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Continuous and Discrete Time Signals and Systems


Signals and systems is a core topic for electrical and computer engineers. This


textbook presents an introduction to the fundamental concepts of continuous-


time (CT) and discrete-time (DT) signals and systems, treating them separately


in a pedagogical and self-contained manner. Emphasis is on the basic sig-


nal processing principles, with underlying concepts illustrated using practical


examples from signal processing and multimedia communications. The text is


divided into three parts. Part I presents two introductory chapters on signals and


systems. Part II covers the theories, techniques, and applications of CT signals


and systems and Part III discusses these topics for DT signals and systems, so


that the two can be taught independently or together. The focus throughout is


principally on linear time invariant systems. Accompanying the book is a CD-


ROM containing M A T L A B code for running illustrative simulations included


in the text; data files containing audio clips, images and interactive programs


used in the text, and two animations explaining the convolution operation. With


over 300 illustrations, 287 worked examples and 409 homework problems, this


textbook is an ideal introduction to the subject for undergraduates in electrical


and computer engineering. Further resources, including solutions for instruc-


tors, are available online at www.cambridge.org/9780521854559.


Mrinal Mandal is an associate professor at the Department of Electrical and


Computer Engineering, University of Alberta, Edmonton, Canada. His main


research interests include multimedia signal processing, medical image and


video analysis, image and video compression, and VLSI architectures for real-


time signal and image processing.


Amir Asif is an associate professor at the Department of Computer Science and


Engineering, York University, Toronto, Canada. His principal research areas lie


in statistical signal processing with applications in image and video processing,


multimedia communications, and bioinformatics, with particular focus on video


compression, array imaging detection, genomic signal processing, and block-


banded matrix technologies.
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Preface


The book is primarily intended for instruction in an upper-level undergraduate


or a first-year graduate course in the field of signal processing in electrical


and computer engineering. Practising engineers would find the book useful


for reference or for self study. Our main motivation in writing the book is to


deal with continuous-time (CT) and discrete-time (DT) signals and systems


separately. Many instructors have realized that covering CT and DT systems in


parallel with each other often confuses students to the extent where they are not


clear if a particular concept applies to a CT system, to a DT system, or to both.


In this book, we treat DT and CT signals and systems separately. Following


Part I, which provides an introduction to signals and systems, Part II focuses on


CT signals and systems. Since most students are familiar with the theory of CT


signals and systems from earlier courses, Part II can be taught to such students


with relative ease. For students who are new to this area, we have supplemented


the material covered in Part II with appendices, which are included at the end


of the book. Appendices A–F cover background material on complex numbers,


partial fraction expansion, differential equations, difference equations, and a


review of the basic signal processing instructions available in M A T L A B . Part


III, which covers DT signals and systems, can either be covered independently


or in conjunction with Part II.


The book focuses on linear time-invariant (LTI) systems and is organized as


follows. Chapters 1 and 2 introduce signals and systems, including their math-


ematical and graphical interpretations. In Chapter 1, we cover the classification


between CT and DT signals and we provide several practical examples in which


CT and DT signals are observed. Chapter 2 defines systems as transformations


that process the input signals and produce outputs in response to the applied


inputs. Practical examples of CT and DT systems are included in Chapter 2.


The remaining fifteen chapters of the book are divided into two parts. Part


II constitutes Chapters 3–8 of the book and focuses primarily on the theories


and applications of CT signals and systems. Part III comprises Chapters 9–17


and deals with the theories and applications of DT signals and systems. The


organization of Parts II and III is described below.


xi
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xii Preface


Chapter 3 introduces the time-domain analysis of the linear time-invariant


continuous-time (LTIC) systems, including the convolution integral used to


evaluate the output in response to a given input signal. Chapter 4 defines the


continuous-time Fourier series (CTFS) as a frequency representation for the


CT periodic signals, and Chapter 5 generalizes the CTFS to aperiodic signals


and develops an alternative representation, referred to as the continuous-time


Fourier transform (CTFT). Not only do the CTFT and CTFS representations


provide an alternative to the convolution integral for the evaluation of the out-


put response, but also these frequency representations allow additional insights


into the behavior of the LTIC systems that are exploited later in the book to


design such systems. While the CTFT is useful for steady state analysis of


the LTIC systems, the Laplace transform, introduced in Chapter 6, is used in


control applications where transient and stability analyses are required. An


important subset of LTIC systems are frequency-selective filters, whose char-


acteristics are specified in the frequency domain. Chapter 7 presents design


techniques for several CT frequency-selective filters including the Butterworth,


Chebyshev, and elliptic filters. Finally, Chapter 8 concludes our treatment of


LTIC signals and systems by reviewing important applications of CT signal


processing.


The coverage of CT signals and systems concludes with Chapter 8 and a


course emphasizing the CT domain can be completed at this stage. In Part


III, Chapter 9 starts our consideration of DT signals and systems by providing


several practical examples in which such signals are observed directly. Most


DT sequences are, however, obtained by sampling CT signals. Chapter 9 shows


how a band-limited CT signal can be accurately represented by a DT sequence


such that no information is lost in the conversion from the CT to the DT domain.


Chapter 10 provides the time-domain analysis of linear time-invariant discrete-


time (LTID) systems, including the convolution sum used to calculate the


output of a DT system. Chapter 11 introduces the frequency representations for


DT sequences, namely the discrete-time Fourier series (DTFS) and the discrete-


time Fourier transform (DTFT). The discrete Fourier transform (DFT) samples


the DTFT representation in the frequency domain and is convenient for digital


signal processing of finite-length sequences. Chapter 12 introduces the DFT,


while Chapter 13 is devoted to a discussion of the z-transform. As for CT sys-


tems, DT systems are generally specified in the frequency domain. A particular


class of DT systems, referred to as frequency-selective digital filters, is intro-


duced in Chapter 14. Based on the length of the impulse response, digital filters


can be further classified into finite impulse response (FIR) and infinite impulse


response (IIR) filters. Chapter 15 covers the design techniques for the IIR filters,


and Chapter 16 presents the design techniques for the IIR filters. Chapter 17


concludes the book by motivating the students with several applications of


digital signal processing in audio and music, spectral analysis, and image and


video processing.


Although the book has been designed to be as self-contained as possible,


some basic prerequisites have been assumed. For example, an introductory
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xiii Preface


background in mathematics which includes trigonometry, differential calculus,


integral calculus, and complex number theory, would be helpful. A course in


electrical circuits, although not essential, would be highly useful as several


examples of electrical circuits have been used as systems to motivate the


students. For students who lack some of the required background information,


a review of the core background materials such as complex numbers, partial


fraction expansion, differential equations, and difference equations is provided


in the appendices.


The normal use of this book should be as follows. For a first course in signal


processing, at, say, sophomore or junior level, a reasonable goal is to teach


Part II, covering continuous-time (CT) signals and sysems. Part III provides the


material for a more advanced course in discrete-time (DT) signal processing. We


have also spent a great deal of time experimening with different presentations for


a single-semester signals and systems course. Typically, such a course should


include Chapters 1, 2, 3, 10, 4, 5, 11, 6, and 13 in that order. Below, we provide


course outlines for a few traditional signal processing courses. These course


outlines should be useful to an instructor teaching this type of material or using


the book for the first time.


(1) Continuous-time signals and systems: Chapters 1–8.


(2) Discrete-time signals and systems: Chapters 1, 2, 9–17.


(3) Traditional signals and systems: Chapters 1, 2, (3, 10), (4, 5, 11), 6, 13.


(4) Digital signal processing: Chapters 10–17.


(5) Transform theory: Chapters (4, 5, 11), 6, 13.


Another useful feature of the book is that the chapters are self-contained so that


they may be taught independently of each other. There is a significant difference


between reading a book and being able to apply the material to solve actual


problems of interest. An effective use of the book must include a fair coverage


of the solved examples and problem solving by motivating the students to solve


the problems included at the end of each chapter. As such, a major focus of


the book is to illustrate the basic signal processing concepts with examples.


We have included 287 worked examples, 409 supplementary problems at the


ends of the chapters, and more than 300 figures to explain the important con-


cepts. Wherever relevant, we have extensively used M A T L A B to validate our


analytical results and also to illustrate the design procedures for a variety of


problems. In most cases, the M A T L A B code is provided in the accompanying


CD, so the students can readily run the code to satisfy their curiosity. To further


enhance their understanding of the main signal processing concepts, students


are encouraged to program extensively in M A T L A B . Consequently, several


M A T L A B exercises have been included in the Problems sections.


Any suggestions or concerns regarding the book may be communicated


to the authors; email addresses are listed at http://www.cambridge.org/


9780521854559. Future updates on the book will also be available at the same


website.
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xiv Preface
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P A R T I


Introduction to signals and systems
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C H A P T E R


1 Introduction to signals


Signals are detectable quantities used to convey information about time-varying


physical phenomena. Common examples of signals are human speech, temper-


ature, pressure, and stock prices. Electrical signals, normally expressed in the


form of voltage or current waveforms, are some of the easiest signals to generate


and process.


Mathematically, signals are modeled as functions of one or more independent


variables. Examples of independent variables used to represent signals are time,


frequency, or spatial coordinates. Before introducing the mathematical notation


used to represent signals, let us consider a few physical systems associated


with the generation of signals. Figure 1.1 illustrates some common signals and


systems encountered in different fields of engineering, with the physical sys-


tems represented in the left-hand column and the associated signals included in


the right-hand column. Figure 1.1(a) is a simple electrical circuit consisting of


three passive components: a capacitor C , an inductor L , and a resistor R. A


voltage v(t) is applied at the input of the RLC circuit, which produces an output


voltage y(t) across the capacitor. A possible waveform for y(t) is the sinusoidal


signal shown in Fig. 1.1(b). The notations v(t) and y(t) includes both the depen-


dent variable, v and y, respectively, in the two expressions, and the independent


variable t . The notation v(t) implies that the voltage v is a function of time t.


Figure 1.1(c) shows an audio recording system where the input signal is an audio


or a speech waveform. The function of the audio recording system is to convert


the audio signal into an electrical waveform, which is recorded on a magnetic


tape or a compact disc. A possible resulting waveform for the recorded electri-


cal signal is shown in Fig 1.1(d). Figure 1.1(e) shows a charge coupled device


(CCD) based digital camera where the input signal is the light emitted from a


scene. The incident light charges a CCD panel located inside the camera, thereby


storing the external scene in terms of the spatial variations of the charges on the


CCD panel. Figure 1.1(g) illustrates a thermometer that measures the ambient


temperature of its environment. Electronic thermometers typically use a thermal


resistor, known as a thermistor, whose resistance varies with temperature. The


fluctuations in the resistance are used to measure the temperature. Figure 1.1(h)


3
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4 Part I Introduction to signals and systems
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Fig. 1.1. Examples of signals and systems. (a) An electrical circuit; (c) an audio recording system; (e) a


digital camera; and (g) a digital thermometer. Plots (b), (d), (f ), and (h) are output signals generated,


respectively, by the systems shown in (a), (c), (e), and (g).
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5 1 Introduction to signals


input
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output


signal
system


Fig. 1.2. Processing of a signal


by a system.


plots the readings of the thermometer as a function of discrete time. In the


aforementioned examples of Fig. 1.1, the RLC circuit, audio recorder, CCD


camera, and thermometer represent different systems, while the information-


bearing waveforms, such as the voltage, audio, charges, and fluctuations in


resistance, represent signals. The output waveforms, for example the voltage in


the case of the electrical circuit, current for the microphone, and the fluctuations


in the resistance for the thermometer, vary with respect to only one variable


(time) and are classified as one-dimensional (1D) signals. On the other hand,


the charge distribution in the CCD panel of the camera varies spatially in two


dimensions. The independent variables are the two spatial coordinates (m, n).


The charge distribution signal is therefore classified as a two-dimensional (2D)


signal.


The examples shown in Fig. 1.1 illustrate that typically every system has one


or more signals associated with it. A system is therefore defined as an entity


that processes a set of signals (called the input signals) and produces another


set of signals (called the output signals). The voltage source in Fig. 1.1(a),


the sound in Fig. 1.1(c), the light entering the camera in Fig. 1.1(e), and the


ambient heat in Fig. 1.1(g) provide examples of the input signals. The voltage


across capacitor C in Fig. 1.1(b), the voltage generated by the microphone in


Fig. 1.1(d), the charge stored on the CCD panel of the digital camera, displayed


as an image in Fig. 1.1(f), and the voltage generated by the thermistor, used to


measure the room temperature, in Fig. 1.1(h) are examples of output signals.


Figure 1.2 shows a simplified schematic representation of a signal processing


system. The system shown processes an input signal x(t) producing an output


y(t). This model may be used to represent a range of physical processes includ-


ing electrical circuits, mechanical devices, hydraulic systems, and computer


algorithms with a single input and a single output. More complex systems have


multiple inputs and multiple outputs (MIMO).


Despite the wide scope of signals and systems, there is a set of fundamental


principles that control the operation of these systems. Understanding these basic


principles is important in order to analyze, design, and develop new systems.


The main focus of the text is to present the theories and principles used in


signals and systems. To keep the presentations simple, we focus primarily on


signals with one independent variable (usually the time variable denoted by t


or k), and systems with a single input and a single output. The theories that we


develop for single-input, single-output systems are, however, generalizable to


multidimensional signals and systems with multiple inputs and outputs.


1.1 Classification of signals


A signal is classified into several categories depending upon the criteria used


for its classification. In this section, we cover the following categories for


signals:








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:7


6 Part I Introduction to signals and systems


(i) continuous-time and discrete-time signals;


(ii) analog and digital signals;


(iii) periodic and aperiodic (or nonperiodic) signals;


(iv) energy and power signals;


(v) deterministic and probabilistic signals;


(vi) even and odd signals.


1.1.1 Continuous-time and discrete-time signals


If a signal is defined for all values of the independent variable t , it is called


a continuous-time (CT) signal. Consider the signals shown in Figs. 1.1(b) and


(d). Since these signals vary continuously with time t and have known mag-


nitudes for all time instants, they are classified as CT signals. On the other


hand, if a signal is defined only at discrete values of time, it is called a discrete-


time (DT) signal. Figure 1.1(h) shows the output temperature of a room mea-


sured at the same hour every day for one week. No information is available


for the temperature in between the daily readings. Figure 1.1(h) is therefore


an example of a DT signal. In our notation, a CT signal is denoted by x(t)


with regular parenthesis, and a DT signal is denoted with square parenthesis as


follows:


x[kT ], k = 0, ±1, ±2, ±3, . . . ,


where T denotes the time interval between two consecutive samples. In the


example of Fig. 1.1(h), the value of T is one day. To keep the notation simple,


we denote a one-dimensional (1D) DT signal x by x[k]. Though the sampling


interval is not explicitly included in x[k], it will be incorporated if and when


required.


Note that all DT signals are not functions of time. Figure 1.1(f), for example,


shows the output of a CCD camera, where the discrete output varies spatially in


two dimensions. Here, the independent variables are denoted by (m, n), where


m and n are the discretized horizontal and vertical coordinates of the picture


element. In this case, the two-dimensional (2D) DT signal representing the


spatial charge is denoted by x[m, n].


−1 0
t


0


x(t) = sin(pt)


1


1 2−2


(a)


−4−6


−2


0


k


0 2


x[k] = sin(0.25pk)


1


4


6


8−8


(b)


Fig. 1.3. (a) CT sinusoidal signal


x (t ) specified in Example 1.1;


(b) DT sinusoidal signal x [k ]


obtained by discretizing x (t )


with a sampling interval


T = 0.25 s.
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7 1 Introduction to signals


Example 1.1


Consider the CT signal x(t) = sin(π t) plotted in Fig. 1.3(a) as a function of
time t . Discretize the signal using a sampling interval of T = 0.25 s, and sketch
the waveform of the resulting DT sequence for the range −8 ≤ k ≤ 8.


Solution


By substituting t = kT , the DT representation of the CT signal x(t) is given by


x[kT ] = sin(πk × T ) = sin(0.25πk).


For k = 0, ±1, ±2, . . . , the DT signal x[k] has the following values:


x[−8] = x(−8T ) = sin(−2π ) = 0, x[1] = x(T ) = sin(0.25π ) =
1


√
2
,


x[−7] = x(−7T ) = sin(−1.75π ) =
1


√
2
, x[2] = x(2T ) = sin(0.5π ) = 1,


x[−6] = x(−6T ) = sin(−1.5π ) = 1, x[3] = x(3T ) = sin(0.75π ) =
1


√
2
,


x[−5] = x(−5T ) = sin(−1.25π ) =
1


√
2
, x[4] = x(4T ) = sin(π ) = 0,


x[−4] = x(−4T ) = sin(−π ) = 0, x[5] = x(5T ) = sin(1.25π ) = −
1


√
2
,


x[−3] = x(−3T ) = sin(−0.75π ) = −
1


√
2
, x[6] = x(6T ) = sin(1.5π ) = −1,


x[−2] = x(−2T ) = sin(−0.5π ) = −1, x[7] = x(7T ) = sin(1.75π ) = −
1


√
2
,


x[−1] = x(−T ) = sin(−0.25π ) = −
1


√
2
, x[8] = x(8T ) = sin(2π ) = 0,


x[0] = x(0) = sin(0) = 0.


Plotted as a function of k, the waveform for the DT signal x[k] is shown in


Fig. 1.3(b), where for reference the original CT waveform is plotted with a


dotted line. We will refer to a DT plot illustrated in Fig. 1.3(b) as a bar or a


stem plot to distinguish it from the CT plot of x(t), which will be referred to as


a line plot.


Example 1.2


Consider the rectangular pulse plotted in Fig. 1.4. Mathematically, the rectan-


gular pulse is denoted by


x(t) = rect
(


t


τ


)


=
{


1 |t | ≤ τ/2
0 |t | > τ/2.


1
x(t)


t
0.5t−0.5t


Fig. 1.4. Waveform for CT


rectangular function. It may be


noted that the rectangular


function is discontinuous at


t = ±τ /2.


From the waveform in Fig. 1.4, it is clear that x(t) is continuous in time but


has discontinuities in magnitude at time instants t = ±0.5τ . At t = 0.5τ , for
example, the rectangular pulse has two values: 0 and 1. A possible way to avoid


this ambiguity in specifying the magnitude is to state the values of the signal x(t)


at t = 0.5τ− and t = 0.5τ+, i.e. immediately before and after the discontinuity.
Mathematically, the time instant t = 0.5τ− is defined as t = 0.5τ − ε, where
ε is an infinitely small positive number that is close to zero. Similarly, the
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8 Part I Introduction to signals and systems


time instant t = 0.5τ+ is defined as t = 0.5τ + ε. The value of the rectangular
pulse at the discontinuity t = 0.5τ is, therefore, specified by x(0.5τ−) = 1
and x(0.5τ+) = 0. Likewise, the value of the rectangular pulse at its other
discontinuity t = −0.5τ is specified by x(−0.5τ−) = 0 and x(−0.5τ+) = 1.


A CT signal that is continuous for all t except for a finite number of instants


is referred to as a piecewise CT signal. The value of a piecewise CT signal at the


point of discontinuity t1 can either be specified by our earlier notation, described


in the previous paragraph, or, alternatively, using the following relationship:


x(t1) = 0.5
[


x(t+1 ) + x(t
−
1 )


]


. (1.1)


Equation (1.1) shows that x(±0.5τ ) = 0.5 at the points of discontinuity t =
±0.5τ . The second approach is useful in certain applications. For instance,
when a piecewise CT signal is reconstructed from an infinite series (such as the


Fourier series defined later in the text), the reconstructed value at the point of


discontinuity satisfies Eq. (1.1). Discussion of piecewise CT signals is continued


in Chapter 4, where we define the CT Fourier series.


1.1.2 Analog and digital signals


A second classification of signals is based on their amplitudes. The amplitudes


of many real-world signals, such as voltage, current, temperature, and pressure,


change continuously, and these signals are called analog signals. For example,


the ambient temperature of a house is an analog number that requires an infinite


number of digits (e.g., 24.763 578. . . ) to record the readings precisely. Digital


signals, on the other hand, can only have a finite number of amplitude values.


For example, if a digital thermometer, with a resolution of 1 ◦C and a range


of [10 ◦C, 30 ◦C], is used to measure the room temperature at discrete time


instants, t = kT , then the recordings constitute a digital signal. An example of
a digital signal was shown in Fig. 1.1(h), which plots the temperature readings


taken once a day for one week. This digital signal has an amplitude resolution


of 0.1 ◦C, and a sampling interval of one day.


Figure 1.5 shows an analog signal with its digital approximation. The analog


signal has a limited dynamic range between [−1, 1] but can assume any real
value (rational or irrational) within this dynamic range. If the analog signal is


sampled at time instants t = kT and the magnitude of the resulting samples are
quantized to a set of finite number of known values within the range [−1, 1],
the resulting signal becomes a digital signal. Using the following set of eight


uniformly distributed values,


[−0.875, −0.625, −0.375, −0.125, 0.125, 0.375, 0.625, 0.875],


within the range [−1, 1], the best approximation of the analog signal is the
digital signal shown with the stem plot in Fig. 1.5.


Another example of a digital signal is the music recorded on an audio com-


pact disc (CD). On a CD, the music signal is first sampled at a rate of 44 100
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1.125


0.875


0.625


0.375


0.125


−0.125


−0.375


−0.625


−0.875


−1.125
0 1 2 3 40 1 2 3 4 5 6 7 8


sampling time t = kT


si
g
n
al


 v
al


u
e


Fig. 1.5. Analog signal with its


digital approximation. The


waveform for the analog signal


is shown with a line plot; the


quantized digital approximation


is shown with a stem plot.


samples per second. The sampling interval T is given by 1/44 100, or 22.68


microseconds (µs). Each sample is then quantized with a 16-bit uniform quan-


tizer. In other words, a sample of the recorded music signal is approximated


from a set of uniformly distributed values that can be represented by a 16-bit


binary number. The total number of values in the discretized set is therefore


limited to 216 entries.


Digital signals may also occur naturally. For example, the price of a com-


modity is a multiple of the lowest denomination of a currency. The grades of


students on a course are also discrete, e.g. 8 out of 10, or 3.6 out of 4 on a 4-point


grade point average (GPA). The number of employees in an organization is a


non-negative integer and is also digital by nature.


1.1.3 Periodic and aperiodic signals


A CT signal x(t) is said to be periodic if it satisfies the following property:


x(t) = x(t + T0), (1.2)


at all time t and for some positive constant T0. The smallest positive value


of T0 that satisfies the periodicity condition, Eq. (1.3), is referred to as the


fundamental period of x(t).


Likewise, a DT signal x[k] is said to be periodic if it satisfies


x[k] = x[k + K0] (1.3)


at all time k and for some positive constant K0. The smallest positive value of


K0 that satisfies the periodicity condition, Eq. (1.4), is referred to as the fun-


damental period of x[k]. A signal that is not periodic is called an aperiodic or


non-periodic signal. Figure 1.6 shows examples of both periodic and aperiodic
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−2−4  0 2 4
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3
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t


(b)


−1 0
t


0
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(c)


k


0


1


4 8−8 −4 2


6


−6


−2


−4 −−5 −2 −1 21 3 4 5


3
2


1


k


−3 0


( f )(e)


0


1


t


(d)


Fig. 1.6. Examples of periodic


((a), (c), and (e)) and aperiodic


((b), (d), and (f)) signals. The


line plots (a) and (c) represent


CT periodic signals with


fundamental periods T0 of 4 and


2, while the stem plot (e)


represents a DT periodic signal


with fundamental period


K0 = 8.


signals. The reciprocal of the fundamental period of a signal is called the fun-


damental frequency. Mathematically, the fundamental frequency is expressed


as follows


f0 =
1


T0
, for CT signals, or f0 =


1


K0
, for DT signals, (1.4)


where T0 and K0 are, respectively, the fundamental periods of the CT and DT


signals. The frequency of a signal provides useful information regarding how


fast the signal changes its amplitude. The unit of frequency is cycles per second


(c/s) or hertz (Hz). Sometimes, we also use radians per second as a unit of


frequency. Since there are 2π radians (or 360◦) in one cycle, a frequency of f0
hertz is equivalent to 2π f0 radians per second. If radians per second is used as


a unit of frequency, the frequency is referred to as the angular frequency and is


given by


ω0 =
2π


T0
, for CT signals, or Ω0 =


2π


K0
, for DT signals. (1.5)


A familiar example of a periodic signal is a sinusoidal function represented


mathematically by the following expression:


x(t) = A sin(ω0t + θ ).
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The sinusoidal signal x(t) has a fundamental period T0 = 2π/ω0 as we prove
next. Substituting t by t + T0 in the sinusoidal function, yields


x(t + T0) = A sin(ω0t + ω0T0 + θ ).


Since


x(t) = A sin(ω0t + θ ) = A sin(ω0t + 2mπ + θ ), for m = 0, ±1, ±2, . . . ,


the above two expressions are equal iff ω0T0 = 2mπ . Selecting m = 1, the
fundamental period is given by T0 = 2π/ω0.


The sinusoidal signal x(t) can also be expressed as a function of a complex


exponential. Using the Euler identity,


ej(ω0t+θ ) = cos(ω0t + θ ) + j sin(ω0t + θ ), (1.6)


we observe that the sinusoidal signal x(t) is the imaginary component of a


complex exponential. By noting that both the imaginary and real components


of an exponential function are periodic with fundamental period T0 = 2π/ω0,
it can be shown that the complex exponential x(t) = exp[j(ω0t + θ )] is also a
periodic signal with the same fundamental period of T0 = 2π/ω0.


Example 1.3


(i) CT sine wave: x1(t) = sin(4π t) is a periodic signal with period T1 =
2π/4π = 1/2;


(ii) CT cosine wave: x2(t) = cos(3π t) is a periodic signal with period T2 =
2π/3π = 2/3;


(iii) CT tangent wave: x3(t) = tan(10t) is a periodic signal with period T3 =
π/10;


(iv) CT complex exponential: x4(t) = e j(2t+7) is a periodic signal with period
T4 = 2π/2 = π ;


(v) CT sine wave of limited duration: x6(t) =
{


sin 4π t −2 ≤ t ≤ 2
0 otherwise


is an


aperiodic signal;


(vi) CT linear relationship: x7(t) = 2t + 5 is an aperiodic signal;
(vii) CT real exponential: x4(t) = e−2t is an aperiodic signal.


Although all CT sinusoidals are periodic, their DT counterparts x[k] =
A sin(Ω0k + θ ) may not always be periodic. In the following discussion, we
derive a condition for the DT sinusoidal x[k] to be periodic.


