill
Lynch instruct its analysts not to make a sell recommendation in order to win
over Starbucks’s investment banking business?*



            To explore this issue, consider the game depicted in FIGURE 12.3.8 Nature
moves first by determining whether the security analyst believes, as a result of
his research, that the stock will outperform, underperform, or be neutral rela-
tive to the rest of the stock market. Suppose each of these events occurs with
probability If an analyst were investing his own money, he would buy the
stock if it was to outperform, hold it if it was expected to be neutral, and sell
it if it was expected to underperform. Once learning the expected performance
of the stock, the analyst announces a recommendation: Buy, hold, or sell. This
recommendation is cheap talk. The investor or client (who is the receiver in
this game) learns the analyst’s recommendation, although doesn’t know what
the analyst truly believes. She’ll draw inferences from the recommendation,
update her beliefs as to the stock’s quality, and then decide whether to buy,
hold, or sell. (Assume that she already owns some of the stock.)



            Depending on the true quality of the stock and what the investor does, the
payoffs to the analyst and the investor are shown in TABLE 12.1. The investor’s
payoff is 1 from pursuing the best action, which means buying when the stock
is predicted to outperform, holding when it is predicted to move with the mar-
ket, and selling when it is predicted to underperform. Her payoff is from
choosing the least desirable action, which means selling when the stock is pre-
dicted to outperform and buying when it is predicted to underperform. Her
payoff is zero otherwise. The analyst’s payoff equals the investor’s payoff, plus
a when the investor buys and less b when she sells, where That the
analyst’s payoff moves with the investor’s payoff reflects the fact that the ana-
lyst’s compensation is higher when his client’s portfolio performs better. The



            a, b 7 0.



            �1



            1
3.



            *By the way, I chose Starbucks as an example because I am sitting in one right now as I write the first draft
of this chapter. If I should ever refer to a strip club or an opium den in this text, please do not infer that I
was sitting in one at the time. That would be quite absurd, for I never bring my laptop to those places.



            TABLE 12.1 PAYOFFS IN STOCK RECOMMENDATION GAME



            State Action Analyst’s Payoff Investor’s Payoff



            Outperform Buy a � 1 1



            Outperform Hold 0 0



            Outperform Sell �b � 1 �1



            Neutral Buy a 0



            Neutral Hold 1 1



            Neutral Sell �b 0



            Underperform Buy a � 1 �1



            Underperform Hold 0 0



            Underperform Sell 1 � b 1
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            additional term—either adding a or subtracting b—is motivated by investment
banking considerations. The analyst (and his company) are harmed when
clients are induced to sell a stock and benefited when they are induced to buy.
Consistent with a cheap talk game, payoffs do not depend directly on the an-
alyst’s recommendation.



            Let us begin the analysis by considering a strategy profile and beliefs that
have recommendations be fully informative. In this scenario, the analyst
makes an accurate recommendation and the investor believes that recommen-
dation and acts accordingly:



            ■ Analyst’s strategy:



            Recommend buy when the stock will outperform.



            Recommend hold when the stock will be neutral.



            Recommend sell when the stock will underperform.



            ■ Investor’s strategy: Follow the analyst’s recommendation.



            ■ Investor’s beliefs:



            When the analyst recommends buy, the stock will outperform with prob-
ability 1.



            When the analyst recommends hold, the stock will be neutral with prob-
ability 1.



            When the analyst recommends sell, the stock will underperform with
probability 1.



            It should be obvious that the investor’s beliefs are consistent with the analyst’s
strategy. Also, it is trivial to show that the investor’s strategy is optimal, given
the investor’s beliefs. The only matter that is not so obvious is the optimality
of the analyst’s strategy. Suppose the analyst believes that the stock will out-
perform. Then his strategy has him put forth a buy recommendation, which
yields a payoff of because it induces the investor to take the right action
(to which the analyst attaches a value of 1) and buy the stock (which the ana-
lyst values at a). If he instead makes a hold recommendation, then the ana-
lyst’s payoff is zero and would be yet lower, at with a sell recommen-
dation. Clearly, then, it is optimal for the analyst to put out a buy recommen-
dation when he thinks that the stock will outperform.



            Now suppose the true quality of the stock is that it is a neutral. Then a hold
recommendation yields a payoff of 1 for the analyst. That is clearly better than a
sell recommendation, which results in a payoff of Since the payoff from a
buy recommendation is a, a hold recommendation is optimal when 



            Finally, consider what happens when the stock is a dog. In that case, the an-
alyst’s strategy has him put a sell on it, which brings home a payoff of 
he benefits by giving good advice to his clients, but is harmed by inducing
them to sell. In comparison, a hold on the stock results in a payoff of zero for
the analyst, and a buy produces Equilibrium requires that (so
a sell is better than a hold) and also that (so a sell is better than
a buy). These two conditions are equivalent to and 



            Summing up, we see that there are three conditions for the analyst’s strat-
egy to be optimal for all types of stock quality: and 
Since the last condition is satisfied whenever the first two are, this is a perfect
Bayes–Nash equilibrium when and If the investment bankingb � 1.a � 1
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            component is very important—that is, if the benefit of
inducing stock purchases is sufficiently great or the cost
of inducing clients to dump the stock is sufficiently
detrimental (or both)—then a or b (or both) is large, so
it is not an equilibrium for recommendations to be fully
informative. If, however, analysts largely care just about
their clients—so that a and b are small—then an in-
vestor can believe the recommendations announced.
FIGURE 12.4 depicts the values for a and b whereby it is an
equilibrium for recommendations to be fully informative.



            Now suppose so that it is highly detrimental to
induce clients to sell. It is then no longer an equilibrium
for an analyst always to reveal the truth. But can his rec-
ommendations be at least partially informative?
Towards addressing that question, consider the follow-
ing semiseparating strategy profile:



            ■ Analyst’s strategy:



            Recommend buy when the stock will outperform
or be neutral.



            Recommend hold when the stock will underper-
form.



            ■ Investor’s strategy:



            Buy when the analyst recommends buy.



            Sell when the analyst recommends hold or sell.



            ■ Investor’s beliefs:



            When the analyst recommends buy, assign probability to outperform
and to neutral.



            When the analyst recommends hold, assign probability 1 to underperform.



            When the analyst recommends sell, assign probability 1 to underperform.



            Start with the investor’s beliefs. Because the analyst recommends buy when the
stock either will outperform or will be neutral, the investor should assign proba-
bility zero to the stock’s underperforming. Given that the prior probabilities of out-
perform and neutral were both in each case, the posterior probability of each is



            according to Bayes’ rule. When, instead, the analyst makes a hold recommen-
dation, the investor is correct in assigning probability 1 to the stock’s under-
performing, since the analyst announces a hold only when the stock is ex-
pected to underperform. Beliefs, then, are consistent with respect to the ana-
lyst’s recommending buy or hold. When the recommendation is a sell, consis-
tency places no restrictions on beliefs, since, according to the analyst’s strat-
egy, he never issues a sell recommendation. In that case, we’ve supposed that
the investor believes that the stock will underperform.
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            Given that the investor’s beliefs are consistent, we turn next to examining
her strategy. It says that she should buy when there is a buy recommendation.
Her expected payoff from doing so is



            The payoff is 1 if the stock outperforms and is zero if the stock proves neutral.
The expected payoff for holding the stock is



            and to selling it is



            Buying the stock, then, is indeed optimal (although holding it is just as
good). When the analyst says hold or sell, the investor believes that the stock
will underperform, and her strategy appropriately calls for her to sell. The
investor’s strategy is then optimal in response to all recommendations of the
analyst.



            Finally, consider the analyst’s strategy. If the stock will outperform, his pay-
off is from putting out a buy recommendation, and that is better than
either a hold or a sell, both of which yield a payoff of When the stock
will be neutral, his strategy has him also make a buy recommendation, for
which the payoff this time, though, is only a. If he instead recommends hold
or sell, the payoff is which is even lower. Finally, if the stock will under-
perform, a hold (or a sell) recommendation yields a payoff of because it
induces the investor to sell. That payoff is required to be higher than 
which is the payoff from issuing a buy recommendation. Hence, we need



            or 
As long as it is an equilibrium for the analyst to put out a buy



            recommendation when the stock will outperform or be neutral and a hold rec-
ommendation when it will underperform; and for the investor to buy when
there is a buy recommendation and to sell when the recommendation is a hold
or a sell. Note that the condition is weaker than the conditions for
a fully separating equilibrium, which are that and the satisfaction
of which obviously implies that Of course, it is possible that



            but either or as is depicted in Figure 12.4. For exam-
ple, if and then a separating equilibrium exists, since and



            But if more investment banking business is lost from inducing investors
to sell—for example, suppose now that —then a separating equilibrium
does not exist (because but a semiseparating equilibrium exists (be-
cause 



            When b (or a) is higher, the interests of the analyst and investor diverge to
a greater degree, as the analyst is more concerned about the impact of pur-
chases and sales of a company’s stock on its investment banking business. This
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            concern makes it more difficult for the analyst to provide truthful recommen-
dations to his investors. Of course, there is no deception—for example, clients
know that a hold recommendation means that one should dump the stock—
but the information content of a recommendation deteriorates. Now, a buy
recommendation indicates that the stock either will outperform or will be
neutral, and the client doesn’t know which is true.



            The information content of analyst’s recommendations has been a legiti-
mate concern on Wall Street. TABLE 12.2 reports findings from one of the early
studies of the subject. The lopsidedness in recommendations is startling:
Although more than 15% of recommendations were strong buys, there was
not a single strong sell, and almost 95% of recommendations were a hold, buy,
or strong buy.



            TABLE 12.2 ACTUAL STOCK RECOMMENDATIONS*



            Recommendation Frequency Cumulative Percentage



            Strong buy 38 15.2%



            Buy 128 66.4%



            Hold 70 94.4%



            Sell 14 100.0%



            Strong sell 0 100.0%



            Even more fascinating is how the meaning of a stock recommendation has
evolved to the point where investors have come to learn that a hold recom-
mendation is really a recommendation to sell:



            [A]nalysts are uncomfortable making sell recommendations on particular
stocks. Often the analysts will cop out with a euphemism: the hold rating.
But now hold is getting such a bad name that different terminology is
gaining favor on the Street. Like strong hold. . . . Just what does strong
hold mean? Since most investors assume a hold is really a polite way to
say sell, does strong hold actually mean strong sell? . . . [An analyst was
quoted:] I think some people read the wrong thing into downgrades; they
really think it’s a sell recommendation and sometimes it is, and some-
times it’s not. In the case of Cracker Barrel, I just wanted to confirm and
stress that I view it as a wonderful long-term investment and not a sell.
It’s a “true hold.” 9



            And language continues to evolve with the introduction of new terms such
as “swap” and “avoid,” which, because they were the lowest recommendation
the securities firm had, effectively meant “sell” without the firm’s coming out
and saying it. As Sir Walter Scott wrote two centuries ago, “Oh what a tangled
web we weave, When first we practise to deceive!”



            *Amitabh Dugar and Siva Nathan, “The Effect of Investment Banking Relationships on Financial Analysts’
Earnings Forecasts and Investment Recommendations,” Contemporary Accounting Research, 12 (1995),
131–160.
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            12.4 Signaling Intentions
THE PREVIOUS SECTION CONSIDERED games of incomplete information, in which
case the role of a message was to convey private information about the envi-
ronment faced by the players. Now we suppose the environment is common
knowledge to the players, but that uncertainty remains as to what a player will
do, even when players are expected to choose their equilibrium strategies. To
explore the role of messages in enhancing coordination by players, this strate-
gic situation is amended by having it preceded by a stage of preplay commu-
nication in which both players have the opportunity to convey their intended
play through cheap talk messages.



            12.4.1 Preplay Communication in Theory



            The preceding applications showed how information private to a player could
be credibly conveyed to another player before actions are taken. However,
these are not the only situations in which preplay communication might be



            For the cheap talk game in FIGURE 12.5, consider a semiseparating strategy profile in which Leslie sends the message now
when she is type low or medium and sends the message later when she is type high and Gary responds with the action up
when the message is now and the action down when the message is later. Show that, with appropriately specified beliefs,
this is a perfect Bayes–Nash equilibrium.
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            useful. Consider the game of complete information
in FIGURE 12.6.* Matt and Fiona are deciding whether
to see an action movie, such as Gladiator, or a chick
flick, such as How to Lose a Guy in Ten Days.
Although Matt craves an action movie and Fiona
digs a chick flick, each cares most about going to
the theater together. Matt’s most preferred outcome
is that they both go to an action movie, and Fiona’s
most preferred outcome is that they both go to a
chick flick. Suppose the plan is for them to meet
after work at the theater. However, since they failed to come to an agreement
beforehand, each has decided which theater to go to while hoping that the
other will choose the same one.



            The game has two pure-strategy Nash equilibria. One has both of them
going to the chick flick, in which case Fiona receives her highest payoff of 3
and Matt gets 2, and the other has both of them going to an action movie,
when it is now Matt who realizes his highest payoff. Though both of the out-
comes are equilibria, it is unclear whether Matt and Fiona will end up coordi-
nating on one of them. For this reason, some game theorists find the mixed-
strategy equilibrium a more compelling solution. Not only does it not arbitrar-
ily favor one of the players, but it also allows for the realistic possibility that
they do not coordinate on the same film.



            Using the methods from Chapter 7, let us derive the mixed strategy for
Fiona that makes Matt indifferent between his two pure strategies. Let f (for
Fiona) denote the probability that Fiona goes to the chick flick. Then Matt’s
expected payoffs from choosing the chick flick (the left-hand expression) and
choosing the action movie (the right-hand expression) are equal when



            Solving this equation for f, we find that Thus, if there is a 75% chance
that Fiona goes to the chick flick, Matt is indifferent between his two choices.



            Of course, for Fiona to be content to randomize, she must also be indiffer-
ent between her two choices. If m (for Matt) denotes the probability that Matt
goes to the chick flick, then the expected payoffs to Fiona from going to the
chick flick and going to the action movie are the same when



            which implies that 
There is then a mixed-strategy Nash equilibrium in which Matt goes to the



            action movie with probability and Fiona goes to the chick flick with proba-
bility The probability that they both end up in the same theater is
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            *This game is also known as the Battle of the Sexes, which we reviewed in Section 4.2 in the guise of the
telephone game.
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            where is the probability that they both go to the chick flick and
is the probability that they both go to the action movie. The expected



            payoffs at the equilibrium are as follows:



            Each earns well below 2—the minimum payoff from being together—because
most of the time they end up at different theaters!



            There is a point to me dragging you through this algebraic pain: to show
you how a bit of communication can help with coordination. First, note that
if Fiona and Matt pursue the mixed-strategy equilibrium, they end up going to
different theaters more than half of the time (58% of the time, to be exact.)
Now suppose we allow them to communicate via text messaging prior to de-
ciding on a theater.



            The game we have in mind is shown in FIGURE 12.7. Fiona and Matt simul-
taneously decide between text messaging “Let’s go to the chick flick” and “Let’s
go to the action movie.” After receiving the respective messages, each then de-
cides where to go.10



            There is no private information here, so subgame perfect Nash equilibrium
is an appropriate solution concept. There are multiple such equilibria, including
one in which text messages are uninformative, but let us focus on an equilib-
rium in which messages have an effect. Consider the following strategy profile:



            ■ Matt’s strategy:



            Text message “Let’s go to the chick flick” with probability M, and text mes-
sage “Let’s go to the action movie” with probability 



            If they both text messaged “Let’s go to the chick flick,” then go to the chick
flick.



            If they both text messaged “Let’s go to the action movie,” then go to the
action film.



            If they text messaged different movies, then go to the chick flick with
probability 



            ■ Fiona’s strategy:



            Text message “Let’s go to the chick flick” with probability F, and text mes-
sage “Let’s go to the action movie” with probability 



            If they both text messaged “Let’s go to the chick flick,” then go to the chick
flick.



            If they both text messaged “Let’s go to the action movie,” then go to the
action film.



            If they text messaged different movies, then go to the chick flick with
probability 



            This strategy profile has them coordinate on the same film when they both
send the same text message. In the event that they send different messages,
they just use the mixed-strategy Nash equilibrium we derived earlier. By the
method of backward induction, we need to consider each of the four final
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            FIGURE 12.7 Preplay Communication in the Battle of the Films
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            subgames. (See Figure 12.7.) First, consider the one associated with both hav-
ing text messaged “Let’s go to the chick flick.” Their strategies then have them
both go to the chick flick, which is indeed a Nash equilibrium. For the sub-
game in which they text messaged “Let’s go to the action movie,” they are to
go to the action movie, and again, this is a Nash equilibrium. For the two sub-
games in which their text messages are different, Matt goes to the chick flick
with probability and Fiona goes to it with probability and we already know
that this substrategy pair is a Nash equilibrium.



            Substituting each subgame with its associated equilibrium payoffs, we
derive the game in FIGURE 12.8. It will be easier, however, to work with its
strategic form, which is shown in FIGURE 12.9. For this game, we want to
solve for the equilibrium values of M and F. In the usual manner, M must
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            result in Fiona’s being indifferent between her two feasible text messages;
that is,



            Solving this equation gives us The value for F must make Matt simi-
larly indifferent:



            Solving this equation yields Thus, the strategy profile presented is a
subgame perfect Nash equilibrium when and 



            Given this equilibrium, let’s calculate the probability of Fiona and Matt
ending up at the same theater. That’ll happen if either they send the same text
message (and thereby coordinate at the message stage) or they send different
messages but luck out by going to the same theater. The former event occurs
with probability or Even if their text messages do not
match, which occurs with probability or when they come to actu-
ally choose where to go, the probability that they end up in the same place is



            (which we derived earlier). The probability that they send different mes-
sages but still go to the same theater is then or The total prob-
ability that they end up watching the same film is the sum of these two prob-
abilities, or 



            When there was no opportunity to engage in preplay communication, the
probability that Fiona and Matt go to the same theater was .42. Allowing them
to first text message each other raises the probability to .66. In this way, pre-
play communication can be useful even when there is no private information.
It provides players with an opportunity to signal their intentions, and that can
help players to coordinate their actions. It is important that this is a setting in
which players do have a certain degree of commonality of interest; that way,
there is a basis for wanting to coordinate. If, however, Fiona was trying to
break up with Matt, then her text message would end up being uninformative.



            12.4.2 Preplay Communication in Practice



            Although the preceding analysis suggests that a round of commu-
nication may help with coordination, it would be more convincing
to observe actual behavior. Let’s then review some experimental
evidence.11 For the payoffs used in the experiment (which are
shown in FIGURE 12.10), the mixed-strategy Nash equilibrium has
the two players coordinate 37.5% of the time when there is no
preplay communication.* The game with preplay communication
is as we just modeled it, but with the addition of a third message:
Each player can either signal his intent to play x, signal his intent
to play y, or say nothing.



            Predictions were taken from the equilibrium for which players anticipate
(1) both playing x when either both signaled their intent to play x or one player
signaled an intent to play x and the other remained silent; (2) both playing y
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            *Player 1 chooses x with probability .75 and player 2 chooses x with probability .25.
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            FIGURE 12.10 Battle of the Sexes


            

        



        
            

            
380 CHAPTER 12: LIES AND THE LYING LIARS THAT TELL THEM: CHEAP TALK GAMES



            when either both signaled their intent to play y or one player signaled an in-
tent to play y and the other remained silent; and (3) both playing the mixed-
strategy equilibrium for any other messages (specifically, one says x and the
other says y, or both remain silent). For this equilibrium, players are predicted
to coordinate 49.9% of the time.



            The behavior of college students in the laboratory was strikingly close to what
theory predicts. Without preplay communication, coordination is predicted to
occur 37.5% of the time; in practice, it occurred 41% of the time. Allowing for
preplay communication was predicted to increase the frequency of coordination
by 33%, from 37.5% to 49.9% In fact, it rose by 34%
in the experiments, from 41% to 55% Would that all of
our theories were so accurate!



            Although preplay communication was helpful, miscoordination still oc-
curred 45% of the time. What proved really effective in producing a coordi-
nated outcome was allowing only one player to send a message during the pre-
play communication round. In the experiments, the one player allowed to
communicate almost always announced her intent to play the action associ-
ated with her preferred equilibrium; for example, if Fiona had the right to



            send a message, then she would announce her intent to go to the chick
flick. One-way communication proved to be highly effective, resulting
in coordination a stunning 95% of the time!



            The effect of preplay communication was also explored for the Stag
Hunt game shown in FIGURE 12.11.* There are two pure-strategy Nash
equilibria, and and both players agree that the latter is bet-
ter than the former. Indeed, is the best outcome in the game.
Contrast this game with the Battle of the Sexes, in which players rank
the two equilibria differently.



            In the experiments without any preplay communication, players
rarely coordinated on the better equilibrium, almost all of the time set-
tling on This outcome is probably driven by the fact that a player



            is assured of getting at least 7 by choosing a, while she could get as little as 0
by choosing b. While it is better if both played b, it is risky for an individual
player to make that choice without being confident that the other player will
act similarly.



            When one-way communication is permitted, coordination on oc-
curred 53% of the time. Not bad, but what was really impressive was when
both players could signal their intentions: Coordination on took place
in 90% of the experiments conducted with two-way communication.



            In the Stag Hunt game, two-way communication was most effective for co-
ordinating on the best equilibrium, while in the Battle of the Sexes it was in-
stead one-way communication that did the job. One interpretation of this strik-
ing contrast is that communication in the Stag Hunt game is serving to reas-
sure players as to what each is going to do. This reassurance is greater when
both players, not just one, signal their intent to play b. In contrast, a player’s
message in the Battle of the Sexes may, at least partly, be used to commit a
player to choosing the action associated with his preferred equilibrium. For ex-
ample, player 1 says he intends to play y, hoping that it’ll result in equilibrium
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            *The American Idol fandom game in Section 4.4 is a three-player version of the Stag Hunt.



            7,7



            0,9



              9,0



            10,10
Player 1



            Player 2



            a



            b



            a b



            FIGURE 12.11 Stag Hunt
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            being played. But since players have different preferences regarding equi-
libria, these messages may fail to result in any coordination, as player 1 signals
his intent to play y and player 2 signals her intent to play x. If, instead, only one
player can send a message, then there is no possibility for conflicting signals at
the preplay communication stage, and coordination becomes more likely.



            Summary
The ability to communicate in a rich manner is a distinctive trait of humanity.
Although vervet monkeys have the capacity to communicate whether it is a
snake, hawk, or a tiger in the vicinity, animal communication doesn’t get
much more sophisticated than that. The human lexicon is rich not only in
words, but also in gestures. Indeed, people can create a language that captures
the specifics of a particular situation, such as teenagers IM’ing PIR (“parent in
room”) or a couple making eye contact at a boring dinner party, signaling each
other that it’s time to head home. However, although a rich shared language is
necessary for communication, it need not be sufficient to result in information
being transmitted: The intelligence that allows for such sophisticated lan-
guages also produces an ability to deceive, which can seriously deteriorate the
substantive content of the messages we send to each other.



            This chapter explored communication in the context of a cheap talk game,
which is a signaling game in which the sender’s choice is a message (i.e., a
costless action in the sense that it does not directly affect players’ payoffs).
Although there always exists a babbling equilibrium with wholly uninforma-
tive messages, whether there is an equilibrium with informative messages
rests on the commonality of interests between the sender and receiver of a
message. If those interests are sufficiently similar, then messages can be in-
formative. For example, if a pitcher signals to a catcher that he intends to
throw a fast ball, the catcher is correct in believing him, because the pitcher
and catcher have a common interest in striking out the batter. However, if the
interests of the two parties are sufficiently divergent, then messages contain
no informative content. For example, if the catcher whispers to the batter that
the pitcher will throw a curve ball, the batter should ignore such a message.
For if the batter were to believe the message, then the catcher would instruct
the pitcher to throw a fast ball instead. The problem is that the catcher wants
the batter to strike out, while the batter wants to get a hit. With such diamet-
rically opposed interests, what is said cannot be believed. Messages are then
uninformative.*



            Our exploration of the role of communication prior to play was conducted
for two types of scenarios. In a game of incomplete information, a message
has the potential to convey what one player knows about the game itself, such
as payoffs. For instance, in the Stock Recommendations game, a stock analyst
has an expectation about how a stock will perform, and his buy, hold, or sell
recommendation may convey what he knows and what his client does not.



            (y, x)



            *Now, if you’ve seen the film Bull Durham, you might say, “Wait a minute. In that movie, the catcher does
tell the batter what pitch is coming, and the batter believes him.” You would be right, but this is actually
yet more confirmation of the lessons of this chapter. In the situation shown in the film, the catcher was
miffed at the pitcher and wanted the batter to get a hit. Since the catcher’s and batter’s interests were coin-
cident (and the batter knew this), the batter could believe the catcher when he told him that the pitcher was
going to throw a curve ball. That is indeed what was thrown, and the batter drilled the ball out of the park.


            

        



        
            

            
382 CHAPTER 12: LIES AND THE LYING LIARS THAT TELL THEM: CHEAP TALK GAMES



            This action was referred to as “signaling information.” Preplay communica-
tion can also be useful in a game of complete information, in which players
have common knowledge about the game. In that case, the role of a message
is to convey a player’s intended play. “Signaling intentions” can allow players
to coordinate. In the Battle of the Films game, Fiona and Matt needed to co-
ordinate on a theater, and exchanging text messages beforehand increased the
chances of that happening.



            1. For the game in FIGURE PR12.1, find a separating perfect Bayes–Nash
equilibrium.



            EXERCISES



            2. Consider a cheap talk game in which Nature moves by choosing a
sender’s type, where the type space has four elements: 1, 2, and 3,
each occurring with equal probability of The sender learns his type
and chooses one of three possible messages: bumpy, smooth, and slick.
The receiver observes the sender’s message and then chooses one of
three actions: 0, 5, and 10. The sender’s payoff equals his type multiplied
by the receiver’s action. The receiver’s payoff equals the sender’s type
multiplied by twice the receiver’s payoff.
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            a. Find a separating perfect Bayes–Nash equilibrium.
b. Find a semiseparating perfect Bayes–Nash equilibrium.



            3. Consider a cheap talk game in which Nature chooses the sender’s type
and there are three feasible types: x, y, and z, which occur with proba-
bility and respectively. The sender learns her type and then chooses
one of four possible messages: or The receiver observes
the sender’s message and chooses one of three actions: a, b, or c. The
payoffs are shown in the table below.



            m4.m3,m2,m1,



            1
2,1



            4,1
4,



            a. Suppose the sender’s strategy is as follows: (1) if the type is x, then
choose message and (2) if the type is y or z, then choose message



            The receiver’s strategy is the following: (1) if the message is 
then choose action a; (2) if the message is then choose action b;
and (3) if the message is or then choose action a. For appro-
priately specified beliefs for the receiver, show that this strategy pair
is a perfect Bayes–Nash equilibrium.



            b. Find a separating perfect Bayes–Nash equilibrium.



            4. Return to the Stock Recommendation game, and consider again the semi-
separating strategy profile, but let the analyst’s strategy now be as follows:
Recommend buy when the stock will outperform or be neutral; and recom-
mend sell when the stock will underperform. Show that if then
this strategy pair is part of a perfect Bayes–Nash equilibrium.



            5. FIGURE PR12.5 is a cheap talk game in which the sender has two possible
types—denoted and —and can choose one of two possible mes-
sages—denoted and After observing the sender’s message, the re-
ceiver chooses from amongst three possible actions: a, b, and c.
a. Find a separating perfect Bayes–Nash equilibrium.
b. Find a pooling perfect Bayes–Nash equilibrium.
c. Suppose the probability that the sender is type is p and the proba-



            bility that the sender is type is Find the values for p such that
there is a pooling perfect Bayes–Nash equilibrium in which the re-
ceiver chooses action b.
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            m4,m3
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m1,m2.
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            Sender’s Receiver’s Sender’s Receiver’s



            Type Action Payoff Payoff



            x a 3 3



            x b 2 1



            x c 1 2



            y a 4 1



            y b 5 3



            y c 3 4



            z a 3 2



            z b 9 1



            z c 10 0
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            6. Suppose Grace and Lisa are to go to dinner. Lisa is visiting Grace from
out of town, and they are to meet at a local restaurant. When Lisa lived
in town, they had two favorite restaurants: Bel Loc Diner and the Corner
Stable. Of course, Lisa’s information is out of date, but Grace knows
which is better these days. Assume that the probability that the Bel Loc
Diner is better is and the probability that the Corner Stable is bet-
ter is Nature determines which restaurant Grace thinks is better.
Grace then sends a message to Lisa, either “Let’s go to the Bel Loc
Diner,” “Let’s go to the Corner Stable,” or “I don’t know [which is bet-
ter].” Lisa receives the message, and then Grace and Lisa simultaneously
decide which restaurant to go to. Payoffs are such that Grace and Lisa
want to go to the same restaurant, but they prefer it to be the one that
Grace thinks is better. More specifically, if, in fact, the Bel Loc Diner is
better, then the payoffs from their actions are as shown in FIGURE



            PR12.6(A). If, instead, the Corner Stable is better, then FIGURE PR12.6(B)



            describes the payoffs.
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            FIGURE PR12.6A Payoffs When the Bel Loc Diner Is Better
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            a. Find a perfect Bayes–Nash equilibrium in which Grace and Lisa al-
ways go to the better restaurant.



            b. Find a pooling perfect Bayes–Nash equilibrium.



            7. Let us reexamine the Courtship game from Section 11.3, but suppose
there is no gift. The extensive form of this game is shown in FIGURE



            PR12.7. The private information in this setting is whether Jack cares
deeply about Rose and thus would like to marry her and, similarly,
whether Rose cares deeply about Jack and would like to marry him.
Only each person knows whether he or she truly loves the other. Assume
that each person loves the other with probability p, where 
Thus, the probability that they are “meant for each other”—that is, the
probability that Jack loves Rose and Rose loves Jack— is 



            After learning their types, Jack and Rose face the following sequence
of decisions: Jack starts by deciding whether to suggest to Rose that they
have premarital sex. If he does make such a suggestion, then Rose either
accepts or declines. If she accepts, then they have sex. After this round
of decisions and actions, either they marry (if they love each other) or
they don’t (if one or both does not love the other). In particular, we’ll as-
sume that the marriage decision—which will not be explicitly modeled,
but rather will be implicit in the payoffs—is independent of whether or
not they have sex. Jack’s payoff depends on whether they have sex and
whether they love each other (and thus marry). Jack desires sex from
Rose regardless of whether he loves her, and the gain in his payoff from
it is If he and Rose prove to be in love and thus marry, Jack as-
signs a value of to marriage.



            Thus, if Jack has sex with Rose and they marry (because it turns out
that they love each other), then his payoff is the sum of those two terms:



            If he has sex, but marriage does not ensue, then his payoff is only
s. Finally, if he neither has sex nor marries, then his payoff is zero. Like
Jack, Rose values their being in love and marrying by an amount m. As
for sex, her biggest concern is not having it with someone for whom
marriage is not in their future. Rose’s payoff from having sex with Jack
and then marrying him is just like Jack’s payoff. However, her
payoff from having sex and then not marrying Jack (which occurs if she
doesn’t love Jack and/or he doesn’t love her) is . Finally, her payoff
is zero from neither sex nor marriage. Show that there is no perfect
Bayes–Nash equilibrium in which premarital sex occurs.



            8. In the game in FIGURE PR12.8, player 1 learns his type and sends a mes-
sage, and then both players 1 and 2 simultaneously choose actions. Find
a separating perfect Bayes–Nash equilibrium.



            9. Return to the Battle of the Films in Section 12.4.1, but now suppose that
both Matt and Fiona have three feasible messages in the communication
stage: “Let’s go to the chick flick,” “Let’s go to the action movie,” and
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            “Party on.” Derive values for a, b, y, and z whereby the following strategy
profile is a subgame perfect Nash equilibrium:



            ■ Matt’s strategy:
Text message “Let’s go to the chick flick” with probability a, “Let’s go to
the action movie” with probability b, and “Party on” with probability



            Go to the chick flick if either (1) they both text messaged “Let’s go to the
chick flick” or (2) one text messaged “Let’s go to the chick flick” and the
other text messaged “Party on.”



            Go to the action movie if either (1) they both text messaged “Let’s go to
the action movie” or (2) one text messaged “Let’s go to the action
movie” and the other text messaged “Party on.”



            For any other messages, go to the chick flick with probability 



            ■ Fiona’s strategy:
Text message “Let’s go to the chick flick” with probability y, “Let’s go to
the action movie” with probability z, and “Party On” with probability



            Go to the chick flick if either (1) they both text messaged “Let’s go to the
chick flick” or (2) one text messaged “Let’s go to the chick flick” and the
other text messaged “Party on.”



            Go to the action movie if either (1) they both text messaged “Let’s go to
the action movie” or (2) one text messaged “Let’s go to the action
movie” and the other text messaged “Party on.”



            For any other messages, go to the chick flick with probability 



            10. Return to the Battle of the Films in Section 12.4.1, but suppose now that
there are two rounds of preplay communication rather than just one.
Find a subgame perfect Nash equilibrium.



            3
4.



            1 � y � z.



            1
3.



            1 � a � b.



            REFERENCES
1. Thomas Chandler Haliburton, Sam Slick in England; or The Attaché (New



            York: J. Winchester, 1843).



            2. Paul F. Boller, Jr., Congressional Anecdotes (New York: Oxford University
Press, 1991), p. 104.



            3. “McGwire admits nothing; Sosa and Palmeiro deny use,” ESPN.com news
services, Mar. 18, 2005.



            4. Call-Chronicle, Allentown, Pennsylvania, Feb. 3, 1963; cited in Erving
Goffman, Strategic Interaction (Philadelphia: University of Pennsylvania
Press, 1969), p. 16.



            5. These findings are from David M. Studdert, et al., “Defensive Medicine
Among High-Risk Specialist Physicians in a Volatile Malpractice
Environment,” Journal of American Medical Association, 293 (2005),
2609–17.



            6. This model and its analysis are inspired by Kris De Jaegher and Marc
Jegers, “The Physician–Patient Relationship as a Game of Strategic
Information Transmission,” Health Economics, 10 (2001), 651–68.


            

        



        
            

            
References 389



            7. This principle was first identified in Vince Crawford and Joel Sobel’s sem-
inal paper on cheap talk games, “Strategic Information Transmission,”
Econometrica, 50 (1982), 1431–51.



            8. For a related analysis, see John Morgan and Phillip C. Stocken, “An
Analysis of Stock Recommendations,” RAND Journal of Economics, 34
(2003), 183–203.



            9. William Power, “Analysts’ Terminology is Getting More Risky as “Strong-
Hold” Rating Grows in Popularity,” Wall Street Journal, circa June 1993.



            10. The ensuing analysis is based on Joseph Farrell, “Cheap Talk,
Coordination, and Entry,” Rand Journal of Economics, 18 (1987), 34–39.



            11. For a survey of this work, see Vince Crawford, “A Survey of Experiments
on Communication via Cheap Talk,” Journal of Economic Theory, 78
(1998), 286–98.


            

        



        
            

            
This page intentionally left blank 


            

        



        
            

            
It is only those who have neither fired a shot nor heard the shrieks and
groans of the wounded who cry aloud for blood, more vengeance, more
desolation. War is hell. —GENERAL WILLIAM TECUMSEH SHERMAN



            13.1 Trench Warfare in World War I
WAR REMOVES THE MORAL RESTRAINTS that society puts on behavior. To kill an-
other human is murder, but in a time of war, it is doing one’s duty. In terms of
the amount of human carnage, World War I set the macabre standard by
which all later wars are compared. Much of this killing took place from the
trenches constructed in France and other theaters of the war. The Allied and
German sides would engage in sustained periods of combat as they regularly
launched offensives from their dirt fortifications.



            In the midst of this bloodletting, humanity did not entirely disappear. Peace
would occasionally flare up as the soldiers in opposing trenches would achieve
a truce. They would shoot at predictable intervals so that the other side could
take cover, not shoot during meals, and not fire artillery at the enemy’s supply
lines. But why listen to me when we can draw upon the authentic accounts of
the soldiers in the trenches:1



            In one section [of the camp] the hour of 8 to 9 A.M. was regarded as conse-
crated to “private business,” and certain places indicated by a flag were re-
garded as out of bounds by snipers on both sides.



            So regular were [the Germans] in their choice of targets, times of shooting,
and number of rounds fired, that, after being in the line one or two days,
Colonel Jones had discovered their system, and knew to a minute where the
next shell would fall. His calculations were very accurate, and he was able
to take what seemed to uninitiated Staff Officers big risks, knowing that the
shelling would stop before he reached the place being shelled. 



            I was having tea with A Company when we heard a lot of shouting and went
out to investigate. We found our men and the Germans standing on their re-
spective parapets. Suddenly a salvo arrived but did no damage. Naturally
both sides got down and our men started swearing at the Germans, when all
at once a brave German got on to his parapet and shouted out “We are very
sorry about that; we hope no one was hurt. It is not our fault, it is that
damned Prussian artillery.”



            At a time when killing was routine, these soldiers were able to reach an agree-
ment not to kill each other. How was this cooperation achieved and sustained?
As you might expect, game theory can shed some light on this puzzle. Toward
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            that end, we’ll begin by constructing a strategic form game of the situation
faced by the soldiers in the trenches.



            For simplicity, think of the war as having two players: Allied soldiers (as a
group) and German soldiers (as a group). Each player has two strategies.
Soldiers can try to kill the enemy (shoot to kill) or not (shoot to miss). Of
course, it would be all too easy to generate the observed nonhostile behavior by
simply assuming that a soldier disliked killing the enemy. But that would be an
assumption patently rejected by the many other instances in which soldiers did
try to kill. Rather, let us assume that each soldier values killing the enemy, but
places a greater value on not getting killed. Specifically, a soldier’s payoff equals



            4 � 2 � (number of enemy soldiers killed) � 4 � (number of own soldiers killed)



            Soldiers in a Trench During World War I
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            Note that a soldier’s payoff is higher when more of the enemy is killed, but is
lower when more of his own side are killed. Furthermore, an exchange of “one
for one” in terms of fatalities makes a soldier worse off, since, for each death
on his side, his payoff falls by four, and for each death on the other side, it rises
by two, so that, on net, the payoff is decreased by two.



            Next, assume that shooting to kill results in the death of one
enemy soldier and shooting to miss doesn’t kill anyone. This
specification results in the strategic form game depicted in
FIGURE 13.1.



            There is a unique Nash equilibrium in which both sides try
to kill each other. This solution is extremely compelling, be-
cause it has kill as a dominant strategy. (In fact, this game is
just the Prisoners’ Dilemma.) Regardless of what the other side
does, a soldier is better off shooting to kill. Since he cannot in-
fluence how many of his own side dies—that is determined by



            FIGURE 13.1 Trench Warfare Game
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            what the enemy does—all he can affect is how many of the enemy perish. Since
the more enemy soldiers that die, the better, kill is a dominant strategy.
Nevertheless, both sides could make themselves better off if they could cooper-
ate and agree not to try and kill each other; doing so would raise each player’s
payoff from 2 to 4.



            We have obviously failed in our mission to explain the periodic presence of
peace in the trenches of World War I. Where did we go wrong? Did we mis-
specify the preferences of the soldiers? Is the assumption of rationality off tar-
get? To gain a clue, we might ask ourselves, Why was this peaceful behavior
observed in the trenches of World War I and rarely in other theaters of this or
most any other war? A unique feature of trench warfare is that soldiers on the
two sides repeatedly encounter each other. They weren’t just deciding once in
the heat of battle whether to shoot to kill, but rather made the same decision
day after day. Due to the entrenched nature of this style of warfare, soldiers re-
peatedly faced each other over time.



            Repetition of strategic interactions is the key to solving the puzzle of peace-
ful behavior in the trenches of World War I, and it is what we’ll explore in this
chapter. In many strategic settings—not just the trenches—repeated encoun-
ters can sustain cooperation, which refers to players acting in a manner that
results in everyone receiving a higher payoff than is achieved when the game is
played just once. In Section 13.2, we formally construct a game with repeated
encounters. Then, in Sections 13.3 and 13.4, the Trench Warfare game is ana-
lyzed, first when the number of encounters is finite (say, seven) and then when
it can go on forever. Section 13.5 offers some relevant experimental evidence
and shows that there is much about human behavior that we still do not un-
derstand. Chapter 14 follows up with a variety of applications and draws some
additional insight into situations in which people repeatedly interact.



            13.2 Constructing a Repeated Game
A REPEATED GAME IS SIMPLY a situation in which players have the same en-
counter—known as the stage game—over and over. The stage game is the
building block used to construct a repeated game and can be any game with a
finite number of moves. For example, the game in Figure 13.1 is the stage
game that will ultimately result in a repeated-game version of trench warfare.
In moving from the stage game to the repeated game, we need to redefine
strategy sets and payoff functions. Because a strategy is a fully specified deci-
sion rule for a game, a feasible decision rule will look different if a player is
expected to have multiple encounters rather than just one. As for payoffs, it is
natural to assume that a player takes into account her well-being for all en-
counters and not just the current one.



            Suppose the Allied and German soldiers anticipate interacting T times in
the manner described in Figure 13.1. Think of their encounters occurring once
a day for T days. For the game in Figure 13.1, kill was a strategy, but a strat-
egy is a more complex object in a repeated game. A strategy in the stage game,
kill or miss, is now defined to be an action in the repeated game. The notion
of a strategy in a repeated game is the same as for any extensive form game:
A strategy for a player assigns an action to every information set. Thus, what
a strategy looks like depends on what a player knows when he has to make a
decision.
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            Let’s consider two different information structures when so that the
stage game is played just twice. This means that on day one the Allied and
German soldiers simultaneously decide between kill and miss and then again
make simultaneous decisions on day two. FIGURE 13.2 is the extensive form
game when what happens on day one is not publicly known when players
move again on day two. (At present, ignore the payoffs, which we’ll explain
momentarily.) Note that each player knows what he did on day one (other-
wise, the game would not satisfy perfect recall), but doesn’t know what the
other player did on day one, when he has to decide what to do on day two. The
Allied soldiers have three information sets: (I) the initial information set on
day one, (II) the information set associated with having chosen kill on day one,
and (III) the information set associated with having chosen miss on day one.
A strategy is then a triple of actions, and a strategy set is composed of the eight
ways in which to assign kill and miss to the three information sets.



            Contrast this game with the extensive form game shown in FIGURE 13.3. The
tree is exactly the same; what differs is the structure of the information sets. Now
it is assumed that what happened on day one is revealed to both players prior to
their deciding what to do on day two. Each player has five information sets: one
associated with day one and four associated with day two. There are four for day
two because there are four things that a player could know about what happened
on day one: (1) both sides could have chosen kill, (2) the Allied soldiers could
have chosen kill and the German soldiers miss, (3) the Allied soldiers could have
chosen miss and the German soldiers kill, and (4) both sides could have chosen
miss. A strategy for a player is then a quintuple of actions—one for each of the
five information sets—and there are feasible strategies.



            This chapter will focus exclusively on the case when the history—that is, the
past choices of players—is common knowledge, as reflected in the game in
Figure 13.3. For when the history is common knowledge and the stage game is
played thrice, there are 21 information sets: the information set at the start of
day one, the 4 information sets associated with the start of day two, and the 16
information sets associated with the start of day three. An information set for
day three summarizes what happened over days one and two, which could be,
for example, that both players chose miss on day one, and the Allied soldiers
chose kill on day two and the German soldiers chose miss on day two. There are
16 histories for days one and two and thus 16 information sets for day three. In
that case, a strategy for the three-period repeated game is a “21-tuple” of actions.



            More generally, a strategy prescribes an action for each period, contingent
on the history (and thus on what a player knows). For a general repeated game
with T periods and for which each player has m actions in the stage game,
there is one initial information set, information sets associated with period
2, associated with period 3, . . . , and associated with period T.
Thus, a strategy is a collection of actions. For an
infinitely repeated game (in which a strategy is an infinite number of
actions, since there is an infinite number of information sets. Although a strat-
egy could be of mind-boggling complexity and size, that need not be the case.
In fact, we’ll see that the resolution of the trench warfare puzzle can be
achieved with very simple strategies.



            The next ingredient in the construction of a repeated game is payoffs. Just as
a strategy for the stage game is referred to as an action for the repeated game,
a payoff for the stage game will be referred to as a single-period (or one-shot)



            T � q),
1 � m2 � m4 � p � m2(T�1)
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            FIGURE 13.2 Two-Period Trench Warfare Game without Common Knowledge of the History



            395


            

        



        
            

            
Kill Miss Kill Miss



            Kill Miss



            Kill Miss



            Kill Miss



            Kill Miss



            8 



            2



            4 



            4



            German



            German



            German



            Allied



            Allied



            Allied



            6 



            6



            2 



            8



            Kill Miss Kill Miss



            12



            0



            8 



            2



            10 



            4



            6 



            6



            Kill Miss



            Kill Miss Kill Miss



            Kill Miss



            6 



            6



            2 



            8



            4 



            10



            0 



            12



            Kill MissKill Miss Kill Miss



            10 



            4



            6 



            6



            8 



            8



            4 



            10



            FIGURE 13.3 Two-Period Trench Warfare Game with Common Knowledge of the History
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            payoff for the repeated game. The well-being of a player for the repeated game
is assumed to be influenced by the entire stream of single-period payoffs. For ex-
ample, if and the history is



            (miss,miss), (kill,miss), (miss,miss), (miss,kill), (kill,kill),



            where the first action in each ordered pair is for the Allied side, then, from Figure
13.1, the stream of single-period payoffs for the Allied soldiers is 4, 6, 4, 0, 2.



            In selecting a strategy for a repeated game, the assumption is that a player
chooses the strategy that yields the best stream of payoffs. But what does it
mean for one stream to be “better” than another stream? In comparing the
stream 4, 6, 4, 0, 2 with the stream 6, 6, 6, 0, 2, it would seem quite compelling
that the latter is preferred, because it gives a higher single-period payoff in pe-
riods 1 and 3 and the same values in the other periods. But suppose the alter-
native stream is 6, 4, 4, 2, 6. Then, in a comparison with 4, 6, 4, 0, 2, it isn’t
obvious which is better, because 6, 4, 4, 2, 6 is more attractive in periods 1, 4,
and 5 and the other is better in period 2.



            What we need is a criterion for comparing streams. A common device for
doing so is boiling a stream down to a single number—called a summary sta-
tistic—and then assuming that a player chooses a
strategy so as to maximize the summary statistic. A
natural candidate for the summary statistic is the
sum of the single-period payoffs. Not only does it
have the appeal of simplicity, but also, the sum-
mary statistic is higher whenever a single-period
payoff is higher, which makes sense. For the three
streams examined in the previous paragraph, TABLE



            13.1 reports this summary statistic. If that is what
were used, the Allied soldiers would rank stream C
above B and stream B above A. (Note that the sum of single-period payoffs is
used in Figures 13.2 and 13.3.)



            In some situations, using the sum of single-period payoffs is unsatisfactory, be-
cause each period’s payoff is weighted the same. For example, if you sought to
maximize only the sum of your income from summer employment, then you
would be indifferent between being paid at the end of each week and being paid
at the end of the summer. However, if you’re like most people, you strictly prefer
being paid each week. Even if you don’t intend to spend the money until the end
of the summer, by receiving it earlier you can put it in the bank and earn inter-
est. Generally, people prefer receiving money (or payoff) earlier rather than later.



            With that idea in mind, an evaluation of a stream of payoffs may give more
weight to payoffs received earlier. Instead of the simple sum of single-period
payoffs, let us consider a weighted sum, where the weight attached to a more
distant period is smaller. Letting denote the single-period payoff in period
t, we find that the summary statistic then takes the form



            where



            w1 7 w2 7 p 7 wT 7 0.



            w1u1 � w2u2 � w3u3 � w4u4 � p � wT uT,



            ut



            T � 5



            TABLE 13.1 SUM OF A STREAM OF PAYOFFS



            Stream Summary Statistic



            A 4, 6, 4, 0, 2 16



            B 6, 6, 6, 0, 2 20



            C 6, 4, 4, 2, 6 22
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            Economists like to assign the following form to these weights:



            In words, the weight assigned to period t equals the fraction (“delta”) multi-
plied by itself times. Note that a number gets smaller when it is multi-
plied by a fraction, so the weights are strictly declining (unless, of course, 
equals 0 or 1, in which case they are constant at 0 and 1, respectively). For ex-
ample, if then the weights are



            When the weights take this form, the
weighted sum is referred to as the present
value of the stream of single-period payoffs,
and it equals



            is known as the discount factor, because it is
the factor used in discounting future payoffs.
The present value of a stream is also referred
to as the sum of discounted single-period pay-
offs. The student who is not familiar with pres-
ent value should read Appendix 13.1, which
describes some properties that will be useful
in later applications.



            13.3 Trench Warfare: Finite Horizon
It is forbidden to kill; therefore all murderers are punished unless they kill in
large numbers and to the sound of trumpets. —VOLTAIRE



            WITH THE CONSTRUCTION OF a repeated game, we’re now ready to solve the puzzle
of peace in the trenches of France. Let’s start by supposing that the Allied and
German soldiers anticipate interacting twice and that each player acts to
maximize the simple sum of single-period payoffs The game is then as



            shown in Figure 13.3. (Recall that, for the remainder of the chap-
ter, we’ll be assuming that the history is common knowledge.)



            This game is nothing more than an extensive form game
similar to those we solved in Chapter 8. Recall that our solu-
tion concept of choice is subgame perfect Nash equilibrium
and that these equilibria can be solved using backward induc-
tion. Examining Figure 13.3, we see that there are five sub-
games: the game itself and the four period 2 subgames. The
method of backward induction has us solve each of the four
subgames for a Nash equilibrium.



            Begin with the subgame associated with both sides having
chosen kill in the first period. The strategic form is shown in
FIGURE 13.4, and it is easy to verify that it has the unique Nash



            (d � 1).
(T � 2)



            d



            u1 � du2 � d2u3 � d3u4 � p � dT�1uT.



            w1 � 1, w2 � .6, w3 � .36, w4 � .216, . . . .



            d � .6,



            d



            t � 1
d



            wt � dt�1, where 0 � d � 1.



            Determine which of the three payoff streams shown in TABLE



            13.2 has the highest present value. Assume that d � .8.



            13.1 CHECK YOUR UNDERSTANDING



            TABLE 13.2 ALTERNATIVE PAYOFF STREAMS



            Period Stream A Stream B Stream C



            1 15 25 5



            2 15 15 10



            3 15 10 20
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            FIGURE 13.4 Period 2 Subgame of
the Two-Period Trench
Warfare Game After
(Kill, Kill) in Period 1
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            equilibrium (kill,kill). Thus, a subgame perfect Nash equilib-
rium has both sides shooting to kill in period 2 if they both
shot to kill in period 1.



            Now consider the subgame associated with the Allied sol-
diers having shot to kill and the German soldiers having shot
to miss in period 1. The strategic form is illustrated in FIGURE



            13.5. Lo and behold, (kill,kill) is again the unique Nash equi-
librium. I’ll leave it to you to verify that (kill,kill) is also the
unique Nash equilibrium for the other two period 2 subgames.



            As part of the procedure of backward induction, each of
these four subgames is replaced with the associated Nash equi-
librium payoffs. Performing that step leads to FIGURE 13.6. It is
straightforward to show that the game depicted in
Figure 13.6 has a unique Nash equilibrium, which
is—surprise, surprise—both players shooting to
kill. Pulling all this together, we find that the two-
period Trench Warfare game in Figure 13.3 has a
unique subgame perfect Nash equilibrium: Each
side’s strategy is to choose kill at each of its five in-
formation sets. The resulting sequence of play is
that they shoot to kill in both of periods 1 and 2.



            Well, that exercise was a big fat failure! We’re still
no closer to generating peaceful behavior as part of
an equilibrium. Allowing for a few more encounters
won’t help us either. Both sides trying to kill each
other is the only equilibrium behavior, whether it is
10, 100, 1,000, or even 1 million periods.



