1. (10 points) Identify the hyperbolic, Parabolic, and elliptic PDEs for the following equations, then name them.

Equation	Туре	Name
$\nabla^2 u = 0$		
$u_t = \alpha^2 u_{xx} - h u_x$		
$\nabla^2 u + \lambda^2 u = 0$		
$u_{tt} = c^2 \nabla^2 u - h u_t$		
$u_t = \alpha^2 u_{xx} - hu$		
$\nabla^2 u + k \left(E - V \right) u = 0$		
$u_{tt} = c^2 u_{xx} - h u_t - ku$		
$\nabla^2 u = k$		
$u_{tt} = c^2 u_{xx} - h u_t$		
$u_t = \alpha^2 u_{xx} - f(x, t)$		

- 2. (5 points) Identify the order of the following PDE equations.
 - a). $u_t = u_{xx}$
 - b). $u_t = uu_{xxx} + \sin x$
 - c). $u_{t} = u_{x}$
- 3. (5 points) Identify the linear and nonlinear PDE equations.
 - a). $u_t + uu_{xx} = 0$
 - $b). \ u_{tt} = uu_{xxx} + \sin t$
 - **c).** $xu_x + yu_y + u^2 = 0$
 - **d).** $u_{xx} + yu_{yy} = 0$

4. (20 points) Suppose a copper rod 200 cm long that is laterally insulted and has an initial temperature of 0° C. Suppose the top of the rod (x = 0) is insulated, while the bottom (x = 220) is immersed in moving water that has a constant temperature of $g_2(t) = 20^{\circ}C$ as shown in the below Figure.

ind the four equations for this mathematical model?

5. (20 points) Consider IBVP (diffusion problem) of a finite rod where temperature at the ends is fixed at zero as in the below Figure with following equations.

PDE:
$$u_t = \alpha^2 u_{xx}$$
, $0 < x < 1, 0 < t < \infty$

BCs:
$$\begin{cases} u(0,t) = 0 \\ u(1,t) = 0 \end{cases}$$
, $0 < t < \infty$

IC:
$$u(x,0) = \phi(x)$$
, $0 \le x \le 1$

Use the <u>separation of variables method</u> step by step to find the solution to the PDE, BCs, and the IC.

- **6.** (5 points) Find the possible solution of m and n in the expression $u = \cos mt \sin nx$ such that it satisfies the wave equation $u_u = c^2 u_{xx}$.
- **7.** (5 points) Show that $u = u_0 \sin\left(\frac{\pi x}{L}\right) \cos\left(\frac{\pi ct}{L}\right)$, satisfies the one-

dimensional wave equation and the conditions

- (a) a given initial displacement $u(x, 0) = u_0 \sin(\pi x/L)$, and
- (b) zero initial velocity, $\partial u(x, 0)/\partial t = 0$.
- **8.** (5 points) Show that $u = x^4 2x^3y 6x^2y^2 + 2xy^3 + y^4$ satisfies the Laplace equation.
- **9.** (5 points) Show that the function $T = T_{\infty} + \left(T_m T_{\infty}\right) e^{-U(x-Ut)/\alpha}$, where $(x \ge Ut)$, satisfies the one-dimensional heat-conduction equation, together with the boundary conditions $T \to T_{\infty}$ as $x \to \infty$ and $T = T_m$ at x = Ut.
- 10. (20 points) The transmission-line equations represent the flow of current along a long, leaky wire such as a transatlantic cable. The equations take the form

$$-I_{x} - gv + cv_{t}$$
$$-V_{x} - rI + LI_{t}$$

where g, c, r and L are constants and I and v are the current and voltage respectively.

- (a) Show that when r = g = 0, the equations reduce to the wave equation.
- (b) Show that when L = 0, the equations reduce o a heat-conduction equation with a forcing term. Write W = $v e^{(gt/c)}$ to reduce to the normal form of the equation.

- 1. Verify the heat polynomial, $u = \frac{1}{2}x^2 + t$ is a solution of the heat equation $u_t = u_{xx}$.
- 2. Let $u = e^{mx+nt}$, what are m & n to be a solution of the heat equation $u_t = u_{xx}$.
- 3. Identify the transport, wave, Laplace, heat, and telegraph equations.

Equation	Name
$u_{tt} = u_{xx} + \alpha u_t + \beta u$	
$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$	
$u_t = u_{xx} + u_{yy}$	
$u_{tt} = u_{xx} + u_{yy} + u_{zz}$	
$u_t = -cu_x$	

4. Show the types of the following linear PDE equations (show your work!!):

a).
$$u_{tx} = 0$$

b).
$$u_{xx} + u_{yy} = 0$$

c).
$$u_t = u_{xx}$$