
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

5 - 10 page paper due 4/5/13
[image: profile]
jacsny
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

p262-sommer.pdf

Home>Computer Science homework help>5 - 10 page paper due 4/5/13

Enhancing Byte-Level
Network Intrusion Detection Signatures with Context

Robin Sommer
TU München

Germany

Vern Paxson
International Computer Science Institute and

Lawrence Berkeley National Laboratory
Berkeley, CA, USA

ABSTRACT
Many network intrusion detection systems (NIDS) use byte sequen-
ces as signatures to detect malicious activity. While being highly
efficient, they tend to suffer from a high false-positive rate. We
develop the concept of contextual signatures as an improvement of
string-based signature-matching. Rather than matching fixed strings
in isolation, we augment the matching process with additional con-
text. When designing an efficient signature engine for the NIDS
Bro, we provide low-level context by using regular expressions for
matching, and high-level context by taking advantage of the se-
mantic information made available by Bro’s protocol analysis and
scripting language. Therewith, we greatly enhance the signature’s
expressiveness and hence the ability to reduce false positives. We
present several examples such as matching requests with replies,
using knowledge of the environment, defining dependencies be-
tween signatures to model step-wise attacks, and recognizing ex-
ploit scans.

To leverage existing efforts, we convert the comprehensive sig-
nature set of the popular freeware NIDS Snort into Bro’s language.
While this does not provide us with improved signatures by itself,
we reap an established base to build upon. Consequently, we evalu-
ate our work by comparing to Snort, discussing in the process sev-
eral general problems of comparing different NIDSs.

Categories and Subject Descriptors: C.2.0 [Computer-Communi-
cation Networks]: General - Security and protection.

General Terms: Performance, Security.

Keywords: Bro, Network Intrusion Detection, Pattern Matching,
Security, Signatures, Snort, Evaluation

1. INTRODUCTION
Several different approaches are employed in attempting to detect

computer attacks. Anomaly-based systems derive (usually in an au-
tomated fashion) a notion of “normal” system behavior, and report
divergences from this profile, an approach premised on the notion
that attacks tend to look different in some fashion from legitimate
computer use. Misuse detection systems look for particular, explicit
indications of attacks (Host-based IDSs inspect audit logs for this
while network-based IDSs, or NIDSs, inspect the network traffic).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’03, October 27–31, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

In this paper, we concentrate on one popular form of misuse de-
tection, network-based signature matching in which the system in-
spects network traffic for matches against exact, precisely-described
patterns. While NIDSs use different abstractions for defining such
patterns, most of the time the term signature refers to raw byte se-
quences. Typically, a site deploys a NIDS where it can see network
traffic between the trusted hosts it protects and the untrusted exterior
world, and the signature-matching NIDS inspects the passing pack-
ets for these sequences. It generates an alert as soon as it encounters
one. Most commercial NIDSs follow this approach [19], and also
the most well-known freeware NIDS, Snort [29]. As an example,
to detect the buffer overflow described in CAN-2002-0392 [9],
Snort’s signature #1808 looks for the byte pattern 0xC0505289-
E150515250B83B000000CD80 [2] in Web requests. Keeping
in mind that there are more general forms of signatures used in in-
trusion detection as well—some of which we briefly discuss in §2—
in this paper we adopt this common use of the term signature.

Signature-matching in this sense has several appealing proper-
ties. First, the underlying conceptual notion is simple: it is easy
to explain what the matcher is looking for and why, and what sort
of total coverage it provides. Second, because of this simplicity,
signatures can be easy to share, and to accumulate into large “at-
tack libraries.” Third, for some signatures, the matching can be
quite tight: a match indicates with high confidence that an attack
occurred.

On the other hand, signature-matching also has significant lim-
itations. In general, especially when using tight signatures, the
matcher has no capability to detect attacks other than those for
which it has explicit signatures; the matcher will in general com-
pletely miss novel attacks, which, unfortunately, continue to be de-
veloped at a brisk pace. In addition, often signatures are not in fact
“tight.” For example, the Snort signature #1042 to detect an exploit
of CVE-2000-0778 [9] searches for “Translate: F” in Web
requests; but it turns out that this header is regularly used by certain
applications. Loose signatures immediately raise the major problem
of false positives: alerts that in fact do not reflect an actual attack.
A second form of false positive, which signature matchers likewise
often fail to address, is that of failed attacks. Since at many sites
attacks occur at nearly-continuous rates, failed attacks are often of
little interest. At a minimum, it is important to distinguish between
them and successful attacks.

A key point here is that the problem of false positives can po-
tentially be greatly reduced if the matcher has additional context at
its disposal: either additional particulars regarding the exact activ-
ity and its semantics, in order to weed out false positives due to
overly general “loose” signatures; or the additional information of
how the attacked system responded to the attack, which often indi-
cates whether the attack succeeded.

262

In this paper, we develop the concept of contextual signatures,
in which the traditional form of string-based signature matching is
augmented by incorporating additional context on different levels
when evaluating the signatures. First of all, we design and imple-
ment an efficient pattern matcher similar in spirit to traditional sig-
nature engines used in other NIDS. But already on this low-level
we enable the use of additional context by (i) providing full regu-
lar expressions instead of fixed strings, and (ii) giving the signature
engine a notion of full connection state, which allows it to corre-
late multiple interdependent matches in both directions of a user
session. Then, if the signature engine reports the match of a sig-
nature, we use this event as the start of a decision process, instead
of an alert by itself as is done by most signature-matching NIDSs.
Again, we use additional context to judge whether something alert-
worthy has indeed occurred. This time the context is located on a
higher-level, containing our knowledge about the network that we
have either explicitly defined or already learned during operation.

In §3.5, we will show several examples to demonstrate how the
concept of contextual signatures can help to eliminate most of the
limitations of traditional signatures discussed above. We will see
that regular expressions, interdependent signatures, and knowledge
about the particular environment have significant potential to reduce
the false positive rate and to identify failed attack attempts. For
example, we can consider the server’s response to an attack and
the set of software it is actually running—its vulnerability profile—
to decide whether an attack has succeeded. In addition, treating
signature matches as events rather than alerts enables us to analyze
them on a meta-level as well, which we demonstrate by identifying
exploit scans (scanning multiple hosts for a known vulnerability).

Instrumenting signatures to consider additional context has to be
performed manually. For each signature, we need to determine what
context might actually help to increase its performance. While this
is tedious for large sets of already-existing signatures, it is not an
extra problem when developing new ones, as such signatures have
to be similarly adjusted to the specifics of particular attacks anyway.
Contextual signatures serve as a building block for increasing the
expressivess of signatures; not as a stand-alone solution.

We implemented the concept of contextual signatures in the
framework already provided by the freeware NIDS Bro [25]. In
contrast to most NIDSs, Bro is fundamentally neither an anomaly-
based system nor a signature-based system. It is instead partitioned
into a protocol analysis component and a policy script component.
The former feeds the latter via generating a stream of events that
reflect different types of activity detected by the protocol analy-
sis; consequently, the analyzer is also referred to as the event en-
gine. For example, when the analyzer sees the establishment of
a TCP connection, it generates a connection established
event; when it sees an HTTP request it generates http request
and for the corresponding reply http reply; and when the event
engine’s heuristics determine that a user has successfully authenti-
cated during a Telnet or Rlogin session, it generates login suc-
cess (likewise, each failed attempt results in a login failure
event).

Bro’s event engine is policy-neutral: it does not consider any
particular events as reflecting trouble. It simply makes the events
available to the policy script interpreter. The interpreter then ex-
ecutes scripts written in Bro’s custom scripting language in order
to define the response to the stream of events. Because the lan-
guage includes rich data types, persistent state, and access to timers
and external programs, the response can incorporate a great deal of
context in addition to the event itself. The script’s reaction to a par-
ticular event can range from updating arbitrary state (for example,
tracking types of activity by address or address pair, or grouping re-

lated connections into higher-level “sessions”) to generating alerts
(e.g., via syslog) or invoking programs for a reactive response.