            Here’s why: Consider the last period of a game
with T periods, and assume that the total payoff is
the sum of the single-period payoffs (although the
argument applies even when a weighted sum is
used). Letting and denote the sum of
single-period payoffs over the first periods
for the Allied and German sides, respectively, we
see that the subgame faced in period T is as shown in FIGURE 13.7. Note that all
we’ve done is to take the game in Figure 13.1 and add to each of the Allied
soldiers’ payoffs and to each of the German soldiers’ payoffs. Of course,
if kill strictly dominates miss in the one-shot game, then that is still the case if
we add a constant to every payoff. (Convince yourself.) In the final period, it is
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the Two-Period Trench
Warfare Game After
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            FIGURE 13.6 Period 1 of the Two-Period Trench
Warfare Game After Backward
Induction
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            FIGURE 13.7 Period T Subgame of the T-Period Trench
Warfare Game


            

        



        
            

            
400 CHAPTER 13: PLAYING FOREVER: REPEATED INTERACTION WITH INFINITELY LIVED PLAYERS



            then clearly optimal for both sides to shoot to kill. Another way to see this re-
sult is to note that the Allied side has already realized a payoff of over the
first periods, and that is said and done. Come period T, it should just try
to maximize the payoff from that period by gunning down as many German
soldiers as it can.



            Now go back to period Regardless of what happens in both
sides will shoot to kill in the final period, as we just argued. Defining and



            as the sum of the single-period payoffs over the first periods, we
show the game that the soldiers face in period in FIGURE 13.8. Again, we
are just adding a constant to the payoffs in Figure 13.1, although it is now



            or Hence, kill still strictly dominates miss, so both sides
will shoot to kill in the penultimate period as well.
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            FIGURE 13.8 Period T � 1 Subgame of the T-Period Trench
Warfare Game



            This argument can be used to show that both sides will shoot to kill in
and all the way back to the very first period. Think about what



            is going on here. In period T, the payoffs realized over the first periods
are fixed and cannot be affected by what a soldier does in period T. Optimal
behavior means choosing that action which maximizes the current period’s
payoff; it’s just like the one-shot game in Figure 13.1, so kill is clearly best. In
period again the payoffs from past periods are fixed and cannot be af-
fected by what happens in period while the future payoff (from period
T) is expected to be 2 regardless of what transpires in (since it is ex-
pected that both sides will shoot to kill in the last period). Again, the period



            situation is like a one-shot game: Period behavior influences only
the period payoff. The argument works again if one goes back to period



            what happened in the past cannot be changed, and what will happen in
the future cannot be influenced either, as both sides expect to try to kill each
other. So the period situation also is like a one-shot game. The logic can
be continually applied to each of the preceding periods to show that both sides
will shoot to kill in each and every period.



            The news is even worse than it sounds, for this logic works not just for the
repeated Trench Warfare game, but for any finitely repeated game for which
the stage game has a unique Nash equilibrium. The significance of there being
a unique Nash equilibrium for the stage game is that it necessarily nails down
how players will behave in the last period. Thus, behavior in the penultimate
period cannot influence what happens in the final period, and this logic works
iteratively all the way back to the initial period.*



            T � 2



            T � 2;
T � 1



            T � 1T � 1



            T � 1
T � 1,



            T � 1,



            T � 1
T � 2, T � 3,



            *Does this mean that cooperation can be sustained in a finitely repeated game if there are multiple Nash
equilibria for the stage game? Yes, it can in fact occur if the conditions are right.
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            If the stage game has a unique Nash equilib-
rium, then, for a finitely repeated game, there is a unique
subgame perfect Nash equilibrium path that is a repetition
of the stage-game Nash equilibrium. No cooperation is
sustainable.



            13.4 Trench Warfare: Infinite Horizon
We are what we repeatedly do. —ARISTOTLE



            AN IMPORTANT FEATURE OF the finitely repeated Trench
Warfare game is that players know exactly when their en-
counters will end. Furthermore, that feature was pivotal
to the analysis, for we argued that when players get to
that last period, they treat it as a one-shot game because
they know that there is no future to their relationship.
Although it may be reasonable to say that encounters are
finite in number—after all, we do not live forever—in
most contexts it is unreasonable to presume that players
know exactly when those encounters will end.



            A game that does not have that omniscient property is one with an indefi-
nite horizon. An indefinite horizon means that there is always a chance that
the game will continue. For example, suppose that in each period the proba-
bility that players encounter each other again tomorrow is p, so the probabil-
ity that the current encounter proves to be their last is What is impor-
tant is that, at the moment that they are deciding how to behave, players are
uncertain as to whether they’ll meet again tomorrow: There is always the
chance that their relationship may continue. A game has an infinite horizon
when so that their encounters continue for sure.



            As explained in Appendix 13.1, the ensuing results hold whether the hori-
zon is indefinite (i.e., or infinite We’ll assume that the
horizon is infinite, but you should always keep in mind that what is crucial is
that players never know for sure that the current period is the last time they’ll
interact.



            With an infinite horizon, it’ll be important to use the present-value criterion
for evaluating streams of single-period payoffs and to assume that the dis-
count factor is less than 1. To see why, suppose instead that and con-
sider a stream that delivers 5 in every period. The payoff is then



            which adds up to a big whopping infinity. That’s a nasty num-
ber to work with, and “work with it not will I,” as Yoda might say. If, instead,



            then that same stream has a present value of



            which can be shown to equal and that is a nice, well-behaved finite
number. (The proof is in Appendix 13.1.) For example, if then the pay-
off is 



            A strategy for an infinitely repeated game prescribes an action in each pe-
riod for every history. Unfortunately, backward induction has no traction with
an infinite horizon, because there is no final subgame to initiate the process.
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            Suppose players 1 and 2 play the stage game
in FIGURE 13.9 three times. Their payoff for the
three-period game is the sum of the single-
period payoffs. What does subgame perfect
Nash equilibrium imply about the sequence of
actions?
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            Still, although we lack a method for cranking out subgame perfect Nash equi-
libria, it is possible to determine whether some candidate strategy profile is or
is not such an equilibrium.



            In Chapter 9, a strategy profile is defined to be a subgame perfect Nash
equilibrium if, for every subgame, its substrategy profile is a Nash equilib-
rium. Recall that a substrategy for a subgame is that part of a player’s strategy
which prescribes behavior only for information sets in that subgame. This def-
inition can be refined for the context of a repeated game.



            Subgame Perfect Nash Equilibrium for a Repeated Game: For a repeated game,
a strategy profile is a subgame perfect Nash equilibrium if and only if, in each
period and for each history, the prescribed action is optimal for a player, given
that (1) the other players act according to their strategies in the current period
and (2) all players (including the player under consideration) act according to
their strategies in all future periods. In other words, a strategy for a certain
player prescribes an optimal action, given that other players act according to
their strategies and given the first player acts according to her strategy in the
future.



            The astute may be suspicious that I’m trying to pull a fast one here. Note
that we are requiring only that a player not want to deviate once from her
strategy, as it is presumed that she follows her strategy after any deviation. But
don’t we also have to make sure that it is not optimal to engage in a series of
deviations? Isn’t that necessary in order to show that this strategy is better
than any other strategy? Absolutely, but in Appendix 13.2 we argue that if it is
not optimal to deviate once (in any period and for any history), then it is not
optimal to do so multiple times (even an infinite number of times).



            Consider the following incredibly simple strategy: In any period and for any
history, choose kill. Although this strategy doesn’t have a player condition her
choice on the history, keep in mind that just because it is feasible for a player
to make her behavior contingent on history doesn’t mean that she has to do
so. Let us prove that if both the Allied and German soldiers use this strategy,
then it is a subgame perfect Nash equilibrium for the infinitely repeated
Trench Warfare game.



            In this simple game, regardless of what period it is and what the history is,
both players’ strategies prescribe the same thing: shoot to kill. By shooting to
kill, a player expects a payoff of



            [13.1]



            The player also expects the other army to shoot to kill (as its strategy dictates)
and expects both sides to shoot to kill in all future periods (as prescribed by
both strategies). Thus, a player expects to get 2 in the current period and 2 in
all ensuing periods. In contrast, the player can shoot to miss, in which case the
payoff is



            [13.2]



            since the player will get only zero today (because the other army is expected
to shoot to kill) and 2 in all future periods (as, according to their strategies,
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            both sides will be firing with reckless abandon). Clearly, the payoff is higher
from kill, as



            which holds because Another way to see why shooting to kill is preferred
is that it delivers a higher payoff in the current period (2 versus 0) and the same
payoff in future periods.



            We’ve just shown that both sides shooting to kill in every period is a subgame
perfect Nash equilibrium when they interact forever. But what about an equilib-
rium that generates the peaceful cooperation observed in some of the trenches
of World War I? Consider the following symmetric strategy pair:



            ■ In period 1, choose miss.



            ■ In period t (where t � 2).



            choose miss if both armies chose miss in all past periods;



            choose kill for any other history.



            If both sides use this strategy, then they’ll start out acting cooperatively by
shooting to miss. As long as both sides have always behaved themselves (by
choosing miss), each will continue to shoot to miss. However, as soon as there
is a deviation from cooperative play (i.e., someone chose kill), both give up co-
operating and shoot to kill thereafter. This is known as the grim-trigger strat-
egy, because any deviation triggers a grim punishment in which both shoot to
kill in all ensuing periods.



            If both sides use the grim-trigger strategy, it will produce the desired outcome
of a truce in which they shoot to miss in every period. What we need to do is prove
that that strategy is an equilibrium and, more specifically, that it prescribes an op-
timal action in any period and any history. On the surface, this sounds really dif-
ficult, since there is an infinite number of periods and histories. Nonetheless, in
spite of its formidable appearance, there are only two cases to consider.



            First, consider a period and history for which no one has ever chosen kill. This
could be either period 1 or some later period in which both sides chose miss in all
previous periods. An army’s strategy prescribes miss, and the anticipated payoff is



            [13.3]



            because it expects the other side to choose miss also, and it expects both sides
to choose miss in all future periods. To see that the latter claim is true, remem-
ber that a player anticipates all players acting according to their strategies in all
future periods. Since no one chose kill in any previous period, if both choose
miss in the current period, then, according to their strategies, they’ll choose miss
in the next period, and this reasoning applies as well to all subsequent periods.



            Equilibrium requires that this payoff be at least as high as that of choosing
any other action in the current period. The only alternative is to choose kill, and
it delivers a payoff of
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            So shooting to kill when the other side shoots to miss yields a nice, high
current-period payoff of 6. However, this strategy comes at the cost of retribu-
tion: According to their strategies, both sides respond to someone shooting to
kill by choosing kill in all ensuing periods, which delivers a low payoff of 2.



            Equilibrium requires (13.3) to be at least as great as (13.4) so that each side
prefers to shoot to miss, as prescribed by its strategy:



            [13.5]



            Inequality (13.5) must hold for this strategy pair to be a subgame perfect Nash
equilibrium.



            Before you wipe your brow and head out to take a Red Bull break, we have
a little more work to do. Recall that a strategy must prescribe optimal behav-
ior for every period and every history. We just handled an infinity of them, but
we have another infinity to go! What’s left are all those histories in which, in
some past period, someone shot to kill. According to its strategy, an army
chooses kill for such a history and, given that the other army also chooses kill
and both will choose kill in all ensuing periods, the payoff is as in (13.1). The
only alternative is to choose miss, which yields the payoff in (13.2).
Equilibrium requires that (13.1) be at least as great as (13.2), which we’ve al-
ready shown is true.



            We thus have evaluated the optimality of this strategy pair for every period
and every history. Now, that didn’t take long, did it? Our conclusion is that the
grim-trigger strategy is a (symmetric) subgame perfect Nash equilibrium if
and only if (13.5) holds. Rearranging the terms in this condition will make it
a bit more revealing, so let’s perform the following manipulations on (13.5):



            Hence, if then the grim-trigger strategy is a symmetric equilibrium, and
if then it is not. The puzzle of peace in the trenches of World War I has
been solved! Thank you for your patience.



            Embedded in the condition is a general principle about what it takes
to sustain cooperation. Suppose the two sides have thus far always cooperated
by shooting to miss. FIGURE 13.10 depicts the single-period payoff streams as-
sociated with continuing to choose miss or instead switching to kill. As just de-
rived, if a side chooses miss, it’ll receive a current-period payoff of 4 and a fu-
ture stream of 4, since it expects continued cooperation. If, instead, that side
shoots to kill, then it receives 6 in the current period, but only 2 in future pe-
riods, as both sides resort to bloody warfare. Thus, an army faces a trade-off.
If it shoots to kill, it raises the current payoff from 4 to 6, which is depicted in
Figure 13.10 as the shaded area entitled “current gain.” But this increase
comes at a cost: The future payoff stream is reduced from 4 to 2 as both sides
shift from a cease-fire to “fire at will.” This “future loss” is also depicted in
Figure 13.10. To be an equilibrium, the future loss from “cheating” on the
truce must overwhelm the current gain. That will be true when a player’s
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            future well-being is sufficiently important that the long-run loss exceeds the
short-run gain. Since a higher value of means that more weight is given to
future payoffs, must be sufficiently high in order for cooperation to be opti-
mal. Well, that is exactly what our condition is saying: must be at least as
great as for the grim-trigger strategy to be an equilibrium.



            At work here is nothing more than a reward-and-punishment scheme. If, on
the one hand, the Allied soldiers maintain the truce, they’ll be rewarded by the
Germans not trying to kill them in the future. If, on the other hand, the Allied
soldiers violate the truce by shooting to kill, then the Germans will punish
them by responding in kind in the future. And the same goes for the German
soldiers if they maintain or violate the truce. Thus, peace is maintained not be-
cause of pacifism or love for one’s fellow man, but rather through the pursuit
of narrowly defined self-interest: Each side is peaceful in order to reduce the
carnage inflicted upon it in the future.



            Although we have analyzed a particular game (Trench Warfare) and a par-
ticular strategy (the grim trigger), the mechanism by which cooperation is sus-
tained is universal because the trade-off shown in Figure 13.10 is generally ap-
plicable. For consider any game in which the stage-game Nash equilibrium is
not collectively optimal in the sense that there is another array of actions for
players such that all players are better off. For example, in the Trench Warfare
game, (kill,kill) is not collectively optimal because both players are better off
at (miss,miss). Next, consider the infinitely repeated game and a strategy pro-
file that has the players choose those collectively optimal actions. We know
that such actions do not form a stage-game Nash equilibrium, which means
that a player can increase her current-period payoff by doing something dif-
ferent. That is, there is a short-run gain derived from cheating. Now, the only
way in which to deter such cheating is to threaten the player with a lower fu-
ture payoff. For that threat to work, however, the future loss must be big
enough, which requires that players attach sufficient weight to their future
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            well-being; in other words, must be big enough. If, in-
stead, then players care not about the future and
are concerned only with the present; hence, they’ll cheat
for sure, so cooperation is unstable. This scenario leads
to the following general result.



            In a repeated game with an indefinite or 
infinite horizon, so that there is always the prospect of
future encounters, if players care sufficiently about their
future well-being and if the likelihood of future
encounters is sufficiently great, then there is an
equilibrium with cooperation.*



            For cooperation to be stable, several conditions must
hold. First, encounters must be repeated, and there must
always be the prospect of future encounters. Second,
how a player has behaved must be detectable. This con-
dition was implicit in our analysis when we assumed
that the history of the game was common knowledge. A
reward-and-punishment scheme will work only if devia-



            tions can be observed and thereby punished. Finally, players must care suffi-
ciently about what happens in the future.



            13.5 Some Experimental Evidence 
for the Repeated Prisoners’ Dilemma
GAME THEORY DELIVERS SOME fairly precise predictions when it comes to cooper-
ation. Consider a game—such as the Prisoner’s Dilemma in FIGURE 13.12—
which has a unique Nash equilibrium in which both players play mean. There
is room for cooperation here, as both could increase their payoff from 2 to 3
if they were to jointly play nice.



            Summarizing the results of this chapter, game theory makes the following
predictions:



            Prediction 1: If the Prisoner’s Dilemma is played once, players will choose
mean.



            Prediction 2: If the Prisoner’s Dilemma is played a finite number of
times, players will choose mean in every period.



            Prediction 3: If the Prisoner’s Dilemma is played an indefi-
nite or infinite number of times, players are
likely to choose nice some of the time.



            Prediction 4: If the Prisoner’s Dilemma is played an indefi-
nite (or infinite) number of times, players are
more likely to choose nice when the probabil-
ity of continuation (or the discount factor) is
higher.



            d � 0,
d



            *This Insight is not applicable to a constant-sum game, since it is a game of pure conflict and thus there
is no scope for cooperation.



            For the infinitely repeated game based on the
stage game in FIGURE 13.11, consider a sym-
metric strategy profile in which a player initially
chooses x and continues to choose x as long as
no player has ever chosen y; if y is ever chosen,
then a player chooses z thereafter. Derive a con-
dition on the discount factor for this strategy pro-
file to be a subgame perfect Nash equilibrium.



            13.3 CHECK YOUR UNDERSTANDING
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            This is what theory says, but does it comport with human behavior?
Legions of undergraduates throughout the world have played the game, and
experimentalists have closely monitored and recorded their behavior. The
evidence does not bode well for the theory, but neither is it entirely dis-
heartening. Some of the predictions find some support, but others are
roundly refuted. I guess that there is a lot about undergraduates that we
still do not understand (including what they post on Facebook).



            Representative of many studies is a recent set of experiments performed on
390 UCLA undergraduates.2 These students were solicited to participate in either
a one-shot Prisoner’s Dilemma, a finitely repeated Prisoner’s Dilemma (for either
two or four periods), or a Prisoner’s Dilemma with an indefinite horizon. The in-
definite horizon was operationalized by the roll of a die at the end of each round
to determine whether the game is terminated. In one treatment the probability
of continuation (which we’ll denote p) was 50% (so the expected number of
rounds is two, though the game could, in principle, go on forever), and in the
other treatment it was 75% (with an expected number of rounds of four). In each
case, two students were randomly matched while maintaining anonymity. All in-
formation about the game was known beforehand. At stake was real money;
imagine that the payoffs in Figure 13.12 are in dollars. For about an hour’s work,
students averaged almost $19, with a range of $12 to $22 across all the students.



            The frequency with which students cooperated (played nice) is shown in
TABLE 13.3. Contrary to Prediction 1, players chose nice 9% of the time in the
one-shot scenarios. Still, 91% of the time people did act as predicted. More
problematic is Prediction 2. When students know that they’ll interact for just
two rounds, they still choose nice 13% of the time in the first round, and when
they know that they’ll interact for exactly four periods, a whopping 35% of
play is cooperative in the first round.



            TABLE 13.3 FREQUENCY OF COOPERATIVE PLAY BY ROUND



            1 2 3 4 5 6 7 8 9 10 11 12



            One-shot 9%



            T � 2 13% 7%



            T � 4 35% 22% 19% 11%



            p � 31% 26% 20% 13% 13%



            p � 46% 41% 39% 35% 33% 27% 25% 26% 29% 26% 32% 31%3
4



            1
2



            In spite of this disappointing evidence, there are some encouraging facts.
First, in the last period of a finitely repeated game, behavior is approximately
the same as the behavior that occurs when the players interact just once; com-
pare 9% of play being cooperative in the one-shot game with 7% and 11% in
the last period of the two-period and four-period games, respectively. Thus,
students seem to be treating the last round of a finitely repeated game the
same way they do a one-shot game. Second, the amount of cooperative play
declines as players approach the end of the game. Although any cooperative
play is a puzzle, there is less cooperative play when the future is shorter and
there is thus less opportunity to punish.
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            Turning to when the horizon is indefinite (which, according to the theory,
is equivalent to an infinite horizon), recall that the actual horizon is random
and will vary from experiment to experiment. It turns out that when the
longest an experiment went was five periods, while the maximal length was 12
periods, for Consistent with Prediction 3, there is plenty of cooperative
play. More interesting is a comparison of results for the finite and the indefi-
nite horizon. Theory predicts that there should be more cooperation with an
indefinite horizon, and that is indeed what was found. Note that, from the per-
spective of the first period, the expected length of the horizon is the same for



            and so one might expect the same punishment from choosing
mean. Yet, players behaved cooperatively 31% of the time when the horizon
was indefinite and only 13% of the time when it was finite. Similar results
hold in a comparison of and Finally, consistent with Prediction 4,
a higher probability of continuation results in more cooperation. When there
is a 75% chance that their encounters will continue, students choose nice any-
where from 25% to 46% of the time. In contrast, when there is only a 50%
chance of the game continuing, cooperative play occurs only 13% to 31% of
the time.



            Although students in an experiment often act cooperatively in the one-shot
game, does that happen in the real world? And does it happen when more than
a few dollars are at stake? Indeed, it does.3 There is a game show called Friend
or Foe? and part of it has contestants play a game similar to the Prisoner’s
Dilemma. Two people are matched and initially work together to answer trivia
questions. Answering a question correctly results in a contribution of $500 or
$1,000 into a “trust fund.” In the second phase, they play a Prisoner’s Dilemma



            in which the amount of money involved depends on the trust
fund.



            Letting denote the size of the trust fund, we depict the strate-
gic situation they face in FIGURE 13.13 (where the entries are the
monetary payments). Contestants simultaneously choose be-
tween the strategies labeled Friend and Foe. If both choose
Friend, then they split the trust fund. If one chooses Friend and
the other chooses Foe, then the latter takes home the entire fund.
If both choose Foe, then the two of them leave empty handed.
Contrary to the Prisoner’s Dilemma, Foe weakly (rather than
strictly) dominates Friend, but that’s close enough.



            TABLE 13.4 reports the findings from 39 episodes of this show. The first row,
labeled “Overall,” summarizes all of the data. The average size of the trust
fund was $3,705—a lot more than a fistful of dollars! In spite of so much
money at stake, people chose Friend half of the time! If each person expected
everyone else to choose Friend 50% of the time, then choosing Friend yields an
expected cash award of $926.25,* while choosing Foe would double the ex-
pected award, to $1,852.50. Thus, choosing the weakly dominated strategy
costs a person over $900!



            A clue to why people cooperated in spite of the monetary cost might lie in how
behavior varied with personal traits. Table 13.4 reports that women cooperated
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            FIGURE 13.13 Friend or Foe?



            *The other player chooses Foe 50% of the time, so zero is received. The other 50% of the time, Friend is
chosen, and by choosing Friend as well, a contestant gets half of $3,705. Thus, the expected payment is
.5 � 0 � .5 � .5 � 3,705 � 926.25.
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            more than men, whites cooperated more than nonwhites, and older people coop-
erated much more than younger people. What do you make of that?



            But the intrigue doesn’t stop there, for a person’s
play didn’t depend just on their own personal traits,
but also on the traits of the person with whom they
were matched. Contrary to the experiments, a contest-
ant saw her partner in Friend or Foe? TABLE 13.5 re-
ports the frequency with which nice was chosen, de-
pending on the traits of both people. The first entry in
a cell is how often the row player chose nice. For ex-
ample, when a man is matched with a woman, he co-
operated 43% of the time, while she cooperated 55% of
the time.



            The gender of a woman’s partner had no effect on
her play, as the difference between 55% (when the
woman was matched with a man) and 56% (when she
was matched with a woman) is insignificant. In con-
trast, men cooperated less with women (43%) than
with other men (48%). The age of one’s partner didn’t
seem to matter. What is most striking concerns race:
Cooperation is greater for interracial matches (though
the category “nonwhite” is quite diverse) than for intraracial matches. When
matched with a nonwhite person, a white person cooperated 58% of the time,
while he cooperated with another white person only 51% of the time. And a
nonwhite person cooperated with a white person 44% of the time, but only
25% with another nonwhite person. There are still many mysteries about
human behavior left to unravel!



            Why do some people play cooperatively in the one-shot
Prisoners’ Dilemma? In the finitely repeated Prisoners’ Dilemma? Do they “feel
bad” about not playing nice? If so, why? Do they cooperate out of habit because
most social encounters do hold out the possibility of future encounters? What
is missing from our models?



            TABLE 13.4 PERSONAL TRAITS AND COOPERATIVE PLAY 
IN FRIEND OR FOE?



            Trivia Cooperation Take-Home



            Earnings Rate Earnings



            Overall $3,705 50% $1,455



            Men $4,247 45% $1,834



            Women $3,183 56% $1,088



            White $3,957 53% $1,417



            Nonwhite $2,825 42% $1,587



            Young (� age 31) $3,603 41% $1,592



            Mature (� age 31) $3,839 63% $1,276



            TABLE 13.5 PARTNER’S PERSONAL TRAIT
AND COOPERATIVE PLAY IN
FRIEND OR FOE?



            Men Women



            Men 48%, 48% 43%, 55%



            Women 55%, 43% 56%, 56%



            Young Mature



            Young 40%, 40% 42%, 63%



            Mature 63%, 42% 63%, 63%



            White Nonwhite



            White 51%, 51% 58%, 44%



            Nonwhite 44%, 58% 25%, 25%
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            Summary
This chapter has explored the ability of people to achieve cooperation in the
sense of sustaining collectively more attractive outcomes. The analysis began
with a horrific strategic setting—the trenches of World War I—for which Nash
equilibrium is not collectively optimal: Every soldier could be made better off
if they would all stop trying to kill each other. Individually, each soldier is
doing the best he can by shooting at the enemy—for it is, of course, a Nash
equilibrium—but jointly they are doing miserably and would be far better off
with a truce. The challenge is making a truce stable so that no one wants to
deviate from it.



            The crucial enrichment of this setting is to model it as a repeated game so
that the players—soldiers in the trenches—anticipate interacting in the future.
What is key to sustaining cooperation is the ever-present prospect of future en-
counters, either for certain (as with an infinite horizon) or with some proba-
bility (as with an indefinite horizon). But even when a game is played repeat-
edly, the collectively optimal outcome—such as a peaceful truce in the
trenches—creates a temptation for a player to deviate because she can raise
her payoff in the current encounter. This is necessarily the case because the
outcome does not form a Nash equilibrium for the stage game. Stable coop-
eration requires that there be some force that counteracts the short-run incen-
tive to deviate from cooperative play. This force is the anticipation that a de-
viation will induce a shift in future behavior that serves to lower a player’s fu-
ture payoff. With the grim-trigger strategy, the shift in behavior is to a stage-
game Nash equilibrium for the remainder of the time. What repetition then
creates is the possibility of designing a reward-and-punishment scheme that
sustains cooperation. If all players behave cooperatively, then the reward is
continued cooperative play and the high payoffs associated with it. If, how-
ever, a player deviates and acts in such a way as to raise his current payoff to
the detriment of others, then a punishment ensues that lowers the payoff of
the deviator. For the punishment considered in this chapter, all players suf-
fer—because cooperation breaks down—but, as we’ll see in the next chapter,
a punishment can focus on harming only the poorly behaved player.



            All that has been said thus far concerns the possibility of sustaining coop-
eration: that there exists a subgame perfect Nash equilibrium producing coop-
erative play. At the same time, there are also equilibria lacking cooperation,
such as one in which players just repeatedly behave according to a stage-game
Nash equilibrium. If players are currently at an equilibrium that results in low
payoffs, how is it that they are able to shift to a better equilibrium? More con-
cretely, in the trenches of France, how can the soldiers in the field replace the
norm of trying to kill each other with a truce backed up by the threat of retal-
iation if someone should break it? That is a difficult, but critical, question, and
how cooperation is actually achieved is not well understood. Game theory has
little to say on the matter at present.



            What game theory does have something to say about is when cooperation
is feasible and when it is not. This mechanism for cooperation works only
under certain conditions. First, players must always have the prospect of fu-
ture encounters. Cheating on the cooperative outcome can be deterred only if
there is the threat of a future punishment, but a necessary condition for such
a threat to be credible is that there always be a future! (Of course, the experi-
mental evidence says something a bit different which creates an intriguing
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            puzzle.) Second, players must sufficiently value their future payoffs, as re-
flected in a discount factor close to 1. If a player is myopic in caring exclu-
sively about her payoff today, she will not be deterred by a punishment of low
future payoffs when she can do something to raise her current payoff. Thus,
players must be patient and sufficiently value what they’ll receive in the future.
If cooperation is to be stable, people must have the “patience of Job” and not
live by Horace’s famous dictum, “Carpe diem, quam minimum credula postero”
(translating from the Latin, “Seize the day, put no trust in the morrow”).



            1. There are three fishermen, and each day they individually decide how
many boats to send out to catch fish in the local lake. A fisherman can
send out one or two boats, and the daily cost of a boat is $15. The more
boats sent out, the more fish are caught. However, since there are only
so many fish to be caught on a given day, the more boats another fisher-
man sends out, the fewer fish the remaining fishermen can catch. The
accompanying table reports the size of a fisherman’s catch, depending
on how many boats each fisherman sends out.



            A fisherman’s current-period payoff is the value of his catch (assume
that each fish sells for a price of 1), less the cost of the boats. For exam-
ple, if a fisherman sends out two boats and the other two fishermen
each send out one boat, then a fisherman’s payoff is The
stage game is symmetric, so the table is to be used to determine any fish-
erman’s payoff. The fishermen play an infinitely repeated game where
the stage game has them simultaneously choose how many boats to send
out. Each fisherman’s payoff is the present value of his payoff stream,
where fisherman i’s discount factor is Find a collection of actions—
one for each player—which results in a payoff higher than that achieved
at the Nash equilibria for the stage game. Then construct a grim-trigger
strategy that results in those actions being implemented, and derive con-
ditions for that strategy to be a symmetric subgame perfect Nash equi-
librium.



            di.



            75 � 30 � 45.



            EXERCISES



            A FISHERMAN’S CATCH AND PAYOFF



            No. of Boats 



            Other Two 



            No. of Boats Fishermen Size of Cost of



            of Sent Out Sent Out Catch Boats Payoff



            1 2 40 15 25



            1 3 35 15 20



            1 4 30 15 15



            2 2 75 30 45



            2 3 65 30 35



            2 4 50 30 20
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            2. Consider the infinitely repeated version of the symmetric two-player stage
game in FIGURE PR13.2. The first number in a cell is player 1’s single-period
payoff.
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            b 
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            FIGURE PR13.2



            Assume that past actions are common knowledge. Each player’s payoff
is the present value of the stream of single-period payoffs, where the dis-
count factor is 
a. Derive the conditions whereby the following strategy profile is a sub-



            game perfect Nash equilibrium:



            Player 1: In period 1, choose c. In period choose c if the out-
come was (c, x) in period and choose d otherwise.



            Player 2: In period 1, choose x. In period choose x if the out-
come was (c, x) in period and choose y otherwise.



            b. Derive the conditions whereby the following strategy profile is a sub-
game perfect Nash equilibrium:



            Player 1: In period 1, choose c. In period (1) choose c if the
outcome was (c, x) in periods (2) choose if
the outcome was (c, x) in periods and, in pe-
riod player 1 chose c and player 2 did not choose x;
(3) choose if the outcome was (c, x) in periods 
and, in period player 1 did not choose c and player 2
did choose x; and (4) choose b otherwise.



            Player 2: In period 1, choose x. In period (1) choose x if the
outcome was (c, x) in periods (2) choose v if
the outcome was (c, x) in periods and, in pe-
riod player 1 chose c and player 2 did not choose x;
(3) choose z if the outcome was (c, x) in periods



            and, in period player 1 did not choose c
and player 2 did choose x; and (4) choose w otherwise.



            3. Suppose the stage game in Figure PR13.2 is repeated three times and
each player’s payoff is the sum of the single-period payoffs. Assume that
past actions are common knowledge. Determine whether or not the fol-
lowing strategy profile is a subgame perfect Nash equilibrium:



            Player 1: In period 1, choose c. In period 2, choose c if the outcome in
period 1 was and choose b otherwise. In period 3,
choose d if the outcome in periods 1 and 2 was and
choose b otherwise.



            Player 2: In period 1, choose x. In period 2, choose x if the outcome in
period 1 was and choose w otherwise. In period 3,(c, x)



            (c, x)
(c, x)



            t � 1,1, . . . , t � 2



            t � 1,
1, . . . , t � 2



            1, . . . , t � 1;
t(� 2),



            t � 1,
1, . . . , t � 2a



            t � 1,
1, . . . , t � 2



            e1, . . . , t � 1;
t(� 2),



            t � 1
t(� 2),



            t � 1
t(� 2),



            d.
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            choose y if the outcome in periods 1 and 2 was and
choose w otherwise.



            4. Consider the infinitely repeated version of the symmetric two-player stage
game in FIGURE PR13.4. The first number in a cell is player 1’s single-period
payoff.



            (c, x)



            Assume that past actions are common knowledge. Each player’s payoff
is the present value of the stream of single-period payoffs, where the dis-
count factor is for player i.
a. Define a grim-trigger strategy profile.
b. Derive conditions whereby the strategy profile in (a) is a subgame



            perfect Nash equilibrium.



            5. Consider the infinitely repeated version of the stage game in FIGURE



            PR13.5. Assume that each player’s payoff is the present value of her pay-
off stream and the discount factor is d.



            di



            a. Find a strategy profile that results in an outcome path in which both
players choose x in every period and the strategy profile is a subgame
perfect Nash equilibrium.



            b. Find a strategy profile that results in an outcome path in which both
players choose x in every odd period and y in every even period and
the strategy profile is a subgame perfect Nash equilibrium.



            c. Find a strategy profile that results in an outcome path in which both
players choose x in periods 1 through 10 and choose z thereafter and
the strategy profile is a subgame perfect Nash equilibrium.



            d. Assume that Find a strategy profile that results in an outcome
path in which both players choose y in every period and the strategy
profile is a subgame perfect Nash equilibrium.



            d � 2
5.
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            6. A well-known strategy for sustaining cooperation is Tit for Tat. A player
starts off with cooperative play and then does whatever the other player
did the previous period. Tit for Tat embodies the idea that “What goes
around comes around.” For the Trench Warfare game, it takes the fol-
lowing form: In period 1, choose miss. In period choose miss if
the other player chose miss during the previous period and choose kill if
the other player chose kill during the previous period. For the infinitely
repeated Trench Warfare game, derive conditions for Tit for Tat to be a
subgame perfect Nash equilibrium.



            7. A strategy for player 1 is a value for from the set Similarly, a strategy
for player 2 is a value for from the set Player 1’s payoff is 



            and player 2’s payoff is 
a. Assume that X is the interval of real numbers from 1 to 4 (including



            1 and 4). (Note that this is much more than integers and includes
such numbers as 2.648 and 1.00037). Derive all Nash equilibria.



            b. Now assume that the game is played infinitely often and a player’s
payoff is the present value of his stream of single-period payoffs,
where is the discount factor.
(i) Assume that X is composed of only two values: 2 and 3; thus, a



            player can choose 2 or 3, but no other value. Consider the follow-
ing symmetric strategy profile: In period 1, a player chooses the
value 2. In period a player chooses the value 2 if both play-
ers chose 2 in all previous periods; otherwise, she chooses the
value 3. Derive conditions which ensure that this is a subgame
perfect Nash equilibrium.



            (ii) Return to assuming that X is the interval of numbers from 1 to 4,
so that any number between 1 and 4 (including 1 and 4) can be
selected by a player. Consider the following symmetric strategy
profile: In period 1, a player chooses y. In period a player
chooses y if both players chose y in all previous periods; other-
wise, he chooses z. y and z come from the set X, and furthermore,
suppose Derive conditions on y, z, and whereby
this is a subgame perfect Nash equilibrium.



            8. There are doctors who have created a partnership. In each period,
each doctor decides how hard to work. Let denote the effort chosen by
doctor i in period t, and assume that can take 1 of 10 levels:



            The partnership’s profit is higher when the doctors work
harder. More specifically, total profit for the partnership equals twice the
amount of total effort:



            A doctor’s payoff is an equal share of the profits, less the personal cost
of effort, which is assumed to equal the amount of effort; thus,



            This stage game is infinitely repeated, where each doctor’s payoff is the
present value of the payoff stream and doctor i’s discount factor is di.



            Doctor i’s payoff � a1
n
b � 2 � (et



            1 � et
2 � p � et



            n) � et
i.



            Profit � 2 � (et
1 � et



            2 � p � et
n).



            1, 2, . . . , 10.
et



            i



            et
i



            n � 3



            d1 � y 6 z � 4.



            t(� 2),



            t(� 2),



            d



            V2(x1, x2) � 5 � x2 � 2x1.5 � x1 � 2x2



            V1(x1, x2) �X.x2



            X.x1



            t(� 2),
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            a. Assume that the history of the game is common knowledge. That is,
in period t, the past choices of effort for all doctors over periods



            is observed. Derive a subgame perfect Nash equilibrium
in which each player chooses an effort 



            b. Assume that the history of the game is not common knowledge. In pe-
riod t, only the total effort, in period is observed
by all players (for all . (By the assumption of perfect recall,
a player knows his own past effort, but you can ignore that informa-
tion.) Find a subgame perfect Nash equilibrium in which each player
chooses an effort 



            9. The following quote is from a memo written by Prime Minister Winston
Churchill to one of his generals during the final year of World War II:



            I want you to think very seriously over this question of poison gas. It
is absurd to consider morality on this topic when everybody used it in
the last war without a word of complaint from the moralists or the
Church. On the other hand, in the last war the bombing of open cities
was regarded as forbidden. Now everybody does it as a matter of
course. It is simply a question of fashion changing as she does be-
tween long and short skirts for women. Why have the Germans not
used it? Not certainly out of moral scruples or affection for us. They
have not used it because it does not pay them. . . . the only reason they
have not used it against us is that they fear the retaliation. What is to
their detriment is to our advantage. I want the matter studied in cold
blood by sensible people and not that particular set of psalm-singing
uninformed defeatist which one runs across now here now there.



            Let us consider the situation between Churchill and Adolf Hitler.
Suppose that in each period they both decide how much poison gas to
use. Let denote the amount used by Churchill in period t and the
amount used by Hitler. Assume that in each period Churchill can use
poison gas in any amount ranging from zero up to a maximum of



            Hitler has an upper bound on the amount of gas he can
use: The payoffs to Churchill and Hitler during period t are,
respectively,



            and



            It is assumed that and Thus,
Churchill’s payoff during period t increases with the amount of gas his
military uses (presumably because it increases the likelihood of victory)
and decreases with the amount of gas used by German forces (for obvi-
ous reasons). An analogous argument applies to Hitler. Assume that, in
each period, there is a probability p, where that the war will
end. If the game ends, each player’s payoff is zero. Churchill’s payoff is
then



            Vc(g1
c, g1



            h) � pVc(g2
c, g2



            h) � p2Vc(g3
c, g3



            h) � p or a
q



            t�1
pt�1Vc(gt



            c, g
t
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            Gh 7 0.Gc 7 0,e 7 d 7 0,b 7 a 7 0,
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c, g
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h) � dgt
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c, g



            t
h) � agt



            c � bgt
h



            0 � gt
h � Gh.



            Gc : 0 � gt
c � Gc.
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            e* 7 1.
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            Analogously, Hitler’s payoff is



            In each period, the two players move simultaneously, knowing the entire
history of past actions. In answering the following questions, be cold
blooded and not one of those psalm-singing uninformed defeatists:
a. Find a strategy profile and restrictions on parameters such that the



            strategy profile is a subgame perfect Nash equilibrium and entails
neither country using poison gas; that is, the equilibrium outcome
path is and for all 



            b. Find a strategy profile and restrictions on parameters such that the
strategy profile is a subgame perfect Nash equilibrium and entails
both countries using poison gas; that is, the equilibrium outcome
path is and for all 



            c. Find a strategy profile and restrictions on parameters such that the
strategy profile is a subgame perfect Nash equilibrium and entails
Churchill using gas but Hitler not using gas; that is, the equilibrium
outcome path is and for all t � 1, 2, 3, . . . .gt



            h � 0gt
c 7 0



            t � 1, 2, 3, . . . .gt
h 7 0gt



            c 7 0



            t � 1, 2, 3, . . . .gt
h � 0gt



            c � 0



            Vh(g1
c, g1



            h) � pVh(g2
c, g2



            h) � p2Vh(g3
c, g3



            h) � p or a
q



            t�1
pt�1Vh(gt
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t
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            13.6 Appendix: Present Value of a Payoff Stream
IMAGINE THAT YOUR RICH, eccentric uncle has passed away and you learn, to your
surprise, that you’re mentioned in his will. Because he was a peculiar sort,
what he’s left you is a choice. In the will are listed three series of payments
over five years, referred to as options A, B, and C. (See TABLE 13.6.) According
to the will, you can pick one, but only one, payment plan.



            TABLE 13.6 STREAMS OF PAYOFFS



            Year Option A Option B Option C



            1 100 40 30



            2 80 50 40



            3 70 60 50



            4 40 100 80



            5 30 120 100



            After thinking about what a fun and wacky guy your uncle was, you go to
work analyzing the options he gave you. It doesn’t take you long to determine
that you can eliminate option C: Since B gives a higher amount of money in
each of those five years, anyone who likes money will prefer B over C. After
wondering “Geez, did my uncle think I was that stupid?” you scratch C off the
list. Unfortunately, the comparison between A and B is not so straightforward:
Option A gives more money up front—in periods 1, 2, and 3—but option B
gives more money later on, in periods 4 and 5. What is needed is a method for
ranking A and B.
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            A common approach to ranking a stream of money (or utilities or payoffs)
is known as present value. Given a monetary stream, the idea is to find an
amount of money such that if you were to receive it today (and nothing there-
after) would make you indifferent between it and the stream of money. In
other words, what is the “present (or current) value” of that stream of money?



            To figure out the present value, you need to ask yourself, “How much is $100
received a year from now worth in terms of today’s money?” That is, if you were
to choose between receiving Y today and $100 a year from now, what is the value
of Y that would make you indifferent? In answering that question, imagine that
your intent is not to spend the money until a year from now. In that case, if you
received Y today, you could put it in the bank and earn an interest rate of r on
it. For example, if the interest rate is 15%. Thus, if you received Y today,
you would have tomorrow. To be indifferent, it must then be the
case that



            Hence, you would be indifferent between receiving $87 today and $100 a year
from now.



            Now suppose we asked you about receiving $100 two years from now. If
you received Z today, then you could put it in the bank for two years. At the
end of the first year, you would have which you could then rein-
vest for another year, resulting in or at
the end of two years. The present value of the stream of money is therefore



            Consequently, you would be indifferent between receiving $76 today and $100
two years from now.



            More generally, you would be indifferent between receiving W today and $1
t years from now, where W satisfies the relation



            A dollar in t periods is thus valued the same as dollars today. In
this formula, r is known as the discount rate, and (to save on notation)



            is defined to be the discount factor.
In calculating the present value of a stream, we want to convert all future



            payments into their value in today’s money. We just showed that $1 in one pe-
riod is worth today, so payments tomorrow should be weighted by 
Similarly, payments received in two periods should be weighted by and so
forth. Given a stream of payments its present value is then



            The present value is a weighted sum of the individual payments. Note that the
weight is progressively smaller, since and every time is multipliedd0 6 d 6 1



            u1 � du2 � d2u3 � d3u4 � p � dT�1uT.



            u1, u2, u3, . . . , uT,
d2,



            d.$d



            d � 1/(1 � r)



            (1/(1 � r))t



            (1 � r)t � W � 11W �
1



            (1 � r)t � a 1
1 � r



            bt.



            1.152 � Z � 1001 1.3225 � Z � 1001 Z �
100



            1.3225
� 76.



            (1 � r)2 � Z,(1 � r) � (1 � r) � Z,
(1 � r) � Z,



            1.15 � Y � 1001 Y �
100
1.15



            � 87.



            1.15 � Y
r � .15
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            by itself, it shrinks. This idea captures the property that payments farther into
the future are valued less, which is a ubiquitous property of human behavior;
people are impatient!



            Let’s take this measure for a test run by calculating the present value of op-
tions A and B when the discount rate is (which then implies that
d � .91):



            r � .10



            Option A: 



            Option B: 40 � (.91 � 50) � (.912 � 60) � (.913 � 100) � (.914 � 120) � 292.83.



            � 100 � (.91 � 80) � (.828 � 70) � (.754 � 40) � (.686 � 30) � 281.50;
100 � (.91 � 80) � (.912 � 70) � (.913 � 40) � (.914 � 30)



            The present value of B then exceeds the present value of A, and thus, by this
criterion, you would prefer B over A. However, if you discounted future pay-
ments more—for example, suppose so that —then A is now
preferred to B:



            Since A gives more money up front, it is more attractive when you attach
smaller weights to later payments; that is, you are more impatient.



            What if the stream of payments or payoffs is infinite? Then the present value is



            [13.6]



            Although this can be a tiring calculation with an infinite number of terms to
sum up, it is actually quite simple when the stream of payments is constant.
That is, if for all t, then



            [13.7]



            To get a simple expression for V, multiply both sides of (13.7) by 



            [13.8]



            Now subtract (13.8) from (13.7):



            On the right-hand side, a lot of terms cancel; appears in both expressions
in parentheses and cancels out, and so does and In fact, all terms can-
cel except u. Thus, we have



            It’s magic! We’ve converted an infinite sum into a nice, neat single number.



            V � dV � u1 V(1 � d) � u1 V �
u



            1 � d
.



            d3u.d2u
du



            � (du � d2u � d3u � d4u � p).V � dV � (u � du � d2u � d3u � p)



            dV � du � d2u � d3u � d4u � p.



            d:



            V � u � du � d2u � d3u � p.



            ut � u



            V � u1 � du2 � d2u3 � d3u4 � p � a
q



            t�1
dt�1ut.



            Option B: 40 � (.8 � 50) � (.82 � 60) � (.83 � 100) � (.84 � 120) � 218.75



            � 100 � (.8 � 80) � (.64 � 70) � (.512 � 40) � (.4096 � 30) � 241. 57;
Option A: 100 � (.8 � 80) � (.82 � 70) � (.83 � 40) � (.84 � 30)



            d � .80r � .25,
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            Now suppose your uncle with the sense of humor had offered you a fourth
option, denoted D, which pays 30 in every year (and suppose you live forever
to enjoy your good fortune). If then, by our preceding analysis, the
present value of option D is , which is better than the
present values of any of the other three options.



            Let’s do some more present-value mathematics. Now suppose you received
an infinite constant stream, but one that doesn’t start until T+1 periods from
today. Discounting this stream back to the current period, we find that its
present value is



            Once you get to period T+1, you start receiving a stream which has a present value
of at period T+1, but that present value is worth only 
when it is discounted back to period 1.



            The trick that allowed us to transform an infinite sum into a single num-
ber can be done whenever the stream of payments is periodic—that is, when-
ever it repeats itself. (Note that a constant stream repeats itself every pe-
riod.) For example, suppose the sequence delivers x in odd periods and y in
even periods:



            Rearrange this equation as follows:



            [13.9]



            Equation (13.9) can be thought of as a person’s receiving every other
period. Multiply both sides by (it’s and not because we’ve rearranged
the equation so that something is being received every other period):



            [13.10]



            Now subtract (13.10) from (13.9):



            For example, the present value of receiving 25 every other year and 35 every
other year (starting with 25) is



            25 � .91 � 35



            1 � .912 � 330.72.



            V(1 � d2) � x � dy1 V �
x � dy



            1 � d2
.



            � 3d2(x � dy) � d4(x � dy) � d6(x � dy) � p 4 ;V � d2V � 3x � dy � d2(x � dy) � d4(x � dy) � p 4
d2V � d2(x � dy) � d4(x � dy) � d6(x � dy) � p.



            d,d2,d2
x � dy



            V � x � dy � d2(x � dy) � d4(x � dy) � p.



            V � x � dy � d2x � d3y � d4x � d5y � p.



            dT(u/ (1 � d))u/ (1 � d)



             � dT a u
1 � d



            b .
 � dT(u � du � d2u � p)



            0 � d � 0 � p � dT�1 � 0 � dTu � dT�1u � dT�2u � dT�3u � p



            30/(1 � .91) � 333.33
d � .91,
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            Our last task is to analyze a random stream of payments. In the repeated-
game context, such a stream corresponds to an indefinite horizon. The deal is
that if you’re still alive in period t, then you receive a payment of However,
in each period, the probability that you survive until the next period is thus,
at the end of each period, there is a probability of that you die. Let’s cal-
culate the expected present value, where the presumption is that you attach
value only to payments received while you are alive. For reasons to be made
clear in a moment, let us use d rather than to denote the discount factor.



            The expected present value of the sequence is
d



            1 � p
p;



            ut.



            Suppose an infinite stream provides 100 in period 1, 50 in period 2, and 25 in period 3
and then repeats itself. The infinite sum is then



            Derive a simple expression for this sum.



            100 � d � 50 � d2 � 25 � d3 � 100 � d4 � 50 � d5 � 25 � p.



            13.4 CHECK YOUR UNDERSTANDING



            [13.11]V � u1 � pdu2 � p2d2u3 � p3d3u4 � p � a
q



            t�1
pt�1dt�1ut � a



            q



            t�1
(pd)t�1ut.



            In period 1, you receive for sure. With probability you survive to the sec-
ond period and receive After discounting, the expected value for period 2
is then (Of course, your payment is zero if you’re dead.) With
probability you survive from period 2 to period 3, but, from the perspective
of period 1, the probability that you survive until period 3 is or 
which is the compound probability of surviving from period 1 to period 2 and
from period 2 to period 3. Thus, the expected payment in period 3 is



            —and so forth.
To see how an infinite horizon and an indefinite horizon are really the same



            thing, substitute the term for in (13.11):



            This equation is identical to equation (13.6). The discount factor can then be
determined by both time preferences—how much a person discounts the fu-
ture—and the likelihood of the game terminating.



            13.7 Appendix: Dynamic Programming
IF A STRATEGY IS OPTIMAL in the sense of being part of a subgame perfect Nash
equilibrium, then the strategy must maximize a player’s payoff for every infor-
mation set, taking as given the other players’ strategies. In a repeated game
whose history is known to all players, “every information set” is equivalent to
“every period and history.”
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            Optimal Strategy: A strategy is optimal (in the sense of subgame perfect Nash
equilibrium) if it maximizes a player’s payoff for every period and history.



            Let’s start with some strategy profile that is a candidate for being part of a
subgame perfect Nash equilibrium. It is a fairly straightforward (though per-
haps tedious) task to calculate each player’s payoff from using her candidate
strategy. To see how this is done, suppose it is period t and we let denote the
list of actions that were chosen in periods 1 through is the history as
of period t. Each player’s candidate strategy assigns an action for the current
period, contingent on With that array of actions (one for each player),
which we’ll call the payoff received in period t can be calculated by plug-
ging the array into a player’s single-period payoff function. The history up to
period is a composition of (what happened up to period t) and (what
happened in period t). Given each player’s candidate strategy prescribes
an action for period With that array of actions, the payoffs for period



            can be calculated. Iterating on this process, we can calculate the entire
stream of payoffs for any candidate strategy profile, starting at any period and
history.



            Once we have derived the payoff for a candidate strategy, the determination
of its optimality requires comparing that payoff with the payoff from any al-
ternative strategy for the player (while continuing to assume that the other
players use their candidate strategies). This task, however, sounds not only te-
dious, but really difficult to carry out, because there are many—and I mean
many—alternative strategies. Remember that a strategy assigns an action to
every period and history, so if the game is an infinitely repeated game, then a
strategy is composed of an infinite number of actions.



            To help us out of the hole we’re in, more than half of a century ago the
mathematician Richard Bellman made a wonderful discovery known as dy-
namic programming. The first step in this approach is to recognize that we re-
ally don’t need to compare the candidate strategy’s payoff with the payoff from
every alternative strategy, but rather only with that alternative strategy which
yields the highest payoff. For if the candidate strategy’s payoff is at least as
great as the highest payoff from these alternative strategies, then it is better
than any alternative strategy. With that thought in mind, we calculate the pay-
off (i.e., the present value of the current and future single-period payoffs) for
each possible action in the current period, while assuming that the player acts
optimally in future periods. By making sure that the future payoff is maxi-
mized, we’ll be calculating the maximal payoff associated with any action cho-
sen in the current period.



            All that is fine, but how do we find the maximal future payoff? Isn’t that just
as hard to calculate? Actually, no, and the first step in doing it is to show that
the candidate strategy is partially optimal.



            Partially Optimal Strategy: A strategy is partially optimal (in the sense of subgame
perfect Nash equilibrium) if, for every period and history, the action prescribed by
the strategy yields the highest payoff compared with choosing any other current
action, while assuming that the player acts according to the strategy in all future
periods.



            A strategy is partially optimal when it is best compared with the alternative
of doing something different only in the current period. Thus, regardless of
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            what is chosen today, the player follows the candidate strategy in the future.
(Keep in mind that the future sequence of actions can vary with the action
chosen today, because a different action today means a different history to-
morrow and a strategy prescribes an action contingent on the history.) In this
sense, we’ve shown that the candidate strategy is better than a limited set of
alternatives, and that is why we’ve called it partially optimal.



