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In many countries, genetically modified organisms (GMO) legislations have been established in order to guarantee the traceability
of food/feed products on the market and to protect the consumer freedom of choice. Therefore, several GMO detection strategies,
mainly based on DNA, have been developed to implement these legislations. Due to its numerous advantages, the quantitative PCR
(qPCR) is the method of choice for the enforcement laboratories in GMO routine analysis. However, given the increasing number
and diversity of GMO developed and put on the market around the world, some technical hurdles could be encountered with
the qPCR technology, mainly owing to its inherent properties. To address these challenges, alternative GMO detection methods
have been developed, allowing faster detections of single GM target (e.g., loop-mediated isothermal amplification), simultaneous
detections of multiple GM targets (e.g., PCR capillary gel electrophoresis, microarray, and Luminex), more accurate quantification
of GM targets (e.g., digital PCR), or characterization of partially known (e.g., DNA walking and Next Generation Sequencing
(NGS)) or unknown (e.g., NGS) GMO. The benefits and drawbacks of these methods are discussed in this review.


1. Introduction


With the aim to improve the agricultural practices and nutri-
tional quality, plant breeding techniques have been developed
to produce genetically modified (GM) crops expressing inter-
esting traits such as herbicide tolerance, insect resistance, and
abiotic stress resistance [1]. To this end, new combinations of
their genetic material are created through the use of modern
biotechnology [2]. The first genetically modified organism
(GMO) approved for the commercialization was the Flavr-
Savr tomato in 1994. From that time, 181.5 million hectares
of planted GM plants in 28 countries were reported in
2014 [1]. Given that the “right to know” for the consumers,


GMO labeling policies have been established in several
countries around the world with a threshold of tolerance
varying between 0 and 5%. Therefore, the presence of GMO in
the food/feed chain is controlled by the competent authorities
[3]. To guarantee the GMO traceability, a key factor in
the implementation of these regulations, several strategies,
categorized as indirect (protein-based methods) or direct
(DNA-based methods), have been developed to detect GMO
in food/feed samples by using different technologies. Among
the protein-based approaches, which target proteins encoded
by the transgenes, several methods depend on the Enzyme-
Linked Immunosorbent Assay (ELISA) technique (Table 1)
[4–21]. A portable immunoassay system was also proposed
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Figure 1: Suitable application of GMO detection approaches regarding the adopted strategy as well as the available information about the
sequences of tested GMO.


Table 1: Representative examples illustrating protein-based meth-
ods targeting GMO.


Technologies Targets References


ELISA


CP4-EPSPS [4]
Cry1Ab [10, 12, 15, 18, 20]
Cry1Ac [10, 14]
Cry2A [10]
Cry2Ab [19]
Cry3A [10, 16]
Cry9C [10]
nptII [5, 16, 22]


CP4-EPSPS [6, 10, 13, 22]
pat [10, 11, 13, 22]
Gox [17]
CpTI [21]


Immuno-PCR
Cry1Ac [23]
p35S [24]
tNOS [24]


CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase gene from
Agrobacterium tumefaciens strain); CpTI (trypsin inhibitor in cowpea Vigna
unguiculata); Cry (gene encoding the Bacillus thuringiensis 𝛿-endotoxin);
Gox (glyphosate oxidoreductase gene); nptII (neomycin phosphotransferase
II gene); p35S (promoter of the 35 S cauliflower mosaic virus); tNOS
(terminator of the nopaline synthase gene).


(Table 1) [22]. As an alternative, the immuno-PCR method
was used to identify GMO (Table 1) [23, 24].


Furthermore, protein-based methods include the use of
the mass spectrometry-based technology as a tool allow-
ing characterizing GM crops [25]. However, although they
present several advantages such as the rapidity and simplicity,
the protein-based methods depend on the expression level
of targeted proteins, which is variable according to the plant


tissues and the plant developmental status. Moreover, the
proteins are highly degraded or denatured by food process-
ing. Any modification in the targeted proteins could indeed
alter the specificity and sensitivity of the assay. In addition,
this strategy is not applicable if the genetic modification has
no impact at the protein level [26, 27]. To overcome these
issues, many DNA-based methods, targeting straightforward
transgenic integrated sequences, have been widely developed.
Even if quantitative PCR (qPCR) is the method of choice
in GMO routine analysis, its inherent PCR properties imply
some limitations. Therefore, to address these challenges,
some alternative approaches have been developed, allowing
notably providing faster detection of GM targets individually
amplified in both routine laboratory and field (e.g., loop-
mediated isothermal amplification (LAMP)), simultaneous
detection of several GM targets (e.g., PCR capillary gel elec-
trophoresis (CGE), microarray, and Luminex), more accurate
quantification of GM targets (e.g., digital PCR (dPCR)), or
characterization of partially known (e.g., DNA walking and
Next Generation Sequencing (NGS)) or unknown (e.g., NGS)
GMO (Figure 1). These DNA-based approaches and their
targets are described in this review. In addition, the most
appropriate uses of these approaches are discussed according
to the adopted strategy of GMO detection as well as the
available information about the sequences of tested GMO.


2. GMO Detection Approaches


2.1. qPCR Technology. The qPCR system, which is the most
common strategy, allows detecting, identifying, and quan-
tifying GMO via the SYBR Green or TaqMan chemistries
(Figure 1) [28]. Using a primer pair specific to the target,
these qPCR chemistries are both based on PCR amplifi-
cation recorded in real time with the fluorescence origi-
nated either from the asymmetrical cyanine dye binding to
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double-stranded DNA (SYBR Green) or from the fluorogenic
probe specific to the targeted sequence (TaqMan) [29]. This
technology is suitable for both unprocessed and processed
food/feed matrices since amplicons of around 100 bp are
usually amplified. Even if numerous qPCR methods have
been reported, three main steps are typically followed in
GMO routine analysis [30]. First, the potential presence of
GMO is assessed via a screening approach targeting the most
common transgenic elements found in GMO, such as p35S
(35S promoter from cauliflower mosaic virus) and tNOS
(nopaline synthase terminator from Agrobacterium tumefa-
ciens). In addition, some markers more discriminative, such
as Cry3Bb, gat-tpinII, and t35S pCAMBIA, and taxon-specific
markers could also be used. This step allows establishing a
list of the potential GMO present in the tested samples and
preventing further unnecessary assays in the subsequent steps
(Table 2) [28, 30–34]. Several of these screening markers are
validated, based on minimum performance requirements, at
the EU level following ring trials and are included in the
Compendium of reference methods for GMO analysis [35].
According to the positive and negative signals observed for
the different screening markers tested, GM events potentially
detected are in a second step identified using construct-
specific or event-specific markers targeting, respectively, the
junction between two elements inside the transgenic cassette
or the junction between the transgenic cassette and the
plant genome. In order to properly discriminate each GM
event, the event-specific markers are currently favoured since
the unique transgenic integration sites are targeted. Finally,
the amount of identified GM events present in the tested
food/feed samples is determined. Using event-specific and
taxon-specific markers, this quantification step is carried
out on the basis of the number of copies belonging to the
transgene and to the endogen (Table 2) [30]. All the methods
used to identify the EU-authorized GMO as well as the
GMO for which the authorization is pending or is subjected
to be withdrawn in the case of low level presence (LLP)
have been provided by the applicants and are reported in
the Compendium of reference methods for GMO analysis
[35]. In combining several taxon-specific, event-specific, and
construct-specific TaqMan markers in a 96-well prespotted
plate, a real-time PCR based ready-to-use multitarget ana-
lytical system has been developed to allow the simultaneous
identification of thirty-nine GM events [36].