Assuming x[k] = A sin(Ω0k + θ ) is periodic with period K0 yields


x[k + K0] = sin(Ω0(k + K0) + θ ) = sin(Ω0k + Ω0 K0) + θ ).


Since x[k] can be expressed as x[k] = sin(Ω0k + 2mπ + θ ), the value of the
fundamental period is given by K0 = 2πm/�0 for m = 0, ±1, ±2, . . . Since
we are dealing with DT sequences, the value of the fundamental period K0 must


be an integer. In other words, x[k] is periodic if we can find a set of values for
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m, K0 ∈ Z+, where we use the notation Z+ to denote a set of positive integer
values. Based on the above discussion, we make the following proposition.


Proposition 1.1 An arbitrary DT sinusoidal sequence x[k] = A sin(Ω0k + θ ) is
periodic iff Ω0/2π is a rational number.


The term rational number used in Proposition 1.1 is defined as a fraction of


two integers. Given that the DT sinusoidal sequence x[k] = A sin(Ω0k + θ ) is
periodic, its fundamental period is evaluated from the relationship


Ω0


2π
=


m


K0
(1.7)


as


K0 =
2π


Ω0


m. (1.8)


Proposition 1.1 can be extended to include DT complex exponential signals.


Collectively, we state the following.


(1) The fundamental period of a sinusoidal signal that satisfies Proposition 1.1


is calculated from Eq. (1.8) with m set to the smallest integer that results


in an integer value for K0.


(2) A complex exponential x[k] = A exp[j(Ω0k + θ )] must also satisfy Propo-
sition 1.1 to be periodic. The fundamental period of a complex exponential


is also given by Eq. (1.8).


Example 1.4


Determine if the sinusoidal DT sequences (i)–(iv) are periodic:


(i) f [k] = sin(πk/12 + π/4);
(ii) g[k] = cos(3πk/10 + θ );


(iii) h[k] = cos(0.5k + φ);
(iv) p[k] = ej(7πk/8+θ ).


Solution


(i) The value of �0 in f [k] is π/12. SinceΩ0/2π = 1/24 is a rational number,
the DT sequence f [k] is periodic. Using Eq. (1.8), the fundamental period of


f [k] is given by


K0 =
2π


Ω0


m = 24m.


Setting m = 1 yields the fundamental period K0 = 24.
To demonstrate that f [k] is indeed a periodic signal, consider the following:


f [k + K0] = sin(π [k + K0]/12 + π/4).
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Substituting K0 = 24 in the above equation, we obtain


f [k + K0] = sin(π [k + K0]/12 + π/4) = sin(πk + 2π + π/4)
= sin(πk/12 + π/4) = f [k].


(ii) The value of Ω0 in g[k] is 3π/10. Since �0/2π = 3/20 is a rational
number, the DT sequence g[k] is periodic. Using Eq. (1.8), the fundamental


period of g[k] is given by


K0 =
2π


Ω0


m =
20m


3
.


Setting m = 3 yields the fundamental period K0 = 20.
(iii) The value of Ω0 in h[k] is 0.5. Since Ω0/2π = 1/4π is not a rational


number, the DT sequence h[k] is not periodic.


(iv) The value of Ω0 in p[k] is 7π/8. Since Ω0/2π = 7/16 is a rational
number, the DT sequence p[k] is periodic. Using Eq. (1.8), the fundamental


period of p[k] is given by


K0 =
2π


Ω0


m =
16m


7
.


Setting m = 7 yields the fundamental period K0 = 16.
Example 1.3 shows that CT sinusoidal signals of the form x(t) =


sin(ω0t + θ ) are always periodic with fundamental period 2π/ω0 irrespective of
the value of ω0. However, Example 1.4 shows that the DT sinusoidal sequences


are not always periodic. The DT sequences are periodic only when Ω0/2π is a


rational number. This leads to the following interesting observation.


Consider the periodic signal x(t) = sin(ω0t + θ ). Sample the signal with a
sampling interval T . The DT sequence is represented as x[k] = sin(ω0kT + θ ).
The DT signal will be periodic if Ω0/2π = ω0T/2π is a rational number. In
other words, if you sample a CT periodic signal, the DT signal need not always


be periodic. The signal will be periodic only if you choose a sampling interval


T such that the term ω0T/2π is a rational number.


1.1.3.1 Harmonics


Consider two sinusoidal functions x(t) = sin(ω0t + θ ) and xm(t) =
sin(mω0t + θ ). The fundamental angular frequencies of these two CT signals
are given by ω0 and mω0 radians/s, respectively. In other words, the angular


frequency of the signal xm(t) is m times the angular frequency of the signal


x(t). In such cases, the CT signal xm(t) is referred to as the mth harmonic of


x(t). Using Eq. (1.6), it is straightforward to verify that the fundamental period


of x(t) is m times that of xm(t).


Figure 1.7 plots the waveform of a signal x(t) = sin(2π t) and its second har-
monic. The fundamental period of x(t) is 1 s with a fundamental frequency of


2π radians/s. The second harmonic of x(t) is given by x2(t) = sin(4π t). Like-
wise, the third harmonic of x(t) is given by x3(t) = sin(6π t). The fundamental
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Fig. 1.7. Examples of harmonics.


(a) Waveform for the sinusoidal


signal x(t ) = sin(2π t ); (b)
waveform for its second


harmonic given by


x2(t ) = sin(4π t ).


periods of the second harmonic x2(t) and third harmonics x3(t) are given by


1/2 s and 1/3 s, respectively.


Harmonics are important in signal analysis as any periodic non-sinusoidal


signal can be expressed as a linear combination of a sine wave having the same


fundamental frequency as the fundamental frequency of the original periodic


signal and the harmonics of the sine wave. This property is the basis of the


Fourier series expansion of periodic signals and will be demonstrated with


examples in later chapters.


1.1.3.2 Linear combination of two signals


Proposition 1.2 A signal g(t) that is a linear combination of two periodic sig-


nals, x1(t) with fundamental period T1 and x2(t) with fundamental period T2 as


follows:


g(t) = ax1(t) + bx2(t)


is periodic iff


T1


T2
=


m


n
= rational number. (1.9)


The fundamental period of g(t) is given by nT1 = mT2 provided that the values
of m and n are chosen such that the greatest common divisor (gcd) between m


and n is 1.


Proposition 1.2 can also be extended to DT sequences. We illustrate the


application of Proposition 1.2 through a series of examples.


Example 1.5


Determine if the following signals are periodic. If yes, determine the funda-


mental period.


(i) g1(t) = 3 sin(4π t) + 7 cos(3π t);
(ii) g2(t) = 3 sin(4π t) + 7 cos(10t).
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Solution


(i) In Example 1.3, we saw that the sinuosoidal signals sin(4π t) and cos(3π t)


are both periodic signals with fundamental periods 1/2 and 2/3, respectively.


Calculating the ratio of the two fundamental periods yields


T1


T2
=


1/2


2/3
=


3


4
,


which is a rational number. Hence, the linear combination g1(t) is a periodic


signal.


Comparing the above ratio with Eq. (1.9), we obtain m = 3 and n = 4. The
fundamental period of g1(t) is given by nT1 = 4T1 = 2 s. Alternatively, the
fundamental period of g1(t) can also be evaluated from mT2 = 3T2 = 2 s.


(ii) In Example 1.3, we saw that sin(4π t) and 7 cos(10t) are both periodic


signals with fundamental periods 1/2 and π/5, respectively. Calculating the


ratio of the two fundamental periods yields


T1


T2
=


1/2


π/5
=


5


2π
,


which is not a rational number. Hence, the linear combination g2(t) is not a


periodic signal.


In Example 1.5, the two signals g1(t) = 3 sin(4π t) + 7 cos(3π t) and g2(t) =
3 sin(4π t) + 7 cos(10t) are almost identical since the angular frequency of the
cosine terms in g1(t) is 3π = 9.426, which is fairly close to 10, the fundamental
frequency for the cosine term in g2(t). Even such a minor difference can cause


one signal to be periodic and the other to be non-periodic. Since g1(t) satisfies


Proposition 1.2, it is periodic. On the other hand, signal g2(t) is not periodic


as the ratio of the fundamental periods of the two components, 3 sin(4π t) and


7 sin(10t), is 5/2π , which is not a rational number.


We can also illustrate the above result graphically. The two signals g1(t) and


g2(t) are plotted in Fig. 1.8. It is observed that g1(t) is repeating itself every two


time units, as shown in Fig. 1.8(a), where an arrowed horizontal line represents


a duration of 2 s. From Fig 1.8(b), it appears that the waveform of g2(t) is also


repetitive. Observing carefully, however, reveals that consecutive durations of


2 s in g2(t) are slightly different. For example, the amplitude of g2(t) at the two


ends of the arrowed horizontal line (of duration 2 s) are clearly different. Signal


g2(t) is not therefore a periodic waveform.


We should also note that a periodic signal by definition must strictly start at


t = −∞ and continue on forever till t approaches +∞. In practice, however,
most signals are of finite duration. Therefore, we relax the periodicity condition


and consider a signal to be periodic if it repeats itself during the time it is


observed.
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Fig. 1.8. Signals (a) g1(t ) and (b) g2(t ) considered in Example 1.5. Signal g1(t ) is periodic with a


fundamental period of 2 s, while g2(t ) is not periodic.


1.1.4 Energy and power signals


Before presenting the conditions for classifying a signal as an energy or a power


signal, we present the formulas for calculating the energy and power in a signal.


The instantaneous power at time t = t0 of a real-valued CT signal x(t) is
given by x2(t0). Similarly, the instantaneous power of a real-valued DT signal


x[k] at time instant k = k0 is given by x2[k]. If the signal is complex-valued,
the expressions for the instantaneous power are modified to |x(t0)|2 or |x[k0]|2,
where the symbol | · | represents the absolute value of a complex number.


The energy present in a CT or DT signal within a given time interval is given


by the following:


CT signals E(T1,T2) =
T2∫


T1


|x(t)|2dt in interval t = (T1, T2) with T2 > T1;


(1.10a)


DT sequences E[N1,N2] =
N2∑


k=N1


|x[k]|2 in interval k = [N1, N2] with N2 > N1.


(1.10b)


The total energy of a CT signal is its energy calculated over the interval t =
[−∞, ∞]. Likewise, the total energy of a DT signal is its energy calculated over
the range k = [−∞, ∞]. The expressions for the total energy are therefore given
by the following:


CT signals Ex =
∞∫


−∞


|x(t)|2dt ; (1.11a)
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DT sequences Ex =
∞∑


k=−∞
|x[k]|2. (1.11b)


Since power is defined as energy per unit time, the average power of a CT


signal x(t) over the interval t = (−∞, ∞) and of a DT signal x[k] over the
range k = [−∞, ∞] are expressed as follows:


CT signals Px = lim
T →∞


1


T


T/2∫


−T/2


|x(t)|2dt. (1.12)


DT sequences Px =
1


2K + 1


K∑


k=−K
|x[k]|2. (1.13)


Equations (1.12) and (1.13) are simplified considerably for periodic signals.


Since a periodic signal repeats itself, the average power is calculated from one


period of the signal as follows:


CT signals Px =
1


T0


∫


〈T0〉


|x(t)|2dt =
1


T0


t1+T0∫


t1


|x(t)|2dt, (1.14)


DT sequences Px =
1


K0


∑


k=〈K0〉
|x[k]|2 =


1


K0


k1+K0−1∑


k=k1


|x[k]|2, (1.15)


where t1 is an arbitrary real number and k1 is an arbitrary integer. The symbols


T0 and K0 are, respectively, the fundamental periods of the CT signal x(t) and


the DT signal x[k]. In Eq. (1.14), the duration of integration is one complete


period over the range [t1, t1 + T0], where t1 can take any arbitrary value. In
other words, the lower limit of integration can have any value provided that the


upper limit is one fundamental period apart from the lower limit. To illustrate


this mathematically, we introduce the notation ∫〈T0〉 to imply that the integration
is performed over a complete period T0 and is independent of the lower limit.


Likewise, while computing the average power of a DT signal x[k], the upper


and lower limits of the summation in Eq. (1.15) can take any values as long as


the duration of summation equals one fundamental period K0.


A signal x(t), or x[k], is called an energy signal if the total energy Ex has


a non-zero finite value, i.e. 0 < Ex < ∞. On the other hand, a signal is called
a power signal if it has non-zero finite power, i.e. 0 < Px < ∞. Note that a
signal cannot be both an energy and a power signal simultaneously. The energy


signals have zero average power whereas the power signals have infinite total


energy. Some signals, however, can be classified as neither power signals nor as


energy signals. For example, the signal e2t u(t) is a growing exponential whose


average power cannot be calculated. Such signals are generally of little interest


to us.


Most periodic signals are typically power signals. For example, the average


power of the CT sinusoidal signal, or A sin(ω0t + θ ), is given by A2/2 (see
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Fig. 1.9. CT signals for Example


1.6.


Problem 1.6). Similarly, the average power of the complex exponential signal


A exp(jω0t) is given by A
2 (see Problem 1.8).


Example 1.6


Consider the CT signals shown in Figs. 1.9(a) and (b). Calculate the instanta-


neous power, average power, and energy present in the two signals. Classify


these signals as power or energy signals.


Solution


(a) The signal x(t) can be expressed as follows:


x(t) =
{


5 −2 ≤ t ≤ 2
0 otherwise.


The instantaneous power, average power, and energy of the signal are calculated


as follows:


instantaneous power Px (t) =
{


25 −2 ≤ t ≤ 2
0 otherwise;


energy Ex =
∞∫


−∞


|x(t)|2dt =
2∫


−2


25 dt = 100;


average power Px = lim
T →∞


1


T
Ex = 0.


Because x(t) has finite energy (0 < Ex = 100 < ∞) it is an energy signal.
(b) The signal z(t) is a periodic signal with fundamental period 8 and over


one period is expressed as follows:


z(t) =
{


5 −2 ≤ t ≤ 2
0 2 < |t | ≤ 4,


with z(t + 8) = z(t). The instantaneous power, average power, and energy of
the signal are calculated as follows:


instantaneous power Pz(t) =
{


25 −2 ≤ t ≤ 2
0 2 < |t | ≤ 4
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and Pz(t + 8) = Pz(t);


average power Pz =
1


8


4∫


−4


|z(t)|2 dt =
1


8


2∫


−2


25 dt =
100


8
= 12.5;


energy Ez =
∞∫


−∞


|z(t)|2 dt = ∞.


Because the signal has finite power (0 < Pz = 12.5 < ∞), z(t) is a power
signal.


Example 1.7


Consider the following DT sequence:


f [k] =
{


e−0.5k k ≥ 0
0 k < 0.


Determine if the signal is a power or an energy signal.


Solution


The total energy of the DT sequence is calculated as follows:


E f =
∞∑


k=−∞
| f [k]|2 =


∞∑


k=0
|e−0.5k |2 =


∞∑


k=0
(e−1)k =


1


1 − e−1
≈ 1.582.


Because E f is finite, the DT sequence f [k] is an energy signal.


In computing E f , we make use of the geometric progression (GP) series to


calculate the summation. The formulas for the GP series are considered in


Appendix A.3.


Example 1.8


Determine if the DT sequence g[k] = 3 cos(πk/10) is a power or an energy
signal.


Solution


The DT sequence g[k] = 3 cos(πk/10) is a periodic signal with a fundamental
period of 20. All periodic signals are power signals. Hence, the DT sequence


g[k] is a power signal.


Using Eq. (1.15), the average power of g[k] is given by


Pg =
1


20


19∑


k=0
9 cos2


(
πk


10


)


=
9


20


19∑


k=0


1


2


[


1 + cos
(


2πk


10


)]


=
9


40


19∑


k=0
1


︸ ︷︷ ︸


term I


+
9


40


19∑


k=0
cos


(
2πk


10


)


︸ ︷︷ ︸


term II


.
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Clearly, the summation represented by term I equals 9(20)/40 = 4.5. To com-
pute the summation in term II, we express the cosine as follows:


term II =
9


40


19∑


k=0


1


2
[e jπk/5 + e−jπk/5] =


9


80


19∑


k=0
(e jπ/5)k +


9


80


19∑


k=0
(e−jπ/5)k .


Using the formulas for the GP series yields


19∑


k=0
(e jπ/5)k =


1 − (e jπ/5)20


1 − (e jπ/5)
=


1 − e jπ4


1 − (e jπ/5)
=


1 − 1
1 − (e jπ/5)


= 0


and


19∑


k=0
(e−jπ/5)k =


1 − (e−jπ/5)20


1 − (e jπ/5)
=


1 − e−jπ4


1 − (e jπ/5)
=


1 − 1
1 − (e jπ/5)


= 0.


Term II, therefore, equals zero. The average power of g[k] is therefore given


by


Pg = 4.5 + 0 = 4.5.


In general, a periodic DT sinusoidal signal of the form x[k] − A cos
(ω0k + θ ) has an average power Px = A2/2.


1.1.5 Deterministic and random signals


If the value of a signal can be predicted for all time (t or k) in advance without


any error, it is referred to as a deterministic signal. Conversely, signals whose


values cannot be predicted with complete accuracy for all time are known as


random signals.


Deterministic signals can generally be expressed in a mathematical, or graph-


ical, form. Some examples of deterministic signals are as follows.


(1) CT sinusoidal signal: x1(t) = 5 sin(20π t + 6);
(2) CT exponentially decaying sinusoidal signal: x2(t) = 2e−t sin(7t);


(3) CT finite duration complex exponential signal: x3(t) =
{


e j4π t |t | < 5
0 elsewhere;


(4) DT real-valued exponential sequence: x4[k] = 4e−2k ;
(5) DT exponentially decaying sinusoidal sequence: x5[k] = 3e−2k×


sin


(
16πk


5


)


.


Unlike deterministic signals, random signals cannot be modeled precisely.


Random signals are generally characterized by statistical measures such as


means, standard deviations, and mean squared values. In electrical engineering,


most meaningful information-bearing signals are random signals. In a digital


communication system, for example, data are generally transmitted using a


sequence of zeros and ones. The binary signal is corrupted with interference


from other channels and additive noise from the transmission media, resulting


in a received signal that is random in nature. Another example of a random
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signal in electrical engineering is the thermal noise generated by a resistor. The


intensity of the thermal noise depends on the movement of billions of electrons


and cannot be predicted accurately.


The study of random signals is beyond the scope of this book. We therefore


restrict our discussion to deterministic signals. However, most principles and


techniques that we develop are generalizable to random signals. The readers


are advised to consult more advanced books for analysis of random signals.


1.1.6 Odd and even signals


A CT signal xe(t) is said to be an even signal if


xe(t) = xe(−t). (1.16)


Conversely, a CT signal xo(t) is said to be an odd signal if


xo(t) = −xo(−t). (1.17)


A DT signal xe[k] is said to be an even signal if


xe[k] = xe[−k]. (1.18)


Conversely, a DT signal xo[k] is said to be an odd signal if


xo[k] = −xo[−k]. (1.19)


The even signal property, Eq. (1.16) for CT signals or Eq. (1.18) for DT sig-


nals, implies that an even signal is symmetric about the vertical axis (t = 0).
Likewise, the odd signal property, Eq. (1.17) for CT signals or Eq. (1.19) for


DT signals, implies that an odd signal is antisymmetric about the vertical axis


(t = 0). The symmetry characteristics of even and odd signals are illustrated
in Fig. 1.10. The waveform in Fig 1.10(a) is an even signal as it is symmetric


about the y-axis and the waveform in Fig. 1.10(b) is an odd signal as it is anti-


symmetric about the y-axis. The waveforms shown in Figs. 1.6(a) and (b) are


additional examples of even signals, while the waveforms shown in Figs. 1.6(c)


and (e) are examples of odd signals.


Most practical signals are neither odd nor even. For example, the signals


shown in Figs. 1.6(d) and (f), and 1.8(a) do not exhibit any symmetry about


the y-axis. Such signals are classified in the “neither odd nor even” category.


0−2−4
t


5


2 4 6−8 8
t


5 xe(t)


−6 8


(a)


0−2−4
t
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4 6−8 8
t
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Fig. 1.10. Example of (a) an


even signal and (b) an odd


signal.
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Neither odd nor even signals can be expressed as a sum of even and odd signals


as follows:


x(t) = xe(t) + xo(t),


where the even component xe(t) is given by


xe(t) =
1


2
[x(t) + x(−t)], (1.20)


while the odd component xo(t) is given by


xo(t) =
1


2
[x(t) − x(−t)]. (1.21)


Example 1.9


Express the CT signal


x(t) =
{


t 0 ≤ t < 1
0 elsewhere


as a combination of an even signal and an odd signal.


Solution


In order to calculate xe(t) and xo(t), we need to calculate the function x(−t),
which is expressed as follows:


x(−t) =
{


−t 0 ≤ −t < 1
0 elsewhere


=
{


−t −1 < t ≤ 0
0 elsewhere.


Using Eq. (1.20), the even component xe(t) of x(t) is given by


xe(t) =
1


2
[x(t) + x(−t)] =

















1


2
t 0 ≤ t < 1


−
1


2
t −1 ≤ t < 0


0 elsewhere,


while the odd component xo(t) is evaluated from Eq. (1.21) as follows:


xo(t) =
1


2
[x(t) − x(−t)] =

















1


2
t 0 ≤ t < 1


1


2
t −1 ≤ t < 0


0 elsewhere.


The waveforms for the CT signal x(t) and its even and odd components are


plotted in Fig. 1.11.
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Fig. 1.11. (a) The CT signal x(t )


for Example 1.9. (b) Even


component of x(t ). (c) Odd


component of x(t ).


1.1.6.1 Combinations of even and odd CT signals


Consider ge(t) and he(t) as two CT even signals and go(t) and ho(t) as two


CT odd signals. The following properties may be used to classify different


combinations of these four signals into the even and odd categories.


(i) Multiplication of a CT even signal with a CT odd signal results in a CT


odd signal. The CT signal x(t) = ge(t) × go(t) is therefore an odd signal.
(ii) Multiplication of a CT odd signal with another CT odd signal results in a


CT even signal. The CT signal h(t) = go(t) × ho(t) is therefore an even
signal.


(iii) Multiplication of two CT even signals results in another CT even signal.


The CT signal z(t) = ge(t) × he(t) is therefore an even signal.
(iv) Due to its antisymmetry property, a CT odd signal is always zero at t = 0.


Therefore, go(0) = ho(0) = 0.
(v) Integration of a CT odd signal within the limits [−T , T ] results in a zero


value, i.e.


T∫


−T


go(t)dt =
T∫


−T


ho(t)dt = 0. (1.22)


(vi) The integral of a CT even signal within the limits [−T , T ] can be simplified
as follows:


T∫


−T


ge(t)dt = 2
T∫


0


ge(t)dt . (1.23)


It is straightforward to prove properties (i)–(vi). Below we prove property


(vi).
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Proof of property (vi)


By expanding the left-hand side of Eq. (1.23), we obtain


T∫


−T


ge(t)dt =
0∫


−T


ge(t)dt


︸ ︷︷ ︸


integral I


+
T∫


0


ge(t)dt


︸ ︷︷ ︸


integral II


.


Substituting α = −t in integral I yields


integral I =
0∫


T


ge(−α)(−dα) =
T∫


0


ge(α)dα =
T∫


0


ge(t)dt = integral II,


which proves Eq. (1.23).


1.1.6.2 Combinations of even and odd DT signals


Properties (i)–(vi) for CT signals can be extended to DT sequences. Consider


ge[k] and he[k] as even sequences and go[k] and ho[k] are as odd sequences.


For the four DT signals, the following properties hold true.


(i) Multiplication of an even sequence with an odd sequence results in an odd


sequence. The DT sequence x[k] = ge[k] × go[k], for example, is an odd
sequence.


(ii) Multiplication of two odd sequences results in an even sequence. The DT


sequence h[k] = go[k] × ho[k], for example, is an even sequence.
(iii) Multiplication of two even sequences results in an even sequence. The DT


sequence z[k] = ge[k] × he[k], for example, is an even sequence.
(iv) Due to its antisymmetry property, a DT odd sequence is always zero at


k = 0. Therefore, go[0] = ho[0] = 0.
(v) Adding the samples of a DT odd sequence go[k] within the range [−M ,


M] is 0, i.e.


M∑


k=−M
go[k] = 0 =


M∑


k=−M
ho[k]. (1.24)


(vi) Adding the samples of a DT even sequence ge[k] within the range [−M ,
M] simplifies to


M∑


k=−M
ge[k] = ge[0] + 2


M∑


k=1
ge[k]. (1.25)
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1.2 Elementary signals


In this section, we define some elementary functions that will be used frequently


to represent more complicated signals. Representing signals in terms of the


elementary functions simplifies the analysis and design of linear systems.


1.2.1 Unit step function


The CT unit step function u(t) is defined as follows:


u(t) =
{


1 t ≥ 0
0 t < 0.


(1.26)


The DT unit step function u[k] is defined as follows:


u[k] =
{


1 k ≥ 0
0 k < 0.


(1.27)


The waveforms for the unit step functions u(t) and u[k] are shown, respectively,


in Figs. 1.12(a) and (b). It is observed from Fig. 1.12 that the CT unit step


function u(t) is piecewise continuous with a discontinuity at t = 0. In other
words, the rate of change in u(t) is infinite at t = 0. However, the DT function
u[k] has no such discontinuity.


1.2.2 Rectangular pulse function


The CT rectangular pulse rect(t/τ ) is defined as follows:


rect


(
t


τ


)


=


{


1 |t | ≤ τ/2


0 |t | > τ/2
(1.28)


and it is plotted in Fig. 1.12(c). The DT rectangular pulse rect(k/(2N + 1)) is
defined as follows:


rect


(
k


2N + 1


)


=
{


1 |k| ≤ N
0 |k| > N (1.29)


and it is plotted in Fig. 1.12(d).


1.2.3 Signum function


The signum (or sign) function, denoted by sgn(t), is defined as follows:


sgn(t) =











1 t > 0


0 t = 0
−1 t < 0.


(1.30)


The CT sign function sgn(t) is plotted in Fig. 1.12(e). Note that the operation


sgn(·) can be used to output the sign of the input argument. The DT signum
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Fig. 1.12. CT and DT elementary functions. (a) CT and (b) DT unit step functions. (c) CT and (d) DT rectangular pulses. (e) CT and


(f) DT signum functions. (g) CT and (h) DT ramp functions. (i) CT and (j) DT sinusoidal functions. (k) CT and (l) DT sinc functions.
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function, denoted by sgn(k), is defined as follows:


sgn[k] =











1 k > 0


0 k = 0
−1 k < 0


(1.31)


and it is plotted in Fig. 1.12(f).