            Suppose we’ve proven that the candidate strategy is partially optimal
(which is not that difficult; we did it for the infinitely repeated Trench Warfare
game.) The player is now in period t, given a particular history. The candidate
strategy delivers the highest payoff compared with choosing some other ac-
tion today and acting according to the candidate strategy in the future; in
other words, it satisfies partial optimality. But is it in fact optimal to follow the
candidate strategy come period Well, by partial optimality, the candi-
date strategy is indeed best compared with choosing some other action in



            and acting according to the candidate strategy in the future. But is it op-
timal to follow the candidate strategy come period By partial optimal-
ity, the candidate strategy is indeed best compared with choosing some other
action in and acting according to the candidate strategy in the future.
But is it optimal. . . . ? I think you get the point. This argument works for every
future period and history because, by partial optimality, we’ve proven that, for
every period and history, the candidate strategy delivers the highest payoff
compared with choosing any other action and acting according to the candi-
date strategy in the future.



            With an amount of hand waving commensurate with Queen Elizabeth’s on
her birthday, we’ve shown the following result.



            Result: If a strategy is partially optimal, then it is optimal.



            To prove the optimality of a strategy, we just need to show that a player can
never increase her payoff by deviating from that strategy just once and then
acting according to the strategy in the future. As long as we show that a player
doesn’t want to deviate once and show that that is true regardless of the pe-
riod and the history, we can draw the much stronger conclusion that the strat-
egy is superior to any series of deviations. In other words, the strategy’s pay-
off is at least as great as that from any other strategy.
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14.1 Introduction
IF COOPERATION CAN ARISE and sustain itself in the trenches of World War I, it is
not difficult to imagine that it can occur in many other situations. In this
chapter, we entertain a menagerie of real-life episodes in which cooperation
has arisen. In doing so, variants in the structure of cooperation are consid-
ered, as well as in the reward-and-punishment mechanism that sustains it.
Recall from the previous chapter that, for cooperation to be stable, players
must not yield to the temptation of earning a higher current payoff by cheat-
ing. This temptation is squelched by a scheme of future rewards and punish-
ments. If a player doesn’t cheat, then she is rewarded by her fellow players act-
ing cooperatively in the future; if she cheats, then the consequence is retalia-
tion in the future.



            Because competition harms all companies by resulting in low prices, one
observed form of cooperation occurs when companies collude and set high
prices—this in spite of its illegality. We initially consider a recent episode in
which the prestigious auction houses of Christie’s and Sotheby’s coordinated
the commission rates they charged to their customers. In Chapter 13, the pun-
ishment that enforced cooperation was the abandonment of all cooperation in
the future; in the current chapter, other forms of punishment will be dis-
cussed. In the case of price-fixing between the aforesaid two auction houses,
first we consider a temporary reversion to competition and its lower commis-
sion rates and payoffs. Next, we consider a short, but intense, episode in
which commission rates are below what companies would charge under nor-
mal competition. Finally, a punishment designed to harm only the deviating
company is examined—a punishment that is more equitable.



            In some cases, such as establishing a truce in the trenches of World War I,
cooperation contemporaneously benefits all players. However, in other con-
texts, cooperation involves one player helping out another player in need.
Because such assistance is costly, it is done with the anticipation of some fu-
ture compensation. This form of alternating cooperation—you help me now
and I’ll return the favor in the future—can be sustained as part of an equilib-
rium. In Section 14.3, we show how it works in the U.S. Congress and in a
colony of vampire bats.



            The stability of a cooperative norm can also be understood through the lens
of reputation. A player who cooperates builds a reputation for treating his fel-
low players well, and they, in turn, act likewise, while a player who stiffs oth-
ers develops a reputation for untrustworthiness and is treated accordingly. In
Section 14.4, the role of reputation in sustaining cooperative play is explored
in the premodern historical context of local bankers lending to a king and in
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            understanding why Henry Ford more than doubled the wages of his employ-
ees in the early part of the 20th century.



            A critical element for cooperation to sustain itself is that any deviation be
soundly punished. For that to occur, a deviation must be observed by the other
players, so that they know that they are to punish the deviator. Although it has
been assumed thus far that the history of the game is common knowledge—
so that any player’s past actions are observed and thus a violation of coopera-
tive play is duly noted—that is not always the case in reality. Section 14.5 con-
siders a scenario involving countries trying to control military arms. Due to
the difficulty associated with monitoring a country from afar, a violation of a
treaty could go unnoticed and thus unpunished. Our example will focus on an
agreement between the United States and the former Soviet Union to limit the
deployment of defensive missile systems. It was arguably the most significant
treaty consummated during the Cold War.



            14.2 A Menu of Punishments
For if we forgive, it will be a sign to those in the future that they can act with-
out fear of punishment, and that the world has a moral escape valve labeled
forgiveness that permits evil not only to survive but to thrive. . . . Forgiveness
becomes a weak virtue, one that Christians seem particularly prone to cham-
pion, and one that always carries the possibility of condoning, rather than
constricting, the spread of evil. —ROBERT MCAFEE BROWN



            CRITICAL TO THE SUSTAINING of cooperation is not only that a punishment be
threatened if a player should misbehave, but also that the punishment be cred-
ible. If the punishment is actually to deter socially inappropriate behavior,
then players must believe that everyone will go through with it. Recall from
Chapter 8 that the primary virtue of subgame perfect Nash equilibrium is that
it weeds out Nash equilibria predicated upon incredible threats. In Chapter 13,
we showed that if, say, the Germans chose to shoot to kill, then it was indeed
optimal for the Allied side to retaliate by shooting to kill in all future periods.
And it was optimal for the Allied side to implement such a punishment be-
cause they expected the Germans to react the same way—shooting to kill—
and the Allied side could do no better than to act in kind. The punishment is
then self-enforcing in that each player finds it optimal to go through with it,
given what the other players are expected to do.



            The punishment used to sustain a peaceful truce in the trenches of World
War I was rather severe: Even a single episode of cheating caused soldiers to
revert irrevocably to the lower payoffs associated with a stage-game Nash
equilibrium. In reality, cooperation isn’t always so fragile. In this section, we’ll
consider less draconian punishments that are temporary and thus allow a re-
turn to cooperation. But, since you may be a bit weary of the trenches, let’s
start by introducing a new application of repeated games: price competition
in the marketplace.



            14.2.1 Price-Fixing



            The competitor is our friend and the customer is our enemy. —UNOFFICIAL



            MOTTO OF ARCHER DANIELS MIDLAND WHILE PRICE-FIXING IN THE LYSINE MARKET.



            Internationally, there are two premier auction houses for selling fine art:
Christie’s and Sotheby’s.


            

        



        
            

            
Both founded in London in the mid-18th century, they have sold some of the
most precious art, antiquities, wine, furniture, and other items of luxury. At its
simplest, these auction houses make money by charging the seller a commission
for all items sold. If your Monet painting sells for $12,000,000 with a commis-
sion rate of 5%, then the seller would pay the auction house $600,000. They may
also charge a commission to the buyer.



            Both auction houses were reaping high profits in the booming art market of
the late 1980s, but then experienced a serious deterioration of their bottom line
when the art market tanked. After earning profits in excess of $1 billion in 1989,
Sotheby’s was barely profitable by 1992. The drop in profits was a combination
of less business and lower commission rates due to intensified competition be-
tween Christie’s and Sotheby’s.



            It was in the midst of that environment that the chairmen of these two houses,
Sir Anthony Tennant of Christie’s and Alfred Taubman of Sotheby’s, decided it
was time to make a change. So they met in Mr. Taubman’s London apartment in
the spring of 1993, and Alfred said to Sir Anthony, “We’re getting killed on our bot-
tom line. I feel it’s time to increase pricing.”1 This modest statement initiated what
was to be a seven-year-long collusion that resulted in artificially
high commission rates. After this illegal price-fixing was discov-
ered by the authorities, Sotheby’s paid a fine of $45 million in
the United States and Mr. Taubman spent a year in jail, while
Christie’s got off because of its cooperation with the authorities.



            A bit of game theory can explain how the collusion between
these two auction houses was able to persist for so long. For
simplicity, suppose each house can set one of three commis-
sion rates: 4%, 6%, and 8%. The stage game is depicted in
FIGURE 14.1, and it has a unique Nash equilibrium in which
both houses charge 6%.
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            Now consider the infinitely repeated version in which they use the grim-
trigger strategy to support high rates:



            ■ In period 1, charge 8%.



            ■ In any other period,



            charge 8% if both auction houses charged 8% in the previous period;



            charge 6% if one or both did not charge 8% in the previous period.



            Notice that the punishment of 6% commission rates is contingent only on
what happened in the previous period. This condition will sustain cooperation
just as effectively as making the punishment dependent on all past play (as we
did in supporting peace in the Trench Warfare game).



            Suppose now that it is period 1 or some period in which both chose an 8%
commission rate in the previous period. The strategy then prescribes that an
auction house charge 8%, and equilibrium requires that it yield a payoff that
is at least as great as charging a lower rate. Hence,



            [14.1]



            [14.2]



            The left-hand expression in these two inequalities is the payoff from charging
8%. It is based upon the other house charging 8% in the current period—thus
yielding a current payoff (or profit) of 5—and both houses charging 8% in all
future periods (as dictated by their strategies). The present value of that pay-
off stream is . The right-hand side expression in (14.1) is what a
house gets if instead it sets a rate of 6%. A 6% rate delivers a current profit of
7, but a profit of only 4 in the ensuing period, as this deviant behavior induces
both houses to set 6% (as prescribed by their strategies). And if both set 6% in
the next period, then, according to their strategies, they’ll set 6% in the period
after that, and so forth. Thus, not charging 8% today results in a profit of 4 in
all future periods, and the present value of that profit is when it
is discounted back to the current period.



            Equilibrium requires that the payoff from an 8% rate be at least as great as
that from a 6% rate; that is, (14.1) holds. By a similar logic, 8% must be bet-
ter than 4%, so (14.2) is true. Note that the only difference in the payoff from
cheating by dropping the rate to 4% and to 6% is in the current profit; the fu-
ture profit stream is the same because the punishment—permanent reversion
to a rate of 6%—is the same.



            For equilibrium, we need both (14.1) and (14.2) to hold. Notice that the
right-hand side of (14.2) is smaller than the right-hand side of (14.1), which
means that if the condition in (14.1) is true, then so is the one in (14.2). In
other words, if an auction house is going to deviate from the collusive agree-
ment, then it should set a 6% rate. Therefore, we need only focus on ensuring
that (14.1) is satisfied. We solve (14.1) for d:
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            Thus, if then each house wants to charge 8% when it expects the other
house to do so.



            To complete the argument that this strategy pair is a subgame perfect Nash
equilibrium, we need to consider a period and history whereby, in the previ-
ous period, one or both houses did not charge 8%. Note that each of the strate-
gies result in 6% and the associated payoff is or, equivalently,



            If a house charges 8%, its current profit is lower, at 1, and
its future profit stream is the same, at 4. The latter is true because the other
house is expected to charge 6% and, according to their strategies, both will
then charge 6% tomorrow. This logic applies to all future periods, so the pay-
off from an 8% rate today is which is clearly less than that
from setting a 6% rate. Analogously, the payoff from a 4% rate today is



            which is also worse. Thus, prescribed behavior is optimal,
so the punishment itself is an equilibrium. In sum, the given strategy pair is a
subgame perfect Nash equilibrium if and only if 



            14.2.2 Temporary Reversion to Moderate Rates



            Consider a strategy that has both auction houses choosing a high commission
rate of 8% in period 1 and charging 8% in any future period, as long as both
houses have always done so. If both were supposed to charge 8% and one or
both did not—so that there was cheating—then assume that they switch to
charging 6%, but only for three periods, after which they return to an 8% rate.
If, after the scheduled return to 8%, one or both houses fail to charge 8%,
then, again, the punishment is a three-period reversion to a 6% rate. Indeed,
after any episode of cheating, the punishment is three periods of charging the
lower rate of 6%.



            Consider a history whereby auction houses are supposed to charge 8%
today. This could be period 1, or a period for which houses have always
charged 8% in the past, or one in which they’ve completed a punishment and
are to return to an 8% rate. The payoff from an 8% rate is



            [14.3]



            which must be at least as great as that from setting any other rate. It is then
sufficient to consider the payoff from the best alternative rate. Since the pun-
ishment is the same, regardless of whether the deviation is to 4% or 6%, the
best alternative is to charge 6%, as it results in a higher current profit. The
payoff from cheating is then



            [14.4]



            Notice that the deviation triggers a low profit of 4 in the ensuing three periods
and then a permanent return to a profit of 5. Equilibrium requires that (14.3)
be at least as great as (14.4). Because the profit stream from period 5 onward
is the same in those two expressions, we can cancel those terms, so that the
equilibrium condition is
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            Of course, we also need to check whether it is optimal to go along with
the punishment, but since the punishment consists of reverting to the stage-
game Nash equilibrium for three periods, that is indeed the case. (As prac-
tice, prove that it is optimal for each house to go through with the punish-
ment.)



            One can show that the condition in (14.5) is roughly equivalent to
(Unless you get your kicks out of solving cubic equations, trust



            me!) Note that the restriction on the discount factor is more stringent than
what we derived previously. When the punishment was permanent reversion
to charging 6%, auction houses only had to be sufficiently patient, as reflected
in the discount factor being at least .67. Now, with only a three-period pun-
ishment to deter each house from cutting its commission rate, the discount
factor has to be at least .81. By making the punishment weaker—an infrac-
tion means a lower payoff of 4 only for three periods rather than forever—
players have to value future payoffs more in order to squelch the temptation
to cheat today.



            In sustaining cooperation, there is a trade-off from a more severe
punishment. A harsher punishment means a lower payoff if the punishment is
invoked, but the threat of a harsher punishment can do a better job of
sustaining cooperation.



            14.2.3 Price Wars: Temporary Reversion to Low Rates



            It is only those who have neither priced below cost nor heard the shrieks and
groans of shareholders who cry aloud for cutting prices, more vengeance,
more desolation. Competition is hell. —WHAT GENERAL WILLIAM TECUMSEH



            SHERMAN MIGHT HAVE SAID IF HE HAD RUN AN AIRLINE.



            It’s been observed in some industries that when collusion breaks down, prices
can get really low, even lower than under normal competition. Indeed, prices
can even fall below cost, so that companies incur losses. Typically, such low
prices don’t persist, but the temporary reversion to aggressively low prices is
known as a price war.



            Here is a strategy that encompasses the idea of a price war in that it in-
volves a punishment more intense than simply reverting to a stage-game Nash
equilibrium:



            ■ In period 1, charge 8%.



            ■ In any other period,



            charge 8% if either (1) both auction houses charged 8% in the previous
period or (2) both charged 4% in the previous period;



            charge 4% for any other history.



            First note that this strategy pair, if followed, will result in both houses set-
ting an 8% rate. The punishment designed to deter any undercutting is for
both houses to set a low rate of 4% and then, if and only if both charged 4%,
to return to a high rate of 8%.



            To derive conditions whereby this symmetric strategy is a subgame perfect
Nash equilibrium, first consider either period 1 or a period whereby, in the
previous period, both houses either charged 8% or 4%. The prescribed behav-
ior is to set 8%, and the resulting profit stream is 5 in all periods. This payoff
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            must be at least as great as charging 4% or 6%. The better alternative of the
two is a 6% rate, and it results in a payoff of



            The deviating house earns a current profit of 7 and then zero in the next pe-
riod, as both houses charge 4%. They then return to an 8% rate, and the profit
is 5 thereafter. The equilibrium condition is



            [14.6]



            To complete the analysis, we need to ensure that the punishment is also an
equilibrium—that is, that it is credible that the houses will go through with
the threatened punishment. So suppose the history is such that, in the previ-
ous period, it was neither the case that both houses charged 8% nor that both
charged 4%. Then the prescribed behavior is to set a 4% rate, and this yields
a payoff of



            [14.7]



            Given that the other house also charges 4%, the profit is zero, but then jumps
to 5 as the two houses return to an 8% rate once the price war is over. Because
the future payoff is the same whether the rate is 6% or 8%, the best alterna-
tive to 4% is 6%, as that yields a higher current profit of 1 (as opposed to 
with an 8% rate). The resulting payoff from a 6% rate is



            [14.8]



            The company earns 1 in the current period, but then goes through the price
war in the next period (as prescribed by its strategy), after which the commis-
sion rate returns to 8%. When called upon to implement a price war, each
house goes along if (14.7) is at least as large as (14.8):



            [14.9]



            To sum up, this strategy pair is a subgame perfect Nash equilibrium when
both (14.6) and (14.9) hold. Equation (14.6) ensures that an auction house
wants to be cooperative (by charging 8% when the other company is expected
to do so) and (14.9) ensures that a house is willing to engage in a punishing
price war when needed. Both conditions hold when 



            There are two worthwhile points to make here. First, the punishment re-
quires its own brand of cooperation. During a price war, a house can raise its
current profit by setting a rate of 6% rather than 4%. It is induced to go along
with the “stick” of a price war by the lure of the “carrot” of a high commission
rate of 8% tomorrow. Only when the houses have set a low rate—and received
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            a low profit—do they return to setting a high rate and
earning a high profit. It is then in the best interests of an
auction house to “take its medicine” and hasten a return
to “good health.” Of course, companies have to value fu-
ture profits sufficiently in order to get them to partici-
pate in the price war, and that is what condition (14.9)
guarantees.



            The second point is that collusion is easier with the
threat of a one-period price war than with the threat of



            reverting to regular competition forever. A price-war punishment made collu-
sion stable when while permanently returning to a stage-game Nash
equilibrium required that Collusion is then easier in the sense that the
discount factor doesn’t have to be quite so high; in other words, auction
houses do not need to value future profits quite as much. A “short and nasty”
punishment can then be more effective than a “long and mild” punishment.



            14.2.4 A More Equitable Punishment



            An eye for an eye, and a tooth for a tooth. —THE BIBLE (EXODUS 21:23–27).



            We’ve considered a variety of punishments—permanently reverting to compe-
tition; temporarily reverting to competition; a short, intense price war—but
they are common in that they harm all parties, both the player who cheated
and the one who was victimized. A more equitable punishment would focus
harm on the player who violated the cooperative norm. To such a punishment
we now turn.



            Again, the cooperative outcome is for both auction houses to charge 8% in
each period. If, however, say, Christie’s deviates by undercutting Sotheby’s rate
of 8%, the punishment is that Sotheby’s gets to inflict the same harm on
Christie’s. That is, in the next period, Christie’s charges 8%, while Sotheby’s
undercuts it with a rate of 6%. If Christie’s does indeed follow through with an
8% rate, then, in the ensuing periods, both houses return to charging 8%. The
deviator is then required to set a high commission rate and allow the other
house to undercut it and take a big chunk of business. This occurs for one pe-
riod, and then there is a return to the cooperative outcome. If there is another
violation in the future, then the same punishment ensues. Finally, if, by
chance, the two houses simultaneously deviate, then the violations are ignored
and cooperative play continues.



            Suppose both auction houses are to set the cooperative rate of 8%. It is op-
timal to do so when



            d � 2
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5,



            For the infinitely repeated game between
Christie’s and Sotheby’s, now suppose the pun-
ishment is a two-period price war in which both
auction houses set a commission rate of 4%.
Derive the conditions for this strategy pair to be
a subgame perfect Nash equilibrium.



            14.1 CHECK YOUR UNDERSTANDING



            The payoff from an 8% rate is a payoff stream of 5 forever. The highest payoff
from cheating is setting a 6% rate—earning a current profit of 7—and then in-
curring the punishment payoff. The latter involves a profit of 1 next period—
as the deviator sets an 8% rate and the other house charges 6%—and then a
return to both houses charging 8%.



            Because punishment entails the deviator allowing its rival to undercut, it is
essential to make sure that it is optimal to act in such a way. So suppose
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            Sotheby’s cheated in the previous period. Then it is now to set a rate of 8%
while Christie’s charges 6%, a situation that yields a current profit of 1 for
Sotheby’s. Sotheby’s best alternative is to match Christie’s rate of 6%, but then,
according to its strategy, to go through with the punishment in the ensuing pe-
riod. Thus, Sotheby’s will optimally charge 8% and allow itself to be undercut
by Christie’s if



            1 � d � 5 � d2 � 5 � p � 4 � d � 1 � d2 � 5 � p 1 1 � d � 5 � �4 � d1 d �
3
4



            .



            Note that the house which was cheated is happy to go along with the punish-
ment. With the other house charging 8%, the former reaps a current profit of
7 by charging 6%. Since the future payoff is the same regardless of what it
does, it wants to maximize its current profit, and a rate of 6% does just that.



            The punishment is one of responding in kind. If Sotheby’s cheats by under-
cutting the agreed-upon rate of 8% and grabbing a lot of the business, then, if
cooperation is to be reestablished, Christie’s must have a chance to undercut
Sotheby’s. This is the ancient principle of retributive justice. But there is also
a compensatory aspect, as the victimized auction house receives a profit that
is higher than it would be under cooperative play.



            14.3 Quid Pro Quo
THE MAXIM “YOU SCRATCH my back and I’ll scratch yours” is followed not just by
humans, but by several other species in the animal kingdom. In Latin, it is
called quid pro quo, meaning “something for something.” In some instances,
this exchange may occur near contemporaneously—as when chimps take
turns grooming each other—but in other instances, the favor will be returned
at some distant and perhaps unspecified time. Indeed, it may occur only if a
player is in need, something that may or may not arise.



            This form of cooperation—exchanging favors over time—is explored here
for two bloodsucking species: vampire bats and politicians. The first example
shows how the norm of quid pro quo can lead to an explosion of wasteful
spending in the U.S. Congress. Senators support each others’ pet projects so
as to aid their reelection efforts, with the taxpayers footing the bill. Similarly,
vampire bats help each other out in a time of need, but the exchange is not in
votes, but rather in regurgitated blood—messy and gross, but not as costly to
taxpayers.



            � SITUATION: U.S. CONGRESS AND PORK-BARREL SPENDING



            At $286.4 billion, the highway bill just passed by Congress is the most ex-
pensive public works legislation in U.S. history [and] it sets a new record for
pork-barrel spending, earmarking $24 billion for a staggering 6,376 pet proj-
ects, spread among virtually every congressional district in the land. . . . It
passed 412 to 8 in the House, 91 to 4 in the Senate. —JEFF JACOBY (“THE



            REPUBLICAN PORK BARREL,” BOSTON GLOBE, AUGUST 4, 2005)



            Giving money and power to government is like giving whiskey and car keys
to teenage boys. —P. J. O’ROURKE (PARLIAMENT OF WHORES, 1992)


            

        



        
            

            
432 CHAPTER 14: COOPERATION AND REPUTATION



            In the 2005 Transportation Equity Act, the U.S. Congress was considering a
bill that, among other things, appropriated $223 million to build a bridge con-
necting the town of Ketchikan, Alaska (with a population under 9,000), with its
airport on the Island of Gravina (population: 50). Although this project would
surely benefit a few thousand people in Alaska—both those who would use the
bridge and those employed to build it—the cost involved struck most people as
absurd when placed in comparison to the number of people it would benefit.
Dubbed the “Bridge to Nowhere,” it provoked a clamor once exposed.



            The Bridge to Nowhere is a classic case of “pork-barrel spending.” A pork-
barrel project is designed to benefit an elected official’s constituents—thus en-
hancing his chances for reelection—but has little justification otherwise. The
strategy is to draw resources from the broader population—in the case of the
bridge in Ketchikan, all federal taxpayers would be footing the bill—and focus
the benefits on a narrow group of people—here, it was Senator Ted Stevens,
who was trying to benefit the residents of his home state of Alaska.



            Of course, one might ask, Why does Congress approve pork-barrel projects?
At work is a version of quid pro quo among members of Congress. Each sen-
ator or representative puts forth his own pork-barrel project with the under-
standing that if others vote for it, then he’ll vote for their patronage project
when it comes to the floor. This form of cooperation benefits the members of
Congress—each brings money to his constituency—and the country as a
whole pays the cost.



            To explore the stability of the pork-barrel quid pro quo, suppose there are
just three members of the U.S. Senate: Senators Barrow, Byrd, and Stevens.*
In each period, one of them has a pork-barrel project to propose. If the bill
passes, its sponsor receives a payoff of 100, while the other two members have
a payoff of Assume that the payoff is zero for all if the bill is not passed.
Note that a member of Congress is worse off with another member’s pork,
since her constituents do not benefit, but must pay for a part of it. Though
contrary to actual voting procedures, it’ll simplify our analysis if we assume
that all three votes are needed to pass a bill. Assume that pork-barrel projects
arise in an alternating fashion, with each senator proposing a project every
three periods. Senator Barrow proposes in periods 1, 4, 7, . . . , Senator Byrd
in periods 2, 5, 8, . . . , and Senator Stevens in periods 3, 6, 9, . . .



            In each period, there is a project on the agenda and each Senator has to de-
cide whether to vote in favor of it. Consider a strategy profile in which
Senators start out voting for every project. If a Senator deviates by not voting
for someone else’s project, then the other two Senators vote against that
Senator’s next project. Once having done that, they return to supporting all
projects. This is a one-period asymmetric punishment akin to what was cov-
ered in the previous section.



            Suppose senators are currently in the cooperative phase in which all proj-
ects are being supported and it is Senator Barrow’s turn to propose. It is
clearly optimal for him to vote for his own project; the real issue is whether
Senators Byrd and Stevens should do so. If Senator Byrd supports the project,
then his payoff is



            �25.



            [14.10]�25 � d � 100 � d2 � (�25) � d3 � (�25) � d4 � 100 � d5 � (�25) � p.



            *U.S. Senators Robert Byrd (Democrat from West Virginia) and Ted Stevens (Republican from Alaska) are
considered masters of pork-barrel spending. A barrow is a castrated hog.
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            He gets by having Senator Barrow’s pork funded, but then receives 100 in
the next period (since his project is approved) and in the period after that
as Senator Stevens’s project is approved. The payoffs then cycle. Alternatively,
Senator Byrd could vote against Senator Barrow’s project, in which case
Senator Byrd’s payoff is



            �25
�25



            [14.11]0 � d � 0 � d2 � (�25) � d3 � (�25) � d4 � 100 � d5 � (�25) � p.



            He gets zero in the current period, since Senator Barrow’s project does not
pass, and zero again in the following period as his project is voted down in re-
taliation. After that, they all return to supporting pork.



            Senator Byrd optimally votes for the project when (14.10) is at least as great
as (14.11). Notice that the payoff is the same from the third period onward.
Canceling those common terms, we see that (14.10) is at least as great as
(14.11) when



            Continuing with the situation in which Senator Barrow’s project is on the
agenda, now consider Senator Stevens. The difference between the situation
faced by Senators Byrd and Stevens is that the latter’s turn at the trough comes
up in two periods rather than one. Senator Stevens optimally votes in favor when



            �25 � d � 100 � 01 d � .25.



            Because the punishment is the same whether he votes against one or two bills,
if Senator Stevens votes against Senator Barrow’s project, then he ought to vote
against Senator Byrd’s project in the ensuing period as well. Thus, Senator
Stevens receives a zero payoff in the first and second periods and, since his bill
is voted down in retaliation, a zero payoff in the third period. After that, there
is a return to the quid pro quo norm. Since the terms on both sides of (14.12)
are identical from the fourth period onward, (14.12) is equivalent to



            One can show that the analysis is analogous when it is Senator Byrd’s turn
to propose a project. Senator Stevens then finds it optimal to vote in favor
when and Senator Barrow finds it likewise when When it is
Senator Stevens’s turn, Senator Barrow goes along if and Senator Byrd
does if Finally, if the history is such that there is a need for a punish-
ment, it is clearly optimal to go through with voting against the project, given
that everyone else does.



            In sum, this norm of voting for one another’s patronage project is an equi-
librium if (Note that this implies that holds as well.) If a
Senator’s turn to propose is in the next period, then the discount factor must
be at least as great as .25 in order for it to be optimal to vote in favor. However,
if his turn doesn’t come for two periods, then he must be more patient, as re-
flected in the discount factor having to be at least .64. Since the punishment
is in the more distant future, a senator must value the future more in order to
go along with the proposed project.



            d � .25d � .64.



            d � .64.
d � .25



            d � .64.d � .25,



            �25 � 25 � d � 100 � d2 � 01 d � .64.



            [14.12]
0 � d � 0 � d2 � 0 � d3 � (�25) � d4 � (�25) � d5 � 100 � p.
�25 � d � (�25) � d2 � 100 � d3 � (�25) � d4 � (�25) � d5 � 100 � p �
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            � SITUATION: VAMPIRE BATS AND RECIPROCAL ALTRUISM



            Desmodus rotundus, or, as it is more commonly known, the vampire bat lives
a harsh and precarious life. Feeding off of the blood of animals—cows and
horses more than homo sapiens—vampire bats need to eat 50–100% of their
body weight each night. And they cannot survive for long without eating: After
just a few bloodless days, a vampire bat can lose as much as 25% of its body
weight and its body temperature can fall dangerously low.2



            With so much riding on regular consumption of blood, vampire bats have
developed a form of cooperation that evolutionary biologists refer to as recip-
rocal altruism. A bat who has not fed recently and is in critical need receives
regurgitated blood from another bat who was successful in that night’s feed-
ing. Interestingly, this practice of sharing exists only among female adults, al-
though they also give blood to the young. Putting aside the question of
whether the practice is the result of natural selection or social imitation, let us
see how game theory can show that it is a stable norm.*



            For simplicity, suppose there are just two vampire bats in the colony. Each
night, they fly out seeking the blood of the living. (Is game theory cool, or
what?) At the end of the night, a bat can return with either a full or an empty
stomach. Let denote the probability that a bat feeds itself on any given night.
There are three possible outcomes. First, both bats succeeded in their hunt for
blood, in which case there is no need to share. Second, both bats struck out so
there is no blood to share. The third outcome is that one bat fed and the other



            did not, in which case the former decides whether to share
its nightly take with the latter.



            TABLE 14.1 reports the payoffs to the bats, depending on
whether sharing occurs, when one fed that night and one did
not. If there is no sharing, then the bat that has fed has a pay-
off of 10 and the hungry bat’s payoff is If they share, the
fed bat’s payoff reduces to 8, since it consumes less blood,
while the hungry bat’s payoff rises to 4.



            As assumed throughout our analysis of repeated games,
each bat maximizes the present value of its payoff stream.



            Now, you may be a bit uncomfortable imagining nonhumans engaging in dis-
counting, but experiments have shown that pigeons and rats do value current
payoffs more than future ones (though, to my knowledge, these experiments
have not been conducted on bats). Recalling that the discount factor can also
be interpreted as the probability of surviving to the next period, you can see
that it would not be surprising that natural selection results in an animal’s at-
taching more importance to feeding today than feeding tomorrow, since it
may not be alive come tomorrow. But if you still feel uncomfortable with
assuming that bats discount, then replace vampire bats with actual vam-
pires—say, Anya and Spike from the television series Buffy the Vampire Slayer.



            A strategy for a bat prescribes what a bat that has fed should do when the
other bat is hungry, depending on the history of their interactions. Consider a



            �1.



            s



            *Chapters 16 and 17 cover evolutionary game theory, which is a modification of game theory designed to
apply more generally to the animal kingdom. While the example of sharing among vampire bats could just
as well have fit in those chapters, I present it here to show the broad relevance of the theory of repeated
games to explaining behavior.



            TABLE 14.1 PAYOFFS OF VAMPIRE
BATS



            Bat Sharing No Sharing



            Fed bat 8 10



            Hungry bat 4 �1


            

        



        
            

            
14.3 Quid Pro Quo 435



            strategy in which the fed bat shares with the hungry bat as long as, in all past
situations, a fed bat shared the contents of its stomach with a hungry one. If,
in some past period, sharing in that situation did not occur, then neither bat
shares blood. This is just the grim-trigger strategy. Let us derive conditions for
it to be a subgame perfect Nash equilibrium.



            As an initial step in our analysis, we’ll derive the expected payoff from this
strategy profile at the start of a night, before the bats learn about their success
or failure with feeding. Letting V denote the expected payoff when bats are en-
gaging in this sharing practice, we have



            [14.13]V � s � �s � 10 � (1 � s) � 8� � (1 � s) � �s � 4 � (1 � s) � (�1)� � dV.



            This equation requires a bit of explanation. With probability s, a bat feeds it-
self that night, in which case its current-period expected payoff is



            with probability s, the other bat has fed, so no sharing
occurs and both bats’ payoff is 10; while with probability the other bat
is hungry and sharing results in a current payoff of 8 for the first bat. This
gives us the term in (14.13). The other possibility is
that a bat is unsuccessful in its feeding foray, which occurs with probability



            It then receives a payoff of 4—when the other bat was successful and
shares—and a payoff of —when the other bat is also hungry. This scenario
produces the term The sum of the first
two terms in (14.13) is the expected current-period payoff for a bat. The third
term is which is the expected future payoff; a bat expects to get V come
next period and that is discounted by Now, let us solve for V and simplify
the resulting expression:



            If there is a deviation, then the ensuing punishment has both bats no longer
sharing. The single-period expected payoff without sharing is



            since a bat finds food with probability s, in which case its payoff is 10, and
does not with probability in which case its payoff is Because these
payoffs apply to every period, the present value of that payoff stream is



            We can now turn to determining when a bat that has fed wants to share its
blood with a hungry bat. Suppose the two bats have always shared in that sit-
uation in the past. Then the one that has fed finds it optimal to share when



            [14.14]



            By sharing, the bat’s current payoff is 8 and its future expected payoff is V,
which is the payoff when bats anticipate sharing in the future. On the right-
hand side is the expression denoting the payoff from not sharing. It yields a



            8 � d a�3s2 � 14s � 1
1 � d



            b � 10 � d a11s � 1
1 � d



            b .



            (11s � 1)/(1 � d).



            �1.1 � s,



            s � 10 � (1 � s) � (�1) � 11s � 1,



            1 V(1 � d) � �3s2 � 14s � 11 V �
�3s2 � 14s � 1



            1 � d
.



            V � dV � 10s2 � 8s(1 � s) � 4s(1 � s) � (1 � s)2



            d.
dV,



            (1 � s) � �s � 4 � (1 � s) � (�1)�.
�1



            1 � s.



            s � �s � 10 � (1 � s) � 8�



            1 � s,
s � 10 � (1 � s) � 8;
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            higher current payoff of 10 and a future expected payoff of 
which now presumes that the bats do not share. If (14.14) holds, then it is op-
timal to share when the sharing norm has never been violated.



            If the history is such that there was a past violation from sharing, then the
fed bat is not supposed to share, which is indeed optimal when



            This condition always holds. Sharing lowers the current payoff and there is no
compensation with a higher future payoff, since it is regard-
less of what happens. It is thus not optimal to reduce current food consump-
tion if no reward of higher future consumption is anticipated.



            The strategy profile with reciprocal altruism is then a subgame perfect
Nash equilibrium if (14.14) holds. After some manipulation, (14.14) can be
shown to be equivalent to



            For the remainder of the analysis, assume that so the preceding condi-
tion becomes 



            Plotting in FIGURE 14.2, we see that the norm of reciprocal altruism
is self-enforcing (i.e., it is an equilibrium) when the probability of success is



            s(1 � s)
s(1 � s) � 1



            6.
d � .8,



            s(1 � s) �
2(1 � d)



            3d
.



            (11s � 1)/(1 � d)



            10 � da11s � 1
1 � d



            b � 8 � da11s � 1
1 � d



            b .



            (11s � 1)/(1 � d),



            0 .2 .5 .8 1



            s(1�s)



            1
6



            Cooperation occurs



            s



            FIGURE 14.2 Equilibrium Condition for There to 
be Reciprocal Altruism
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            between .21 and .79; it can be neither too low nor too
high. If the probability of success is too low, then the
chances that the hungry bat will have blood to share in
the future are too small to induce the bat that has fed to
share its blood today. In other words, it is unlikely that
any favor will be returned in the future. If, instead, the
probability of success is too high, then the bat that has
fed is not that concerned about needing blood in the fu-
ture and so assigns a high probability to being able to
feed itself. It is unlikely to need a favor in the future.
Thus, it is when individual success in feeding is moder-
ate that reciprocal altruism is stable.



            Reciprocal altruism is sustainable when players
care sufficiently about the future and the probability of
needing help in the future is neither too likely nor too
unlikely.



            14.4 Reputation
Regard your good name as the richest jewel you can pos-
sibly be possessed of—for credit is like fire; when once
you have kindled it you may easily preserve it, but if you
once extinguish it, you will find it an arduous task to
rekindle it again. —SOCRATES



            A GOOD REPUTATION IS a valuable asset. A reputation for honesty (such as a high
feedback score on eBay) may make others inclined to trade with you. A repu-
tation for hard work may land you a good job. A reputation for paying your
debts may secure you a loan. At the same time, and as Socrates suggests, rep-
utation can be fragile. A single lie can label you as a liar. A single day of cut-
ting out of work early can label you a slacker. A single unpaid debt can label
you a bad credit risk. The fragility of a reputation can be unfortunate, but also
necessary to provide the right incentives so that people will behave properly.
We’ll examine this assertion in the next two applications.



            � SITUATION: LENDING TO KINGS



            When faced with a short-run need for cash—such as cash required to finance
a war—kings in premodern Europe would borrow from private lenders. Credit
was particularly important, as taxation was not widespread. In some instances,
a king reneged on his loans—such as in 1290, when King Edward I expelled his
Jewish lenders (and Jews in general) from England—but in many cases he re-
paid them. Now, a king is above the law, so why would he repay his debts?



            Consider a situation with a king and a single lender. (You can think of the
lender as a unified group of lenders, such as the banking community.) At the
start of any period, there is a probability b that the king needs to borrow
funds; for example, he may need to finance a war or purchase land. In that
event, the lenders must decide whether to lend the king the money. Suppose
the interest rate the lenders would charge is 10%. Then, with a loan of size



            Consider the infinitely repeated game based on
the stage game in FIGURE 14.3. Player 1’s
strategy has him choose a in odd periods and c
in even periods, as long as the outcome has al-
ways been (a, z) in odd periods and (c, x) in
even periods. For any other history, player 1
chooses b. Player 2’s strategy has her choose z
in odd periods and x in even periods, as long as
the outcome has always been (a, z) in odd peri-
ods and (c, x) in even periods. For any other his-
tory, player 2 chooses y. Find the conditions for
this strategy pair to be a subgame perfect Nash
equilibrium.



            14.2 CHECK YOUR UNDERSTANDING
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            100, the deal is that the king repays 110: the principal of 100, plus interest of
10 (which is 10% of 100). At the end of the loan period, the king decides
whether to pay 110 or renege and pay nothing. Assume that the value of the
loan to the king is 125. Thus, the king would prefer to take out the loan and
repay it than not to have a loan. Finally, assume that if the lenders didn’t lend
the money to the king, they would not earn any return on their money. Thus,
the lenders would like to lend to the king if they think that he’ll repay the loan.



            Consider a strategy in which the lender initially provides a loan when
needed and continues to do so as long as the king has repaid past loans. If the
king ever reneges, then the lender refuses to lend to him again. The king’s
strategy is to repay the initial loan and any future loan if he has always repaid
it in the past. If he ever reneges, then he reneges on all future loans. Each
player is concerned with maximizing the expected present value of his mone-
tary stream.



            Consider the lender’s strategy. If the king is a good credit risk (i.e., he has
always repaid his loans), then the lender does find it optimal to lend to him
again. Doing so yields a payoff of 10 on each loan (the 10% interest on the loan
of 100). If, instead, the king has reneged on a past loan, then, according to the
king’s strategy, he’ll renege on all future loans. In that case, the lender does not
want to lend to him. The lender’s strategy is then optimal.



            The interesting analysis concerns the behavior of the king. If he has made
himself into a bad credit risk, then it is indeed optimal for him not to repay a
loan, since, according to the lender’s strategy, he won’t get a future loan re-
gardless of what he does. His payoff from repaying the loan is while it
is zero from reneging. (Note that he has already reaped the 125 from getting
the loan.)



            Finally, consider the situation in which the king is a good credit risk and
has an outstanding loan. If the king repays the loan (and acts according to his
strategy in the future), his payoff is



            Repayment costs him 110 in the current period. With probability b, he needs
a loan next period, and given that he has repaid his past loans, he’ll get it. This
new loan yields a payoff of 15, as the king values it at 125 and then we need
to net out the repayment of 110. Similarly, there is a probability b that he’ll
need a loan in each succeeding period. Alternatively, the king could renege on
the current loan, in which case his payoff is zero in the current period—since
he foregoes no funds—and in all future periods—since the lender discontinues
lending to him. It is then optimal for the king to repay the loan when



            [14.15]



            The king repays the loan not out of the goodness of his heart, but rather to
preserve his reputation so that he can secure future loans. The lenders antici-
pate that he has an incentive to maintain his reputation and thus lend money
to him even though they know that the king is above the law and could refuse
to make payment at any time.



            �110 � d ab � 15
1 � d



            b � 01 d �
110



            110 � 15b
.



            �110 � d � b � 15 � d2 � b � 15 � p � �110 � d ab � 15
1 � d



            b .



            �110,
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            It is worth exploring this equilibrium condition to gain some further in-
sight. Suppose b is close to zero, so that the king doesn’t expect to need an-
other loan. In that case, (14.15) is rather stringent, as the discount factor must
be close to 1. If he doesn’t foresee there being much of a chance of needing a
future loan, the king is unlikely to repay the current one, and as a result, the
lenders (anticipating that the king will renege) will not make the original loan.
The only reason the king repays a loan is to preserve a reputation conducive
to securing more loans. If he expects the next loan to be the last one he’ll ever
need, then he has no incentive to repay it. Ironically, the king is a bad credit
risk if the lenders never expect the king to need another loan.



            Of even greater irony is the fact that the king is in a weaker position than
his lowly subjects! Since the lenders can take anyone but the king to court and
demand repayment, it becomes credible that a person will repay a loan. In
contrast, credibility is problematic for the king because there is no court to
force him to make payment and he cannot commit himself to paying back a
loan. He can only hope that the lenders think it’ll be in his best interests to
repay a loan in order to preserve his reputation. That he is above the law
makes it more, not less, difficult for him to borrow!



            � SITUATION: HENRY FORD AND THE $5 WORKDAY



            The Ford Motor Co., the greatest and most successful automobile manufac-
turing company in the world, will, on Jan. 12, inaugurate the greatest revo-
lution in the matter of rewards for its workers ever known in the industrial
world. —DETROIT JOURNAL, JANUARY 5, 1914.3



            In 1914, Henry Ford offered the unheard-of wage of $5 a day for workers in
his factories. This was at a time when the typical daily wage in the automobile
industry was $2.25. Although we could conclude that Henry Ford was just gen-
erous with his workers, such a strategy may actually have enhanced the profit
of the Ford Motor Company. Let’s see how.



            If a worker is employed by Henry Ford, he has to decide whether to work
hard or shirk. Assume that the monetary cost to a worker is $1 from engaging
in hard labor and zero from shirking. If the worker is paid a wage of w, his
single-period payoff is then w if he shirks and if he works hard. A
worker’s payoff is the present value of his stream of single-period payoffs,
where his discount factor is 



            Henry Ford’s payoff is the present value of the stream of profits (per worker),
where (“beta”) is his discount factor. Suppose his company earns revenue of
$4 per day from a worker who shirks and $7 from a worker who works hard.
For example, if Henry Ford offers a wage of $5 and the worker shirks (whereby
she is summarily fired), but the new worker works hard and does so in every
period thereafter, then Henry Ford’s payoff from that position is



            Assume that there is an unlimited supply of workers who are willing to
work for $5 a day. Similarly, there is an unlimited supply of jobs offered by
other companies, so a worker who is fired can always find a position that pays



            (4 � 5) � b(7 � 5) � b2(7 � 5) � p � �1 � b a 2
1 � b



            b .



            b



            d.



            w � 1
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            $3 and tolerates shirking. In this game, Henry Ford decides what wage to pay
and whether or not to fire a worker. If he fires a worker, then he automatically
hires a new worker. A worker for Henry Ford decides whether to work hard.



            Suppose Henry Ford offers the following contract to his workers (which is
his strategy): You’ll be paid a wage of $5 and continue to be employed as long
you work hard. If you shirk, then you’re labeled a slacker and fired. The
worker’s strategy is to work hard if he is paid a wage of at least $5. At any
lower wage, he shirks.



            In assessing whether Henry Ford’s strategy is optimal, first note that he is in-
different between firing and retaining a worker, since workers are perfect sub-
stitutes. Thus, firing a worker when he shirks and retaining him when he works
hard is optimal for Henry Ford (i.e., there is no other firing-and-hiring strategy
that yields a strictly higher payoff). The real issue is whether it is optimal to
offer a wage of $5. Suppose he offers a wage of w today. Then, given that he
acts according to his strategy in the future (which means offering a wage of $5),
and given that workers act according to their strategy, Henry Ford’s payoff is



            If the wage is at least 5, then the worker works hard, so Henry Ford gets a
current-period payoff of and, by acting according to his strategy in the
future, receives a future payoff of as his per-period profit is 2
from earning 7 and paying a wage of 5. If then the worker shirks,
so Henry Ford’s current payoff is only with the same future payoff.
Finally, if the wage is less than 3, then no worker is willing to work for Henry
Ford, since they can do better by working elsewhere at a wage of 3. This
means that Ford’s current payoff is zero, though his future payoff remains



            Clearly, Henry Ford prefers to pay a wage of 5 to any higher wage; why pay
more than is needed to induce hard work? Also, he prefers a wage of 3 to any
wage above 3 and below 5, because a higher wage still fails to induce hard
work. Finally, he prefers to pay 3 to any wage below 3, since the former gen-
erates revenue of 4 for a current profit of 1, while a wage below 3 is insuffi-
cient to induce a worker to come work for him and thus produces zero profit.
Therefore, the optimal wage is either 3 or 5. Henry Ford prefers to do as his
strategy says and pay a wage of 5 if



            In other words, he acts in accordance with his strategy if the additional rev-
enue from having a worker work hard is at least as great as the wage premium
required to get the worker to work hard. Henry Ford’s strategy is optimal.
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            Now consider a worker. Given Henry Ford’s strategy and given that the
worker acts according to his own strategy in the future, he prefers working
hard (as his strategy prescribes) over shirking when



            That is, as long as a worker’s discount factor is at least she would prefer to
work hard at a wage of $5 rather than shirk and lose this high-paying job.



            Key to this scheme is that Henry Ford values hard work more than it costs
him to induce hard work. He gains additional revenue of $3 per day per
worker from having them work hard, while workers need to be paid only $1
to compensate them for not shirking. There is then a net gain of $2 per day
when hard work occurs. The way to get workers to apply a high level of effort
is to pay them a wage of $5—well above what others are paying—and fire
them if they don’t perform. As long as workers value future wages sufficiently,
a worker will keep his nose to the grindstone so as to maintain a reputation
for hard work. With this scheme, everyone is made better off. Henry Ford
earns a higher profit per worker of $1 per day, and the worker is better off by
$1 per day.



            In closing, it is useful to remind ourselves that life is more complicated
than our models, and indeed, that was the case with Henry Ford’s $5 wage. It
appears that he had more than profit or generosity in mind, for he wanted to
“shape” the lives of his workers:



            To be eligible for the $5.00 rate, the employee needed to demonstrate that he
did not drink alcohol or physically mistreat his family or have boarders in
his home, and that he regularly deposited money in a savings account,
maintained a clean home, and had a good moral character.4



            As a man of action, he didn’t just promulgate, but actually created, a “Sociological
Department” that would advise and monitor his workers—even at their homes!
One wonders whether the $5 was worth it.



            14.5 Imperfect Monitoring and Antiballistic Missiles
The United States of America and the Union of Soviet Socialist Republics,
proceeding from the premise that nuclear war would have devastating con-
sequences for all mankind, considering that effective measures to limit anti-
ballistic missile systems would be a substantial factor in curbing the race in
strategic offensive arms and would lead to a decrease in the risk of outbreak
of war involving nuclear weapons, have agreed as follows: Each Party un-
dertakes not to deploy ABM systems for a defense of the territory of its coun-
try. For the purpose of providing compliance, each Party shall use national
technical means of verification at its disposal in a manner consistent with
generally recognized principles of international law. —[EXCERPTS FROM THE



            “TREATY ON THE LIMITATION OF ANTI-BALLISTIC MISSILE SYSTEMS”]



            BECAUSE THERE IS NO third party to enforce an agreement between two countries,
international treaties work only when they are self-enforcing. Both sides must
be willing to go along with the agreement at each moment in time. This situa-
tion is to be contrasted with a buyer and a seller who have written a contract.
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            If the seller delivered the goods, then the buyer must make payment. If she does
not, then the seller can take her to court and force payment. Without the courts
and the police, the buyer may have little reason to make payment once having
received the goods.



            The requirement that an agreement be self-enforcing can greatly restrict the
treaties that countries can enter into and expect to be fulfilled. A second prob-
lem with international treaties is monitoring them. A country may suspect vio-
lations, but lack the authority to enter another country to substantiate those
suspicions. Surrounding the invasion of Iraq in 2003 was the inability to con-
firm or deny that that country was developing weapons of mass destruction.



            Let us explore how cooperation can be sustained in the midst of imperfect
monitoring—though be prepared for a bevy of acronyms. One of the most im-
portant treaties in the Cold War between the United States and the U.S.S.R.
was the Anti-Ballistic Missile Treaty (or ABM Treaty), which came out of the
Strategic Arms Limitations Talks (SALT). Antiballistic missiles are designed to
defend areas by shooting down missiles. The primary concern was that the
presence of ABMs might make nuclear war more likely. But how could a de-
fensive weapon make war more likely? Here, it is important to understand that
the linchpin in the strategy of Mutually Assured Destruction (MAD) was that
neither country could implement a first strike to wipe out the other’s nuclear
arsenal. This meant that if, say, the United States attacked the U.S.S.R., it
would bring about America’s destruction because the Soviets would still have
nuclear missiles to launch. The stability of MAD could be lost, however, if a
country had ABMs. With a sufficiently effective ABM system, it might believe
that it could perform an effective first strike and defend against the few re-
maining weapons in the other country’s arsenal. Worse, a bit of game-theoretic
logic might even induce a country without an ABM system to strike first if it
thought that a strike against it was imminent. Thus, an ABM system could
destabilize an equilibrium in which both sides chose not to use nuclear de-
vices because of MAD. It was this fear that led to the signing of the ABM Treaty
in 1972 between President Richard Nixon and Leonid Brezhnev, general sec-
retary of the Communist Party of the Soviet Union. The treaty remained in
force until the United States withdrew from it in 2002.



            In each period, the two countries simultaneously decide how many ABMs
to have. As shown in FIGURE 14.4, there are three feasible levels. This stage
game has a unique Nash equilibrium: Both nations have a large stockpile of
ABMs. However, that outcome is not collectively optimal, as each would be
better off if it chose a low number of ABMs—which raises their payoffs from
3 to 8—or better yet, no ABMs—which raises it to 10.



            FIGURE 14.4 Stage Game in the ABM Treaty Game
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            Suppose this strategic situation is infinitely repeated,
but, contrary to the other applications in this and the
preceding chapter, the history of the game is not com-
mon knowledge; that is, no country is assured of observ-
ing the past choices of the other country. Thus, the de-
termination of whether another country has ABMs is
performed imperfectly. The uncertainty in monitoring is
reflected in TABLE 14.2. If a country has no ABMs, then
the probability that the other country detects its ABMs
is zero. If it chooses to a have a low number of ABMs,
then there is a 10% chance that the missiles are ob-
served, and there is a 50% chance that a high number of ABMs is detected.



            In each period, the countries make a choice, and then, with the probabili-
ties given in Table 14.2, a country observes that the other country has ABMs.
If a country finds ABMs, then that fact is assumed to be common knowledge
between the two countries. Each country seeks to maximize the expected pres-
ent value of its payoff stream.



            Consider a symmetric strategy pair that supports the outcome of prohibit-
ing all ABMs:



            ■ In period 1, choose No ABMs.



            ■ In any other period,



            choose No ABMs if neither country has observed ABMs in the other coun-
try in all past periods.



            choose High ABMs if either country has observed ABMs in the other
country in some past period.