In spite of its flexibility, simplicity, rapidity, and high
analytical sensitivity, especially crucial to detect a low amount
of GM targets, the success of the qPCR strategy depends
however on some factors. For instance, the throughput of the
qPCR strategy is usually limited to one marker per reaction.
Due to the increasing number of GMO, additional markers
have continually to be developed and used to fully cover
their detection, which could thus make the laboratory work
and the analysis of the results quite complex and laborious
[32]. In addition, this a priori approach targets only known
sequences. Therefore, negative signals guarantee only the
absence of known GMO in the tested food/feed samples.
Similarly, in case of unexplained signals, in other words,
the obtaining of positive and negative signals that found
no correspondence with known GM events, the presence


of unknown GMO could only be suspected. Indeed, the
detection of GMO by qPCR is notably based on transgenic
elements originated from natural organisms, such as p35S
from CaMV and tNOS from Agrobacterium. For this reason,
the qPCR system provides merely an indirect proof of the
presence of GMO in a food/feed matrix since it could only
be confirmed by the sequence of their transgene flanking
regions. Concerning the quantification step, its achievement
depends on the availability of Certified Reference Materials
(CRM) [30, 33, 125]. Finally, the presence of inhibitors, such as
polysaccharides, polyphenols, pectin, xylan, or fat, could alter
the efficiency of the PCR reaction. Consequently, a later qPCR
signal than theoretically expected will be observed, inducing
an underestimation or even concealing the amount of GMO
present in the tested sample [126–128].


2.1.1. qPCR Analysis Tools. In order to facilitate the inter-
pretation of results, rapid and cost-efficient systems have
been developed via analytical tools integrating simultane-
ously several targets. To this end, the CoSYPS platform
(Combinatory SYBR Green qPCR Screening), which is a
decision support system (DSS) at the screening level, has been
successfully developed. For each tested food/feed matrix,
this DSS combines immediately the experimental 𝐶


𝑡
and


𝑇
𝑚
values obtained with the twenty SYBR Green methods,


running in a single 96-well plate and targeting plant gene,
taxon genes, and transgenic elements (Table 2). This selec-
tion of screening markers allows both covering at least all
the EU-authorized GMO and LLP cases (e.g., with p35S
and tNOS) and, as far as possible, discriminating between
themselves and some EU-unauthorized GMO (e.g., with t35S
pCAMBIA and gat-tpinII) in order to reduce the number
of identifications/quantifications to carry out downstream
[30, 33, 34, 129]. An alternative to interpret qPCR results
is provided by the GMOseek and GMOfinder databases,
containing reliable information on GMO. Following the
interpretation of the experimental results, obtained with
in-house or EU reference methods, the names of positive
elements are introduced in the databases to provide a list of
potentially detected GMO that will be then experimentally
verified [130, 131]. The truthfulness of these predictions is
however diminished since elements identically named can
possess different sequences and the detection methods used
are not taken into account. Indeed, to target the same
element, several methods could exist and could present
different PCR efficiencies which could generate variation in
the results. Most recently, the JRC-GMO-Matrix platform,
combining information from the GMOMETHODS database
(all reference methods for GMO analysis) and the Central
Core DNA Sequences Information System (several annotated
GMO sequences), was also proposed for the same purpose.
This platform integrates the positive and negative signals
experimentally observed with EU validated taxon-specific,
element-specific, construct-specific, and event-specific meth-
ods for any tested food/feed matrix in order to predict more
reliably the potential amplified GM events [28]. The JRC-
GMO-Matrix platform is also strengthened by the JRC GMO-
Amplicons database which contains publically available puta-
tive GMO-related sequences [132].
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Table 2: Representative examples illustrating simplex qPCR methods targeting GMO. Those validated at the EU level are indicated by an
asterisk. Screening markers used in the CoSYPS are indicated by∼.


Methods Chemistries Targets References
Screening markers


Plant-specific SYBR Green RBCL∼ [37]
Taxon-specific SYBR Green LEC∗∼ [35]


SYBR Green ADH∗∼ [37]
SYBR Green CRU∗∼ [37]
SYBR Green PLD∼ [37]
SYBR Green SAD1∼ [35]
SYBR Green GLU∼ [35]


Element-specific SYBR Green p35S∗∼ [31]
TaqMan p35S∗ [38]


SYBR Green tNOS∗∼ [31]
TaqMan tNOS∗ [38]


SYBR Green pFMV∼ [39]
TaqMan pFMV∗ [35]


SYBR Green pNOS∼ [39]
SYBR Green t35S∼ In-house
SYBR Green Cry1Ab/Ac∼ [40]
TaqMan Cry1A(b)∗ [35]


SYBR Green Cry3Bb∼ [34]
SYBR Green pat∗∼ [40]
TaqMan pat∗ [35]


SYBR Green bar∗∼ [40]
TaqMan bar∗ [35]


SYBR Green CP4-EPSPS∼ [40]
SYBR Green t35S pCAMBIA∼ [33]
SYBR Green nptII [35]


Construct-specific SYBR Green gat-tpinII∼ [34]
Virus-specific SYBR Green CRT∼ In-house


Event-specific methods
GM-specific TaqMan Maize (Zea mays) 3272∗ [35]


TaqMan Maize (Zea mays) 5307∗ [35]
TaqMan Maize (Zea mays) 98140∗ [35]
TaqMan Maize (Zea mays) Bt11∗ [35]
TaqMan Maize (Zea mays) Bt176∗ [35]
TaqMan Maize (Zea mays) DAS-40278-9∗ [35]
TaqMan Maize (Zea mays) DAS-59122-7∗ [35]
TaqMan Maize (Zea mays) GA21∗ [35]
TaqMan Maize (Zea mays) LY038∗ [35]
TaqMan Maize (Zea mays) MIR162∗ [35]
TaqMan Maize (Zea mays) MIR604∗ [35]
TaqMan Maize (Zea mays) MON810∗ [35]
TaqMan Maize (Zea mays) MON863∗ [35]
TaqMan Maize (Zea mays) MON87460∗ [35]
TaqMan Maize (Zea mays) MON88017∗ [35]
TaqMan Maize (Zea mays) MON89034∗ [35]
TaqMan Maize (Zea mays) NK603∗ [35]
TaqMan Maize (Zea mays) T25∗ [35]
TaqMan Maize (Zea mays) TC1507∗ [35]
TaqMan Soybean (Glycine max) A2704-12∗ [35]
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Table 2: Continued.


Methods Chemistries Targets References
TaqMan Soybean (Glycine max) A5547-127∗ [35]
TaqMan Soybean (Glycine max) BPS-CV-127∗ [35]
TaqMan Soybean (Glycine max) DAS68416-4∗ [35]
TaqMan Soybean (Glycine max) DP-305423-1∗ [35]
TaqMan Soybean (Glycine max) DP-356043-5∗ [35]
TaqMan Soybean (Glycine max) FG72∗ [35]
TaqMan Soybean (Glycine max) GTS40-3-2∗ [35]
TaqMan Soybean (Glycine max) MON87701∗ [35]
TaqMan Soybean (Glycine max) MON87705∗ [35]
TaqMan Soybean (Glycine max) MON87708∗ [35]
TaqMan Soybean (Glycine max) MON87769∗ [35]
TaqMan Soybean (Glycine max) MON89788∗ [35]
TaqMan Cotton (Gossypium hirsutum) 281-24-236∗ [35]
TaqMan Cotton (Gossypium hirsutum) 3006-210-23∗ [35]
TaqMan Cotton (Gossypium hirsutum) GHB119∗ [35]
TaqMan Cotton (Gossypium hirsutum) GHB614∗ [35]
TaqMan Cotton (Gossypium hirsutum) LLCOTTON25∗ [35]
TaqMan Cotton (Gossypium hirsutum) MON531∗ [35]
TaqMan Cotton (Gossypium hirsutum) MON1445∗ [35]
TaqMan Cotton (Gossypium hirsutum) MON15985∗ [35]
TaqMan Cotton (Gossypium hirsutum) MON88913∗ [35]
TaqMan Cotton (Gossypium hirsutum) T304-40∗ [35]
TaqMan Oilseed rape (Brassica napus) 73496∗ [35]
TaqMan Oilseed rape (Brassica napus) GT73∗ [35]
TaqMan Oilseed rape (Brassica napus) MON88302∗ [35]
TaqMan Oilseed rape (Brassica napus) Ms1∗ [35]
TaqMan Oilseed rape (Brassica napus) Ms8∗ [35]
TaqMan Oilseed rape (Brassica napus) Rf1∗ [35]
TaqMan Oilseed rape (Brassica napus) Rf2∗ [35]
TaqMan Oilseed rape (Brassica napus) Rf3∗ [35]
TaqMan Oilseed rape (Brassica napus) T45∗ [35]
TaqMan Oilseed rape (Brassica napus) Topas 19/2∗ [35]
TaqMan Potato (Solanum tuberosum) EH92-527-1∗ [35]
TaqMan Rice (Oryza sativa) LLRICE62∗ [35]
TaqMan Sugar beet (Beta vulgaris) H7-1∗ [35]