1.2.4 Ramp function


The CT ramp function r (t) is defined as follows:


r (t) = tu(t) =
{


t t ≥ 0
0 t < 0,


(1.32)


which is plotted in Fig. 1.12(g). Similarly, the DT ramp function r [k] is defined


as follows:


r [k] = ku[k] =
{


k k ≥ 0
0 k < 0,


(1.33)


which is plotted in Fig. 1.12(h).


1.2.5 Sinusoidal function


The CT sinusoid of frequency f0 (or, equivalently, an angular frequency ω0 =
2π f0) is defined as follows:


x(t) = sin(ω0t + θ ) = sin(2π f0t + θ ), (1.34)


which is plotted in Fig. 1.12(i). The DT sinusoid is defined as follows:


x[k] = sin(Ω0k + θ ) = sin(2π f0k + θ ), (1.35)


where Ω0 is the DT angular frequency. The DT sinusoid is plotted in


Fig. 1.12(j). As discussed in Section 1.1.3, a CT sinusoidal signal x(t) =
sin(ω0t + θ ) is always periodic, whereas its DT counterpart x[k] = sin(Ω0k +
θ ) is not necessarily periodic. The DT sinusoidal signal is periodic only if the


fraction Ω0/2π is a rational number.


1.2.6 Sinc function


The CT sinc function is defined as follows:


sinc(ω0t) =
sin(πω0t)


πω0t
, (1.36)


which is plotted in Fig. 1.12(k). In some text books, the sinc function is alter-


natively defined as follows:


sinc(ω0t) =
sin(ω0t)


ω0t
.
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In this text, we will use the definition in Eq. (1.36) for the sinc function. The


DT sinc function is defined as follows:


sinc(Ω0k) =
sin(πΩ0k)


πΩ0k
, (1.37)


which is plotted in Fig. 1.12(l).


1.2.7 CT exponential function


A CT exponential function, with complex frequency s = σ + jω0, is repre-
sented by


x(t) = est = e(σ+jω0)t = eσ t (cos ω0t + j sin ω0t). (1.38)


The CT exponential function is, therefore, a complex-valued function with the


following real and imaginary components:


real component Re{est } = eσ t cos ω0t ;
imaginary component Im{est } = eσ t sin ω0t.


Depending upon the presence or absence of the real and imaginary components,


there are two special cases of the complex exponential function.


Case 1 Imaginary component is zero (ω0 = 0)
Assuming that the imaginary component ω of the complex frequency s is zero,


the exponential function takes the following form:


x(t) = eσ t ,


which is referred to as a real-valued exponential function. Figure 1.13 shows the


real-valued exponential functions for different values of σ . When the value of σ


is negative (σ < 0) then the exponential function decays with increasing time t .


0


tt


1


x(t) = est, s < 0


(a)


00


tt


1


x(t) = est, s = 0


(b)


00


tt


1


x(t) = est, s > 0


(c)


Fig. 1.13. Special cases of


real-valued CT exponential


function x(t ) = exp(σ t ).
(a) Decaying exponential with


σ < 0. (b) Constant with


σ = 0. (c) Rising exponential
with σ > 0.
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2p
w0 Re{e jwt} = cos(w0t)


t


(a)


2p
w0 Im{e jwt} = sin(w0t)


t


(b)


1


0 0


1


Fig. 1.14. CT complex-valued


exponential function


x(t ) = exp( jω0t ). (a) Real
component; (b) imaginary


component.


The exponential function for σ < 0 is referred to as a decaying exponential


function and is shown in Fig. 1.13(a). For σ = 0, the exponential function has
a constant value, as shown in Fig. 1.13(b). For positive values of σ (σ > 0),


the exponential function increases with time t and is referred to as a rising


exponential function. The rising exponential function is shown in Fig. 1.13(c).


Case 2 Real component is zero (σ = 0)
When the real component σ of the complex frequency s is zero, the exponential


function is represented by


x(t) = e jω0t = cos ω0t + j sin ω0t.


In other words, the real and imaginary parts of the complex exponential are


pure sinusoids. Figure 1.14 shows the real and imaginary parts of the complex


exponential function.


Example 1.10


Plot the real and imaginary components of the exponential function x(t) =
exp[( j4π − 0.5)t] for −4 ≤ t ≤ 4.


Solution


The CT exponential function is expressed as follows:


x(t) = e(j4π−0.5)t = e−0.5t × e j4π t .


The real and imaginary components of x(t) are expressed as follows:


real component Re{(t)} = e−0.5t cos(4π t);
imaginary component Im{(t)} = e−0.5t sin(4π t).


To plot the real component, we multiply the waveform of a cosine function


with ω0 = 4π , as shown in Fig. 1.14(a), by a decaying exponential exp(−0.5t).
The resulting plot is shown in Fig. 1.15(a). Similarly, the imaginary component


is plotted by multiplying the waveform of a sine function with ω0 = 4π , as
shown in Fig. 1.14(b), by a decaying exponential exp(−0.5t). The resulting
plot is shown in Fig. 1.15(b).
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Fig. 1.15. Exponential function x (t ) = exp[( j4π − 0.5)t ]. (a) Real component; (b) imaginary
component.


1.2.8 DT exponential function


The DT complex exponential function with radian frequency Ω0 is defined as


follows:


x[k] = e(σ+j�0)k = eσ t (cosΩ0k + j sinΩ0k.) (1.39)


As an example of the DT complex exponential function, we consider x[k] =
exp(j0.2π − 0.05k), which is plotted in Fig. 1.16, where plot (a) shows the real
component and plot (b) shows the imaginary part of the complex signal.


Case 1 Imaginary component is zero (Ω0 = 0). The signal takes the following
form:


x[k] = eσk


when the imaginary componentΩ0 of the DT complex frequency is zero. Similar


to CT exponential functions, the DT exponential functions can be classified as


rising, decaying, and constant-valued exponentials depending upon the value


of σ .


Case 2 Real component is zero (σ = 0). The DT exponential function takes
the following form:


x[k] = e jω0k = cos ω0k + j sin ω0k.


Recall that a complex-valued exponential is periodic iff Ω0/2π is a rational


number. An alternative representation of the DT complex exponential function
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Fig. 1.16. DT complex


exponential function x[k ] =
exp( j0.2πk – 0.05k). (a) Real


component; (b) imaginary


component.


is obtained by expanding


x[k] =
(


e(σ+j�0)
)k = γ k, (1.40)


where γ = (σ + jΩ0) is a complex number. Equation (1.40) is more compact
than Eq. (1.39).


1.2.9 Causal exponential function


In practical signal processing applications, input signals start at time t = 0.
Signals that start at t = 0 are referred to as causal signals. The causal exponential
function is given by


x(t) = est u(t) =
{


est t ≥ 0
0 t < 0,


(1.41)


where we have used the unit step function to incorporate causality in the com-


plex exponential functions. Similarly, the causal implementation of the DT


exponential function is defined as follows:


x[k] = esku[k] =
{


esk k ≥ 0
0 k < 0.


(1.42)


The same concept can be extended to derive causal implementations of sinu-


soidal and other non-causal signals.


Example 1.11


Plot the DT causal exponential function x[k] = e( j0.2π–0.05)ku[k].


Solution


The real and imaginary components of the non-causal signal e(j0.2π–0.05)k are


plotted in Fig. 1.16. To plot its causal implementation, we multiply e(j0.2π–0.05)k


by the unit step function u[k]. This implies that the causal implementation will


be zero for k < 0. The real and imaginary components of the resulting function


are plotted in Fig. 1.17.
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Fig. 1.17. Causal DT complex exponential function x[k ] = exp( j0.2πk – 0.05k)u[k ]. (a) Real component;
(b) imaginary component.


1.2.10 CT unit impulse function


The unit impulse function δ(t), also known as the Dirac delta function† or


simply the delta function, is defined in terms of two properties as follows:


(1) amplitude δ(t) = 0, t 
= 0; (1.43a)


(2) area enclosed


∞∫


−∞


δ(t)dt = 1. (1.43b)


Direct visualization of a unit impulse function in the CT domain is difficult.


One way to visualize a CT impulse function is to let it evolve from a rectangular


function. Consider a tall narrow rectangle with width ε and height 1/ε, as shown


in Fig. 1.18(a), such that the area enclosed by the rectangular function equals


one. Next, we decrease the width and increase the height at the same rate such


that the resulting rectangular functions have areas = 1. As the width ε → 0,
the rectangular function converges to the CT impulse function δ(t) with an


infinite amplitude at t = 0. However, the area enclosed by CT impulse function
is finite and equals one. The impulse function is illustrated in our plots by an


arrow pointing vertically upwards; see Fig. 1.18(b). The height of the arrow


corresponds to the area enclosed by the CT impulse function.


Properties of impulse function
(i) The impulse function is an even function, i.e. δ(t) = δ(−t).


(ii) Integrating a unit impulse function results in one, provided that the limits


of integration enclose the origin of the impulse. Mathematically,


T∫


−T


Aδ(t − t0)dt =
{


A for −T < t0 < T
0 elsewhere.


(1.44)


† The unit impulse function was introduced by Paul Adrien Maurice Dirac (1902–1984), a British


electrical engineer turned theoretical physicist.
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1


t


d(t)


0.5e−0.5e


area = 1


t


1/e


(a) (b)


Fig. 1.18. Impulse function δ(t ).


(a) Generating the impulse


function δ(t ) from a rectangular


pulse. (b) Notation used to


represent an impulse function.


(iii) The scaled and time-shifted version δ(at + b) of the unit impulse function
is given by


δ(at + b) =
1


a
δ


(


t +
b


a


)


. (1.45)


(iv) When an arbitrary function φ(t) is multiplied by a shifted impulse function,


the product is given by


φ(t)δ(t − t0) = φ(t0)δ(t − t0). (1.46)


In other words, multiplication of a CT function and an impulse function


produces an impulse function, which has an area equal to the value of the


CT function at the location of the impulse. Combining properties (ii) and


(iv), it is straightforward to show that


∞∫


−∞


φ(t)δ(t − t0)dt = φ(t0). (1.47)


(v) The unit impulse function can be obtained by taking the derivative of the


unit step function as follows:


δ(t) =
du


dt
. (1.48)


(vi) Conversely, the unit step function is obtained by integrating the unit


impulse function as follows:


u(t) =
t∫


−∞


δ(τ )dτ . (1.49)


Example 1.12


Simplify the following expressions:


(i)
5 − jt
7 + t2


δ(t);


(ii)


∞∫


−∞


(t + 5)δ(t − 2)dt ;


(iii)


∞∫


−∞


e j0.5πω+2δ(ω − 5)dω.
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Solution


(i) Using Eq. (1.46) yields
5 − jt
7 + t2


δ(t) =
[


5 − jt
7 + t2


]


t=0
δ(t) =


5


7
δ(t).


(ii) Using Eq. (1.46) yields


∞∫


−∞


(t + 5)δ(t − 2)dt =
∞∫


−∞


[(t + 5)]t=2δ(t − 2)dt = 7
∞∫


−∞


δ(t − 2)dt .


Since the integral computes the area enclosed by the unit step function, which


is one, we obtain


∞∫


−∞


(t + 5)δ(t − 2)dt = 7
∞∫


−∞


δ(t − 2)dt = 7.


(iii) Using Eq. (1.46) yields


∞∫


−∞


ej0.5πω+2δ(ω − 5)dω =
∞∫


−∞


[ej0.5πω+2]ω=5δ(ω − 5)dω


= ej2.5π +2
∞∫


−∞


δ(ω − 5)dω.


Since exp(j2.5π + 2) = j exp(2) and the integral equals one, we obtain
∞∫


−∞


e j0.5πω+2δ(ω − 5)dω = je2.


1.2.11 DT unit impulse function


The DT impulse function, also referred to as the Kronecker delta function or


the DT unit sample function, is defined as follows:


δ[k] = u[k] − u[k − 1] =
{


1 k = 0
0 k 
= 0. (1.50)


Unlike the CT unit impulse function, the DT impulse function has no ambiguity


in its definition; it is well defined for all values of k. The waveform for a DT


unit impulse function is shown in Fig. 1.19.


0


1


k


x[k] = δ[k]


Fig. 1.19. DT unit impulse


function.
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−1
k


x2[k] = 2d[k]


(c)


0 1


3


−1
k


x3[k] = 3d[k − 1]


(d)


Fig. 1.20. The DT functions in


Example 1.13: (a) x[k ], (b), x[k ],


(c) x2[k ], and (d) x3[k ]. The DT


function in (a) is the sum of the


shifted DT impulse functions


shown in (b), (c), and (d).


Example 1.13


Represent the DT sequence shown in Fig. 1.20(a) as a function of time-shifted


DT unit impulse functions.


Solution


The DT signal x[k] can be represented as the summation of three functions,


x1[k], x2[k], and x3[k], as follows:


x[k] = x1[k] + x2[k] + x3[k],


where x1[k], x2[k], and x3[k] are time-shifted impulse functions,


x1[k] = δ[k + 1], x2[k] = 2δ[k], and x3[k] = 4δ[k − 1],


and are plotted in Figs. 1.20(b), (c), and (d), respectively. The DT sequence


x[k] can therefore be represented as follows:


x[k] = δ[k + 1] + 2δ[k] + 4δ[k − 1].


1.3 Signal operations


An important concept in signal and system analysis is the transformation of a


signal. In this section, we consider three elementary transformations that are


performed on a signal in the time domain. The transformations that we consider


are time shifting, time scaling, and time inversion.


1.3.1 Time shifting


The time-shifting operation delays or advances forward the input signal in time.


Consider a CT signal φ(t) obtained by shifting another signal x(t) by T time


units. The time-shifted signal φ(t) is expressed as follows:


φ(t) = x(t + T ).








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:7


36 Part I Introduction to signals and systems


0−2−4
t


2 4 6−8 8
t


2
x(t)


−6 8


(a)


0−2−4
t


2 4 6−8 8
t


2
x(t − 3)


−6 8


(b)


0−2−4
t


2 4 6−8 8
t


2
x(t + 3)


−6 8


(c)


Fig. 1.21. Time shifting of a CT


signal. (a) Original CT signal


x(t ). (b) Time-delayed version


x(t − 3) of the CT signal x(t ).
and (c) Time-advanced version


x(t + 3) of the CT signal x(t ).


In other words, a signal time-shifted by T is obtained by substituting t in x(t) by


(t + T ). If T < 0, then the signal x(t) is delayed in the time domain. Graphically
this is equivalent to shifting the origin of the signal x(t) towards the right-hand


side by duration T along the t-axis. On the other hand, if T > 0, then the


signal x(t) is advanced forward in time. The plot of the time-advanced signal


is obtained by shifting x(t) towards the left-hand side by duration T along the


t-axis.


Figure 1.21(a) shows a CT signal x(t) and the corresponding two time-shifted


signals x(t − 3) and x(t + 3). Since x(t − 3) is a delayed version of x(t), the
waveform of x(t − 3) is identical to that of x(t), except for a shift of three time
units towards the right-hand side. Similarly, x(t + 3) is a time-advanced version
of x(t). The waveform of x(t + 3) is identical to that of x(t) except for a shift
of three time units towards the left-hand side.


The theory of the CT time-shifting operation can also be extended to DT


sequences. When a DT signal x[k] is shifted by m time units, the delayed signal


φ[k] is expressed as follows:


φ[k] = x[k + m].


If m < 0, the signal is said to be delayed in time. To obtain the time-delayed


signal φ[k], the origin of the signal x[k] is shifted towards the right-hand side


along the k-axis by m time units. On the other hand, if m > 0, the signal


is advanced forward in time. The time-advanced signal φ[k] is obtained by


shifting x[k] towards the left-hand side along the k-axis by m time units.


Figure 1.22 shows a DT signal x[k] and the corresponding two time-shifted


signals x[k − 4] and x[k + 4]. The waveforms of x[k − 4] and x[k + 4] are
identical to that of x[k]. The time-delayed signal x[k− 4] is obtained by shifting
x[k] towards the right-hand side by four time units. The time-advanced signal


x[k + 4] is obtained by shifting x[k] towards the left-hand side by four time
units.
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Fig. 1.22. Time shifting of a DT


signal. (a) Original DT signal


x[k ]. (b) Time-delayed version


x[k − 4] of the DT signal x[k ].
(c) Time-advanced version


x[k + 4] of the DT signal x[k ].


Example 1.14


Consider the signal x(t) = e−t u(t). Determine and plot the time-shifted versions
x(t − 4) and x(t + 2).


Solution


The signal x(t) can be expressed as follows:


x(t) = e−t u(t) =
{


e−t t ≥ 0
0 elsewhere,


(1.51)


and is shown in Fig. 1.23(a). To determine the expression for x(t − 4), we
substitute t by (t − 4) in Eq. (1.51). The resulting expression is given by


x(t − 4) =
{


e−(t−4) (t − 4) ≥ 0
0 elsewhere


=
{


e−(t−4) t ≥ 4
0 elsewhere.


The function x(t − 4) is plotted in Fig. 1.23(b).
Similarly, we can calculate the expression for x(t + 2) by substituting t by


(t + 2) in Eq. (1.51). The resulting expression is given by


x(t + 2) =
{


e−(t+2) (t + 2) ≥ 0
0 elsewhere


=
{


e−(t+2) t ≥ −2
0 elsewhere.


The function x(t + 2) is plotted in Fig. 1.23(c). From Fig. 1.23, we observe that
the waveform for x(t − 4) can be obtained directly from x(t) by shifting the
waveform of x(t) by four time units towards the right-hand side. Similarly, the


waveform for x(t + 2) can be obtained from x(t) by shifting the waveform of
x(t) by two time units towards the left-hand side. This is the result expected


from our previous discussion.
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Fig. 1.23. Time shifting of the


CT signal in Example 1.14.


(a) Original CT signal x(t ).


(b) Time-delayed version


x(t − 4) of the CT signal x(t ).
(c) Time-advanced version


x(t + 2) of the CT signal x(t ).


Example 1.15


Consider the signal x[k] defined as follows:


x[k] =
{


0.2k 0 ≤ k ≤ 5
0 elsewhere.


(1.52)


Determine and plot signals p[k] = x[k − 2] and q[k] = x[k + 2].


Solution


The signal x[k] is plotted in Fig. 1.24(a). To calculate the expression for p[k],


substitute k = m− 2 in Eq. (1.52). The resulting equation is given by


x[m − 2] =
{


0.2(m − 2) 0 ≤ (m − 2) ≤ 5
0 elsewhere.


By changing the independent variable from m to k and simplifying, we obtain


p[k] = x[k − 2] =
{


0.2(k − 2) 2 ≤ k ≤ 7
0 elsewhere.


The non-zero values of p[k] for −2 ≤ k ≤ 7, are shown in Table 1.1, and the
stem plot p[k] is plotted in Fig. 1.24(b). To calculate the expression for q[k],


substitute k = m + 2 in Eq. (1.52). The resulting equation is as follows:


x[m + 2] =
{


0.2(m + 2) 0 ≤ (m + 2) ≤ 5
0 elsewhere.
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Fig. 1.24. Time shifting of the


DT sequence in Example 1.15.


(a) Original DT sequence x[k ].


(b) Time-delayed version


x[k − 2] of x[k ].
(c) Time-advanced version


x[k + 2] of x[k ].


Table 1.1. Values of the signals p[k ] and q [k ]


k −2 −1 0 1 2 3 4 5 6 7
p[k] 0 0 0 0 0 0.2 0.4 0.6 0.8 1


q[k] 0 0.2 0.4 0.6 0.8 1 0 0 0 0


By changing the independent variable from m to k and simplifying, we


obtain


q[k] = x[k + 2] =
{


0.2(k + 2) −2 ≤ k ≤ 3
0 elsewhere.


Values of q[k], for −2 ≤ k ≤ 7, are shown in Table 1.1, and the stem plot for
q[k] is plotted in Fig. 1.24(c).


As in Example 1.14, we observe that the waveform for p[k] = x[k − 2] can
be obtained directly by shifting the waveform of x[k] towards the right-hand


side by two time units. Similarly, the waveform for q[k] = x[k + 2] can be
obtained directly by shifting the waveform of x[k] towards the left-hand side


by two time units.


1.3.2 Time scaling


The time-scaling operation compresses or expands the input signal in the time


domain. A CT signal x(t) scaled by a factor c in the time domain is denoted by


x(ct). If c > 1, the signal is compressed by a factor of c. On the other hand, if


0 < c < 1 the signal is expanded. We illustrate the concept of time scaling of


CT signals with the help of a few examples.
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Fig. 1.25. Time scaling of the CT


signal in Example 1.16.


(a) Original CT signal x(t ).


(b) Time-compressed version


x(2t ) of x(t ). (c) Time-expanded


version x(0.5t ) of signal x(t ).


Example 1.16


Consider a CT signal x(t) defined as follows:


x(t) =















t + 1 −1 ≤ t ≤ 0
1 0 ≤ t ≤ 2


−t + 3 2 ≤ t ≤ 3
0 elsewhere,


(1.53)


as plotted in Fig. 1.25(a). Determine the expressions for the time-scaled signals


x(2t) and x(t/2). Sketch the two signals.


Solution


Substituting t by 2α in Eq. (1.53), we obtain


x(2α) =















2α + 1 −1 ≤ 2α ≤ 0
1 0 ≤ 2α ≤ 2


−2α + 3 2 ≤ 2α ≤ 3
0 elsewhere.


By changing the independent variable from α to t and simplifying, we obtain


x(2t) =















2t + 1 −0.5 ≤ t ≤ 0
1 0 ≤ t ≤ 1


−2t + 3 1 ≤ t ≤ 1.5
0 elsewhere,


which is plotted in Fig. 1.25(b). The waveform for x(2t) can also be obtained


directly by compressing the waveform for x(t) by a factor of 2. It is important


to note that compression is performed with respect to the y-axis such that the


values x(t) and x(2t) at t = 0 are the same for both waveforms.
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Substituting t by α/2 in Eq. (1.53), we obtain


x(α/2) =















α/2 + 1 −1 ≤ α/2 ≤ 0
1 0 ≤ α/2 ≤ 2


−α/2 + 3 2 ≤ α/2 ≤ 3
0 elsewhere.


By changing the independent variable from α to t and simplifying, we obtain


x(t/2) =















t/2 + 1 −2 ≤ t ≤ 0
1 0 ≤ t ≤ 4


−t/2 + 3 4 ≤ t ≤ 6
0 elsewhere,


which is plotted in Fig. 1.25(c). The waveform for x(0.5t) can also be obtained


directly by expanding the waveform for x(t) by a factor of 2. As for compression,


expansion is performed with respect to the y-axis such that the values x(t) and


x(t/2) at t = 0 are the same for both waveforms.
A CT signal x(t) can be scaled to x(ct) for any value of c. For the DTFT,


however, the time-scaling factor c is limited to integer values. We discuss the


time scaling of the DT sequence in the following.


1.3.2.1 Decimation


If a sequence x[k] is compressed by a factor c, some data samples of x[k] are


lost. For example, if we decimate x[k] by 2, the decimated function y[k] =
x[2k] retains only the alternate samples given by x[0], x[2], x[4], and so on.


Compression (referred to as decimation for DT sequences) is, therefore, an


irreversible process in the DT domain as the original sequence x[k] cannot be


recovered precisely from the decimated sequence y[k].


1.3.2.2 Interpolation


In the DT domain, expansion (also referred to as interpolation) is defined as


follows:


x (m)[k] =











x


[
k


m


]


if k is a multiple of integer m


0 otherwise.


(1.54)


The interpolated sequence x (m)[k] inserts (m − 1) zeros in between adjacent
samples of the DT sequence x[k]. Interpolation of the DT sequence x[k] is a


reversible process as the original sequence x[k] can be recovered from x (m)[k].


Example 1.17


Consider the DT sequence x[k] plotted in Fig. 1.26(a). Calculate and sketch


p[k] = x[2k] and q[k] = x[k/2].
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Table 1.2. Values of the signal p[k ] for −3 ≤ k ≤ 3


k −3 −2 −1 0 1 2 3
p[k] x[−6] = 0 x[−4] = 0.2 x[−2] = 0.6 x[0] = 1 x[2] = 0.6 x[4] = 0.2 x[6] = 0


Table 1.3. Values of the signal q [k ] for −10 ≤ k ≤ 10


k −10 −9 −8 −7 −6 −5 −4
q[k] x[−5] = 0 0 x[−4] = 0.2 0 x[−3] = 0.4 0 x[−2] = 0.6


k −3 −2 −1 0 1 2 3
q[k] 0 x[−1] = 0.8 0 x[0] = 1 0 x[1] = 0.8 0


k 4 5 6 7 8 9 10


q[k] x[2] = 0.6 0 x[3] = 0.4 0 x[4] = 0.2 0 x[5] = 0


−10 −8 −6 −4 −2 0 2 4 6 8 10
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0.4


0.6


0.8


1


0


1.2


(a)


k
−10 −8 −6 −4 −2 0 2 4 6 8 10
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0.4


0.6


0.8


1


0


1.2


(b)


k
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0.6


0.8


1


0


1.2


(c)


k


Fig. 1.26. Time scaling of the DT


signal in Example 1.17.


(a) Original DT sequence x[k ].


(b) Decimated version x[2k ], of


x[k ]. (c) Interpolated version


x[0.5k ] of signal x[k ].


Solution


Since x[k] is non-zero for −5 ≤ k ≤ 5, the non-zero values of the decimated
sequence p[k] = x[2k] lie in the range −3 ≤ k ≤ 3. The non-zero values of
p[k] are shown in Table 1.2. The waveform for p[k] is plotted in Fig. 1.26(b).


The waveform for the decimated sequence p[k] can be obtained by directly


compressing the waveform for x[k] by a factor of 2 about the y-axis. While


performing the compression, the value of x[k] at k = 0 is retained in p[k]. On
both sides of the k = 0 sample, every second sample of x[k] is retained in p[k].


To determine q[k] = x[k/2], we first determine the range over which x[k/2]
is non-zero. The non-zero values of q[k] = x[k/2] lie in the range −10 ≤ k ≤
10 and are shown in Table 1.3. The waveform for q[k] is plotted in Fig. 1.26(c).