            If there have been no observed violations, the payoff to not having ABMs is
If a country chooses instead to have a small number of ABMs, its



            expected payoff is



            [14.16]



            With probability .1, this violation is detected, and both countries respond by
investing heavily in ABMs thereafter. But there is also a 90% chance that the
violation is not detected. According to their strategies, both countries choose
No ABMs.*



            Rather than cheat with Low ABMs, either country could instead choose
High ABMs, which has an expected payoff of



            [14.17]18 � d c .5 � a 3
1 � d



            b � .5 � a 10
1 � d



            b d .



            12 � d c .1 � a 3
1 � d



            b � .9 � a 10
1 � d



            b d .
10/(1 � d).



            *We have glossed over a problematic issue regarding what a country’s payoff is if the country’s beliefs are
inaccurate. For example, suppose the United States has no ABMs and it believes that the Soviet Union has
no ABMs as well, but, in fact, the Soviet Union has a low level of ABMs. Is the payoff 10 to the United
States or 6? It would seem natural to suppose that the United States believes that it is 10 unless it discov-
ers that the Soviet Union actually does have ABMs, in which case the U.S. payoff is 6. Regardless of how
this issue is settled, it does not affect the derivation of the equilibrium conditions, since they are based
upon a country’s having an accurate conjecture about what the other country is to do.



            TABLE 14.2 MONITORING PROBABILITIES
IN THE ABM TREATY GAME



            Probability of



            Number of ABMs Detecting ABMs



            None 0



            Low .10



            High .50
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            It is optimal to abide by the treaty when the payoff from doing so, 
is at least as great as (14.16) and (14.17). Hence, the following inequalities
must hold:



            [14.18]



            [14.19]



            Thus, must be at least as large as .74. If then
both a low number and a high number of ABMs are
preferred to none. If then a low number
of ABMs is preferred to complete prohibition. Only
when does each country find it optimal to abide
by the ABM Treaty.



            Summary
People acting in their own individual interests can lead
to an outcome that is disappointing for everyone in the
sense that if they could coordinate and do something
different, they would all be better off. As the various ex-
amples in this chapter attest, such situations are far
from rare and, in fact, permeate society. They can arise
with countries, kings, companies, politicians, factory
workers, and even vampire bats. What the theory of re-
peated games shows is how and when players can con-
struct a mechanism that supports mutually beneficial
actions.



            The exact form of the mechanism may vary, but what
it always entails is players working together to both re-
ward and punish each other. When everyone plays co-



            operatively, players reward each other by continuing to play cooperatively.
When someone deviates from cooperative play, the group punishes by engag-
ing in aggressive play, such as setting low commission rates in the case of fine-
arts auction houses. The punishment itself can take a variety of forms that dif-
fer in terms of their severity, length, and who is punished. One form of pun-
ishment is simply to stop cooperating and go to a stage-game Nash equilib-
rium. This reversion to uncooperative play can occur for a specific length of
time—say, five periods—or forever. The longer the reversion, the more severe
is the punishment and thus the more effective that threatened punishment will
be in deterring cheating. To pack more punch into a punishment, it can even
entail lower payoffs than occur at a stage-game Nash equilibrium. However,
such an intense punishment cannot go on forever. In order to induce players
to participate in such a costly punishment, there must be the lure of returning
to cooperative play in the future. This style of short, intense punishment has
been observed in the marketplace in the form of price wars, in which prices
can even fall below cost before rising back to profitable levels.
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            Now suppose a technological advance improves
the monitoring technology, so that the probabili-
ties of detecting ABMs are as stated in TABLE



            14.3. Using the strategy profile just described,
derive the equilibrium conditions. If you an-
swered correctly, then you’ll find that the restric-
tion on the discount factor is less stringent, indi-
cating that better monitoring makes cooperation
easier.



            14.3 CHECK YOUR UNDERSTANDING



            TABLE 14.3 HIGHER MONITORING
PROBABILITIES IN 
THE ABM TREATY GAME



            Probability of



            Number of ABMs Detecting ABMs



            None 0



            Low .30



            High .75
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            Another way to view how cooperation is sustained is that a player’s history
of play influences her reputation for how she’ll play in the future. If a player
deviates from the norm of cooperative play, other players infer that she is an
“uncooperative type” and expect similar behavior in the future. This expecta-
tion causes them to change their own play—who wants to cooperate when
someone is anticipated to take advantage of you?—and thus cooperation
breaks down. Repeated games can then shed light on what it takes to main-
tain a reputation. We explored how, by repaying a loan, a king maintains his
reputation as a good credit risk and thereby induces lenders to offer him loans
in the future, or how the decision of a factory employee to exert a high level
of effort can maintain a reputation for being a hard worker, whereas shirking
on the job can soil that reputation and lead to dismissal.



            Our lives encompass an array of repeated games. We play them with our
parents, siblings, spouses, friends, neighbors, bosses, colleagues—the list goes
on and on. In many of these situations, the mechanisms for supporting coop-
eration reviewed in this and the previous chapter are subtly at work. Our re-
lationships are constructed on understanding that we’ll treat each other fairly,
and that if we don’t, then there are likely to be consequences. Although such
consequences may be unpleasant, they perform a valuable function, for it is
the fear of those consequences that helps keep people acting in a socially con-
structive way, and that makes everyone better off.



            1. Consider an infinitely repeated game in which the stage game is that
shown in FIGURE PR14.1. Each player’s payoff is the present value of her
payoff stream, where the discount factor is 
a. Define a grim-trigger strategy that results in player 1’s choosing c and



            player 2’s choosing y, and state conditions for that strategy’s resulting
in a subgame perfect Nash equilibrium.



            b. Consider the following strategy profile: In period 1, player 1 chooses
c. In any other period, player 1 chooses c if, in the previous period,
the outcome was either (c, y) or (d, z); otherwise he chooses d. In pe-
riod 1, player 2 chooses y. In any other period, player 2 chooses y if,
in the previous period, the outcome was either (c, y) or (d, z); other-
wise she chooses z. Derive conditions for this profile to result in a
subgame perfect Nash equilibrium.
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            c. Consider the following strategy profile: In period 1, player 1 chooses
c. In any other period, player 1 chooses c if, in the previous period,
the outcome was either (c, y), (d, w), or (a, z); he chooses d if, in the
previous period, player 2 chose y and player 1 did not choose c; he
chooses a if, in the previous period, player 1 chose c and player 2 did
not choose y; otherwise he chooses b. In period 1, player 2 chooses y.
In any other period, player 2 chooses y if, in the previous period, the
outcome was either (c, y), (d, w), or (a, z); she chooses w if, in the pre-
vious period, player 2 chose y and player 1 did not choose c; she
chooses z if, in the previous period, player 1 chose c and player 2 did
not choose y; otherwise she chooses x. Derive conditions for this pro-
file to yield a subgame perfect Nash equilibrium.



            2. As early as the 1820s, the custom of “pairing off” had developed in
Congress. If a member of Congress was to miss a formal vote, he would
arrange beforehand with a member on the opposing side of the issue for
the two not to vote. In modeling this situation, consider two members of
Congress—Representatives Smith and Jones—who, on a regular basis,
would like to miss a House vote in order to take care of other business.
Representative Smith would prefer to be away every three periods, start-
ing with period 1 (hence periods 1, 4, 7, . . .), and receives a value of 3
from being away. Representative Jones would prefer to be away every
three periods, starting with period 2 (hence, periods 2, 5, 8, . . .), and
also receives value of 3. Call these periods the representatives’ “traveling
periods.” In each such period, there is a House vote, and Smith receives
a value of 5 from being in attendance and voting and a value of if
Jones is in attendance and votes. Analogously, Jones earns 5 from being
in attendance and voting and if Smith is in attendance and votes.
Thus, if both are in attendance and vote, then Smith and Jones each
have a payoff of During a traveling period, a representa-
tive’s payoff is (1) 3 if he is not in attendance and the other representa-
tive does not vote; (2) if he is not in attendance and the
other representative votes; (3) 0 if both are in attendance and vote; and
(4) 5 if he is in attendance and votes and the other does not vote. During
a nontraveling period, a representative’s payoff is (1) 0 if he is not in at-
tendance and the other representative does not vote; (2) if he is not
in attendance and the other representative votes; (3) 0 if both are in at-
tendance and vote; and (4) 5 if he is in attendance and votes and the
other does not vote. In each period, the representatives simultaneously
decide whether to be in attendance and vote. Each seeks to maximize
the present value of his single-period payoff stream, where the discount
factor is Find a subgame perfect Nash equilibrium in which each is
not in attendance during his traveling periods and during those periods
they “pair off.”



            3. Return to the Vampire Bats game in Section 14.3, but now suppose the
two bats have different probabilities of success. For this purpose, let us
name the bats Anya and Spike. The probability that Anya succeeds in
her nightly feeding venture is a, and the probability of success for Spike
is s. Find the conditions for the strategy pair in Section 14.3 to yield a
subgame perfect Nash equilibrium.



            4. Three construction companies—A, B, and C—routinely bid on state
highway projects. In each period, the state offers a single contract and
the three companies simultaneously submit bids. A bid is how much
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            money a company specifies that it must be paid in order to take on the
job. The company that submits the lowest bid wins the contract. The
state specifies that bids must be in increments of 100 (feasible bids are
thus 0, 100, 200, . . .) and that a contract will not be awarded if the low-
est bid is in excess of 2,000. If two or more companies submit the low-
est bid, then each of those companies has an equal chance of winning it.
Assume that it would cost a company 1,000 to execute the contract.
Hence, if a company wins the contract at a bid of b, its profit is



            In this infinitely repeated game, a company’s payoff is the
present value of its profit stream.
a. Derive a symmetric Nash equilibrium for the stage game.
b. Consider companies supporting collusion with a bid rotation scheme



            using a grim-trigger strategy. In periods 1, 4, 7, . . . , company A bids
2,000 while companies B and C bid above 2,000; in periods 2, 5, 8, . . . ,
company B bids 2,000 while companies A and C bid above 2,000; and
in periods 3, 6, 9, . . . , company C bids 2,000 while companies A and
B bid above 2,000. Assume that any deviation from this behavior re-
sults in companies permanently reverting to a symmetric stage-game
Nash equilibrium. Derive conditions for this strategy profile to result
in a subgame perfect Nash equilibrium.



            5. Sav-Mart is the lone store in town, and it is currently earning a profit of
20. There is, however, a potential entrant—named Costless—that is con-
sidering entering the market. Each period is composed of two stages:
Stage 1 is an entry or exit stage and stage 2 is a pricing stage. If Costless
did not previously enter, then in stage 1 of the current period it decides
whether to do so. Entry incurs a one-time cost of 16. If Costless does not
enter, then Sav-Mart earns a current payoff of 20. If Costless enters, then
the two stores compete in stage 2 by choosing from among a low, mod-
erate, and high price policy, where the associated profits are shown in
FIGURE PR14.5.



            b � 1,000.



            If Costless entered in a previous period then, in stage 1 of the current
period, it decides whether or not to exit. If it exits, then it recovers half
(8) of its entry cost. If it does not exit, then the two stores play the game
in Figure PR14.1. There is an infinite number of periods, and each com-
pany acts to maximize the present value of its profit stream. Assume that
Costless can enter and exit at most once. Also, the single-period payoff
to Costless when it is not in the market is zero.
a. Consider the following strategy pair: For Sav-Mart, if Costless is in



            the market, then price low if this is Costless’ first period in the mar-
ket or if Sav-Mart has priced low in all past periods for which Costless
was in the market; otherwise price moderate. For Costless, consider
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            first what it does in stage 1. In period 1, do not enter. In any other pe-
riod, (1) if it did not previously enter, then do not enter; (2) if it did
previously enter, then exit if Sav-Mart priced low in previous periods
(in which Costless was in the market); otherwise do not exit. For stage
2, if Costless entered in stage 1 of the current period, then price mod-
erate. If it entered in a previous period (and has not exited), then price
moderate. Note that this strategy pair deters Costless from entering,
because Costless anticipates Sav-Mart pricing aggressively if Costless
does enter. Derive the conditions for the strategy pair to yield a sub-
game perfect Nash equilibrium.



            b. Find a strategy pair in which Costless enters, and derive the condi-
tions for that strategy pair to result in a subgame perfect Nash equi-
librium.



            6. Return to the game in Section 14.4 concerning lending to a king. Assume
that in period 1 the king needs a loan of size M and would require a loan
of only size 100 in future periods. Suppose the king and the lender use
the strategy profile described in Section 14.4.
a. Find the conditions for that strategy profile to yield a subgame per-



            fect Nash equilibrium.
b. Show that equilibrium requires that the size of the initial loan not be



            too much larger than the size of any anticipated future loan. Explain
why this is true.



            7. As Elizabeth Arden said, “Repetition makes reputation and reputation
makes customers.” Let’s see how that might work. In each period, a
manufacturer can choose to produce a low-quality product at a cost of
10 per unit or a high-quality product at a cost of 20 per unit. A consumer
is willing to pay up to 15 for a low-quality product and up to 50 for a
high-quality product. The problem is that a consumer cannot tell by
looking at the product whether it is of low or high quality. However, once
having purchased the product, a consumer learns its quality through
usage. There is one consumer each period, and a consumer buys as long
as the net surplus from the product is nonnegative. The net surplus is
the expected value of the product (which is 15 if it is expected to be of
low quality and 50 if of high quality), minus the price paid. The manu-
facturer’s payoff is the present value of its profit stream, where the profit
in any period is zero if the consumer doesn’t buy and is the price
charged, less the cost of making the good, if the consumer does buy. The
manufacturer’s discount factor is In each period, the manufacturer de-
cides on the quality and price of the product. After observing the price
(but not the quality), the consumer either buys or doesn’t buy. In each
period, all past actions, including all past prices, qualities, and purchas-
ing decisions, are common knowledge. Find a strategy profile that re-
sults in the manufacturer’s producing a high-quality product every pe-
riod and charging a price of 50, and consumers buying the product.
Derive conditions for this strategy profile to be a subgame perfect Nash
equilibrium.



            8. Let us modify Problem 7 by assuming that quality is imperfectly ob-
served even after the product is purchased. Each period, the manufac-
turer chooses the durability of the product. A product either works or
doesn’t, and its durability determines the likelihood that it works. The
manufacturer can produce a product with high durability at a cost of 20,
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            in which case the product has a 90% chance of working, or it can pro-
duce a product with low durability at a cost of 15 with a 60% chance of
working. The product that works is worth 30 to a consumer, and one
that doesn’t work is worth zero. As before, there is one consumer each
period, and that consumer decides whether or not to buy. A consumer
cannot observe a product’s durability when she buys, and after buying,
she just observes whether or not the product works. A consumer’s pay-
off is zero if she doesn’t buy and equals the expected value of the prod-
uct less the price paid if she does buy. If the product is of high durabil-
ity, then the expected value is and if it is of low
durability, then the expected value is In each pe-
riod, the manufacturer chooses the product’s durability and price so as
to maximize the expected value of its profit stream. The current-period
profit is zero if the consumer doesn’t buy and equals the price paid less
the cost of producing the good if the consumer does buy. Consider the
following strategy pair: For the manufacturer, produce a product of high
durability in period 1 and price it at 27. In any other period, produce a
product of high durability and price it at 27 if all past products have
“worked”; otherwise, produce a product of low durability and price it at
18. For the consumer, in period 1, buy if the price is no higher than 27.
In any other period, (1) if all past products have worked, then buy if the
price is no higher than 27, and (2) if some past product did not work,
then buy if the price is no higher than 18. Derive conditions for this
strategy profile to be a subgame perfect Nash equilibrium.



            9. Return to the infinitely repeated Trench Warfare game in Section 13.4,
and consider the following strategy profile: Let and be the actions
of the Allied and German side, respectively, in period t. Define as the
number of periods prior to period t for which ; that
is, the Allied side shot with malice and the Germans engaged in peace-
ful behavior. Analogously, define as the number of periods prior to
period t for which Next, define is
a counter that keeps track of how many more times the Allied side vio-
lated the truce than the Germans did, where a violation entails shooting
to kill while the other side shoots to miss. Set (so that the counter
starts at zero), and consider the following symmetric strategy profile,
which conditions behavior only on the counter: First, let us define the
profile for the Allied side. In period 1, choose miss. In period 
choose miss if for all and either or



            In period choose kill if either (1) and
for all or (2) for some 



            Next, define the profile for the German side. In period 1, choose miss. In
period choose miss if for all and either



            or In period choose kill if either (1) and
for all or (2) for some 



            This strategy pair has both players start off cooperating. Suppose the
counter has never strayed from the values 0, and 1, so that the dif-
ference in the number of violations has never been too large. If —
indicating that the numbers of violations in the past are equal for each
side-then both sides act cooperatively by choosing miss. If —indi-
cating that the Allied side has engaged in one more violation than the
Germans—then the Allied soldiers choose miss and the Germans sol-
diers choose kill. Hence, the Germans get to take a crack at the Allied
side in order to even up the score; note that as a result. IfCt�1 � 0



            Ct � 1



            Ct � 0
�1,



            t � t.Ct � 5�1, 0, 16t � t � 1;Ct � 5�1, 0, 16, Ct � 1t(� 2),Ct � 1.Ct � 0
t � t � 1Ct � 5�1, 0, 16t(� 2),



            t � t.Ct � 5�1, 0, 16t � t � 1;Ct � 5�1, 0, 16, Ct � �1t(� 2),Ct � 1.
Ct � 0t � t � 1Ct � 5�1, 0, 16 t(� 2),



            C1 � 0



            CtCt � Ct
A � Ct



            G.(at,gt) � (miss,kill).
Ct



            G



            (at,gt) � (kill,miss)
Ct



            A



            gtat



            .6 � 30 � .4 � 0 � 18.
.9 � 30 � .1 � 0 � 27,
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            —indicating that the Germans have engaged in one more viola-
tion than the Allies—then the Allied soldiers choose kill and the
Germans soldiers choose miss, and again follows. Finally, if the
counter is ever different from 0, or 1—so that the difference in the
number of violations is two or more—then both sides choose kill in all
ensuing periods. In other words, if the history becomes too unbalanced
in terms of violations, then both sides permanently give up on the truce.
Derive conditions for this strategy profile to be a subgame perfect Nash
equilibrium.



            10. In each period, two players simultaneously choose between two actions:
up and down. If both choose up, then each receives a payoff of 10 with
probability .8 and a payoff of 3 with probability .2. If both choose down,
then they both receive a payoff of 5 for sure. If one chooses down and
the other chooses up, then the former receives a payoff of 10 for sure and
the latter receives a payoff of 10 with probability .6 and a payoff of 3
with probability .4. When choosing an action, each player knows his
past choices and both players’ past payoffs, but neither knows what the
other player actually chose in the past. This stage game is infinitely re-
peated, where each player’s discount factor is Consider the following
symmetric strategy pair: In period 1, both players choose up. In any
other period, choose up if both players received the same payoff (either
3, 5, or 10) last period; otherwise choose down. Derive conditions
whereby this strategy pair is a subgame perfect Nash equilibrium.
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15.1 Introduction
IN THIS CHAPTER, COOPERATION will emerge in the most unlikely of places. As we
know from Chapters 13 and 14, cooperative play is erected on the prospect of
future encounters between players. The future holds out the possibility of pun-
ishing someone for behaving poorly, and it is that threat which can induce good
behavior today. As long as players are likely to run into each other again, coop-
eration can be sustained if players care enough about their future payoffs.



            Clearly, however, there are situations that do not appear to have the
“shadow of the future” hanging over current encounters. Consider, for exam-
ple, an employee who is about to retire. Because he does not anticipate inter-
acting with his fellow employees in the future, is there no basis for coopera-
tion between them? Or consider a common intergenerational scenario in
which a person is asked to take care of her parents when they are old. How
can her parents punish her if she fails to perform this familial duty? Of course,
a child might fulfill this duty out of love or out of fear of being cut out of the
will. But if those forces are ruled out, does it mean that parents will be aban-
doned when they are weak and have nothing to offer in return?



            In Section 15.2, we consider settings in which people realize that their in-
teractions with others will terminate at some point. In modeling these finite
lifetimes, a key assumption is that the timing of lives do not perfectly coincide.
In any period, some people will be in the early stage of their life, some in the
middle stage, and some in their twilight. Furthermore, when some people de-
part—either by dying or by leaving an organization—new people enter.
Although the person departs, the population is continually replenished, and in
this manner, the institution within which people interact lives forever. We’ll
see that as long as the institution is infinitely lived, finitely lived players can
sustain cooperation. There may not be cooperation throughout all of their
lives, but there’ll be enough to make things interesting.



            Another class of situations that is problematic for the presence of coopera-
tion is when strangers meet, because an encounter between those same two
people is unlikely to repeat itself. We will refer to a population as “large” when
two players who encounter each other do not expect to do so again in the fu-
ture. Thus, cooperation cannot be sustained by James threatening to punish
Jessica when she doesn’t cooperate, because Jessica doesn’t expect to meet
James again. Still, although one person cannot then discipline another, soci-
ety at large might be able to perform that function. For example, if informa-
tion about past encounters is observed by other people who will interact with
Jessica in the future, they can punish her for acting improperly toward James.
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            The preceding argument presumes that information about encounters is
public, and that may not always be the case. However, we’ll see how a clearing-
house for such information arises in practice and can be the basis for society
punishing those who misbehave. These issues are explored in Section 15.3,
where we show that traders in the Middle Ages could trust each other—in spite
of not expecting to meet again—out of fear that poor behavior will be reported
to someone known as the Law Merchant. Although the Law Merchant had no
powers of enforcement, his edicts still had a substantive effect by influencing
the behavior of future traders with respect to the misbehaving trader. These is-
sues remain pertinent to this day, popping up on eBay, as we shall see.



            15.2 Cooperation with Overlapping Generations
Children are the only form of immortality that we can be sure of. 
—PETER USTINOV



            PEOPLE COME AND GO, but societies persist because old members are replaced
with new ones. A corporation may see its older employees retire, but, at the
same time, it hires new employees to replace them. A corporation can then go
on indefinitely even though its founders do not. A member of a legislature may
face a finite horizon because of term limits or simply not being reelected, but
again, her place will be taken by someone else. The politician perishes, but the
legislature lives. Indeed, this situation is descriptive of most collections of in-
dividuals, whether they be extended families, college fraternities or sororities,
sports teams, or tribal villages.



            In this section, we explore cooperation in settings in which the members of
a group view their life span as being finite in length, while the group itself goes
on forever, its membership continually replenished with fresh recruits. This re-
plenishment does not occur all at once, but rather partially and continually
over time. Each period, a few folks depart and are replaced, while those who
were already in the group get closer to the time at which they’ll depart. In other
words, it’s just like a family, in which, at any moment, there are kids, parents,
grandparents, and maybe great-grandparents. The kids grow up to become par-
ents, the parents become grandparents, the grandparents—if they’re lucky—
become great-grandparents, and the great-grandparents pass away.



            This type of population structure, with different generations coexisting, is
referred to as overlapping generations. Since we’ll be working extensively
with models of overlapping generations, it is worth being clear about their
structure, so an example might be useful. Turning to FIGURE 15.1, we see that
there are three people existing as of period 9: Jacob, Emily, and Michael. Jacob



            FIGURE 15.1 A Community of Overlapping Generations
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            is in the third and last period of his life, Emily is going through a midlife cri-
sis, and Michael is fresh out of the womb. Come period 10, Jacob has passed
along, Emily is now the senior citizen of the group, it’s Michael’s turn for a
midlife crisis, and Emma has entered to take Jacob’s place. In each period,
someone dies and someone is born, so there are always three people, each from
a different generation.*



            As we know from previous chapters, cooperation is difficult when players
can expect to interact a specified number of times, whether it is 2, 10, or 20.
One implication of that logic is that there’ll be no inducing someone to coop-
erate in the last period of their lifetime (where “lifetime” refers to the person’s
time as a member of a group). Nevertheless, the fact that a group with over-
lapping generations lives on indefinitely can provide opportunities to induce
cooperation. This section shows how cooperation can persist in infinitely lived
societies even when their members are finitely lived.1



            Our initial application concerns a tribal or village setting in which the
members are asked to sacrifice for the common good. Doing so is costly to
the individual, but if everyone does it, all of the tribe’s members are better off.
The challenge is to avoid any member shirking his responsibility and taking
advantage of the sacrifices of others. The second example is a common inter-
generational setting in which a person, when old, hopes her adult child will
take care of her. Assuming that there is no love between them, is it possible to
induce financial support of an elderly parent? The third and final example
comes from the political realm and deals with the temptation of a lame-duck
elected official to pursue his own personal interests while weakening the
chances of his party retaining control of office.



            � SITUATION: TRIBAL DEFENSE



            A common feature of any group is that its members need to make sacrifices
for the good of the group. A member who works hard for the group benefits
all of its members, while the cost of working hard is incurred only by that
member. On net, if everyone sacrifices, then the benefit realized by each mem-
ber exceeds the personal cost. Thus, each member is better off if all work hard
than if all slack off. The challenge is to avoid free riding, which is when a
member shirks his responsibility while enjoying the benefit of others’ hard
work. Of course, if enough members ride for free, then all may give up mak-
ing sacrifices, in which case the group as a whole suffers.



            One situation in which this scenario arises naturally is the case of defense.
Whether it be a nation, a village, or a tribe, each member working to defend the
group from its enemies benefits all members of the group. But that sacrifice—be
it helping to construct physical defenses or risking one’s life in battle—is a per-
sonal cost incurred for the benefit of all. Let us explore strategies that can induce
tribal members to sacrifice and thus stave off the temptation to “shirk one’s duty.”2



            To keep things simple, suppose a tribe has members and each must
decide whether to sacrifice or shirk. The personal cost of sacrificing is 10,



            N � 2



            *In case you’re wondering about the choice of names, these are the most popular American names for
boys and girls for 2005, starting with Jacob and Emily. This information is from the Social Security
Administration website, which has an addictive search engine for combing Social Security records to un-
cover the ranking of names for years going back to 1880. Did you know that Lisa was the reigning queen
of names for girls from 1962 to 1969, but now drags in at 493rd!
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            while the cost of shirking is zero. The benefit to each of the N members from
m members sacrificing is so each person that sacrifices raises the pay-
off of everyone by 6. Let and be the payoff to a
member of society when he chooses sacrifice and shirk, respectively, given that
m other members choose sacrifice:



            First note that shirk is a dominant action. A member who sacrifices bene-
fits himself (and each other member) by 6, but it costs him 10, so his payoff
falls by 4. His sacrifice raises the group’s payoff by a total of 6N, which exceeds
the personal cost of 10 (since From an individual perspective, then, a
member wants to shirk, but if everyone does so, then each gets a zero payoff.
From a group perspective, it is best for everyone to sacrifice, since each per-
son then receives a payoff of 



            If members interact infinitely often, we know from the previous chapter
that there is an easy solution. Consider a strategy in which each member sac-
rifices and continues to do so as long as all members sacrificed in the past. If
anyone ever shirks, the punishment is that everyone shirks for one period,
after which they return to cooperative play. This is a subgame perfect Nash
equilibrium as long as



            6N � 10.



            N � 2).



            V(action, m) � e6(m � 1) � 10    if action � sacrifice
6m if action � shirk



            V(shirk, m)V(sacrifice, m)
6 � m,



            1 (6N � 10) � d � (6N � 10) � 6(N � 1) 1 d �
4



            6N � 10
.



            (6N � 10) � d � (6N � 10) � d2 � (6N � 10) � p � 6(N � 1) � d � 0 � d2 � (6N � 10) � p



            That would be too easy a solution, so we’ll assume instead that each member
perceives himself as being finitely lived, specifically for periods. At any
moment in time, there are members of each generation, where we assume
that N and T are such that N/T is an integer. For example, if and



            then, in any period, there are four generations, each having 25 mem-
bers: 25 people in the first period of their life (“children”), 25 in the second pe-
riod (“teenagers”), 25 in the third period (“adults”), and 25 in their last period
(“senior citizens”). Each player’s payoff is the discounted sum of his single-period
payoffs over the T periods of his life. (In other words, 



            Consider trying to sustain cooperative play in which everyone sacrifices.
One immediate problem is that there is no way to get the old folks to work.
They are in the last period of their lives, which means that they will not be
punished if they shirk, since they have no future. We are then resigned to al-
lowing people in the last period of their life to shirk.



            But can we get the other folks to sacrifice? Consider a strategy in which a
person is supposed to sacrifice in the first periods of their lives and is
allowed to shirk in the last period. If there is ever a deviation—in particular, if
some person younger than age T does not sacrifice—then everyone shirks for
one period and returns to sacrificing (except, of course, for those in the final
period of their life).



            In establishing that this situation is an equilibrium, first note that the strat-
egy is clearly optimal for someone in the last period of his life, since he is to
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            shirk. Next, consider a person who is in the penultimate period of her life. Her
strategy has her sacrifice, which is optimal when



            [15.1]d �
2



            3(T � 1
T )N



            .c6 aT � 1
T
b N � 10 d � d � 6 aT � 1



            T
b N � 6 c aT � 1



            T
b N � 1 d � d � 01



            This member anticipates all people younger than age T sacrificing, a group
that, including herself, totals people. By sacrificing, this member can
then expect a current payoff of In her final period, she re-
ceives a payoff of as, again, all members age and younger sac-
rifice, while she, now someone in her final period, is expected to take it easy.
The sum of these two payoffs gives us the left-hand side of (15.1). Turning to
the right-hand side, if this member instead shirks in the current period, she
raises her current payoff by 4, from to the
total benefit declines by 6—because she is not sacrificing—but she avoids the
personal cost of 10. The cost from shirking is that she induces everyone to
shirk in the next period, yielding her a payoff of zero. If (15.1) holds, then the
payoff from sacrificing exceeds that from shirking for someone of age 



            Next, consider someone who is age The equilibrium condition is now



            [15.2]



            Shirking means a higher current payoff of 4, but the member loses out in the
next period as everyone shirks. This means foregoing in the
next period.



            For anyone younger than age the condition is the same as in (15.2):
Cheating raises the current payoff by 4, but lowers the next period payoff by



            as all players shirk for one period. The payoff is the same in
ensuing periods as players return to sacrificing. Thus, all players younger than



            find it optimal to sacrifice when (15.2) is satisfied.
In sum, this strategy profile is a subgame perfect Nash



            equilibrium if both (15.1) and (15.2) hold. Note that if
(15.2) is satisfied, then so is (15.1). Intuitively, the temp-
tation to cheat is weaker for someone in her penultimate
period, because cheating would result in her forgoing the
high payoff of which is the payoff received
when all younger people sacrifice and that person is al-
lowed to shirk. A person is treated very well in her last
period—she gets to relax while all younger folk work
hard—but that “retirement benefit” is lost if she shirked
in her next-to-last period. The real challenge is inducing
people to sacrifice when they are farther away from re-
ceiving their retirement benefit.
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            In the previous strategy profile, tribal defense
was supported by a punishment in which all
members shirked for one period. Now, suppose
the punishment lasts as long as the lifetime of
the person who shirks. Thus, if a person shirks
in period t of her life (when she was supposed
to sacrifice), then everyone shirks for the next 
T � t periods. Derive the conditions which en-
sure that all people sacrifice during the first 
T � 1 periods of their lives.



            15.1 CHECK YOUR UNDERSTANDING
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            Even when players are finitely lived, cooperation can be at least
partially sustained if the population is continually replenished with new
generations. A person can always be rewarded (for cooperating) and punished
(for cheating) by the next generation.



            � SITUATION: TAKING CARE OF YOUR ELDERLY PARENTS



            When we were children, we used to think that when we were grown-up we
would no longer be vulnerable. But to grow up is to accept vulnerability. . . .
To be alive is to be vulnerable. —MADELEINE L’ENGLE “WALKING ON WATER:
REFLECTIONS ON FAITH AND ART,” 1980.



            Always be nice to your children because they are the ones who will choose
your rest home. —PHYLLIS DILLER



            It is easy to explain why people take care of their elderly parents when they love
them or when there is a large inheritance at stake. But suppose neither is true?
Suppose a person is heartless, with no innate concern for her destitute elderly
parents. Can the person still be induced to do the right thing and support them?



            To explore this question, assume that a person goes through two phases of
adulthood: adult and senior citizen. To make the discussion easier to follow,
we’ll refer to the adult as a female and to the senior citizen as a male.
Regardless of age, a person’s payoff in any period depends on how much he or
she consumes. The relationship between consumption and payoff is shown in
FIGURE 15.2. Note that more consumption—more clothes, more meals at nice
restaurants, more downloads from iTunes—means a higher payoff. That
sounds compelling. Note, however, that the incremental increase in payoff



            FIGURE 15.2 The Relationship Between Consumption and Payoff
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            from more consumption is less when the initial consumption level is higher.
For example, the incremental gain in payoff from increasing one’s consump-
tion from 10 to 25 is 184, while the gain in payoff from increasing one’s con-
sumption from 25 to 40—the same rise of 15 in consumption—is only 132. In
other words, your first download from iTunes (say, “Born to Run”) is more
valuable than your 100th (“Born to Be Wild”), which is more valuable than
your 1,000th (“Born to Hand Jive”).



            As an adult, a person is productive in two ways: She generates income of
100 and produces one child. Thus, in each period, there are three generations:
youth, adult, and senior citizen. The current period’s youth will be next pe-
riod’s adult, the adult will become a senior citizen, and, sadly, the senior citi-
zen will pass on. Each person then lives for three periods. The dilemma here
is that an old person doesn’t produce income, and, to simplify matters, it’ll be
assumed that there are no savings. A senior citizen is then reliant upon his
child—who is currently an income-producing adult—to support him.



            The only decision maker at any point in time is the adult, who must decide
how much of her income to consume and how much to give to her parent. For
simplicity, we’ll ignore the consumption of the youth.



            Consider the intergenerational norm which holds that a person is supposed
to take care of a parent if the parent is in compliance with that norm. To “take
care of your parent” means to provide consumption of at least 25. To be “in
compliance with the norm,” a person must either (1) have taken care of her
parent or (2) have a parent who was not in compliance. For example, a person
is not in compliance if she did not take care of her parent when her parent
took care of his grandparent. If her parent did not take care of his parent (and
his parent was in compliance and thus should have been taken care of), then
the person is in compliance even if she doesn’t take care of her parent. The ra-
tionale is that she is punishing her parent for not taking care of his parent. The
essence of this intergenerational norm is that a person has an obligation to
take care of a parent, unless that parent was negligent with respect to his or
her parent, in which case neglect is the punishment.



            The norm reflects intrafamilial expectations about behavior. We still need
to specify an individual’s strategy, however. Suppose that a strategy prescribes
providing consumption of 25 to your parent if your parent is in compliance
with the norm and providing zero consumption if your parent is not in com-
pliance. Note that if everyone uses this strategy, then if we start with the first
person being in compliance, all ensuing generations will be in compliance.
Thus, each adult child takes care of her elderly parent.



            The next step is to derive conditions for this symmetric strategy profile to be
a subgame perfect Nash equilibrium. Suppose the history is such that an adult is
not supposed to support her parent. Perhaps her parent did not support her
grandparent even though her grandparent supported her great-grandparent.
Since this adult’s child will provide support of 25 to her regardless of how much
or little she supports her parent, she should choose the transfer that maximizes
her current period’s payoff, which means giving nothing to her elderly parent.
From Figure 15.2, her payoff is then as she gets a current pay-
off of 1,000 from consuming 100 and a payoff of 500 next period from consum-
ing 25 (given to her by her child), where her discount factor is Hence, the strat-
egy is clearly optimal for that history. In other words, if the norm says that you
don’t need to support your elderly parent, then it is optimal to do exactly that.
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            The more challenging history is when an adult is supposed to support her
parent. For example, suppose her parent supported her grandparent.
According to the strategy, there should be a transfer of 25. There is no reason
to provide a bigger transfer, as doing that would only lower the current payoff
without resulting in a higher future payoff. Thus, a transfer of 25 is clearly
preferable to a transfer exceeding 25. Since this implies a current consump-
tion of 75 with a payoff of 866 (see Figure 15.2) and a future consumption of
25 (because her child will support her when she is old) with a payoff of 500,
the payoff from supporting her parent is Now consider instead
providing support of less than 25 to her parent. Since this will induce her child
not to support her—and this is true whether the support is 0 or 24—she
prefers no support to any level between 0 and 25. The payoff from not support-
ing her parent is then 1,000 as she consumes 100 today but receives nothing
tomorrow, because her child punishes her for mistreating the child’s grand-
parent. An adult then finds it optimal to support her parent when



            The idea is simple enough: When a person’s parent is elderly and there is no
inheritance to act as a lure, the elderly parent cannot punish her child for fail-
ing to take care of him. Where the disciplining device lies is then not with the
elderly parent, but rather with the elderly parent’s grandchild. If a person
doesn’t take care of her parent, then her child will take this as an excuse not
to take care of her. Each generation acts socially responsibly by supporting
their parents because the next generation’s support is contingent upon it.
Thus, elderly parents are taken care of even by the selfish child.*



            � SITUATION: POLITICAL PARTIES AND LAME-DUCK PRESIDENTS



            Politicians are like diapers. They both need changing regularly and for the
same reason. —UNKNOWN



            Political parties might moderate their platforms in order to get elected. But
what happens when an elected official is a lame duck? If he lacks any concern
about being reelected, will he indulge himself and pursue extreme policies
that could harm his party’s reputation and thus its prospects for retaining con-
trol of the office? Here we show that if the lame duck cares about policy at
least one period after leaving office, then concerns about party reputation can
induce him to avoid extremist policies.3



            Suppose there are five distinct platforms or policies: liberal, moderately lib-
eral, moderate, moderately conservative, and conservative. The ideology of the
Democratic party is liberal while that of the Republication party is conserva-
tive. However, the most preferred policy of the general electorate is moderate.
The situation is reflected in TABLE 15.1, which states the probability that the
Democrats win the election, given various platforms (with 1 minus that prob-
ability being the probability that the Republicans win). The farther away a
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            *my dad is away from his computer, probably fixing his comb-over. i have a warning for u about old daddy.
he is a twisted lil man o yes very twisted, u should all b scared o yes soo scared. put the book down now.
listen 2 what i say or u will b twisted 2 like him o yes a very twisted lil man u will b. he’s coming back,
gotta go.
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            party’s platform is from the voters’ ideal of a moderate policy, the lower is the
probability of winning the election. For example, if the Republican party takes
a conservative stance, then the Democrats have a 50% chance to win if they
have a liberal platform (liberal and conservative platforms are equidistant
from a moderate position), while they have a 70% chance if they instead move
closer to the electorate’s moderate position with a moderately liberal platform.



            Although it is natural to assume that candidates care about holding office,
it’ll simplify matters to assume that they care only about the policy that is im-
plemented. Their policy preferences are provided in TABLE 15.2. The more con-
servative the policy implemented, the lower is a Democrat’s payoff. For exam-
ple, Democrats receive a payoff of 4 from a moderately liberal policy, but a
payoff of from a moderately conservative policy.�3



            TABLE 15.1 PROBABILITIES OF WINNING THE ELECTION



            Democratic Republican Probability That the 



            Platform Platform Democratic Candidate Wins



            Liberal Moderate .1



            Liberal Moderately conservative .3



            Liberal Conservative .5



            Moderately liberal Moderate .4



            Moderately liberal Moderately conservative .5



            Moderately liberal Conservative .7



            Moderate Moderate .5



            Moderate Moderately conservative .6



            Moderate Conservative .9



            TABLE 15.2 PAYOFFS FOR POLITICIANS



            Policy Democrat’s Payoff Republican’s Payoff



            Liberal 5 �5



            Moderately liberal 4 �3



            Moderate 0 0



            Moderately conservative �3 4



            Conservative �5 5



            Assume that term limits restrict an elected official to holding office for only
a single term. Furthermore, a politician lives for only two periods, or, more to
the point, she cares only for two periods about which policy is implemented.
You can imagine that she becomes apolitical after two periods, switching over
from watching C-SPAN to viewing American Idol. From the perspective of a
politician who is in office in her first period, she receives a payoff depending
on the policy she implements and then, in the next period, a payoff from the
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            policy pursued by her successor. The latter is weighted by where 
a condition that can be motivated by the usual time preference argument or
by the argument that a politician values policy less when she is not in office.



            The first step in our analysis is to show that a party wants to have a repu-
tation for implementing policies more moderate than the party’s ideology.
Suppose, for example, voters expect the Republicans to implement a moder-
ately conservative policy. If voters expect the Democrats to implement a liberal
policy, then, at the time of the election, the expected payoff for a Democrat is



            Due to having a policy more extreme than the op-
position, the Democrats will win only 30% of the time, although, in those in-
stances, they’ll realize a high payoff of 5 from implementing a liberal policy.
The Republicans win 70% of the time and implement a moderately conserva-
tive policy, giving the Democrats a payoff of If, instead, the Democrats
could convince voters that they aren’t quite that liberal—that they would im-
plement a moderately liberal policy—their expected payoff would be higher, at



            Even if the voters believed that the Republicans
would implement a conservative policy, it would still be better for the
Democrats to have a reputation of implementing a moderately liberal policy
rather than a liberal policy, because



            This argument works analogously for Republicans; they, too, would prefer to
have a reputation for being more moderate than their ideology.



            Without the concern about being elected, a party would implement its ide-
ology, so Democrats would implement a liberal policy and Republicans a con-
servative policy. As just shown, election pressures make it attractive for a party
to moderate itself in the eyes of (moderate) voters because doing so enhances
the chances of gaining control of office. The task, then, is for each party to de-
velop a mechanism by which it is credible for a party to say that it’ll imple-
ment relatively moderate policies.



            In constructing an equilibrium in which both parties implement policies
more moderate than their ideologies, consider the following simple strategy:
The Democratic party starts with a reputation for implementing a moderately
liberal policy and correspondingly implements a moderately liberal policy. As
long as past Democratic politicians implemented moderately liberal policies,
an elected official who is a Democrat also does so (and voters expect her to do
so). However, if any Democratic politician deviates from a moderately liberal
policy, then voters no longer trust the Democrats to be moderate, and the
Democratic party’s strategy has its politicians implement a liberal policy.
Analogously, the strategy for Republicans is to begin by implementing a mod-
erately conservative policy and to continue to do so as long as they have al-
ways done so in the past (so voters continue to believe that a Republican will
not implement extreme policies). As soon as a Republican elected official de-
parts from such a policy, Republicans implement a conservative policy, and
this turn about is anticipated by voters.



            As described, this party strategy is very much in the spirit of the grim-trigger
strategy. What makes it tricky to implement is that the person who controls
policy—the party’s member who is currently in office—cares only about the
party’s payoff for two periods. She’ll be around for one period after her time
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            in office, and after that one period, she doesn’t care what policies are imple-
mented and thus doesn’t care about the party’s reputation.



            To show that this pair of party strategies is a subgame perfect Nash equilib-
rium, we need to demonstrate that it prescribes optimal behavior for every
history. All histories can be partitioned into four sets for the purpose of our
analysis. There are histories in which (1) neither party deviated from their rep-
utation in the past (i.e., Democrats always implemented a moderately liberal
policy and Republicans always implemented a moderately conservative pol-
icy); (2) a Republican deviated from a moderately conservative policy in the
past, while no Democrat ever deviated from a moderately liberal policy; (3) a
Democrat deviated from a moderately liberal policy in the past, while no
Republican ever deviated from a moderately conservative policy; and (4) both
parties deviated from their reputation in the past. Since both the game and the
strategy profile are symmetric, it is sufficient to show the optimality of the
strategy for one of the parties, and we’ll make it the Democratic party.



            In any period, the sole decision maker is the elected official, so suppose that
official is a Democrat. We’ll begin by considering a history from (1), so that
both parties currently are expected to implement a policy more moderate than
their ideology. The strategy prescribes a moderately liberal policy, which
would yield a payoff of



            [15.3]



            for the elected official. Her current period payoff is 4. Come next period, voters
expect a Democrat to implement a moderately liberal policy—as the elected
official’s behavior has not disrupted those expectations—and a Republican to
implement a moderately conservative policy. Given those voter expectations,
each party has a 50% chance of winning the election, in which case next pe-
riod’s policy is moderately liberal with probability .5—and the current elected
official’s payoff is then 4—and moderately conservative with probability .5—
and the current elected official’s payoff is 



            To determine whether it is indeed optimal to implement a moderately lib-
eral policy, consider the alternative of implementing something else. If any
other policy is implemented, then, according to the Democratic party’s strat-
egy, the party will implement a liberal policy thereafter. The rationale is that
voters expect it to implement its ideology, since its reputation has been marred
by having implemented something different from what voters expected.*
Since the future payoff then is independent of the current policy, the elected
official should choose a policy to maximize her current payoff, which means
implementing a liberal policy. Her payoff in that case is



            [15.4]



            She gets 5 while in office and an expected payoff of in the
next period. Because voters now expect a Democrat to implement a liberal



            .3 � 5 � .7 � (�3)



            5 � d � 3 .3 � 5 � .7 � (�3) 4 � 5 � .6d.
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            4 � d � (.5 � 4 � .5 � �3) � 4 � .5d



            *One might find it unreasonable that voters expect the Democrats to implement a liberal policy in the fu-
ture if they deviated from a moderately liberal policy by, say, implementing a moderate policy. We could
adapt the strategy so that voters do not change their expectations of a moderately liberal policy in that case,
and all of the ensuing analysis would still work.
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            policy and continue to expect a Republican to implement a moderately con-
servative policy, a Democrat has only a 30% chance of winning.



            Given that neither party has deviated from its reputation in the past, it is
optimal for a Democratic elected official to implement a moderately liberal
policy when (15.3) is at least as great as (15.4):



            [15.5]4 � .5d � 5 � .6d1 d �
1



            1.1
� .91.



            [15.6]4 � d � 3 .7 � 4 � .3 � (�5) 4 � 5 � d � 3 .5 � 5 � .5 � (�5) 4 1 d �
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            1.3
� .77.



            Next, we turn to a history in category (2), according to which a Republican de-
viated from a moderately conservative policy in the past, while no Democrat ever
deviated from a moderately liberal policy. Because Republicans have squandered
their reputation for moderation, voters’ expectations are that a Republican would
implement a conservative policy and a Democrat would implement a moderately
liberal policy. A Democrat who is in office finds it optimal to implement a mod-
erately liberal policy, as prescribed by her party’s strategy, when



            Doing so yields a current payoff of 4 and serves to maintain voters’ expecta-
tions, which means that there is a 70% chance that the Democrats will win in
the next period. By instead choosing a liberal policy (which is the best alter-
native policy), she’ll squander the Democratic party’s reputation. Come next
period, voters will expect the Democrats to implement a liberal policy and the
Republicans a conservative policy, so each has a 50% chance of winning.



            To complete the analysis, we need to consider histories in categories (3) and
(4), which are both characterized by the Democrats having spoiled their rep-
utation by veering from a moderately liberal policy in the past. Voters expect
them to implement a liberal policy, and that is independent of what a
Democratic politician does. Hence, a Democrat who is in office realizes that
her next period’s expected payoff is the same regardless of what policy she im-
plements. It’ll be for a history in category (3) and



            for a history in category (4). The optimal policy for her is
then a policy that maximizes her current payoff; of course, that policy is a lib-
eral policy. Since this is what is prescribed by the party’s strategy, the strategy
is optimal for histories in categories (3) and (4).



            To sum up, we’ve shown that the Democratic party’s strategy is optimal if
(15.5) and (15.6) hold. By an analogous argument, we can show that the
Republican’s strategy is optimal under the same set of conditions. As long as
a politician attaches sufficient weight to her payoff in the period after she is
in office, it is an equilibrium for parties to implement policies more moderate
than their ideologies. By having a reputation for a relatively moderate policy,
a party increases the chances of controlling the office. But it is important to
keep in mind that policy is actually controlled not by the party, but by the
party’s member who is in office, and that person unlike the party, is not infi-
nitely lived. Nevertheless, a finitely lived selfish politician is willing to forego
implementing her ideology in order to maintain the party’s reputation for im-
plementing more moderate policies. By doing so, she increases the chances of
the party maintaining control of the office during the next period, which will
result in a policy more to her taste.
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            15.3 Cooperation in a Large Population
THE ANALYSIS IN CHAPTERS 13 and 14 showed that cooperation can be sustained
when three conditions hold: First, players care sufficiently about the future;
second, encounters between players are sufficiently frequent; third, past behav-
ior is observed. Under those conditions, a player is disinclined to deviate from
the cooperative norm, because other players—upon observing the deviation—
will respond aggressively in their future encounters with the deviant.



            In this section, we’ll test the resilience of cooperation by exploring whether
it’ll work in the less hospitable environment of a large population. What we
mean by “large” is defined, not by the number of players per se—although in
our examples there are thousands or even millions of players—but rather by
two properties of strategic interactions. The first property is that encounters
between the same two people are rare. For example, a buyer and a seller who
come together at eBay will not expect to interact again in the future. The sit-
uation, then, is quite distinct from that of two employees who work side by
side or siblings who battle for the bathroom daily. The second property is that
what happens in an encounter is private information to those who partici-
pated. Thus, the buyer and seller in a bazaar will know how their transaction
went, but others in the bazaar are unlikely to witness what transpired.



            Even if players are infinitely lived and value future payoffs significantly, it
isn’t clear that cooperation can be sustained when the structure of encounters
is as just described. If encounters between two people are rare, cooperation
cannot be sustained through the usual mechanism: A threat of retaliating in
some future interaction is not much of a threat if the time that interaction is
anticipated is far in the future. Of course, punishment need not come from the
person who was victimized: In principle, the deviant could be punished by
anyone with whom the deviant interacts in the future. There are two chal-
lenges to such a disciplining device, however: First, someone who encounters
the deviant must find it in her best interests to punish him even though he did
not wrong her; second, she has to know that the person with whom she is cur-
rently matched misbehaved in the past and thereby warrants punishment. But
if information about what happened in past encounters is not commonly
shared in the population, then a person may get away with behaving badly.



            We explore these issues in the context of the marketplace. The first example
is the virtual market that exists on eBay. With millions of buyers and sellers, the
likelihood is slim that two people who just engaged in a transaction will ever
do so again. eBay was well aware of the possibility of fraudulent behavior—
whether it be a seller peddling shoddy goods or a buyer who doesn’t make a
payment—and designed a system whereby a trader can leave information
about her experiences for the benefit of other traders. For our simple formula-
tion of eBay, this feedback system will work like a charm to support coopera-
tion. Of course, reality tends to be a bit more complicated than our models, and
in fact, we’ll discuss some concerns about the veracity of feedback at eBay.



            This last point raises the important issue of what incentives a person has to
provide truthful information to others. To analyze this problem, we remain in the
marketplace, but travel back in time. Here, we consider the offline markets of
13th-century Europe. In those markets, an amazing institution known as the Law
Merchant provided traders with the incentive to report bad transactions—in
spite of its being costly to report and the fact that the benefit from doing so was
realized by other traders.
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            Although the details of the marketplace may have changed over the last
seven centuries, the basic problem has not: How do you induce two traders to
act honestly when, once they complete their transaction, they’ll never see each
other again?



            � SITUATION: EBAY



            excellent product, really fast shipping, Great eBay vendor AAAAA�



            Awesome���� Great E-Bayer���FAST Shipment���Excellent Product



            claimed they were authentic and they were fake. BUYER BEWARE!



            One of the most popular settings in which people transact business is eBay.
At any moment in time, millions of sellers are offering items for sale either
by auction or with the “Buy It Now” option. On the other side of the market,
millions of prospective buyers are combing eBay’s pages, looking for deals.
This is a setting ripe for cheating. A seller may say that a product is new when
in fact it is used, or the winning bidder at an auction may never make a pay-
ment to the seller. Because a particular buyer and seller are unlikely to inter-
act again, there is little scope for punishing negligent or fraudulent behavior
and, therefore, weak incentives to act appropriately. eBay recognized this po-
tential problem and constructed a feedback system to allow a buyer or seller
to share information with the population at large. This system sets the stage
for future traders to avoid making transactions with poorly behaving traders,
thereby punishing them.



            Let’s begin with a simple model of eBay and, after analyzing it, discuss
some complications arising in practice. In each period, sellers and buyers are
randomly matched. One can think about a buyer selecting one of the many
sellers who is selling what the buyer is looking to buy. In their interaction, the
seller chooses the true quality of the item; it can be excellent, very good, or
shoddy. The true quality is not observed by the buyer and is learned only after
making a purchase. As shown in TABLE 15.3, the cost to the seller increases
with quality, as does the valuation that the buyer attaches to the good. A prod-
uct of excellent quality costs the seller 13 and is worth 30 to the buyer; a very
good product costs the seller 8 and is valued 15 by the buyer; and a shoddy
product costs only 2 to the seller, but is of no value to the buyer.