ADH (alcohol dehydrogenase I gene from maize); bar (phosphinothricin-N-acetyltransferases gene from Streptomyces hygroscopicus); CP4-EPSPS (5-
enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens strain); CRT (reverse transcriptase gene from the cauliflower mosaic virus);
CRU (cruciferin gene from colza); Cry (gene encoding the Bacillus thuringiensis 𝛿-endotoxin); gat-tpinII (junction sequence between the glyphosate N-
acetyltransferase of Bacillus licheniformis and the terminator of the Solanum tuberosum proteinase inhibitor); GLU (glutamine synthetase gene from sugar beet);
LEC (lectin gene from soybean); nptII (neomycin phosphotransferase II gene); p35S (promoter of the 35 S cauliflower mosaic virus); pat (phosphinothricin-
N-acetyltransferases gene from Streptomyces viridochromogenes); pFMV (promoter of the figwort mosaic virus); phy (phytase gene from maize); PLD
(phospholipase D gene from rice); pNOS (promoter of the nopaline synthase gene); RBCL (ribulose-1,5-biphosphate carboxylase oxygenase); SAD1 (stearoyl-
acyl carrier protein desaturase gene from cotton); t35S (terminator of the cauliflower mosaic virus); t35S pCAMBIA (terminator of the cauliflower mosaic virus
from pCAMBIA vector); tNOS (terminator of the nopaline synthase gene).


2.1.2. Multiplex qPCR Strategy. With multiplex PCR-based
methods, several DNA targets can be detected in a single
reaction. It presents the advantage to decrease the number of
reactions necessary to test the potential presence of GMO in a
sample. Several multiplex qPCR TaqMan strategies have thus
been investigated, including mainly the screening markers
p35S and tNOS (Table 3) [38, 41, 43–49]. To provide a system
with a high GMO coverage, twenty-three triplex and one


duplex PCR were gathered on a 384-well plate to identify
forty-seven targets (Table 3) [42].


However, compared to simplex qPCR, the development of
optimal multiplex assays could be more challenging notably
in terms of primers and probes design as well as sensitivity
and reproducibility. Moreover, the throughput of this strategy
is relatively limited by the availability of dyes with an emission
and absorption spectrum of fluorescence sufficiently distinct
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Table 3: Representative examples illustrating multiplex qPCR TaqMan methods targeting GMO. Those validated at the EU level are indicated
by an asterisk.


Multiplexing Methods Targets References
Duplex Element-specific p35S∗ and tNOS∗ [38]
Duplex Element-specific bar and pat [41]


Duplex Plant-specific TLC [42]
Other IPC


Duplex Taxon-specific ADH [43]
Event-specific Bt11


Duplex Taxon-specific ADH [43]
Event-specific Bt176


Duplex Taxon-specific ADH [43]
Event-specific MON810


Duplex Taxon-specific ADH [43]
Event-specific T25


Triplex Element-specific p35S, tNOS, and CTP2/CP4-EPSPS [41]


Triplex Taxon-specific LEC and Zein [42]
Other IPC


Triplex Taxon-specific Pro and PC [42]
Other IPC


Triplex Taxon-specific ACC and FRUp [42]
Other IPC


Triplex Taxon-specific SAD1 and FRUt [42]
Other IPC


Triplex Element-specific p35S and pFMV [42]
Other IPC


Triplex Element-specific tE9 and tNOS [42]
Other IPC


Triplex Element-specific bar and CP4-EPSPS [42]
Other IPC


Triplex Element-specific hpt and pat [42]
Other IPC


Triplex Element-specific nptII and Cry1Ab/Ac [42]
Other IPC


Triplex Construct-specific CBH351 and Bt176 [42]
Other IPC


Triplex Construct-specific MON810 and T25 [42]
Other IPC


Triplex Construct-specific Bt11 and MON863 [42]
Other IPC


Triplex Construct-specific NK603 and GA21 [42]
Other IPC


Triplex Construct-specific TC1507 and DAS-59122-7 [42]
Other IPC


Triplex Construct-specific MIR604 and MON88017 [42]
Other IPC


Triplex Construct-specific 98140 and MON89034 [42]
Other IPC


Triplex Construct-specific 3272 and MIR162 [42]
Other IPC


Triplex Construct-specific A2704-12 and GTS40-3-2 [42]
Other IPC
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Table 3: Continued.


Multiplexing Methods Targets References


Triplex Construct-specific DP-305423-1 and DP-356043-5 [42]
Other IPC


Triplex Construct-specific MON87701 and MON89788 [42]
Other IPC


Triplex
Element-specific AHAS [42]
Construct-specific FG72


Other IPC [42]


Triplex Construct-specific Bt63 and A5547-127 [42]
Other IPC


Triplex
Element-specific Xa21
Construct-specific KMD1


Other IPC


Triplex Taxon-specific Zein [44]
Construct-specific MON810 and GA21


Triplex Taxon-specific ADH [44]
Construct-specific MON810 and GA21


Triplex Element-specific p35s, tNOS, and t35S [45]
Triplex Element-specific tE9, pRbcS4, and tORF23 [45]


Triplex Element-specific tpinII and tAHASL [45]
Event-specific DP-305423-1


Tetraplex Element-specific pFMV, bar, pat, and CTP2/CP4-EPSPS [46]
Tetraplex Element-specific p35S, tNOS, pFMV, and bar [47]


Pentaplex
Taxon-specific HMG and LEC
Element-specific p35S and tNOS [46]
Virus-specific CaMV


Pentaplex Element-specific p35S, tNOS, bar, pat, and CTP2/CP4-EPSPS [41]


Pentaplex Taxon-specific LEC [48]
Event-specific MON87769, MON87708, MON87705, and FG72


Hexaplex
Element-specific p35S, tNOS, and pFMV
Construct-specific SAMS and LY [49]


Other IPC
ACC (acetyl-CoA-carboxylase gene from colza); ADH (alcohol dehydrogenase I gene from maize); AHAS (AHAS fragment unique recombination
from BPS-CV-127); bar (phosphinothricin-N-acetyltransferases gene from Streptomyces hygroscopicus); CaMV (ORFIII from CaMV); CP4-EPSPS (5-
enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens strain); Cry (gene encoding the Bacillus thuringiensis 𝛿-endotoxin);
CTP2/CP4-EPSP (junction region between the chloroplast transit peptide 2 (CTP2) sequence from the Arabidopsis thaliana epsps gene and the CP4 epsps
gene from Agrobacterium tumefaciens (CP4-EPSPS)); FRUp (𝛽-fructosidase gene from potato); FRUt (𝛽-fructosidase gene from tomato); HMG (major high-
mobility group protein gene from maize); hpt (hygromycin phosphotransferase gene); IPC (internal positive control); LEC (lectin gene from soybean);
LS28 (choline kinase); LY (transition from Zea mays chloroplast transit peptide sequence for dihydrodipicolinate synthase to Corynebacterium glutamicum
dihydrodipicolinate synthase (cordapA) gene encoding for a lysine-insensitive dihydrodipicolinate synthase enzyme); nptII (neomycin phosphotransferase
II gene); p35S (promoter of the 35 S cauliflower mosaic virus); pat (phosphinothricin-N-acetyltransferases gene from Streptomyces viridochromogenes); PC
(phosphoenolpyruvate carboxylase gene from wheat); pFMV (promoter of the figwort mosaic virus); pRbcS4 (ribulose 1,5-bisphosphate carboxylase small
subunit promoter from A. thaliana); Pro (prolamin gene from rice); SAD1 (stearoyl-acyl carrier protein desaturase gene from cotton); SAMS (transition
from S-adenosyl-L-methionine synthetase (SAMS) promoter to Glycine max acetolactate synthase (gm-hra) gene); t35S (terminator of the cauliflower mosaic
virus); tAHASL (acetohydroxy acid synthase large subunit terminator from A. thaliana); tE9 (ribulose-1,5-bisphosphate carboxylase terminator E9 from
Pisum sativum); TLC (tRNA-Leu chloroplastic gene); tNOS (terminator of the nopaline synthase gene); tORF23 (open reading frame 23 terminator from A.
tumefaciens); tpinII (inhibitor II terminator from potato); Zein (Zein gene from maize), Xa21 (Xa21 gene from Oryza longistaminata).


to avoid overlaps of signals. The combination of different dyes
risks also increases the fluorescent background. Therefore,
the majority of the reported multiplex qPCR assays amplify
simultaneously only two or three targets. To date, a maximum
of six markers have been successfully combined in one
reaction to detect GMO [35, 49].