The waveform for the decimated sequence q[k] can be obtained by directly


expanding the waveform for x[k] by a factor of 2 about the y-axis. During
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Table 1.4. Values of the signal q2[k ] for −10 ≤ k ≤ k


k −10 −9 −8 −7 −6 −5 −4
q2[k] x[−5] = 0 0.1 x[−4] = 0.2 0.3 x[−3] = 0.4 0.5 x[−2] = 0.6


k −3 −2 −1 0 1 2 3
q2[k] 0.7 x[−1] = 0.8 0.9 x[0] = 1 0.9 x[1] = 0.8 0.7


k 4 5 6 7 8 9 10


q2[k] x[2] = 0.6 0.5 x[3] = 0.4 0.3 x[4] = 0.2 0.1 x[5] = 0


expansion, the value of x[k] at k = 0 is retained in q[k]. The even-numbered
samples, where k is a multiple of 2, of q[k] equal x[k/2]. The odd-numbered


samples in q[k] are set to zero.


While determining the interpolated sequence x[mk], Eq. (1.54) inserts (m − 1)
zeros in between adjacent samples of the DT sequence x[k], where x[k] is not


defined. Instead of inserting zeros, we can possibly interpolate the undefined


values from the neighboring samples where x[k] is defined. Using linear inter-


polation, an interpolated sequence can be obtained using the following equation:


x (m)[k]=

















x


[
k


m


]


if k is a multiple of integer m


(1 − α)x
[⌊


k


m


⌋]


+ α x
[⌈


k


m


⌉]


otherwise,


(1.55)


where
⌊


k
m


⌋


denotes the nearest integer less than or equal to (k/m),
⌈


k
m


⌉


denotes


the nearest integer greater than or equal to (k/m), and α = (k mod m)/m. Note
that mod is the modulo operator that calculates the remainder of the division


k/m. For m = 2, Eq. (1.55) simplifies to the following:


x (2)[k] =















x


[
k


2


]


if k is even


0.5


(


x


[
k − 1


2


]


+ x
[


k + 1
2


])


if k is odd.


Although, Eq. (1.55) is useful in many applications, we will use Eq. (1.54) to


denote an interpolated sequence throughout the book unless explicitly stated


otherwise.


Example 1.18


Repeat Example 1.17 to obtain the interpolated sequence q2[k] = x[k/2] using
the alternative definition given by Eq. (1.55).


Solution


The non-zero values of q2[k] = x[k/2] are shown in Table 1.4, where the val-
ues of the odd-numbered samples of q2[k], highlighted with the gray back-


ground, are obtained by taking the average of the values of the two neighboring
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Fig. 1.27. Interpolated version


x[0.5k ] of signal x[k ], where


unknown sample values are


interpolated.


samples at k and k − 1 obtained from x[k]. The waveform for q2[k] is plotted in
Fig. 1.27.


1.3.3 Time inversion


The time inversion (also known as time reversal or reflection) operation reflects


the input signal about the vertical axis (t = 0). When a CT signal x(t) is time-
reversed, the inverted signal is denoted by x(−t). Likewise, when a DT signal
x[k] is time-reversed, the inverted signal is denoted by x[−k]. In the following
we provide examples of time inversion in both CT and DT domains.


Example 1.19


Sketch the time-inverted version of the causal decaying exponential signal


x(t) = e−t u(t) =
{


e−t t ≥ 0
0 elsewhere,


(1.56)


which is plotted in Fig. 1.28(a).


Solution


To derive the expression for the time-inverted signal x(−t), substitute t = −α
in Eq. (1.56). The resulting expression is given by


x (−α) = eαu (−α) =
{


eα −α ≥ 0
0 elsewhere.


Simplifying the above expression and expressing it in terms of the independent


variable t yields


x(−t) =
{


et t ≤ 0
0 elsewhere.
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t


(a) (b)


Fig. 1.28. Time inversion of the


CT signal in Example 1.19.


(a) Original CT signal x(t ).


(b) Time-inverted version x(−t ).
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Fig. 1.29. Time inversion of the


DT signal in Example 1.20.


(a) Original CT sequence x[k ].


(b) Time-inverted version x[−k ].


The time-reversed signal x(−t) is plotted in Fig. 1.28(b). Signal inversion can
also be performed graphically by simply flipping the signal x(t) about the


y-axis.


Example 1.20


Sketch the time-inverted version of the following DT sequence:


x[k] =











1 −4 ≤ k ≤ −1
0.25k 0 ≤ k ≤ 4
0 elsewhere,


(1.57)


which is plotted in Fig. 1.29(a).


Solution


To derive the expression for the time-inverted signal x[−k], substitute
k = −m in Eq. (1.57). The resulting expression is given by


x[−m] =











1 −4 ≤ −m ≤ −1
−0.25m 0 ≤ −m ≤ 4


0 elsewhere.


Simplifying the above expression and expressing it in terms of the independent


variable k yields


x[−m] =











1 1 ≤ m ≤ 4
−0.25m −4 ≤ −m ≤ 0


0 elsewhere.


The time-reversed signal x[−k] is plotted in Fig. 1.29(b).


1.3.4 Combined operations


In Sections 1.3.1–1.3.3, we presented three basic time-domain transformations.


In many signal processing applications, these operations are combined. An


arbitrary linear operation that combines the three transformations is expressed


as x(αt + β), where α is the time-scaling factor and β is the time-shifting
factor. If α is negative, the signal is inverted along with the time-scaling and


time-shifting operations. By expressing the transformed signal as


x(αt + β) = x
(


α


[


t +
β


α


])


, (1.58)
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Fig. 1.30. Combined CT


operations defined in Example


1.21. (a) Original CT signal x(t ).


(b) Time-scaled version x(2t ).


(c) Time-inverted version


x(−2t ) of (b). (d) Time-shifted
version x(4 + 2t ) of (c).


we can plot the waveform graphically for x(αt + β) by following steps (i)–(iii)
outlined below.


(i) Scale the signal x(t) by |α|. The resulting waveform represents x(|α|t).
(ii) If α is negative, invert the scaled signal x(|α|t) with respect to the t = 0


axis. This step produces the waveform for x(αt).


(iii) Shift the waveform for x(αt) obtained in step (ii) by |β/α| time units. Shift
towards the right-hand side if (β/α) is negative. Otherwise, shift towards


the left-hand side if (β/α) is positive. The waveform resulting from this


step represents x(αt + β), which is the required transformation.


Example 1.21


Determine x(4 − 2t), where the waveform for the CT signal x(t) is plotted in
Fig. 1.30(a).


Solution


Express x(4 − 2t) = x(−2[t − 2]) and follow steps (i)–(iii) as outlined below.


(i) Compress x(t) by a factor of 2 to obtain x(2t). The resulting waveform is


shown in Fig. 1.30(b).


(ii) Time-reverse x(2t) to obtain x(−2t). The waveform for x(−2t) is shown
in Fig. 1.30(c).


(iii) Shift x(−2t) towards the right-hand side by two time units to obtain
x(−2[t − 2]) = x(4 − 2t). The waveform for x(4 − 2t) is plotted in
Fig. 1.30(d).


Example 1.22


Sketch the waveform for x[−15 – 3k] for the DT sequence x[k] plotted in
Fig. 1.31(a).
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Fig. 1.31. Combined DT


operations defined in Example


1.22. (a) Original DT signal x[k ].


(b) Time-scaled version x[3k ].


(c) Time-inverted version


x[−3k ] of (b). (d) Time-shifted
version x [−15 − 3k ] of (c).


Solution


Express x[−15 – 3k] = x[−3(k + 5)] and follow steps (i)–(iii) as outlined
below.


(i) Compress x[k] by a factor of 3 to obtain x[3k]. The resulting waveform is


shown in Fig. 1.31(b).


(ii) Time-reverse x[3k] to obtain x[−3k]. The waveform for x[−3k] is shown
in Fig. 1.31(c).


(iii) Shift x[−3k] towards the left-hand side by five time units to obtain
x[−3(k + 5)] = x[−15 − 3k]. The waveform for x[−15 – 3k] is plotted
in Fig. 1.31(d).


1.4 Signal implementation with MATLAB


MATLAB is used frequently to simulate signals and systems. In this section,


we present a few examples to illustrate the generation of different CT and DT


signals in MATLAB . We also show how the CT and DT signals are plotted in


MATLAB . A brief introduction to MATLAB is included in Appendix E.


Example 1.23


Generate and sketch in the same figure each of the following CT signals using


MATLAB . Do not use the “for” loops in your code. In each case, the horizontal


axis t used to sketch the CT should extend only for the range over which the


three signals are defined.


(a) x1(t) = 5 sin(2π t) cos(π t − 8) for −5 ≤ t ≤ 5;
(b) x2(t) = 5e−0.2t sin (2π t) for −10 ≤ t ≤ 10;
(c) x3(t) = e(j4π−0.5)t u(t) for −5 ≤ t ≤ 15.
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Solution


The MATLAB code for the generation of signals (a)–(c) is as follows:


>> %%%%%%%%%%%%


>> % Part(a) %


>> %%%%%%%%%%%%


>> clf % Clear any existing figure


>> t1 = [-5:0.001:5]; % Set the time from -5 to 5


% with a sampling


% rate of 0.001s


>> x1 = 5*sin(2*pi*t1).


*cos(pi*t1-8);


% compute function x1


>> % plot x1(t)


>> subplot(2,2,1); % select the 1st out of 4


% subplots


>> plot(t1,x1); % plot a CT signal


>> grid on; % turn on the grid


>> xlabel(‘time (t)’); % Label the x-axis as time


>> ylabel(‘5sin(2\pi t)
cos(\pi t - 8)’);


% Label the y-axis


>> title(‘Part (a)’); % Insert the title


>> %%%%%%%%%%%%


>> % Part(b) %


>> %%%%%%%%%%%%


>> t2 = [-10:0.002:10]; % Set the time from -10 to


% 10 with a sampling


% rate of 0.002s


>> x2 = 5*exp(-0.2*t2).


*sin(2*pi*t2);


% compute function x2


>> % plot x2(t)


>> subplot(2,2,2); % select the 2nd out of 4


% subplots


>> plot(t2,x2); % plot a CT signal


>> grid on; % turn on the grid


>> xlabel(‘time (t)’); % Label the x-axis as time


>> ylabel(‘5exp(-0.2t)


sin(2\pi t)’);
% Label the y-axis


>> title(‘Part (b)’); % Insert the title


>> %%%%%%%%%%%%


>> %Part(c)%


>> %%%%%%%%%%%%


>> t3 = [-5:0.001:15]; % Set the time from -5 to


% 15 with a sampling


% rate of 0.001s
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>> x3 = exp((j*4*pi-0.5)*t3).


*(t3>=0);


% compute function x3


>> % plot the real component


of x3(t)


>> subplot(2,2,3); % select the 3rd out of 4


% subplots


>> plot(t3,real(x3)); % plot a CT signal


>> grid on; % turn on the grid


>> xlabel(‘time (t)’) % Label the x-axis as time


>> ylabel(‘5exp[(j*4\pi-0.5)
t]u(t)’);


% Label the y-axis


>> title(‘Part (c): Real


Component’);


% Insert the title


>> subplot(2,2,4); % select the 4th out of 4


% subplots


>> plot(t3,imag(x3)); % plot the imaginary


% component of a CT


% signal


>> grid on; % turn on the grid


>> xlabel(‘time (t)’); % Label the x-axis as time


>> ylabel(‘5exp[(j4\pi-0.5)
t]u(t)’);


% Label the y-axis


>> title(‘Part (d): Imaginary


Component’);


% Insert the title


The resulting MATLAB plot is shown in Fig. 1.32.


Example 1.24


Repeat Example 1.23 for the following DT sequences:


(a) f1[k] = −0.92 sin(0.1πk − 3π/4) for −10 ≤ k ≤ 20;
(b) f2[k] = 2.0(1.1)1.8k − 2.1(0.9)0.7k for −5 ≤ k ≤ 25;
(c) f3[k] = (−0.93)kejπk/


√
350 for 0 ≤ k ≤ 50.


Solution


The MATLAB code for the generation of signals (a)–(c) is as follows:


>> %%%%%%%%%%%%


>> % Part(a) %


>> %%%%%%%%%%%%


>> clf % clear any existing figure


>> k = [-10:20]; % set the time index from


% -10 to 20


>> f1 = -0.92 * sin(0.1*pi*k - 3*pi/4);
% compute function f1
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Fig. 1.32. MATLAB plot for


Example 1.23. (a) x1(t );


(b) x2(t ); (c) Re{x3(t )};
(d) Im{x3(t )}.


>> % plot function 1


>> subplot(2,2,1), stem(k, f1, ‘filled’), grid


>> xlabel(‘k’)


>> ylabel(‘-9.2sin(0.1\pi k-0.75\pi’)
>> title(‘Part (a)’)


>> %%%%%%%%%%%%


>> % Part(b) %


>> %%%%%%%%%%%%


>> k = [-5:25];


>> f2 = 2 * 1.1.ˆ(-1.8*k) - 2.1 * 0.9.ˆ(0.7*k);


>> subplot(2,2,2), stem(k, f2, ‘filled’), grid


>> xlabel(‘k’)


>> ylabel(‘2(1.1)ˆ{-1.8k} - 2.1(0.9)ˆ0.7k’)


>> title(‘Part (b)’)


>> %%%%%%%%%%%%


>> % Part(c) %


>> %%%%%%%%%%%%


>> k = [0:50];


>> f3 = (-0.93).ˆk .* exp(j*pi*k/sqrt(350));


>> subplot(2,2,3), stem(k, real(f3), ‘filled’), grid
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Fig. 1.33. MATLAB plot for


Example 1.24.


>> xlabel(‘k’)


>> ylabel(‘(-0.93)ˆk exp(j\pi k/(350)ˆ{0.5}’)
>> title(‘Part (c) - real part’)


>> %


>> subplot(2,2,4), stem(k, imag(f3), ‘filled’), grid


>> xlabel(‘k’)


>> ylabel(‘(-0.93)ˆk exp(j\pi k/(350)ˆ{0.5}’)
>> title(‘Part (d) - imaginary part’)


>> print -dtiff plot.tiff


The resulting MATLAB plots are shown in Fig. 1.33.


1.5 Summary


In this chapter, we have introduced many useful concepts related to signals


and systems, including the mathematical and graphical interpretations of signal


representation. In Section 1.1, we classified signals in six different categories:


CT versus DT signals; analog versus digital signals; periodic versus aperiodic


signals; energy versus power signals; deterministic versus probabilistic signals;


and even versus odd signals. We classified the signals based on the following


definitions.
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(1) A time-varying signal is classified as a continuous time (CT) signal if it is


defined for all values of time t . A time-varying discrete time (DT) signal is


defined for certain discrete values of time, t = kTs, where Ts is the sampling
interval. In our notation, a CT signal is represented by x(t) and a DT signal


is denoted by x[k].


(2) An analog signal is a CT signal whose amplitude can take any value. A


digital signal is a DT signal that can only have a discrete set of values.


The process of converting a DT signal into a digital signal is referred to as


quantization.


(3) A periodic signal repeats itself after a known fundamental period, i.e.


x(t) = x(t + T0) for CT signals and x[k] = x[k + K0] for DT signals. Note
that CT complex exponentials and sinusoidal signals are always periodic,


whereas DT complex exponentials and sinusoidal signals are periodic only


if the ratio of their DT fundamental frequency Ω0, to 2π is a rational


number.


(4) A signal is classified as an energy signal if its total energy has a non-zero


finite value. A signal is classified as a power signal if it has non-zero finite


power. An energy signal has zero average power whereas a power signal


has an infinite energy. Periodic signals are generally power signals.


(5) A deterministic signal is known precisely and can be predicted in advance


without any error. A random signal cannot be predicted with 100%


accuracy.


(6) A signal that is symmetric about the vertical axis (t = 0) is referred to
as an even signal. An odd signal is antisymmetric about the vertical axis


(t = 0). Mathematically, this implies x(t) = x(−t) for the CT even signals
and x(t) = −x(−t) for the CT odd signals. Likewise for the DT signals.


In Section 1.2, we introduced a set of 1D elementary signals, including rectan-


gular, sinusoidal, exponential, unit step, and impulse functions, defined both in


the DT and CT domains. We illustrated through examples how the elementary


signals can be used as building blocks for implementing more complicated sig-


nals. In Section 1.3, we presented three fundamental signal operations, namely


time shifting, scaling, and inversion that operate on the independent variable.


The time-shifting operation x(t − T ) shifts signal x(t) with respect to time.
If the value of T in x(t − T ) is positive, the signal is delayed by T time
units. For negative values of T , the signal is time-advanced by T time units.


The time-scaling, x(ct), operation compresses (c > 0) or expands (c < 0) sig-


nal x(t). The time-inversion operation is a special case of the time-scaling


operation with c = −1. The waveform for the time-scaled signal x(−t) is the
reflection of the waveform of the original signal x(t) about the vertical axis


(t = 0). The three transformations play an important role in the analysis of lin-
ear time-invariant (LTI) systems, which will be covered in Chapter 2. Finally,


in Section 1.4, we used MATLAB to generate and analyze several CT and DT


signals.
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Problems


1.1 For each of the following representations:
(i) z[m, n, k],


(ii) I (x, y, z, t),


establish if the signal is a CT or a DT signal. Specify the independent


and dependent variables. Think of an information signal from a physical


process that follows the mathematical representation given in (i). Repeat


for the representation in (ii).


1.2 Sketch each of the following CT signals as a function of the independent
variable t over the specified range:


(i) x1(t) = cos(3π t/4 + π/8) for −1 ≤ t ≤ 2;
(ii) x2(t) = sin(−3π t/8 + π/2) for −1 ≤ t ≤ 2;


(iii) x3(t) = 5t + 3 exp(−t) for −2 ≤ t ≤ 2;
(iv) x4(t) = (sin(3π t/4 + π/8))2 for −1 ≤ t ≤ 2;
(v) x5(t) = cos(3π t/4) + sin(π t/2) for −2 ≤ t ≤ 3;


(vi) x6(t) = t exp(−2t) for −2 ≤ t ≤ 3.


1.3 Sketch the following DT signals as a function of the independent variable
k over the specified range:


(i) x1[k] = cos(3πk/4 + π/8) for −5 ≤ k ≤ 5;
(ii) x2[k] = sin(−3πk/8 + π/2) for −10 ≤ k ≤ 10;


(iii) x3[k] = 5k + 3−k for −5 ≤ k ≤ 5;
(iv) x4[k] = |sin(3πk/4 + π/8)| for −6 ≤ k ≤ 10;
(v) x5[k] = cos(3πk/4) + sin(πk/2) for −10 ≤ k ≤ 10;


(vi) x6[k] = k4−|k| for −10 ≤ k ≤ 10.


1.4 Prove Proposition 1.2.


1.5 Determine if the following CT signals are periodic. If yes, calculate the
fundamental period T0 for the CT signals:


(i) x1(t) = sin(−5π t/8 + π/2);
(ii) x2(t) = |sin(−5π t/8 + π/2)|;


(iii) x3(t) = sin(6π t/7) + 2 cos(3t/5);
(iv) x4(t) = exp(j(5t + π/4));
(v) x5(t) = exp(j3π t/8) + exp(π t/86);


(vi) x6(t) = 2 cos(4π t/5)∗ sin2(16t/3);
(vii) x7(t) = 1 + sin 20t + cos(30t + π/3).


1.6 Determine if the following DT signals are periodic. If yes, calculate the
fundamental period N0 for the DT signals:


(i) x1[k] = 5 × (−1)k ;
(ii) x2[k] = exp(j(7πk/4)) + exp(j(3k/4));


(iii) x3[k] = exp(j(7πk/4)) + exp(j(3πk/4));
(iv) x4[k] = sin(3πk/8) + cos(63πk/64);
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(v) x5[k] = exp(j(7πk/4)) + cos(4πk/7 + π );
(vi) x6[k] = sin(3πk/8) cos(63πk/64).


1.7 Determine if the following CT signals are energy or power signals or
neither. Calculate the energy and power of the signals in each case:


(i) x1(t) = cos(π t) sin(3π t);
(v) x5(t) =


{


cos(3π t) −3 ≤ t ≤ 3;
0 elsewhere;(ii) x2(t) = exp(−2t);


(iii) x3(t) = exp(−j2t);
(iv) x4(t) = exp(−2t)u(t); (vi) x6(t) =











t 0 ≤ t ≤ 2
4 − t 2 ≤ t ≤ 4
0 elsewhere.


1.8 Repeat Problem 1.7 for the following DT sequences:


(i) x1[k] = cos
(


πk


4


)


sin


(
3πk


8


)


;


(ii) x2[k] =











cos


(
3πk


16


)


−10 ≤ k ≤ 0


0 elsewhere;


(iii) x3[k] = (−1)k ;
(iv) x4[k] = exp(j(πk/2 + π/8));


(v) x5[k] =











2k 0 ≤ k ≤ 10
1 11 ≤ k ≤ 15
0 elsewhere.


1.9 Show that the average power of the CT periodic signal x(t) = A sin(ω0t +
θ ), with real-valued coefficient A, is given by A2/2.


1.10 Show that the average power of the CT signal y(t) = A1 sin(ω1t + φ1) +
A2 sin(ω2t + φ2), with real-valued coefficients A1 and A2, is given by


Py =















A21
2


+
A22
2


ω1 
= ω2
A21
2


+
A22
2


+ A1 A2 cos(φ1 − φ2) ω1 = ω2.


1.11 Show that the average power of the CT periodic signal x(t) =
D exp[j(ω0t + θ )] is given by |D|2.


1.12 Show that the average power of the following CT signal:


x(t) =
N∑


n=1
Dne


jωn t , ωp 
= ωr if p 
= r,


for 1 ≤ p, r ≤ N , is given by


Px =
N∑


n=1
|Dn|2.


1.13 Calculate the average power of the periodic function shown in Fig. P1.13
and defined as


x(t)|t=(0,1] =
{


1 2−2m−1 < t ≤ 2−2m
0 2−2m−2 < t ≤ 2−2m−1


m ∈ Z+ and x(t) = x(t + 1).
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0


1.25Fig. P1.13. The CT function x(t )


in Problem 1.13.


1.14 Determine if the following CT signals are even, odd, or neither even nor
odd. In the latter case, evaluate and sketch the even and odd components


of the CT signals:


(i) x1(t) = 2 sin(2π t)[2 + cos(4π t)];
(ii) x2(t) = t2 + cos(3t);


(iii) x3(t) = exp(−3t) sin(3π t);
(iv) x4(t) = t sin(5t);
(v) x5(t) = tu(t);


(vi) x6(t) =















3t 0 ≤ t < 2
6 2 ≤ t < 4
3(−t + 6) 4 ≤ t ≤ 6
0 elsewhere.


1.15 Determine if the following DT signals are even, odd, or neither even nor
odd. In the latter case, evaluate and sketch the even and odd components


of the DT signals:


(i) x1[k] = sin(4k) + cos(2π/k3);
(ii) x2[k] = sin(πk/3000) + cos(2πk/3);


(iii) x3[k] = exp(j(7πk/4)) + cos(4πk/7 + π );
(iv) x4[k] = sin(3πk/8) cos(63πk/64);


(v) x5[k] =
{


(−1)k k ≥ 0
0 k < 0.


1.16 Consider the following signal:


x(t) = 3 sin
(


2π (t − T )
5


)


.


Determine the values of T for which the resulting signal is (a) an even


function, and (b) an odd function of the independent variable t.


1.17 By inspecting plots (a), (b), (c), and (d) in Fig. P1.17, classify the CT
waveforms as even versus odd, periodic versus aperiodic, and energy


versus power signals. If the waveform is neither even nor odd, then deter-


mine the even and odd components of the signal. For periodic signals,


determine the fundamental period. Also, compute the energy and power


present in each case.


1.18 Sketch the following CT signals:
(i) x1(t) = u(t) + 2u(t − 3) − 2u(t − 6) − u(t − 9);


(ii) x2(t) = u(sin(π t));
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(d)


Fig. P1.17. Waveforms for


Problem 1.17.
(iii) x3(t) = rect(t/6) + rect(t/4) + rect(t/2);
(iv) x4(t) = r (t) − r (t − 2) − 2u(t − 4);
(v) x5(t) = (exp(−t) − exp(−3t))u(t);


(vi) x6(t) = 3 sgn(t) · rect(t/4) + 2δ(t + 1) − 3δ(t − 3).


1.19 (a) Sketch the following functions with respect to the time variable (if
a function is complex, sketch the real and imaginary components sep-


arately). (b) Locate the frequencies of the functions in the 2D complex


plane.


(i) x1(t) = e j2π t+3;
(ii) x2(t) = e j2π t+3t ;


(iii) x3(t) = e−j2π t+j3t ;
(iv) x4(t) = cos(2π t + 3);
(v) x5(t) = cos(2π t + 3) + sin(3π t + 2);


(vi) x6(t) = 2 + 4 cos(2π t + 3) − 7 sin(5π t + 2).


1.20 Sketch the following DT signals:
(i) x1[k] = u[k] + u[k − 3] − u[k − 5] − u[k − 7];


(ii) x2[k] =
∞∑


m=0
δ[k − m];


(iii) x3[k] = (3k − 2k)u[k];
(iv) x4[k] = u[cos(πk/8)];
(v) x5[k] = ku[k];


(vi) x6[k] = |k| (u[k + 4] − u[k − 4]).


1.21 Evaluate the following expressions:


(i)
5 + 2t + t2


7 + t2 + t4
δ(t − 1);


(ii)
sin(t)


2t
δ(t);


(iii)
ω3 − 1
ω2 + 2


δ(ω − 5).
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1.22 Evaluate the following integrals:


(i)


∞∫


−∞


(t − 1)δ(t − 5)dt ;


(ii)


6∫


−∞


(t − 1)δ(t − 5)dt ;


(iii)


∞∫


6


(t − 1)δ(t − 5)dt ;


(iv)


∞∫


−∞


(2t/3 − 5)δ(3t/4 − 5/6)dt ;


(v)


∞∫


−∞


exp(t − 1) sin(π (t + 5)/4)δ(1 − t)dt ;


(vi)


∞∫


−∞


[sin(3π t/4) + exp(−2t + 1)]δ(−t − 1)dt ;


(vii)


∞∫


−∞


[u(t − 6) − u(t − 10)] sin(3π t/4)δ(t − 5)dt ;


(viii)


21∫


−21


(
∞∑


m=−∞
tδ(t − 5m)


)


dt .


1.23 In Section 1.2.8, the Dirac delta function was obtained as a limiting case of


the rectangular function, i.e. δ(t) = lim
ε→0


1


ε
rect


(
t


ε


)


. Show that the Dirac


delta function can also be obtained from each of the following functions


(i.e. that Eq. (1.43) is satisfied by each of the following functions):


(i) lim
ε→0


ε


π (t2 + ε2)
;


(iii) lim
ε→0


1


π t
sin εt ;


(ii) lim
ε→0


2ε


4π2t2 + ε2
;


(iv) lim
ε→0


1


ε
√


2π
exp


(


−
t2


2ε2


)


.