            After choosing the true quality of the item, the seller posts a price on eBay.
For simplicity, assume that there are just three prices: 5, 10, and 20. (We
could also have had the seller report his quality—which may or may not be
truthful—but that would have only complicated the analysis without adding



            TABLE 15.3 COSTS AND VALUE OF PRODUCT QUALITY



            True Quality Seller’s Cost Buyer’s Value



            Excellent 13 30



            Very good 8 15



            Shoddy 2 0
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            anything of substance.) Before deciding whether or not to “Buy It Now,” the
buyer observes the price and the seller’s feedback score. The feedback score
is composed of the number of positive and negative comments left by past
buyers about this seller.



            If the buyer chooses not to buy, then her payoff is zero. If she buys, then her
payoff is the true value attached to the good (which she learns only after buy-
ing it), less the price paid. Assume that the seller incurs the cost of the prod-
uct only if it is purchased; therefore, his payoff is zero if the product is not
bought. TABLE 15.4 reports the payoffs for both sellers and buyers, depending
on quality and price. After the transaction is completed, the buyer leaves feed-
back about the seller. Contrary to actual practice at eBay, we will not allow the
seller to leave feedback about the buyer.



            TABLE 15.4 EFFECT OF PRICE AND QUALITY ON PAYOFFS



            True Quality Price Seller’s Cost Seller’s Payoff Buyer’s Value Buyer’s Payoff



            Excellent 20 13 7 30 10



            Excellent 10 13 �3 30 20



            Excellent 5 13 �8 30 25



            Very good 20 8 12 15 �5



            Very good 10 8 2 15 5



            Very good 5 8 �3 15 10



            Shoddy 20 2 18 0 �20



            Shoddy 10 2 8 0 �10



            Shoddy 5 2 3 0 �5



            There are an infinite number of periods, but a particular buyer and seller
never expect to meet again. The seller expects a different buyer each period.
When a buyer shows up at a seller’s posting on eBay, all she knows about the
seller’s history is what is reported in the feedback score. Assume that the
seller’s payoff is the present value of his profit stream, and suppose that a
buyer buys only once. Recall that a buyer’s payoff when she does not buy is
zero, so she wants to buy only when she can get a positive payoff, which
means that the perceived value of the good exceeds its price.



            Consider the following strategy pair:



            ■ Seller’s strategy



            If the seller has no negative comments, then choose excellent quality and
charge a price of 20.



            If the seller has one negative comment, then choose very good quality and
charge a price of 10.



            If the seller has two or more negative comments, then choose shoddy
quality and charge a price of 5.
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            ■ Buyer’s buying strategy



            If the seller has no negative comments, then buy.



            If the seller has one negative comment, then buy if the price is 5 or 10,
and do not buy if it is 20.



            If the seller has two or more negative comments, then do not buy.



            ■ Buyer’s feedback strategy (assuming that she has bought the product)



            Provide positive feedback if (1) the quality of the product was excellent or
(2) the quality was very good and the price was 5 or 10.



            Provide negative feedback if (1) the quality of the product was very good
and the price was 20 or (2) the quality was shoddy.



            Given the seller’s strategy, the buyer expects excellent quality from a seller
with no negative feedback, very good quality from a seller with only one neg-
ative comment, and shoddy quality from a seller with two or more negatives.
For these beliefs, let us evaluate the optimality of the buyer’s strategy.



            If the seller has no negative feedback, then the buyer should indeed buy, as
prescribed by her strategy. Even if the price is 20, her payoff is expected to be
10, as she anticipates excellent quality, which is valued at 30. Obviously, her
payoff is even higher for lower prices. If the seller has one negative comment,
then the buyer should buy only if the price is 5 or 10. If the price is 20, then
her payoff is since she expects very good—not excellent—quality from
such a seller, and very good quality is valued only at 15. But if the price is 5
(or 10), then the payoff is 10 (or 5), so the buyer prefers to buy. Finally, if the
seller has two or more negatives, then the buyer expects shoddy quality, which
has no value, so it is clearly optimal for the buyer not to buy even if the price
is 5. Hence, the buyer’s buying strategy is optimal.



            As regards her feedback strategy, it is trivially optimal because we are as-
suming that leaving feedback is costless and the buyer’s future payoff is inde-
pendent of what feedback she leaves. Providing truthful feedback—which is
what we’ve presumed—is then optimal. Of course, it is also optimal to leave
false feedback—for example, saying that shipping was slow when in fact it ar-
rived on time. However, our focus is on an equilibrium in which messages are
truthful. We’ll return to this point later when discussing actual practices at
eBay.



            Next, let us evaluate the seller’s strategy with regard to its optimality. Let’s
start with when the seller has two or more negative comments. In that case, it
doesn’t really matter what he does, because no buyer will buy from him, since
he’s expected to deliver shoddy goods. His payoff is zero regardless of the qual-
ity he chooses, in which case offering shoddy quality, as prescribed by his
strategy, is as good as any other decision.



            If the seller has one negative comment, then a buyer expects him to offer
very good quality. The seller’s strategy has him provide very good quality at a
price of 10. This yields a current profit of 2—since the buyer buys—and results
in positive feedback, according to the buyer’s strategy. Thus, the seller still has
only one negative comment, which means that he can anticipate earning a fu-
ture profit stream of 2. The payoff from offering very good quality at a price
of 10 is then By instead charging a price of 20, he guarantees that
there will be no purchase today—as the buyer will not pay 20 for very good
quality—and thus the seller’s profit is zero. Since his future profit stream is
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            still 2, charging 20 (and not making a sale) is inferior to charging 10 (and mak-
ing a sale). A price of 10 is also preferable to a price of 5, as the lower price
serves merely to lower the current profit. The only interesting alternative to
choosing very good quality and charging a price of 10 is providing shoddy
quality at a price of 10. (Convince yourself that he doesn’t want to provide
shoddy quality and price at 5 or 20.) The current profit will then be 8, which
is higher than that from supplying very good quality. However, the buyer re-
sponds with negative feedback once she discovers that the product is shoddy.
Since the seller now has two negative comments, all buyers expect him to offer
shoddy products in the future and thus do not buy from him. His future profit
stream is then zero. In sum, the provision of shoddy quality is inferior to of-
fering very good quality when



            [15.7]



            Finally, consider the seller who has no negative feedback. His strategy has
him offer excellent quality at a price of 20. This delivers a current and future
profit stream of 7 and thus a payoff of He could instead offer very
good quality. If he does so at a price of 10, then the current profit will be lower,
at 2, while the future profit stream is the same (because the buyer gives him
positive feedback). So that’s no good. Or he could maintain a price of 20 and
provide lower quality. Since he’ll get a negative comment regardless of
whether the quality is very good or shoddy, he ought to make it shoddy, since
his current profit will then be higher. By offering shoddy quality at a price of
20, his current profit is 18, while his future profit stream is only 2 due to hav-
ing garnered one negative comment. Thus, a seller with no negative feedback
will optimally provide excellent quality at a price of 20 when



            [15.8]



            In sum, this strategy profile is an equilibrium if (15.7) and (15.8) hold, or,
equivalently, 



            What the feedback score does at eBay is allow the population of buyers to
have a collective memory so that any one of them can learn how a seller be-
haved in past transactions. This creates the incentive for a seller to deliver a
satisfying experience to buyers by providing high-quality merchandise; for if
he does not, then a buyer can lay a negative comment on him for all the world
to see. The result would be that future buyers expect lower quality in the fu-
ture, and the seller would then have less profitable transactions (if he would
have any transactions at all). Thus, the punishment to the seller for misbehav-
ing is provided by future buyers, and it is the prospect of that punishment that
deters a seller from cheating buyers.



            In real life, the feedback system works reasonably well, though it does suf-
fer from some ills. An important distinction between our model and reality is
that eBay allows both the buyer and the seller to provide feedback.
Furthermore, comments are not made simultaneously. For example, a seller
can provide feedback on a buyer after learning what the buyer had to say about
him. It turns out that this possibility creates an incentive for an eBayer to say
nice things about another eBayer, even if he was just ripped off. The reason is
as follows: By providing feedback, a person is delivering useful information to
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            other people; he is not helping himself. If a seller ripped off a buyer, that buyer
knows not to deal with this seller anymore. By providing negative feedback, he
is benefiting only other buyers who may be unaware of this disreputable seller.
There is then no benefit to a person providing accurate feedback. In our model,
there was no cost either, so it was perfectly optimal to provide truthful feed-
back. But now suppose that the provision of negative feedback by the buyer in-
duces the seller to retaliate by providing negative feedback about the buyer.
This lowers the buyer’s feedback score, which can harm her in future transac-
tions. There is then no benefit to a person in providing negative feedback, but
there is a cost. This asymmetry creates a bias for providing positive feedback
regardless of the quality of the transaction.



            This bias is now well documented.4 As reported in TABLE 15.5, a recent
study found that, of the comments left, 99% were positive.* While this high
fraction of satisfied traders may simply reveal a wonderful world of transac-
tions, a closer inspection reveals a more nefarious tale of retaliatory com-
ments. When the buyer left positive feedback, the seller left positive feedback
99.8% of the time. However, when the buyer left nonpositive feedback, the
seller left positive feedback only 60.7% of the time. And if one examines the
actual messages left—and not simply whether a message was recorded as pos-
itive, neutral, or negative—the ugly vestiges of retaliation are quite clear. For
example, consider this exchange regarding the purchase of an iPod:



            Buyer: item did not work correctly. No reply from seller.



            Seller: NOT an HONEST eBay Member. Very POOR communication. 



            AVOID this one.



            TABLE 15.5 FEEDBACK ON EBAY (PERCENTAGE)



            Type of Comment Buyer about Seller Seller about Buyer



            Positive 51.2% 59.5%



            Neutral 0.2% 0.2%



            Negative 0.3% 1.0%



            No comment 48.3% 39.4%



            As this reality check reveals, some important issues
were skirted with our simple model of eBay. In the next
example, we’ll tackle these issues head-on, though not in
cyberspace, but rather in the markets of 13th-century
Europe. Instead of assuming that information is provided
costlessly, we will assume that it is costly to a trader, and
in addition, we will not rely on him to be truthful. In that
medieval setting, a market institution arose that induced
traders to report fraudulent transactions, with the verac-
ity of their claims decided upon by an impartial judge.



            *From Table 15.5, positive comments were provided in 51.2% of transactions and comments of any type
were offered in 51.7% of transactions. Since , it follows that when a comment was left, it was
positive 99% of the time.



            .99 � .512
.517



            Now suppose the seller provides shoddy quality
(at a price of 5) as soon as he receives one
negative comment. As before, he chooses excel-
lent quality at a price of 20 when he has no
negative comments. Assume that the buyer uses
the same feedback strategy as before. Find the
optimal buying strategy for the buyer, and derive
the condition which ensures that the seller’s
strategy is optimal.



            15.2 CHECK YOUR UNDERSTANDING
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            Even if two people do not anticipate encountering themselves again
in the future, cooperation can be sustained if knowledge of the outcome of their
encounter is disseminated to the remainder of the population.



            � SITUATION: MEDIEVAL LAW MERCHANT



            thou is the worthiest merchant who lyves A+++++



            thanke you for the blisse thou hath given me +++



            what sey yee o theef? i pray for your deeth.



            It is 13th-century Europe, and a trader arrives in a village, selling goods.
The buyer looks at the item and tries to assess its quality, while the seller sizes
up the buyer as to whether he’ll pay in a timely manner. If both sides can trust
each other to hold up their end of the bargain, then an exchange takes place;
otherwise, it does not.



            If this particular buyer and seller anticipated any possible future transac-
tions, each side would be wise to be fair in order to maintain a good reputation.
But suppose encounters are rare and, in fact, this buyer and seller do not antic-
ipate engaging in another exchange at anytime in the future. Is it necessarily the
case that they cannot trust each other? Will such transactions not occur?



            To deal with these situations, an institution arose known as the Law Merchant,
which governed many commercial transactions throughout Europe. The Law
Merchant was a judge to which a wronged party could turn for retribution.



            Medieval Market
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            Although the Law Merchant could pass judgment and award damages, it had no
enforcement powers to ensure that damages would be paid. Without the power to
ensure that judgments would be implemented, what made the Law Merchant ef-
fective in promoting honest trading?5



            To address this question, consider the following
game: Each trader is infinitely lived and, in each period,
has the opportunity to engage in a transaction with
someone else. If one or both traders decide not to partic-
ipate in a transaction, then each receives a zero payoff.
If they do decide to participate, then the transaction is
modeled as a Prisoners’ Dilemma. Traders simultane-
ously decide whether to engage in honest or dishonest
behavior, as shown in FIGURE 15.3.



            After they’ve made their decisions, each receives his
payoff and the two go their separate ways. Although each trader anticipates an
unending stream of trading opportunities, he expects the identity of the trader
with whom he is matched never to be the same. Thus, in spite of traders trans-
acting forever, each transaction is a one-shot situation. Assume that a trader’s
payoff is the present value of his monetary stream, where his discount factor is 



            When two traders meet, each knows the history of his own transactions,
but doesn’t know how the other trader behaved in the past. Thus, a trader
who cheats cannot be punished in the future, since his future partners will be
unaware of how he has behaved in the past. There is then only one subgame
perfect Nash equilibrium to this game, and it has both traders either not
transacting, or transacting dishonestly. Both situations deliver a zero payoff,
while, if they could have engaged in an honest transaction, each would have
received a 1.



            Now we introduce the Law Merchant. In each period, there are six stages
to the game faced by two matched traders:



            ■ Stage 1 (Query): Each trader decides whether to query the Law
Merchant so as to learn whether there are any unpaid judgments against
the other trader. To do so, a trader must pay a price p. (The Law
Merchant performs its services for profit, not for the benefit of society.)



            ■ Stage 2 (Transaction): Knowing whether the other trader checked with
the Law Merchant, the two traders then decide whether or not to carry
out the transaction. If they both decide to do so, then they play the game
in Figure 15.3.



            ■ Stage 3 (Appeal): Given the outcome of the transaction, either trader
may go before the Law Merchant to ask for retribution if he feels that he
was cheated. The plaintiff—the person making the appeal—has to pay q
to the Law Merchant for it to render a judgment.



            ■ Stage 4 (Judgment): If either trader appeals, then the Law Merchant is
assumed to make a correct judgment. If one trader behaved dishonestly
and the other behaved honestly, then the Law Merchant states that the
former must pay damages of d to the latter. For any other outcome to the
transaction, no damages are awarded.



            ■ Stage 5 (Payment): If one of the traders was told to pay damages by the
Law Merchant, then he decides whether to do so.



            d.



            FIGURE 15.3 Exchange Game



            1,1 



            2,�1



            �1,2 



            0,0
Trader 1



            Trader 2



            Honest 



            Dishonest



            Honest Dishonest


            

        



        
            

            
15.3 Cooperation in a Large Population 471



            ■ Stage 6 (Recording): If damages were awarded and were not paid by the
guilty party, then this unpaid judgment is recorded by the Law Merchant
and becomes part of the Law Merchant’s permanent record. (As described
in stage 1, this record can be examined by anyone for a price p.)



            Following strategy for all traders describes what to do at each stage in
which a trader acts, depending on his personal history:



            ■ Stage 1 (Query): If a trader has no unpaid judgments, then he queries
the Law Merchant about the other trader. If a trader has an unpaid judg-
ment, then he does not query the Law Merchant.



            ■ Stage 2 (Transaction): If either trader failed to query the Law Merchant,
or if a query establishes that at least one trader has an unpaid judgment,
he does not transact. If both traders queried the Law Merchant and both
have no unpaid judgments, he transacts and plays honestly.



            ■ Stage 3 (Appeal): If the traders transacted and one trader acted hon-
estly and the other dishonestly, then the victim brings the case before the
Law Merchant. Otherwise, he does not bring the case.



            ■ Stage 5 (Payment): If a case is brought before the Law Merchant and
the Law Merchant finds the defendant guilty and assigns damages d,
then the defendant pays damages to the victim if the defendant has no
previously unpaid judgment. Otherwise, he does not pay damages.



            Before determining the conditions under which this is a symmetric sub-
game perfect Nash equilibrium, let us first describe what it implies about be-
havior if all traders use the above strategy. Assume that traders start with no
unpaid judgments; they have a clean record with the Law Merchant. Note that
this needn’t mean that a trader has always engaged in honest transactions, but
if he did act dishonestly, then he paid damages awarded by the Law Merchant.
With a clean record, a trader will go to the Law Merchant to learn about the
other trader, as stated by his strategy. Each will learn that the other has no un-
paid judgments, which means that they’ll engage in honest transactions. If so,
then neither brings a case before the Law Merchant. Thus, if traders enter the
period with no unpaid judgments, then they’ll exit the period with no unpaid
judgments. Their payoff in the period is as they get 1 from an honest
transaction and they paid p to the Law Merchant to learn about the other
trader. Because a trader expects such an outcome in every period (though al-
ways with a different partner), the present value of his monetary stream is



            This is the payoff each trader gets from using this strategy,
given that all other traders use it.



            To establish that this strategy is optimal, we need to show that no other
strategy delivers a higher payoff, for any personal history of the trader.
Showing this requires considering prescribed behavior at each of the stages
during which a trader has to make a decision.



            When is it optimal to query the Law Merchant? First note that a trader’s future
payoff is independent of whether or not he queries the Law Merchant. If he has
no unpaid judgments, then his strategy does not have him cheating the other
trader—regardless of whether he does or does not query the Law Merchant; thus,
he’ll leave the period with a clean record. If he has an unpaid judgment, then his
record is permanently marred, in which case he doesn’t expect to engage in any
future transactions, regardless of whether or not he queries the Law Merchant.



            (1 � p)/(1 � d).
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            The optimal query decision is then determined by how it affects a trader’s
current payoff. Suppose he has no unpaid judgments. If he queries the Law
Merchant, then he expects to learn that the other trader has a clean record, in
which case they’ll transact their business honestly and earn a current payoff
of where we’ve netted out the cost of the query. If he doesn’t query the
Law Merchant, then, according to the strategy profile, there will not be a
transaction, so his current payoff is zero. Hence, it is optimal to query when



            or In other words, it is optimal to query the Law Merchant
when the price of the query is not too large.



            Now suppose he has an unpaid judgment. Then his current payoff from query-
ing is since he pays for the query but then the other trader won’t transact with
him, as the other trader is expected to query the Law Merchant and will learn of
the unpaid judgment. Not querying yields a payoff of zero. Hence, it is indeed op-
timal not to bother with the Law Merchant if a trader has an unpaid judgment.



            When is it optimal to transact business honestly? If one or both traders did
not query the Law Merchant, or if both queried and at least one trader has an
unpaid judgment, then there is no transaction. Thus, suppose both queried the
Law Merchant and both have no unpaid judgments. In that situation, the pay-
off from transacting honestly is



            A trader gets a current payoff of 1 (the payment for the query is in the past and
thus no longer relevant) and, by maintaining a clean record, has a future pay-
off stream of By instead acting dishonestly (and following the strategy
thereafter), the trader has a payoff of



            He receives a payoff of 2 from cheating the other trader, who, according to his
strategy, will then appeal to the Law Merchant, who will award damages of d. The
dishonest trader’s strategy has him pay those damages, so his current period pay-
off from acting dishonestly is Since his judgment is then paid, he can ex-
pect a future payoff stream of It is then optimal to trade honestly when



            Thus, damages must be sufficiently great to induce the trader to act honestly.
When is it optimal for a victim to appeal? So suppose one trader cheated the



            other. The latter’s strategy has him appeal to the Law Merchant. Doing so costs
him q, but he can expect the Law Merchant to award damages, which the
other trader will pay (as long as he has no other unpaid judgments, which is
presumed to be the case). Appealing is then optimal when —that is,
when the damages to be received are at least as great as the price that the Law
Merchant charges to hear the case.



            When is it optimal to pay damages? This is the most intriguing case, as it deals
with whether the Law Merchant can induce someone to pay damages without
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            the help of enforcement powers. If a judgment is made against a trader (who
currently has no unpaid judgments), paying damages results in a payoff of



            He has to pay d, but can then earn in future periods, since he’ll not have
any unpaid judgments. If, instead, he doesn’t pay damages, his current payoff
is zero, and so is his future payoff, for he’ll have a dark mark on his record,
which will prevent him from engaging in any future transactions. Thus, it is
optimal for the trader to pay damages when



            Thus, damages cannot be too large.
Pulling together the preceding analysis, we see that there are four condi-



            tions that must be satisfied in order for this to be an equilibrium strategy:



            ■ It is optimal to query the Law Merchant when 



            ■ It is optimal to engage in an honest transaction when 



            ■ It is optimal to appeal to the Law Merchant when 



            ■ It is optimal to pay damages when 



            The first condition is that the price of a query does not exceed the value of an
honest transaction. The second condition is that damages are sufficiently high
that a trader is deterred from cheating. The third condition is that the price of
using the Law Merchant to gain a judgment is not so high that it is unprof-
itable to do so when a trader has been victimized. The final condition is that
damages are sufficiently low that a trader is willing to pay those damages in
order to maintain a good reputation through the Law Merchant. Damages,
then, must be neither too high nor too low.



            Although the Law Merchant has no enforcement powers, it played a vital
role as a clearinghouse for information that then supported cooperative ex-
change. Traders found it optimal to use the Law Merchant’s services—even
though they were not free—and, by doing so, induced good behavior. When
good behavior did not occur, the Law Merchant’s decisions informed other
traders of whom to avoid in the marketplace.



            Summary
Although many strategic settings—sporting events, car dealerships, court-
rooms, battlefields—are dominated by conflict, much of everyday life involves
cooperation: people helping each other out and, in doing so, helping them-
selves. Explaining cooperation doesn’t require assuming that people care
about other people: Selfish-minded people will cooperate if they know that
failure to do so will disrupt future cooperative play, either temporarily or per-
manently. As long as this future punishment casts a shadow on the present, it
can induce people to do what is good for everyone.
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            1. In each period, the occupants of cubicles 101 and 102 play the game
shown in FIGURE PR15.1. Although the cubicles are infinitely lived, their
occupants come and go, as a person lives for only two periods.
Furthermore, when the occupant of cubicle 101 is in the first period of
his time in that office, the occupant of 102 is in the second and final pe-
riod of her time; and, analogously, when the occupant of 102 is in the



            EXERCISES



            In the current chapter, we have shown that this mechanism can work not
only between two people who anticipate interacting for the indefinite future, but
also for people who expect their interactions to stop in the near future. In the
case of a group with overlapping generations, each person anticipates being
around only for a specified length of time. As she approaches the end of her time
with this group, the shadow of the future becomes fainter and fainter. In her last
period, there is no future and thus no way in which to induce good behavior in
her. Nevertheless, cooperative play can be optimal for someone in all other pe-
riods of their life. For consider the penultimate period of someone’s time with
the group in question. If the person misbehaves, everyone who is still around
can punish her tomorrow. And if she behaves, they can reward her tomorrow by
acting cooperatively. What will induce her to act cooperatively tomorrow is that
a future group—which may be composed of some different people—can punish
her. Each generation is induced to act properly by the promise of a future gen-
eration cooperating with them, and that future generation will cooperate by the
promise of the next generation cooperating with them, and so forth. Key to co-
operative play being sustained is that the group never dies. With new arrivals re-
placing departing members, there is always someone to ensure that socially
good behavior is rewarded and socially bad behavior is punished.



            A second class of situations in which encounters are limited is when a pop-
ulation is large. In this case, although individuals may live forever, any en-
counter between two particular people is unlikely to occur again. Thus, inter-
actions are one-shot, and each person faces an endless stream of these one-
shot situations. To make cooperation work, the punishment for bad behavior
must come from a person’s future encounters, since he does not expect to meet
again the person he wronged. What is critical is that society learns about mis-
behavior, which then requires that people exchange information. Thus, soci-
ety at large can enforce good behavior: If a person misbehaves, she’ll be pun-
ished by whomever she meets in the future. We saw how the Law Merchant in
13th-century Europe and the feedback system in 21st-century eBay served to
spread information and promote cooperative play.
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            FIGURE PR15.1 Cubicle Game
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            first period of her life, the occupant of 101 is in the second period of his
life. There is an infinite number of periods, and each person’s payoff is
the sum of the single-period payoffs during his two-period lifetime.
a. Find a subgame perfect Nash equilibrium that results in a sequence



            of play that alternates between (c, x) and (a, z).
b. Find a subgame perfect Nash equilibrium that results in (a, x) being



            played every period.



            2. Each member of a club with 20 members spends five periods in the
club. At any time, 4 of the members just entered, 4 entered one period
ago, 4 entered two periods ago, 4 entered three periods ago, and 4 en-
tered four periods ago (in which case the current period is their last pe-
riod). The club has one officer, the president, and her job is a thankless
one that no one craves. The personal cost of being president is x, while
the value to being a member of the club is v. Assume that 
A member who is not president then earns v, while a member who is
president earns Each member’s payoff is the sum of his single-
period payoffs (i.e., the discount factor equals 1). Since no one wants
to be president, the club’s procedure is to randomly assign the task to
someone. A president holds the office for just one period, so this ran-
dom selection takes place at the start of each period. In this game, the
only decision that a person is faced with is whether or not to be presi-
dent if selected. If he or she declines being president after being se-
lected, the club is dissolved, in which case everyone receives a zero
payoff.
a. Assume that the random selection occurs from among those people



            who have been in the club for two periods, so a person would become
president in her third period. Derive conditions for this game to be a
subgame perfect Nash equilibrium for a person who has been se-
lected to take on the job of president.



            b. Suppose joining the club has a membership fee of p. Consider a strat-
egy profile in which a person joins the club and, if, at the start of his
third period, he is selected to be president, he takes on the job. Derive
conditions for this strategy profile to be a subgame perfect Nash equi-
librium.



            3. Return to the Tribal Defense game in Section 15.2. Consider the same
strategy profile, except now assume that a punishment lasts for two pe-
riods, rather than one. Derive the conditions for the strategy profile to
yield a subgame perfect Nash equilibrium.



            4. Consider a population of overlapping generations in which, at any time,
there are three players, each of whom lives for three periods. In each pe-
riod, they simultaneously decide among three actions: low, medium, and
high. The game is symmetric and the payoffs are shown in the following
table. For example, if one player chooses high, one chooses medium, and
one chooses low, then their payoffs are, respectively, 0, 2, and 5. If no one
chooses high and two players choose medium, then the players who
choose medium each earn 1 and the player choosing low earns 4.



            Suppose cooperative play involves a player in the first period of his life
choosing high, a player in his second period choosing medium, and a
player in his last period choosing low. Consider the following strategy pro-
file, designed to sustain such play: If the history has always involved co-
operative play, then a player chooses high if he is in his first period,
medium if he is in his second period, and low if he is in his last period. For
any other history, a player chooses low whether he is in his first, second,
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            or last period. Derive conditions for this strategy profile to produce a sub-
game perfect Nash equilibrium.



            5. In the film Animal House, Chip Diller is pledging Omega house. The ini-
tiation ritual has Chip strip down to his underwear, bend over, and clasp
his ankles, while senior frat member Doug Neidermeyer viciously
smacks Chip’s posterior with a wooden board, in response to which Chip
is to reply, “Thank you sir. May I have another?” For the sake of our
analysis, assume that students pledge a fraternity at the start of their
second year, and if they’re going with Omega house, they’ll have to sur-
vive the spanking. Assume that the value of that spanking to the pledge
is m, where, for most people, (i.e., a pledge is worse off), but we
need not prejudge the like or dislike of a good spanking. The value of
being a member of Omega house is per year. As a senior, an
Omega member is supposed to participate in the hazing exercise, which
is of value s. s could be positive—if you get your kicks out of smacking
another man’s bottom—or could be negative if that is not your cup of tea.
Individual-year payoffs are discounted by For example, if Chip joins
Omega house and participates in the hazing both as a sophomore (when
he is the recipient) and as a senior (when he is the deliverer of pain), his
payoff is Assume that a student gets
zero if he is not a member of Omega house. This game is an infinite-horizon
game with overlapping generations. At any time, there are sophomores,
juniors, and seniors; however, decisions are made only by sophomores and
seniors. A sophomore has to decide whether to participate in the hazing ex-
ercise and gain membership to Omega house. Failure to go through with
the hazing ritual means not being admitted. A senior has to decide whether
to participate in the hazing; failure to do so means being kicked out of the
house for his senior year. Consider a symmetric strategy profile in which a
student participates both as a sophomore and as a senior.
a. Derive conditions for this symmetric strategy profile to yield a sub-



            game perfect Nash equilibrium.



            (v � m) � d � v � d2 � (v � s).
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            v 7 0



            m 6 0
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Payoff to a Player Choosing … 



            High Medium … High … Medium … Low



            0 0 x x 0
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            1 1 0 2 5
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            b. Assume that and Show that only sufficiently patient
sadists join Omega house.



            c. Assume that and Show that only sadomasochists join
Omega house.



            6. There is a large population of players who are randomly matched in
each period to play the symmetric game shown in FIGURE PR15.6. No two
players ever expect to meet each other again. Each player’s payoff is the
present value of the single-period payoffs, where the discount factor is 



            Assume that a player’s past actions are observed by the entire popu-
lation. Find a subgame perfect Nash equilibrium in which the outcome
is (c, c) in every period.



            d.



            d � 0.v � 0



            m 6 0.v � 0



            7. Let us consider a variation of the eBay game presented in Section 15.3.
Assume that eBay provides a narrow window of time for the buyer to
provide feedback on the seller: the time between the end of one period
(or transaction) and the beginning of the next period (or transaction).
Furthermore, a buyer may be unable to submit his or her feedback dur-
ing that window because of technological problems. Hence, all buyers
and sellers know that there is a probability r, where that a
buyer is able to provide feedback. Consider the same strategy profile as
in Section 5.3 (except that the buyer’s feedback strategy applies only
when she is technologically able to provide feedback, an event that oc-
curs with probability r). Derive conditions for this strategy profile to
yield a subgame perfect Nash equilibrium.



            8. Consider a population of home renovation businesses and homeowners.
In each period, a homeowner and a home renovation company are
matched. The homeowner decides whether or not to use the company. If
she chooses to hire it, then the company decides whether to perform
high-quality or low-quality work. The associated payoffs are given in the
table below. A homeowner receives a payoff of 10 from not having work
done, while a home renovation company’s payoff is zero if its services
are not used in the current period.
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            FIGURE PR 15.6 



            PAYOFFS IN HOME RENOVATION GAME



            Quality of Work Home Renovation Company Homeowner



            Low 30 5



            High 20 25
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            Home renovation companies live forever, and their payoff is the pres-
ent value of the single-period payoffs, where the discount factor is A
homeowner uses this service at most once.
a. Suppose a homeowner learns of the experiences of all past customers of



            a home renovation company. Find a subgame perfect Nash equilibrium
in which the outcome has each homeowner use the company with
which she is matched and the company provides high-quality work.



            b. Suppose a homeowner learns only how many customers a company
has had in the past, and if it has some past customers, she learns the
experience of one past customer selected by the company. Show that
a subgame perfect Nash equilibrium must result in all homeowners
not using the services of any home renovation company.



            d.
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The universe we observe has precisely the properties we should expect
if there is, at bottom, no design, no purpose, no evil, no good, nothing
but blind, pitiless indifference. —CHARLES DARWIN



            My theory of evolution is that Darwin was adopted. —STEVEN WRIGHT



            16.1 Introducing Evolutionary Game Theory
IN THIS BOOK, WE’VE USED the methods of game theory to characterize human
behavior in strategic contexts. The approach has been to identify a collection
of strategies with the property that each person has no way to improve her
well-being in light of the behavior of others. In this and the ensuing chapter,
we want to adapt these methods to understand the behavior of other ani-
mals—not only other primates, such as chimpanzees, but also birds, reptiles,
fish, and even insects. In fact, we want methods that can be applied to under-
standing any species on any planet (let’s be bold!)—methods that could explain
mating rituals, competition for resources, cooperation, communication, and
the offspring sex ratio. The plan is to explore life-forms with levels of intellect
far below what is required to engage in the type of conscious reasoning pre-
sumed in previous chapters. Surely, rationality is not common knowledge
among ants!



            If game theory is to work throughout the animal kingdom, the mechanism
by which strategies are selected cannot then be cognitive. Just as much as the
biologist Charles Darwin borrowed ideas from the social scientist Thomas
Malthus to develop The Origin of Species, we will now borrow back from
Darwin. The mechanism for choosing a strategy profile is natural selection, the
unrelenting, unintentional process whereby more fit traits thrive in the popu-
lation and less fit ones perish. Natural selection will lead to a stable collection
of strategies. The intelligence of the human brain is replaced with the “intelli-
gence” of natural selection.



            There are strong similarities between how we’ve analyzed human behavior
and how we will analyze the behavior of other animals. To make this point,
let’s review the approach of the previous chapters, which I will now refer to as
rational game theory. Using the strategic form, we start with a set of players,
each endowed with preferences reflected in the payoffs they attach to the
various outcomes of the game. A player is also endowed with a set of strate-
gies, where a strategy is a decision rule for this game. A strategy profile—one
for each player—determines an outcome. In selecting a strategy, a player de-
velops beliefs about the strategies selected by other players and, according to
rationality, chooses the strategy that maximizes his payoff, given those beliefs.
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            Evolutionary Game Theory and Biology:
Evolutionarily Stable Strategies
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            A stable strategy profile is characterized by a Nash equilibrium, which has the
property that each player is doing the best she can, given what others are
doing. This characterization presumes accurate beliefs about the strategy se-
lected by another player.



            The approach to understanding the animal kingdom is referred to as evolu-
tionary game theory.1 The starting point is again a strategic form game, but
now that game is embedded in a larger setting: a population of players, out of
which the set of players is selected. The strategic context may be a two-player
interaction—such as two males battling for reproductive rights over a
female—and two members of the (male) population are randomly matched to
play the two-player game. However, they do not select a strategy, which is an
important departure from rational game theory. Rather, each member is en-
dowed with a strategy. Thus, an animal is preprogrammed to play; there is no
free will as in rational game theory. The selection process for strategies occurs
instead at the level of the population, not the individual. Strategies that per-
form better—where performance is referred to as fitness rather than payoff—
will, according to the mechanism of natural selection, displace less well per-
forming strategies. Although an individual member cannot modify his behav-
ior, the proportion of members who use a strategy can evolve: Those members
who are more fit have more progeny, who inherit the strategy that made their
parents more fit. As with rational game theory, we’re looking for a stable out-
come—more specifically, a population of strategies such that that population
persists over time. In the evolutionary context, a population is stable when it
is resilient to a mutation. TABLE 16.1 summarizes the parallels between ra-
tional game theory and evolutionary game theory.



            TABLE 16.1 PARALLEL CONCEPTS IN RATIONAL AND EVOLUTIONARY GAME THEORY



            Rational Game Theory Evolutionary Game Theory



            Set of players Population from which the set of players is drawn



            Payoff: measure of well-being Fitness: measure of reproductive success



            Strategy is chosen by a player Strategy is inherited by a player and “chosen” by natural
selection



            Equilibrium: no player can do better Equilibrium: no small mutation in the population can survive



            Although the methods of these two branches of game theory have some
commonality, it is crucial to emphasize that their perspectives are quite differ-
ent. The basic unit of analysis in rational game theory is the player, and the
goal is to describe what that player does. In evolutionary game theory, the
basic unit is the strategy (or trait or gene), and we try to describe the mix of
strategies in the population. An individual animal is just a vehicle for a strat-
egy. That members of the population come and go is irrelevant; what is impor-
tant is the mix of strategies in the population.



            The primary objective of this chapter and the next is to figure out how to
solve for a stable population of strategies for a given strategic setting arising
in the animal kingdom. We’ll need to define what we mean by “stable” and
then learn how to solve for it. In this chapter, our attention is restricted to
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            homogeneous populations, so that all members use the same strategy.
Roughly speaking, a stable strategy for a population—what is known as an
evolutionarily stable strategy (or ESS)—must satisfy the condition that it be re-
sistant to the arrival of a small mutation deploying a different strategy. In
terms of natural selection, the mutation is less fit than the ESS. In both moti-
vating and defining an ESS, in Sections 16.2 and 16.3 we work with the
Hawk–Dove game, which models a common conflict in the animal kingdom.
After solving for an ESS for both the Hawk–Dove game and an intriguing con-
flict between dung flies (yup, dung, as in excrement; you’re going to love this
stuff), in Section 16.4 we discuss some properties of an ESS, including how it
relates to Nash equilibrium. The chapter concludes by considering two vari-
ants on the basic structure. In Section 16.5, a multipopulation setting is intro-
duced, as might arise when the strategic setting involves a male and a female.
Then, in Section 16.6, an ESS is adapted to when the population size is small,
and we show how evolution can produce the trait of spite. To understand the
methods of this chapter, you will need to be comfortable in working with
mixed strategies, a subject covered in Chapter 7.



            The evolutionary approach is motivated by a dynamic story in which more
fit strategies drive out less fit ones. While the definition of an ESS seeks to
identify the population that emerges from such a dynamic, the dynamics
themselves are not explicitly modeled. An alternative approach within evolu-
tionary game theory is to model those dynamics, and that we do in Chapter
17. The model used is referred to as the replicator dynamic, and what it pro-
duces in terms of stable populations is shown to have strong linkages with the
concept of ESS.



            16.2 Hawk–Dove Conflict
The tendency to aggression is an innate, independent, instinctual disposi-
tion in man [and] it constitutes the powerful obstacle to culture.
—SIGMUND FREUD



            DURING RUTTING SEASON, RED DEER stags often find themselves in conflict, and it
can get ugly. If they meet and a resource such as a doe or a territory is at stake,
they go through a ritual to determine who acquires the resource. The ritual
typically begins with some roaring. Since health influences roaring capacity,
the matter could be settled at this stage. If not, then the animals are likely to
get physical by locking antlers and pushing against each other. This battle can
lead to injury, but ultimately it will decide who is the winner.



            Biologists model this situation with a game known as Hawk–Dove. In the
Hawk–Dove game, there are two possible strategies: hawk and dove (ooh, that
was a surprise). If a stag has the strategy hawk, it is willing to fight in order to
have the resource. In contrast, a stag endowed with dove will posture (by roar-
ing), but then back down if the other starts to fight. In terms of fitness, the
value of the resource is V. Thus, if a stag using hawk faces a stag using dove,
then hawk wins the resource, because dove retreats as soon as hawk starts to
lock antlers. Hawk then receives fitness V, while dove receives zero fitness. If
the animals are both doves, then they engage in a prolonged posturing exer-
cise until one decides to give up and wander away. Suppose each has a 50%
chance of outlasting the other, so that the expected fitness when two doves
meet is Finally, if two hawks meet, then there is a fight until one of them isV
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            injured. The fitness cost to being injured is C. The winner of the fight takes
control of the resource, which produces fitness V, and the loser is injured and
receives fitness Assuming that the two hawks are evenly matched, each
has an equal chance of winning the fight. Thus, the expected fitness of hawk
when meeting another hawk is



            These fitnesses give us the strategic form game
shown in FIGURE 16.1. Assume that so
that the fitness cost of the injury exceeds the fitness
benefit of the territory. That is surely the case if the
injury is sufficiently life threatening.



            Before analyzing this situation in nature, let’s de-
scribe how the Hawk–Dove game can relate to hu-
mans. Suppose two people meet randomly to bargain
over some asset valued at V. A person can take the
bargaining tactic of being bold (hawk), in which case
he is willing to hold out even if doing so is very costly,



            or cautious (dove), in which case he avoids costly negotiation and is willing to
settle matters even if it means giving up a lot. If both people are cautious, they
ensure that a trade occurs and split the gains, each getting If both are bold,
they run the risk of losing the trade. Assume that the expected payoff for each
is something less than say, And if one is bold and the other is cau-
tious, the latter gives in, knowing that the bold bargainer will risk losing the
trade in order to get a good deal. So the person who is bold gets V and the one
who is cautious gets zero.2



            Now let’s return to the animal kingdom and bargainers that literally lock
horns. We begin with a population of all hawks. Two members of the popula-
tion are randomly matched, and since both use hawk, each has a fitness of



            Now, suppose there is a small mutation of doves in the population,
so that a fraction are hawks and a fraction are doves, where (epsilon)
is positive, but small. Then the expected fitness of a hawk is now



            [16.1]



            With probability it meets another hawk—with a resulting fitness of
—and with probability it meets a dove—with fitness V. The ex-



            pected fitness of one of these mutants—which are endowed with dove—is



            [16.2]



            This mutant meets a hawk with probability and has zero fitness, and
meets another dove with probability yielding a fitness of 



            For a population of only hawks to be stable, the hawk strategy must deliver
strictly higher fitness than the mutant strategy dove. If that were not the case,
then the dove mutation would not be driven out. The requirement for the sta-
bility of hawk is then that (16.1) exceed (16.2):
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            We solve this expression for the size of the mutation:



            [16.3]



            Since (16.3) does not hold when the mutation is smaller than



            What the analysis is telling us is that a sufficiently small mutated population
of doves can successfully invade a population of hawks. When there are nearly
all hawks, a hawk expects to face another hawk, so there is a 50% chance of in-
curring an injury and a 50% chance of coming out unscathed with the re-
source. These odds are not very attractive, since the value of the resource, V, is
less than the cost of injury, C. A population of hawks fights too much. Now, be-
cause the size of the mutated population is small, a dove can generally expect
to face a hawk, in which case the dove backs down. Although it doesn’t get the
resource, it doesn’t get injured either. A dove’s fitness of zero when facing a
hawk is better than that of a hawk facing a hawk, which is Now,
a hawk also has a chance of meeting a dove—for which the hawk’s fitness is
high, at V—and a dove has a chance of meeting another dove—for which the
dove’s fitness is less, at —but these occurrences are rare, since the fraction of
doves in the population is small. (Remember, the mutation is presumed to be
tiny.) Hence, what drives a strategy’s fitness is how it performs when it is used
to face the ubiquitous hawk. In that case, a dove does better than a hawk.



            A population of only hawks, then, is not stable, as it can be invaded by a
small mutation of doves. Now, what about a population of all doves? Is it re-
silient against a mutation? Consider a small invasion of hawks that make up 
of the population. The expected fitness to a dove is



            [16.4]



            as it faces another dove with probability for which it earns a fitness of
and it faces a mutant hawk with probability for which its fitness earned



            is zero. A mutant hawk’s expected fitness is



            [16.5]



            Most of the time, it meets a dove and does great with a fitness of V. Only a frac-
tion of the time does it meet another (mutant) hawk and receives the low fit-
ness of For a population of all doves to be immune to this invasion
of hawks, (16.4) must exceed (16.5), so that the fitness of dove exceeds the fit-
ness of hawk:



            This condition can be rearranged to yield
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            Unfortunately, (16.6) is not true when the invasion is small (i.e., when is less
than ).



            If the population is made up of all doves and there is an invasion of a few
hawks, those hawks thrive. A hawk has a great time, as it generally meets a
dove and wins the resource without a fight. Only rarely does it meet another
hawk and engage in a costly fight. Most of the time, a hawk is earning a fit-
ness of V, while a dove earns zero. Thus, a population made up of only doves
is unstable.



            To summarize, a population of all hawks is not stable because it can be suc-
cessfully invaded by a small mutation of doves. Doves avoid the risk of injury
in the conflict-prone population of hawks. But it is also the case that a popu-
lation of doves can be invaded by a small mutation of hawks. When everyone
backs down in the face of a fight, the aggressive hawks thrive, as simply being
willing to fight gives them the resource. So is there a stable population of
strategies in the Hawk–Dove game? To address that question better, we intro-
duce a new concept that is central to evolutionary game theory.



            16.3 Evolutionarily Stable Strategy
THUS FAR, WE HAVE SHOWN that neither a population of all hawks nor a popula-
tion of all doves is stable. Since we are limiting ourselves to all members being
endowed with the same strategy, what is left? Well, recall from Chapter 7 that
there are in fact many possibilities remaining, and they all involve randomiz-
ing behavior. Let us then consider a strategy that has a stag take a hawk posi-
tion in a fraction p of its encounters. If then sometimes it backs
down (like a dove), but other times it stands his ground, ready to fight (like a
hawk). Let’s try to find a value for p whereby if every member of the popula-
tion uses strategy p, then the population is immune to invasion.



            Because a mutant can also randomize, consider what the expected fitness
of a mixed strategy is when it meets another mixed strategy. Letting 
denote the expected fitness earned by a member endowed with strategy 
when it meets another endowed with strategy F is defined by



            [16.7]



            To explain this expression, first note that both members choose hawk with
probability as the player with strategy chooses hawk with probabil-
ity and the player with which it is matched chooses hawk with probability



            Hence, with probability type (as well as type ) has a fitness of
. This gives us the first of the four terms in (16.7). Further, with



            probability type chooses hawk and type chooses dove, so
the former’s fitness is V; this gives us the second term. With probability



            the roles are reversed, and type receives zero fitness. Finally,
both choose dove with probability which yields a fitness
of



            With that nasty equation (16.7) understood (it is understood, right?), con-
sider next a population in which all members choose hawk with probability p.
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            With the arrival of a mutation (of size that chooses hawk with probability
q, the expected fitness of strategy p is now



            [16.8]



            This deer meets its own type a fraction of the time, and it meets the mu-
tant strategy q a fraction of the time. The expected fitness of strategy q is



            [16.9]



            For a population made up of only strategy p to be able to fend off this muta-
tion, (16.8) must exceed (16.9) when is small:



            [16.10]



            Let’s see what happens to the condition in (16.10) as we shrink toward
zero, so that the mutation becomes very tiny. Focusing on the left-hand expres-
sion, we see that the term gets closer and closer to 
and the term gets closer and closer to zero. The same is true for the
right-hand expressions. Thus, as gets closer and closer to zero, (16.10) gets
closer and closer to looking like



            [16.11]



            If (16.11) holds, then so does (16.10) when is close enough to zero. Hence, if
then p is safe against a small mutation of q. Now we’re



            making progress! If, instead, then a population with strat-
egy p can be successfully invaded by this mutation.



            It might help to add some intuition to these mathematical expressions. If
then the ubiquitous strategy p has higher fitness against



            itself than the mutant strategy q against strategy p. Since mutations are
small in number, a strategy—p or q—is far more likely to meet strategy p
than the mutant strategy. Thus, if the ubiquitous strategy is better against
itself than the mutant strategy is against the ubiquitous strategy, then the
mutation fails. If the contrary is true—so that —then the
mutant thrives.



            What about if so that strategy p and q are equally fit
against strategy In that case, (16.10) becomes



            Examining (16.10), we see that the first term on the left-hand side and the first
term on the right-hand side cancel when Thus, if strategies
p and q are equally fit against strategy p, then, for strategy p to be immune to
an invasion by strategy q, p must outperform q when it comes to facing the
mutant. Although such encounters are rare, they determine the relative fitness
of strategies p and q.



            Summing up, we note that strategy p is stable against a mutation q if either
(1) the fitness of p is higher than that of q when each faces p or (2) the fitness
of p is equal to the fitness of q when each faces p and is higher than the fitness
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            of q when each faces q. A strategy that satisfies these conditions is known as
an evolutionarily stable strategy.



            ✚ DEFINITION 16.1 p is an evolutionarily stable strategy (or ESS) if, for
all q p, either F (p, p) 
 F (q, p) (strong ESS), or F (p, p) � F (q, p) and
F (p, q) 
 F (q, q) (mild ESS).



            If neither set of conditions (those for a strong ESS and those for a mild ESS)
is satisfied, then the strategy is not an ESS. For example, if 
then the mutant q performs better against the ubiquitous type p and hence will
grow. Also, if and then, again, the mutant
q will grow. Although q is equally fit against the ubiquitous type p, q outperforms
p when each is matched with q. If and then
the mutant is equally fit to that of the ubiquitous type, so there is no force caus-
ing it either to grow or to shrink; it’ll continue to hang around.



            Knowing what it takes for a strategy to be stable, let’s now find an ESS for
the Hawk–Dove game. Using the condition for a strong ESS, we need to deter-
mine whether there is a value for p such that



            With our explicit expressions for fitness, this condition takes the form
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To make this condition more “user friendly,” we perform a few manipulations



            (which I need not bore you with), and we find that (16.12) is equivalent to



            q 	 p.



            Now, suppose the term in brackets is positive. Then (16.13) doesn’t hold when
because in that case so the expression on the left-hand side



            of the inequality is negative and thus not larger than zero. If the term in brack-
ets is instead negative, then, by an analogous logic, (16.13) doesn’t hold if



            It follows that this condition cannot hold for all We conclude
that there is no value for p such that it is a strong ESS.



            Let’s then consider the conditions for a mild ESS. First, we require that



            From the analysis conducted around (16.13), when the left-
hand expression in (16.13) equals zero for all a condition which re-
quires that the bracketed term be zero:
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            Solving (16.14) for p, we find that But if this is so, then the fitness of
strategy p against itself is the same as the fitness of any mutant q against strat-
egy is then our candidate for an ESS, as it satisfies the first condition
for a mild ESS. The second condition is



            [16.15]



            Substituting in the appropriate expressions, we see that (16.15) takes the form



            F(p, q) 7 F(q, q) for all q 	 p.
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Cp.
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Rearranging (16.16) and substituting for p, we getV
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            q 	 p.



            Working through a bit of algebra, we find that (16.17) is equivalent to



            [16.18]



            Since the square of a number—whether positive or negative—is always posi-
tive, (16.18) holds. We conclude that strategy is a (mild) ESS.



            What we’ve just shown is that while a mutant q does just as well against
strategy as does strategy , strategy does better against the mutant than a
mutant does against itself. Let’s delve into why this is so. If a mutant assigns a
higher probability than to choosing hawk, then it is better to choose hawk less
frequently when faced with a mutant, as doing so means fewer injuries; hence,



            does better than the more aggressive mutant. If a mutant assigns a lower
probability to choosing hawk than does, then it is better to choose hawk more
frequently when faced with the more passive mutant, as that means grabbing
more resources; so does better than the mutant.



            We finally reach our goal in solving for a stable population for the
Hawk–Dove game. If all members of the population choose hawk with proba-
bility , then this population is immune to the arrival of a (small) mutation.
Let’s add some flesh to this result by jumping from this mental exercise to
some actual Hawk–Dove confrontations that occur in the world of “red in
tooth and claw.”3



            During the mating season, male Canadian musk oxen engage in a
Hawk–Dove situation, the result of which is that 5–10% incur lethal injuries
from fighting (i.e., by deploying the hawk strategy some of the time). With
male fig wasps, as many as half have been found dead in a fig from male–male
combat. Finally, what goes on with the common toad is truly bizarre. During
the mating season, the male toads wait at a pond for females who appear
ready to spawn. Once having found a female, a male clings to her back as she
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            travels around the spawning site. If another
male spots her, he’ll climb on her back as well
and struggle with the first male. In fact, more
than 20% of females end up carrying three to
six wrestling males on their back! In some



            cases, this even leads to the death of the female by drowning.



            � SITUATION: “STAYIN’ ALIVE” ON A COWPAT



            It’s Friday night and a few guys head out to a disco. Checking out the action,
they see that it’s rather thin in terms of women. Each has a drink and thinks
about whether to stay or try another place. To get biologists interested in this
scenario, we need to replace those 20-year-old Homo sapiens with dung flies
and substitute a cowpat for the disco. Because female dung flies like to put
their fertilized eggs into a fresh cowpat, a male dung fly hovers around a cow-
pat, waiting for females to arrive. But while he is waiting, the cowpat becomes
stale and thus less attractive to a female. A male dung fly must then decide at
what point to forsake the cowpat it has staked out and move on to fresher pas-
tures. (The situation is analogous to finding the disco that is currently chic.)
A second concern of a male dung fly is when it is one of multiple males hang-
ing out at a cowpat. For then, if a female arrives, it’ll have to compete with
them to fertilize her eggs. If the other male dung flies intend to stubbornly
stay, then it may be best to find another cowpat that is not so crowded.
However, if the other males are impatient, then it would behoove the original
dung fly to wait, since it’ll soon be the only one there.