2.2. Alternative Multiplex Strategies. Still with the aim of
going further in the development of multiplex assays, several
methods not based on qPCR have been also developed using
notably the CGE, microarray, and Luminex technologies.
Two main steps are generally followed. Firstly, to guarantee a
sufficient sensitivity, the samples are amplified by PCR since
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Table 4: Representative examples illustrating multiplex PCR CGE methods targeting GMO.


Multiplexing Methods Targets References


Tetraplex Taxon-specific Zein and LEC [50]
Element-specific p35S and tNOS


Tetraplex Taxon-specific SAD1 [51]
Element-specific Cry1Ac, p35S, and tNOS


Pentaplex Taxon-specific ADH [52]
Event-specific Bt11, GA21, MON810, and NK603


Hexaplex Taxon-specific acp1 [53]
Event-specific Bollgard, Bollgard II, RR, 3006-210-23, and 281-24-231


Hexaplex Taxon-specific HMG [54, 55]
Event-specific DAS-59122-7, LY038, MON88017, MIR604, and 3272


Octaplex Event-specific Bt11, Bt176, Huanong No. 1, GTS40-3-2, T25, MON88913, MON1445, and MIR604 [56]


Octaplex
Taxon-specific LEC and ssIIb
Element-specific pFMV and tNOS [56]
Event-specific TC1507, MON531, NK603, and GA21


Octaplex
Taxon-specific SAD1
Element-specific bar, chy, pAct, CP4-EPSPS, and Cry1Ab [56]
Event-specific GT73 and OXY235


Nonaplex Taxon-specific HMG [57, 58]
Event-specific T25, GA21, TC1507, MON863, MON810, NK603, Bt176, and Bt11


acp1 (acyl carrier protein 1 gene from cotton); ADH (alcohol dehydrogenase I gene from maize); bar (phosphinothricin-N-acetyltransferases gene from
Streptomyces hygroscopicus); Chy (chymopapain gene from papaya); CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium
tumefaciens strain); Cry (gene encoding the Bacillus thuringiensis𝛿-endotoxin); HMG (major high-mobility group protein gene from maize); LEC (lectin gene
from soybean); p35S (promoter of the 35 S cauliflower mosaic virus); pAct (promoter region of rice actin gene); pFMV (promoter of the figwort mosaic virus);
SAD1 (stearoyl-acyl carrier protein desaturase gene from cotton); ssIIb (starch synthase IIb gene from maize); tNOS (terminator of the nopaline synthase gene);
Zein (Zein gene from maize).


the GM targets are potentially at trace level in food/feed
matrices. In a second step, the PCR products are analyzed
using the CGE, microarray, or Luminex platforms. Despite
the fact that these technologies present a higher throughput
than qPCR, their multiplexing level is still influenced by
the inherent properties of PCR which limit the number of
reactions at commonly ten targets per PCR assay [133, 134].


2.2.1. PCR Capillary Gel Electrophoresis Technology. In order
to detect simultaneously several targets, the use of the PCR
multiplex CGE, where fluorescently labelled primers allow
discriminating different amplicons of the same size, has been
also suggested to be applied in the GMO detection field
(Figure 1 and Table 4). Compared to the electrophoresis gel,
the resolution power of the CGE system to detect PCR prod-
ucts from a multiplex assay is clearly higher [134]. However,
the sensitivity of CGE system is weaker than the qPCR tech-
nology [135]. Using the PCR CGE system, eight GM maize
were identified via a nonaplex PCR including event-specific,
construct-specific, and taxon-specific methods (Table 4) [57,
58]. Similarly, one pentaplex PCR and two hexaplex PCR
were also developed to, respectively, detect specifically four
GM maize, five GM cotton, and five GM maize (Table 4)
[52–55]. Recently, a tetraplex targeting transgenic elements
and cotton-specific gene was also reported (Table 4) [51].
In addition, Guo et al., 2011 developed three octaplex PCR
using universally tailed primers to preamplify GM targets
under a short number of cycles. To increase the yield and


PCR efficiency, these amplicons, earlier submitted to a PCR
emulsion, are then enriched with universal primers. By this
way, twenty-four targets from fourteen GM events were
identified by the CGE system (Table 4) [56]. A variant of this
technique, which implies no fluorescent labels on primers,
is reported by Burrell et al., 2011. This study proposed a
tetraplex PCR composed of two species-specific methods and
two screening markers allowing detecting the presence of Bt11
maize and GTS40-3-2 soybean events using commercialized
electrophoresis instruments (Table 4) [50].


2.2.2. Microarrays Technology. With the microarray technol-
ogy applied to GMO detection, GM targets are amplified by
PCR, using target-specific and/or universal primers, prior
to being hybridized on the array, allowing the simultaneous
detection of more than 250 000 targets in one assay (Figure 1
and Table 5) [136]. Compared to the qPCR, the microarray
strategy presents thus a well higher throughput but a slightly
weaker sensitivity [133, 137]. One approach, called multiplex
quantitative DNA array-based PCR (MQDA-PCR), tested
on transgenic maize events, consists of a first PCR using
target-specific primers that harbor a universal tail allowing
using universal primers in the second PCR. The signal is
then detected after the hybridization of the PCR products
with the fluorescently labelled probes on the DNA array
(Table 5) [63]. Furthermore, using a padlock probe ligation-
microarray detection system (PPLMD), some GM maize,
cotton, and soybean events were detected. With the PPLMD
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Table 5: Representative examples illustrating multiplex PCR microarray methods targeting GMO.


Multiplexing Techniques Methods Targets References
Duplex DualChip GMO Element-specific p35S and tNOS [59–61]


Duplex DualChip GMO Construct-specific pNOS/nptII [59–61]
Virus-specific CaMV


Triplex DualChip GMO Element-specific pat, Cry1A(b), and CP4-EPSPS [59–61]


Triplex NAIMA Taxon-specific IVR [62]
Element-specific p35S and tNOS


Triplex NAIMA
Taxon-specific IVR
Element-specific p35S [62]
Event-specific MON810


Tetraplex DualChip GMO Plant-specific RBCL [59–61]
Taxon-specific IVR, LEC, and CRU [63]


Octaplex MQDA-PCR


Taxon-specific HMG
Element-specific p35S and tNOS
Event-specific Bt176, Bt11, and MON810


other IPC


Decaplex PPLMD
Taxon-specific SAD1, Zein, ACC, and LEC
Element-specific p35S, pFMV, and bar [64]
Event-specific MON1445, Bt176, and GTS40-3-2


Dodecaplex MQDA-PCR


Taxon-specific HMG


[63]Element-specific p35S, tNOS, and Amp
Event-specific Bt176, Bt11, MON810, T25, GA21, CBH351, and DBT418


Other IPC
ACC (acetyl-CoA-carboxylase gene from colza); Amp (ampicillin resistance gene); bar (phosphinothricin-N-acetyltransferases gene from Streptomyces
hygroscopicus); CaMV (ORFIII from CaMV); CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens strain); CRU
(cruciferin gene from colza); Cry (gene encoding the Bacillus thuringiensis 𝛿-endotoxin); HMG (major high-mobility group protein gene from maize); IPC
(internal positive control); IVR (invertase gene from maize); LEC (lectin gene from soybean); nptII (neomycin phosphotransferase II gene); p35S (promoter
of the 35 S cauliflower mosaic virus); pat (phosphinothricin-N-acetyltransferases gene from Streptomyces viridochromogenes); pFMV (promoter of the figwort
mosaic virus); pNOS (promoter of the nopaline synthase gene); RBCL (ribulose-1,5-biphosphate carboxylase oxygenase); SAD1 (stearoyl-acyl carrier protein
desaturase gene from cotton); tNOS (terminator of the nopaline synthase gene); Zein (Zein gene from maize).


