148

o) |

6.

10.

11.

13.

14.

&
19,

20.

¥ 1 §8 U A L E A 5 1 C

end. Variable names should begin with an uppercase character and be
mixed upper- and lowercase, while constants are all uppercase.

. Identifiers should include the data type of the vaniable or constant.
. Intrinsic constants, such as Color.Red and Color.Blue, are predefined and

built into the NET Framework. Named constants are programmer-defined
constants and are declared using the Const statement. The location of the
Const statement determines the scope of the constant.

Variables are declared using the Private or Dim statement; the location of
the statement determines the scope of the variable. Use the Dim statement
to declare local variables inside a procedure; use the Private stalement to
declare module-level variables at the top of the program, outside of any
procedure.

. The scope of a variable may be namespace level, module level, local, or

block level. Block-level and local variables are available only within the
procedure in which they are declared; module-level variables are accessible
in all procedures within a form; namespace variables are available in all pro-
l.‘E!l]llﬂ"'.-H lJ'l- !‘I.“ 1']21."!-5{'.5 i" d r'lH[TH"‘Hl!H[:f'., Whil‘h i:"i IIEIIHH:&' lhl.'! ﬂ[]liﬁ? pmj{:{!l.

. The lifetime of local and block-level variables is one execution of the pro-

cedure in which they are declared. The lifetime of module-level variables
is the length of time that the form is loaded.

. Use the Parse methods to convert text values to numeric before perform-

ing any calculations.

Calculations may be performed using the values of numeric variables, con-
stants, and the properties of controls. The result of a calculation may be as-
L-signed to a numeric variable or to the property of a control.

A caleulation operation with more than one operator follows the order of
precedence in determining the result of the caleulation. Parentheses alter
the order of operations.

. Ta expli{fill}' converl between numeric data types, use the Convert class,

Some conversions can be performed implicitly.

The Decimal.Round method rounds a decimal value to the specified num-
ber of decimal positions.

The ToString method can be used to specify the appearance of values for
display. By using formatting codes, you can specify dollar signs, commas,
percent signs, and the number of decimal digits to display. The method
rounds values to fit the format.

. Try/Catch/Finally statements provide a technique for checking for user

errors such as blank or nonnumeric data or an entry that might result in a
L& | l!.'-'l.] ].H.ljll!] BT,

. A run-time error is called an exception; catching and taking care of excep-

tions is called error trapping and error handling.

". You can trap for different types of errors by specifying the exception type

on the Catch statement, and you can have multiple Catch statements to
calch more than one type of exception. Each exceplion is an instance of the
Exception class; you can refer to the properties of the Exception object for
further information.

. A message box is a window for displaying information to the user.

The Show method of the MessageBox class is overloaded, which means that
the method may be called with different argument lists, called signatures.
You can caleulate a sum hy .'111:|ing each transaction to a module-level vari-
able. In a similar fashion, you can calculate a count by adding to a module-
level variable.

Variables, Constants, and Caleulations