More generally, a Bro policy script can implement signature-style
matching—for example, inspecting the URIs in Web requests, the
MIME-encoded contents of email (which the event engine will first
unpack), the user names and keystrokes in login sessions, or the
filenames in FTP sessions—but at a higher semantic level than as
just individual packets or generic TCP byte streams.

Bro’s layered approach is very powerful as it allows a wide range
of different applications. But it has a significant shortcoming:
while, as discussed above, the policy script is capable of perform-
ing traditional signature-matching, doing so can be cumbersome for
large sets of signatures, because each signature has to be coded as
part of a script function. This is in contrast to the concise, low-level
languages used by most traditional signature-based systems. In ad-
dition, if the signatures are matched sequentially, then the overhead
of the matching can become prohibitive. Finally, a great deal of
community effort is already expended on developing and dissemi-
nating packet-based and byte-stream-based signatures. For exam-
ple, the 1.9.0 release of Snort comes with a library of 1,715 signa-
tures [2]. It would be a major advantage if we could leverage these
efforts by incorporating such libraries.

Therefore, one motivation for this work is to combine Bro’s flexi-
bility with the capabilities of other NIDSs by implementing a signa-
ture engine. But in contrast to traditional systems, which use their
signature matcher more or less on its own, we tightly integrate it
into Bro’s architecture in order to provide contextual signatures. As
discussed above, there are two main levels on which we use addi-
tional context for signature matching. First, at a detailed level, we
extend the expressiveness of signatures. Although byte-level pattern
matching is a central part of NIDSs, most only allow signatures to
be expressed in terms of fixed strings. Bro, on the other hand, al-
ready provides regular expressions for use in policy scripts, and we
use them for signatures as well. The expressiveness of such patterns
provides us with an immediate way to express syntactic context.
For example, with regular expressions it is easy to express the no-
tion “string XYZ but only if preceded at some point earlier by string
ABC”. An important point to keep in mind regarding regular expres-
sion matching is that, once we have fully constructed the matcher,
which is expressed as a Deterministic Finite Automaton (DFA), the
matching can be done in O(n) time for n characters in the input,
and also Ω(n) time. (That is, the matching always takes time linear
in the size of the input, regardless of the specifics of the input.) The
“parallel Boyer-Moore” approaches that have been explored in the
literature for fast matching of multiple fixed strings for Snort [12, 8]
have a wide range of running times—potentially sublinear in n, but
also potentially superlinear in n. So, depending on the particulars
of the strings we want to match and the input against which we do
the matching, regular expressions might prove fundamentally more
efficient, or might not; we need empirical evaluations to determine
the relative performance in practice. In addition, the construction of
a regular expression matcher requires time potentially exponential
in the length of the expression, clearly prohibitive, a point to which
we return in §3.1.

Second, on a higher level, we use Bro’s rich contextual state to
implement our improvements to plain matching described above.
Making use of Bro’s architecture, our engine sends events to the
policy layer. There, the policy script can use all of Bro’s already
existing mechanisms to decide how to react. We show several such
examples in §3.5.

Due to Snort’s large user base, it enjoys a comprehensive and
up-to-date set of signatures. Therefore, although for flexibility we
have designed a custom signature language for Bro, we make use

263

of the Snort libraries via a conversion program. This program takes
an unmodified Snort configuration and creates a corresponding Bro
signature set. Of course, by just using the same signatures in Bro as
in Snort, we are not able to improve the resulting alerts in terms of
quality. But even if we do not accompany them with additional
context, they immediately give us a baseline of already widely-
deployed signatures. Consequently, Snort serves us as a reference.
Throughout the paper we compare with Snort both in terms of qual-
ity and performance. But while doing so, we encountered several
general problems for evaluating and comparing NIDSs. We be-
lieve these arise independently of our work with Bro and Snort, and
therefore describe them in some detail. Keeping these limitations
in mind, we then evaluate the performance of our signature engine
and find that it performs well.

§2 briefly summarizes related work. In §3 we present the main
design ideas behind implementing contextual signatures: regular
expressions, integration into Bro’s architecture, some difficulties
with using Snort signatures, and examples of the power of the Bro
signature language. In §4 we discuss general problems of evaluating
NIDSs, and then compare Bro’s signature matching with Snort’s. §5
summarizes our conclusions.

2. RELATED WORK
[4] gives an introduction to intrusion detection in general, defin-

ing basic concepts and terminology.
In the context of signature-based network intrusion detection,

previous work has focussed on efficiently matching hundreds of
fixed strings in parallel: [12] and [8] both present implementations
of set-wise pattern matching for Snort [29]. For Bro’s signature en-
gine, we make use of regular expressions [18]. They give us both
flexibility and efficiency. [17] presents a method to incrementally
build the underlying DFA, which we can use to avoid the potentially
enormous memory and computation required to generate the com-
plete DFA for thousands of signatures. An extended form of regular
expressions has been used in intrusion detection for defining se-
quences of events [30], but to our knowledge no NIDS uses them
for actually matching multiple byte patterns against the payload of
packets.

In this paper, we concentrate on signature-based NIDS. Snort is
one of the most-widely deployed systems and relies heavily on its
signature set. Also, most of the commercial NIDSs are signature-
based [19], although there are systems that use more powerful con-
cepts to express signatures than just specifying byte patterns.
NFR [28], for example, uses a flexible language called N-Code to
declare its signatures. In this sense, Bro already provides sophisti-
cated signatures by means of its policy language. But the goal of our
work is to combine the advantages of a traditional dedicated pattern
matcher with the power of an additional layer abstracting from the
raw network traffic. IDS like STAT [35] or Emerald [26] are more
general in scope than purely network-based systems. They con-
tain misuse-detection components as well, but their signatures are
defined at a higher level. The STAT framework abstracts from low-
level details by using transitions on a set of states as signatures. A
component called NetSTAT [36] defines such state transitions based
on observed network-traffic. Emerald, on the other hand, utilizes
P-BEST [20], a production-based expert system to define attacks
based on a set of facts and rules. Due to their general scope, both
systems use a great deal of context to detect intrusions. On the other
hand, our aim is to complement the most common form of signa-
ture matching—low-level string matching—with context, while still
keeping its efficiency.

The huge number of generated alerts is one of the most impor-
tant problems of NIDS (see, for example, [23]). [3] discusses some

statistical limits, arguing in particular that the false-alarm rate is the
limiting factor for the performance of an IDS.

Most string-based NIDSs use their own signature language, and
are therefore incompatible. But since most languages cover a com-
mon subset, it is generally possible to convert the signatures of one
system into the syntax of another. ArachNIDS [1], for example,
generates signatures dynamically for different systems based on a
common database, and [32] presents a conversion of Snort signa-
tures into STAT’s language, although it does not compare the two
systems in terms of performance. We take a similar approach, and
convert Snort’s set into Bro’s new signature language.

For evaluation of the new signature engine, we take Snort as a
reference. But while comparing Bro and Snort, we have encoun-
tered several difficulties which we discuss in §4. They are part of
the general question of how to evaluate NIDSs. One of the most
comprehensive evaluations is presented in [21, 22], while [24] of-
fers a critique of the methodology used in these studies. [14] further
extends the evaluation method by providing a user-friendly environ-
ment on the one hand, and new characterizations of attack traffic
on the other hand. More recently, [10] evaluates several commer-
cial systems, emphasizing the view of an analyst who receives the
alerts, finding that these systems ignore relevant information about
the context of the alerts. [15] discusses developing a benchmark for
NIDSs, measuring their capacity with a representative traffic mix.
(Note, in §4.2 we discuss our experiences with the difficulty of find-
ing “representative” traces.)