system, the targets are initially hybridized to linear padlock
probes harboring target-specific and universal sequences to
be then amplified by PCR with universal primers (Table 5)
[64]. In addition, a nucleic acid sequence based amplification
implemented microarray (NAIMA) approach, using univer-
sal primers, has been tested on transgenic maize (Table 5)
[62, 137]. As an alternative to the potential issue related to the
use of fluorescent label, the DualChip GMO system was pro-
posed. So, after PCR amplification with biotinylated target-
specific primers, the amplicons hybridized on the arrays
are detected by a colorimetric reaction, allowing identifying
simultaneously some GM maize, soybean, and rapeseed
events. The performance of the DualChip GMO system,
targeting fourteen elements, was also validated through an
EU collaborative ring trial. An upgraded version of this
system (DualChip GMO V2.0) presents a higher GMO
coverage in targeting thirty elements (Table 5) [59–61, 133,
138]. Most recently, a multiplex amplification on a chip with
readout on an oligo microarray (MACRO) system, targeting
ninety-one targets to cover a broad spectrum of GMO, was
also reported [139].


2.2.3. Luminex Technology. Biotinylated targets amplified by
single or multiplex PCR assays could be analyzed with


the Luminex technology, potentially able to simultaneously
detect up to 500 different targets in one sample using
spectrally distinct sets of beads that are independently
coupled to unique nucleic acid probes. After hybridization
of biotinylated oligonucleotides to corresponding probe-
bead complexes, the reader device individually analyzes each
microsphere by flow cytometry in applying a laser excitation
of 635 nm and 532 nm allowing, respectively, identifying the
bead set and determining the presence or absence of the
target (Figure 1) [140]. This technology was firstly assessed
in GMO detection by Fantozzi et al., 2008 (Table 6). In this
study, the p35S and EPSPS elements, earlier individually
amplified by PCR from the GTS-40-3-2 soybean event,
were simultaneously detected [65]. Afterwards, the GM
stacked LS28 × Cry1Ac rice and 281-24-236 × 3006-210-23
cotton events were identified on the Luminex platform using
upstream, respectively, a pentaplex PCR or a hexaplex PCR
(Table 6) [67, 68]. This technology was also used to detect ten
GM maize events through four sets of multiplex PCR assays
(Table 6) [66]. Similarly, a liquid bead array approach allow-
ing identifying thirteen GM maize was recently developed
[141].


Due to its potential high throughput, the Luminex
technology seems to be a promising alternative in GMO
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Table 6: Representative examples illustrating Luminex strategies targeting GMO.


Multiplexing Methods Targets References
Simplex Element-specific p35S and CP4-EPSPS [65]


Triplex Taxon-specific Zein [66]
Event-specific MIR604 and MON88017


Tetraplex Event-specific Bt176, MON810, NK603, and GA21 [66]
Tetraplex Event-specific Bt11, T25, MIR162, and MON89034 [66]


Pentaplex Taxon-specific SPS [67]
Element-specific Cry1Ac, tNOS, p35S, and LS28


Hexaplex
Taxon-specific SAD1
Element-specific Cry1Ac, Cry1F, and pat [68]
Event-specific 281-24-236 and 3006-210-23


CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens strain); Cry (gene encoding the Bacillus thuringiensis 𝛿-
endotoxin); LS28 (choline kinase); p35S (promoter of the 35 S cauliflower mosaic virus) SAD1 (stearoyl-acyl carrier protein desaturase gene from cotton);
SPS (sucrose phosphate synthase gene from rice); tNOS (terminator of the nopaline synthase gene); tORF23 (open reading frame 23 terminator from A.
tumefaciens); Zein (Zein gene from maize).


detection. Moreover, the liquid bead array is considered as
more sensitive and faster than the microarray system [67].
Nevertheless, the drawback linked to the PCR complicates the
setting of a unique multiplex assay targeting simultaneously
all GM events. Furthermore, as only few studies using this
technology in GMO detection have been reported to date,
experiments have still to be carried out in order to provide
effective and validated systems.


2.3. Digital PCR Technology. To resolve difficulties observed
during the relative quantification step in qPCR, especially
when the copy numbers of GMO are low and/or PCR
inhibitors are present, the digital PCR (dPCR) technology
has been tested in GMO detection (Figure 1). Based on the
binomial Poisson statistics, each partition of the fractionated
sample is determined as positive (amplified target observed)
or negative (no amplified target observed) by the dPCR
technology allowing absolutely quantifying the number of
nucleic acid targets from GMO present in any given sample.
Two approaches of this end-point PCR system have up till
now been used for this aim (Table 7). On the one hand, the
chamber dPCR (cdPCR), partitioning the sample in several
thousands of microfluidic chambers, was used to target GM
maize MON810 event using a duplex PCR composed of the
MON810 event-specific and maize taxon-specific methods.
The detection limits of this approach were also investigated
[72–74]. Moreover, a strategy based on the cdPCR system was
developed in order to cover a wide range of GMO by applying
individually twenty-eight element-specific, thirty-six event-
specific, and five taxon-specific methods (Table 7) [69].
Afterwards, this strategy was applied with forty-eight mark-
ers, including seven transgenic elements-specific, fourteen
event-specific, and five taxon-specific methods (Table 7) [70].
On the other hand, the droplet dPCR (ddPCR) approach,
implying several thousands of droplets generated by a water-
oil emulsion, was used in simplex or duplex PCR with the
MON810 event-specific and maize taxon-specific methods
[71]. Most recently, duplex assays, including one GMO-
specific marker with one soybean, maize, or rice taxon-
specific marker, were performed by using the ddPCR system


to quantify twelve GM soybean, sixteen GM maize, and two
GM rice events (Table 7) [48, 75].


The dPCR technology could become a key tool in the
field of GMO detection, mainly because an absolute, and
not relative as in qPCR, quantification of the GM target is
provided. The measurement does not require necessarily the
use of reference material, solving issues related to the avail-
ability of an optimal reference material. Moreover, thanks
to the partitioning of the sample, the PCR efficiency is less
affected by the presence of inhibitors and allows reducing
the uncertainty in the measurement, especially at low copy
number, as observed with qPCR calibration curves generated
by serial dilutions of the target. However, validated qPCR
methods are not always simply transferable to the dPCR
technology. Indeed, some optimization has to be carried out
regarding, for instance, the design and the concentrations
of primers and probes. In addition, given that maximum
two different targets could be identified in one well, the low
throughput power of the dPCR technology highlights its
applicability more suitable at the identification/quantification
level than at the screening step [48, 71, 75, 142].


2.4. Loop-Mediated Isothermal Amplification. Due to its
rapidity, specificity, sensitivity, and simplicity, the loop-
mediated isothermal amplification (LAMP) method has been
proposed to detect GMO (Figure 1). To this end, four primers
specific to six distinct regions of the target are required,
allowing, under isothermal condition, initiating the reaction
and increasing the amplification speed by the formation
of a loop structure. The amplification can be then directly
visualized in the tube thanks to fluorescent dyes. Several
LAMP markers were thus developed for this approach to
target transgenic elements (Table 8) [76–91, 143].


The LAMP strategy presents the advantage to tolerate
several PCR inhibitors such as acidic polysaccharides [84].
Its implementation does also not require any sophisticate
devices. Indeed, the amplification could be carried out using
a water bath or heating block [90]. Some of the developed
LAMP methods have besides been successfully tested in
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Table 7: Representative examples illustrating digital PCR strategies targeting GMO.