            The strategic situation is then a war of attrition played by several male
dung flies at a cowpat. Each decides whether to wait—hoping that others will
leave—or move on. For simplicity, assume that there are only two male dung



            flies on a cowpat and each can wait one
minute or two minutes. (Dung flies are as im-
patient as two-year olds.) The fitness matrix
for this scenario is shown in FIGURE 16.2. If the
other dung fly stays one minute, then a dung
fly would prefer to stay longer and receive a
fitness of 5. By outlasting its rival, there is the
chance that a female will show up when it is
the only male at that cowpat. If, instead, the
other dung fly stays two minutes, then a dung



            fly has a fitness of only 1 from also staying two minutes and would do better
by staying one minute and receiving a fitness of 2.



            Consider a candidate strategy p. The fitness it earns against itself is



            With probability p, a dung fly stays one minute and receives a fitness of 2 (re-
gardless of how long the other male stays). With probability it stays two
minutes. In that case, if the other dung fly stays only one minute, which oc-
curs with probability p, the fitness of the first fly is 5; if the other fly stays two
minutes as well, which occurs with probability the fitness of the first fly
is only 1.
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            Find an ESS for the Hawk–Dove game when V 
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            FIGURE 16.2 Dung Fly Waiting at a Cowpat
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            To be a strong ESS, strategy p has to do better against itself than does an
alternative strategy q:



            Substituting the explicit expressions for fitness, we have



            [16.19]



            Clearly, this condition doesn’t hold for since both sides of (16.19) are
then zero. Now consider a value for p less than . In that case, and
we can divide both sides of (16.19) by so that the inequality becomes



            Strategy p then satisfies the condition for a strong ESS only against a
mutant q less than p. Mutants that stay for one minute with higher probabil-
ity than p actually have higher fitness. Hence, if then it is not a strong
ESS, as it can be successfully invaded by a less patient mutant. Next, consider
a value for p exceeding . Since we can divide both sides of (16.19)
by so that the inequality becomes (Remember that dividing
through by a negative number flips an inequality around.) Hence, if 
then the mutant has higher fitness. If then it is not a strong ESS, as it
can be successfully invaded by a more patient mutant. Summarizing this
analysis, we note that the Dung Fly game does not have a strong ESS.



            We next turn to considering whether the game has a mild ESS. The first
condition for a mild ESS is that strategy p fare the same against itself as a mu-
tant q does against p:



            From the preceding analysis, this equation is equivalent to



            This condition holds if and only if The second condition for a mild ESS
is that, when matched with the mutant, strategy p earns a fitness that is higher
than when the mutant is matched with itself:



            Using the explicit expressions, we have
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            Simplifying this expression and substituting for p, we find that (16.20) is
equivalent to
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            Since (16.21) is indeed true, is a (mild) ESS.p � 1
4
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4
b � (1 � 4q)2 7 0 for all q 	
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4
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4



            � �q � 5 � (1 � q) � 1� for all q 	 p.q � 2 � (1 � q)



            p � 2 � (1 � p) � �q � 5 � (1 � q) � 1� 7



            F( p, q) 7 F(q, q) for all q 	 p.



            p � 1
4.



            p(1 � 4p) � q(1 � 4p) for all q 	 p.



            F( p, p) � F(q, p) for all q 	 p.
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            p 7 q,
p 6 q.1 � 4p,



            1 � 4p 6 0,1
4



            p 6 1
4,



            p 7 q.
1 � 4p,



            1 � 4p 7 0,1
4



            p � 1
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            p � (1 � 4p) 7 q � (1 � 4p) for all q 	 p.



            F( p, p) 7 F(q, p) for all q 	 p.
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            The strategy of staying for one minute 25% of the time is an ESS because
it does as well against itself as any mutant does and it does strictly better
against a mutant than the mutant does against itself. When the mutant is less
patient than the latter does better because it is more likely to outlast the
mutant; and when the mutant is more patient than the latter still does
better because it tends to avoid a long of war of attrition.



            I want to highlight a property of this ESS. The fitness that comes from stay-
ing one minute is, of course, 2. Given that every other dung fly uses the strat-
egy the fitness that comes from staying for two minutes is also 2, since



            Given that the other dung flies stay for one minute 25% of the time, the fitness
for any particular dung fly is the same whether it stays one or two minutes.
This fact is not coincidental, and we’ll explain why in the next section. Right
now, we want to determine whether, in practice, fitness is the same regardless
of how long you hang out at a disco—I mean a cowpat.



            If male dung flies are using an ESS, then the expected fitness is predicted
to be the same regardless of whether they stay a short time or a long time. A
study estimated the relationship between mating success and length of stay at
a cowpat. The results are plotted in FIGURE 16.3, where the horizontal axis is
the length of time at a cowpat and the vertical axis is a measure of mating suc-
cess.4 The results are striking: Average fitness is pretty much constant with re-
spect to stay time, exactly as is predicted by evolutionary game theory!



            The next step in this research project is to go to discos with a stopwatch. Or
better yet, maybe I’ll open up a disco called The Fresh Cowpat. I’m going to
make a fortune.
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4
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            FIGURE 16.3 Stay Time and Mating Success for Male Dung Flies
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            16.4 Properties of an ESS
WE’VE DEVELOPED THE CONCEPT of an ESS from the requirement that a popula-
tion using a common strategy is stable if it is immune to invasion. As alluded
to in the introduction of this chapter, there are links between nature’s “choos-
ing” a strategy via the mechanism of natural selection—thereby yielding the
highest fitness—and a rational player’s choosing her most preferred strategy—
thereby yielding the highest payoff. We can now draw a concrete implication
that follows from the similarity between these two selection devices.



            Since fitness in the evolutionary context is simply payoff in the social con-
text, the condition for a strategy p to be a symmetric Nash equilibrium in a
two-player game is



            In other words, given that the other player uses strategy p, a player can do no
better than to also use p. We want to compare this condition with the condi-
tions for a strategy p to be an ESS:



            Thus, if p is an ESS, then either for all —in which case
p is a Nash equilibrium—or for all —in which case
again p is a Nash equilibrium. This conclusion leads us to the following result:



            An ESS is a Nash equilibrium.



            What about the converse? Is every Nash equilibrium an ESS? No, an ESS
is more stringent; that is, it takes more for a strategy to be an ESS than to be
a Nash equilibrium. In a sense, an ESS is a Nash equilibrium plus a stability
condition ensuring that a minor perturbation in what is being played does not
upset the equilibrium.



            To see more concretely that an ESS is a more demanding criterion, suppose
a strategy p satisfies the following two conditions:



            (1)
(2)



            The first condition ensures that there is no strategy better than p; thus, a player
using p has no incentive to change what she is doing. In other words, p is a Nash
equilibrium. However, the second condition means that p is not an ESS, because
a mutant q outperforms p when q faces itself (and, by the first condition, q does
just as well as p when each faces p). For example, a symmetric Nash equilibrium
strategy that is weakly dominated is not an ESS. For p to be an ESS, a minimum
requirement is that p yield a strictly higher fitness than any alternative q when
each faces either p (in the case of a strong ESS) or q (in the case of a mild ESS),
but if q weakly dominates p then p never outperforms q.



            F( p, q) 6 F(q, q) for some q 	 p.
F( p, p) � F(q, p) for all q 	 p;



            q 	 pF( p, p) � F(p, q)
q 	 pF( p, p) 7 F(q, p)



            F( p, p) � F(q, p) for all q 	 p and F( p, q) 7 F(q, q) for all q 	 p.



            or



            F( p, p) 7 F(q, p) for all q 	 p



            F( p, p) � F( p, q) for all q 	 p.
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            A Nash equilibrium need not be an ESS. In particular, a (symmetric)
Nash equilibrium in which the equilibrium strategy is weakly dominated is not
an ESS.



            A strict Nash equilibrium is a Nash equilibrium in which each player’s
strategy is a unique best reply, so that any other strategy delivers a strictly
lower payoff. The condition for a strong ESS is identical to the definition of a
(symmetric) strict Nash equilibrium.



            A symmetric strict Nash equilibrium is an ESS.



            Now suppose we have an ESS that is a mixed strategy, as was the case in the
Hawk–Dove and Dung Fly games. Recall from Chapter 7 that if a player random-
izes at a Nash equilibrium, then she must receive the same payoff from all the
pure strategies over which she is randomizing; it can only be optimal to let a flip
of a coin determine what you do if you’re indifferent among the options. In the
case of the Dung Fly game, it is a Nash equilibrium to stay for one minute with
probability because, given that the other dung fly stays for one minute with
probability , the expected payoff is the same between staying one minute and
staying two minutes. The expected payoff, then, is 2 for any randomization over
these two pure strategies. Now, since an ESS is a Nash equilibrium, if the ESS is
a mixed strategy, then the fitness from that ESS is the same as the fitness earned
from using one of the pure strategies assigned a positive probability by the ESS.
In the Dung Fly game, for example, if the other dung fly uses the fitness to
strategy is 2, which is the same as the fitness from any other strategy; that is,



            But this then means that the ESS is not a strong ESS: When matched with it-
self, a mixed-strategy ESS has the same fitness as a mutant that randomizes
over the same pure strategies as the ESS.



            If an ESS is not a pure strategy, then it is a mild ESS.



            These insights can be useful in finding the set of evolutionarily stable strate-
gies. Let’s see how it would have helped us with the Dung Fly game. Since every
ESS is a symmetric Nash equilibrium, a strategy profile that is not a symmetric



            Nash equilibrium is not an ESS. The first step, then, is to
find all of the symmetric Nash equilibria, since if there are
any ESS’s, it will be among those equilibria. In the Dung
Fly game, there are no symmetric pure-strategy Nash
equilibria. A symmetric mixed-strategy Nash equilibrium
is defined by a value for p such that if the other dung fly
stays for one minute with probability p, then a dung fly is
indifferent between staying one and two minutes:



            Solving this equation for p, we learn that Hence,
there is a unique symmetric Nash equilibrium, and it is



            p � 1
4.



            2 � p � 5 � (1 � p) � 1.
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4



            ,
1
4
b � F aq,
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4
b for any q.
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4
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4,
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4
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4



            For the game in FIGURE 16.4, find all ESS’s.



            16.2 CHECK YOUR UNDERSTANDING
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            This, then, is the lone candidate for an ESS. We know that it cannot be
a strong ESS, so we just need to check whether it satisfies the conditions for
a mild ESS.



            � SITUATION: SIDE-BLOTCHED LIZARDS



            To further explore the relationship between ESS and Nash equilibria, let’s return
to the game of Rock–Paper–Scissors from Section 4.2, which is reproduced in
FIGURE 16.5. Because this game has been used to explain the colors of side-blotched
lizards, we have replaced Bart and Lisa with lizards and hand movements with
colors. (While Bart would probably find it cool to be turned into a lizard, I’m not
sure Lisa would take kindly to it.) We’ll explain more about the biological setting
in a moment. For now, let’s just view this as a game to be analyzed.
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4.



            FIGURE 16.5 Side-Blotched Lizards
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            Using the methods from Chapter 7, we can show that there is a unique sym-
metric Nash equilibrium, one in which each lizard chooses any color with prob-
ability (Because it’s kind of messy, I’ve decided to leave out the derivation.)
This, then, is the lone candidate for an ESS. We now want to show that this Nash
equilibrium is not an ESS, which means that this game does not have an ESS.



            Toward that end, consider a mutation in which the lizard randomizes
among blue and orange, assigning each probability (It should not be obvious
how I chose this mutant, but it will prove to be a mutant that survives, and
that’s sufficient for our purposes.) Let be the fitness earned by
a lizard that uses mixed strategy (w, x)—choosing blue with probability w, or-
ange with probability x, and yellow with probability —when the
other lizard chooses mixed strategy (c, d) (which is analogously defined).



            We want to show that can successfully invade a population in which
every member uses in other words, is not an ESS. To do that, we
evaluate the fitness of against itself and the fitness of against 
Here are the explicit expressions, in gory detail:
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            and



            We then have



            Hence, if is to be stable against the mutant it must perform better
against this mutant than the mutant does against itself; that is,



            Once again evaluating these expressions, we obtain
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            Thus,



            and the mutant has fitness equal to that of the strategy 
The candidate strategy and the mutant are equally fit when fac-



            ing both and . Since the mutation would then not be driven
out of the population, is not an ESS.



            Not every game has an ESS.



            Without an ESS, the population mix will never settle on a single common
strategy, because eventually a mutation will come along and persist. This type
of instability is easiest to see with pure strategies. For example, suppose all
members of the population use the pure strategy rock. Then a mutation, all of
whom use paper, will obviously thrive and come to dominate, but it can be
supplanted by a mutation that uses scissors. If scissors takes over, then a mu-
tation of rock can thrive, and so forth.



            The lack of an ESS in Rock–Paper–Scissors is thought to explain the cycling
of colors in side-blotched lizards.5 Male side-blotched lizards differ in throat
color, which is correlated with other traits pertinent to territorial defense and
thus is of relevance to fitness. For example, lizards with an orange throat are
highly aggressive and willing to defend a large territory, while blue-throated
lizards are less aggressive and confine themselves to defending a smaller ter-
ritory. Lizards with a yellow throat don’t have any territory; instead, they lurk
around the territories of other lizards.



            Let’s now explain how this biological environment is like Rock–Paper–
Scissors. First, note that a bigger territory means having access to more fe-
males and thus spinning off more progeny. When the population is made up
largely of orange-throated lizards, the yellow-throated lizards do well, cluster-
ing on the fringes of the territories. Once the yellow type dominates, the blue-
throated lizards can come along and outperform the yellow-throated ones by
developing small territories. Because the territory of a blue type is smaller
than that of an orange type, the blue type can defend better against yellow
types than can orange types. And since yellow types have no territories, blue-
throated lizards have higher fitness. However, once there are plenty of blue
types, orange-throated lizards can succeed, since they grab territory more ag-
gressively. In sum, the expansionary strategy of the orange type is defeated by
the yellow type, which sneaks in at the territorial fringes. The yellow type is in
turn defeated by the more effective mate-guarding strategy of the blue type,
but then the orange type outperforms the blue type because it expands its
territory (and there are initially few yellow types around to subvert that
strategy).



            Observing a population of side-blotched lizards over five years, biologists
documented a cycling of colors consistent with this description. The cycle
began with a preponderance of blue-throated lizards, then the number of
orange-throated lizards expanded, and finally, yellow-throated lizards grew in
number. The cycle was completed with the return of the dominance of blue-
throated lizards. This series of events is consistent with the absence of an ESS,
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            so that the population never settles down, but endlessly cycles among differ-
ent genetic strategies.



            16.5 Multipopulation Games
IN THE SETTINGS EXAMINED thus far, all members of the population were in the
same strategic situation, whether it was a side-blotched lizard competing for
a territory or a male dung fly deciding how patient to be at a cowpat.
(Remember, in an evolutionary context, “deciding” is a metaphor for what is
chosen by natural selection.) However, there are some biological settings in
which members are endowed with different roles. For example, a male and a
female may be matched to decide on how much parental care to provide to
their young. Each member inherits not only a strategy or trait regarding the
amount of parental care to give, but also a role in the situation, as defined by
its gender.



            To model situations with different roles, we assume that members are drawn
from different populations—such as males and females—with one population
for each role in the strategic setting. An evolutionary stable strategy profile
(ESSP) is a strategy for each population such that any mutation is less fit.



            To define an ESSP more carefully, suppose there are m populations, so that
a strategic setting involves m members in total, one from each population. In
the male–female case, Next, define a strategy profile 
whereby is the strategy used by the member of population i. The fitness to
a member of population i is denoted Now suppose there is a
mutation in population i so that a small fraction of its members is endowed
with If is to be evolutionarily stable, the fitness of this mutant
must be less than that of 



            Furthermore, this must be true for each of the m populations.



            ✚ DEFINITION 16.2 Assume that there are m populations. Then (x *1, . . . ,
x *m) is an evolutionarily stable strategy profile if



            and for all 



            Note that this is exactly the definition of a strict Nash equilibrium: a strat-
egy profile whereby each player’s strategy yields a strictly higher payoff than
any other strategy. That the definition of an ESSP in the multipopulation set-
ting differs from that of an ESS in the single-population setting is because mu-
tants do not meet themselves. If there is a mutation in, say, population 1, the
fitness of that mutant depends only on the strategies deployed in the other



            populations. To be more concrete, suppose the strategic scenario has a
male matched up with a female. If some males mutate, then a mutant’s fitness
is based only on the strategy used by females; males do not meet up with other
males (not that there’s anything wrong with that). Hence, a mutant never
meets another mutant.
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            The determination, then, of an ESSP in a multipopulation setting is rela-
tively easy, as it just means finding all of the strict Nash equilibria—and since
no randomization can occur at a strict Nash equilibrium, we can focus our at-
tention on pure strategies.



            � SITUATION: PARENTAL CARE



            In every human culture on the anthropological record, marriage is the norm,
and the family is the atom of social organization. Fathers everywhere feel
love for their children, and that’s a lot more than you can say for chimp fa-
thers, who don’t seem to have much of a clue as to which youngsters are
theirs. This love leads fathers to help feed and defend their children, and
teach them useful things.6



            Parental care is an activity that is intended to increase the fitness of a par-
ent’s offspring. For example, the male three-spined stickleback builds a nest
for the eggs and defends the surrounding territory; that is parental care. The
male is also known to display the nest and attend to the eggs as part of
courtship, thereby signaling to females what a great mate he would be. That
activity is not parental care, in that his intent is not to increase the survival of
the current young. Similarly, a father who changes his baby’s diaper in the
middle of the night is providing parental care, but when he takes the baby for
a stroll in the park in order to meet women, that is not parental care.



            Consider a population of animals. A male member and a female member
are matched.7 The male fertilizes the female’s eggs, at which point the strate-
gic situation begins. The male and female simultaneously decide whether to
stay and attend to the eggs (thereby providing parental care) or desert to pro-
duce progeny with others of the opposite sex. Reproductive success is higher
when more eggs are laid and when more parents care for them. is the prob-
ability that an egg survives when both parents care for it, is the probability
that an egg survives when only one parent cares for it (in this regard, the male
and female are considered interchangeable), and is the probability that an
egg survives when neither parent cares for it. The fitness cost to deserting is
that an egg is less likely to develop into a child. The fitness benefit from de-
serting comes from the possibility of producing more fertilized eggs. Suppose
a male who deserts has a chance r of mating again. A female is presumed to
be able to lay more eggs if she deserts, because she then spends more of her
time procreating. More specifically, a female who deserts lays d eggs, whereas
if she stays, then she lays only s eggs, where 



            Putting these pieces together gives us the fitness matrix in FIGURE 16.6.
Although the male and the female have the same set of choices, the conse-
quences for fitness vary with gender. If both parents
choose stay, then the female lays s eggs and each egg
has probability of surviving, which implies an ex-
pected number of progeny which is the usual
measure of fitness. If the male departs and the female
stays to tend to the eggs, then she has a fitness of 
because she produces s eggs and each has probability 
of surviving with only one parent caring for them, while
he has a fitness of since he gets to raise
his mating rate. The other fitnesses are similarly derived.
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            FIGURE 16.6 Parental Care
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            An ESSP is a strict Nash equilibrium, and what constitutes a strict Nash
equilibrium depends on the values of these six parameters: d, s, and
r. Let us consider what it takes for each of the four possible strategy pairs to
be evolutionarily stable.



            ■ Both male and female desert. For no parental care to be an ESSP, we
must have



            The first condition ensures that a male does better by deserting, while
the second condition means that the female’s fitness is higher by desert-
ing. The condition describing the female’s fitness can be rearranged to



            This says that the gain in producing eggs by not staying—which
is measured by the size of d relative to s—must be large relative to the
gain in egg survival from having some parental care—which is measured
by the size of relative to Examples of species that practice the “no
parental care” strategy are sharks, skates, and rays. In addition, the care
of eggs is uncommon among reptiles.



            ■ Female stays and male deserts. This strategy pair is an ESSP when



            The first condition is for the male. Rearranging terms in it, we have



            The left-hand side is the additional number of fertilized eggs that is ex-
pected by deserting. Recall that r is the increase in the male’s mating rate
that occurs when the male does not hang around to help care for the eggs.
The right-hand side is the cost to departing: The expected number of
successful eggs would rise by that amount if the male stayed. If the benefit
from deserting exceeds the cost of deserting, then the ESS for males is to
deploy the “one-night stand” strategy. Of course, this calculus for the male
is predicated upon the female staying, which she will do if some parental
care has a big enough impact relative to none, as reflected in the condition



            This ESSP—the male cutting out while the female remains to
care for the young—is present in more than 95% of mammal species.



            ■ Female deserts and male stays. This is the other strategy pair that de-
livers uniparental care, and it is an ESSP when



            It will arise, for example, when the male isn’t able to procreate that much
more by departing (i.e., r is low), while the female can produce a lot
more eggs by focusing on egg production rather than splitting her time
between producing eggs and caring for them (i.e., d is large relative to s).
Although this strategy pair is not frequently observed among us Homo
sapiens, it is quite common among fish. Most fish species are character-
ized by uniparental care, and it is typically the male who performs that
function. For example, a male may protect the eggs by keeping them in
his mouth, an activity known as “mouth brooding.”
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            ■ Both female and male stay. Dual parental care is an ESSP when



            If having two parents around helps a lot with survival—and the cost in
terms of reducing mating is not large—then it is evolutionarily stable
for both parents to stay. About 90% of bird species practice dual
parental care, with activities that usually include sharing the incuba-
tion of eggs and the feeding of chicks. Both parents caring for their
young is rare among invertebrates, and though less than 5% of mam-
mal species practice dual parental care, 30–40% of primates and carni-
vores do.



            16.6 Evolution of Spite
THUS FAR, WE HAVE CONSIDERED populations with many members and in which a
mutation involves just a small fraction of them. In this section, it is assumed
that the population has only a few members, and a small mutation means a
single member adopting a new strategy. In this type of environment, some of
our earlier findings will change, and, most interestingly, evolution can pro-
duce spite, which is the act of doing something to harm someone else even
though it harms you as well.



            Return to the setting of a single population, and now assume that it has
members. Define F(x, y) to be the fitness of a member that uses strategy



            x when matched with someone using strategy y. For this setting, let us define
what it takes for a strategy x to be an ESS. If the mutant strategy is y, the fit-
ness of a member using the omnipresent strategy x is



            [16.22]



            With probability someone endowed with x meets another
member endowed with x, a situation that results in a fitness of F(x, x); and
with probability it meets someone using the mutant strategy y and
receives a fitness of F(x, y).



            For x to be an ESS, its fitness must exceed that of the mutant. Note that
since there is just one mutant, the mutant is assured of meeting only those
using strategy x, so its fitness is simply F(y, x). This differs from the case we
examined earlier where multiple members used the mutant strategy. x is then
an ESS if and only if



            [16.23]



            The left-hand side in (16.23) is a weighted average of F(x, x) and F(x, y), and
this average must exceed the fitness that the mutant gets from meeting some-
one using strategy x.



            Now suppose



            [16.24]F (x, x) 6 F (y, x),



            an � 2
n � 1



            bF(x, x) � a 1
n � 1



            bF(x, y) 7 F (y, x) for all y 	 x.



            1/(n � 1),



            (n � 2)/(n � 1),



            an � 2
n � 1



            bF(x, x) � a 1
n � 1



            bF(x, y).



            n � 2



            sp2 7 sp1(1 � r) and sp2 7 dp1.
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            in which case y is a better reply against x than x is. If a player was rational and
she expected others to use x, she would then surely prefer y over x. However,
if F(x, y) is big enough, then (16.23) can be satisfied even if (16.24) holds. In
other words, x can be an ESS even though it is not a best reply against itself!



            An example may be useful here, and as a change of
pace, consider a situation taken from our own species.
Suppose there are four companies and, in any given pe-
riod, two of them are matched to compete for a cus-
tomer. They compete through customer-specific market-
ing, and each can choose modest or heavy marketing. The
latter is more costly, but produces more sales. The fitness
(or profit) matrix is shown in FIGURE 16.7.



            In this game, a dominant strategy is to engage in mod-
est marketing; implicitly, then, the cost of heavy market-



            ing must be quite high. However, as we show next, the ESS is instead the dom-
inated strategy of heavy marketing!



            For modest to be an ESS, it must survive if one of the companies were to
mutate to using heavy. One can think of a “mutation” as the random decision
to experiment with heavy marketing. Using the condition in (16.23), we see
that modest is not an ESS if and only if



            or, from Figure 16.7,



            The right-hand side is the fitness to the company using modest and is the par-
ticular manifestation of (16.22). With three potential rivals, there is a proba-
bility of that that company faces another company with modest marketing,
in which case its profit is 9, and there is a probability of that it faces the com-
pany using the mutant strategy of heavy marketing, in which case its profit is
3. The left-hand side is the fitness to the mutant. Being the lone company de-
ploying heavy marketing, it is assured of being matched with a company with
modest marketing, so its profit is 8. Because the profit of the company with
heavy marketing is 8, and this exceeds the profit of those with modest market-
ing, which is 7, the mutant is outperforming the latter companies. Hence,
modest marketing is not an ESS.



            Note that the company using the mutant strategy has seen its profit fall from
9 to 8 by switching from modest to heavy marketing, given that all other com-
panies use modest marketing. But—and this is crucial—the decline in profit
from this mutation is even greater for the other companies, whose profit slides
from 9 to 3. In spite of the company that switched to heavy marketing being
worse off in absolute terms, it is now better off in relative terms—and with evo-
lution, it is relative performance that matters. Thus, if a company were to
switch from modest to heavy marketing, one might find other companies imi-
tating it because the company with heavy marketing is earning more than those
which employ modest marketing. (We just used imitation, rather than natural
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            2
3



            8 � a2
3
b � 9 � a1



            3
b � 3(�7).



            F(heavy, modest) � a2
3
b � F(modest, modest) � a1



            3
b � F(modest, heavy),



            FIGURE 16.7 Marketing
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            selection, as the mechanism by which a more profitable
strategy may increase its presence in the population.)



            This is an evolutionary argument for the personal
trait of spite—when you do something that lowers an-
other person’s well-being or fitness even though it low-
ers yours as well. Thus, evolution can favor a mutant
that detrimentally affects fitness, as long as it has an even greater detrimental
effect on those members which do not use the mutant strategy.



            Summary
Within the framework of evolutionary game theory, this chapter has shown
how game theory can be modified to explore the behavior of many animals, not
just us big-brained humans. The selection device for a strategy is not rationality,
but rather natural selection. This is the motivation for the concept of an evolu-
tionarily stable strategy (ESS). Focusing on stable homogenous populations—
so that an ESS is a single strategy—an ESS is a strategy for a population that is
resilient to an invasion by a small mutation of an alternative strategy.



            Though predicated on natural selection rather than rationality, ESS has
strong connections to Nash equilibrium. An ESS is a symmetric Nash equilib-
rium because, if a strategy is not a best reply to itself, then an invasion by
something that is a best reply will have higher fitness and thus upset the cur-
rent population. While not every Nash equilibrium is an ESS, every strict Nash
equilibrium is an ESS. Hence, ESS is a more stringent solution concept than
Nash equilibrium. Indeed, it can be so stringent that a game need not have an
ESS. Such was the case with side-blotched lizards who appear to be engaged
in a competition akin to Rock–Paper–Scissors. Although that game has a Nash
equilibrium, it does not have an ESS.



            ESS was applied to a number of situations occurring in nature. In the
Hawk–Dove conflict, animals are drawn from a population to compete for a re-
source. In the Dung Fly setting, each male is endowed with a strategy regard-
ing how long to wait at a cowpat in anticipation of the arrival of a female.
These are examples of a single population whose members are matched to in-
teract. In some settings, there are instead multiple populations, such as when
a male and a female interact. Males may have strategy sets that are different
from those of females, or the implication for fitness of a particular strategy
may vary between a male and a female. For the multipopulation setting, an
evolutionarily stable strategy profile (ESSP) is necessarily equivalent to a
strict Nash equilibrium. This equivalence arises because a mutant never meets
itself in a multipopulation setting.



            Although this chapter has mostly presumed that the population is large in
number and a mutation is a small fraction of that population, we also explored
the case when the population has only a few members and a “small” mutation
involves a single member. An implication is that a mutant does not meet itself,
since there is only one mutant. In this special setting, an ESS need not be a
Nash equilibrium. In fact, a strategy can be strictly dominated and still be an
ESS! What this analysis highlights is how natural selection chooses high rela-
tive performance, not high absolute performance. Thus, a mutant that lowers a
member’s fitness can actually thrive if, at the same time, it lowers the fitness of
other members even more, for natural selection chooses the relatively fit.



            For the game in Figure 16.7, show that heavy
is an ESS.



            16.3 CHECK YOUR UNDERSTANDING
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            1. Consider the modified Hawk–Dove situation shown in FIGURE PR16.1.
What differs from the original game is that there is now some chance
(measured by the probability x) that a hawk injures a dove, where



            Find all ESS’s. (Note that your answer will depend on the
size of x.)
0 6 x 6 1.



            EXERCISES



            2. Consider the coordination game shown in FIGURE PR16.2. Find all ESS’s.



            FIGURE PR16.1 Modified Hawk–Dove Game
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            FIGURE PR16.2
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            3. Consider the game depicted in FIGURE PR16.3. Find all ESS’s.



            FIGURE PR16.3
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            4. Consider a two-player symmetric game with two pure strategies, and let
F(x, y) be the expected fitness to a player using mixed strategy x when
meeting another player using mixed strategy y.
a. State in words what it means for 
b. State in words what it means for 
c. Suppose, for all and Is p



            an ESS?



            5. Consider the Battle of the Sexes game illustrated in FIGURE PR16.5. Find
all ESS’s.



            F( p, p) 7 F(q, q).F( p, p) � F(q, p)q 	 p,
F( p, p) 7 F(q, q) for all q 	 p.
F( p, p) 7 F(q, p) for all q 	 p.
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            6. Return to the Dung Fly setting in Figure 16.2. Now suppose that each
male dung fly can stay for one, two, or three minutes. Assume that the
cowpat is stale by the third minute, in which case there is no chance that
a female dung fly will land on it. Assume also that the fitnesses when
both male dung flies stay one or two minutes are the same as in Figure
16.2. What are reasonable values to assign to the fitnesses denoted w, x,
y, and z in FIGURE PR16.6?



            FIGURE PR16.5 Battle of the Sexes
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            FIGURE PR16.6 Modified Dung Fly Game
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            7. Consider the game shown in FIGURE PR16.7. Find all ESS’s.



            8. Consider the game depicted in FIGURE PR16.8. Find all ESS’s.



            FIGURE PR16.7
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            FIGURE PR16.8
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            9. Consider the game portrayed in FIGURE PR16.9. Find all ESS’s.



            FIGURE PR16.9
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            10. Consider the Hawk–Dove situation shown in FIGURE PR16.10.
a. Show that an ESS uses hawk with probability .
b. In this chapter, we’ve only allowed a mutation to be of a single strat-



            egy. Departing from that assumption, consider a small mutation in
which half of the mutants are hawks and half are doves (i.e., they use
only pure strategies). Determine whether the ESS in part (a) is im-
mune to this mutation; that is, determine whether the ESS has higher
fitness than that of each of these mutants.
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            FIGURE PR16.10 Hawk–Dove Game Again



            11. Consider the multipopulation game between males and females shown
in FIGURE PR16.11. Find all ESS’s.



            2,0



            3,4



            1,0



            1,2



            Male



            Female



            w



            x



            y



            z



            0,1



            6,2



            4,3



            8,4



            a b



            3,1



            3,3



            2,1



            4,5



            c



            4,2



            2,1



            2,3



            1,3



            d



            FIGURE PR16.11



            12. Consider the multipopulation game between males and females illus-
trated in FIGURE PR16.12. Find all ESS’s.
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Named in honor of Charles Darwin, the father of evolution, the Darwin
Awards commemorate those who improve our gene pool by removing
themselves from it.



            Picture a college dorm room. Dirty laundry, sexy posters, food
wrappers, textbooks, and in the middle of it all, a student rocking out to
loud music. A typical student, a typical day. But this particular student,
bouncing on his bed as he rocked out on his air guitar, was about to
“take things too far,” according to the coroner’s report. Li Xiao Meng, a
student at Singapore’s Hua Business School, bounced up and down on
his bed with such enthusiasm that he rocked himself right out of the
third-floor window.1



            17.1 Introduction
ALTHOUGH IT IS USEFUL to have read Chapter 16 prior to taking on this chapter,
it is not necessary. What is essential reading, however, is Section 16.1, as it
provides an overview to evolutionary game theory. Once you’ve read that sec-
tion, we can move on.



            The most common approach of game theory—and the approach pursued
thus far in this book—is to impose conditions for a strategy profile to be a sta-
ble configuration. This means that once players are using those strategies,
there is no force of intellect or nature to disturb it. That is the tack taken with
Nash equilibrium and, in the previous chapter, with an evolutionarily stable
strategy. What is missing from this approach is a modeling of how players ac-
tually get to that point: how they come to be acting according to the stable
configuration. This chapter offers a dynamic model that is applicable to
strategic settings in nature. The model is predicated upon the mechanism of
natural selection, whereby those strategies which are more fit survive, repro-
duce at a higher rate, and thus make up a bigger share of the strategies used
by the next generation. (Having read Section 16.1, you’ll know that a member
of a population is endowed with a strategy, just as she may be endowed with
blond hair and a talent for writing music.)



            The particular way in which natural selection is modeled here is known as
the replicator dynamic. It specifies that the proportion of a population using a
strategy increases when it produces fitness in excess of the average fitness of the
population, while the proportion decreases when it produces fitness that falls
short of the average population fitness. In the context of a model of animal con-
flict, the replicator dynamic is introduced in Section 17.2; a more formal and
general definition is offered in Section 17.3. Section 17.4 discusses how the strate-
gies that do well under the replicator dynamic compare against evolutionarily
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stable strategies, which is the concept used in Chapter 16. Section 17.4 should
be skipped if you haven’t read Chapter 16 (though you have read Section 16.1,
right?). The remainder of the chapter applies the replicator dynamic to several
biological and social settings. We use it to explore the phenomenon of commu-
nal hunting in the context of the Stag Hunt game and then to investigate the
handedness of batters and pitchers in Major League Baseball over the last
120 years. Finally, in the context of the repeated Prisoners’ Dilemma, we show
how cooperation can emerge and when it is stable. In other words, when is a so-
ciety made up of scallywags and when is it made up of saints?



            17.2 Replicator Dynamics and the Hawk–Dove Game
MANY ANIMAL CONFLICTS IN NATURE involve competition for a resource, such as a
territory or reproduction with a female. To model such scenarios in a simple
way, biologists have developed the Hawk–Dove game. In this game, two ani-
mals are matched and each is endowed with one of two possible strategies. An
animal with the strategy hawk is willing to fight in order to control the re-
source. In contrast, an animal endowed with dove postures as if he is willing
to battle, but then backs down if the other animal starts to fight. In terms of
fitness, the value of the resource is V. Thus, if an animal using hawk faces
someone using dove, then hawk wins the resource—since dove retreats as soon
as hawk starts to fight—which yields a fitness of V, while dove receives zero fit-
ness. If the potential combatants are both doves, then they engage in a pro-
longed posturing exercise until one decides to give up. If we let each have a
50% chance of outlasting the other, the expected fitness when two doves meet
is . Finally, if two hawks meet, then there is a fight until one of them is in-
jured. The fitness to the loser is (where C is the cost of being injured),
while the winner of the fight gains access to the resource, which produces fit-
ness V. As two hawks are presumed to be evenly matched, each has an equal
chance of winning the fight, so their expected fitness is 



            Assume that each animal receives a baseline
fitness of Their fitness is then B, plus
whatever they get out of their encounter. Finally,
suppose so that the fitness cost of
the injury exceeds the fitness benefit of the ter-
ritory, and suppose that B is big enough so that
all fitnesses are positive will
suffice). This scenario gives us the strategic
form game shown in FIGURE 17.1.



            The focus of evolutionary game theory is the
population, not the individual animal. The ob-
jective is to characterize a stable population



            mix of strategies. Toward that end, the primary unit of interest is the strategy,
and in that light, animals are merely vehicles for strategies. The animals that
use a strategy may come and go, but the mix of strategies in the population
can persist.



            The approach we’ll take to describing a stable population mix is rooted in
natural selection: A strategy with higher fitness produces more progeny, and
this serves to increase that strategy’s share of the population in the next gen-
eration. To model this mechanism, we need to write down the fitness of each
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            FIGURE 17.1 Hawk–Dove Game with Baseline Fitness
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            strategy. Let denote the fitness attached to an animal endowed with
strategy x when matched with an animal endowed with strategy y (e.g.,



            Consider those animals endowed with the strategy hawk. Each earns a fit-
ness of when matched with another hawk and a fitness of 
when matched with a dove. Hence, the average fitness that an animal with
hawk can expect to receive in this population depends on the mix of strategies
in the population. Let denote the fraction of the population endowed with
hawk in generation t. Then the average fitness of the hawk strategy is



            With frequency a hawk meets an animal that is similarly endowed and re-
ceives a fitness of With frequency a hawk meets a dove,
and the former receives fitness of Analogously, the fitness of dove in
generation t is



            The replicator dynamic specifies that the fraction of animals in the next
generation that use a strategy grows when that strategy’s fitness exceeds the
average fitness in the population, and the fraction using a strategy shrinks
when that strategy’s fitness falls short of the average population fitness. In the
Hawk–Dove game, the average population fitness in generation t is



            A fraction of the population is endowed with the hawk trait and has an av-
erage fitness of while a fraction has the dove trait and re-
ceives an average fitness of 



            In the context of the Hawk–Dove game, the replicator dynamic is then



            [17.1]



            This equation says that the fraction of hawks in the population in generation
denoted equals the fraction in generation t, multiplied by a num-



            ber that is the ratio of the hawk’s fitness to the average population fitness. If
the fitness of hawk exceeds the average population fitness 
then and, by (17.1), so the fraction of hawks is in-
creasing. Furthermore, the more that hawk’s fitness exceeds the average pop-
ulation fitness, the faster its share of the population grows. If, instead, hawk’s
fitness is less than the average population fitness, then and,
again by (17.1), The fraction of hawks is then decreasing.



            As specified by the replicator dynamic, the population evolves in terms of
how many are endowed with the hawk trait and how many with the dove
trait. Our next task is to describe this evolution. Suppose the current mix of
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            strategies in the population has the fitness of hawk exceeding that of the
population average:



            Subtracting from both sides and rearranging terms, we have



            Dividing each side by we get



            Finally, point your wand at the page and say petrificus totalus. (If you’re not a
wizard, skip that last step.) The fitness of hawk then exceeds the average pop-
ulation fitness if and only if it exceeds the fitness of dove. Since there are only
two strategies, if hawk is better than the average performing strategy, then it
must be better than dove.



            By the replicator dynamic, the fraction of hawks grows when the fitness of
hawk exceeds that of dove, which is the case when



            [17.2]



            Cancelling B from both sides and then solving for we get



            Thus, the fraction of hawks in the population grows when Recall that
we have assumed that as the cost of an injury exceeds the value of the
territory. When the fraction of hawks is sufficiently low—specifically, —
the fitness of hawk exceeds that of dove and, by the replicator dynamic, the
fraction of hawks in the population increases.



            If, instead, the fitness of dove exceeds the fitness of hawk, then the fitness
of hawk is less than the average population fitness and the fraction of hawks
falls. If we just flip around the inequality in (17.2) and again solve for we
find that the fraction of hawks is declining when If the population is
heavy on hawks, doves then have the higher fitness and, by the replicator dy-
namic, the fraction of doves rises.



            Pulling all these specifications together, we have a description of how the
population evolves over time:
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            This set of conditions is depicted graphically
in FIGURE 17.2. When is increasing
and moving closer to as is reflected in
the arrow pointing to the right, toward If



            then is falling, and we see that the
arrow is pointing to the left, again toward 
The replicator dynamic, then, moves the frac-
tion of hawks in the direction of And when



            then the fraction of hawks is frozen. Although you might
think that this is due to our using the petrificus totalus charm, it’s actually
because the fitness of hawks is exactly the same as the fitness of doves and
thus is the same as the average fitness of the population. Since hawk does
neither better nor worse than the population at large, it neither grows nor
shrinks.



            A population mix in which hawks make up a fraction equal to is a rest
point. A rest point is a population mix of strategies that the replicator dynamic
leaves undisturbed. Once the population is at a rest point, the replicator dy-
namic keeps it there, generation after generation.*



            ✚ DEFINITION 17.1 A population mix s* is a rest point if, once the popu-
lation mix is at s*, it stays there.



            A population mix may be a rest point, but it isn’t necessarily the case that
the replicator dynamic will lead the population to it. For that to occur, a rest
point must be locally stable. A locally stable rest point, or an attractor, is a
rest point such that if the population begins near the rest point, it eventually
ends up there. It is said to be locally stable because convergence to the rest
point is assured only if the population starts out “local” to the rest point.



            ✚ DEFINITION 17.2 A rest point s* is an attractor if, when the population
mix starts close to s*, then, eventually, the population mix goes to s*.



            It is worth emphasizing that a rest point and an attractor are specific to the
dynamic being specified. Change the dynamic, and those population mixes
which are local attractors could change as well. In this chapter, we will be fo-
cusing on rest points and attractors for the replicator dynamic.



            To visualize the stability implicit in rest points and attractors, consider FIGURE



            17.3. Imagine that a ball is moving along this one-dimensional surface, where
the dynamic is now gravity, not natural selection. A rest point is a position on
that surface such that the ball is no longer moving. Position u is not a rest
point, because, if the ball is at u, it will roll downhill in the direction of po-
sition v. Now suppose the ball is at v. There is no force causing it to leave v;
once there, it stays there. The point v is then a rest point. Another rest point is
position x. Once the ball is nestled at the top of that hill, there the ball will re-
main. However, while both v and x are rest points, v is an attractor and x is not.
To see this, note that if we disturb the ball a little bit from position v—say, mov-
ing it to position w—it’ll roll back downhill toward v and eventually settle there;
hence, v is an attractor. In contrast, if we move the ball from position x to, say,
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            *Trivially, a population of all doves is also a rest point by the replicator dynamic, since, if then
so In other words, if there are no hawks,



            then hawks can’t reproduce. Similarly, a population of all hawks is a rest point, because, if then
ht�1 � ht � (Ft(hawk)/Ft) � 1 � 1 � 1.
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            FIGURE 17.2 Replicator Dynamic in Hawk–Dove Game
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            y, then it’ll roll downhill, away from x and toward z. Even if the ball starts near
x, it’ll not end up at x. Although x is a rest point, it is not an attractor.



            The population mix in which a fraction of the members is endowed with
the trait hawk is an attractor. In fact, it satisfies an even stronger property: No
matter where the population starts (as long as some members are hawks and
some are doves), the mix will evolve so that eventually a fraction are hawks.



            It is not even required that the fraction of hawks be ini-
tially close to . As shown in Figure 17.2, the population
is drawn toward just as the ball is drawn to a valley in
Figure 17.3.



            With animal conflicts as modeled by the Hawk–Dove
game, the replicator dynamic predicts that the popula-
tion will be made up of a mix of types, some endowed
with an aggressiveness whereby they are willing to fight
to the point of injury, and others who posture, but will
back away from a fight. The fraction of aggressive types,
, is higher when the value of the territory is greater (i.e.,



            V is larger) and is lower when the cost of an injury is
greater (i.e., C is larger). It makes sense that a population
will tend to be more aggressive when more is at stake
and the cost of being aggressive is smaller.



            17.3 General Definition of the Replicator Dynamic
CONSIDER A GAME WITH m strategies, and let be the average fitness
of strategy i when the population mix in generation t is that is, a
fraction of the population is endowed with strategy 1, a fraction withrt
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            FIGURE 17.3 Stability of Rest Points and Attractors



            Find the attractors for the game shown in
FIGURE 17.4.
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            strategy 2, . . . , and a fraction with strategy m. Remember that the frac-
tions sum to 1: Assume that fitness is always positive:



            In any game, this can always be done by making the baseline fitness large
enough. Finally, define as the average fitness of the population, or



            where



            For example, in the Hawk–Dove game, if hawk is strategy 1 and dove is strat-
egy 2, then



            By the replicator dynamic, the fraction of strategy i in the next generation is



            The proportion of a population that is endowed with a strategy grows when the
fitness which that strategy delivers exceeds the average fitness of the population:



            Analogously, the fraction using a strategy shrinks if its fitness is less than the
average fitness of the population. And when the strategy’s fitness equals the
average fitness of the population, the presence of that strategy in the popula-
tion is unchanged.



            17.4 ESS and Attractors of the Replicator Dynamic
IN CHAPTER 16, AN ALTERNATIVE approach to the replicator dynamic was put
forth.* Rather than explicitly model the dynamic process jostling a population
mix, we defined an evolutionarily stable strategy (ESS). ESS is analogous to
Nash equilibrium in rational game theory. Just as a Nash equilibrium speci-
fies conditions for a strategy profile to be stable (in the sense that no player
wants to change what she is doing), an ESS is a strategy such that, if all mem-
bers of a population use it, then the population mix is stable in the sense that
any mutation is unsuccessful in invading the population. More specifically,
that mutant has lower fitness than that of the currently ubiquitous strategy.
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            *This section is intended for those who have read Chapter 16. Those who have not should skip to Section 17.5.
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            The task of this section is to identify differences and similarities in these
two approaches to evolutionary game theory—ESS and the replicator dy-
namic. Our use of ESS was limited to homogeneous populations—that is, pop-
ulations in which all members use the same strategy. Although a mutation
would obviously deploy a different strategy, we assumed that all mutated
members adopted the same mutant strategy. Hence, while a population was
characterized by one common strategy at an ESS, observed behavior could
still be heterogeneous because we allowed for mixed strategies. For example,
if choosing hawk with probability p is an ESS in the Hawk–Dove game, then,
at any time, it would be observed that a fraction p of the population is exhibit-
ing hawk-like behavior and a fraction of the population looks like doves.



            Although the replicator dynamic can allow for mixed strategies, we will
limit our attention in this chapter to pure strategies. Counterbalancing this re-
strictive assumption, a stable population mix is permitted to be heteroge-
neous. Returning to the Hawk–Dove game, a stable population under the
replicator dynamic could entail a fraction p of the population being endowed
with the hawk strategy and a fraction with the dove strategy.



            In a sense, the ESS approach and the replicator dynamic approach are equally
rich in terms of what behavior a population is permitted to exhibit. Taking the
Hawk–Dove game as an example, we can see that the following two situations are
observationally equivalent at the population level: (1) each member uses a mixed
strategy in which he plays hawk a fraction p of the time; and (2) a fraction p of
the population is endowed with the pure-strategy hawk. Now, suppose one pop-
ulation of animals—say, red deer—is described by situation 1 and another ani-
mal population—say, fig wasps—is described by situation 2. If you’re a biologist
recording the behavior of these two populations, the records will look the same:
in each population, hawk was chosen by a fraction p of animals. In this sense, the
two situations—a homogeneous population using a mixed strategy and a hetero-
geneous population using pure strategies—are indistinguishable.



            This equivalence goes further in terms of what a stable population looks
like. In the previous section, it was shown that an attractor under the replica-
tor dynamic is a fraction of the population endowed with hawk. In Section
16.3, we showed that the unique ESS for the Hawk–Dove game is a mixed
strategy in which a member chooses hawk with probability . Both evolution-
ary game-theoretic approaches deliver the same description: a fraction of
observed play is hawkish. Although it is generated by different populations of
strategies, the resulting behavior is the same.



            This equivalence in outcomes in the Hawk–Dove game is not coincidental,
for there are strong connections between an ESS and an attractor under the
replicator dynamic.



            Every ESS is an attractor under the replicator dynamic.



            The converse is not universally true, in that an attractor of the replicator dy-
namic need not be an ESS. However, if we limit ourselves to games with two
players and two strategies—such as the Hawk–Dove game—then ESSes and
replicator dynamic attractors are equivalent.



            In a game with two players, each of which has two strategies, every
ESS is an attractor and every attractor is an ESS.
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17.5 Examples
ARMED WITH THE REPLICATOR dynamic, let’s wield this tool to investigate a variety
of settings. The Stag Hunt game explores the emergence of communal hunt-
ing. Whereas the Hawk–Dove game had a single attractor, the Stag Hunt game
has a pair of attractors. And now for something completely different: the evo-
lution of handedness among batters and pitchers in Major League Baseball.
Interestingly, our model will have no attractor and predicts a cycling of strate-
gies. The final application is an old friend: the repeated Prisoners’ Dilemma.
A population either evolves to having everyone play nice or having everyone
play nasty.



            � SITUATION: STAG HUNT



            Many species work together to achieve a common goal. Lions (mostly
females) are much more effective when hunting as a group than going it
alone. In pursuing animals such as antelope, gazelle, and wildebeest, some of
the lions will chase the prey in the direction of other lions who wait in am-
bush, ready to pounce when the prey is near. The spotted hyena has been ob-
served to hunt both singly and in groups whose size depends on the prey being
hunted. By working together, spotted hyenas can effectively hunt larger ani-
mals, such as zebras.



            The strategic situation just described can be modeled by a game
known as the Stag Hunt, which is shown in FIGURE 17.5. In the Stag
Hunt, two members of the population are matched to engage in in-
dividual or communal hunting. As originally described by the
philosopher Jean-Jacques Rousseau in the eighteenth century, the
two hunters can either work together to bring down large prey,
such as a stag, or work separately to bring down small prey, such
as a hare. In terms of fitness, they do better by both choosing
stag—receiving a fitness of 4—than by both choosing hare, with a
fitness of 3.



            Suppose, in generation t, a fraction of the population is endowed with the
stag strategy. Then the average fitness of a member using stag is



            while the average fitness of a member using hare is



            By the replicator dynamic, the fraction of stags is growing if and only if the fit-
ness of those endowed with stag exceeds the average fitness of the population.
Since there are only two strategies, an equivalent statement is that the fitness
of those endowed with stag exceeds the fitness of those endowed with hare. In
other words, if and only if
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            FIGURE 17.5 Stag Hunt
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            Alternatively, the fraction of members using stag is declining if and only if the
fitness of those endowed with hare exceeds the fitness of those endowed with
stag. That is, if and only if



            These dynamics are depicted in FIGURE 17.6:
when the fraction of stags is falling, and
when the fraction of stags is rising. By
the replicator dynamic, a population in which
all members use hare is an attractor. If the cur-
rent fraction of the population with the stag
strategy is sufficiently low (that is, if 
then that fraction continues to decline, be-



            cause the fitness of hare exceeds the fitness of stag; in Figure 17.6, the arrow
points in the direction of all members using hare when If, instead,



            then the fraction of stags is rising, and by the replicator dynamic, a
population in which all members use stag is an attractor. In Figure 17.6, the
arrow points in the direction of all members endowed with stag.



            These results makes sense. It is worthwhile to hunt large game only if it is
sufficiently likely that your partner is willing to hunt large game as well, for
only then can you do so effectively. The replicator dynamic, then, results in an
ever-increasing fraction that uses stag as long as the initial fraction that uses
stag is sufficiently great. However, if that fraction is initially low, then the
preferable strategy is to engage in individual hunting. Then, because more
members are endowed with hare, it makes it yet more attractive to have that
trait, since few others are willing to hunt communally. With the Stag Hunt
game, the locally stable population mix that emerges from the replicator dy-
namic depends on the initial mix.



            There is one final population mix that we have not analyzed: a population
that starts out with exactly two-thirds of its members endowed with stag and
one-third with hare. In this population, both the fitness of stag and the fitness
of hare is 3; therefore, each strategy has fitness equal to the average popula-
tion fitness (which is, of course, 3). Since all strategies are equally fit, the repli-
cator dynamic leaves this population mix undisturbed. A population with two-
thirds of its members endowed with stag is then a rest point. However, it is not
an attractor. To see this, suppose there is a slight perturbation in the popula-
tion mix—for example, a lethal disease randomly inflicts animals, and by hap-
penstance, the death rate is higher among those endowed with hare. Now the
fraction endowed with stag is slightly higher than , and by Figure 17.6, the
population mix will steadily grow until all of its members are endowed with
stag. Because the mix does not return to the rest point at which two-thirds
have the stag strategy, the original population, with two-thirds of its members
endowed with stag, is not an attractor.



