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Probability


and Dynamic Programming


Review


for


Dynamic Pricing and Revenue


Management


Probability Review


• Poisson: http://en.wikipedia.org/wiki/Poisson_random_variable


–


Read Sections: 1, 2, 3,4


• Compound Poisson:


http://en.wikipedia.org/wiki/Compound_Poisson_distribution


• Poisson Process: http://en.wikipedia.org/wiki/Poisson_process


• Compound Poisson Process:


http://en.wikipedia.org/wiki/Compound_Poisson_process


• Normal: http://en.wikipedia.org/wiki/Normal_random_variable


–


Read Sections 1,2.1,2.2,3,1,3.2,3.3


• Brownian Motion: http://en.wikipedia.org/wiki/Wiener_process


–


Read sections 1, 2.


DP AS AN OPTIMIZATION METHODOLOGY








• Basic optimization problem


min g( u)


u∈U


where u is the optimization/decision variable, g( u) is the cost function, and U is the constraint set


• Categories of problems:


− Discrete ( U is finite) or continuous


− Linear ( g is linear and U is polyhedral) or nonlinear


− Stochastic or deterministic: In stochastic problems the cost involves a stochastic parameter


w, which is averaged, i.e., it has the form g( u) = Ew G( u, w) where w is a random parameter.


• DP can deal with complex stochastic problems where information about w becomes available in stages,
and the decisions are also made in stages and make use of this information.


INVENTORY CONTROL EXAMPLE


w


Demand at Period k


k


Stock at Period k


Stock at Period k + 1


Inventory


xk


S y s t e m


xk + 1 = xk + uk - wk


Stock Ordered at


Period k


Co s t o f P e rio d k


u k


c uk + r (xk + uk - wk)








• Discrete-time system


xk+1 = fk( xk, uk, wk) = xk + uk − wk


• Cost function that is additive over time N − 1


E


gN ( xN ) +


gk( xk, uk, wk)


k=0


N − 1


= E


cuk + r( xk + uk − wk) k=0


• Optimization over policies: Rules/functions uk =


µk( xk) that map states to controls BASIC STRUCTURE OF STOCHASTIC DP


• Discrete-time system


xk+1 = fk( xk, uk, wk) , k = 0 , 1 , . . . , N − 1


− k: Discrete time


− xk: State; summarizes past information that is relevant for future optimization


− uk: Control; decision to be selected at time k from a given set


− wk: Random parameter (also called distur-bance or noise depending on the context)


− N: Horizon or number of times control is applied


• Cost function that is additive over time N − 1


E


gN ( xN ) +


gk( xk, uk, wk)


k=0


BASIC PROBLEM








• System xk+1 = fk( xk, uk, wk), k = 0 , . . . , N − 1


• Control constraints uk ∈ U( xk)


• Probability distribution Pk( · | xk, uk) of wk


• Policies π = {µ 0 , . . . , µN− 1 }, where µk maps states xk into controls uk = µk( xk) and is such that
µk( xk) ∈ Uk( xk) for all xk


• Expected cost of π starting at x 0 is N − 1


Jπ( x 0) = E gN ( xN ) +


gk( xk, µk( xk) , wk) k=0


• Optimal cost function


J ∗( x 0) = min Jπ( x 0) π


• Optimal policy π∗ is one that satisfies Jπ∗( x 0) = J∗( x 0) PRINCIPLE OF OPTIMALITY


• Let π∗ = {µ∗ 0 , µ∗ 1 , . . . , µ∗N− 1 } be an optimal policy


• Consider the “tail subproblem” whereby we are at xi at time i and wish to minimize the “cost-to-go”
from time i to time N


N − 1


E


gN ( xN ) +


gk xk, µk( xk) , wk


k= i


and the “tail policy” {µ∗, µ∗


i


i+1 , . . . , µ∗


N − 1 }


xi


Tail Subproblem


0








i


N


• Principle of optimality: The tail policy is optimal for the tail subproblem


• DP first solves ALL tail subroblems of final stage


• At the generic step, it solves ALL tail subproblems of a given time length, using the solution of the tail
subproblems of shorter time length


DP ALGORITHM


• Start with


JN ( xN ) = gN ( xN ) , and go backwards using


Jk( xk) =


min


E gk( xk, uk, wk)


uk∈Uk( xk) wk


+ Jk+1 fk( xk, uk, wk) , k = 0 , 1 , . . . , N − 1 .