Multiplexing Techniques Methods Targets References


Simplex cdPCR


Taxon-specific HMG, LEC, GLU, and CRU


[69]


Element-specific p35S, tNOS, Cry1Ab, Cry1F, bar, CP4-EPSPS, Cry3Bb, nptII, Cry1A.105,
and Cry2Bb


Event-specific


MON531, MON88913, MON1445, MON15985, LLCOTTON25, GHB614,
3272, DAS-59122-7, Bt176, Bt11, GA21, MIR162, MIR604, MON810,
MON863, MON88017, MON89034, NK603, T25, TC1507, Ms1,
Topas19/2, OXY 235, Ms8, Rf3, GT73, T45, GTS40-3-2, A2704-12,
MON89788, MON87701, DP-356043-5, A5547-127, BPS-CV-127,
DP-305423-1, and TT51-1


Simplex cdPCR


Taxon-specific ADH, CRU, PLD, LEC, and adhC


[70]
Element-specific p35S, pFMV, tNOS, Cry1Ab, bar, pat, and nptII


Event-specific 3272, Bt11, GA21, MON89034, MON810, MIR604, MON88017, TC1507,
Bt176, GTS40-3-1, DP-305423-1, DP-356043-5, H7-1, and GT73


Simplex ddPCR Taxon-specific HMG [71]Event-specific MON810


Duplex cdPCR Taxon-specific HMG [72–74]
Event-specific MON810


Duplex ddPCR


Taxon-specific LEC


[48, 75]Event-specific
DP-356043-5, DP-305423-1, MON89788, GTS40-3-2, A5547-127,
BPS-CV-127, A2704-12, MON87701, MON87708, MON87705, FG72,
and MON87769


Duplex ddPCR Taxon-specific PLD [75]Event-specific LLRICE62 and KMD1


Duplex ddPCR


Taxon-specific HMG


[75]Event-specific
Bt176, Bt11, MON810, NK603, Starllink, MON863, GA21, DAS-59122-7,
MIR162, MIR604, 3272, T25, TC1507, MON88017, MON89034, and
DAS-40278-9


Duplex ddPCR Taxon-specific HMG [71]Event-specific MON810
ADH (alcohol dehydrogenase I gene from maize); adhC (alcohol dehydrogenase C gene from cotton); bar (phosphinothricin-N-acetyltransferases gene from
Streptomyces hygroscopicus); CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens strain); CRU (cruciferin gene
from colza); Cry (gene encoding the Bacillus thuringiensis𝛿-endotoxin); GLU (glutamine synthetase gene from sugar beet); HMG (major high-mobility group
protein gene from maize); LEC (lectin gene from soybean); nptII (neomycin phosphotransferase II gene); p35S (promoter of the 35 S cauliflower mosaic virus);
pat (phosphinothricin-N-acetyltransferases gene from Streptomyces viridochromogenes); pFMV (promoter of the figwort mosaic virus); phy (phytase gene from
maize); PLD (phospholipase D gene from rice); pNOS (promoter of the nopaline synthase gene); tNOS (terminator of the nopaline synthase gene).


the fields [84]. Concerning the drawbacks, the design of four
primers per target, which guarantee the high specificity and
sensitivity of the LAMP, could be difficult. In addition, the
identification of several GM targets using a multiplex assay is
not applicable [28].


2.5. DNA Walking. In using PCR-based methods that
required prior knowledge, the observed results are mostly
generated in targeting elements derived from natural organ-
isms. Therefore, they constitute merely an indirect proof of
the presence of GMO in the tested food/feed matrices. In
addition, when the observed signals do not correspond to
known GMO, the presence of unknown GMO, containing at
least one known element, could be only suspected. The only
way to indubitably confirm the presence of GMO is provided
by the characterization of sequences from the junctions
between the transgenic cassette and the plant genome as well
as the unnatural associations of transgenic elements.


To get this crucial information, several strategies of DNA
walking, also called genome walking, have been reported
(Figure 1 and Table 9). More precisely, this molecular tech-
nique allows identifying unknown nucleotide sequences
adjacent to already known DNA regions in any given genome
using specific primers to the known sequence combined to
primers dictated by the DNA walking method used. Then,
the final PCR products are usually sequenced by Sanger
technology to be eventually analyzed with available databases
(e.g., NCBI and JRC GMO-Amplicons). Classically, three
main categories of DNA walking are established, based on the
characteristics of their first step [144].


First, the restriction-based methods involve a digestion of
the genomic DNA using appropriate restriction enzymes tar-
geting sites close to sequences of interest, such as the junction
between the known and unknown sequences. The obtained
restriction fragments are then either self-circularized or
ligated to DNA cassettes, named, respectively, inverted-PCR
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Table 8: Representative examples illustrating simplex LAMP strate-
gies targeting GMO.


Methods Targets References


Taxon-specific


ADH [76]
LEC [77, 78]
PLD [79]
IVR [80]


Element-specific


p35S [76, 81–86]
pFMV [83, 86]
aadA [83]
uidA [83]
nptII [83, 86]


Cry1Ab [87]
tNOS [76, 78, 82, 84, 86]
pNOS [82]
bar [84, 86]
pat [86]


Cry1Ac [86]
CP4-EPSPS [86]


Cry2A [88]
Cry3A [88]
phy [89]


Construct-specific p35S/EPSPS [82]


Event-specific


Ms8 [82]
Rf3 [82]


MON89788 [77, 78, 84]
GTS 40-3-2 [77, 78, 84]
DAS-59122-7 [80, 84]
MON863 [80, 84]
TC1507 [80, 84]
T25 [80, 90]
Bt11 [80]
Bt176 [80]


MON810 [80]
B73-6-1 [91]
KMD1 [79]


Kefeng-6 [79]
TT51-1 [79]


aadA (aminoglycoside 3-adenylyltransferase); ACC (acetyl-CoA-
carboxylase gene from colza); ADH (alcohol dehydrogenase I gene from
maize); bar (phosphinothricin-N-acetyltransferases gene from Streptomyces
hygroscopicus); CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase
gene from Agrobacterium tumefaciens strain); Cry (gene encoding the
Bacillus thuringiensis 𝛿-endotoxin); IVR (invertase gene from maize); LEC
(lectin gene from soybean); nptII (neomycin phosphotransferase II gene);
p35S (promoter of the 35 S cauliflower mosaic virus); pat (phosphinothricin-
N-acetyltransferases gene from Streptomyces viridochromogenes); pFMV
(promoter of the figwort mosaic virus); phy (phytase gene from maize);
PLD (phospholipase D gene from rice); pNOS (promoter of the nopaline
synthase gene); tNOS (terminator of the nopaline synthase gene); uidA
(𝛽-glucuronidase).


and cassette PCR methods ([144] and references therein).
By this way, several sequences of transgene flanking regions


and unnatural associations from transgenic Arabidopsis
thaliana, tobacco, shallot, potato, barley, grapefruit, tomato,
banana, cotton (MON1445), colza (including GT73), soybean
(GTS40-3-2 and MON89788), wheat (B73-6-1, B72-8-11, and
B72-8-11b), rice (including TC-19, Bt Shanyou 63 (TT51-
1), KeFeng-6, and KeFeng-8), and maize (CHB-351, Bt176,
GA21, Bt11, MON88017, MON863 × NK603, MON863 ×
NK603 × MON810, T25, MON810, NK603, MON863, T25,
DAS-59122-7, LY038, and 3272) were characterized (Table 9)
[92–108, 145–168].


Second, the extension-based methods are defined by
the extension of a sequence-specific primer. The resulting
single-stranded DNA is subsequently ligated to either a DNA
cassette or 3-tailing ([144] and references therein). This
strategy was successfully applied on GM maize (MON810),
rice (LLRICE62), soybean (A2704-12), rapeseed (T45), and
cotton (LLCOTTON25) events in order to characterize their
transgenic cassettes and transgene flanking regions (Table 9)
[109, 110].


Third, the primer-based methods combine combinato-
rial (random and/or degenerate) primers to target-specific
primers according to various PCR strategies ([144] and refer-
ences therein). The transgenic Arabidopsis thaliana, tobacco,
potato, barley, apple, banana, soybean, wheat (B73-6-1),
rice (including KeFeng-6 and KMD1), and maize (includ-
ing MON863 and MIR162) were thereby identified via the
sequences of their transgene flanking regions and unnatural
associations of elements (Table 9) [111–116, 152, 154, 157, 169–
174].