3. CONTEXTUAL SIGNATURES
The heart of Bro’s contextual signatures is a signature engine de-

signed with three main goals in mind: (i) expressive power, (ii) the
ability to improve alert quality by utilizing Bro’s contextual state,
and (iii) enabling the reuse of existing signature sets. We discuss
each in turn. Afterwards, we present our experiences with Snort’s
signature set, and finally show examples which demonstrate appli-
cations for the described concepts.

3.1 Regular Expressions
A traditional signature usually contains a sequence of bytes that

are representative of a specific attack. If this sequence is found
in the payload of a packet, this is an indicator of a possible at-
tack. Therefore, the matcher is a central part of any signature-based
NIDS. While many NIDSs only allow fixed strings as search pat-
terns, we argue for the utility of using regular expressions. Regular
expressions provide several significant advantages: first, they are
far more flexible than fixed strings. Their expressiveness has made
them a well-known tool in many applications, and their power arises
in part from providing additional syntactic context with
which to sharpen textual searches. In particular, character classes,
union, optional elements, and closures prove very useful for speci-
fying attack signatures, as we see in §3.5.1.

Surprisingly, given their power, regular expressions can be
matched very efficiently. This is done by compiling the expres-
sions into DFAs whose terminating states indicate whether a match
is found. A sequence of n bytes can therefore be matched with
O(n) operations, and each operation is simply an array lookup—
highly efficient.

The total number of patterns contained in the signature set of
a NIDSs can be quite large. Snort’s set, for example, contains
1,715 distinct signatures, of which 1,273 are enabled by default.
Matching these individually is very expensive. However, for fixed
strings, there are algorithms for matching sets of strings simulta-
neously. Consequently, while Snort’s default engine still works it-
eratively, there has been recent work to replace it with a “set-wise”

264

matcher [8, 12].1 On the other hand, regular expressions give us set-
wise matching for free: by using the union operator on the individ-
ual patterns, we get a new regular expression which effectively com-
bines all of them. The result is a single DFA that again needs O(n)
operations to match against an n byte sequence. Only slight modifi-
cations have been necessary to extend the interface of Bro’s already-
existing regular expression matcher to explicitly allow grouping of
expressions.

Given the expressiveness and efficiency of regular expressions,
there is still a reason why a NIDS might avoid using them: the
underlying DFA can grow very large. Fully compiling a regular ex-
pression into a DFA leads potentially to an exponential number of
DFA states, depending on the particulars of the patterns [18]. Con-
sidering the very complex regular expression built by combining
all individual patterns, this straight-forward approach could easily
be intractable. Our experience with building DFAs for regular ex-
pressions matching many hundreds of signatures shows that this is
indeed the case. However, it turns out that in practice it is possible
to avoid the state/time explosion, as follows.

Instead of pre-computing the DFA, we build the DFA “on-the-
fly” during the actual matching [17]. Each time the DFA needs to
transit into a state that is not already constructed, we compute the
new state and record it for future reuse. This way, we only store
DFA states that are actually needed. An important observation is
that for n new input characters, we will build at most n new states.
Furthermore, we find in practice (§4.3) that for normal traffic the
growth is much less than linear.

However, there is still a concern that given inauspicious traffic—
which may actually be artificially crafted by an attacker—the state
construction may eventually consume more memory than we have
available. Therefore, we also implemented a memory-bounded DFA
state cache. Configured with a maximum number of DFA states,
it expires old states on a least-recently-used basis. In the sequel,
when we mention “Bro with a limited state cache,” we are referring
to such a bounded set of states (which is a configuration option for
our version of Bro), using the default bound of 10,000 states.

Another important point is that it’s not necessary to combine all
patterns contained in the signature set into a single regular expres-
sion. Most signatures contain additional constraints like IP address
ranges or port numbers that restrict their applicability to a subset of
the whole traffic. Based on these constraints, we can build groups
of signatures that match the same kind of traffic. By collecting only
those patterns into a common regular expression for matching the
group, we are able to reduce the size of the resulting DFA dras-
tically. As we show in §4, this gives us a very powerful pattern
matcher still efficient enough to cope with high-volume traffic.

3.2 Improving Alert Quality by Using Context
Though pattern matching is a central part of any signature-based

NIDSs, as we discussed above there is potentially great utility in
incorporating more context in the system’s analysis prior to gener-
ating an alert, to ensure that there is indeed something alert-worthy
occurring. We can considerably increase the quality of alerts, while
simultaneously reducing their quantity, by utilizing knowledge
about the current state of the network. Bro is an excellent tool for
this as it already keeps a lot of easily accessible state.

The new signature engine is designed to fit nicely into Bro’s lay-
ered architecture as an adjunct to the protocol analysis event en-
gine (see Figure 1). We have implemented a custom language for
defining signatures. It is mostly a superset of other, similar lan-

1The code of [12] is already contained in the Snort distribution, but
not compiled-in by default. This is perhaps due to some subtle bugs,
some of which we encountered during our testing as well.

Figure 1: Integrating the signature engine (adapted from [25])

Event Control

Event Engine

 Event stream

Real−time notification

Signature Control

Packet filter

Policy script

Filtered packet stream

Packet stream

Signature
Engine

Signatures

Network

Policy Layer

Packet capture

guages, and we describe it in more detail in §3.3. A new component
placed within Bro’s middle layer matches these signatures against
the packet stream. Whenever it finds a match, it inserts a new event
into the event stream. The policy layer can then decide how to re-
act. Additionally, we can pass information from the policy layer
back into the signature engine to control its operation. A signature
can specify a script function to call whenever a particular signature
matches. This function can then consult additional context and in-
dicate whether the corresponding event should indeed be generated.
We show an example of this later in §3.5.4.

In general, Bro’s analyzers follow the communication between
two endpoints and extract protocol-specific information. For exam-
ple, the HTTP analyzer is able to extract URIs requested by Web
clients (which includes performing general preprocessing such as
expanding hex escapes) and the status code and items sent back
by servers in reply, whereas the FTP analyzer follows the applica-
tion dialog, matching FTP commands and arguments (such as the
names of accessed files) with their corresponding replies. Clearly,
this protocol-specific analysis provides significantly more context
than does a simple view of the total payload as an undifferentiated
byte stream.

The signature engine can take advantage of this additional in-
formation by incorporating semantic-level signature matching. For
example, the signatures can include the notion of matching against
HTTP URIs; the URIs to be matched are provided by Bro’s HTTP
analyzer. Having developed this mechanism for interfacing the sig-
nature engine with the HTTP analyzer, it is now straight forward
to extend it to other analyzers and semantic elements (indeed, we
timed how long it took to add and debug interfaces for FTP and
Finger, and the two totalled only 20 minutes).

Central to Bro’s architecture is its connection management. Each
network packet is associated with exactly one connection. This no-
tion of connections allows several powerful extensions to traditional
signatures. First of all, Bro reassembles the payload stream of TCP
connections. Therefore, we can perform all pattern matching on the
actual stream (in contrast to individual packets). While Snort has a
preprocessor for TCP session reassembling, it does so by combin-
ing several packets into a larger “virtual” packet. This packet is then
passed on to the pattern matcher. Because the resulting analysis
remains packet-based, it still suffers from discretization problems
introduced by focusing on packets, such as missing byte sequences
that cross packet boundaries. (See a related discussion in [25] of the
problem of matching strings in TCP traffic in the face of possible
intruder evasion [27].)