1.24 Consider the following signal:


x(t) =















t + 2 −2 ≤ t ≤ −1
1 −1 ≤ t ≤ 1


−t + 2 1 < t ≤ 2
0 elsewhere.


(a) Sketch the functions: (i) x(t − 3); (ii) x(−2t − 3); (iii) x(−2t − 3);
(iv) x(−0.75t − 3).


(b) Determine the analytical expressions for each of the four functions.
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Fig. P1.25. Waveform for


Problem 1.25.
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Fig. P1.26. Waveform for


Problem 1.26.
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Fig. P1.27. Waveform for


Problem 1.27.


1.25 Consider the function f (t) shown in Fig. P1.25.
(i) Sketch the function g(t) = f (−3t + 9).


(ii) Calculate the energy and power of the signal f (t). Is it a power signal


or an energy signal?


(iii) Repeat (ii) for g(t).


1.26 Consider the function f (t) shown in Fig. P1.26.
(i) Sketch the function g(t) = f (−2t + 6).


(ii) Represent the function f (t) as a summation of an even and an odd


signal. Sketch the even and odd parts.


1.27 Consider the function f (t) shown in Fig. P1.27.
(i) Sketch the function g(t) = t f (t + 2) − t f (t − 2).


(ii) Sketch the function g(2t).


1.28 Consider the two DT signals


x1[k] = |k|(u[k + 4] − u[k − 4])


and


x2[k] = k(u[k + 5] − u[k − 5]).
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Fig. P1.29. ECG pattern for


Problem 1.29.


Sketch the following signals expressed as a function of x1[k] and x2[k]:


(i) x1[k];


(ii) x2[k];


(iii) x1[3 − k];
(iv) x1[6 − 2k];
(v) x1[2k];


(vi) x2[3k];


(vii) x1[k/2];


(viii) x1[2k] + x2[3k];
(ix) x1[3 − k]x2[6 − 2k];
(x) x1[2k]x2[−k].


1.29 In most parts of the human body, a small electrical current is often pro-
duced by movement of different ions. For example, in cardiac cells the


electric current is produced by the movement of sodium (Na+) and potas-


sium (K+) ions (during different phases of the heart beat, these ions enter


or leave cells). The electric potential created by these ions is known as an


ECG signal, and is used by doctors to analyze heart conditions. A typical


ECG pattern is shown in Fig. P1.29.


Assume a hypothetical case in which the ECG signal corresponding to


a normal human is available from birth to death (assume a longevity of


80 years). Classify such a signal with respect to the six criteria mentioned


in Section 1.1. Justify your answer for each criterion.


1.30 It was explained in Section 1.2 that a complicated function could be
represented as a sum of elementary functions. Consider the function f (t)


in Fig. P1.26. Represent f (t) in terms of the unit step function u(t) and


the ramp function r (t).


1.31 (MATLAB exercise) Write a set of MATLAB functions that compute and
plot the following CT signals. In each case, use a sampling interval of


0.001 s.




hamadalsultan

Highlight




hamadalsultan

Highlight




hamadalsultan

Highlight




hamadalsultan

Highlight




hamadalsultan

Highlight
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(i) x(t) = exp(−2t) sin(10π t) for |t | ≤ 1.
(ii) A periodic signal x(t) with fundamental period T = 5. The value


over one period is given by


x(t) = 5t 0 ≤ t < 5.


Use the sawtooth function available in MATLAB to plot five


periods of x(t) over the range −10 ≤ t < 15.
(iii) The unit step function u(t) over [−10, 10] using the sign function


available in MATLAB .


(iv) The rectangular pulse function rect(t)


rect


(
t


10


)


=
{


1 −5 < t < 5
0 elsewhere


using the unit step function implemented in (iii).


(v) A periodic signal x(t) with fundamental period T = 6. The value
over one period is given by


x(t) =
{


3 |t | ≤ 1
0 1 < |t | ≤ 3.


Use the square function available in MATLAB .


1.32 (MATLAB exercise) Write a MATLAB function mydecimate with the
following format:


function [y] = mydecimate(x, M)


% MYDECIMATE: computes y[k] = x[kM]


% where


% x is a column vector containing the DT input


% signal


% M is the scaling factor greater than 1


% y is a column vector containing the DT output time


% decimated by M


In other words, mydecimate accepts an input signal x[k] and produces


the signal y[k] = x[kM].


1.33 (MATLAB exercise) Repeat Problem 1.30 for the transformation y[k] =
x[k/N ]. In other words, write a MATLAB function myinterpolate


with the following format:


function [y] = myinterpolate(x, N)


% MYINTERPOLATE: computes y[k] = x[k/N]


% where


% x is a column vector containing the DT input


% signal


% N is the scaling factor greater than 1
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% y is a column vector containing the DT output


% signal time expanded by N


Use linear interpolation based on the neighboring samples to predict any


required unknown values in x[k].


1.34 (MATLAB exercise) Construct a DT signal given by


x[k] = (1 − e−0.003k) cos(πk/20) for 0 ≤ k ≤ 120.


(i) Sketch the signal using the stem function.


(ii) Using the mydecimate (Problem P1.30) and myinterpolate


(Problem P1.31) functions, transform the signal x[k] based on the


operation y[k] = x[k/5] followed by the operation z[k] = y[5k].
What is the relationship between x[k] and z[k]?


(iii) Repeat (ii) with the order of interpolation and decimation reversed.
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C H A P T E R


2 Introduction to systems


In Chapter 1, we introduced the mathematical and graphical notations for repre-


senting signals, which enabled us to illustrate the effect of linear time operations


on transforming the signals. A second important component of signal process-


ing is a system that usually abstracts a physical process. Broadly speaking, a


system is characterized by its ability to accept a set of input signals xi , for i ∈


{1, 2, . . . , m}, and to produce a set of output signals y j , for j ∈ {1, 2, . . . , n}, in


response to the input signals. In other words, a system establishes a relationship


between a set of inputs and the corresponding set of outputs.


Most physical processes are modeled by multiple-input and multiple-output


(MIMO) systems of the form illustrated in Fig. 2.1(a), where the xi (t)’s repre-


sent the CT inputs while the y j (t)’s represent the CT outputs. Such systems,


which operate on CT input signals transforming them to CT output signals,


are referred to as CT systems. Using the principle of superimposition, a linear


MIMO CT system is often approximated by a combination of several single-


input CT systems. The block diagram representing a single-input, single-output


CT system is illustrated in Fig. 2.1(b). Throughout this book, we will restrict


our discussion to the analysis and design of single-input, single-output sys-


tems, knowing that the principles derived for such systems can be generalized


to MIMO systems.


In comparison to CT systems, DT systems transform DT input signals, often


referred to as sequences, into DT output signals. Two DT systems are shown in


Fig. 2.2. In Fig. 2.2(a), the schematic of a MIMO DT system is illustrated with


a set of m input sequences, denoted by xi [k]’s, and a set of n output sequences,


denoted by y j [k]’s. A single-input, single-output DT system is illustrated in


Fig. 2.2(b). As for the CT systems, we will focus on single-input, single-output


DT systems in this book.


The relationship between the input signal and its output response of a single-


input, single-output system, may it be DT or CT, will be shown by the following


62
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Fig. 2.1. General schematics of CT systems. (a) Multiple-input, multiple-output (MIMO) CT system with m


inputs and n outputs. (b) Single-input, single-output CT system.
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Fig. 2.2. General schematics of


DT systems. (a) Multiple-input,


multiple-output (MIMO) DT


system with m inputs and n


outputs. (b) Single-input,


single-output DT system.


notation:


CT system x(t) → y(t); (2.1)


DT system x[k] → y[k]. (2.2)


The arrow in Eq. (2.1) implies that a CT signal x(t), applied at the input of a


CT system, produces a CT output y(t). Likewise, the arrow in Eq. (2.2) implies


that a DT input signal x[k] produces a DT output signal y[k]. This chapter


focuses on the classification of CT and DT systems. Before proceeding with


the classification of systems, we consider several applications of signals and


systems in electrical networks, electronic devices, communication systems, and


mechanical systems.


The organization of Chapter 2 is as follows. In Section 2.1, we provide


several examples of CT and DT systems. We show that most CT systems can be


modeled by linear, constant-coefficient differential equations, while DT systems


can be modeled by linear, constant-coefficient difference equations. Section 2.2


introduces several classifications for CT and DT systems based on the properties


of these systems. A particularly important class of systems, referred to as linear


time-invariant (LTI) systems, consists of those that satisfy both the linearity and


time-invariance properties. Most practical structures are complex and consist


of several LTI systems. Section 2.3 presents the series, parallel, and feedback


configurations used to synthesize larger systems. Section 2.4 concludes the


chapter with a summary of the important concepts.


2.1 Examples of systems


In this section, we present examples of physical systems and derive relationships


between the input and output signals associated with these systems. For linear
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CT systems, a linear, constant-coefficient differential equation is often used to


specify the relationship between its input x(t) and output y(t). For linear DT


systems, a linear, constant-coefficient difference equation often describes the


relationship between its input x[k] and output y[k]. The relationship between


the input and output signals completely specifies the physical system. In other


words, we do not require any other information to analyze the system. Once the


input/output relationship has been determined, the schematics of Figs. 2.1(b)


or 2.2(b) can be applied to model the physical system.


2.1.1 Electrical circuit


Figure 2.3 shows a simple electrical circuit comprising of three components: a


resistor R, an inductor L , and a capacitor C . A voltage signal v(t), applied at


the input of the circuit, produces an output signal y(t) representing the voltage


across capacitor C . In order to derive a relationship between the input and


output signals in the RLC circuit, we make use of the Kirchhoff’s current law,


which states “The sum of the currents flowing into a node equals the sum of the


currents flowing out of the node.”


We apply Kirchhoff’s current law to node 1, shown in the top branch of the


RLC circuit in Fig. 2.3. The equations for the currents flowing out of node 1


along resistor R, inductor L , and capacitor C , are given by


resistor R iR =
y(t) − v(t)


R
(2.3a)


inductor L iL =
1


L


t∫


−∞


y(τ )dτ (2.3b)


capacitor C iC = C
dy


dt
. (2.3c)


Applying Kirchhoff’s current law to node 1 and summing up all the currents


yields


y(t) − v(t)


R
+


1


L


t∫


−∞


y(τ )dτ + C
dy


dt
= 0, (2.4)


which reduces to a linear, constant-coefficient differential equation of the second


order, given by


d2 y


dt2
+


1


RC


dy


dt
+


1


LC
y(t) =


1


RC


dv


dt
. (2.5)


In conjunction with the initial conditions, y(0) and ẏ(0), Eq. (2.5) completely


specifies the relationship between the input voltage v(t) and the output voltage


y(t) for the RLC circuit shown in Fig. 2.3.








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:12


65 2 Introduction to systems


+
−


+


−


R
node 1


L C y (t)v (t)


iR(t)


iL(t) iC(t)


Fig. 2.3. Electrical circuit


consisting of three passive


components: resistor R,


capacitor C, and inductor L. The


RLC circuit is an example of a CT


linear system.


2.1.2 Semiconductor diode


When a piece of an intrinsic semiconductor (silicon or germanium) is doped


such that half of the piece is of n type while the other half is of p type, a pn


junction is formed. Figure 2.4(a) shows a pn junction with a voltage v applied


across its terminals. The pn junction forms a basic diode, which is fundamental


to the operation of all solid state devices. The symbol for a semiconductor diode


is shown in Fig. 2.4(b). A diode operates under one of the two bias conditions.


It is said to be forward biased when the positive polarity of the voltage source


v is connected to the p region of the diode and the negative polarity of the


voltage source v is connected to the n region. Under the forward bias condition,


the diode allows a relatively strong current i to flow across the pn junction


according to the following relationship:


i = Is[exp(v/VT ) − 1] (2.6)


where Is denotes the reverse saturation current, which for a silicon doped diode


is a constant given by Is = 4.2 × 10−15 A, and VT is the voltage equivalent of
the diode’s temperature. The voltage equivalent VT is given by


VT =
kT


e
. (2.7)


i p n


+          v          −
i


+  v   −


v


i


Is


(a) (b) (c)


Fig. 2.4. Semiconductor diode:


(a) pn junction in the forward


bias mode; (b) diode


representing the pn junction


shown in (a); (c) current–voltage


characteristics of a


semiconductor diode.
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In Eq. (2.7), the Boltzmann constant k equals 1.38 × 10−23 joules/kelvin, T
is the absolute temperature measured in kelvin, and e is the negative charge


contained in an electron. The value of e is 1.6 × 10−19 coulombs. At room
temperature, 300 K, the value of the voltage equivalent VT , computed using


Eq. (2.7), is found to be 0.026 V. Substituting the values of the saturation


current Is and the voltage equivalent VT , Eq. (2.6) simplifies to


i = 4.2 × 10−15[exp(v/0.026) − 1] A = 0.0042[exp(38.61v) − 1] pA, (2.8)


which describes the relationship between the forward bias voltage v and the


current i flowing through the semiconductor diode. Equation (2.8) is plotted in


the first quadrant (v > 0 and i > 0) of Fig. 2.4(c).


In the reverse bias condition, the negative polarity of the voltage source is


applied to the p region of the diode and the positive polarity is applied to the


n region. When the diode is reverse biased, the current through the diode is


negligibly small and is given by its saturation value, Is = 4.2 × 10−15 A. The
current–voltage relationship of a reverse biased diode is plotted in the third


quadrant (v < 0 and i < 0) of Fig. 2.4(c), where we observe a relatively small


value of current flowing through the diode.


As illustrated in Fig. 2.4(c), the input–output relationship of a semiconductor


diode is highly non-linear. Compared to the linear electrical circuit discussed


in Section 2.1.1, such non-linear systems are more difficult to analyze and are


beyond the scope of this book.


2.1.3 Amplitude modulator


Modulation is the process used to shift the frequency content of an information-


bearing signal such that the resulting modulated signal occupies a higher fre-


quency range. Modulation is the key component in modern-day communication


systems for two main reasons. One reason is that the frequency components


of the human voice are limited to a range of around 4 kHz. If a human voice


signal is transmitted directly by propagating electromagnetic radio waves, the


communication antennas required to transmit and receive these radio signals


would be impractically long. A second reason for modulation is to allow for


simultaneous transmission of several voice signals within the same geographic


region. If two signals within the same frequency range are transmitted together,


they will interfere with each other. Modulation provides us with the means of


separating the voice signals in the frequency domain by shifting each voice


signal to a different frequency band. There are different techniques used to


modulate a signal. Here we introduce the simplest form of modulation referred


to as amplitude modulation (AM).


Consider an information-bearing signal m(t) applied as an input to an AM


system, referred to as an amplitude modulator. In communications, the input


m(t) to a modulator is called the modulating signal, while its output s(t) is
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s(t)


modulated


signal


modulator


offset for


modulation
Acos(2pfct)


(1 + km(t))
+attenuator


km(t)
m(t)


modulating


signal


Fig. 2.5. Amplitude modulation


(AM) system.


called the modulated signal. The steps involved in an amplitude modulator


are illustrated in Fig. 2.5, where the modulating signal m(t) is first processed


by attenuating it by a factor k and adding a dc offset such that the resulting


signal (1 + km(t)) is positive for all time t . The modulated signal is produced
by multiplying the processed input signal (1 + km(t)) with a high-frequency
carrier c(t) = A cos(2π fct). Multiplication by a sinusoidal wave of frequency
fc shifts the frequency content of the modulating signal m(t) by an additive


factor of fc. Mathematically, the amplitude modulated signal s(t) is expressed as


follows:


s(t) = A[1 + km(t)] cos(2π fct), (2.9)


where A and fc are, respectively, the amplitude and the fundamental frequency


of the sinusoidal carrier.


It may be noted that the amplitude A and frequency fc of the carrier signal,


along with the attenuation factor k used in the modulator, are fixed; therefore,


Eq. (2.9) provides a direct relationship between the input and the output signals


of an amplitude modulator. For example, if we set the attenuation factor k to


0.2 and use the carrier signal c(t) = cos(2π × 108t), Eq. (2.9) simplifies to


s(t) = [1 + 0.2m(t)] cos(2π × 108t). (2.10)


Amplitude modulation is covered in more detail in Chapter 7.


2.1.4 Mechanical water pump


The mechanical pump shown in Fig. 2.6 is another example of a linear CT


system. Water flows into the pump through a valve V1 controlled by an electrical


circuit. A second valve V2 works mechanically as the outlet. The rate of the


outlet flow depends on the height of the water in the mechanical pump. A


higher level of water exerts more pressure on the mechanical valve V2, creating


a wider opening in the valve, thus releasing water at a faster rate. As the level


of water drops, the opening of the valve narrows, and the outlet flow of water is


reduced.


A mathematical model for the mechanical pump is derived by assuming that


the rate of flow Fin of water at the input of the pump is a function of the input
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V2


V1


Fin = k x(t)


Fout = ch(t)
h(t)


A
Fig. 2.6. Mechanical water


pumping system.


voltage x(t):


Fin = kx(t), (2.11)


where k is the linearity constant. Valve V2 is designed such that the outlet flow


rate Fout is given by


Fout = ch(t), (2.12)


where c denotes the outlet flow constant and h(t) is the height of the water


level. Denoting the total volume of the water inside the tank by V (t), the rate


of change in the volume of the stored water is dV/dt , which must be equal to


the difference between the input flow rate, Eq. (2.11), and the outlet flow rate,


Eq. (2.12). The resulting equation is as follows:


dV


dt
= Fin − Fout = kx(t) − ch(t). (2.13)


Expressing V (t) as the product of the cross-sectional area A of the water tank


and the height h(t) of the water yields


A
dh


dt
+ ch(t) = kx(t), (2.14)


which is a first-order, constant-coefficient differential equation describing the


relationship between the input current signal x(t) and height h(t) of water in


the mechanical pump. It may be noted that the input–output relationship in


the electrical circuit, discussed in Section 2.1.1, was also a constant-coefficient


differential equation. In fact, most CT linear systems are often modeled with


linear, constant-coefficient differential equations.


2.1.5 Mechanical spring damper system


The spring damping system shown in Fig. 2.7 is another classical example of a


linear mechanical system. An application of such a mechanical damping system


is in the shock absorber installed in an automobile. Figure 2.7 models a spring


damping system where mass M, which is attached to a rigid body through a


mechanical spring with a spring constant of k, is pulled downward with force


x(t). Assuming that the vertical displacement from the initial location of mass
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M is given by y(t), the three upward forces opposing the external downward


force x(t) are given by


x(t)


M


ky(t)My(t) ry(t)


y(t)


M


x(t)


r y(t)
wall


friction


k
spring


constant


(a)


(b)


¨
.


Fig. 2.7. (a) Mechanical spring


damper system. (b) Free-body


diagram illustrating the


opposing forces acting on mass


M of the mechanical spring


damping system.


inertial (or accelerating) force Fi = M
d2 y


dt2
; (2.15a)


frictional (or damping) force Ff = r
dy


dt
; (2.15b)


spring (or restoring) force Fs = ky(t), (2.15c)


where r is the damping constant for the medium surrounding the mass. Apply-


ing Newton’s third law of motion, the input–output relationship of the spring


damping system is given by


M
d2 y


dt2
+ r


dy


dt
+ ky(t) = x(t), (2.16)


which is a linear, constant-coefficient second-order differential equation.


Equation (2.16) describes the relationship between the applied force x(t) and


the resulting vertical displacement y(t). As in the case of the RLC circuit,


a second-order differential equation is used to model the mechanical spring


damper system.


2.1.6 Numerical differentiation and integration


Numerical methods are widely used in calculus for finding approximate values


of derivatives and definite integrals. Here, we present examples of differentiation


and integration of a CT function x(t). The systems representing integration and


differentiator are shown in Fig. 2.8. We show that the numerical approximations


of a CT differentiator and integrator lead to finite difference equations that are


frequently used to describe DT systems.


y(t)x(t) d
dt


y(t)x(t)
0


t


dt∫


(a)


(b)


Fig. 2.8. Schematics of (a) a


differentiator and (b) an


integrator. Finite-difference


schemes are often used to


compute the values of


derivatives and finite integrals


numerically.


To discretize a derivative over a continuous interval [0, T ], the time interval T


is divided into intervals of duration �t , resulting in the sampled values x(k�t)


for k = 0, 1, 2, . . . , K , with K given by the ratio T/�t . Using a single-step
backward finite-difference scheme, the time derivative can be approximated as


follows:


dx


dt


∣
∣
∣
∣
t=k�t


≈
x(k�t) − x((k − 1)�t)


�t
, (2.17)


which yields


y(k�t) =
x(k�t) − x((k − 1)�t)


�t
(2.18)


or,


y(k�t) = C1(x(k�t) − x((k − 1)�t)), (2.19)


where x(k�t) is the sampled value of x(t) at t = k�t and C1 is a constant, equal


to 1/�t. The CT signal y(t) = dx/dt and represents the result of differentiation.
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Usually, the sampling interval �t in Eq. (2.19) is omitted, resulting in the


following expression:


y[k] = C1x[k] − C1x[k − 1], (2.20)


which is a finite-difference representation of the differentiator shown in


Fig. 2.8(a).


To integrate a function, we use Euler’s formula, which approximates the


integral by the following:


k�t∫


(k−1)�t


x(t)dt ≈ �t x((k − 1)�t). (2.21)


In other words, the area under x(t) within the range [(k − 1)�t, k�t] is approx-


imated by a rectangle with width �t and height x((k − 1)�t). Expressing the


integral as follows:


y(t)|t=k�t =


t∫


0


x(t)dt =


(k−1)�t∫


0


x(t)dt


︸ ︷︷ ︸


y((k−1)�t)


+


k�t∫


(k−1)�t


x(t)dt


︸ ︷︷ ︸


�t x((k−1)�t)


(2.22)


and simplifying, we obtain


y(k�t) = y((k − 1)�t) + �t x((k − 1)�t). (2.23)


Again, omitting the sampling interval �t in Eq. (2.23) yields


y[k] − y[k − 1] = C2x[k − 1], (2.24)


where C2 = �t . Equation (2.24) is a first-order finite-difference equation mod-


eling an integrator and can be solved iteratively to compute the integral at


discrete time instants k�t . Systems represented by finite-difference equations


of the form of Eqs. (2.20) or (2.24) are referred to as DT systems and are the


focus of our discussion in the second half of the book. In the case of DT systems,


a difference equation, along with the ancillary conditions, provides a complete


description of the DT systems.


2.1.7 Delta modulation


In a digital communication system, the information-bearing analog signal is


first transformed into a binary sequence of zeros and ones, referred to as a dig-


ital signal, which is then transferred using a digital communication technique


from a transmitter to a receiver. Compared to analog transmission, digital com-


munications operate with a lower signal-to-noise ratio (SNR) and can therefore


provide almost error-free performance over long distances. In addition, digital
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ˆ


Fig. 2.9. A delta modulation


(DM) system. (a) Approximation


of the information-bearing


signal x(t ) with a staircase


signal x̂(kT ), referred to as the


DM signal. (b) Binary signal


transmitted to the receiver.


communications allow for other data processing features such as error cor-


rection, data encryption, and jamming resistance, which can be exploited for


secure data transmission. In this section, we study a basic waveform coding pro-


cedure, referred to as delta modulation (DM), which is widely used to transform


an analog signal into a digital signal.


The process of DM is illustrated in Fig. 2.9, where an information-bearing


analog signal x(t) is approximated by a delta modulated signal x̂(t). The analog


signal x(t) is uniformly sampled at time instants t = kT . At each sampling
instant, the sampled value x(kT) of the analog signal is compared with the


amplitude of the DM signal x̂(kT ). If the magnitude of the sampled signal


x(kT) is greater than the corresponding magnitude of the DM signal x̂(kT ),


then the DM signal is increased by a fixed amplitude, say �, at t = kT . Bit 1 is
transmitted to the receiver to indicate the increase in the amplitude of the DM


signal. On the other hand, if the amplitude of the sampled signal x(kT) is less


than the magnitude of the DM signal x̂(kT ), then the DM signal is decreased by


�. Bit 0 is transmitted to the receiver to indicate the decrease in the amplitude


of the DM signal. In other words, a single bit is used at each time instant t = kT
to indicate an increase or decrease in the amplitude of the information-bearing


signal.


A major advantage of DM is the simple structure of the receiver. At the


receiving end, the signal x̂(t) is reconstructed using the following simple


relationship:


x̂(kT ) = x̂((k − 1)T ) + bk�, (2.25)


where bk = 1 if bit 1 is received and bk = −1 if bit 0 is received. Solving for
x̂(kT ), Eq. (2.25) is represented as follows:


x̂(kT ) =
n∑


k=0
bk� + x̂(0), (2.26)


where x̂(0) represents the initial value used at t = 0 in the DM signal.
Equation (2.26) implies that the DM signal x̂(kT ) is obtained by accumulating
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the values of the bk�’s. Such a DT system that accumulates the values of the


input is referred to as an accumulator. It may be noted that the receiver of a


DM system is a linear system as it can be modeled by a constant-coefficient


difference equation.


2.1.8 Digital filter


Digital images are made up of tiny “dots” obtained by sampling a two-


dimensional (2D) analog image. Each dot is referred to as a picture element, or


a pixel. A digital image, therefore, can be modeled with a 2D array, x[m, n],


where the index (m, n) refers to the spatial coordinate of a pixel with m being


the number of the row and n being the number of the column. In a monochrome


image, the value x[m, n] of a pixel indicates its intensity value. When the pixels


are placed close to each other and illuminated according to their intensity values


on the computer monitor, a continuous image is perceived by the human eye.


In digital image processing, spatial averaging is frequently used for smooth-


ing noise, lowpass filtering, and subsampling of images. In spatial averaging,


the intensity of each pixel is replaced by a weighted average of the intensities


of the pixels in the neighborhood of the reference pixel. Using a unidirectional


fourth-order neighborhood, the reference pixel x[m, n] is replaced by the spa-


tially averaged value:


y[m, n] =
1


4
(x[m, n] + x[m, n − 1] + x[m − 1, n] + x[m − 1, n − 1]),


(2.27)


where y[m, n] represents the 2D output image of the spatial averaging system.


Equation (2.27) is an example of a 2D finite-difference equation and it models


a 2D DT system with input x[m, n] and output y[m, n].


In this section, we have considered some interesting applications of signal


processing in CT and DT systems. Our goal has been to motivate the reader


to learn about the techniques and basic concepts required to investigate one


or more of these application areas. Each of the discussed areas is a subject


of considerable study. Nevertheless, certain fundamentals are central to most


applications, and many of these basic concepts will be discussed in the chapters


that follow.