However, the implementation of most of these DNA
walking methods by the enforcement laboratories presents
some difficulties such as an insufficient specificity, sensitivity,
or yield. Moreover, some of them use laborious, complex,
and lengthy techniques (e.g., fingerprinting by capillary
electrophoresis and genomic DNA library via (unpredictable)
restriction enzyme). Therefore, a DNA walking approach,
corresponding better to the need of enforcement labora-
tories, has been developed and validated on unprocessed
and processed food matrices containing minute amounts of
GM targets. As this DNA walking approach implies two
seminested PCR rounds, the yield and the specificity of
GM targets are increased, especially crucial in case of a
low level presence of GMO. This approach, belonging to
the PCR-based method category, has also the advantage to
be fully integrated into the GMO routine analysis as the
similar primers are used for the qPCR screening (detection
of potential GMO presence) and the DNA walking (GMO
identification). So, this simple and rapid approach could
easily be applied by the enforcement laboratories, without any
significant additional cost and equipment, to confirm signals
previously obtained in qPCR (Table 9) [33, 117, 118].


Since DNA walking requires less prior knowledge about
the sequence of interest than conventional PCR-based meth-
ods previously described, GMO with entirely or partially
known sequences could be characterized. Therefore, in tar-
geting key elements, such as p35S and tNOS that are highly
frequent in GM crops, a broad range of GMO could be
characterized [96, 106, 110, 111, 113, 118, 156]. In order to
especially identify unauthorized GMO in European Union, a
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Table 9: Representative examples illustrating DNA walking strategies targeting GMO.


DNA walking approaches Characterized regions Targets References
Restriction-based methods


Inverse PCR Transgene flanking regions Bt11 [92, 93]


Cassette PCR


Transgene flanking regions GTS40-3-2 [94]
Transgene flanking regions GT73 [95]
Transgene flanking regions MON1445 [96]
Transgene flanking regions TC-19 [97]
Transgene flanking regions TT51-1 [98]
Transgene flanking regions KeFeng-6 [99]
Transgene flanking regions KeFeng-8 [100]
Transgene flanking regions B73-6-1 [101]
Transgene flanking regions B72-8-11 [102]
Transgene flanking regions B72-8-11b [103]
Transgene flanking regions LY038 [104]
Transgene flanking regions MON89788 [104]
Transgene flanking regions 3272 [104]
Transgene flanking regions and unnatural element associations CHB-351 [105, 106]
Transgene flanking regions and unnatural element associations Bt176 [95, 106]
Transgene flanking regions and unnatural element associations GA21 [95, 106]
Transgene flanking regions and unnatural element associations Bt11 [95, 106]
Transgene flanking regions and unnatural element associations T25 [106, 107]
Transgene flanking regions and unnatural element associations MON810 [106, 108]
Transgene flanking regions and unnatural element associations DAS-59122-7 [104, 106]
Unnatural element associations MON88017 [106]
Unnatural element associations MON863×NK603 [106]
Unnatural element associations
Unnatural element associations


MON863×NK603×
MON810


[106]


Unnatural element associations NK603 [106]
Unnatural element associations MON863 [106]


Extension-based methods


LT-RADE


Transgene flanking regions and unnatural element associations MON810 [109, 110]
Transgene flanking regions and unnatural element associations LLRICE62 [109, 110]
Transgene flanking regions and unnatural element associations T45 [110]
Transgene flanking regions and unnatural element associations A2704-12 [110]
Transgene flanking regions and unnatural element associations LLCOTTON25 [110]


PCR-based methods


TAIL-PCR
Transgene flanking regions MON863 [111, 112]
Transgene flanking regions KeFeng-6 [113]
Transgene flanking regions B73-6-1 [114]


SiteFinding PCR Transgene flanking regions KMD1
[115]


Unnatural element associations MIR162 [116]
APAgene GOLD Genome
Walking Kit


Transgene flanking regions and unnatural element associations Bt rice [33, 117, 118]
Transgene flanking regions and unnatural element associations MON863 [118]


DNA walking approach using primers specific to the element
t35S from the pCAMBIA vector, found in approximately 30%
of transgenic plants, was developed [33, 117]. However, the
DNA walking strategy is not suitable to GMO containing only
unknown elements.


2.6. Next Generation Sequencing Technologies. Despite their
higher throughput compared to qPCR, the multiplex strate-
gies described above require the prior knowledge of at least
a part of the GMO sequences. Once the information about
these sequences is collected, the development of methods,
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Table 10: Representative examples illustrating NGS strategies targeting GMO.


NGS strategies NGS platforms Targets Target sizes References


Targeted sequencing


HiSeq (Illumina) vip3Aa2 from MIR162 150 bp to 2 Kbp [116]
PacBio RS (Pacific Biosciences) vip3Aa2 from MIR162 150 bp to 2 Kbp [116]
454 system (Roche Applied Science) ssIIb 157 bp [119]
454 system (Roche Applied Science) Bt11 gene 324 bp [119]
454 system (Roche Applied Science) Bt176 gene 206 bp [119]
454 system (Roche Applied Science) LEC 118 bp [119]
454 system (Roche Applied Science) p35S/CTP4 171 bp [119]
454 system (Roche Applied Science) CP4-EPSPS 498 bp [119]
454 system (Roche Applied Science) p35S 195 bp [119]
454 system (Roche Applied Science) tNOS 180 bp [119]


Whole genome sequencing


HiSeq (Illumina) MON17903 soybean 1115 Mbp [120]
HiSeq (Illumina) MON87704 soybean 1115 Mbp [120]
HiSeq (Illumina) FP967 flax 373 Mbp [121]
HiSeq (Illumina) LLRICE62 rice 385 Mbp [122]
HiSeq (Illumina) TT51-1 rice 385 Mbp [123]
HiSeq (Illumina) T1c-19 rice 385 Mbp [123]
HiSeq (Illumina) Bt rice 385 Mbp [124]


CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens strain); CTP4 (chloroplast transit peptide 4 from the
Arabidopsis thaliana epsps gene); LEC (lectin gene from soybean); p35S (promoter of the 35 S cauliflower mosaic virus); ssIIb (starch synthase IIb gene from
maize); tNOS (terminator of the nopaline synthase gene); VIP3A (vegetative insecticidal protein 3A).


each one targeting indivdually one sequence of interest, is
carried out on a case-by-case basis. Then, the optimisation
of unbiased multiplex assays presenting equal analytical
performance compared to simplex assays remains laborious
and intricate. Furthermore, the issues related to the detection
of GMO containing no known sequences are still unsolved.
Recently, NGS, allowing a massive parallel DNA sequencing,
has been suggested to tackle these challenges. The NGS tech-
nology outperforms plainly the classical Sanger sequencing
in terms of rapidity and throughput. Indeed, the powerful
high throughput of NGS offers the possibility to sequence
simultaneously many different samples, discriminable in
using a wide range of barcodes [116, 124, 175]. Two main
strategies, sequencing samples that are earlier enriched with
sequences of interest (targeted sequencing approach) or not
(whole genome sequencing (WGS) approach), exist (Figure 1
and Table 10).


2.6.1. Targeted Sequencing. The targeted sequencing strategy
is especially beneficial to target regions of interest from large
and complex genomes, observed in most of plants. Even if
a minimum of prior knowledge on sequences is needed to
target the sequences of interest, it presents the advantage to
use exclusively all the energy, in terms of time and cost, on
the regions of interest. With this strategy, two substrategies
could be used, involving the sequencing of either DNA library
of PCR products (amplicon sequencing) or selected DNA
fragments from a whole genome library (target enrichment
sequencing) (Figure 1).