In Bro, a signature match does not necessarily correspond to an
alert; as with other events, that decision is left to the policy script.
Hence, it makes sense to remember which signatures have matched
for a particular connection so far. Given this information, it is then
possible to specify dependencies between signatures like “signature

265

A only matches if signature B has already matched,” or “if a host
matches more than N signatures of type C, then generate an alert.”
This way, we can for example describe multiple steps of an attack.
In addition, Bro notes in which direction of a connection a particular
signature has matched, which gives us the notion of request/reply
signatures: we can associate a client request with the corresponding
server reply. A typical use is to differentiate between successful and
unsuccessful attacks. We show an example in §3.5.3.

More generally, the policy script layer can associate arbitrary
kinds of data with a connection or with one of its endpoints. This
means that any information we can deduce from any of Bro’s other
components can be used to improve the quality of alerts. We demon-
strate the power of this approach in §3.5.2.

Keeping per-connection state for signature matching naturally
raises the question of state management: at some point in time we
have to reclaim state from older connections to prevent the system
from exhausting the available memory. But again we can leverage
the work already being done by Bro. Independently of our signa-
tures, it already performs a sophisticated connection-tracking using
various timeouts to expire connections. By attaching the matching
state to the already-existing per-connection state, we assure that the
signature engine works economically even with large numbers of
connections.

3.3 Signature Language
Any signature-based NIDS needs a language for actually defining

signatures. For Bro, we had to choose between using an already
existing language and implementing a new one. We have decided
to create a new language for two reasons. First, it gives us more
flexibility. We can more easily integrate the new concepts described
in §3.1 and §3.2. Second, for making use of existing signature sets,
it is easier to write a converter in some high-level scripting language
than to implement it within Bro itself.

Snort’s signatures are comprehensive, free and frequently up-
dated. Therefore, we are particularly interested in converting them
into our signature language. We have written a corresponding Py-
thon script that takes an arbitrary Snort configuration and outputs
signatures in Bro’s syntax. Figure 2 shows an example of such a
conversion.

Figure 2: Example of signature conversion
alert tcp any any -> [a.b.0.0/16,c.d.e.0/24] 80

(msg:"WEB-ATTACKS conf/httpd.conf attempt";
nocase; sid:1373; flow:to_server,established;
content:"conf/httpd.conf"; [...])

(a) Snort

signature sid-1373 {
ip-proto == tcp
dst-ip == a.b.0.0/16,c.d.e.0/24
dst-port == 80
The payload below is actually generated in a
case-insensitive format, which we omit here
for clarity.
payload /.*conf\/httpd\.conf/
tcp-state established,originator
event "WEB-ATTACKS conf/httpd.conf attempt"

}%

(b) Bro

It turns out to be rather difficult to implement a complete parser
for Snort’s language. As far as we have been able to determine, its
syntax and semantics are not fully documented, and in fact often
only defined by the source code. In addition, due to different inter-
nals of Bro and Snort, it is sometimes not possible to keep the exact
semantics of the signatures. We return to this point in §4.2.

As the example in Figure 2 shows, our signatures are defined by
means of an identifier and a set of attributes. There are two main

types of attributes: (i) conditions and (ii) actions. The conditions
define when the signature matches, while the actions declare what
to do in the case of a match. Conditions can be further divided into
four types: header, content, dependency, and context.

Header conditions limit the applicability of the signature to a sub-
set of traffic that contains matching packet headers. For TCP, this
match is performed only for the first packet of a connection. For
other protocols, it is done on each individual packet. In general,
header conditions are defined by using a tcpdump-like [33] syntax
(for example, tcp[2:2] == 80 matches TCP traffic with desti-
nation port 80). While this is very flexible, for convenience there
are also some short-cuts (e.g., dst-port == 80).

Content conditions are defined by regular expressions. Again,
we differentiate two kinds of conditions here: first, the expression
may be declared with the payload statement, in which case it is
matched against the raw packet payload (reassembled where appli-
cable). Alternatively, it may be prefixed with an analyzer-specific
label, in which case the expression is matched against the data as
extracted by the corresponding analyzer. For example, the HTTP
analyzer decodes requested URIs. So, http /(etc\/(passwd
|shadow)/ matches any request containing either etc/passwd
or etc/shadow.

Signature conditions define dependencies between signatures.
We have implemented requires-signature, which specifies
another signature that has to match on the same connection first,
and requires-reverse-signature, which additionally re-
quires the match to happen for the other direction of the connection.
Both conditions can be negated to match only if another signature
does not match.

Finally, context conditions allow us to pass the match decision
on to various components of Bro. They are only evaluated if all
other conditions have already matched. For example, we have im-
plemented a tcp-state condition that poses restrictions on the
current state of the TCP connection, and eval, which calls an ar-
bitrary script policy function.

If all conditions are met, the actions associated with a signature
are executed: event inserts a signature match event into the
event stream, with the value of the event including the signature
identifier, corresponding connection, and other context. The policy
layer can then analyze the signature match.

3.4 Snort’s Signature Set
Snort comes with a large set of signatures, with 1,273 enabled

by default [2]. Unfortunately, the default configuration turns out to
generate a lot of false positives. In addition, many alerts belong to
failed exploit attempts executed by attackers who scan networks for
vulnerable hosts. As noted above, these are general problems of
signature-based systems.

The process of selectively disabling signatures that are not appli-
cable to the local environment, or “tuning,” takes time, knowledge
and experience. With respect to Snort, a particular problem is that
many of its signatures are too general. For example, Snort’s signa-
ture #1560:

alert tcp $EXTERNAL_NET any
-> $HTTP_SERVERS $HTTP_PORTS

(msg:"WEB-MISC /doc/ access";
uricontent:"/doc/"; flow:to_server,established;
nocase; sid:1560; [...])

searches for the string /doc/ within URIs of HTTP requests.
While this signature is indeed associated with a particular vulner-
ability (CVE-1999-0678 [9]), it only makes sense to use it if you
have detailed knowledge about your site (for example, that there is
no valid document whose path contains the string /doc/). Other-
wise, the probability of a signature match reflecting a false alarm

266

is much higher than that it indicates an attacker exploiting an old
vulnerability.

Another problem with Snort’s default set is the presence of over-
lapping signatures for the same exploit. For example, signatures
#1536, #1537, #1455, and #1456 (the latter is disabled by default)
all search for CVE-2000-0432, but their patterns differ in the
amount of detail. In addition, the vulnerability IDs given in Snort’s
signatures are not always correct. For example, signature #884 ref-
erences CVE-1999-0172 and Buqtraq [6] ID #1187. But the lat-
ter corresponds to CVE-2000-0411.

As already noted, we cannot expect to avoid these limitations
of Snort’s signatures by just using them semantically unmodified in
Bro. For example, although we convert the Snort’s fixed strings into
Bro’s regular expressions, naturally they still represent fixed sets of
characters. Only manual editing would give us the additional power
of regular expressions. We give an example for such an improve-
ment in §3.5.1.

3.5 The Power of Bro Signatures
In this section, we show several examples to convey the power

provided by our signatures. First, we demonstrate how to define
more “tight” signatures by using regular expressions. Then, we
show how to identify failed attack attempts by considering the set of
software a particular server is runnning (we call this its vulnerabil-
ity profile and incorporate some ideas from [22] here) as well as the
response of the server. We next demonstrate modelling an attack in
multiple steps to avoid false positives, and finally show how to use
alert-counting for identifying exploit scans. We note that none of
the presented examples are supported by Snort without extending
its core significantly (e.g. by writing new plug-ins).