2.2 Classification of systems


In the analysis or design of a system, it is desirable to classify the system


according to some generic properties that the system satisfies. In this segment


we introduce a set of basic properties that may be used to categorize a system.


For a system to possess a given property, the property must hold true for all


possible input signals that can be applied to the system. If a property holds for


some input signals but not for others, the system does not satisfy that property.
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In this section, we classify systems into six basic categories:


(i) linear and non-linear systems;


(ii) time-invariant and time-varying systems;


(iii) systems with and without memory;


(iv) causal and non-causal systems;


(v) invertible and non-invertible systems;


(vi) stable and unstable systems.


In the following discussion, we make use of the notation given in Eqs. (2.1) and


(2.2), which we repeat here:


CT system x(t) → y(t);


DT system x[k] → y[k];


to refer to output y(t) resulting from input x(t) for a CT system and to output


y[k] resulting from input x[k] for a DT system.


2.2.1 Linear and non-linear systems


A CT system with the following set of inputs and outputs:


x1(t) → y1(t) and x2(t) → y2(t)


is linear iff it satisfies the additive and the homogeneity properties described


below:


additive property x1(t) + x2(t) → y1(t) + y2(t); (2.28)


homogeneity property α x1(t) → αy1(t); (2.29)


for any arbitrary value of α and all possible combinations of inputs and out-


puts. The additive and homogeneity properties are collectively referred to as


the principle of superposition. Therefore, linear systems satisfy the principle


of superposition. Based on the principle of superposition, the properties in


Eqs. (2.28) and (2.29) can be combined into a single statement as follows. A


CT system with the following sets of inputs and outputs:


x1(t) → y1(t) and x2(t) → y2(t)


is linear iff


α x1(t) + βx2(t) → αy1(t) + βy2(t) (2.30)


for any arbitrary set of values for α and β, and for all possible combinations of


inputs and outputs.


Likewise, a DT system with


x1[k] → y1[k] and x2[k] → y2[k],
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is linear iff


α x1[k] + βx2[k] → αy1[k] + βy2[k] (2.31)


for any arbitrary set of values for α and β, and for all possible combinations of


inputs and outputs.


A consequence of the linearity property is the special case when the input x


to a linear CT or DT system is zero. Substituting α = 0 in Eq. (2.29) yields


0 · x1(t) = 0 → 0 · y1(t) = 0. (2.32)


In other words, if the input x(t) to a linear system is zero, then the output


y(t) must also be zero for all time t . This property is referred to as the zero-


input, zero-output property. Both CT and DT systems that are linear satisfy


the zero-input, zero-output property for all time t . Note that Eq. (2.32) is a


necessary condition and is not sufficient to prove linearity. Many non-linear


systems satisfy this property as well.


Example 2.1


Consider the CT systems with the following input–output relationships:


(a) differentiator y(t) =
dx(t)


dt
; (2.33)


(b) exponential amplifier x(t) → ex(t); (2.34)


(c) amplifier y(t) = 3x(t); (2.35)


(d) amplifier with additive bias y(t) = 3x(t) + 5. (2.36)


Determine whether the CT systems are linear.


Solution


(a) From Eq. (2.33), it follows that


x1(t) →
dx1(t)


dt
= y1(t)


and


x2(t) →
dx2(t)


dt
= y2(t),


which yields


αx1(t) + β1x2(t) →
d


dt
{αx1(t) + β1x2(t)} = α


dx1(t)


dt
+ β


dx2(t)


dt
.


Since


α
dx1(t)


dt
+ β


dx2(t)


dt
= αy1(t) + βy2(t),


the differentiator as represented by Eq. (2.33) is a linear system.


(b) From Eq. (2.34), it follows that


x1(t) → e
x1(t) = y1(t)
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and


x2(t) → e
x2(t) = y2(t),


giving


αx1(t) + βx2(t) → e
αx1(t)+βx2(t).


Since


eαx1(t)+βx2(t) = eαx1(t) · eβx2(t) = [y1(t)]
α + [y2(t)]


β �= αy1(t) + βy2(t),


the exponential amplifier represented by Eq. (2.34) is not a linear system.


(c) From (2.35), it follows that


x1(t) → 3x1(t) = y1(t)


and


x2(t) → 3x2(t) = y2(t),


giving


αx1(t) + βx2(t) → 3{αx1(t) + βx2(t)} = 3αx1(t) + 3βx2(t)


= αy1(t) + βy2(t).


Therefore, the amplifier of Eq. (2.35) is a linear system.


(d) From Eq. (2.36), we can write


x1(t) → 3x1(t) + 5 = y1(t)


and


x2(t) → 3x2(t) + 5 = y2(t),


giving


αx1(t) + βx2(t) → 3[αx1(t) + βx2(t)] + 5.


Since


3[αx1(t) + βx2(t)] + 5 = αy1(t) + βy2(t) − 5,


the amplifier with an additive bias as specified in Eq. (2.36) is not a linear


system.


An alternative approach to check if a system is non-linear is to apply the


zero-input, zero-output property. For system (b), if x(t) = 0, then y(t) = 1.


System (b) does not satisfy the zero-input, zero-output property, hence system


(b) is non-linear. Likewise, for system (d), if x(t) = 0 then y(t) = 5. Therefore,


system (d) is not a linear system.


If a system does not satisfy the zero-input, zero-output property, we can safely


classify the system as a non-linear system. On the other hand, if it satisfies


the zero-input, zero-output property, it can be linear or non-linear. Satisfying


the zero-input, zero-output property is not a sufficient condition to prove the
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linear


system
y(t)


output


signal


x(t)


input


signal


yzi(t)


+


Fig. 2.10. Incrementally linear


system expressed as a linear


system with an additive offset.


linearity of a system. A CT system y(t) = x2(t) is clearly a non-linear system,
yet it satisfies the zero-input, zero-output property. For the system to be linear,


it must satisfy Eq. (2.30).


Incrementally linear system In Example 2.1, we proved that the amplifier
y(t) = 3x(t) represents a linear system, while the amplifier with additive bias
y(t) = 3x(t) + 5 represents a non-linear system. System y(t) = 3x(t) + 5 sat-
isfies a different type of linearity. For two different inputs x1(t) and x2(t), the


respective outputs of system y(t) = 3x(t) + 5 are given by


input x1(t) y1(t) = 3x1(t) + 5;
input x2(t) y2(t) = 3x2(t) + 5.


Calculating the difference on both sides of the above equations yield


y2(t) − y1(t) = 3[x2(t) − x1(t)]


or


�y(t) = 3�x(t).


In other words, the change in the output of system y(t) = 3x(t) + 5 is linearly
related to the change in the input. Such systems are called incrementally linear


systems.


An incrementally linear system can be expressed as a combination of a linear


system and an adder that adds an offset yzi(t) to the output of the linear sys-


tem. The value of offset yzi(t) is the zero-input response of the original system.


System S1, y(t) = 3x(t) + 5, for example, can be expressed as a combination of
a linear system S2, y(t) = 3x(t), plus an offset given by the zero-input response
of S1, which equals yzi(t) = 5. Figure 2.10 illustrates the block diagram repre-
sentation of an incrementally linear system in terms of a linear system and an


additive offset yzi(t).


Example 2.2


Consider two DT systems with the following input–output relationships:


(a) differencing system y[k] = 3(x[k] − x[k − 2]); (2.37)
(b) sinusoidal system y[k] = sin(x[k]). (2.38)


Determine if the DT systems are linear.
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Solution


(a) From Eq. (2.37), it follows that:


x1[k] → 3x1[k] − 3x1[k − 2] = y1[k]


and


x2[k] → 3x2[k] − 3x2[k − 2] = y2[k],


giving


αx1[k] + βx2[k] → 3αx1[k] − 3αx1[k − 2] + 3βx2[k] − 3βx2[k − 2].


Since


3αx1[k] − 3αx1[k − 2] + 3βx2[k] − 3βx2[k − 2] = αy1[k] + βy2[k],


the differencing system, Eq. (2.37), is linear.


To illustrate the linearity property graphically, we consider two DT input sig-


nals x1[k] and x2[k] shown in the two top-left subplots in Figs. 2.11(a) and (c).


The resulting outputs y1[k] and y2[k] for the two inputs applied to the differ-


encing system, Eq. (2.37), are shown in the two top-right stem subplots in


Figs. 2.11(b) and (d), respectively. A linear combination, x3[k] = x1[k] +


2x2[k], of the two inputs is shown in the bottom-left subplot in Fig. 2.11(e).


The resulting output y3[k] of the system for input signal x3[k] is shown in


the bottom-right subplot in Fig. 2.11(f). By looking at the subplots, it is clear


that the output y3[k] = y1[k] + 2y2[k]. In other words, the output y3[k] can be


determined by using the same linear combination of outputs y1[k] and y2[k] as


the linear combination used to obtain x3[k] from x1[k] and x2[k].


(b) From Eq. (2.38), it follows that:


x1[k] → sin(x1[k]) = y1[k], x2[k] → sin(x2[k]) = y2[k],


giving


αx1[k] + βx2[k] → sin(αx1[k]) + sin(βx2[k]) �= αy1[k] + βy2[k];


therefore, the sinusoidal system in Eq. (2.38) is not linear.


To illustrate graphically that system (b) indeed does not satisfy the linearity


property, we consider two input signals x1[k] and x2[k] shown, respectively, in


Figs. 2.12(a) and (c). Their corresponding outputs, y1[k] and y2[k], are shown


in Figs. 2.12(b) and (d). The output y3[k] of the system for the input signal


x3[k] = x1[k] + 2x2[k], obtained by combining x1[k] and x2[k], is shown in


Fig. 2.12(f). Comparing Fig. 2.12(f) with Figs. 2.12(b) and (d), we note that


output y3[k] �= y1[k] + 2y2[k]. To check, we select k = 4. From Fig. 2.12,


inputs x1[4] = 0 and x2[4] = 2. Using Eq. (2.38), outputs y1[4] = sin(0) = 0


and y2[4] = sin(2) = 0.91. The linear combination y1[k] + 2y2[k] of y1[k] and


y2[k] at k = 4 gives a value of 1.82. If the system is linear, we should get


y3[4] = 1.82 from the combined input x3[k] = x1[k] + 2x2[k] = 4 at k = 4.


Substituting in Eq. (2.38), we obtain y3[4] = sin(4) = −0.76. Since the value


of output y3[k] at k = 4 obtained from the linear combination of individual








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:12


78 Part I Introduction to signals and systems
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Fig. 2.11. Input–output pairs of


the linear DT system specified in


Example 2.2(a). Parts (a)–(f ) are


discussed in the text.


outputs y1[k] and y2[k] is different from the value obtained directly by applying


the combined input, we may say that the system in Fig. 2.12(b) is not linear.


The graphical result is in accordance with the mathematical proof.


Example 2.3


Consider the AM system with input–output relationship given by


s(t) = [1 + 0.2m(t)] cos(2π × 108t). (2.39)


Determine if the AM system is linear.








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:12


79 2 Introduction to systems
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Fig. 2.12. Input–output pairs of


the linear DT system specified in


Example 2.2(b). Parts (a)–(f) are


discussed in the text.


Solution


From Eq. (2.39), it follows that:


m1(t) → [1 + 0.2m1(t)] cos(2π × 10
8t) = s1(t)


and


m2(t) → [1 + 0.2m2(t)] cos(2π × 10
8t) = s2(t),


giving


αm1(t) + βm2(t) → [1 + 0.2{αm1(t) + βm2(t)}] cos(2π × 10
8t)


�= αs1(t) + βs2(t).


Therefore, the AM system is not linear.


2.2.2 Time-varying and time-invariant systems


A system is said to be time-invariant (TI) if a time delay or time advance of the


input signal leads to an identical time-shift in the output signal. In other words,


except for a time-shift in the output, a TI system responds exactly the same


way no matter when the input signal is applied. We now define a TI system


formally.
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A CT system with x(t) → y(t) is time-invariant iff


x(t − t0) → y(t − t0) (2.40)


for any arbitrary time-shift t0. Likewise, a DT system with x[k] → y[k] is


time-invariant iff


x[k − k0] → y[k − k0] (2.41)


for any arbitrary discrete shift k0.


Example 2.4


Consider two CT systems represented mathematically by the following input–


output relationship:


(i) system I y(t) = sin(x(t)); (2.42)


(ii) system II y(t) = t sin(x(t)). (2.43)


Determine if systems (i) and (ii) are time-invariant.


Solution


(i) From Eq. (2.42), it follows that:


x(t) → sin(x(t)) = y(t)


and


x(t − t0) → sin(x(t − t0)) = y(t − t0).


Since sin[x(t − t0)] = y(t − t0), system I is time-invariant. We demonstrate


the time-invariance property of system I graphically in Fig. 2.13, where a time-


shifted version x(t − 1) of input x(t) produces an equal shift of one time unit


in the original output y(t) obtained from x(t).


(ii) From Eq. (2.43), it follows that:


x(t) → t sin(x(t)) = y(t).


If the time-shifted signal x(t − t0) is applied at the input of Eq. (2.43), the new


output is given by


x(t − t0) → t sin(x(t − t0)).


The shifted output y(t − t0) is given by


y(t − t0) = (t − t0) sin(x(t − t0)).


Since t sin[x(t − t0)] �= y(t − t0), system II is not time-invariant. The time-


invariance property of system II is demonstrated in Fig. 2.14, where we


observe that a right shift of one time unit in input x(t) alters the shape of the


output y(t).
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t
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Fig. 2.13. Input–output pairs of


the CT time-invariant system


specified in Example 2.4(i).


(a) Arbitrary signal x(t ).


(b) Output of system for input


signal x(t ). (c) Signal x(t − 1).
(d) Output of system for input


signal x(t − 1). Note that except
for a time-shift, the two output


signals are identical.


Example 2.5


Consider two DT systems with the following input–output relationships:


(i) system I y[k] = 3(x[k] − x[k − 2]); (2.44)
(ii) system II y[k] = k x[k]. (2.45)


Determine if the systems are time-invariant.


Solution


(i) From Eq. (2.44), it follows that:


x[k] → 3(x[k] − x[k − 2]) = y[k]


t
0 1 2 3 4


x(t)


−4 −3 −2 −1


2
y(t)


t
0 1 2 3 4−4 −3 −2 −1


2


1


t
0


x(t − 1)


1 2 3 4−4 −3 −2 −1


2


1


t
0 1 2 3 4−4 −3 −2 −1


2


1


y2(t)


(a) (b)


(c) (d)


Fig. 2.14. Input–output pairs of the time-varying system specified in Example 2.4(ii). (a) Arbitrary signal


x(t ). (b) Output of system for input signal x(t ). (c) Signal x(t − 1). (d) Output of system for input signal


x(t − 1). Note that the output for time-shifted input x(t − 1) is different from the output y(t ) for the


original input x(t ).
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Fig. 2.15. Input–output pairs of


the DT time-varying system


specified in Example 2.5(ii). The


output y2[k ] for the time-shifted


input x2[k ] = x [k − 2] is
different in shape from the


output y [k ] obtained for input


x[k ]. Therefore the system is


time-variant. Parts (a)–(d) are


discussed in the text .


and


x[k − k0] → 3(x[k − k0] − x[k − k0 − 2]) = y[k − k0].


Therefore, the system in Eq. (2.44) is a time-invariant system.


(ii) From Eq. (2.45), it follows that:


x[k] → kx[k] = y[k]


and


x[k − k0] → kx[k − k0] �= y[k − k0] = (k − k0)x[k − k0].


Therefore, system II is not time-invariant. In Fig. 2.15, we plot the outputs of


the DT system in Eq. (2.45) for input x[k], shown in Fig. 2.15(a) and a shifted


version x[k − 2] of the input, shown in Fig. 2.15(c). The resulting outputs are


plotted, respectively, in Figs. 2.15(b) and (d). As expected, the Fig. 2.15(d) is


not a delayed version of Fig. 2.15(b) since the system is time-variant.
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+
−i(t)


Fig. 2.16. (a) Passive electrical circuit comprising resistors R 1 and R 2 . (b) Active electrical circuit


comprising resistor R, inductor L, and capacitor C. Both inductor L and capacitor C are storage


components, and hence lead to a system with memory.


2.2.3 Systems with and without memory


A CT system is said to be without memory (memoryless or instantaneous) if its


output y(t) at time t = t0 depends only on the values of the applied input x(t)
at the same time t = t0. On the other hand, if the response of a system at t = t0
depends on the values of the input x(t) in the past or in the future of time t = t0,
it is called a dynamic system, or a system with memory. Likewise, a DT system


is said to be memoryless if its output y[k] at instant k = k0 depends only on the
value of its input x[k] at the same instant k = k0. Otherwise, the DT system is
said to have memory.


Example 2.6


Determine if the two electrical circuits shown in Figs. 2.16(a) and (b) are


memoryless.


Solution


The relationship between the input voltage v(t) and the output voltage y(t)


across resistor R1 in the electrical circuit of Fig. 2.16(a) is given by


y(t) =
R1


R1 + R2
v(τ ). (2.46)


For time t = t0, the output y(t0) depends only on the value v(t0) of the input v(t)
at t = t0. The electrical circuit shown in Fig. 2.16(a) is, therefore, a memoryless
system.


The relationship between the input current i(t) and the output voltage y(t) in


Fig. 2.16(b) is given by


y(t) =
1


C


t∫


−∞


i(τ )dτ . (2.47)
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Table 2.1. Examples of CT and DT systems with and without memory


Continuous-time Discrete-time


Memoryless systems Systems with memory Memoryless systems Systems with memory


y(t) = 3x(t) + 5 y(t) = x(t − 5) y[k] = 3x[k] + 7 y[k] = x[k − 5]
y(t) = sin{x(t)} + 5 y(t) = x(t + 2) y[k] = sin(x[k]) + 3 y[k] = x[k + 3]
y(t) = ex(t) y(t) = x(2t) y[k] = ex[k] y[k] = x[2k]
y(t) = x2(t) y(t) = x(t/2) y[k] = x2[k] y[k] = x[k/2]


To compute the output voltage y(t0) at time t0, we require the value of the current


source for the time range (−∞, t0], which includes the entire past. Therefore,


the electrical circuit in Fig. 2.16(b) is not a memoryless system.


In Table 2.1, we consider several examples of memoryless and dynamic systems.


The reader is encouraged to verify mathematically the classifications made in


Table 2.1.


As a side note to our discussion on memoryless systems, we consider another


class of systems with memory that require only a limited set of values of input


x(t) in t0 − T ≤ t ≤ t0 to compute the value of output y(t). Such CT systems,


whose response y(t) is completely determined from the values of input x(t) over


the most recent past T time units, are referred to as finite-memory or Markov


systems with memory of length T time units. Likewise, a DT system is called


a finite-memory or a Markov system with memory of length M if output y[k]


at k = k0 depends only on the values of input x[k] for k0 − M ≤ k ≤ k0 in the


most recent past.


2.2.4 Causal and non-causal systems


A CT system is causal if the output at time t0 depends only on the input x(t) for


t ≤ t0. Likewise, a DT system is causal if the output at time instant k0 depends


only on the input x[k] for k ≤ k0. A system that violates the causality condition is


called a non-causal (or anticipative) system. Note that all memoryless systems


are causal systems because the output at any time instant depends only on


the input at that time instant. Systems with memory can either be causal or


non-causal.


Example 2.7


(i) CT time-delay system y(t) = x(t − 2) ⇒ causal system;


(ii) CT time-forward system y(t) = x(t + 2) ⇒ non-causal system;


(iii) DT time-delay system y[k] = x[k − 2] ⇒ causal system;


(iv) DT time-advance system y[k] = x[k + 2] ⇒ non-causal system;


(v) DT linear system y[k] = x[k − 2] + x[k + 10] ⇒ non-causal


system.
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Table 2.2. Examples of causal and non-causal systems


The CT and DT systems are represented using their input–output relationships. Note that all systems in the table


have memory.


CT systems DT systems


Causal Non-causal Causal Non-causal


y(t) = x(t − 5) y(t) = x(t + 2) y[k] = 3x[k − 1] + 7 y[k] = x[k + 3]
y(t) = sin{x(t − 4)} + 3 y(t) = sin{x(t + 4)} + 3 y[k] = sin(x[k − 4]) + 3 y[k] = sin(x[k + 4]) + 3
y(t) = ex(t−2) y(t) = x(2t) y[k] = ex[k−2] y[k] = x[2k]
y(t) = x2(t − 2) y(t) = x(t/2) y[k] = x2[k − 5] y[k] = x[k/2]
y(t) = x(t − 2) + x(t − 5) y(t) = x(t − 2) + x(t + 2) y[k] = x[k − 2] + x[k − 8] y[k] = x[k + 2] + x[k − 8]


x(t)
y(t)


x(t) CT


system


inverse


system
x[k]


y[k]
x[k] DT


system


inverse


system


(a) (b)


Fig. 2.17. Invertible systems.


(a) Inverse of a CT system.


(b) Inverse of a DT system.


Causality is a required condition for the system to be physically realizable. A


non-causal system is a predictive system and cannot be implemented physically.


Table 2.2 presents examples of causal and non-causal systems in CT and DT


domains.


2.2.5 Invertible and non-invertible systems


A CT system is invertible if the input signal x(t) can be uniquely determined


from the output y(t) produced in response to x(t) for all time t ∈ (−∞, ∞).


Similarly, a DT system is called invertible if, given an arbitrary output response


y[k] of the system for k ∈ (−∞, ∞), the corresponding input signal x[k] can be


uniquely determined for all time k ∈ (−∞, ∞). To be invertible, two different


inputs cannot produce the same output since, in such cases, the input signal


cannot be uniquely determined from the output signal.


A direct consequence of the invertibility property is the determination of a


second system that restores the original input. A system is said to be invertible


if the input to the system can be recovered by applying the output of the original


system as input to a second system. The second system is called the inverse


of the original system. The relationship between the original system and its


inverse is shown in Fig. 2.17.


Example 2.8


Determine if the following CT systems are invertible.


(i) Incrementally linear system:


y(t) = 3x(t) + 5.
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The input–output relationship is expressed as follows:


x(t) =
1


3
[y(t) − 5].


The above expression shows that input x(t) can be uniquely determined from


the output signal y(t). Therefore, the system is invertible.


(ii) Cosine system:


y(t) = cos[x(t)].


The input–output relationship is expressed as follows:


x(t) = cos−1[y(t) − 5] + 2πm,


where m is an integer with values m = 0, ±1, ±2, . . . The above relationship
shows that there are several possible values of x(t) for a given value of y(t).


Therefore, system (ii) is a non-invertible system.


(iii) Squarer:


y(t) = [x(t)]2.


The input–output relationship is expressed as follows:


x(t) = ±
√


y(t).


In other words, for a given y(t) value, there are two possible values of x(t).


Because x(t) is not unique, the system is non-invertible.


(iv) Time-differencing system:


y(t) = x(t) − x(t − 2).


The input–output relationship is expressed as follows:


x(t) = y(t) + x(t − 2).


Since x(t − 2) = y(t − 2) + x(t − 4), the earlier equation can be expressed as
follows:


x(t) = y(t) + y(t − 2) + x(t − 4).


By recursively substituting first the value of x(t − 4) and later for other delayed
versions of x(t), the above relationship can be expressed as follows:


x(t) =
∞∑


m=0


y(t − 2m).


Using the above relationship, the input signal x(t) can be uniquely reconstructed


if y(t) is known. Therefore, the system is invertible.


(v) Integrating system I:


y(t) =


t∫


−∞


x(τ )dτ .
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Differentiating both sides of the above equation yields


x(t) =
dy


dt
.


The above relationship shows that for a given output signal, the corresponding


input signal can be uniquely determined. Therefore, the system is invertible.


(vi) Integrating system II:


y(t) =
t∫


t−2


x(τ )dτ .


We can represent y(t) as follows:


y(t) =
t∫


−∞


x(τ )dτ −


t−2∫


−∞


x(τ )dτ .


Differentiating both sides, we obtain


dy


dt
= x(t) − x(t − 2).


Following the procedure used in part (iv) and expressing the result in terms of


the input signal x(t), we obtain


x(t) =
∞∑


m=0


dy(t − 2m)


dt
.


The above relationship shows that for a given output signal, the corresponding


input signal can be uniquely determined. Therefore, the system is invertible.


Example 2.9


Determine if the following DT systems are invertible.


(i) Incrementally linear system:


y[k] = 2x[k] + 7.


The input–output relationship is expressed as follows:


x[k] =
1


2
{y[k] − 7}.


The above expression shows that given an output signal, the input can be


uniquely determined. Therefore, the system is invertible.


(ii) Exponential output:


y[k] = ex[k].


The input–output relationship is expressed as follows:


x[k] = ln{y[k]}.


The above expression shows that given an output signal, the input can be


uniquely determined. Therefore, the system is invertible.
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(iii) Increasing ramped output:


y[k] = k x[k].


The input–output relationship is expressed as follows:


x[k] =
1


k
y[k].


The input signal can be uniquely determined for all time instant k, except at


k = 0. Therefore, the system is not invertible.
(iv) Summer:


y[k] = x[k] + x[k − 1].


Following the procedure used in Example 2.8(iv), the input signal is expressed


as an infinite sum of the output y[k] as follows:


x[k] = y[k] − y[k − 1] + y[k − 2] − y[k − 3] + − · · ·


=
∞∑


m=0


(−1)m y[k − m].


The input signal x[k] can be reconstructed if y[m] is known for all m ≤ k.


Therefore, the system is invertible.


(v) Accumulator:


y[k] =
k∑


m=−∞


x[m].


We express the accumulator as follows:


y[k] = x[k] +
k−1∑


m=−∞


x[m] = x[k] + y[k − 1]


or


x[k] = y[k] − y[k − 1].


Therefore, the system is invertible.


2.2.6 Stable and unstable systems


Before defining the stability criteria for a system, we define the bounded prop-


erty for a signal. A CT signal x(t) or a DT signal x[k] is said to be bounded in


magnitude if


CT signal |x(t)| ≤ Bx < ∞ for t ∈ (−∞, ∞); (2.48)


DT signal |x[k]| ≤ Bx < ∞ for k ∈ (−∞, ∞), (2.49)


where Bx is a finite number. Next, we define the stability criteria for CT and


DT systems.


A system is referred to as bounded-input, bounded-output (BIBO) stable if


an arbitrary bounded-input signal always produces a bounded-output signal. In


other words, if an input signal x(t) for CT systems, or x[k] for DT systems,
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satisfying either Eq. (2.48) or Eq. (2.49), is applied to a stable CT or DT system,


it is always possible to find an finite number By < ∞ such that


CT system |y(t)| ≤ By < ∞ for t ∈ (−∞, ∞); (2.50)


DT system |y[k]| ≤ By < ∞ for k ∈ (−∞, ∞). (2.51)


Example 2.10


Determine if the following CT systems are stable.