• Then J 0( x 0), generated at the last step, is equal to the optimal cost J ∗( x 0). Also, the policy π∗ =
{µ∗ 0 , . . . , µ∗N− 1 }


where µ∗( x


k


k) minimizes in the right side above for


each xk and k, is optimal.


• Justification: Proof by induction that Jk( xk) is equal to J ∗( x


k


k), defined as the optimal cost of


the tail subproblem that starts at time k at state xk.


• Note that ALL the tail subproblems are solved in addition to the original problem, and the inten-sive
computational requirements.


DETERMINISTIC FINITE-STATE PROBLEM








Terminal Arcs


with Cost Equal


to Terminal Cost


. . .


t


Artificial Terminal


. . .


N o d e


Initial State


s


. . .


Stage 0


Stage 1


Stage 2


. . . Stage N - 1


Stage N


• States < == > Nodes


• Controls < == > Arcs


• Control sequences (open-loop) < == > paths from initial state to terminal states


• ak : Cost of transition from state i ∈ Sk to state ij


j ∈ Sk+1 at time k (view it as “length” of the arc)


• aN : Terminal cost of state i ∈ S


it


N


• Cost of control sequence < == > Cost of the cor








responding path (view it as “length” of the path) BACKWARD AND FORWARD DP ALGORITHMS


• DP algorithm:


JN ( i) = aN , i ∈ S


it


N ,


Jk( i) = min ak + Jk+1( j) , i ∈ Sk, k = 0 , . . . , N − 1 .


j∈S


ij


k+1


The optimal cost is J 0( s) and is equal to the length of the shortest path from s to t.


• Observation: An optimal path s → t is also an optimal path t → s in a “reverse” shortest path problem
where the direction of each arc is reversed and its length is left unchanged.


• Forward DP algorithm (= backward DP algorithm for the reverse problem):


˜


JN ( j) = a 0 , j ∈ S


sj


1 ,


˜


Jk( j) = min aN−k + ˜


Jk+1( i) , j ∈ SN−k+1


i∈S


ij


N−k


The optimal cost is ˜


J 0( t) = min i∈S


aN + ˜








J


N


it


1( i) .


• View ˜


Jk( j) as optimal cost-to-arrive to state j from initial state s.


A NOTE ON FORWARD DP ALGORITHMS


• There is no forward DP algorithm for stochastic problems.


• Mathematically, for stochastic problems, we cannot restrict ourselves to open-loop sequences, so the
shortest path viewpoint fails.


• Conceptually, in the presence of uncertainty, the concept of “optimal-cost-to-arrive” at a state xk does
not make sense. The reason is that it may be impossible to guarantee (with prob. 1) that any given state
can be reached.


• By contrast, even in stochastic problems, the concept of “optimal cost-to-go” from any state xk makes
clear sense.


GENERIC SHORTEST PATH PROBLEMS


• { 1 , 2 , . . . , N, t}: nodes of a graph ( t: the desti-nation)


• aij: cost of moving from node i to node j


• Find a shortest (minimum cost) path from each node i to node t


• Assumption: All cycles have nonnegative length.


Then an optimal path need not take more than N


moves


• We formulate the problem as one where we require exactly N moves but allow degenerate moves from a
node i to itself with cost aii = 0.


Jk( i) = optimal cost of getting from i to t in N −k moves.


J 0( i): Cost of the optimal path from i to t.


• DP algorithm:


Jk( i) = min








aij+ Jk+1( j) ,


k = 0 , 1 , . . . , N − 2 , j=1 ,...,N


with JN− 1( i) = ait, i = 1 , 2 , . . . , N.


EXAMPLE


State i


Destination


5


5


3


3


3


3


2


3


4


7


5


4


4


4


5


1


4


3


2








5


5


4.5


4.5


5.5


7


2


6


1


2


2


2


2


1


2


3


0 . 5


0


1


2


3


4


Stage k


(a)


(b)








JN− 1( i) = ait,


i = 1 , 2 , . . . , N,


Jk( i) = min


aij+ Jk+1( j) ,


k = 0 , 1 , . . . , N − 2 .


j=1 ,...,N
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