3.5.1 Using Regular Expressions
Regular expressions allow far more flexibility than fixed strings.

Figure 3 (a) shows a Snort signature for CVE-1999-0172 that
generates a large number of false positives at Saarland University’s
border router. (See §4.1 for a description of the university.) Fig-
ure 3 (b) shows a corresponding Bro signature that uses a regular
expression to identify the exploit more reliably. CVE-1999-0172
describes a vulnerability of the formmail CGI script. If an at-
tacker constructs a string of the form “...; <shell-cmds>”
(a | instead of the ; works as well), and passes it on as argument
of the recipient CGI parameter, vulnerable formmails will ex-
ecute the included shell commands. Because CGI parameters can
be given in arbitrary order, the Snort signature has to rely on iden-
tifying the formmail access by its own. But by using a regular
expression, we can explicitly define that the recipient parame-
ter has to contain a particular character.

Figure 3: Two signatures for CVE-1999-0172
alert tcp any any -> a.b.0.0/16 80

(msg:"WEB-CGI formmail access";
uricontent:"/formmail";
flow:to_server,established;
nocase; sid:884; [...])

(a) Snort using a fixed string

signature formmail-cve-1999-0172 {
ip-proto == tcp
dst-ip == a.b.0.0/16
dst-port = 80
Again, actually expressed in a
case-insensitive manner.
http /.*formmail.*\?.*recipient=[ˆ&]*[;|]/
event "formmail shell command"

}

(b) Bro using a regular expression

3.5.2 Vulnerability Profiles
Most exploits are aimed at particular software, and usually only

some versions of the software are actually vulnerable. Given
the overwhelming number of alerts a signature-matching NIDS can
generate, we may well take the view that the only attacks of interest
are those that actually have a chance of succeeding. If, for example,
an IIS exploit is tried on a Web server running Apache, one may
not even care. [23] proposes to prioritize alerts based on this kind of
vulnerability information. We call the set of software versions that
a host is running its vulnerability profile. We have implemented this
concept in Bro. By protocol analysis, it collects the profiles of hosts
on the network, using version/implementation information that the
analyzer observes. Signatures can then be restricted to certain ver-
sions of particular software.

As a proof of principle, we have implemented vulnerability pro-
files for HTTP servers (which usually characterize themselves via
the Server header), and for SSH clients and servers (which iden-
tify their specific versions in the clear during the initial protocol
handshake). We intend to extend the software identification to other
protocols.

We aim in future work to extend the notion of developing a pro-
file beyond just using protocol analysis. We can passively finger-
print hosts to determine their operating system version information
by observing specific idiosyncrasies of the header fields in the traffic
they generate, similar to the probing techniques described in [13], or
we can separately or in addition employ active techniques to explic-
itly map the properties of the site’s hosts and servers [31]. Finally,
in addition to automated techniques, we can implement a configu-
ration mechanism for manually entering vulnerability profiles.

3.5.3 Request/Reply Signatures
Further pursuing the idea to avoid alerts for failed attack attempts,

we can define signatures that take into account both directions of a
connection. Figure 4 shows an example. In operational use, we
see a lot of attempts to exploit CVE-2001-0333 to execute the
Windows command interpreter cmd.exe. For a failed attempt, the
server typically answers with a 4xx HTTP reply code, indicating an
error.2 To ignore these failed attempts, we first define one signature,
http-error, that recognizes such replies. Then we define a sec-
ond signature, cmdexe-success, that matches only if cmd.exe
is contained in the requested URI (case-insensitive) and the server
does not reply with an error. It’s not possible to define this kind of
signature in Snort, as it lacks the notion of associating both direc-
tions of a connection.

Figure 4: Request/reply signature
signature cmdexe-success {

ip-proto == tcp
dst-port == 80
http /.*[cC][mM][dD]\.[eE][xX][eE]/
event "WEB-IIS cmd.exe success"
requires-signature-opposite ! http-error
tcp-state established

}
signature http-error {
ip-proto == tcp
src-port == 80
payload /.*HTTP\/1\.. *4[0-9][0-9]/
event "HTTP error reply"
tcp-state established
}

2There are other reply codes that reflect additional types of errors,
too, which we omit for clarity.

267

3.5.4 Attacks with Multiple Steps
An example of an attack executed in two steps is the infection

by the Apache/mod ssl worm [7] (also known as Slapper),
released in September 2002. The worm first probes a target for
its potential vulnerability by sending a simple HTTP request and
inspecting the response. It turns out that the request it sends is in
fact in violation of the HTTP 1.1 standard [11] (because it does not
include a Host header), and this idiosyncracy provides a somewhat
“tight” signature for detecting a Slapper probe.

If the server identifies itself as Apache, the worm then tries
to exploit an OpenSSL vulnerability on TCP port 443. Figure 5
shows two signatures that only report an alert if these steps are
performed for a destination that runs a vulnerable OpenSSL ver-
sion. The first signature, slapper-probe, checks the payload
for the illegal request. If found, the script function is vulnera-
ble to slapper (omitted here due to limited space, see [2]) is
called. Using the vulnerability profile described above, the func-
tion evaluates to true if the destination is known to run Apache
as well as a vulnerable OpenSSL version.3 If so, the signature
matches (depending on the configuration this may or may not gen-
erate an alert by itself). The header conditions of the second sig-
nature, slapper-exploit, match for any SSL connection into
the specified network. For each, the signature calls the script func-
tion has slapper probed. This function generates a signa-
ture match if slapper-probe has already matched for the same
source/destination pair. Thus, Bro alerts if the combination of prob-
ing for a vulnerable server, plus a potential follow-on exploit of the
vulnerability, has been seen.

Figure 5: Signature for Apache/mod sslworm
signature slapper-probe {

ip-proto == tcp
dst-ip == x.y.0.0/16 # sent to local net
dst-port == 80
payload /.*GET \/ HTTP\/1\.1\x0d\x0a\x0d\x0a/
eval is_vulnerable_to_slapper # call policy fct.
event "Vulner. host possibly probed by Slapper"

}
signature slapper-exploit {

ip-proto == tcp
dst-ip == x.y.0.0/16
dst-port == 443 # 443/tcp = SSL/TLS
eval has_slapper_probed # test: already probed?
event "Slapper tried to exploit vulnerable host"

}

3.5.5 Exploit Scanning
Often attackers do not target a particular system on the Internet,

but probe a large number of hosts for vulnerabilities (exploit scan-
ning). Such a scan can be executed either horizontally (several hosts
are probed for a particular exploit), vertically (one host is probed
for several exploits), or both. While, by their own, most of these
probes are usually low-priority failed attempts, the scan itself is an
important event. By simply counting the number signature alerts
per source address (horizontal) or per source/destination pair (ver-
tical), Bro can readily identify such scans. We have implemented
this with a policy script which generates alerts like:

a.b.c.d triggered 10 signatures on host e.f.g.h
i.j.k.l triggered signature sid-1287 on 100 hosts
m.n.o.p triggered signature worm-probe on 500 hosts
q.r.s.t triggered 5 signatures on host u.v.x.y

3Note that it could instead implement a more conservative policy,
and return true unless the destination is known to not run a vulner-
able version of OpenSSL/Apache.

4. EVALUATION
Our approach for evaluating the effectiveness of the signature en-

gine is to compare it to Snort in terms of run-time performance and
generated alerts, using semantically equivalent signature sets. We
note that we do not evaluate the concept of conceptual signatures by
itself. Instead, as a first step, we validate that our implementation
is capable of acting as an effective substitute for the most-widely
deployed NIDS even when we do not use any of the advanced fea-
tures it provides. Building further on this base by thoroughly evalu-
ating the actual power of contextual signatures when deployed op-
erationally is part of our ongoing work.

During our comparision of Bro and Snort, we found several pe-
culiarities that we believe are of more general interest. Our re-
sults stress that the performance of a NIDS can be very sensitive
to semantics, configuration, input, and even underlying hardware.
Therefore, after discussing our test data, we delve into these in some
detail. Keeping these limitations in mind, we then assess the overall
performance of the Bro signature engine.

