

The rate of the following reaction is 0.540 M/s. What is the relative rate of change of each species in the reaction?

$$A+3B \rightarrow 2C$$

$$\frac{\Delta[A]}{\Delta t} = \frac{\text{Number}}{\text{M/ s}}$$

$$\frac{\Delta[B]}{\Delta t} = \frac{\text{Number}}{\text{M/ s}}$$

$$\frac{\Delta[C]}{\Delta t} = \frac{\text{Number}}{\text{M/ s}}$$

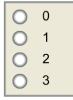
Question 2 of 12

General Chemistry 4th Edition
McQuarrie • Rock • Gallogly

University Science Books
presented by Sapling Learning

The reaction described by this equation

$$O_3(g) + NO(g) \longrightarrow O_2(g) + NO_2(g)$$


has the following rate law at 310 K.

rate of reaction =
$$k[O_3][NO]$$
 $k = 3.0 \times 10^6 \text{ M}^{-1} \cdot \text{s}^{-1}$

Given that $[O_3]=4.0\times10^{-4}$ M and $[NO]=7.0\times10^{-5}$ M at t=0, calculate the rate of the reaction at t=0.

What is the overall order of this reaction?

Question 3 of 12

The reaction

$$A+B \longrightarrow C+D$$
 rate = $k[A][B]^2$

What will the initial rate be if [A] is halved and [B] is tripled?

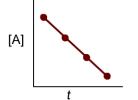
What will the initial rate be if [A] is tripled and [B] is halved?

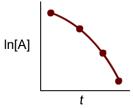
Question 4 of 12

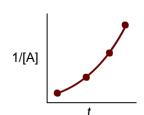
Using the given data, calculate the rate constant of this reaction.

$$A+B \longrightarrow C+D$$

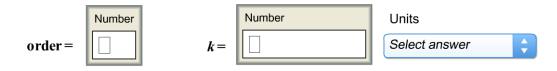
Trial	[A] (M)	[B] (M)	Rate (M/s)
1	0.230	0.340	0.0160
2	0.230	0.918	0.117
3	0.276	0.340	0.0192

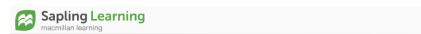



Question 5 of 12



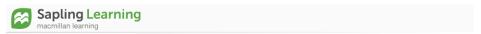
For A -> products, time and concentration data were collected and plotted as shown here.


[A] (M)	t (s)		
0.700	0.0		
0.662	30.0	[A]	
0.624	60.0		
0.586	90.0		



Determine the reaction order, the rate constant, and the units of the rate constant.

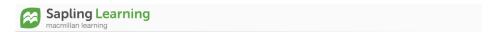
Question 6 of 12


The rate constant for the reaction is 0.210 M^{-1} . s^{-1} at 200 °C.

$A \longrightarrow products$

If the initial concentration of A is 0.00170 M, what will be the concentration after 785 s?

Question 7 of 12


The rate constant for this first-order reaction is 0.0300 s⁻¹ at 400 °C.

$A \longrightarrow products$

After how many seconds will 22.2% of the reactant remain?

Question 8 of 12

After 44.0 min, 40.0% of a compound has decomposed. What is the half-life of this reaction assuming first-order kinetics?

Number	
	min

Question 9 of 12

General Chemistry 4th Edition McQuarrie • Rock • Gallogly	University Science Books presented by Sapling Learning
---	--

For each of the following cases, identify the order with respect to the reactant, A.

Case (A → products)	Order
The half-life of A is independent of the initial concentration of [A].	Number
A twofold increase in the initial concentration of A leads to a fourfold increase in the initial rate.	Number
A twofold increase in the initial concentration of A leads to a 1.41-fold increase in the initial rate.	Number
The time required for [A] to decrease from [A] $_0$ to [A] $_0$ /2 is equal to the time required for [A] to decrease from [A] $_0$ /2 to [A] $_0$ /4.	Number
The rate of decrease of [A] is a constant.	Number

Question 10 of 12

Consider the following mechanism.

step 1:
$$A \rightleftharpoons B+C$$
 equilibrium
step 2: $C+D \rightarrow E$ slow
overall: $A+D \rightarrow B+E$

Determine the rate law for the overall reaction (where the overall rate constant is represented as k).

Consider this reaction data:

products

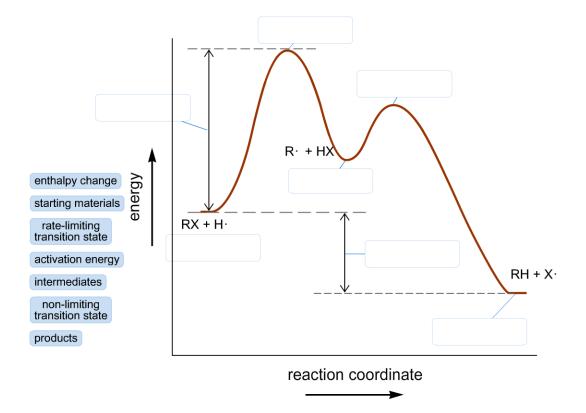
T(K)	k (s ⁻¹)	
325	0.399	
825	0.724	

If you were going to graphically determine the activation energy of this reaction, what points would you plot?

	x	<i>y</i>	
	Number	Number	
point 1:			To avoid rounding errors, use at least
	Number	Number	three significant figures in all values.
point 2:			

Determine the rise, run, and slope of the line formed by these points.

rise	run		slope	
Number	Number	Nu	ımber	


What is the activation energy of this reaction?

Question 12 of 12

Label the energy diagram for a two-step reaction.