(i) Incrementally linear system:


y(t) = 50x(t) + 10. (2.52)


Assume |x(t)| ≤ Bx for all t . Based on Eq. (2.52), it follows that:


y(t) ≤ 50Bx + 10 = By for all t.


As the magnitude of y(t) does not exceed 50Bx + 10, which is a finite number,


the incrementally linear system given in Eq. (2.52) is a stable system.


(ii) Integrator:


y(t) =


t∫


−∞


x(τ )dτ . (2.53)


This system integrates the input signal from t = −∞ to t . Assume that a unit-


step function x(t) = u(t) is applied at the input of the integrator. The output of


the system is given by


y(t) = tu(t) =


{


0 t < 0


t t ≥ 0.


Signal y(t) is plotted in Fig. 2.18(b). It is observed that y(t) increases steadily


for t > 0 and that there is no upper bound of y(t). Hence, the integrator is not


a BIBO stable system.


x(t)


t


1


(a)


t


1


1


y(t)


(b)


Fig. 2.18. Input and output of


the unstable system in Example


2.10(ii). (a) Input x(t ) to the


system. (b) Output y(t ) of the


system. The input x(t ) is


bounded for all t , but the output


y(t ) is unbounded as t → ∞.


Example 2.11


Determine if the following DT systems are stable.


(i) y[k] = 50 sin(x[k]) + 10. (2.54)


Note that sin(x[k]) is bounded between [−1, 1] for any arbitrary choice of x[k].


The output y[k] is therefore bounded within the interval [−40, 60]. Therefore,


system (i) is stable.


(ii) y[k] = ex[k]. (2.55)


Assume |x[k]| ≤ Bx for all t . Based on Eq. (2.52), it follows that:


y[k] ≤ eBx = By for all k.
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Therefore, system (ii) is stable.


(iii) y[k] =
2∑


m=−2
x[k − m]. (2.56)


The output is expressed as follows:


y[k] = x[k − 2] + x[k − 1] + x[k] + x[k + 1] + x[k + 2].


If |x[k]| ≤ Bx for all k, then |y[k]| ≤ 5Bx for all k. Therefore, the system is
stable.


(iv) y[k] =
k∑


m=−∞


x[m]. (2.57)


The output is calculated by summing an infinite number of input signal values.


Hence, there is no guarantee that the output will be bounded even if all the input


values are bounded. System (iv) is, therefore, not a stable system.


2.3 Interconnection of systems


In signal processing, complex structures are formed by interconnecting simple


linear and time-invariant systems. In this section, we describe three widely used


configurations for developing complex systems.


2.3.1 Cascaded configuration


As shown in Fig. 2.19(a), a series or cascaded configuration between two sys-


tems is formed by interconnecting the output of the first system S1 to the input


of the second system S2. If the interconnected systems S1 and S2 are linear, it


is straightforward to show that the overall cascaded system is also linear. Like-


wise, if the two systems S1 and S2 are time-invariant, then the overall cascaded


system is also time-invariant. Another feature of the cascaded configuration


is that the order of the two systems S1 and S2 may be interchanged without


changing the output response of the overall system.


Example 2.12


Determine the relationship between the overall output and input signals if


the two cascaded systems in Fig. 2.19(a) are specified by the following


relationships:


(i) S1 :
dw


dt
+ 2w(t) = x(t) with w(0) = 0


and


S2 :
dy


dt
+ 3y(t) = w(t) with y(0) = 0;
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x(t)
w(t)


y(t)S2S1


∑


+


+


x(t) y(t)


S1


S2
y2(t)


y1(t) +


−


∑ S1x(t) y(t)


S2


w(t)


(a)


(b) (c)


Fig. 2.19. Interconnection of


systems: (a) cascaded


configuration; (b) parallel


configuration; (c) feedback


configuration. Although these


diagrams are for CT systems, the


DT systems can be


interconnected to form the three


configurations in exactly the


same manner.


(ii) S1 : w[k] − w[k − 1] = x[k] with w[0] = 0
and


S2 : y[k] − 2y[k − 1] = w[k] with y[0] = 0.


Solution


(i) Differentiating both sides of the differential equation modeling system S2
with respect to t yields


S2 :
d2 y


dt2
+ 3


dy


dt
=


dw


dt
.


Multiplying the differential equation modeling system S2 by 2 and adding the


result to the above equation yields


d2 y


dt2
+ 5


dy


dt
+ 6y(t) =


dw


dt
+ 2w(t)


︸ ︷︷ ︸


x(t)


.


Based on the differential equation modeling system S1, the right-hand side of


the equation equals x(t). The overall relationship of the cascaded system is,


therefore, given by


d2 y


dt2
+ 5


dy


dt
+ 6y(t) = x(t).


(ii) Substituting k = p − 1 in the difference equation modeling system S2
yields


S2 : y[p − 1] − 2y[p − 2] = w[p − 1],
or, in terms of time index k,


S2 : y[k − 1] − 2y[k − 2] = w[k − 1].
Subtracting the above equation from the original difference equation modeling


system S2 yields


S2 : y[k] − 3y[k − 1] + 2y[k − 2] = w[k] − w[k − 1]
︸ ︷︷ ︸


x[k]


.
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Based on the difference equation modeling system S1, the right-hand side of


the above equation equals x[k]. The overall relationship of the cascaded system


is, therefore, given by


y[k] − 3y[k − 1] + 2y[k − 2] = x[k].


2.3.2 Parallel configuration


The parallel configuration is shown in Fig. 2.19(b), where a single input is


applied simultaneously to two systems S1 and S2. The overall output response


is obtained by adding the outputs of the individual systems. In other words, if


S1 : x(t) → y1(t) and S2 : x(t) → y2(t), then Sparallel : x(t) → y1(t) + y2(t).


As for the series configuration, the system formed by a parallel combination


of two linear systems is also linear. Similarly, if the two systems S1 and S2 are


time-invariant, then the overall parallel system is also time-invariant.


Example 2.13


Determine the relationship between the overall output and input signals if the


two parallel systems in Fig. 2.19(b) are specified by the following relationships:


(i) S1 : y1(t) = x(t) +
dx


dt
and S2 : y2(t) = x(t) + 3


dx


dt
+ 5


d2x


dt2
;


(ii) S1 : y1[k]= x[k] − x[k − 1] and S2 : y2[k]= x[k] − 2x[k − 1] − x[k − 2].


Solution


(i) The response of the overall system is obtained by adding the two differential


equations modeling the individual systems. The resulting expression is given


by


y1(t) + y2(t) = 2x(t) + 4
dx


dt
+ 5


d2x


dt2
.


Since y(t) = y1(t) + y2(t), the response of the overall system is given by


y(t) = 2x(t) + 4
dx


dt
+ 5


d2x


dt2
.


(ii) The response of the overall system is obtained by adding the two dif-


ference equations modeling the individual systems. The resulting expression is


given by


y1[k] + y2[k] = 2x[k] − 3x[k − 1] − x[k − 2].
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Since y[k] = y1[k] + y2[k], the response of the overall system is given by


y[k] = 2x[k] − 3x[k − 1] − x[k − 2].


2.3.3 Feedback configuration


The feedback configuration is shown in Fig. 2.19(c), where the output of system


S1 is fed back, processed by system S2, and then subtracted from the input signal.


Such systems are difficult to analyze in the time domain and will be considered


in Chapter 6 after the introduction of the Laplace transform.


2.4 Summary


In this chapter we presented an overview of CT and DT systems, classifying


the systems into several categories. A CT system is defined as a transformation


that operates on a CT input signal to produce a CT output signal. In contrast, a


DT system transforms a DT input signal into a DT output signal. In Section 2.1,


we presented several examples of systems used to abstract everyday physical


processes. Section 2.2 classified the systems into different categories: linear


versus non-linear systems; time-invariant versus variant systems; memoryless


versus dynamic systems; causal versus non-causal systems; invertible versus


non-invertible systems; and stable versus unstable systems. We classified the


systems based on the following definitions.


(1) A system is linear if it satisfies the principle of superposition.


(2) A system is time-invariant if a time-shift in the input signal leads to


an identical shift in the output signal without affecting the shape of the


output.


(3) A system is memoryless if its output at t = t0 depends only on the value
of input at t = t0 and no other value of the input signal.


(4) A system is causal if its output at t = t0 depends on the values of the input
signal in the past, t ≤ t0, and does not require any future value (t > t0) of


the input signal.


(5) A system is invertible if its input can be completely determined by observing


its output.


(6) A system is BIBO stable if all bounded inputs lead to bounded outputs.


An important subset of systems is described by those that are both linear and


time-invariant (LTI). By invoking the linearity and time-invariance properties,


such systems can be analyzed mathematically with relative ease compared with


non-linear systems. In Chapters 3–8, we will focus on linear time-invariant CT


(LTIC) systems and study the time-domain and frequency-domain techniques


used to analyze such systems. DT systems and the techniques used to analyze


them will be presented in Part III, i.e. Chapters 9–17.
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+
−


+


−


R1 node 1


R2 C y(t)v (t)


iR1(t)


iR2(t) iC(t)


+
−


+


−
R L C y(t)i(t)


Fig. P2.1. RC circuit consisting of


two resistors (R 1 and R 2) and a


capacitor C .


Fig. P2.2. Resonator in an AM modulator.


m(t)


v1(t)
Accos(2p fct)


RLv2(t) C


non-linear


device


Fig. P2.3. AM demodulator. The


input signal is represented by


v1(t ) = A c cos(2π fc t ) + m(t ),
where A c cos(2π fc t ) is the


carrier and m(t ) is the


modulating signal.


Problems


2.1 The electrical circuit shown in Fig. P2.1 consists of two resistors R1 and
R2 and a capacitor C .


(i) Determine the differential equation relating the input voltage Vin(t) to


the output voltage Vout(t).


(ii) Determine whether the system is (a) linear, (b) time-invariant;


(c) memoryless; (d) causal, (e) invertible, and (f) stable.


2.2 The resonant circuit shown in Fig. P2.2 is generally used as a resonator in
an amplitude modulation (AM) system.


(i) Determine the relationship between the input i(t) and the output v(t)


of the AM modulator.


(ii) Determine whether the system is (a) linear, (b) time-invariant;


(c) memoryless; (d) causal, (e) invertible, and (f) stable.


2.3 Figure P2.3 shows the schematic of a square-law demodulator used in the
demodulation of an AM signal. Demodulation is the process of extract-


ing the information-bearing signal from the modulated signal. The input–


output relationship of the non-linear device is approximated by (assuming


v1(t) is small)


v2(t) = c1v1(t) + c2v21 (t),
where c1 and c2 are constants, and v1(t) and v2(t) are, respectively, the


input and output signals.


(i) Show that the demodulator is a non-linear device.


(ii) Determine whether the non-linear device is (a) time-invariant,


(b) memoryless, (c) invertible, and (d) stable.
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2.4 The amplitude modulation (AM) system covered in Section 2.1.3 is widely
used in communications as in the AM band on radio tuner sets. Assume that


the sinusoidal tone m(t) = 2 sin(2π × 100t) is modulated by the carrier
c(t) = 5 cos(2π × 106t).


(i) Determine the value of the modulation index k that will ensure (1 +
km(t)) ≥ 0 for all t .


(ii) Derive the expression for the AM signal s(t) and express it in the form


of Eq. (2.10).


(iii) Using the following trigonometric relationship:


2 sin θ1 cos θ2 = sin(θ1 + θ2) + sin(θ1 − θ2),


show that the frequency of the sinusoidal tone is shifted to a higher


frequency range in the frequency domain.


2.5 Equation (2.16) describes a linear, second-order, constant-coefficient dif-
ferential equation used to model a mechanical spring damper system.


(i) By expressing Eq. (2.16) in the following form:


d2 y


dt2
+


ωn


Q


dy


dt
+ ω2n y(t) =


1


M
x(t),


determine the values of ωn and Q in terms of mass M , damping factor


r , and the spring constant k.


(ii) The variable ωn denotes the natural frequency of the spring damper


system. Show that the natural frequency ωn can be increased by


increasing the value of the spring constant k or by decreasing the


mass M .


(iii) Determine whether the system is (a) linear, (b) time-invariant,


(c) memoryless, (d) causal, (e) invertible, and (f) stable.


2.6 The solution to the following linear, second-order, constant-coefficient dif-
ferential equation:


d2 y


dt2
+ 5


dy


dt
+ 6y(t) = x(t) = 0,


with input signal x(t) = 0 and initial conditions y(0) = 3 and ẏ(0) = −7,


is given by


y(t) = [e−3t + 2e−2t ]u(t).


(i) By using the backward finite-difference scheme


dy


dt


∣
∣
∣
∣
t=k�t


≈
y(k�t) − y((k − 1)�t)


�t


and


d2 y


dt2


∣
∣
∣
∣
t=k�t


≈
y(k�t) − 2y((k − 1)�t) + y((k − 2)�t)


(�t)2
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show that the finite-difference representation of the differential equa-


tion is given by


(1 + 5�t + 6(�t)2)y[k] + (−2 − 5�t)y[k − 1] + y[k − 2] = 0.


(ii) Show that the ancillary conditions for the finite-difference scheme


are given by


y[0] = 3 and y[−1] = 3 + 7�t.
(iii) By iteratively computing the finite-difference scheme for �t =


0.02 s, show that the computed result from the finite-difference equa-


tion is the same as the result of the differential equation.


2.7 Assume that the delta modulation scheme, presented in Section 2.1.7,
uses the following design parameters:


sampling period T = 0.1 s and quantile interval � = 0.1 V.
Sketch the output of the receiver for the following binary signal:


11111011111100000000.


Assume that the initial value x(0) of the transmitted signal x(t) at t = 0
is x(0) = 0 V.


2.8 Determine if the digital filter specified in Eq. (2.27) is an invertible system.
If yes, derive the difference equation modeling the inverse system. If no,


explain why.


2.9 The following CT systems are described using their input–output relation-
ships between input x(t) and output y(t). Determine if the CT systems are


(a) linear, (b) time-invariant, (c) stable, and (d) causal. For the non-linear


systems, determine if they are incrementally linear systems.


(i) y(t) = x(t − 2);
(ii) y(t) = x(2t − 5);


(iii) y(t) = x(2t) − 5;
(iv) y(t) = t x(t + 10);


(v) y(t) =
{


2 x(t) ≥ 0


0 x(t) < 0;


(vi) y(t) =


{


0 t < 0


x(t) − x(t − 5) t ≥ 0;


(vii) y(t) = 7x2(t) + 5x(t) + 3;


(viii) y(t) = sgn(x(t));


(ix) y(t) =


t0∫


−t0


x(λ)dλ + 2x(t);


(x) y(t) =


t0∫


−∞


x(λ)dλ +
dx


dt
;


(xi)
d4 y


dt4
+ 3


d3 y


dt3
+ 5


d2 y


dt2
+ 3


dy


dt
+ y(t) =


d2x


dt2
+ 2x(t) + 1.
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2.10 The following DT systems are described using their input–output relation-
ships between input x[k] and output y[k]. Determine if the DT systems are


(a) linear, (b) time-invariant, (c) stable, and (d) causal. For the non-linear


systems, determine if they are incrementally linear systems.


y(t)


t


1


1−1


Fig. P2.11. CT output y(t ) for


Problem 2.11.


(i) y[k] = ax[k] + b;
(ii) y[k] = 5x[3k − 2];


(iii) y[k] = 2x[k];


(iv) y[k] =
k∑


m=−∞


x[m];


(v) y[k] =
k+2∑


m=k−2


x[m] − 2|x[k]|;


(vi) y[k] + 5y[k − 1] + 9y[k − 2] + 5y[k − 3] + y[k − 4]


= 2x[k] + 4x[k − 1] + 2x[k − 2].


(vii) y[k] = 0.5x[6k − 2] + 0.5x[6k + 2].


2.11 For an LTIC system, an input x(t) produces an output y(t) as shown in
Fig. P2.11. Sketch the outputs for the following set of inputs:


(i) 5x(t);


(ii) 0.5x(t − 1) + 0.5x(t + 1);


(iii) x(t + 1) − x(t − 1);


(iv)
dx(t)


dt
+ 3x(t).


2.12 For a DT linear, time-invariant system, an input x[k] produces an output
y[k] as shown in Fig. P2.12. Sketch the outputs for the following set of


inputs:


(i) 4x[k − 1];


(ii) 0.5x[k − 2] + 0.5x[k + 2];


(iii) x[k + 1] − 2x[k] + x[k − 1];


(iv) x[−k].


y[k]


k


4


1  2


−1


−2


2


−2


Fig. P2.12. DT output y [k ] for


Problem 2.12.


2.13 Determine if the following CT systems are invertible. If yes, find the
inverse systems.


(i) y(t) = 3x(t + 2);


(ii) y(t) =


t∫


−∞


x(τ − 10)dτ ;


(iii) y(t) = |x(t)|;


(iv)
dy(t)


dt
+ y(t) = x(t);


(v) y(t) = cos(2πx(t)).


2.14 Determine if the following DT systems are invertible. If yes, find the
inverse systems.


(i) y[k] = (k + 1)x[k + 2];


(ii) y[k] =


|k|∑


m=0


x[m + 2];


(iii) y[k] = x[k]
∞∑


m=−∞


δ[k − 2m];


(iv) y[k] = x[k + 2] + 2x[k + 1] − 6x[k] + 2x[k − 1] + x[k − 2];


(v) y[k] + 2y[k − 1] + y[k − 2] = x[k].


2.15 For an LTIC system, if x(t) → y(t), show that
dx(t)


dt
→


dy(t)


dt
. Assume


that both x(t) and y(t) are differentiable functions.
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x(t)


t


1


0.5−0.5


y(t)


t


1


1−1


t


xp(t)


1


0.5−0.5−1.5−2.5 2.51.5


(a)


(b)


Fig. P2.16. (a) Input–output


pair for an LTI CT system.


(b) Periodic input to the LTI


system.


2.16 Figure P2.16(a) shows an input–output pair of an LTI CT system. Calcu-
late the output yp(t) of the system for the periodic signal xp(t) shown in


Fig. P2.16(b).


2.17 The output h(t) of a CT LTI system in response to a unit impulse function
δ(t) is referred to as the impulse response of the system. Calculate the


impulse response of the CT LTI systems defined by the following input–


output relationships:


(i) y(t) = x(t + 2) − 2x(t) + 2x(t − 2);


(ii) y(t) =
t+t0∫


t−t0


x(τ − 4) dτ ;


(iii) y(t) =
t∫


−∞


e−2(t−τ )x(τ − 4) dτ ;


(iv) y(t) =


∞∫


−∞


f (T − τ )x(t − τ ) dτ where f (t) is a known signal and


T is a constant.


2.18 The output h[k] of a DT LTI system in response to a unit impulse function
δ[k] is shown in Fig. P2.18. Find the output for the following set of inputs:


(i) x[k] = δ[k + 1] + δ[k] + δ[k − 1];


(ii) x[k] =
∞∑


m=−∞


δ[k − 4m];


(iii) x[k] = u[k].


h[k]


k


1


1−1


1


−2


Fig. P2.18. Output h[k ] for


input x[k ] = δ[k ] in Problem


2.18.


2.19 A DT LTI system is described by the following difference equation:


y[k] = x[k] − 2x[k − 1] + x[k − 2].


Determine the output y[k] of the system if the input x[k] is given by
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x[k] S1 S2 y[k] x[k]


S1


S2


+ y[k]


(a) (b)


Fig. P2.21. (a) Series


configuration; (b) parallel


configuration.


(i) x[k] = δ[k];
(ii) x[k] = δ[k − 1] + δ[k + 1];


(iii) x[k] =
{


|k| |k| ≤ 3
0 elsewhere.


2.20 A five-point running average DT system is defined by the following input–
output relationship:


y[k] =
1


5


4∑


m=0


x[k − m].


(i) Show that the five-point running average DT system is an LTI system.


(ii) Calculate the impulse response h[k] of the system when input x[k] =


δ[k].


(iii) Compute the output y[k] of the system for −10 ≤ k ≤ 10 if the input


x[k] = u[k], where u[k] is a unit step function.


(iv) Based on your answer to (iii), calculate the impulse response h[k]


of the system using the property δ[k] = u[k] – u[k − 1]. Compare


your answer to h[k] obtained in (ii).


2.21 The series and parallel configurations of systems S1 and S2 are shown in
Fig. P2.21. The two systems are specified by the following input–output


relationships:


S1 : y[k] = x[k] − 2x[k − 1] + x[k − 2];


S2 : y[k] = x[k] + x[k − 1] − 2x[k − 2].


(i) Show that S1 and S2 are LTI systems.


(ii) Calculate the input–output relationship for the series configuration


of systems S1 and S2 as shown in Fig. P2.21(a).


(iii) Calculate the input–output relationship for the parallel configuration


of systems S1 and S2 as shown in Fig. P2.21(b).


(iv) Show that the series and parallel configurations of systems S1 and


S2 are LTI systems.
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C H A P T E R


3 Time-domain analysis of
LTIC systems


In Chapter 2, we introduced CT systems and discussed a number of basic prop-


erties used to classify such systems. An important subset of CT systems satisfies


both the linearity and time-invariance properties. Such CT systems are referred


to as linear, time-invariant, continuous-time (LTIC) systems. In this chapter,


we will develop techniques for analyzing LTIC systems. Given an input–output


representation for the system under consideration, we are primarily interested


in calculating the output y(t) of the LTIC system from the applied input x(t).


The output y(t) of an LTIC system can be evaluated analytically in the time


domain in several ways. In Section 3.1, we use a linear constant-coefficient


differential equation to model an LTIC system. In such cases, the output y(t) is


obtained by directly solving the differential equation. In Sections 3.2 and 3.3, we


define the unit impulse response h(t) as the output of an LTIC system to an unit


impulse function δ(t) applied at the input. This development leads to a second


approach for calculating the output y(t) based on convolving the applied input


x(t) with the impulse response h(t). The resulting integral is referred to as the


convolution integral and is discussed in Sections 3.4 and 3.5. The properties of


the convolution integral are covered in Section 3.6. The impulse response h(t)


provides a complete description for an LTIC system. In Sections 3.7 and 3.8,


we express the properties of an LTIC system in terms of its impulse response.


The chapter is concluded in Section 3.9.


3.1 Representation of LTIC systems


For a linear CT system, the relationship between the applied input x(t) and


output y(t) can be described using a linear differential equation of the following


form:


dn y


dtn
+ an−1


dn−1 y


dtn−1
+ · · · + a1


dy


dt
+ a0 y(t)


= bm
dm x


dtm
+ bm−1


dm−1x


dtm−1
+ · · · + b1


dx


dt
+ b0x(t), (3.1)


103
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L


C


R


x(t) i (t)


+


−
w(t)


+


−
y(t)


v(t)+ −
Fig. 3.1. Series RLC circuit used


in Example 3.1.


where coefficients ak , for 0 ≤ k ≤ (n− 1), and bk , for 0 ≤ k ≤ m, are parameters
characterized by the linear system. If the linear system is also time-invariant,


then the ak and bk coefficients are constants. We will use the compact notation


ẏ to denote the first derivative of y(t) with respect to t . Thus ẏ = dy/dt , ÿ =
d2 y/dt2, and so on for the higher derivatives. We now consider an electrical


circuit that is modeled by a differential equation.


Example 3.1


Determine the input–output representations of the series RLC circuit shown in


Fig. 3.1 for the three outputs v(t), w(t), and y(t).


Solution


Figure 3.1 illustrates an electrical circuit consisting of three passive compo-


nents: resistor R, inductor L , and capacitor C . Applying Kirchhoff’s voltage


law, the relationship between the input voltage x(t) and the loop current i(t) is


given by


x(t) = L
di


dt
+ Ri(t) +


1


C


t∫


−∞


i(t)dt . (3.2)


Differentiating Eq. (3.2) with respect to t yields


L
d2i


dt2
+ R


di


dt
+


1


C
i(t) =


dx


dt
. (3.3)


We consider three different outputs of the RLC circuit in the following dis-


cussion, and for each output we derive the differential equation modeling the


input–output relationship of the LTIC system.


Relationship between x(t) and v(t) The output voltage v(t) is measured across
inductor L . Expressed in terms of the loop current i(t), the voltage v(t) is given


by


v(t) = L
di


dt
.
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Integrating the above equation with respect to t yields


i(t) =
1


L


∫


v(t)dt.


By substituting the value of i(t) into Eq. (3.3), we obtain


dv


dt
+


R


L
v(t) +


1


LC


∫


v(t)dt =
dx


dt
.


The above input–output relationship includes both differentiation and integra-


tion operations. The integral operator can be eliminated by calculating the


derivative of both sides of the equation with respect to t . This results in the


following equation:


d2v


dt2
+


R


L


dv


dt
+


1


LC
v(t) =


d2x


dt2
, (3.4)


which models the input–output relationship between the input voltage x(t) and


the output voltage v(t) measured across inductor L . Equation (3.4) is a linear,


second-order differential equation with constant coefficients. In fact, it can


be shown that an LTIC system can always be modeled by a linear, constant-


coefficient differential equation with the appropriate initial conditions.


Relationship between x(t) and w(t) The output voltage w(t), measured across
capacitor C, is given by


w(t) =
1


C


t∫


−∞


i(t)dt,


which is expressed as follows:


i(t) = C
dw


dt
.


Substituting the value of i(t) into Eq. (3.3) yields


LC
d3w


dt3
+ RC


d2w


dt2
+


dw


dt
=


dx


dt
, (3.5)


which specifies the relationship between the input voltage x(t) and the output


voltage w(t) measured across capacitor C . Equation (3.5) can be further sim-


plified by integrating both sides with respect to t . The resulting equation is


simplified to


LC
d2w


dt2
+ RC


dw


dt
+ w(t) = x(t), (3.6)


which is a linear, second-order, constant-coefficient differential equation.


Relationship between x(t) and y(t) Finally, we measure the output voltage
y(t) across resistor R. Using Ohm’s law, the output voltage y(t) is given by
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y(t) = i(t)R. Substituting the value of i(t) = y(t)/R into Eq. (3.3) yields


L


R


d2 y


dt2
+


dy


dt
+


1


RC
y(t) =


dx


dt
, (3.7)


which is a linear, second-order, constant-coefficient, differential equation mod-


eling the relationship between the input voltage x(t) and the output voltage y(t)


measured across resistor R.