On the one hand, as the amplicon sequencing allows char-
acterizing DNA fragments of interest previously enriched
by PCR, this sequencing approach depends thus clearly on


the PCR strategy adopted upstream as well as its inherent
properties and performance. In order to detect GMO, Song et
al., 2014 generated amplicons by PCR, using primers targeting
maize endogen gene, Bt11 gene, Bt176 gene, soybean endo-
gen gene, 35S/CTP4 construct, CP4-EPSPS element, p35S
promoter, and tNOS terminator, from samples containing a
low amount of GM targets (1% of Bt11 maize, 2% of Bt176
maize, 2% of GTS40-3-2 soybean, 1% of GTS40-3-2 soybean,
0.1% of GTS40-3-2 soybean, or 0.01% of GTS40-3-2 soybean).
Then, each kind of amplicons was individually sequenced
using a variant of the 454 system called pyrosequencing on
portable photodiode-based bioluminescence sequencer that
is more sensitive, compact, and cost-efficient compared to
the original 454 technology (Roche) (Table 10) [119, 176]. This
approach is relatively similar to the PCR screening with the
additional value to provide, instead of positive or negative
signals, the sequence of the amplified fragments, which is
more reliable to prove the presence of GMO. Conversely
to this approach, Liang et al., 2014 suggest an amplicon
sequencing strategy allowing analyzing GMO for which the
sequence information is only partially known. To this end,
a DNA walking method (SiteFinding PCR), targeting the
vip3Aa20 sequence, was coupled to NGS technologies, using
the Illumina or Pacific Biosciences platforms, to characterize
the sequences of the MIR162 maize event (Table 10). Even
if the results were similar using the two different NGS plat-
forms, the PacBio system shows the advantage to sequence
DNA fragments with a size reaching up to 40 Kbp and to deal
with DNA fragments presenting different sizes. Therefore, the
PacBio system, in contrast to the Illumina technology, allows
in many cases avoiding a de novo assembly step as the shear-
ing of genomic DNA is not always required. Moreover, the use
of NGS instead of the Sanger technology allows considerably
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increasing the throughput of DNA walking approaches.
Indeed, in order to guarantee the entire representativeness
of GMO present in a tested sample, all observed amplicons
should be analyzed. However, the purification of the potential
numerous amplicons excised from the electrophoresis gel and
the subsequent Sanger sequencing could be cumbersome,
especially in case of food/feed matrices containing several
GMO sharing common targeted elements [116, 118, 177].


On the other hand, the target enrichment sequencing
approach involves the selection of sequences of interest from
the whole genome DNA library. To capture them, appropriate
hybridization methods could be used relying on magnetic
beads or microarrays associated with specific probes. The
efficiency of the hybridization step is thus crucial for this
sequencing strategy. The DNA fragments containing entirely
or partially the known regions could be then sequenced.
However, even if this strategy has been applied to different
plants, no study has to date been reported to our knowledge
to detect GMO [178–181].


The analysis of preenriched DNA fragments of inter-
est with NGS technology allows proving the presence of
GMO in characterizing sequences entirely or partially known
beforehand. However, given its relative high cost, expected to
decrease over the time, and the prerequisite bioinformatics
expertise, the targeted NGS strategy could not reasonably be
currently applied routinely to all food/feed matrices by the
enforcement laboratories [116, 124, 175].


2.6.2. Whole Genome Sequencing. The WGS strategy allows
in principle characterizing a sample without any prior knowl-
edge (Figure 1). With this sequencing strategy, the entire
DNA library, consisting of sheared genomic DNA ligated to
adaptors, is sequenced. The generated reads are then treated
with bioinformatics tools based on prior knowledge of tested
GMO.


First, when no information about the transgenic cassette
is available, the insert and its transgene flanking regions
are identified by the analysis of all inferred contigs derived
from reads that partially matched or unmatched with the
endogenous plant-species reference genome [123]. This WGS
strategy was applied on the LLRICE62 event by using the
available reference genome of Oryza sativa ssp. Japonica.
As the results corresponded to the information from the
developer dossier, the characterization of GMO with an
unknown insert using NGS was thus demonstrated (Table 10)
[122]. Similarly, the T-DNA regions from the GM flax FP967
event and the transgenic rice TT51-1 and T1c-19 events were
also characterized (Table 10) [121, 123]. The success of this
strategy is thus linked to the availability of good reference
genomes for specific varieties and organisms. In case of no
reference genome available, a strategy of de novo assembly,
comparing all generated reads to find overlaps, has to be
applied. However, this remains quite cumbersome with the
large and complex plant genomes notably in terms of ploidy,
repeated regions, and heterozygosity and with mixtures of
different GMO [120, 182]. To facilitate even so the de novo
assembly, the strength of different NGS platforms can be
associated. For instance, short reads from Illumina technol-
ogy can be aligned to long reads generated by the PacBio


technology, constituting a substitute of reference genome
[183].


Second, with the condition that the sequence of at least
one transgenic element is known, the insert is de novo
assembled with reads that are matched and unmatched with
a DNA transgene sequence library containing frequently
used transgenic elements. This approach was tested on the
transgenic rice TT51-1 and T1c-19 events (Table 10) [123].


Third, if the sequence of the insert is known, two kinds
of bioinformatics analysis have been reported. On the one
hand, the reads, corresponding not entirely to the reference
genome, are mapped to the transgenic cassette sequence in
order to determine the number of inserts and their transgene
flanking regions. By this way, the GM rice TT51-1 and T1c-
19 events and the GM soybean MON17903 and MON87704
events were characterized (Table 10) [120, 123]. On the other
hand, Willems et al., 2016 have developed an analytical
workflow, including three different approaches. The detection
approach, consisting of comparing the reads to the reference
sequence of the insert, allows detecting the presence of
GMO in a given sample. To confirm the integration of the
transgenic cassette and provide a rough localization of its
flanking regions, the matched reads are then compared to the
reference sequence of the host genome in the proof approach.
By the simultaneous aligning of these selected reads to the
host genome and the transgenic cassette, the identification
approach allows determining precisely the localization of the
transgenic cassette and the sequence of its flanking regions.
This WGS strategy was initially assessed on pure transgenic
GM rice (100% Bt rice). Conversely to all the other WGS
strategies described above, food/feed matrices more likely to
be encountered in GMO routine analysis, such as a GM/non-
GM rice mixture (10% Bt rice) and a processed GM rice
(100% Bt noodles), have also been tested (Table 10) [124]. In
this study, a statistical framework, predicting the probability
to detect a sequence derived from a transgenic cassette and
validated with experimental data originated from WGS, was
also developed to estimate in silico the number of reads,
derived from Illumina HiSeq device, required to characterize
frequently encountered GMO. It was shown that samples
composed of GMO at 100%, except for GM wheat owning
a huge genome, could be wisely characterized at a standard
price range. A contrario, the detection, and identification of
GMO present at trace level are not reasonably achievable
by WGS [124]. Therefore, at the present time, only the
previously described targeted sequencing approach can be
applied on GM mixture containing GMO at trace level within
reason.


The NGS technology is thus a promising alternative
in the GMO detection field which offers the possibility to
prove straightforward the presence of GMO in food/feed
matrix via the characterization of their sequences. Moreover,
the sequences obtained from unknown GMO will allow
designing new PCR markers. Nevertheless, the implemen-
tation of NGS in GMO routine analysis by the enforcement
laboratories is still difficult due to its relatively high cost as
well as the requirement of adequate computer infrastructures
and qualified analysts in bioinformatics for dealing with the
generated data [116, 124, 175].
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3. Conclusion


In GMO routine analysis, qPCR remains the method of
choice for the enforcement laboratories. However, as some
technical hurdles could be encountered with this technology,
alternative GMO detection methods have been developed to
raise some of these challenges. In order to exploit at best
the performance of all the above described strategies, their
applicability could be considered according to the adopted
strategy of GMO detection as well as the available informa-
tion about the sequences of tested GMO (Figure 1). In case of
fully characterized GMO, the methods based on conventional
PCR are absolutely appropriate to rapidly detect individually
GM targets low-prized (LAMP), to simultaneously detect
several GM targets (CGE, microarray, and Luminex) or to
precisely quantify the amount of GM targets without impact
of inhibitors (dPCR). However, when tested matrices contain
GMO for which only a part of their sequences is known,
these strategies could generate unexplained signals for which
the observed positive signals could not be related to known
GM events. In targeting key DNA sequences, such as the
elements p35S and tNOS that are frequently found in GM
plants, the use of DNA walking or targeted sequencing
by enrichment strategies allows indubitably confirming the
presence of GMO via the sequences of transgenes flanking
regions and unnatural associations of genetic elements. If no
information is available, at this moment, only the WGS is
conceivable to characterize this category of GMO.
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