4.1 Test Data
For our testing, we use two traces:

USB-Full A 30-minute trace collected at Saarland University,
Germany (USB-Full), consisting of all traffic (including
packet contents) except for three high-volume peer-to-peer
applications (to reduce the volume). The university has 5,500
internal hosts, and the trace was gathered on its 155 Mbps
access link to the Internet. The trace totals 9.8 GB, 15.3M
packets, and 220K connections. 35% of the trace packets be-
long to HTTP on port 80, 19% to eDonkey on port 4662, and
4% to ssh on port 22, with other individual ports being less
common than these three (and the high-volume peer-to-peer
that was removed).

LBL-Web A two-hour trace of HTTP client-side traffic, including
packet contents, gathered at the Lawrence Berkeley National
Laboratory (LBL), Berkeley, USA (LBL-Web). The labora-
tory has 13,000 internal hosts, and the trace was gathered on
its Gbps access link to the Internet. The trace totals 667MB,
5.5M packets, and 596K connections.

Unless stated otherwise, we performed all measurements on
550MHz Pentium-3 systems containing ample memory (512MB or
more). For both Snort and Bro’s signature engine, we used Snort’s
default signature set. We disabled Snort’s “experimental” set of sig-
natures as some of the latest signatures use new options which are
not yet implemented in our conversion program. In addition, we
disabled Snort signature #526, BAD TRAFFIC data in TCP
SYN packet. Due to Bro matching stream-wise instead of packet-
wise, it generates thousands of false positives. We discuss this in
§4.2. In total, 1,118 signatures are enabled. They contain 1,107
distinct patterns and cover 89 different service ports. 60% of the
signatures cover HTTP traffic. For LBL-Web, only these were acti-
vated.

For Snort, we enabled the preprocessors for IP defragmentation,
TCP stream reassembling on its default ports, and HTTP decoding.
For Bro, we have turned on TCP reassembling for the same ports
(even if otherwise Bro would not reassemble them because none of
the usual event handlers indicated interest in traffic for those ports),
enabled its memory-saving configuration (“@load reduce-
memory”), and used an inactivity timeout of 30 seconds
(in correspondence with Snort’s default session timeout). We con-
figured both systems to consider all packets contained in the traces.
We used the version 1.9 branch of Snort, and version 0.8a1 of Bro.

268

4.2 Difficulties of Evaluating NIDSs
The evaluation of a NIDS is a challenging undertaking, both in

terms of assessing attack recognition and in terms of assessing per-
formance. Several efforts to develop objective measures have been
made in the past (e.g., [21, 22, 15]), while others stress the diffi-
culties with such approaches [24]. During our evaluation, we en-
countered several additional problems that we discuss here. While
these arose in the specific context of comparing Snort and Bro, their
applicability is more general.

When comparing two NIDSs, differing internal semantics can
present a major problem. Even if both systems basically perform
the same task—capturing network packets, rebuilding payload, de-
coding protocols—that task is sufficiently complex that it is almost
inevitable that the systems will do it somewhat differently. When
coupled with the need to evaluate a NIDS over a large traffic trace
(millions of packets), which presents ample opportunity for the dif-
fering semantics to manifest, the result is that understanding the
significance of the disagreement between the two systems can en-
tail significant manual effort.

One example is the particular way in which TCP streams are re-
assembled. Due to state-holding time-outs, ambiguities (see [27,
16] and [25] for discussion of how these occur for benign reasons in
practice) and non-analyzed packets (which can be caused by packet
filter drops, or by internal sanity checks), TCP stream analyzers will
generally wind up with slightly differing answers for corner cases.

Snort, for example, uses a preprocessor that collects a number of
packets belonging to the same session until certain thresholds are
reached and then combines them into “virtual” packets. The rest of
Snort is not aware of the reassembling and still only sees packets.
Bro, on the other hand, has an intrinsic notion of a data stream.
It collects as much payload as needed to correctly reconstruct the
next in-sequence chunk of a stream and passes these data chunks
on as soon as it is able to. The analyzers are aware of the fact that
they get their data chunk-wise, and track their state across chunks.
They are not aware of the underlying packetization that lead to those
chunks. While Bro’s approach allows true stream-wise signatures,
it also means that the signature engine loses the notion of “packet
size”: packets and session payload are decoupled for most of Bro’s
analyzers. However, Snort’s signature format includes a way of
specifying the packet size. Our signature engine must fake up an
equivalent by using the size of the first matched payload chunk for
each connection, which can lead to differing results.

Another example of differing semantics comes from the behavior
of protocol analyzers. Even when two NIDS both decode the same
protocol, they will differ in the level-of-detail and their interpreta-
tion of protocol corner cases and violations (which, as mentioned
above, are in fact seen in non-attack traffic [25]). For example, both
Bro and Snort extract URIs from HTTP sessions, but they do not
interpret them equally in all situations. Character encodings within
URIs are sometimes decoded differently, and neither contains a full
Unicode decoder. The anti-IDS tool Whisker [37] can actively ex-
ploit these kinds of deficiencies. Similarly, Bro decodes pipelined
HTTP sessions; Snort does not (it only processes the first URI in a
series of pipelined HTTP requests).

Usually, the details of a NIDS can be controlled by a number of
options. But frequently for a Bro option there is no equivalent Snort
option, and vice versa. For example, the amount of memory used
by Snort’s TCP reassembler can be bounded to a fixed value. If this
limit is reached, old data is expired aggressively. Bro relies solely
on time-outs. Options like these often involve time-memory trade-
offs. The more memory we have, the more we can spend for Snort’s
reassembler, and the larger we can make Bro’s time-outs. But how
to choose the values, so that both will utilize the same amount of

memory? And even if we do, how to arrange that both expire the
same old data? The hooks to do so simply aren’t there.

The result of these differences is differing views of the same net-
work data. If one NIDS reports an alert while the other does not,
it may take a surprisingly large amount of effort to tell which one
of them is indeed correct. More fundamentally, this depends on
the definition of “correct,” as generally both are correct within their
own semantics. From a user’s point of the view, this leads to differ-
ent alerts even when both systems seem to use the same signatures.
From an evaluator’s point of view, we have to (i) grit our teeth and
be ready to spend substantial effort in tracking down the root cause
when validating the output of one tool versus another, and (ii) be
very careful in how we frame our assessment of the differences, be-
cause there is to some degree a fundamental problem of “comparing
apples and oranges”.

The same applies for measuring performance in terms of effi-
ciency. If two systems do different things, it is hard to compare
them fairly. Again, the HTTP analyzers of Snort and Bro illustrate
this well. While Snort only extracts the first URI from each packet,
Bro decodes the full HTTP session, including tracking multiple re-
quests and replies (which entails processing the numerous ways in
which HTTP delimits data entities, including “multipart MIME”
and “chunking”). Similarly, Bro provides much more information
at various other points than the corresponding parts of Snort.

But there are still more factors that influence performance. Even
if one system seems to be significantly faster than another, this can
change by modifying the input or even the underlying hardware.
One of our main observations along these lines is that the perfor-
mance of NIDSs can depend heavily on the particular input trace.
On a Pentium-3 system, Snort needs 440 CPU seconds for the trace
LBL-Web (see Figure 6). This only decreases by 6% when us-
ing the set-wise pattern matcher of [12]. In addition, we devised
a small modification to Snort that, compared to the original ver-
sion, speeds it up by factor of 2.6 for this particular trace. (The
modification is an enhancement to the set-wise matcher: the orig-
inal implementation first performs a set-wise search for all of the
possible strings, caching the results, and then iterates through the
lists of signatures, looking up for each in turn whether its particular
strings were matched. Our modification uses the result of the set-
wise match to identify potential matching signatures directly if the
corresponding list is large, avoiding the iteration.)

