Decrypt the following ciphertext that is encrypted using RSA

ssampath000
example.py

# This is a Python 3 script """ egcd(): Extended Euclidean Algorithm - inputs: positive integers x, y - return: gcd(x,y), s, t, where gcd(x,y) = sx + ty """ def egcd(x, y): # initialize s0, t0, s1, t1 old_s, old_t, s, t = 1, 0, 0, 1 while(y > 0): q = x // y r = x % y x = y y = r old_s, s = s, old_s - (q*s) old_t, t = t, old_t - (q*t) return x, old_s, old_t N = 9443933355875323479428701223436866003317020345062337184168866482442741746051755875714077225424938697068202237079691276886895796347334130227954217861122456746475811995655599937678751969288324093545863325957721247606698180886906068377558846502707583137394885329858060292972366775543495590847656457 e = 65537 # Q1. What are the factors of N? # Q2. What is phi(N) (i.e., Euler's totient)? # phi = # Q3. What is the private exponent d? # _, s, _ = egcd(e, phi) # d = s % phi ciphertext = 5433065902986267632605533071412313607849042001231487725752160944543337634764776942780551811154931702225666567112761402854245945771790200374756020087742730448029511549378258035341909089954945069377423917666095579241594583655805469852654975413725915810650231239021446353034249591165382217733674640 #decrypted = pow(ciphertext, d, N) #print("decrypted message (ascii decoding): ", bytearray.fromhex(hex(decrypted)[2:]).decode())