            For the Stag Hunt game, the replicator dynamic predicts that a stable pop-
ulation has either all members endowed with stag or all endowed with hare,
and which occurs depends on the initial population mix. The set of initial pop-
ulation mixes that lead to a particular rest point is called the basin of attrac-
tion for that rest point.
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            FIGURE 17.6 Replicator Dynamic in Stag Hunt
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            ✚ DEFINITION 17.3 The basin of attraction for a rest
point s* is the set of population mixes such that if the
population mix starts in the basin, then, eventually, the
population mix is at s*.



            In Figure 17.6, the basin of attraction for the “all
hare” attractor comprises population mixes in which
fewer than two-thirds of the members are endowed with
stag, while the basin of attraction for the “all stag” at-
tractor is made up of population mixes in which more
than two-thirds are endowed with stag. The basin of at-
traction for the rest point at which two-thirds use stag
and one-third uses hare is a single point: the population
mix in which two-thirds use stag and one-third uses
hare. Since its basin is trivially small, it is a rare event indeed that would re-
sult in the heterogeneous rest point being reached.



            � SITUATION: HANDEDNESS IN BASEBALL



            Though motivated by biological settings, evolutionary game theory can also be
used to shed light on human social behavior. So, let’s apply the replicator dy-
namic to investigate historical patterns in the handedness of baseball players.
As is well documented, right-handed batters perform better against left-handed
pitchers, while left-handed batters perform better against right-handed pitch-
ers. FIGURE 17.8 reports the fraction of right-handed batters and right-handed
pitchers in major league baseball over 12 decades, from 1876 to 1985.2



            The data reveal an intriguing historical trend. Initially, about 85–90% of bat-
ters and pitchers were right handed, which is about the rate of right-handers in
the general population. Steadily, however, the fraction of right-handed batters
and pitchers has fallen over time. It is also notable that the population mixes



            For the game in FIGURE 17.7, find the attrac-
tors under the replicator dynamic.
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            FIGURE 17.8 Right-Handed Batters and Right-Handed
Pitchers, 1876–1985
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            of both batters and pitchers appear to move together. The mix even-
tually leveled off, so that today about 65–75% of batters and pitch-
ers are right handed.



            Let’s see whether evolutionary game theory can explain this trend.
Contrary to the previous models in this chapter, assume that there
are two populations that coevolve according to the replicator dy-
namic. One population is made up of batters, who can bat either
right or left. The other population comprises pitchers, who can throw
either right or left. The strategic situation faced by a batter and a
pitcher is shown in FIGURE 17.9. Note that a right-handed batter per-



            forms better against a left-handed pitcher, while a left-handed batter hits better
against a right-handed pitcher, which is consistent with the facts. (See Table 2.2.)



            Our objective is to understand the mix of batters who hit from the right or
left side of the plate and the mix of pitchers who throw right or are southpaws
(so named because a left-hander’s throwing arm faces south when he is on the
mound). In doing so, the natural-selection metaphor is maintained. A pitcher
or a batter does not choose his handedness; that is something with which he is
endowed. What will happen, however, is that if, say, right-handed batters per-
form better than left-handed batters, then managers will replace left-handed
batters with right-handed batters, so the fraction of right-handed batters rises.



            Before cranking out the replicator dynamic equations, let’s apply a bit of in-
tuition here. Examining Figure 17.9, we ought to expect there will be a mix of
handedness types. If all pitchers were right handed, then left-handed batters
would outperform right handed batters, with a fitness of 36 (versus 30). But if
this resulted in all batters being left handed, then we would expect managers
to start cutting right-handed pitchers from their roster and replacing them
with left-handed pitchers, since the latter are performing better (compare 30
and 21). Thus, neither all batters having the same handedness nor all pitchers
having the same handedness can be a rest point.



            To assess the replicator dynamic in this setting, let denote the fraction of
right-handed batters and the fraction of right-handed pitchers, as of gener-
ation t. Then the average fitness (or performance) of a right-handed batter is



            A fraction of the time, a right-handed batter faces a right-handed pitcher,
and his performance is 30; and a fraction of the time, the pitcher is left-
handed, and a right-handed batter’s performance is significantly higher, at 44.
The average fitness of a left-handed batter is



            The replicator dynamic for batters is then



            [17.3]



            where the denominator is the average fitness among all batters. Since there
are only two strategies, right-handed batters perform better than the average
batter when they perform better than left-handed batters:
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            Solving this expression for the fraction of right-handed batters, we find that
If less than 70 percent of pitchers are right handed, then right-handed



            batters have higher performance than left-handed batters, and by the replicator
dynamic, the fraction of right-handed batters is growing. In sum, the replicator
dynamic tells us that the population of batters evolves in the following manner:



            [17.4]



            Next, we turn to the population of pitchers. The average performance of a
right-handed pitcher equals



            and for a left-handed pitcher, it is



            The replicator dynamic then implies that



            [17.5]



            and from this equation, we get the following description of the evolution of
pitchers’ handedness:



            [17.6]



            If more than 60% of batters are right handed, then the fraction of right-
handed pitchers increases.



            The rest point for the replicator dynamic occurs where the performance of a
right-handed batter is the same as that of a left-handed batter—which requires
that —and the performance of a right-handed pitcher is the same as that of
a left-handed pitcher—which requires that Of course, this just says that if
the population mix starts with 60% right-handed batters and 70% right-handed
pitchers, it’ll stay there. But as we know from Figure 17.8, it didn’t start there; it
started with 85–90% of batters and of pitchers being right handed. Starting at that
point, does the replicator dynamic push the population mix toward the rest point?



            To explore that question, we’ll deploy the phase diagram shown in FIGURE



            17.10.* On the horizontal axis are values for and on the vertical axis arebt,
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            *Figures 17.2 and 17.6 are phase diagrams for their respective games.


            

        



        
            

            
values for The arrows show the direc-
tion of the population mix as determined
by (17.4) and (17.6). For example, consider
zone II, which is made up of all population
mixes such that and By
(17.6), when that is, if
there are sufficiently few right-handed bat-
ters, then left-handed pitchers perform bet-
ter than right-handed pitchers and, by the
replicator dynamic, the fraction of right-
handed pitchers is declining. If 
then, by (17.4), the fraction of right-handed
batters is falling. So, when the population
mix is in zone II, is falling and is
falling, which is what is reflected in the di-
rection of the arrow. Using (17.4) and
(17.6), we determine the arrows for the
other zones similarly.



            This phase diagram is useful for telling
us a bit about how the population of base-
ball players evolves. The rest point is



            and the big question is
whether the replicator dynamic pushes the



            state toward it. Unfortunately, that does not seem to be the case. Suppose we
start with 84% of batters being right handed and 87% of pitchers being right
handed, which is where Major League Baseball was in the 1870s. Then, with
the initial mix in zone I, Figure 17.10 tells us that the fraction of right-handed
batters will fall—which is good, because it moves closer to the rest point value
of 60%—but the fraction of right-handed pitchers will rise, in which case it is
moving away from the rest point value of 70%. If it keeps on this trajectory,
it’ll soon enter into zone II, in which case the fraction of right-handed batters
falls below 60%, although now the fraction of pitchers is also falling.
Following this path as the population mix enters into zone III and then zone
IV, we see that it isn’t at all clear whether it’ll find its way to the rest point.



            The issue of whether the population mix will evolve to the rest point can
be resolved by coding the replicator dynamic equations in (17.3) and (17.5)
onto a computer. If we plug .84 and .87 into (17.3) and (17.5) for and 
respectively, what pops out is and Thus, in the next
generation, 82.6% of batters are right handed and 88.4% of pitchers are
right handed, as indicated by the arrow in Figure 17.10. If we then take .826
and .884 and use them for and in (17.3) and (17.5), we find that



            and Iterating in this manner, we can determine how
the mix of handedness of batters and pitchers evolves. The output we get is
shown in FIGURE 17.11. The population mix cycles around and gets farther
and farther away from the rest point. Even if the mix is very close to the rest
point, the same type of cycling occurs. For this game, the lone rest point is
not an attractor.



            Unfortunately, our evolutionary game-theoretic model is not able to pro-
duce results consistent with the historical trend in Figure 17.8. Well, you can’t
win ’em all. But this is not a total failure, because, by learning what model
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            FIGURE 17.10 Phase Diagram of Handedness of Batters
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does not explain handedness in baseball,
we have narrowed our search for what
model does. Just as, when you’re looking
for a lost item, it may be frustrating to have
searched your closet without success, at
least you know that you must search else-
where. Here, we have eliminated one
model, and now we can focus our energies
on exploring other models.



            � SITUATION: EVOLUTION OF COOPERATION



            In the long history of humankind (and an-
imal kind, too) those who learned to col-
laborate and improvise most effectively
have prevailed. —CHARLES DARWIN



            In spite of the image of natural selection
being driven by fierce competition, the ani-
mal kingdom is in fact replete with exam-
ples of cooperation.3 If you read Chapter 14, you’ll recall vampire bats work
together by sharing food. A bat with a full stomach of cow’s blood regurgitates
some of it so that a hungry bat can eat. Grooming is a common form of coop-
erative behavior. For example, impalas take turns performing an upward
sweep of the tongue along the neck in order to remove ticks. Another example
is alarm calling. An animal sees a predator and, at the risk of drawing atten-
tion to itself, lets out an alarm to other members of its group. This signaling
is practiced by vervet monkeys, who are so advanced as to have distinct calls
for three different predators: eagles, leopards, and snakes—and it makes sense
to have different calls, since the appropriate response depends on whether the
predator is in the air, on the ground, or in the trees. A major challenge in evo-
lutionary biology has been to explain such cooperative behavior within the
framework of natural selection. Research in this area has paid off handsomely
as biologists have discovered several ways in which cooperation can sit com-
fortably with natural selection. Let us explore one of those ways here.



            For analyzing the possibility of cooperation, the most common model is the
Prisoner’s Dilemma, which is shown in FIGURE 17.12.4 Two members of the pop-
ulation are matched, and each decides between defect and cooperate. In the
context of grooming, to defect is not to groom another animal and to cooper-
ate is to groom the animal. Although they realize higher fitness by both choos-
ing cooperate, as opposed to both choosing defect, the
problem is that defect strictly dominates cooperate. If
this were actually the environment they faced, then it is
clear that cooperation would not emerge.



            In many of the settings in which cooperation has
been seen, a key feature is that animals interact repeat-
edly. For example, impalas have many opportunities to
groom each other. Accordingly, when two members of
the population meet, we’ll assume that they play the
Prisoners’ Dilemma not once, but 10 times. A strategy is
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            FIGURE 17.12 Prisoners’ Dilemma


            

        



        
            

            
now a decision rule regarding how to act during that 10-period encounter. It
could be a prescription to choose a sequence of actions, such as cooperate in
the first 7 periods and defect in the last 3. Or it could be a rule in which behav-
ior is contingent on what the other player does. For example, cooperate ini-
tially, but then defect permanently if the other player ever chooses defect
(which, if you recall from Chapter 13, is the grim-trigger strategy).



            There are many possible strategies for the 10-period repeated Prisoners’
Dilemma. In order to keep the analysis simple, we’ll suppose there are only
three strategies in the “gene” pool—that is, three strategies that a member of
the population can be endowed with. One strategy is to always cooperate,
which we’ll refer to as Cooperator. A second is to always defect, which we’ll call
Defector. Those two strategies are rather simpleminded, in that a player’s be-
havior is independent of what the other player does. The third strategy, known
as Tit for Tat, makes behavior contingent on what has previously transpired. A
player endowed with Tit for Tat chooses cooperate in the first period and then,
in any future period, selects what the other player chose during the previous
period. Since Tit for Tat responds in kind, it rewards someone who cooperated
and punishes someone who acted selfishly.



            Do we think that some animals are programmed to play Tit for Tat? In fact,
Tit for Tat has been observed in a variety of species, including even the three-
spined stickleback. A stickleback is a small fish, and when there is a predator
such as a pike in its midst, it may approach the predator in order to assess the
threat. Since this is more safely done by two sticklebacks than one, coopera-
tive behavior involves both sticklebacks approaching the predator, while de-
fecting behavior has one stickleback lag behind the other as it approaches. To
test for Tit for Tat, an experiment was conducted with a single stickleback in a
tank, with mirrors used to simulate the behavior of the “other stickleback”
(which was actually the reflection of the lone stickleback).5 One mirror made
it appear that the other stickleback was cooperating—moving forward with
the real stickleback—and the other mirror made it appear that it was defect-
ing—lagging behind the real stickleback. Lo and behold, the reaction of the
stickleback was consistent with Tit for Tat: Its response in the next encounter
with a predator was to cooperate when the cooperating mirror was previously
used and to defect when the defecting mirror was used.



            Endowed with one of three strategies—Defector, Cooperator, and Tit for
Tat—two members of the population are matched to engage in a 10-period en-
counter. The strategic situation is then as described by the strategic form game
in FIGURE 17.13. If both members are endowed with Defector, then each
chooses defect in all 10 periods. With a fitness of 3 in each period, the fitness



            for the entire encounter is 30. This cal-
culation is how we get the fitnesses of



            in the cell for when two
Defectors meet. Now, suppose a Defector
meets a Cooperator. Then in every period,
the former chooses defect and the latter
chooses cooperate, so the Defector has a
fitness of 80, while the Cooperator has a
fitness of only 10. The most interesting
cases arise when at least one of the
members is endowed with Tit for Tat.
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            Suppose a Tit for Tat meets a Cooperator. Both choose cooperate in the first pe-
riod. In the second period, the Cooperator chooses cooperate—as that is all it
knows how to do—and the Tit for Tat player chooses cooperate because it re-
sponds in kind. This sequence of events repeats in all periods, so each player
has a fitness of 50. The same outcome arises when a Tit for Tat meets another
Tit for Tat. Now, when a Tit for Tat meets a Defector, a very different story un-
folds. In the first period, the Tit for Tat player chooses cooperate, while the
Defector chooses defect. The Tit for Tat player retaliates with defect in period 2,
and the Defector chooses defect again. Because the Defector always chooses de-
fect, the Tit for Tat player always responds with defect. Thus, when a Tit for Tat
meets a Defector, the former has a fitness of 28 (earning a fitness of 1 in the
first period and 3 in the remaining nine periods) and the latter has a fitness of
35 (with 8 in the first period and 3 thereafter).



            A comparison of these strategies reveals that none is strictly dominated. If
the other player uses Tit for Tat, then both Cooperator and Tit for Tat are best
replies. The best reply to meeting a Defector is to be a Defector. However, note
that Tit for Tat weakly dominates Cooperator: They both yield the same fitness
when matched with either a Tit for Tat or a Cooperator (since cooperation
arises in all periods), but when facing a Defector, Tit for Tat outperforms
Cooperator because Tit for Tat gets “ripped off” only once, while Cooperator
gets nailed 10 times by Defector.



            We want to describe how the mix of strategies in the population evolves
over time. Can a population end up being dominated by Defectors so that play-
ers are nasty to each other? Or can the trait Cooperator and Tit for Tat thrive
so that society is cooperative?



            To use the replicator dynamic to address these questions, we need to derive
the fitness for each of these three strategies. For generation t, let denote the
proportion of Cooperators in the population, denote the proportion en-
dowed with Tit for Tat, and denote the proportion that are
Defectors. Then the average fitness for each strategy is as follows:



            [17.7]



            As an example, consider Tit for Tat. In a fraction of its encounters, a Tit for
Tat player meets a Cooperator and earns a fitness of 50; in a fraction of its
encounters, it meets another Tit for Tat player and also earns a fitness of 50;
and in a fraction of its encounters, it meets a Defector and earns a fitness
of 28. Substituting for in (17.7) and simplifying, we have



            [17.8]



            Analyzing the replicator dynamic with three strategies can be rather challeng-
ing. So, rather than write down the replicator dynamic equations—which are
quite messy—we’ll work with a phase diagram. The first step in constructing a
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            phase diagram is to evaluate the relative fitness of each strategy against every
other strategy. Beginning with Tit for Tat and Cooperator and using (17.8), we find
that the former is more fit if and only if



            If there are at least some Defectors—so that —then Tit for Tat has
a higher fitness than Cooperator. However, if then Tit for Tat and
Cooperator are equally fit. Remember that these two strategies result in differ-
ent outcomes only when they face a Defector.



            Tit for Tat, then, has a higher fitness than Cooperator when and
Tit for Tat has a fitness equal to that of Cooperator when 



            Next, we compare the fitnesses of Tit for Tat and Defector. Tit for Tat is more
fit when



            If there are enough other Tit for Tats (i.e., if then Tit for
Tat outperforms Defector. When meeting another Tit for Tat, a Tit for Tat has a
long, rewarding spell of cooperation, while a Defector has only one period of
high fitness. For Tit for Tat to be a better performer than Defector, it is also nec-
essary that there be not too many Cooperators, because, although Tit for Tat co-
operates with a Cooperator, a Defector does even better against the naive
Cooperator.



            Tit for Tat has a higher (lower) fitness than Defector when



            [17.9]



            Let’s use this information to start to construct the phase diagram shown in
FIGURE 17.14. A point in this diagram represents a particular population mix.
For example, the point represents a population mix in which
30% are endowed with Tit for Tat, 50% with Cooperator, and the remaining
20% with Defector. Note that represents the situation when
there are only Defectors in the population, and any point on the line running
from (1,0) to (0,1) has so there are no Defectors.



            From (17.9), is the threshold value for that determines
whether Defector or Tit for Tat has the higher fitness. This threshold value is plot-
ted in Figure 17.14 as the line denoted D-TFT. When 
and as increases, so does so D-TFT is upward sloping.
Population mixes that lie to the left of D-TFT are ones in which Defector has a
higher fitness than Tit for Tat. Since we’ve also shown that Tit for Tat is always
more fit than Cooperator, it follows that Defector is the most fit when the pop-
ulation mix is to the left of D-TFT. If the population mix is in this area—which
is denoted zone I—then the proportion of Defectors is growing (because
Defector has the highest fitness and thus must exceed the average population
fitness) and the proportion of Cooperators is declining (since Cooperator has
the lowest fitness and thus must be less than the average population fitness).
Because Defector is growing, the population mix will move in a “southerly”



            (2 � 28pt
C)/17,pt



            C



            (2 � 28pt
C)/17 � 2



            17,pt
C � 0,



            pt
T(2 � 28pt



            C)/17
pt



            T � pt
C � 1,



            (pt
T, pt



            C) � (0,0)



            (pt
T, pt



            C) � (.3,.5)



            pt
T 7 (6 )



            2 � 28pt
C



            17



            pt
T 7 (2 � 28pt



            C)/17),



            28 � 22pt
C � 22pt



            T 7 30 � 50pt
C � 5pt



            T, or, equivalently, pt
T 7



            2 � 28pt
C



            17
.



            pt
C � pt



            T � 1.
pt



            C � pt
T 6 1,



            pt
C � pt



            T � 1,
pt



            C � pt
T 6 1



            28 � 22pt
C � 22pt



            T 7 10 � 40pt
C � 40pt



            T, or, equivalently, pt
C � pt



            T 6 1.


            

        



        
            

            
17.5 Examples of Strategic Situations 525



            pT
t



            pC
t



            0



            I



            II



            D-TFT D-C



            III



            Tit for Tat is best.
Defector is worst.



            1



            1



            Tit for Tat is best. 
Cooperator is worst.



            Defector is best. 
Cooperator is worst.



            2



            17



            10



            35



            FIGURE 17.14 Phase Diagram for Repeated Prisoners’ Dilemma



            direction. It could be to the “southwest”—in which case both Tit for Tat and
Cooperator are declining—or in a “southeasterly” direction—in which case
Cooperator is shrinking, but Tit for Tat is growing. Arrows have been placed in
zone I to indicate the direction of the population mix.



            When the population mix is to the right of D-TFT, Tit for Tat has higher fit-
ness than Defector; thus, Tit for Tat is the most fit strategy, since it is always
more fit than Cooperator. Hence, the proportion of members endowed with Tit
for Tat is increasing when the mix is to the right of D-TFT. To assess what is
happening to Defectors and Cooperators, we need to compare their relative fit-
ness. Cooperator is more fit than Defector when
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            By (17.10), if sufficiently many members are endowed with Tit for Tat, then
Cooperator has a higher fitness than Defector. Cooperator earns high fitness in
being matched with Tit for Tat—as they cooperate extensively—while Defector
doesn’t do all that great, since it gets just one period of high fitness when
matched with Tit for Tat. However, Defector is more fit than Cooperator when
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            there is plenty of the latter strategy in the population. Although a Cooperator
does nicely when it meets other Cooperators, a Defector does much better in a
population loaded with members who only know how to play nice.



            The critical threshold from (17.10) is plotted in Figure 17.14
and labeled as the line D-C. For mixes to the left of D-C, Defector has a higher
fitness than Cooperator, and the reverse is true when the mix is to the right.
Thus, for population mixes in zone II, Tit for Tat is more fit than Defector and
Defector is more fit than Cooperator. Hence, Tit for Tat is increasingly present in
the population, and the subpopulation of Cooperators is shrinking; the popula-
tion mix moves in a “southeasterly” direction (note the arrow). Finally, if the
mix is in zone III, then it is to the right of both D-TFT and D-C, in which case
Tit for Tat is more fit than Cooperator and Cooperator is more fit than Defector.
Thus, in zone III, Tit for Tats are growing and Defectors are decreasing.



            The next step is to use the phase diagram to assess in what direction the pop-
ulation is evolving and what are the attractors. Suppose the initial population
has few members endowed with Tit for Tat, as shown in FIGURE 17.15. Then
Defectors have the highest fitness, for the following reasons: If there are plenty
of Cooperators, then, even though Tit for Tat is able to sustain cooperation with
them, a Defector does even better than a Tit for Tat against a Cooperator. If there
are few Cooperators, then there aren’t many players for Tit for Tat to cooperate
with, and again, Defectors have the higher fitness. The proportion of Defectors
increases steadily, and Cooperator and Tit for Tat are both driven out. One at-
tractor is to have all members endowed with the Defector strategy, in which
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            case there is no cooperation in the population. This state of affairs occurs when
the initial proportion of members endowed with Tit for Tat is low.



            Now consider an initial population mix as shown in FIGURE 17.16, where
sufficiently many use Tit for Tat and sufficiently few use Cooperator. Although
Defector still has the highest fitness—so that it is growing—it is also the case
that the fraction endowed with Tit for Tat is increasing. Tit-for-Tat has plenty of
members to cooperate with, so it does reasonably well. However, the propor-
tion of Cooperators is falling, since they are preyed upon by Defectors and this
overwhelms the cooperative spells they have with Tit for Tats. As the fraction
of Tit for Tats rises and the fraction of Cooperators falls, the environment be-
comes more hospitable to Tit for Tat and less hospitable to Defector. When the
population mix enters into zone II, the fitness of Tit for Tat is at its highest, so
it thrives while Cooperator continues to shrink. This situation leads the mix
into zone III, where Defector has the lowest fitness because there are so few
Cooperators to prey upon. The subpopulation of Defectors then shrinks away
to nothing, while the presence of Tit for Tat and Cooperator rises. Although the
population ends up mostly endowed with Tit for Tat, there can be some who
have the Cooperator trait. Eventually, cooperative behavior is ubiquitous.



            To those who are worried about the future of mankind, it may be a relief to
learn that cooperation is evolutionarily stable. If the initial population mix is
well endowed with members who have the Tit for Tat trait, then the trait will
flourish, because Tit for Tat is able to sustain cooperation with all those mem-
bers of the same type (and also with Cooperator). Although Defector outperforms
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            Tit for Tat when they meet each other, this gain is less than what Tit for Tat earns
from the cooperation it enjoys when it meets another Tit for Tat.



            Notice that if, instead, the population has a lot of Cooperators, so that it is
well into zone I, then cooperation is driven out, as the Defector strategy even-
tually dominates. That cooperation emerges when there are many Tit for Tats,
but not many Cooperators, is because Tit for Tat retaliates quickly against
Defector while Cooperator allows itself to be repeatedly taken advantage of by
Defector. For cooperative behavior to persist, it is insufficient to be nice; play-
ers must also be ready to punish cheaters, as only then will the nasty types be
driven out of the population.



            Although cooperation can then emerge, there is an interesting source of in-
stability that plagues a cooperative population. Suppose all members are en-
dowed with Tit for Tat, and consider a mutation of Cooperators. There is noth-
ing driving out the Cooperator strategy, because it earns the same fitness as the
Tit for Tat strategy. Thus, the population can persist with most being endowed
with Tit for Tat and some with Cooperator. If there were then further mutations
of this sort, the population mix would “drift” along the line, as
shown in FIGURE 17.17. Let me emphasize, however, that there is nothing push-
ing the mix in this direction. Rather, if it just so happens that some Tit for Tats
mutate into Cooperators, then the mix will move in that direction.



            What could then happen is that the population mix drifts to having many
endowed with Cooperator, so that the mix is well into zone I, but on the bound-
ary. Now suppose there is a mutation that introduces some Defectors and the
mix moves into the interior. At that point, Defectors flourish, as they feed off
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            of all of the Cooperators. Eventually, the population is dominated by Defectors.
In this manner, cooperation can be unstable.



            There is an interesting story that can be told to motivate the dynamic path
just described.6 Suppose the mechanism is not natural selection, but imita-
tion: A strategy with a higher payoff (or fitness) grows because more people
imitate it, since they see it performs relatively better. Now, if all members of a
population currently use Tit for Tat, then the observed play is that everyone co-
operates. The Tit for Tat strategy distinguishes itself from Cooperator only when
matched with Defector, but because there are no Defectors in the population,
the behavior of those using Tit for Tat and those using Cooperator are indistin-
guishable. Hence, when a new cohort of people comes along, those individu-
als may mistake Tit for Tat for Cooperator because all they see is cooperate
always being chosen. They fail to realize that one should stop playing cooper-
ate if the other person starts choosing defect. A society can then forget what
made cooperation stable (i.e., what drove out Defectors). If many come to
adopt Cooperator, then, at that point, an innovation in the form of Defector
would outperform Cooperator, and the next cohort would see that choosing de-
fect yields a higher payoff than choosing cooperate and thus adopt Defector,
not Cooperator. In this way, a norm of cooperation can be destabilized and a
society can drift from altruism to selfishness.



            Summary
In this chapter, we considered a population of animals—perhaps hyenas, or
vervet monkeys, or baseball players—and a strategic setting modeled as a
strategic form game. Members from that population are randomly matched to
play that game. Because these animals are not presumed to have the capacity
to reason strategically in selecting a strategy, it is assumed that each member
is endowed with a strategy. Although a specific animal cannot choose how to
play, a population “chooses” the mix of strategies it has through the mecha-
nism of natural selection. Those strategies which perform better—as mea-
sured by fitness—make up a bigger share of the next generation’s population.



            One model of the natural-selection mechanism that evolutionary game the-
ory has developed is the replicator dynamic, which specifies that the propor-
tion of a population that uses a strategy increases (decreases) when its fitness
is greater (less) than the average population fitness. Armed with the replicator
dynamic, this chapter explored where that dynamic takes a population in
terms of the mix of strategies used by its members.



            Natural candidates for the ultimate destination of the replicator dynamic
are rest points. A rest point is a population mix such that, once the population
is there, the replicator dynamic keeps it there. A rest point is locally stable if,
when the population mix is close to that rest point, the replicator dynamic
drives the population to the rest point. A locally stable rest point is referred to
as an attractor. There can be multiple attractors, in which case where a pop-
ulation ends up depends on where it starts. Those initial population mixes that
lead to a particular attractor constitute the attractor’s basin of attraction. To
explore how a population evolves under the replicator dynamic, the concept
of a phase diagram was introduced, and since a picture is worth a thousand
words, I’ll refer you back to Figure 17.10 by way of a review. (Okay, I admit
that that’s lazy of me, but you try putting a phase diagram into words.)


            

        



        
            

            
1. Consider the game shown in FIGURE PR17.1, and let denote the fraction
of the population endowed with strategy x in generation t.
a. Describe how the population evolves according to the replicator



            dynamic.
b. Find the attractors and each attractor’s basin of attraction.
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            2. Consider the game illustrated in FIGURE PR17.2, and let denote the frac-
tion of the population endowed with strategy x in generation t.
a. Describe how the population evolves according to the replicator



            dynamic.
b. Find the attractors and each attractor’s basin of attraction.
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            Armed with these various concepts, we then explored when a population
would evolve a practice of communal hunting or, instead, evolve to have mem-
bers hunt on their own. We did this with the help of the Stag Hunt game,
which was developed almost two centuries before the arrival of evolutionary
game theory. Looking at the issue of cooperation more broadly, we analyzed
the Repeated Prisoners’ Dilemma. There, we found that a population can
evolve a cooperative norm—that is, cooperative play occurs at an attractor—
when enough members are initially endowed with the strategy Tit for Tat. The
key feature of Tit for Tat is that it responds in kind, so that if someone else co-
operates, then it cooperates, while if someone else acts selfishly, then Tit for
Tat acts likewise. If a population is, by contrast, loaded with members who
always cooperate, then, ironically, cooperation is driven out. The problem
with having lots of incessantly nice people is that a selfish strategy thrives in
such a population. For a society to sustain a norm of cooperation, everyone
must not only be nice, but be willing to be mean in retaliation to a threat. That
a population must have a proper balancing of conflict and cooperation is one
of the most significant lessons that game theory has to offer.
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            3. Consider the game portrayed in FIGURE PR17.3. Let and denote the
proportion in generation t endowed with strategies a and b, respectively.
Thus, is the proportion endowed with strategy c.
a. Write down the equations for the replicator dynamic.
b. Draw the phase diagram, where the horizontal axis is and the ver-



            tical axis is 
c. Find all rest points.
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at



            1 � at � bt
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            4. Consider the game shown in FIGURE PR17.4.
a. Write down the equations for the replicator dynamic.
b. Find the attractors and each attractor’s basin of attraction.



            5. Return to the 10-period Repeated Prisoners’ Dilemma in Section 17.5.
Now suppose there are just two strategies: Defector and Tit for Tat.
a. Describe how the population evolves according to the replicator



            dynamic.
b. Find the attractors and each attractor’s basin of attraction.



            6. Return again to the 10-period Repeated Prisoners’ Dilemma in Section
17.5. Now suppose there are these three strategies: (1) Defector; (2) Tit
for Tat; and (3) Sneaky Tit for Tat. The first two strategies are as previ-
ously defined, while Sneaky Tit for Tat is exactly like Tit for Tat, except
that it always chooses defect in the 10th period, regardless of what its
partner chose in period 9. Let and denote the fraction of the pop-
ulation in generation t that are endowed with Sneaky Tit for Tat and Tit
for Tat, respectively.
a. Derive the fitness matrix. (This is the analogue to Figure 17.13.)
b. Compare the fitness of each pair of strategies.
c. Is a population mix in which all are endowed with Tit for Tat an



            attractor?
d. Is a population mix in which all are endowed with Defector an



            attractor?
e. Is a population mix in which all are endowed with Sneaky Tit for Tat



            an attractor?
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            7. Return to the Stag Hunt game in Figure 17.5. We showed that a popula-
tion in which two-thirds are endowed with stag is a rest point, but is not
an attractor. Now consider a homogeneous population in which all
members use the mixed strategy in which stag is chosen with probabil-
ity . Show that this strategy is not an ESS.2
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            2.3 The strategy set for Vivica is the same as that derived for the extensive-form
game in Figure 2.1, as she still has only one information set. She has two
strategies: (1) If a kidnapping occurred, then pay ransom; and (2) if a kid-
napping occurred, then do not pay ransom. In contrast, Guy’s strategy tem-
plate has changed, since he now has only two information sets (instead of
three):



            At the initial node, _______ [fill in kidnap or do not kidnap]
If a kidnapping occurred then _______ [fill in kill or release]



            There are two possible actions at each of those two information sets, so Guy
has four feasible strategies: (1) At the initial node, kidnap, and if a kidnapping



            2.2
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            occurred, then kill; (2) at the initial node, kidnap, and if a kidnapping
occurred, then release; (3) at the initial node, do not kidnap, and if a kid-
napping occurred, then kill; and (4) at the initial node, do not kidnap, and
if a kidnapping occurred, then release. Although the choices faced by Guy
are unchanged, altering the structure of his information sets affects his
strategy set.



            2.4 The mugger has three strategies: gun and show; gun and hide; and no gun.
Simon has two information sets, so a strategy for him is a pair of actions:
what to do if the mugger shows a gun and what to do if he does not. There
are then four strategies for Simon: R/R, R/DNR, DNR/R, and DNR/DNR
(where R denotes resist, DNR denotes do not resist, and the first action
refers to the information set in which the mugger shows a gun). The strate-
gic form is as follows:



            3,2 3,2 4,5



            3,2 5,4 3,2



            2,6 6,3 2,6



            Simon



            Mugger Gun & Hide



            No gun



            Gun & Show



            R/DNRR/R DNR/R



            4,5



            5,4



            6,3



            DNR/DNR



            CHAPTER 3



            3.1 For player 1, strategy a strictly dominates c, and b weakly dominates d. For
player 2, y strictly dominates w and x, and w weakly dominates x.



            3.2 For player 1, strategy a strictly dominates c; for player 2, y strictly domi-
nates w and x. Because players are rational, those strategies can be elimi-
nated. Since player 1 knows that player 2 is rational, it follows that player 1
knows that player 2 will not use w and x. With those strategies for player 2
eliminated, a strictly dominates b for player 1. Analogously, since player 2
knows that player 1 is rational, it follows that player 2 knows that player 1
will not use c. With that strategy for player 1 eliminated, z strictly domi-
nates y for player 2. The answer is then strategies a and d for player 1 and
strategy z for player 2.



            3.3 Because this is the same game used in CYU 3.2, we can continue on to step
3. After step 2, strategies a and d remain for player 1 and strategy z for
player 2. Strategy d then strictly dominates a. Accordingly, this game is
dominance solvable, as there is a unique strategy pair that survives the
IDSDS: Player 1 uses d and player 2 uses z.



            CHAPTER 4



            4.1 There are three Nash equilibria: (b, x), (a, z), and (d, z).



            4.2 There are two Nash equilibria: (c, y, I) and (a, x, II).
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            CHAPTER 5



            5.1 Let (x, y, z) represent a strategy profile in which x sneetches have stars,
y have bars, and z have nothing. With seven sneetches, let’s start with
(0,1,6). This is not an equilibrium, as the sneetch with nothing has a
payoff of 0 (since the sneetch with a bar is in a smaller cliché), but it
could have a payoff of 1 by getting either a bar or a star. With (0,2,5), a
sneetch with nothing can improve by getting a star or a bar; in either
case, it’ll be in the smallest group. With (0,3,4), a sneetch with nothing
can raise its payoff from 0 to 1 by getting a star. (Note, though, that get-
ting a bar will not help.) (1,1,5) is a Nash equilibrium, as the sneetch
with a star and the sneetch with a bar each have a payoff of 1 and thus
cannot do better, while a sneetch with nothing will still not be in the
smallest group even if it were to get a star or a bar. (1,3,3) is not a Nash
equilibrium, as a sneetch with a bar can instead get a star and do better.
Finally, (2,2,3) is a Nash equilibrium. We then conclude that it is a Nash
equilibrium for there to be (1) one sneetch with a star and one with a
bar, and (2) two with stars and two with bars. There are other compara-
ble equilibria with the labels just switched around. That is, in general,
the Nash equilibria have (1) one sneetch with one strategy, one sneetch
with a second strategy, and the other sneetches with a third strategy; and
(2) two sneetches with one strategy, two sneetches with a second strat-
egy, and the other sneetches with a third strategy.



            5.2 A Nash equilibrium has one airline choosing strategy 7 and the other
airlines choosing strategy 1. To begin, consider an airline that is



            choosing Suppose it is airline 1. Then its payoff is
. If then airline 1 could



            do better by choosing strategy 7 and getting a payoff of 120. Hence, at a
Nash equilibrium, it must be that Now suppose
two or more airlines were choosing strategy 7. Then any one of them
could lower its strategy to 1 and raise its payoff from 120 to 180. We
thus conclude that there can only be a single airline that chooses a strat-
egy of 7, and, as just argued, an airline that is not choosing 7 should
choose 1.



            5.3 Any strategy profile in which three companies enter the market is a
Nash equilibrium, and any other strategy profile is not. From Table 5.6,
note that when two other companies enter, entry by a third is profitable.
Hence, it cannot be an equilibrium for only two companies to enter (or,
quite obviously, for only one company to enter or for no company to
enter). Note also that when three companies enter, it is unprofitable for
any company to be the fourth to enter. Hence, it is not an equilibrium
for all four companies to enter. Putting all this together, if three compa-
nies enter, then each entrant earns a nonnegative payoff—so its decision
to enter is optimal—and the remaining company that did not enter
would earn a negative payoff if it were to enter, so its decision not to
enter is also optimal.



            5.4 Recall that there are three Nash equilibria: (1) no one protests, (2) radi-
cals and progressives protest, and (3) everyone protests. The associated



            max5s1, . . . , sn6 � 7.



            max5s1, . . . , sn6 6 7,50 � 10 � max5s1, . . . , sn6max5s1, . . . , sn6.n � 1
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            From the table, equilibrium #3 yields a strictly higher payoff for each cit-
izen than does equilibrium #1, or equilibrium #2. Thus, the unique payoff-
dominant Nash equilibrium is equilibrium #3.



            CHAPTER 6



            6.1 Any strategy profile in which all three shops price at least as high as 10 and
at least two shops price at 10 is a Nash equilibrium. Any other strategy
profile is not. Suppose all three shops price above 10. If one of them is pric-
ing higher than the other two, then it has zero demand and zero profit. It
can do better by slightly undercutting the lowest priced shop, in which case
it has positive demand and, since it is pricing above cost, positive profit.
From this argument, we can conclude that if all shops are pricing above
cost, then they must all set the same price. But that is not an equilibrium
either, as a shop can triple its demand (and almost triple its profit) by
slightly undercutting the other two shops. We can then conclude that an
equilibrium cannot have all three shops pricing above 10. Clearly, no shop
wants to price below 10, so suppose that one shop prices at 10, in which
case its profit is zero (though it sells to all consumers). But it could earn a
positive profit by pricing slightly below the lowest price of the other two
shops. Now suppose two shops are pricing at 10. Each makes zero profit,
but will have zero demand (and zero profit) if it prices above 10, because
the other shop is pricing at 10. Now, the shop pricing above 10 has zero de-
mand, unless it prices at 10, but then it still has zero profit. Thus, it is an
equilibrium for all three shops to price at 10.



            6.2 To derive Dell’s best reply, take the first derivative of its payoff function
with respect to its own price and set it equal to zero:



            Solving this equation for we see that Dell’s best reply function is



            PDell �
140 � PHP



            4
, or BRDell � 35 � .25PHP.



            PDell,



             � 140 � 4PDell � PHP � 0.



             
0VDell(PDell, PHP)



            0PDell
� 100 � 2PDell � PHP � 2PDell � 40 � 0



            PAYOFFS FROM DIFFERENT NASH EQUILIBRIA



            Citizen No one Radical  and 



            type protests progressives protest Everyone protests



            Radicals 0 4,000 19,000



            Progressives 0 2,000 17,000



            Bourgeois 0 0 5,000



            payoffs for each of the three types of citizens is shown in the following
table:



            s
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            By symmetry, HP has the same best reply function:



            A price pair is a Nash equilibrium when both computer man-
ufacturers are simultaneously choosing best replies:



            Substituting the second equation into the first, we get



            Solving for Dell’s price, we obtain



            where we have rounded off Dell’s price to the second decimal. Plugging this
value into HP’s best reply function, we get



            There is, then, a unique Nash equilibrium, and it has both companies pric-
ing at 46.67.



            CHAPTER 7



            7.1 Let p and q denote the probability of player 1’s choosing top and player 2’s
choosing left, respectively. Equating player 1’s expected payoff from choos-
ing top and choosing bottom, we have



            Solving for q, we obtain Equating player 2’s expected payoff from
choosing left and choosing right, we have



            Solving for p yields Thus, there is a unique Nash equilibrium with
and 



            7.2 In applying the IDSDS, b strictly dominates a for player 1 and y strictly
dominates z for player 2. In the second round, x strictly dominates w for
player 2. This leaves player 1 with strategies b and c and player 2 with
strategies x and y. The reduced game is



            q � 3/8.p � 1/2
p � 1/2.



            p � 2 � (1 � p) � 5 � p � 6 � (1 � p) � 1.



            q � 3/8.



            q � 8 � (1 � q) � 1 � q � 3 � (1 � q) � 4.



             P̂HP � 46.67.



             P̂HP � 35 � .25 � 46.67,



             P̂Dell � 46.67,



             .9375 � P̂Dell � 43.75,



             P̂Dell � 35 � 8.75 � .0625 � P̂Dell,



            P̂Dell � 35 � .25 � (35 � .25P̂Dell).



             P̂HP � 35 � .25P̂Dell.



             P̂Dell � 35 � .25P̂HP;



            (P̂Dell, P̂HP)



            BRHP � 35 � .25PDell.



            2,6



            4,1
Player 1



            Player 2



            b



            c 5,2



            2,5



            x y
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            This game has a unique mixed-strategy Nash equilibrium in which player 1
chooses b with probability 1/2 and c with probability 1/2 and player 2
chooses x with probability 3/5 and y with probability 2/5.



            CHAPTER 8



            8.1 At the decision node for player 2, her optimal choice is x, since it yields a
payoff of 4, versus a payoff of 1 from y. For player 3’s decision node, he’ll
choose d. Now consider player 1’s decision node. By backward induction,
player 1 anticipates a payoff of 1 from choosing a, because player 2 will re-
spond by choosing x. If player 1 chooses b, the resulting payoff is 2, as
player 3 will follow with d. Thus, player 1’s optimal choice is b. The unique
subgame perfect Nash equilibrium, then, has player 1 choose b, player 2
choose x, and player 3 choose d.



            8.2 Consider the final decision node for player 1; her optimal choice is y. Next,
consider the decision node for player 2 that comes from player 1’s having
chosen R. He can choose a and get a payoff of 1 or b and receive a payoff
of 2 because player 1 will respond with y. Thus, player 2 chooses b. At
player 2’s other decision node, he’ll choose b. As for player 1’s initial deci-
sion node, she can choose L and have a payoff of 3, M and have a payoff of
1 (because player 2 will respond with b), or R and have a payoff of 4 (be-
cause player 2 will respond with b and player 1 will follow up with y).
Player 1’s optimal choice is then R, and it follows that the unique subgame
perfect Nash equilibrium is for player 1 to choose R and y and for player 2
to choose b at both of his decision nodes.



            CHAPTER 9



            9.1 There are seven subtrees, but only three regular subtrees: the subtree in-
duced by a and x having been played, the subtree induced by b and y hav-
ing been played, and the tree itself.



            9.2 Consider the final subgame associated with the mugger’s having a gun and
having shown it to Simon. This is a one-player game that has a unique Nash
equilibrium of do not resist. Replacing that subgame with the equilibrium
payoffs, we use backward induction, which results in the following game:



            Resist Do not 
resist Resist Do not 



            resist



            Mugger



            Mugger 



            Simon



            3 



            2



            5 



            4



            2 



            6



            6 



            3



            Gun &
Show



            Gun &
Hide No gun



            Simon
Mugger 



            Simon



            4 



            5
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            The only subgame of this game is the game itself. (Note that the part of the
tree starting with the initial node and including only the branches gun &
hide and no gun is not a subtree. This is because a subtree begins at a node
and includes all nodes that follow it, whereas the part of the tree in question
does not include the terminal node associated with gun & show.) To find the
Nash equilibria for the game, we derive its strategic form, as follows:



            4,5



            3,2



            2,6



            Simon



            Mugger Gun & Hide



            No gun



            Gun & Show



            Do not resistResist



            4,5



            5,4



            6,3



            Note that Simon’s strategy refers to what he does in response to a gun not
being displayed (as we’ve already derived what he does when it is dis-
played). The game has a unique Nash equilibrium of (gun & show, resist).



            To sum up, there is a unique subgame perfect Nash equilibrium, and it
has the mugger using a gun and showing it, while Simon does not resist
when he sees a gun and resists when the mugger is not brandishing a
weapon.



            CHAPTER 10



            10.1 Given that Earp is to draw, it is clear that (draw,draw) is best for the
stranger. If he is a gunslinger, his payoff from drawing is 3, versus 1 from
waiting; and if he is a cowpoke, then his payoff from drawing is 2, versus
1 from waiting. Thus, the stranger’s strategy is optimal for each type of
player. Now, what about Earp’s strategy? Given the stranger’s strategy,
Earp’s expected payoff from drawing is With
probability .75, the stranger is a gunslinger and the payoff from Earp
drawing is 2. With probability .25, the stranger is a cowpoke and Earp’s
payoff is 5 from drawing. (Recall that the cowpoke is drawing, since his
strategy is (draw,draw).) If Earp waits instead, his expected payoff is



            With probability .75, the stranger is a gun-
slinger and Earp’s payoff is only 1 (compared with 2 if he drew his gun).
If the stranger is instead a cowpoke, then Earp’s payoff is 6 from waiting
(compared with 5 from drawing his gun on an unskilled shootist). Thus,
it is optimal for Earp to draw his gun. Hence, strategy profile C is a
Bayes-Nash equilibrium.



            10.2 For the same reason as in the text, a bid of 40 is optimal for a bidder
when her valuation is 50. When a bidder has a high valuation, she does-
n’t want to bid below 40, as that yields a zero payoff and, as we’ll see,
there are bids that generate a positive payoff. Nor does she want to bid
above 80, since a bid of 80 means winning for sure; thus, there is no point
in bidding higher. We have then eliminated all bids except 40, 50, 60, 70,
and 80. Their associated expected payoffs are as follows:



             Expected payoff from a bid of 50 � .6 � (100 � 50) � 30;



             Expected payoff from a bid of 40 � .6 � .5 � (100 � 40) � 18;



            .75 � 1 � .25 � 6 � 2.25.



            .75 � 2 � .25 � 5 � 2.75.
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             Expected payoff from a bid of 80 � .6 � (100 � 80) � .4 � (100 � 80) � 20.



             Expected payoff from a bid of 70 � .6 � (100 � 70) � .4 � .5 � (100 � 70) � 24;



             Expected payoff from a bid of 60 � .6 � (100 � 60) � 24;



            Thus, a bid of 50 is optimal. Hence, the given strategy pair is not a Bayes-
Nash equilibrium.



            CHAPTER 11



            11.1 Given the analysis in the text, we just need to make sure that it is optimal
for the manager not to hire the trainee when she works 60 hours. Now,
the expected payoff from hiring her is so it
must be that



            As long as the probability assigned to the trainee’s being lazy when she
worked 60 hours is at least 40/75, this strategy profile is a perfect
Bayes–Nash equilibrium.



            11.2 Consider the trainee when she is the lazy type. By working 40 hours and
not being hired, her payoff is 20, whereas by working 60 hours and being
hired, her payoff is 55. Hence, she would prefer to work 60 hours, in
which case the trainee’s strategy is not optimal.



            11.3 Consider the following strategy profile and beliefs: The seller’s strategy
has her price the car at when it is of low quality and keep the car off
of the market when it is of moderate or high quality. The buyer’s strategy
has him buy when the price is no higher than and not buy when the
price exceeds The buyer’s beliefs assign probability 1 to the car’s being
of low quality, for all prices. Clearly, the beliefs are consistent. The buyer’s
strategy is optimal if and only if in which case the price does
not exceed the value of a low-quality car to the buyer. When she has a
low-quality car, the seller’s strategy is optimal if and only if 
when she has a moderate-quality car, it is optimal to keep it off of the
market if and only if and when she has a high-quality car,
it is optimal to keep it off of the market if and only if 
Pulling these conditions together, we find that it must be the case that



            CHAPTER 12



            12.1 One separating equilibrium has the sender (Tom) send the message
stop when he is of type nice and the message go when he is of type
mean. The receiver (Jessica) chooses the action run in response to the
message stop and the action hide in response to the message go. The
receiver assigns probability 1 to the sender’s type being nice when she
sees the message stop and probability 1 to the sender’s type being mean
when she sees the message go. There is a second separating equilib-
rium which just has the messages reversed, so that Tom sends the mes-
sage go when he is of type nice and the message stop when he is of type
mean. Jessica chooses the action hide in response to the message stop
and the action run in response to the message go. The receiver assigns



            10,000 � P¿ � 12,000.



            P¿ � 20,000.
P¿ � 15,000;



            P¿ � 10,000;



            P¿ � 12,000,



            P¿.
P¿



            P¿



            60 � p � 25 � (1 � p) � 100 or p � 40/75.



            p � 25 � (1 � p) � 100,
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            probability 1 to the sender’s type being mean when she sees the mes-
sage stop and probability 1 to the sender’s being nice when she sees
the message go. Turning to babbling equilibria, Jessica’s preferred ac-
tion, given her prior beliefs (which will be her posterior beliefs at a
babbling equilibrium), is run, as it delivers an expected payoff of



            while the expected payoff from hide is
One babbling equilibrium has Tom send the



            message stop for both types and Jessica responds with run for either
message. A second equilibrium has Tom send the message go for both
types and Jessica responds with run for either message.



            12.2 Consistent beliefs have Gary assign probability to 



            Leslie’s being low and 2/3 to her being medium when the message is
now, and probability 1 to her being high when the message is later.
With these beliefs, if Gary observes now, then his expected payoff
from up is and from down is 



            —and the former is preferred. When later is observed,
Gary’s payoff from up is 1 and from down is 2, so down is preferred.
Thus, Gary’s strategy satisfies sequential rationality. Now let us turn
to Leslie’s strategy. Given Gary’s strategy, she knows that if she
chooses message now, then he responds with up, and if she chooses
later, then he responds with down. Thus, if she is of type low, then
now delivers a payoff of 2 and later a payoff of 1; if she is of type
medium, then now delivers a payoff of 4 and later a payoff of 3; and
if she is of type high, then now delivers a payoff of 2 and later a pay-
off of 4. Thus, Leslie’s strategy prescribes an optimal message for
every type.



            CHAPTER 13



            13.1 If then the present value of a four-period stream that delivers a
payoff in period t is Hence, the
present value of stream A is 44.28, of stream B is 45.96, and of stream C
is 41.16. Thus, stream B is the best.



            13.2 Although the stage game does not have a unique Nash equilibrium—
both (high,low) and (low,high) are Nash equilibria—note that both result
in the same payoffs, namely, that each player gets a payoff of 3. This
means that regardless of what players do in period 2, they’ll each receive
a payoff of 3 in the final period. Again, their period 2 encounter is effec-
tively a one-shot, since the payoff received in period 1 cannot be changed
(what is done, is done) and the period 3 payoff is 3 regardless of what
happens in period 2. Hence, subgame perfect Nash equilibrium play in
period 2 must be a Nash equilibrium for the stage game. The same logic
applies to period 1. Thus, subgame perfect Nash equilibrium play for the
three-period game is any sequence of stage-game Nash equilibria—for
example, player 1 chooses low in period 1, high in period 2, and high in
period 3; and player 2 chooses high in period 1, low in period 2, and low
in period 3.



            u1 � .8 � u2 � .64 � u3 � .512 � u4.ut



            d � .8,



            (2/3) � 2 � 5/3
(1/3) � 1 �(1/3) � 2 � (2/3) � 3 � 8/3



            1/3 �
1/6



            (1/6) � (1/3)



            .4 � 1 � .6 � 2 � 1.6.



            .4 � 3 � .6 � 1 � 1.8,
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            13.3 Consider either period 1 or some future period in which no player has
ever chosen y. If a player chooses x, then she expects a payoff of 5 today
and into the future, the present value of which is If she chooses
y, then her current payoff is 7, but she expects a future payoff stream of
2, as both players choose z. The present value of that stream is



            Finally, she can choose z today, which results in a cur-
rent payoff of 3 and a future stream of 5. This last choice is clearly infe-
rior to choosing x, since both alternatives yield the same future stream
while x yields a higher current payoff. Thus, what is required for equilib-
rium is that choosing x be at least as good as choosing y:



            Now consider a history in which, at some time in the past, a player chose
y. Players are expected to choose z from here on, and since that is a stage-
game Nash equilibrium, it is clearly optimal. In sum, this strategy profile
is a subgame perfect Nash equilibrium if and only if 



            13.4 Let



            Multiply each side by 



            Now subtract the latter from the former and then solve for V:



            CHAPTER 14



            14.1 Histories can be partitioned into three types. First, suppose the history is
such that both auction houses are to set a rate of 8%. Then the equilib-
rium condition is



            Now consider a history whereby there is to be a punishment starting in
the current period. Then the equilibrium condition is



            Finally, if the auction houses are in the second period of the punishment,
then the equilibrium condition is



            14.2 Suppose either that it is period 1 or that in all past odd periods the out-
come has been (a, z) and in all past even periods it has been (c, x). If it is



            0 � d a 5
1 � d



            b � 1 � d � 0 � d2 � 0 � d3 a 5
1 � d



            b.