Figure 6: Run-times on different hardware

Pentium−3, 512Mhz Pentium−4, 1.5Ghz

Snort
Snort−[FV01]
Snort−Modified
Bro w/o DFA cache
Bro w/ DFA cache

Run−times on Web trace

S
e
co

n
d
s

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

Using the trace USB-Full, however, the improvement realized
by our modified set-wise matcher for Snort is only a factor of 1.2.
Even more surprisingly, on a trace from another environment (a re-
search laboratory with 1,500 workstations and supercomputers), the
original version of Snort is twice as fast as the set-wise implemen-
tation of [12] (148 CPU secs vs. 311 CPU secs), while our patched
version lies in between (291 CPU secs). While the reasons remain
to be discovered in Snort’s internals, this demonstrates the difficulty
of finding representative traffic as proposed, for example, in [15].

269

Furthermore, relative performance does not only depend on the
input but even on the underlying hardware. As described above, the
original Snort needs 440 CPU seconds for LBL-Web on a Pentium-
3 based system. Using exactly the same configuration and input
on a Pentium-4 based system (1.5GHz), it actually takes 29 CPU
seconds more. But now the difference between stock Snort and our
modified version is a factor of 5.8! On the same system, Bro’s run-
time decreases from 280 to 156 CPU seconds.4

Without detailed hardware-level analysis, we can only guess why
Snort suffers from the upgrade. To do so, we ran valgrind’s [34]
cache simulation on Snort. For the second-level data cache, it shows
a miss-rate of roughly 10%. The corresponding value for Bro is be-
low 1%. While we do not know if valgrind’s values are airtight,
they could at least be the start of an explanation. We have heard
other anecdotal comments that the Pentium-4 performs quite poorly
for applications with lots of cache-misses. On the other hand, by
building Bro’s regular expression matcher incrementally, as a side
effect the DFA tables will wind up having memory locality that
somewhat reflects the dynamic patterns of the state accesses, which
will tend to decrease cache misses.

4.3 Performance Evaluation
We now present measurements of the performance of the Bro sig-

nature engine compared with Snort, keeping in mind the difficulties
described above. Figure 7 shows run-times on trace subsets of dif-
ferent length for the USB-Full trace. We show CPU times for the
original implementation of Snort, for Snort using [12] (virtually no
difference in performance), for Snort modified by us as described in
the previous section, for Bro with a limited DFA state cache, and for
Bro without a limited DFA state cache. We see that our modified
Snort runs 18% faster than the original one, while the cache-less
Bro takes about the same amount of time. Bro with a limited state
cache needs roughly a factor of 2.2 more time.

We might think that the discrepancy between Bro operating with
a limited DFA state cache and it operating with unlimited DFA state
memory is due to it having to spend considerable time recomputing
states previously expired from the limited cache. This, however,
turns out not to be the case. Additional experiments with essentially
infinite cache sizes indicate that the performance decrease is due to
the additional overhead of maintaining the cache.

While this looks like a significant impact, we note that it is not
clear whether the space savings of a cache is in fact needed in opera-
tional use. For this trace, only 2,669 DFA states had to be computed,
totaling roughly 10MB. When running Bro operationally for a day
at the university’s gateway, the number of states rapidly climbs to
about 2,500 in the first hour, but then from that point on only slowly
rises to a bit over 4,000 by the end of the day.

A remaining question, however, is whether an attacker could cre-
ate traffic specifically tailored to enlarge the DFAs (a “state-holding”
attack on the IDS), perhaps by sending a stream of packets that
nearly trigger each of the different patterns. Additional research
is needed to further evaluate this threat.

Comparing for USB-Full the alerts generated by Snort to the
signature matches reported by Bro, all in all we find very good
agreement. The main difference is the way they report a match.
By design, Bro reports all matching signatures, but each one only
once per connection. This is similar to the approach suggested
in [10]. Snort, on the other hand, reports the first matching sig-
nature for each packet, independently of the connection it belongs

4This latter figure corresponds to about 35,000 packets per second,
though we strongly argue that measuring performance in PPS rates
implies undue generality, since, as developed above, the specifics of
the packets make a great difference in the results.

to. This makes it difficult to compare the matches. We account
for these difference by comparing connections for which at least
one match is generated by either system. With USB-Full, we get
2,065 matches by Bro in total on 1,313 connections. Snort reports
4,147 alerts. When counting each alert only once per connection,
Snort produces 1,320 on 1,305 connections.5 There are 1,296 con-
nections for which both generate at least one alert, and 17 (9) for
which Bro (Snort) reports a match but not Snort (Bro).

Looking at individual signatures, we see that Bro misses 10
matches of Snort. 5 of them are caused by Snort ID #1013 (WEB-
IIS fpcount access). The corresponding connections con-
tain several requests, but an idle time larger than the defined in-
activity timeout of 30 seconds. Therefore, Bro flushes the
state before it can encounter the match which would happen later
in the session. On the other hand, Bro reports 41 signature matches
for connections for which Snort does not report anything. 37 of
them are Web signatures. The discrepancy is due to different TCP
stream semantics. Bro and Snort have slightly different definitions
of when a session is established. In addition, the semantic differ-
ences between stream-wise and packet-wise matching discussed in
§4.2 cause some of the additional alerts.

Figure 7: Run-time comparison on 550MHz Pentium-3

0 5 10 15 20 25 30

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Runtime for USB−Full on Pentium−3

Trace length (mins)

S
e
co

n
d
s

Bro w/o state cache
Bro w/ state cache
Snort
Snort [FV01]
Snort patched

We have done similar measurements with LBL-Web. Due to lim-
ited space, we omit the corresponding plot here. While the original
Snort takes 440 CPU seconds for the trace, Bro without (with) a lim-
ited state cache needs 280 (328) CPU seconds, and Snort as modi-
fied by us needs only 164 CPU seconds. While this suggests room
for improvement in some of Bro’s internal data structures, Bro’s
matcher still compares quite well to the typical Snort configuration.

For this trace, Bro (Snort) reports 2,764 (2,049) matches in total.
If we count Snort’s alerts only once per connection, there are 1,472
of them. There are 1,395 connections for which both report at least
one alert. For 133 (69) connections, Bro (Snort) reports a match
but Snort (Bro) does not. Again, looking at individual signatures,
Bro misses 73 of Snort’s alerts. 25 of them are matches of Snort
signature #1287 (WEB-IIS scripts access). These are all
caused by the same host. The reason is packets missing from the
trace, which, due to a lack of in-order sequencing, prevent the TCP
stream from being reassembled by Bro. Another 19 are due to sig-
nature #1287 (CodeRed v2 root.exe access). The ones of
these we inspected further were due to premature server-side resets,
which Bro correctly identifies as the end of the corresponding con-
nections, while Snort keeps matching on the traffic still being send
by the client. Bro reports 186 signature matches for connections for
which Snort does not report a match at all. 68 of these connections
simultaneously trigger three signatures (#1002, #1113, #1287). 46

5Most of the duplicates are ICMP Destination Unreach-
able messages. Using Bro’s terminology, we define all ICMP
packets between two hosts as belonging to one “connection.”

270

are due to simultaneous matches of signatures #1087 and #1242.
Looking at some of them, one reason is SYN-packets missing from
the trace. Their absence leads to different interpretations of estab-
lished sessions by Snort and Bro, and therefore to different matches.

5. CONCLUSIONS
In this work, we develop the general notion of contextual sig-

natures as an improvement on the traditional form of string-based
signature-matching used by NIDS. Rather than matching fixed
strings in isolation, contextual signatures augment the matching pro-
cess with both low-level context, by using regular expressions for
matching rather than simply fixed strings, and high-level context,
by taking advantage of the rich, additional semantic context made
available by Bro’s protocol analysis and scripting language.

By tightly integrating the new signature engine into Bro’s event-
based architecture, we achieve several major improvements over
other signature-based NIDSs such as Snort, which frequently suf-
fer from generating a huge number of alerts. By interpreting a
signature-match only as an event, rather than as an alert by itself,
we are able to leverage Bro’s context and state-management mech-
anisms to improve the quality of alerts. We showed several exam-
ples of the power of this approach: matching requests with replies,
recognizing exploit scans, making use of vulnerabilty profiles, and
defining dependencies between signatures to model attacks that span
multiple connections. In addition, by converting the freely available
signature set of Snort into Bro’s language, we are able to build upon
existing community efforts.

As a baseline, we evaluated our signature engine using Snort as
a reference, comparing the two systems in terms of both run-time
performance and generated alerts using the signature set archived
at [2]. But in the process of doing so, we encountered several gen-
eral problems when comparing NIDSs: differing internal semantics,
incompatible tuning options, the difficulty of devising “representa-
tive” input, and extreme sensitivity to hardware particulars. The last
two are particularly challenging, because there are no a priori indi-
cations when comparing performance on one particular trace and
hardware platform that we might obtain very different results using
a different trace or hardware platform. Thus, we must exercise great
caution in interpreting comparisons between NIDSs.

Based on this work, we are now in the process of deploying Bro’s
contextual signatures operationally in several educational, research
and commercial enviroments.

Finally, we have integrated our work into version 0.8 of the Bro
distribution, freely available at [5].

6. ACKNOWLEDGMENTS
We would like to thank the Lawrence Berkeley National Labora-

tory (LBL), Berkeley, USA; the National Energy Research Scien-
tific Computing Center (NERSC), Berkeley, USA; and the Saarland
University, Germany. We are in debt to Anja Feldmann for making
this work possible. Finally, we would like to thank the anonymous
reviewers for their valuable suggestions.

7. REFERENCES
[1] arachNIDS. http://whitehats.com/ids/.
[2] Web archive of versions of software and signatures used in this paper.

http://www.net.in.tum.de/˜robin/ccs03.
[3] S. Axelsson. The base-rate fallacy and the difficulty of intrusion detection.

ACM Transactions on Information and System Security, 3(3):186–205, August
2000.

[4] R. G. Bace. Intrusion Detection. Macmillan Technical Publishing,
Indianapolis, IN, USA, 2000.

[5] Bro: A System for Detecting Network Intruders in Real-Time.
http://www.icir.org/vern/bro-info.html.

[6] Bugtraq. http://www.securityfocus.com/bid/1187.
[7] CERT Advisory CA-2002-27 Apache/mod ssl Worm.

http://www.cert.org/advisories/CA-2002-27.html.
[8] C. J. Coit, S. Staniford, and J. McAlerney. Towards Faster Pattern Matching for

Intrusion Detection or Exceeding the Speed of Snort. In Proc. 2nd DARPA
Information Survivability Conference and Exposition, June 2001.

[9] Common Vulnerabilities and Exposures. http://www.cve.mitre.org.
[10] H. Debar and B. Morin. Evaluation of the Diagnostic Capabilities of

Commercial Intrusion Detection Systems. In Proc. Recent Advances in
Intrusion Detection, number 2516 in Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[11] R. F. et. al. Hypertext transfer protocol – http/1.1. Request for Comments 2616,
June 1999.

[12] M. Fisk and G. Varghese. Fast Content-Based Packet Handling for Intrusion
Detection. Technical Report CS2001-0670, UC San Diego, May 2001.

[13] Fyodor. Remote OS detection via TCP/IP Stack Finger Printing. Phrack
Magazine, 8(54), 1998.

[14] J. Haines, L. Rossey, R. Lippmann, and R. Cunnigham. Extending the 1999
Evaluation. In Proc. 2nd DARPA Information Survivability Conference and
Exposition, June 2001.

[15] M. Hall and K. Wiley. Capacity Verification for High Speed Network Intrusion
Detection Systems. In Proc. Recent Advances in Intrusion Detection, number
2516 in Lecture Notes in Computer Science. Springer-Verlag, 2002.

[16] M. Handley, C. Kreibich, and V. Paxson. Network intrusion detection: Evasion,
traffic normalization, and end-to-end protocol semantics. In Proc. 10th
USENIX Security Symposium, Washington, D.C., August 2001.

[17] J. Heering, P. Klint, and J. Rekers. Incremental generation of lexical scanners.
ACM Transactions on Programming Languages and Systems (TOPLAS),
14(4):490–520, 1992.

[18] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, 1979.

[19] K. Jackson. Intrusion detection system product survey. Technical Report
LA-UR-99-3883, Los Alamos National Laboratory, June 1999.

[20] U. Lindqvist and P. A. Porras. Detecting computer and network misuse through
the production-based expert system toolset (P-BEST). In Proc. IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May 1999.

[21] R. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf, K. R. Kendall, S. E.
Webster, and M. A. Zissman. Results of the 1998 DARPA Offline Intrusion
Detection Evaluation. In Proc. Recent Advances in Intrusion Detection, 1999.

[22] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. The 1999
DARPA off-line intrusion detection evaluation. Computer Networks,
34(4):579–595, October 2000.

[23] R. Lippmann, S. Webster, and D. Stetson. The Effect of Identifying
Vulnerabilities and Patching Software on the Utility of Network Intrusion
Detection. In Proc. Recent Advances in Intrusion Detection, number 2516 in
Lecture Notes in Computer Science. Springer-Verlag, 2002.

[24] J. McHugh. Testing Intrusion detection systems: A critique of the 1998 and
1999 DARPA intrusion detection system evaluations as performed by Lincoln
Laboratory. ACM Transactions on Information and System Security,
3(4):262–294, November 2000.

[25] V. Paxson. Bro: A system for detecting network intruders in real-time.
Computer Networks, 31(23–24):2435–2463, 1999.

[26] P. A. Porras and P. G. Neumann. EMERALD: Event monitoring enabling
responses to anomalous live disturbances. In National Information Systems
Security Conference, Baltimore, MD, October 1997.

[27] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and denial of service:
Eluding network intrusion detection. Technical report, Secure Networks, Inc.,
January 1998.

[28] M. J. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A. Lambeth, and
E. Wall. Implementing a generalized tool for network monitoring. In Proc. 11th
Systems Administration Conference (LISA), 1997.

[29] M. Roesch. Snort: Lightweight intrusion detection for networks. In Proc. 13th
Systems Administration Conference (LISA), pages 229–238. USENIX
Association, November 1999.

[30] R. Sekar and P. Uppuluri. Synthesizing fast intrusion prevention/detection
systems from high-level specifications. In Proc. 8th USENIX Security
Symposium. USENIX Association, August 1999.

[31] U. Shankar and V. Paxson. Active Mapping: Resisting NIDS Evasion Without
Altering Traffic. In Proc. IEEE Symposium on Security and Privacy, 2003.

[32] Steven T. Eckmann. Translating Snort rules to STATL scenarios. In Proc.
Recent Advances in Intrusion Detection, October 2001.

[33] tcpdump. http://www.tcpdump.org.
[34] Valgrind. http://developer.kde.org/˜sewardj.
[35] G. Vigna, S. Eckmann, and R. Kemmerer. The STAT Tool Suite. In Proc. 1st

DARPA Information Survivability Conference and Exposition, Hilton Head,
South Carolina, January 2000. IEEE Computer Society Press.

[36] G. Vigna and R. A. Kemmerer. Netstat: A network-based intrusion detection
system. Journal of Computer Security, 7(1):37–71, 1999.

[37] Whisker. http://www.wiretrip.net/rfp.

271

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