            0 � d � 0 � d2 a 5
1 � d



            b � 1 � d � 0 � d2 � 0 � d3 a 5
1 � d



            b.



            5
1 � d



            � 7 � d � 0 � d2 � 0 � d3 a 5
1 � d



            b.



             V �
100 � d � 50 � d2 � 25



            1 � d3
.



             V � d3V � 100 � d � 50 � d2 � 25,



            d3V � d3 � 100 � d4 � 50 � d5 � 25 � d6 � 100 � d7 � 50 � d8 � 25 � p.



            d3:



            V � 100 � d � 50 � d2 � 25 � d3 � 100 � d4 � 50 � d5 � 25 � p.



            d � 2/5.



            5
1 � d



            � 7 � d a 2
1 � d



            b or, after simplifying, d �
2
5



            .



            7 � d(2/(1 � d)).



            5/(1 � d).
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            currently an odd period, then player 1 is to choose a. That action is opti-
mal if and only if



            15.2 The buyer’s optimal buying strategy is to buy if the seller has no negative
comments and not to buy when the seller has one or more negative com-
ments. In considering the optimality of the seller’s strategy, the problem-
atic case is when the seller has no negative comments. The prescribed ac-
tion is to provide excellent quality at a price of 20, and the best alterna-
tive choice is to offer shoddy quality at a price of 20 (by the same logic as
that in the chapter). The prescribed action is preferable when



            7
1 � d



            � 18 � d a 0
1 � d



            b or d �
11
18



            .



            and, more generally, in period t it is



            � dT�t � 6 aT � 1
T
b N � 6 c aT � 1



            T
b N � 1 d .



            c6 aT � 1
T
b N � 10 d � d � c6 aT � 1



            T
b N � 10 d � p � dT�t�1 � c6 aT � 1



            T
b N � 10 d



            c6 aT � 1
T
b N � 10 d � d � c6 aT � 1



            T
b N � 10 d � d2 � 6 aT � 1



            T
b N � 6 c aT � 1



            T
b N � 1 d ,



            If it is currently an even period, player 1 is to choose c, and that is clearly
optimal, since that action maximizes both her current payoff and her fu-
ture payoff. For any other history, player 1 is supposed to choose b, and that
is clearly optimal, since player 2 is supposed to choose y in the current and
all future periods. By symmetry, the same conditions apply to player 2.



            14.3 No ABMs is preferred to low ABMs when



            No ABMs is preferred to high ABMs when



            This strategy pair is a subgame perfect Nash equilibrium when the dis-
count factor is at least .6. With the weaker monitoring technology, the dis-
count factor had to be at least .74.



            CHAPTER 15



            15.1 In the penultimate period of a person’s life, she’ll find it optimal to coop-
erate if and only if



            In period of her life, the equilibrium condition isT � 2



            c6 aT � 1
T
b N � 10 d � d � 6 aT � 1



            T
b N � 6 c aT � 1



            T
b N � 1 d .



            10
1 � d



            � 18 � d c .75 � a 3
1 � d



            b � .25 � a 10
1 � d



            b d 1 d �
8



            13.25
� .60.



            10
1 � d



            � 12 � d c .3 � a 3
1 � d



            b � .7 � a 10
1 � d



            b d 1 d �
2



            4.1
� .49.



            1 � d � 12 � d2 � 1 � d3 � 12 � p � 3 � d a 4
1 � d



            b or 
1 � 12d



            1 � d2
� 3 � d a 4



            1 � d
b.
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            Thus, this strategy profile is a subgame perfect Nash equilibrium if and
only if 



            CHAPTER 16



            16.1 The hawk strategy (i.e., so that hawk is chosen with probability 1) is
an ESS when The condition for a strong ESS is



            or



            for all 



            which is equivalent to



            for all 



            This last condition is obviously true. That hawk is an ESS and is the
unique ESS becomes clear when one inspects the payoff matrix in Figure
16.1. Hawk strictly dominates dove, which means that hawk yields higher
fitness than dove when it is matched with itself and also higher fitness
than dove when it is matched with dove.



            16.2 There are two strict Nash equilibria: and Both are
symmetric, so both are (strong) ESS’s. The only other possible ESS’s are
in mixed strategies. Thus, let us find a Nash equilibrium in mixed strate-
gies. If p is the probability of choosing slow, then p is a Nash equilibrium
if and only if



            is not a strong ESS, and for it to be a weak ESS, it must satisfy
the following conditions:



            (1) for all 



            (2) for all 



            Since



            for all q



            condition (1) is satisfied. Condition (2) is



            aincluding q �
1
5
b,F aq, 



            1
5
b �



            6
5



            q 	
1
5



            .F a  



            1
5



            ,qb 7 F(q,q)



            q 	
1
5



            ,F a  



            1
5



            ,
1
5
b � F aq,



            1
5
b



            p � 1/5



            p � 6 � (1 � p) � 0 � p � 2 � (1 � p) � 11 p �
1
5



            .



            (fast,fast).(slow,slow)



            0 � q 6 1.1 7 q



            0 � q 6 1,aV � C
2
b 7 q � aV � C



            2
b � (1 � q) � 0



            F(1, 1) 7 F(q, 1) for all 0 � q 6 1,



            V 7 C.
p � 1,



            d � 11/18.



            for all 



            which, after some manipulations, is equivalent to



            10q � 4



            5
7 1 � 5q2.



            q 	
1
5



            ,7 q � �q � 6 � (1 � q) � 0� � (1 � q) � �q � 2 � (1 � q) � 1�



            a1
5
b � �q � 6 � (1 � q) � 0� � a4



            5
b � �q � 2 � (1 � q) � 1�
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            This condition is not satisfied. For example, if then the previous 



            inequality is which is not true. Thus, there is no ESS in mixed 



            strategies. This game, then, has two ESS’s: Everyone uses slow and
everyone uses fast.



            16.3 The condition for it to be an ESS is



            or



            or 



            which is satisfied.



            CHAPTER 17



            17.1 Letting be the fraction of individuals in generation t that are endowed
with jump, we have



            Thus, if and only if



            which is the case as long as Hence, the attractor has all members
endowed with jump.



            17.2 Let denote the proportion of members endowed with strategy black in
generation t; hence, is the proportion of members endowed with
strategy white. The fitness earned by a member using black is



            and that earned by a member using white is



            By the replicator dynamic, the proportion using black grows if and only if



            while the proportion using black shrinks if and only if



            Summarizing, we have



             If bt 7
1
5



            , then bt�1 7 bt;



            Ft(black) 6 Ft(white) or 1 � 4bt 6 2 � bt or bt 6 1/5.



            Ft(black) 7 Ft(white) or 1 � 4bt 7 2 � bt or bt 7 1/5,



            Ft(white) � bt � 1 � (1 � bt) � 2 � 2 � bt.



            Ft(black) � bt � 5 � (1 � bt) � 1 � 1 � 4bt,



            1 � bt
bt



            pt 7 0.



            2 � pt 7 2 � pt,



            pt�1 7 pt



             Fitness of run: pt � 1 � (1 � pt) � 2 � 2 � pt.



             Fitness of jump: pt � 3 � (1 � pt) � 2 � 2 � pt;



            pt



            10
3
7 3,



            a2
3
b � 1 � a1



            3
b � 8 7 3,



            a2
3
b � F(heavy, heavy) � a1



            3
b � F(heavy, modest) 7 F(modest, heavy),



            14
5
7 6



            q � 1,
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            There are, then, two attractors. Every member using black is locally sta-
ble; as long as the current proportion endowed with black exceeds 1/5, it’ll
converge to that rest point. Every member using white is also locally sta-
ble; as long as the current proportion endowed with black is less than 1/5,
it’ll converge to the rest point with all white. It is also a rest point for 20%
of the population to use black, but that state of affairs is not locally sta-
ble. If the proportion using black is less than 20%, the population mix
evolves to having none endowed with black (instead of having 20% en-
dowed with black), while if the proportion is more than 20%, the popula-
tion mix evolves to having all endowed with black.



             If bt 6
1
5



            , then bt�1 6 bt.



             If bt �
1
5



            , then bt�1 � bt;
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            Action: In an extensive form game, the choice of a player
at a decision node.



            Attractor: A rest point with the property that once the
population mix is close to that rest point, then eventually
it is at that rest point.



            Babbling equilibrium: A pooling equilibrium in a cheap-
talk game.



            Backward induction: A method for solving an extensive
form game for subgame perfect Nash equilibria. The
final subgames are solved for a Nash equilibrium, and
those subgames are replaced with the payoffs associated
with equilibrium play. The process is repeated until the
entire game is solved.



            Backward suction: The process by which a student for-
gets how he or she solved a game. The solution is “back-
ward sucked” out of the student. Solving a game while
plugged into your iPod is a common cause of backward
suction.



            Basin of attraction: For an attractor, the set of popula-
tion mixes of strategies such that if the population starts
at one of them, then eventually it ends up at the attractor.



            Bayesian game: A modification of a standard game in
which Nature initially moves by endowing players with
private information.



            Bayes–Nash (Bayesian) equilibrium: A solution con-
cept for a Bayesian game. A Bayes–Nash (or Bayesian)
equilibrium is a strategy profile that prescribes optimal
behavior for each and every type of a player, given the
other players’ strategies and given beliefs about other
players’ types.



            Bayes’s rule: A method for modifying beliefs in light of
new information. Let be a random variable, and let



            represent the probability distribution on for
example, is the probability that . New in-
formation is received in the form of the realization of an-
other random variable Let denote the joint
probability of and The new beliefs on conditional
on having observed that are denoted .
By Bayes’s rule, these conditional beliefs are given by the
formula



            Bayes rules: Often shouted at a convention of probabil-
ity theorists. It so totally rocks.



            Prob(x � y¿) �
Prob(x,y¿)
Prob(y¿)



            .



            Prob(x � y¿)y � y¿,
x,y.x



            Prob(x,y)y.



            x � x¿Prob(x¿)
x;Prob(x)



            x



            Best reply: A strategy that maximizes a player’s payoff,
given his or her beliefs as to the other players’ strategies.



            Branch: The part of an extensive form game that repre-
sents an action for a player.



            Cardinal payoffs: Payoffs that describe a player’s inten-
sity of preferences and not only how various alternatives
are ranked.



            Cheap talk game: A signaling game in which the
sender’s actions are costless in the sense that they do not
directly affect players’ payoffs.



            Commitment: The act of a player binding himself or
herself to some future course of action. A player can
commit himself or herself by limiting his or her future
options or altering his or her future payoffs so that he’ll
or she’ll be disposed to act in a particular manner.



            Common knowledge: A property about what players
believe. For example, the event that it rained yesterday is
common knowledge to Jack and Jill if (1) both Jack and
Jill know that it rained yesterday; (2) Jack knows that Jill
knows that it rained yesterday, and Jill knows that Jack
knows that it rained yesterday; (3) Jack knows that
Jill knows that Jack knows that it rained yesterday, and
Jill knows that Jack knows that Jill knows that it rained
yesterday; and so forth.



            Common prior assumption: A property of a Bayesian
game whereby, prior to the determination of players’
types, each player has the same beliefs about all players’
types and those beliefs are common knowledge among the
players.



            Common value: In an auction setting, the situation in
which all players assign the same value to the item being
auctioned, although they may be uncertain as to what
that value is.



            Complete preferences: Preferences are complete if a
person can compare any two options and say which one
is preferred or whether they are equally liked.



            Conflict: A property of a game whereby, when compar-
ing strategy profiles, if one player is made better off,
then one or more other players are made worse off.



            Congestion: A property of a payoff function whereby the
relative attractiveness of using a strategy is less when
more players use it.



            Consistent beliefs: Consistency is a requirement placed
on beliefs about a player’s type, conditional on that
player’s behavior. Consistency implements the idea that



            Glossary
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            when a player updates beliefs about another player’s
type, the updating should take account of the types of
players who would have behaved in such a manner. This
requires formulating a conjecture about the player’s
strategy and then determining the likelihood that each
type of that player would choose the observed action.



            Constant-sum game: A game in which the players’ pay-
offs sum to the same number for all strategy profiles.
These are games of pure conflict.



            Continuous strategy set: A strategy set that is made up
of intervals of real numbers.



            Cooperation: In a repeated game, an equilibrium ex-
hibits cooperation when players choose actions that re-
sult in all players receiving higher average payoffs than
can be achieved at a Nash equilibrium for the stage game.



            Coordination game: A game in which payoffs are max-
imized when all players choose the same strategy.



            Decision node: A point in an extensive form game at
which one of the players is to choose an action.



            Decision tree: A graphical representation of the se-
quence with which players move and what actions they
have available.



            Discount factor: The weighting factor used to discount
a stream of payoffs in deriving its present value. A lower
discount factor means that a player attaches less weight
to future payoffs.



            Discount rate: If the discount factor is then the dis-
count rate is that value for which satisfies 
In some contexts, the discount rate corresponds to the
interest rate.



            Dominance solvable: A game with the property that, for
each player, there is a unique strategy that survives the
iterative deletion of strictly dominated strategies.



            Dominant strategy: A strategy that strictly dominates
all other strategies.



            Duh: The proof of a trivial claim. Synonym: dur.



            El Stúpido: A player who uses a strictly dominated
strategy. Other recommended terms are idiot, fool,
damfool, and imbecile, though perhaps the most endear-
ing expression is from a 1676 play by the English play-
wright William Wycherley: “Thou senseless, impertinent,
quibbling, drivelling, feeble, paralytic, impotent, fum-
bling, frigid nincompoop.”



            Equilibrium payoff dominance: A property of a Nash
equilibrium whereby there is no other Nash equilibrium
in which each player has a strictly higher payoff.



            Equilibrium play: For an extensive form game, the se-
quence of actions induced by players using their equilib-
rium strategies.



            d � 1/(1 � r).r
d,



            Evolutionarily Stable Strategy (ESS): For a single-
population setting, a strategy whereby if all members of
a population use it, then, in response to a small muta-
tion, the strategy has a higher fitness than that mutation.



            Evolutionarily Stable Strategy Profile (ESSP): For a
multipopulation setting, a strategy profile for which
each population uses a strategy whereby, in response to
a small mutation, the strategy has a higher fitness than
that mutation.



            Evolutionary game theory: The modification and ap-
plication of game theory to biological contexts. The solu-
tion concept of evolutionary game theory is predicated
upon natural selection rather than rationality.



            Exhaustive search: A method for finding solutions (e.g.,
Nash equilibria) that involves checking whether each and
every strategy profile satisfies the conditions required to
be a solution (e.g., the Nash equilibrium conditions).



            Expectation: The average value of an event based on re-
peating the situation many times.



            Expected payoff: The average payoff based on repeat-
ing the situation many times. The weighted average of a
player’s payoffs, where the weight assigned to a payoff is
the probability of that payoff’s being received.



            Expected value: See expectation.



            Experiential learning: Learning through experience. In
the context of determining how someone else will be-
have, experiential learning means “forming beliefs based
on past behavior.”



            Extensive form game: A graphical description of a
strategic situation that depicts the sequence with which
players decide, the actions available to a player when he
or she is to decide, what a player knows when he or she
is to decide, and the payoffs that players assign to a par-
ticular outcome of the game.



            Finite horizon: Situation that exists when the number
of encounters between players is finite.



            Finitely repeated game: A repeated game with a finite
horizon.



            First-price auction: An auction format in which all bid-
ders simultaneously submit a bid and the item is won by
the bidder who submits the highest bid and he or she
pays a price equal to his or her bid.



            Focal point: A strategy profile that has prominence or
conspicuousness.



            Free riding: An individual’s benefiting from the efforts
of others while not exerting a similar effort that would
benefit the group.



            Game of complete information: A game that is com-
mon knowledge to the players.
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            Game of incomplete information: A game that is not
common knowledge to the players—for example, the
payoffs of a player are known only to that player.



            Game theory: Another term for the theory of games.



            Game theory weary: A state of mind achieved after
studying for a game theory final exam.



            Grim-trigger strategy: A strategy in which any devia-
tion from cooperative play results in permanent rever-
sion to a stage-game Nash equilibrium.



            Handwaving: The activity of glossing over the finer de-
tails of an argument when one lacks the time, patience,
or understanding to fully explain why something is true.
It makes you want to ask for your tuition back.



            History: The accumulation of past play. The history in
period is made up of all choices by players over periods



            Imperfect information: An extensive form game in
which one or more information sets are not singletons.
This means that, for at least one player, there is a point
at which the player must make a decision, although he
or she does not know exactly what has thus far tran-
spired in the game.



            Imperfect recall: A property of an extensive form game
whereby a player loses some information over the course
of the game. For example, a game has imperfect recall if
a player does not recall an action he or she previously
chose or if a player is able to distinguish between two de-
cision nodes but, at a later information set, is unable to
distinguish between them.



            Incomplete information: A property of a game
whereby the game is not common knowledge.



            Incredible threat: An action proposed for a particular
contingency (or information set) such that the action
would not be in a player’s best interests to perform if that
contingency arose.



            Indefinite horizon: Situation that exists when the num-
ber of encounters between players is random and, in
addition, at no time do players believe that the current
encounter is their last one. With an indefinite horizon,
players are always uncertain as to whether they will en-
counter each other in the future.



            Indefinitely repeated game: A repeated game with an
indefinite horizon.



            Independence: A property of random events whereby
the outcome of one event has no bearing on the likeli-
hood of the outcome of the other event.



            Independent private value: In an auction setting, the
situation in which the valuation that a player attaches to



            1,2, . . . , t � 1.
t



            an item is unrelated to the valuation that other players
have for that item.



            Infinite horizon: Situation that exists when the number
of encounters between players is infinite.



            Infinite recess: A kid’s dream.



            Infinite regress: Situation in which the solution to a
problem depends on solving an infinite sequence of
problems, each of which depends on solving the previ-
ous problem in the sequence. In other words, the solu-
tion to a problem depends on the solution to a second
problem, and the solution to the second problem de-
pends on the solution to a third problem, and so forth.



            Infinitely repeated game: A repeated game with an in-
finite horizon.



            Information set: In a game, a collection of decision
nodes that a player is incapable of distinguishing among.



            Informational cascade (Informational herding): A
situation in which people act sequentially and the infor-
mation revealed by the behavior of the first few people
overrides the individual signal that subsequent people
have, so that their behavior is independent of their own
private information.



            Initial node: In an extensive form game, the decision
node at which the first choice is made.



            Iterative deletion of strictly dominated strategies
(IDSDS): A procedure whereby all strictly dominated
strategies are eliminated and then, for the game re-
maining, all strictly dominated strategies are elimi-
nated; this step is repeatedly applied until no more
strategies can be eliminated. The strategies that remain
at the end of this procedure are said to be the strategies
that “survive the iterative deletion of strictly dominated
strategies.”



            Locally stable rest point: See attractor.



            Lying: To make an untrue statement with intent to de-
ceive. Those who engage in this practice often find their
lower torso garment subject to a pyrotechnic display.



            Maximin solution: A strategy profile in which each
player is using his or her maximin strategy.



            Maximin strategy: A strategy for a player that maximizes
his or her expected payoff, given that the other players
choose strategies to minimize that player’s expected pay-
off in light of that player’s strategy. A maximin strategy
then maximizes a player’s minimum expected payoff.



            Message: A costless action by a player that has the po-
tential to convey information or intentions.



            Mixed strategy: A probability distribution over a
player’s set of pure strategies.
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            Mutation: In the context of evolutionary game theory,
a random change in the strategy of a member of a
population.



            Mutual interest: A property of a game whereby, when
comparing strategy profiles, if one player is made better
off, then so are the other players.



            Nash equilibrium: A strategy profile such that each
player’s payoff is maximized, given the strategy choices
of the other players.



            Nash pit: Akin to a mosh pit, but instead where game
theorists slam bodies while solving games.



            Nature: A player in a game whose behavior is speci-
fied exogenously. Nature is typically assumed to act
randomly—its behavior is summarized by probabili-
ties over various actions—and is intended to repre-
sent players’ beliefs about random forces in their en-
vironment.



            Network effect: The property of a payoff function
whereby the value of some choice is higher when more
players act similarly.



            Non-constant-sum game: A game in which the players’
payoffs do not sum to the same number for all strategy
profiles. Such a game may provide a basis for mutual in-
terest, although can still retain some conflict.



            Normal-form game: Another term for a strategic form
game. When the strategic form game is misspecified, it
is referred to as an “abby-normal-form game.” (View
Young Frankenstein.)



            n-tuple: A collection of n objects; for example, a strategy
profile for an n-player game is an n-tuple of strategies,
one for each of the n players.



            Optimal strategy: A strategy for a player that maxi-
mizes his or her payoff.



            Ordinal payoffs: Payoffs that describe only how a
player ranks the various alternatives.



            Outguessing game: A game in which a player’s best
reply is to act differently from what would make the
other players’ strategies optimal for them. In other
words, a player should choose a strategy that is unantic-
ipated by the other players.



            Overlapping generations: In a population, people from
distinct generations. At any moment, the population is
composed of people who entered the group at different
points in time in the past and will depart the group at
different points in time in the future.



            Partially optimal strategy: In a repeated game, a strat-
egy is partially optimal (in the sense of subgame perfect



            Nash equilibrium) if, for every period and history, the ac-
tion prescribed by the strategy yields the highest payoff
compared to choosing any other current action, while
assuming that in all future periods the player acts ac-
cording to the strategy.



            Payoff: A measurement of a player’s well-being associ-
ated with a particular outcome of a game.



            Payoff dominance: A property of a strategy profile
whereby there is no other strategy profile in which each
player has a strictly higher payoff.



            Payoff-dominant Nash equilibrium: A Nash equilib-
rium which gives a higher payoff to every player than
any other Nash equilibrium.



            Payoff-dominated Nash equilibrium: A Nash equilib-
rium in which there is another Nash equilibrium that
gives a higher payoff to every player.



            Payoff function: For a player, an assignment of a payoff
to each strategy profile.



            Perfect Bayes–Nash equilibrium: A strategy profile
and posterior beliefs whereby each player’s strategy is
optimal for each information set in light of that player’s
beliefs about other players’ types and those posterior be-
liefs are consistent with players’ strategies and Bayes’s
rule whenever possible.



            Perfect information: An extensive form game in which
all information sets are singletons. That is, a player al-
ways knows what has transpired thus far in the game
when a decision is to be made.



            Perfect recall: A property of an extensive form game
whereby players never lose any information they gain.
(For further elaboration, see the entry on “imperfect re-
call,” which describes games that do not have perfect
recall.)



            Phase diagram: A pictorial depiction of how a popula-
tion mix of strategies evolves over time.



            Pooling equilibrium: In a game of incomplete informa-
tion, an equilibrium in which each player with private
information chooses the same action for every type.



            Pooling strategy: A strategy in which a player chooses
the same action for every type.



            Posterior beliefs: A player’s beliefs after updating them
in response to receiving new information. Posterior be-
liefs are derived with the use of Bayes’s rule.



            Posterior relief: What you desire after sitting through a
two-hour lecture.



            Preemption game: A game in which each player is de-
ciding when to take a particular action and a player’s
payoff is higher when (1) he or she takes this action be-
fore others; and (2) he or she waits longer before taking
that action.
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            Preplay communication: The initial part of an exten-
sive form game for which players choose (costless) mes-
sages prior to choosing (costly) actions.



            Present value: The present value of a stream of payoffs
is the current payoff that makes a player indifferent be-
tween it and that stream. If the stream of single-period
payoffs over periods is 
then the present value of that stream is



            where is the discount factor. The present value of a
stream is also known as the sum of discounted single-
period payoffs.



            Prior beliefs: A player’s initial beliefs about something
unknown.



            Prisoners’ Dilemma: Where does the apostrophe go? Is
it Prisoner’s Dilemma or Prisoners’ Dilemma? The de-
bate among game theorists rages on. (Yeah, I know, get
a life.)



            Probability: The relative frequency with which an event
occurs when the situation is repeated infinitely often.
A probability lies between 0 and 1, inclusive.



            Probability distribution: A collection of probabilities
for some random event—one probability for each of the
possible realizations of that event. The sum of these
probabilities equals 1.



            Projection: The projection of a strategy profile on a sub-
game is that part of the strategy profile prescribing be-
havior for the information sets in that subgame. Also
known as a substrategy profile.



            Proper subgame: A subgame that is not the game itself.



            Pure strategy: A strategy for a player that does not in-
volve randomization.



            Quid pro quo: The situation in which a person offers
something for something else in exchange. Latin for
“something for something” and malapropised by Austin
Powers as “squid pro row.”



            Random: Unpredictable.



            Random event: An event that is unpredictable.



            Random variable: A quantity whose (numerical) values
are unpredictable.



            Randomized version of a game: A game in which
player’s (pure) strategy set is replaced with the set of
mixed strategies, which are probability distributions
over the set of pure strategies for the original game. In
evaluating a mixed-strategy profile, a player’s payoff is
replaced with the expected payoff.



            d



            u1 � du2 � d2u3 � d3u4 � p � dT�1uT,



            u1,u2,u3, . . . , uT,1,2, . . . , T



            Rational: Acting to maximize one’s payoff given one’s
beliefs about the environment and about what other
players will do.



            Rationality is common knowledge: An infinite hierar-
chy of beliefs whereby players are rational, players know
that players are rational, players know that players know
that players are rational, and so forth.



            Rationalizable: A strategy is rationalizable if it is con-
sistent with rationality being common knowledge, which
means that the strategy is optimal for a player given be-
liefs which are themselves consistent with rationality
being common knowledge.



            Rationalizable strategy: A strategy that is optimal for
a player, given beliefs over other players’ strategies
that are consistent with rationality being common
knowledge.



            Reciprocal altruism: The situation in which a person
(or some other organism) engages in a costly activity
that benefits someone else in anticipation that the favor
will be returned in the future.



            Regular subtree: A subtree that contains all informa-
tion sets with at least one node in the subtree.



            Repeated game: The repetition of a stage game.



            Replicator dynamic: Principle which specifies that the
proportion of a population that uses a strategy is related
to the strategy’s fitness relative to the average fitness of all
strategies in the population. More specifically, a strategy’s
proportion is increasing (decreasing) when its fitness is
greater (less) than the average fitness of the population.



            Rest point: A population mix of strategies whereby once
the population is at that mix, it stays there.



            Schmargy: A term originated by my two daughters that
means “disgusting, but cute.” (They paid me $5 to in-
clude it here. Did I sell out too cheaply?)



            Second price auction: An auction format in which all
bidders simultaneously submit a bid and the item is won
by the bidder who submits the highest bid and he or she
pays a price equal to the second highest bid.



            Self-awareness: The property of intelligent life whereby
it is aware of its own existence.



            Self-enforcing agreement: An agreement among play-
ers whereby it is in each player’s interest to go through
with the agreement. An agreement is self-enforcing if it
is a Nash equilibrium.



            Semipooling equilibrium: An equilibrium in which a
player with private information uses a semipooling
strategy.



            Semipooling strategy: In a Bayesian game, a strategy
that is neither pooling nor separating. With such a strategy,
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            a player’s action reveals at least some information about
his or her type and, in some instances, may reveal full in-
formation. Also called a semiseparating strategy.



            Semiseparating equilibrium: An equilibrium in which
a player with private information uses a semipooling
strategy.



            Semiseparating strategy: See semipooling strategy.



            Separating strategy: A strategy in which a player
chooses a distinct action for each type.



            Separating equilibrium: In a Bayesian game, an equi-
librium in which each player with private information
chooses a distinct action for each type.



            Sequential rationality: The requirement that, at each
point in a game, a player’s strategy prescribes an optimal
action, given his or her beliefs about what other players
will do.



            Set of players: The individuals in a game who are mak-
ing decisions.



            Signaling game: A two-player game of incomplete infor-
mation in which, after one player (known as the sender)
learns his or her type, he or she chooses an action that is
then observed by the second player (known as the re-
ceiver), who then chooses an action.



            Simulated introspection: The process by which the be-
havior of another person is predicted by simulating the
reasoning process that person uses to reach a decision.



            Simultaneous-move game: An extensive form game in
which all players choose an action without knowledge of
the actions selected by other players.



            Sneetch: A fictional character created by Dr. Seuss
whose primary concern in life is deciding whether to
have a star on its belly.



            Social norm: A standard of conduct that is enforced by
society.



            Sociological Department: Originally created in 1914 by
the Ford Motor Company, its role was to advise and
monitor the behavior of its employees to ensure “cooper-
ative play.” It was a blend of Mr. Rogers and Big Brother.



            Stage game: The subgame of a repeated game that is re-
peated. Any game that is the building block of a repeated
game. Also called a one-shot game.



            Stage-game Nash equilibrium: A Nash equilibrium for
the stage game.



            Strategic form game: A description of a strategic situa-
tion defined by (1) the set of players, (2) each player’s
strategy set, and (3) each player’s payoff function.



            Strategic interdependence: A property of an encounter
between two or more people in which what is best for
someone to do depends on what other people are plan-
ning to do.



            Strategy: A fully specified decision rule for how to play
a game. In an extensive form game, a strategy for a
player assigns an action to each of his information sets.



            Strategy profile: A collection of strategies, one for each
player.



            Strategy set: The set of feasible strategies for a player.



            Strict Nash equilibrium: A Nash equilibrium in which
each player’s strategy is the unique best reply. That is,
any other strategy delivers a strictly lower payoff.



            Strictly dominated strategy: A strategy with the prop-
erty that there is another strategy that delivers a higher
payoff for every configuration of strategies for the other
players.



            Stump: With terms like “branch” and “tree” to describe
an extensive form game, you would think that “stump”
would refer to some feature of a game; well, it doesn’t.



            Subgame: A regular subtree with the associated payoffs.



            Subgame perfect Nash equilibrium: A strategy profile
is a subgame perfect Nash equilibrium if, for every sub-
game, its substrategy profile (or projection) is a Nash
equilibrium.



            Substrategy (substrategy profile): For a subgame, that
part of a strategy which prescribes behavior for those in-
formation sets in that subgame. A substrategy profile is
also referred to as a projection.



            Subtree: A nonterminal node and all ensuing nodes of a
tree.



            Summary statistic: A single number that summarizes a
collection of numbers. For a stream of payoffs, an example
of a summary statistic is the present value of that stream.



            Symmetric game: A game for which (1) all players have
the same strategy sets; (2) players get the same payoff
when they choose the same strategy; and (3) if you switch
two players’ strategies, then their payoffs switch as well.



            Terminal node: A final node in an extensive form game.
Associated with a particular sequence of actions in the
game.



            Terminator: The player to make the last move in a
game, thereby reaching a terminal node. This is not a
real game-theoretic term, but it ought to be.



            Theory of games: Another term for “game theory.” Do
you really think I’m going to provide a concise descrip-
tion of what it is we’re doing that would allow you to
avoid having to read the remainder of this book?



            Theory-of-mind mechanism (ToMM): The ability to
understand that others have beliefs and preferences dif-
ferent from one’s own.



            Tipping: A property of a payoff function whereby the
relative attractiveness of using a strategy is greater when
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            more players use it. This is not to be confused with “cow
tipping,” which is what inebriated college students do to
unsuspecting bovine, or with “student tipping,” which is
what instructors do to students who fall asleep in class.
You’ve been warned.



            Tit for tat: A strategy in which a player begins by acting
cooperatively and then, in any period, does what the other
player did in the previous period. This strategy embodies
the maxim “Do unto others as they have done to you.” This
maxim should be distinguished from the more charitable
“Do unto others as you would have them do unto you.”



            Tragedy of the commons: With respect to the use of a
resource, a situation in which there is a conflict of inter-
est between an individual and the group of which that in-
dividual is a member. With all individuals acting in their
own personal best interest, the resource is overexploited.



            Transitive preferences: Preferences are transitive if,
whenever option A is preferred to option B and option B
is preferred to option C, it follows that option A is pre-
ferred to option C.



            Trawling: Searching randomly for an equilibrium. After
incorrectly answering the question “What is a Nash equi-
librium for this game?” a student trawls for a solution by
randomly guessing, while casting the appearance that he
or she knows what he or she is doing. It never works.



            Type: In a Bayesian game, a player’s type is his or her
private information endowed by Nature. For example, a
player’s payoffs may be private information, in which
case payoffs are a player’s type.



            Type space: The collection of feasible types for a player
in a Bayesian game.



            Undominated Nash equilibrium: A Nash equilibrium
in which no player is using a weakly dominated strategy.



            Utility: A number assigned to an item and intended to
represent a measure of the well-being that the item be-
stows upon a person.



            Utility function: A list of all feasible items and the utility
assigned to each of them.



            War of attrition: A game in which each player is decid-
ing when to take a particular action and a player’s payoff
is higher when (1) others take that action before the
aforesaid player does and (2) the aforesaid player takes
this action earlier.



            Weakly dominant strategy: A strategy that weakly
dominates all other strategies.



            Weakly dominated strategy: A strategy with the prop-
erty that there is another strategy which, for every con-
figuration of strategies for the other players, delivers at
least as high a payoff and, for at least one configuration
of strategies for the other players, delivers a strictly
higher payoff.



            Will Will will Will Will?: This is a legitimate sentence of
my own invention. Will my grandfather Will bequest his
dog Will to his son Will? How about “Can Can can-can?”
Can is a Turkish first name and can-can is a dance.
Finally, “Yo, yo’ yo-yo Yo-Yo.” In other words, “Hey
there, you forgot your yo-yo, Yo-Yo Ma.”



            Winner’s curse: A winner’s curse is present when the act
of winning at an auction can be bad news. It arises when
winning reveals that the winning bidder excessively val-
ued the item and thus may have paid too much.



            Zero-sum game: A game in which the players’ payoffs
sum to zero for all strategy profiles. Alternatively, a
constant-sum game in which that constant sum is
zero.



            Zero-sum Society: The title of a famous book by econ-
omist Lester Thurow. The rumor is that, although the
book had little to do with zero-sum games, the pub-
lisher chose the title because it sounded sexy. To
think of a game-theoretic term as “sexy” is downright
pathetic.
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            Index



            A
A Beautiful Mind, 90
Abstention, strategic, 307–309
Accurate beliefs, 90
Action in repeated games, 393
Affine transformation, 187
Agenda control in Senate, 268–270
Airline Security game, 122–125
Altruism, reciprocal, 434–437
American Idol Fandom game,



            101–102
Analyst-Investor game, 367–374
Antiballistic Missile Treaty game,



            441–444
Asymmetric games, 117, 130–137
Attractors, 511, 513–514
Attrition, 235–239
Auctions, 64–67, 301–307



            first-price, sealed-bid, 301,
319–323



            shading your bid and, 302–304
winner’s curse and, 306–307



            Auto Dealership Haggling game,
24–26, 41–42



            Avranches gap strategy (WWII),
193–197



            B
Babbling equilibrium, 365
Backward induction, 221–235



            experimental evidence and,
239–241



            logical paradox with, 242–243
Baseball, handedness in, 517–521
Baseball Strategy game, 21, 39–40
Basin of attraction, 516–517
Basketball game, 239–241
Battle of the Films game, 379
Battle of the Sexes game, 380–381
Bayes, Thomas, 328
Bayes–Nash equilibrium, 297–323.



            See also Perfect Bayes–Nash
equilibrium



            Bayesian games, 296–312
Bayes’s rule, 354–357
Beliefs, 11–12
Bertrand, Joseph, 150
Bertrand price game, 150
Best reply, 93, 99–100, 160–164



            Boxed-Pigs game, 71–73
Branches, decision tree, 18
Brinkmanship game, 343–346
British Intelligence game, 260–263
Bystander effect, 204
Bystander game, 204–207



            C
Calculus



            solving for Nash equilibria with,
157–174



            solving for Nash equilibria with-
out, 148–157



            Cardinal payoffs, 186–187
Cascade, informational, 312
Cautious behavior games, 207–211
Centipede game, 240–241
Charitable giving, matching grants



            and, 169–174
Cheap Talk games, 359–382



            communication in game-theoretic
world, 360–363



            preplay communication and,
374–381



            signaling information and,
363–374



            signaling intentions and, 374–381
Chicken game, 89–92
Christie’s auction house, 424–427,



            430–431
Cigarette Advertising game, 60–64
Civil unrest, 134–137
Collective rationality, 139
Collusion. See Price Fixing
Commitment value, 270–280



            deterrence to entry and, 270–277
managerial contracts and



            competition, 277–280
Committees, voting on, 307–312
Common knowledge, 43–45, 127
Common language, 361
Common values, 301, 304–307,



            321–323
Communication



            in game-theoretic world, 360–363
nature of, 361
preplay, 374–381



            Competition for Elected Office
game, 38



            Complete preferences, 8
Concentration game, 5–8
Conflict games, 99
Congestion, 117–118
Consistent beliefs, 327
Consumption, relationship with



            payoff, 456–457
Continuous games, 147–175
Continuous strategy set, 148
Cooperation



            defined, 393
evolution of, 521–529



            Cooperative play
in large populations, 463–473
with overlapping generations,



            452–462
personal traits and, 408–409
punishments and, 424–431
quid pro quo and, 431–437
repeated interaction and, 423–445



            Cooperator strategy, in Prisoners’
Dilemma, 522–529



            Coordination failure, 134
Coordination game, 95
Courtship game, 338–343
Cuban missile crisis, 225–227



            D
Darwin, Charles, 479, 507
Darwin Awards, 507
Deception, 361–362
Decision making under uncertainty,



            182–187
Decision nodes



            definition of, 18
initial node, 20
terminal nodes, 20–21



            Decision trees, 18
Defector strategy, in Prisoners’



            Dilemma, 521–529
Devious voting, 104
Differentiated products, price



            competition with, 160–164
Dirty tricks, 106–109
Discount factor, 398, 417
Discount rate, 417
Discrete n-player games, 117–141
Doctor-Patient game, 363–367
Dominance solvable games, 76
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            Dominant strategy, 56–64
Doping game, 4–5, 73–75
Dr. Strangelove or: How I Learned to



            Stop Worrying and Love the
Bomb, 276–277



            Driving Conventions game, 95
Drug Trade game, 181–182, 187–193
Dung Fly game, 488–490, 492
Dynamic programming, 420–422



            E
eBay, 66–67, 464–468
Enron and prosecution prerogative,



            227–229
Entry Deterrence game, 130–134,



            197–198, 270–277
Equilibrium



            babbling, 365
payoff dominance, 139–140



            Equitable punishment, 430–431
Evolution of cooperation, 



            521–529
Evolutionary game theory, 



            479–501
evolution of spite, 499–501
evolutionary stable strategy, 481,



            484–490
introduction to, 479–481
multipopulation games, 496–499
properties of, 491–496
replicator dynamics and, 507–530



            Evolutionary stable strategy (ESS),
481, 484–496, 513–514



            Evolutionary stable strategy profile
(ESSP), 496–499



            Exchange game, 469–473
Exhaustive search, 93
Existence-of-God game, 70–71
Expectation, probability and,



            182–185
Expected payoff, 185–186
Expected values, 184
Experiential learning, 12
Experimental evidence, backward



            induction and, 239–241
Extensive form games



            imperfect information and, 
27–33



            moving from strategic form to,
42–43



            moving to strategic form, 39–42
perfect information and, 18–26
subgame perfect Nash equilib-



            rium and, 257
Extinction of the Wooly Mammoth



            game, 5, 164–169



            F
Fine-Art Auction Houses game



            equitable punishment and, 430–431
price fixing and, 424–427
temporary reversion to moderate



            prices and, 427–428
Finite games



            finite horizon, 398–400
Nash equilibrium in, 191–192



            First-price, sealed-bid auctions, 64–66
common value and, 304–307,



            321–323
continuum of types and, 319–323
independent private values and,



            301–304, 319–321
Focal point concept, 140
Ford and the $5-a-day wage, 4,



            439–441
Free riding, 453
Frequency, 183
Friday the 13th game, 201–204
Friend or Foe?, 408–409



            G
Galileo and the Inquisition, 4,



            22–23, 40–41
Game of incomplete information,



            291–296
Game-theoretic world, communica-



            tion in, 360–363
Gender Pronoun game, 13–14
Given beliefs, 327
Global climate change, 169
Grim-trigger strategy, 403
Gunfight game, 298–300
Gut feelings, 13



            H
Haggling game, 24–26, 41–42
Hardin, Garrett, 169
Harsanyi, John, 291
Hawk-Dove game, 481–484,



            486–488, 508–512
Helping a stranger, 4
Herding, informational, 312
Housing Market game, 59–60



            I
Imperfect information



            extensive form games and, 27–33
sequential games and, 255–281



            Imperfect monitoring, 441–444
Imperfect recall, 46
Incomplete information games,



            291–296



            Incredible threat, 221
Independent events, probability



            and, 184
Independent private values



            auctions and, 301, 319–321
shading your bid and, 302–304



            Infinite horizon, repeated games
and, 401–406



            Infinite regress, 2–3
Infinitely lived institutions, interac-



            tion with, 451–474
Information



            nature of, 361–362
sets, 27, 219
signaling, 363–374



            Informational cascade, 312
Informational herding, 312
Initial nodes, 20
Intellect range, 13
Intentions, signaling, 374–381
Interests, coincident, 367
Internship game, 128–130
Intransitive preferences, 9
Introspection, simulated, 12
Iraq war and weapons of mass



            destruction, 32–33
Irrational numbers, defined, 148
Iterative deletion of strictly



            dominated strategies (IDSDS),
76–78, 85, 87, 93, 109–110



            J
Joint probability, 184
Juries, voting on, 4, 307–312



            K
Kidnapping game



            backward induction and, 222–225
imperfect information and, 27–29,



            255–256
Nash equilibrium and, 220–221
perfect information and, 18–21
strategic form of, 55–56
strategy and, 34–36
subtrees in, 258–259



            L
Large populations, cooperation in,



            463–473
Learning, experiential, 12
Leibniz, Gottfried Wilhelm, 159
Lemons game, 333–337
Lending to Kings game, 437–439
Lies, 362
Literal models, 17
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            Locally stable rest point, 511
Logical paradox, backward induction



            and, 242–243



            M
Mac operating systems, 125–128
Malthus, Thomas, 479
Management Trainee game, 329–333
Managerial contracts and



            competition, 277–280
Market demand curve, 149–152
Maximin property, 210
Maximin strategy, 208–211
Medieval Law Merchant game,



            469–473
Memento, 45–46
Messages



            definition of, 359
nature of, 361–362



            Metaphorical models, 17
Mixed strategy Nash equilibria,



            187–206, 215–216
Monitoring, imperfect, 441–444
Morgenstern, Oskar, 2, 211
Mugging game, 29–30
Multiplicity of Nash equilibria,



            137–140
Multipopulation games, evolution-



            ary game theory and, 496–499
Munich Agreement game, 291–296,



            301
Mutual interest games, 99



            N
n-tuple, 36
Nash, John, 90, 191
Nash equilibrium, 89–112, 116



            asymmetric games and, 130–137
best-reply method and, 99–100
classic two-player games and,



            92–99
defining, 89–92
in discrete n-player games, 117–141
evolutionary game theory and,



            491–496
evolutionary stable strategy pro-



            files and, 498
focal point and, 140
foundations of, 109–111
mixed strategies and, 187–206,



            215–216
payoff dominance and, 139–140
relationship to rationality is com-



            mon knowledge, 109–110
repeated games and, 399–400,



            402–403



            selecting among equilibria,
137–140



            solving for without calculus,
148–157



            solving with calculus, 157–174
strategy in context of, 110–111
strict, 492
subgame perfect, 221–235,



            257–270
symmetric games and, 118–130
three-player games and, 101–109
undominated equilibria and, 139



            Natural selection, 479, 507
Nature, games of incomplete infor-



            mation and, 294–296
Network effects, 125
Neumann, John von, 2, 210–211
New markets, cost of entry into,



            197–198
Newton, Sir Isaac, 159
Nuclear standoff, 4



            O
Operating Systems game, 125–128
Optimal strategy, 421
Ordinal payoffs, 186–187
OS/2 game, 264–268
Outguessing games, 97–98, 182. See



            also Randomized strategies
Overlapping generations, cooperation



            with, 452–462



            P
Parental Care game, 456–457,



            497–499
Pareto criterion, 139–140
Partially optimal strategy, 421–422
Pascal, Blaise, 70
Payoff dominance, 139–140
Payoff-dominant Nash equilibrium,



            139–140
Payoff stream, present value of,



            416–420
Payoffs



            definition of, 19–20
ordinal vs. cardinal, 186–187
relationship with consumption,



            456–457
strategic form games and, 36



            Penalty Kick game, 198–201
Perfect Bayes–Nash equilibrium,



            326–329, 331–333, 340–343
Perfect information



            extensive form games and, 18–26
sequential games and, 219–244



            Perfect recall, 46



            Persistent behavior, 91
Personal traits, cooperative play



            and, 408–409
Phase diagrams, 519–520, 525
Player rationality, 55–79. See also



            Solving games
assumption other players know,



            68–73
backward induction and, 242–243
collective, 139
iterative deletion of strictly



            dominated strategies, 76–78
Nash equilibrium and, 90
rationalizability, 84–87
strict dominance and, 56–64, 84
weak dominance and, 64, 84
when rationality is common



            knowledge, 73–78
Policy convergence, 157
Political campaigns, determining



            winners of, 154–157
Political parties, lame-duck presi-



            dents and, 458–462
Pooling strategy, 328
Pork-barrel spending, 431–433
Posterior beliefs, 327
Preemption games, 235–238
Preferences



            over uncertain options, 185–186
player, 8–11



            Preplay communication
in practice, 379–381
in theory, 374–379



            Present value
payoff stream and, 416–420
weighted sums and, 398



            Price competition
with differentiated products,



            160–164
with identical products, 149–152
neutralizing with price-matching



            guarantees, 152–154
Price fixing, 424–427
Price-matching guarantees, 3–4,



            152–154
Price wars, 428–430
Prior beliefs, 327
Prisoners’ Dilemma, 93–94,



            406–409, 521–529
Private information games, 291–313



            auctions, 301–307
Bayesian games, 296–301
voting on committees and juries,



            307–312
Probability and expectation,



            182–185
Probability distribution, 183–184
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            Product quality, costs and value of,
464–465



            Promotion game, 106–109
Proxy bid paradox, 66–67
Psychological profile, player, 8–13



            beliefs and, 11–12
player differences and, 12–13
preferences and, 8–11
utility and, 10–11



            Punishments, cooperative play and,
424–431



            Pure conflict games, 99, 207–211
Pure strategies, 187



            Q
Quid pro quo, 431–437
Quinn, Kenneth, 122



            R
Racial discrimination and sports,



            229–235
Random events, 183
Random variables, 184
Randomized strategies, 181–211



            decision making under
uncertainty, 182–187



            games of pure conflict and
cautious behavior, 207–211



            mixed strategies and Nash
equilibrium, 187–191



            ordinal vs. cardinal payoffs,
186–187



            preferences over uncertain
options, 185–186



            probability and expectation,
182–185



            Randomized version of the game,
188



            Range of intellect, 13
Ransom, 46–47
Rational game theory, 479–480
Rational numbers, defined, 



            147–148
Rationality, player. See Player



            rationality
Rationalizability, 56, 84–87
Real numbers, defined, 148
Recall, 46
Reciprocal altruism, 434–437
Regular subtrees, 258
Relative frequency, 183
Repeated games



            construction of, 393–398
with infinitely lived players,



            391–411



            Replicator dynamics, 481, 507–530
evolutionary stable strategy and,



            513–514
general definition of, 512–513
strategic situation examples and,



            515–529
Reputation, 437–441
Rest point, 511
Reward-and-punishment scheme,



            405
Rock-Paper-Scissors game, 97–99
Roulette wheels, probability and,



            183–185
Rousseau, Jean-Jacques, 515



            S
Sabotage, 106–109
Schelling, Thomas, 140
Science 84 game, 38
Second-price auction, 65–66
Self-awareness, 12
Self-enforcing agreements, 140
Semipooling strategy, 328
Semiseperating strategy, 328
Separating strategy, 328
Sequential games



            attrition and, 235–236, 238–239
backward induction and, 221–235
commitment and, 270–280
with imperfect information,



            255–281
with perfect information, 



            219–244
preemption and, 235–238
subgame perfect Nash equilibrium



            and, 221–235
Sequential rationality, 326–327
Sequential voting, 309–312
Set of players, strategic form games



            and, 36
Shading your bid, 302–304
Side-Blotched Lizards game,



            493–496
Signaling games, 325–348
Signaling information, 363–374
Signaling intentions, 374–381
Simulated introspection, 12
Sincere voting, 103
Skill, 13
Sobel, Joel, 138
Solving games



            when other players know that
players are rational, 68–73



            when players are rational, 56–67
when rationality is common



            knowledge, 73–78



            Sotheby’s auction house, 424–427,
430–431



            Spite, evolution of, 499–501
Sports, racial bias and, 229–235
Stable play, 117–141, 147–175
Stag Hunt game, 101, 380–381,



            515–517
Stage game, 393–394
Strategic abstention, 307–309
Strategic form games, 36–39



            moving from extensive form to,
39–42



            moving to extensive form, 42–43
Strategic interdependence, 2
Strategic situation modeling, 17–54



            common knowledge and, 43–45
definition of strategy and, 34–36
extensive form games and



            complete information, 18–26
incomplete information and,



            27–33
game factuality and, 47–48
literal models and, 17
metaphorical models and, 17
moving from extensive to strategic



            form, 39–42
moving from strategic to extensive



            form, 42–43
perfect and imperfect recall and,



            45–46
strategic form games and, 36–39



            Strategic situations, sampling of,
3–5



            Strategy, definition of, 34–36
Strategy of Conflict, 140
Strategy profile, strategic form



            games and, 36
Strategy sets, 35–36
Strict dominance, 56–64, 84
Strict Nash equilibrium, 492
Strictly concave functions, 160
Subgame perfect Nash equilibrium



            cooperation and punishment and,
427–430



            cooperation with overlapping gen-
erations and, 455, 457–458, 461



            imperfect information and,
257–270



            perfect information and, 221–235
Subgames



            defined, 258–259
substrategy for, 259



            Subtrees, 257–259
Summary statistics, 397
Sun Tzu, 34
Symmetric games, 94, 117, 118–130
Symmetric strategy pairs, 151
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            T
Team-Project game, 68–70
Telephone game, 95–96
Terminal nodes, 20–21
The Final Solution, 207–210
The Origin of Species, 479
“The Sneetches” game, 119–121
Theory of Games and Economic



            Behavior, 2, 211
Theory-of-mind mechanisms



            (ToMM), 12
Three-player games, 101–109
Tipping, 117
Tit for Tat strategy, in Prisoners’



            Dilemma, 521–529
Tosca game



            extensive form games and, 43
payoffs and, 186
strategic form games and, 37–38
strict dominance and, 56–58
weak dominance and, 64



            Tragedy of the commons, 169
Transformation, affine, 187



            Transitive preferences, 9
Trench Warfare game, 4, 391–393



            finite horizon and, 398–400
infinite horizon and, 401–406
two-period game with common



            knowledge, 396
two-period game without



            common knowledge, 395
Tribal Defense game, 453–455
Two-player games, classic, 92–99
Type, players, 296–297
Type space, 297



            U
Uncertain options, preferences over,



            185–186
Undominated Nash equilibria, 139
Updating beliefs, 354–357
U.S. Court of Appeals game, 



            30–32
Utility, 10–11, 20
Utility function, 11



            V
Values, expected, 184
Vampire Bats game, 434–437
Variables, random, 184
Vickrey, William, 65
Voting game, 102–106
Voting on committees and juries,



            307–312
sequential voting in jury room,



            309–312
strategic abstention and, 307–309



            W
Waiting game, 4, 236–238
War of Attrition game, 236
Weak dominance, 64, 84
Weakest Link Coordination game,



            122–125
Williams, J. D., 34
Wilson, Robert, 191
Windows operating systems, 125–128
Winner’s curse, 306–307
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