A more compact representation for Eq. (3.1) is obtained by denoting the differ-


entiation operator d/dt by D:


Dn y + an−1Dn−1 y + · · · + a1Dy + a0 y(t)
= bmDm y + bm−1Dm−1 y + · · · + b1Dy + b0x(t).


By treating D as a differential operator, we obtain


(Dn + an−1Dn−1 + · · · + a1D + a0)
︸ ︷︷ ︸


Q(D)


y(t)


= (bmDm + bm−1Dm−1 + · · · + b1D + b0)
︸ ︷︷ ︸


P(D)


x(t), (3.8)


or


Q(D)y(t) = P(Q)x(t), (3.9)


where Q(D) is the nth-order differential operator, P(D) is the mth-order differen-


tial operator, and the ai and bi are constants. Equation (3.9) is used extensively


to describe an LTIC system.


To compute the output of an LTIC system for a given input, we must solve the


constant-coefficient differential equation, Eq. (3.9). If the reader has little or no


background in differential equations, it will be helpful to read through Appendix


C before continuing. Appendix C reviews the direct method for solving linear,


constant-coefficient differential equations and can be used as a quick look-up


of the theory of differential equations. In the material that follows, it is assumed


that the reader has adequate background in solving linear, constant-coefficient


differential equations.


From the theory of differential equations, we know that output y(t) for


Eq. (3.9) can be expressed as a sum of two components:


y(t) = yzi(t)
︸ ︷︷ ︸


zero-input response


+ yzs(t)
︸ ︷︷ ︸


zero-state response


, (3.10)


where yzi(t) is the zero-input response of the system and yzs(t) is the zero-


state response of the system. Note that the zero-input component yzi(t) is the


response produced by the system because of the initial conditions (and not due


to any external input), and hence yzi(t) is also known as the natural response








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:13


107 3 Time-domain analysis of LTIC systems


of the system. For example, the initial conditions may include charges stored


in a capacitor or energy stored in a mechanical spring. The zero-input response


yzi(t) is evaluated by solving a homogeneous equation obtained by setting the


input signal x(t) = 0 in Eq. (3.9). For Eq. (3.9), the homogeneous equation is
given by


Q(D)y(t) = 0.


The zero-state response yzs(t) arises due to the input signal and does not depend


on the initial conditions of the system. In calculating the zero-state response,


the initial conditions of the system are assumed to be zero. The zero-state


response is also referred to as the forced response of the system since the zero-


state response is forced by the input signal. For most stable LTIC systems, the


zero-input response decays to zero as t → ∞ since the energy stored in the
system decays over time and eventually becomes zero. The zero-state response,


therefore, defines the steady state value of the output.


Example 3.2


Consider the RLC series circuit shown in Fig. 3.1. Assume that the inductance


L = 0 H (i.e. the inductor does not exist in the circuit), resistance R = 5 �,
and capacitance C = 1/20 F. Determine the output signal y(t) when the input
voltage is given by x(t) = sin(2t) and the initial voltage y(0−) = 2 V across
the resistor.


Solution


Substituting L = 0, R = 5, and C = 1/20 in Eq. (3.7) yields
dy


dt
+ 4y(t) =


dx


dt
= 2 cos(2t). (3.11)


Zero-input response of the system Using the procedure outlined in Appendix
C, we determine the characteristic equation for Eq. (3.11) as


(s + 4) = 0,


which has a root at s = −4. The zero-input response of Eq. (3.11) is given by


zero input response yzi(t) = Ae−4t ,


where A is a constant. The value of A is obtained from the initial condition


y(0−) = 2 V. Substituting y(0−) = 2 V in the above equation yields A = 2.
The zero-input response is given by yzi(t) = 2e−4t .


Zero-state response of the system The zero-state response is calculated by
solving Eq. (3.11) with a zero initial condition, y(0−) = 0. The homogeneous
component of the zero-state response of Eq. (3.11) is similar to the zero input


response and is given by


y(h)zs (t) = Ce
−4t ,
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where C is a constant. The particular component of the zero-state response of


Eq. (3.11) for input x(t) = sin(2t) is of the following form:


y(p)zs (t) = K1 cos(2t) + K2 sin(2t).


Substituting the particular component in Eq. (3.11) gives K1 = 0.4 and K2 =
0.2. The overall zero-state response of the system is as follows:


zero state response yzs(t) = Ce−4t + 0.2 sin(2t) + 0.4 cos(2t),


with zero initial condition, i.e. yzs(t) = 0. Substituting the initial condition in
the zero-state response yields C = −0.4. The total response of the system is
the sum of the zero-input and zero-state responses and is given by


y(t) = 1.6e−4t + 0.2 sin(2t) + 0.4 cos(2t). (3.12)


Theorem 3.1 states the total response of a LTIC system modeled with a first-


order, constant-coefficient, linear differential equation.


Theorem 3.1 The output of a first-order differential equation,


dy


dt
+ f (t)y(t) = r (t), (3.13)


resulting from input r(t) is given by


y(t) = e−p
[∫


epr dt + c
]


, (3.14)


where function p is given by


p(t) =
∫


f (t)dt (3.15)


and c is a constant.


Using Theorem 3.1 to solve Eq. (3.11), we obtain p(t) = ∫ 4 dt = 4t . Substi-
tuting p(t) = 4t into Eq. (3.14), we obtain


y(t) = e−4t
[∫


e4t 2 cos(2t)dt + c
]


,


where the integral simplifies to (see Section A.5 of Appendix A)


2


∫


e4t cos(2t)dt =
2


22 + 42
[4e4t cos(2t) + 2e4t sin(2t)].


Based on Theorem 3.1, the output is therefore given by


y(t) = ce−4t + 0.2 sin(2t) + 0.4 cos(2t).


The value of constant c in the above equation can be computed using the initial


condition. Substituting y(0−) = 2 V gives c = 1.6. The result is, therefore, the
same as the solution in Eq. (3.12) obtained by following the formal procedure


outlined in Appendix C.
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Steady state value of the output The steady state value of y(t) can be obtained
by applying the limit (t → ∞) to y(t). For the differential equation (3.11), the
steady state solution is therefore obtained by applying the limit to Eq. (3.12),


giving


y(t) = lim
t→∞


[1.6e−4t + 0.2 sin(2t) + 0.4 cos(2t)] = 0.2 sin(2t) + 0.4 cos(2t),


or


y(t) =
√


0.42 +0.22 sin
(


2t + tan−1
(


0.4


0.2


))


=
√


0.42 + 0.22 sin(2t + 63.4◦)


(3.16)


The steady state solution given by Eq. (3.16) can also be verified using results


from the circuit theory. For sinusoidal inputs, the electrical circuit in Fig.


3.1 can be reduced to an equivalent impedance circuit by replacing capaci-


tor C with a capacitive reactance of 1/(jωC) and inductor L with an induc-


tive reactance of jωL , where ω is the fundamental frequency of the input


sinusoidal signal x(t) = sin(2t). In our example, ω = 2. Figure 3.1, therefore,
becomes a voltage divider circuit with the steady state value of the output y(t)


given by


y(t) =
R


R + jωL + (1/jωC)
x(t). (3.17)


In Example 3.2, the values of the components are set to L = 0 H, R = 5 �, and
C = 1/20 F. Substituting these values into Eq. (3.17) yields


y(t) =
5


5 + (10/j)
x(t) =


1


1 − j2
sin(2t) =


∣
∣
∣
∣


1


1 − j2


∣
∣
∣
∣
sin(2t − � (1 − j2))


=
1


√
5


sin
(


2t + tan−1(2)
)


=
√


0.2 sin(2t + 63.4◦),


which is the same solution as given in Eq. (3.16).


Example 3.3


Consider the electrical circuit shown in Fig. 3.1 with the values of inductance,


resistance, and capacitance set to L = 1/12 H, R = 7/12 �, and C = 1 F. The
circuit is assumed to be open before t = 0, i.e. no current is initially flow-
ing through the circuit. However, the capacitor has an initial charge of 5 V.


Determine


(i) the zero-input response wzi(t) of the system;


(ii) the zero-state response wzs(t) of the system; and


(iii) the overall output w(t),


when the input signal is given by x(t) = 2 exp(−t)u(t) and the output w(t) is
measured across capacitor C .
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Solution


Substituting L = 1/12 H, R = 7/12 �, and C = 1 F into Eq. (3.6) and multi-
plying both sides of the equation by 12 yields


d2w


dt2
+ 7


dw


dt
+ 12w(t) = 12x(t), (3.18)


with initial conditions, w(0−) = 5 and ẇ(0−) = 0, and the input signal is given
by x(t) = 2e−t u(t).


(i) Zero-input response of the system Based on Eq. (3.18), the characteristic
equation of the LTIC system is given by


s2 + 7s + 12 = 0,


which has roots at s = −4, −3. The zero-input response is therefore given by


wzi(t) = (Ae−4t + Be−3t )u(t),


where A and B are constants. To calculate the value of the constants, we sub-


stitute the initial conditions w(0−) = 5 and ẇ(0−) = 0 in the above equation.
The resulting simultaneous equations are as follows:


A + B = 5,
4A + 3B = 0,


which have the solution A = −15 and B = 20. The zero-input response is
therefore given by


wzi(t) = (20e−3t − 15e−4t )u(t).


(ii) Zero-state response of the system To calculate the zero-state response
of the system, the initial conditions are assumed to be zero, i.e. the capaci-


tor is assumed to be uncharged. Hence, the zero-state response wzs(t) can be


calculated by solving the following differential equation:


d2w


dt2
+ 7


dw


dt
+ 12w(t) = 12x(t), (3.19)


with initial conditions, w(0−) = 0 and ẇ(0−) = 0, and input x(t) =
2 exp(−t)u(t).


The homogeneous solution of Eq. (3.18) has the same form as the zero-input


response and is given by


w (h)zs (t) = C1e
−4t + C2e−3t ,


where C1 and C2 are constants. The particular solution for input x(t) = 2e−t u(t)
is of the form w


(p)
zs (t) = K e−t u(t). Substituting the particular solution into
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Fig. 3.2. Output response of the


system considered in Example


3.3.


Eq. (3.19) and solving the resulting equation yields K = 4. The zero-state
response of the system is, therefore, given by


wzs(t) = (C1e−4t + C2e−3t + 4e−t )u(t).


To compute the values of constants C1 and C2, we use the initial conditions


w(0−) = 0 and ẇ(0−) = 0. Substituting the initial conditions in wzs(t) leads to
the following simultaneous equations:


C1 + C2 + 4 = 0,
−4C1 − 3C2 − 4 = 0,


with solutions C1 = 8 and C2 = −12. The zero-state solution of Eq. (3.18) is,
therefore, given by


wzs(t) = (8e−4t − 12e−3t + 4e−t )u(t).


(iii) Overall response of the system The overall response of the system can
be obtained by summing up the zero-input and zero-state responses, and can be


expressed as


w(t) = (−7e−4t + 8e−3t + 4e−t )u(t).


The zero-input, zero-state, and overall responses of the system are plotted in


Fig. 3.2.


Section 3.1 presented the procedure for calculating the output response of a


LTIC system by directly solving its input–output relationship expressed in the


form of a differential equation. However, there is an alternative and more con-


venient approach to calculate the output based on the impulse response of a


system. This approach is developed in the following sections.
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(a) (b)


Fig. 3.3. Approximation of a CT signal x (t ) by a linear combination of time-shifted unit impulse functions.


(a) Rectangular function δ�(t ) used to approximate x(t ). (b) CT signal x(t ) and its approximation x̂(t )


shown with the staircase function.


3.2 Representation of signals using Dirac delta functions


In this section we will show that any arbitrary signal x(t) can be represented as


a linear combination of time-shifted impulse functions. To illustrate our result,


we define a new function δ�(t) as follows:


δ�(t) =
{


1/� 0 < t < �


0 otherwise.
(3.20)


The waveform for δ�(t) is shown in Fig. 3.3(a); it resembles that of a rectangular


pulse with width � and height 1/�. To approximate x(t) as a linear combination


of δ�(t), the time axis is divided into uniform intervals of duration �. Within a


time interval of duration �, say k� < t < (k + 1)�, x(t) is approximated by
a constant value x(k�)δ�(t − k�)�. Following the aforementioned procedure
for the entire time axis, x(t) can be approximated as follows:


x̂(t) = · · · + x(−k�)δ�(t + k�) · � + · · · + x(−�)δ�(t + �) · �
+ x(0)δ�(t) · � + x(�)δ�(t − �) · � + · · ·
+ x(k�)δ�(t − k�) · � + · · · , (3.21)


which is shown as the staircase waveform in Fig. 3.3(b). For a given value of t ,


say t = m�, only one term (k = m) on the right-hand side of Eq. (3.21) is non-
zero. This is because only one of the shifted functions δ�(t − k�) corresponding
to k = m is non-zero. Therefore, a more compact representation for Eq. (3.21)
is obtained by using the following summation:


x̂(t) =
∞∑


k=−∞
x(k�)δ�(t − k�)�. (3.22)
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Applying the limit � → 0, x̂(t) converges to x(t), giving


x(t) = lim
�→0


∞∑


K=−∞
x(k�)δ�(t − k�) [(k + 1)� − k�] , (3.23)


which is the same as


x(t) =
∞∫


−∞


x(τ )δ(t − τ )dτ. (3.24)


Equation (3.24) is very important in the analysis of CT signals. It suggests that


a CT function can be represented as a weighted superposition of time-shifted


impulse functions. We will use Eq. (3.24) to calculate the output of an LTIC


system.


The above procedure used to prove Eq. (3.24) illustrates the physical sig-


nificance of the equation. A more compact proof of Eq. (3.24), based on the


properties of the impulse function, is presented below.


Alternative proof for Eq. (3.24)


In the following discussion, we present a simpler proof of Eq. (3.24), which


uses the properties of impulse functions. We start with the right-hand side of


Eq. (3.24):


RHS =
∞∫


−∞


x(τ )δ(t − τ )dτ.


Since δ(t – τ ) = δ(τ – t),


RHS =
∞∫


−∞


x(τ )δ(τ − t)dτ .


Also, x(τ )δ(τ – t) = x(t)δ(τ – t); therefore


RHS = x(t)
∞∫


−∞


δ(τ − t)dτ ,


which equals x(t), as the area enclosed by the unit impulse function equals


unity.


3.3 Impulse response of a system


In Section 3.1, a constant-coefficient differential equation is used to specify the


input–output characteristics of an LTIC system. An alternative representation


of an LTIC system can be obtained by specifying its impulse response. In this


section, we will formally define the impulse response and illustrate how the
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impulse response of an LTIC system can be derived directly from the differential


equation modeling the LTIC system.


Definition 3.1 The impulse response h(t) of an LTIC system is the output of the


system when a unit impulse δ(t) is applied at the input. Following the notation


introduced in Eq. (2.1), the impulse response can be expressed as


δ(t) → h(t) (3.25)


with zero initial conditions. Because the system is LTIC, it satisfies the linearity


and the time-shifting properties. If the input is a scaled and time-shifted impulse


function aδ(t − t0), the output, Eq. (3.25), of the system is also scaled by the
factor of a and is time-shifted by t0, i.e.


aδ(t − t0) → ah(t − t0) (3.26)


for any arbitrary constants a and t0.


Example 3.4


Calculate the impulse response of the following systems:


(i) y(t) = x(t − 1) + 2x(t − 3); (3.27)


(ii)
dy


dt
+ 4y(t) = 2x(t). (3.28)


Solution


(i) The impulse response of a system is the output of the system when the input


signal x(t) = δ(t). Therefore, the impulse response h(t) can be obtained by
substituting y(t) by h(t) and x(t) by δ(t) in Eq. (3.27). In other words,


h(t) = δ(t − 1) + 2δ(t − 3).


(ii) For input x(t) = δ(t), the resulting output y(t) = h(t). The impulse
response h(t) can therefore be obtained by solving the following differential


equation:


dh


dt
+ 4h(t) = 2δ(t) (3.29)


obtained by substituting x(t) = δ(t) and y(t) = h(t) in Eq. (3.28). We will use
Theorem 3.1 to compute the solution of Eq. (3.29). From Eq. (3.14), p(t) is


given by


p(t) =
∫


4 dt = 4t,


which is substituted into Eq. (3.15), giving


h(t) = e−4t
[


2


∫


e4tδ(t)dt + c
]


= 2e−4t u(t) + ce−4t , (3.30)
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Fig. 3.4. (a) Impulse response


h(t ) of the LTIC system specified


in Example 3.5. (b) Output y(t )


of the LTIC system for input


x(t ) = δ(t + 1) + 3δ(t − 2) +
2δ(t − 6) .


where constant c is determined from the zero initial condition. Substituting


h(t) = 0 for t = 0−, in Eq. (3.30) gives c = 0. The impulse response of the
system in Eq. (3.28) is therefore given by h(t) = 2 exp(−4t)u(t).


Example 3.5


The impulse response of an LTIC system is given by h(t) = exp(−3t)u(t).
Determine the output of the system for the input signal x(t) = δ(t + 1) +
3δ(t − 2) + 2δ(t − 6).


Solution


Because the system is LTIC, it satisfies the linearity and time-shifting properties.


Therefore,


δ(t + 1) → h(t + 1),
3δ(t − 2) → 3h(t − 2),


and


2δ(t − 6) → 2h(t − 6).


Applying the superposition principle, we obtain


x(t) → y(t) = h(t + 1) + 3h(t − 2) + 2h(t − 6).


The impulse response h(t) is shown in Fig. 3.4(a) with the resulting output


shown in Fig. 3.4(b).
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3.4 Convolution integral


In Section 3.3, we computed the output y(t) of an LTIC system from its impulse


response h(t) when the input signal x(t) can be represented as a linear combi-


nation of scaled and time-shifted impulse functions. In this section, we extend


the technique to general input signals.


Following the procedure of Section 3.2, an arbitrary CT signal x(t) can be


approximated by the staircase approximation illustrated in Fig. 3.3. In terms of


Eq. (3.23), the approximated function x̂(t) is given by


x̂(t) =
∞∑


k=−∞
x(k�)δ�(t − k�)�.


Note that as � → 0, the approximated Dirac delta function δ�(t – k�)
approaches δ(t – k�). Therefore,


lim
�→0


δ�(t − k�) → lim
�→0


h(t − k�).


Multiplying both sides by x(k�)�, we obtain


lim
�→0


x(k�) δ�(t − k�) × � → lim
�→0


x(k�)h(t − k�) × �. (3.31)


Applying the linearity property of the system yields


lim
�→0


∞∑


k=−∞
x(k�) δ�(t − k�)� → lim


�→0


∞∑


k=−∞
x(k�)h(t − k�)�. (3.32)


As � → 0, the summations on both sides of Eq. (3.32) become integrations.
Substituting k� by τ and � by dτ , we obtain the following relationship:


∞∫


−∞


x(τ )δ(t − τ )dτ →
∞∫


−∞


x(τ )h(t − τ )dτ , (3.33)


or


x (t) →
∞∫


−∞


x(τ )h(t − τ )dτ , (3.34)


where τ is the dummy variable that disappears as the integration with limits


is computed. The integral on the left-hand side of Eq. (3.34) is referred to


as the convolution integral and is denoted by x(t) ∗ h(t). Mathematically, the
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h(t)


LTIC system


∫
∞


−∞
x(t)d(t − t)dt x(t)h(t − t)dt


x(t) =


∫
∞


−∞


y(t) = x(t)∗h(t) =


Fig. 3.5. Output response of a


system to a general input x(t ).


convolution of two functions x(t) and h(t) is defined as follows:


x (t) ∗ h (t) =
∞∫


−∞


x(τ )h(t − τ )dτ . (3.35)


Combining Eqs. (3.34) and (3.35), we obtain the following:


x(t) → x(t) ∗ h(t) =
∞∫


−∞


x(τ ) h(t − τ )dτ . (3.36)


Equation (3.36) is illustrated in Fig. 3.5 and can be reiterated as follows. When


an input signal x(t) is passed through an LTIC system with impulse response


h(t), the resulting output y(t) of the system can be calculated by convolving


the input signal and the impulse response.


We now consider several examples of computing the convolution integral.


Example 3.6


Determine the output response of an LTIC system when the input signal is given


by x(t) = exp(−t)u(t) and the impulse response is h(t) = exp(−2t)u(t).


Solution


Using Eq. (3.36), the output y(t) of the LTIC system is given by


y(t) =
∞∫


−∞


e−τ u(τ ) e−2(t−τ )u(t − τ )dτ ,


which can be expressed as


y(t) = e−2t
∞∫


0


eτ u(t − τ )dτ .


Expressed as a function of the independent variable τ , the unit step function is


given by


u(t − τ ) =
{


1 τ ≤ t
0 τ > t.


Based on the value of t , we have the following two cases for the output y(t).
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Fig. 3.6. The output of a LTIC


system with impulse response


h(t ) = exp(−2t )u(t ) resulting
from the input signal x(t ) =
exp(−t )u(t ) as calculated in
Example 3.6.


Case I For t < 0, the shifted unit step function u(t − τ ) = 0 within the limits
of integration [0, ∞]. Therefore, y(t) = 0 for t < 0.


Case II For t ≥ 0, the shifted unit step function u(t − τ ) has two different
values within the limits of integration [0, ∞]. For the range [0, t], the unit step
function u(t − τ ) = 1. Otherwise, for the range [t , ∞], the unit step function
is zero. The output y(t) is therefore given by


y(t) = e−2t
t∫


0


eτ dτ = e−2t
[


et − 1
]


= e−t − e−2t , for t > 0.


Combining cases I and II, the overall output y(t) is given by


y(t) = (e−t − e−2t )u(t).


The output response of the system is plotted in Fig. 3.6.


Example 3.6 shows us how to calculate the convolution integral analytically. In


many practical situations, it is more convenient to use a graphical approach to


evaluate the convolution integral, and we consider this next.


3.5 Graphical method for evaluating the convolution integral


Given input x(t) and impulse response h(t) of the LTIC system, Eq. (3.36) can


be evaluated graphically by following steps (1) to (7) listed in Box 3.1.


Box 3.1 Steps for graphical convolution


(1) Sketch the waveform for input x(τ ) by changing the independent vari-


able from t to τ and keep the waveform for x(τ ) fixed during convolution.


(2) Sketch the waveform for the impulse response h(τ ) by changing the


independent variable from t to τ .


(3) Reflect h(τ ) about the vertical axis to obtain the time-inverted impulse


response h(−τ ).
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(4) Shift the time-inverted impulse function h(−τ ) by a selected value of
“t .” The resulting function represents h(t − τ ).


(5) Multiply function x(τ ) by h(t − τ ) and plot the product function
x(τ )h(t − τ ).


(6) Calculate the total area under the product function x(τ )h(t − τ ) by inte-
grating it over τ = [−∞, ∞].


(7) Repeat steps 4−6 for different values of t to obtain y(t) for all time,
−∞ ≤ t ≤ ∞.


Example 3.7


Repeat Example 3.6 and determine the zero-state response of the system using


the graphical convolution method.


Solution


Functions x(τ ) = exp(−τ )u(τ ), h(τ ) = exp(−2τ )u(τ ), and h(−τ ) =
exp(−2τ )u(−τ ) are plotted, respectively, in Figs. 3.7(a)–(c). The function
h(t − τ ) = h(−(τ − t)) is obtained by shifting h(−τ ) by time t . We consider
the following two cases of t .


Case 1 For t < 0, the waveform h(t − τ ) is on the left-hand side of the vertical
axis. As is apparent in Fig. 3.7(e), waveforms for h(t − τ ) and x(τ ) do not
overlap. In other words, x(τ )h(t − τ ) = 0 for all τ , hence y(t) = 0.


Case 2 For t ≥ 0, we see from Fig. 3.7(f) that the non-zero parts of h(t − τ )
and x(τ ) overlap over the duration t = [0, t]. Therefore,


y (t) =
t∫


0


e−2t+τ dτ = e−2t
t∫


0


eτ dτ = e−2t [et − 1] = e−t − e−2t .


Combining the two cases, we obtain


y(t) =
{


0 t < 0


e−t − e−2t t ≥ 0,


which is equivalent to


y(t) = (e−t − e−2t )u(t).


The output y(t) of the LTIC system is plotted in Fig. 3.7(g).
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Fig. 3.7. Convolution of the


input signal x(t ) with the


impulse response h(t ) in


Example 3.7. Parts (a)–(g) are


discussed in the text.


Example 3.8


The input signal x(t) = exp(−t)u(t) is applied to an LTIC system whose
impulse response is given by


h(t) =
{


1 − t 0 ≤ t ≤ 1
0 otherwise.


Calculate the output of the system.


Solution


In order to calculate the output of the system, we need to calculate the convo-


lution integral for the two functions x(t) and h(t). Functions x(τ ), h(τ ), and


h(−τ ) are plotted as a function of the variable τ in the top three subplots of
Fig. 3.8(a)–(c). The function h(t − τ ) is obtained by shifting the time-reflected
function h(−τ ) by t . Depending on the value of t , three special cases may
arise.
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Fig. 3.8. Convolution of the


input signal x(t ) with the


impulse response h(t ) in


Example 3.8. Parts (a)–(g) are


discussed in the text.


Case 1 For t < 0, we see from Fig. 3.8(e) that the non-zero parts of h(t − τ )
and x(τ ) do not overlap. In other words, output y(t) = 0 for t < 0.


Case 2 For 0 ≤ t ≤ 1, we see from Fig. 3.8(f) that the non-zero parts of h(t − τ )
and x(τ ) do overlap over the duration τ = [0, t]. Therefore,


y(t) =
t∫


0


x(τ )h(t − τ )dτ =
t∫


t−1


e−τ (1 − t + τ )dτ


= (1 − t)
t∫


0


e−τ dτ


︸ ︷︷ ︸


integral I


+
t∫


0


τe−τ dτ


︸ ︷︷ ︸


integral II


.
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The two integrals simplify as follows:


integral I = (1 − t) [−e−τ ] t0 = (1 − t)(1 − e
−t );


integral II = [−τe−τ − e−τ ] t0 = 1 − e
−t − te−t .


For 0 ≤ t ≤ 1, the output y(t) is given by


y(t) = (1 − t − e−t + te−t ) + (1 − e−t − te−t ) = (2 − t − 2e−t ).


Case 3 For t > 1, we see from Fig. 3.8(g) that the non-zero part of h(t − τ )
completely overlaps x(τ ) over the region τ = [t − 1, t]. The lower limit of
the overlapping region in case 3 is different from the lower limit of the over-


lapping region in case 2; therefore, case 3 results in a different convolution


integral and is considered separately from case 2. The output y(t) for case 3 is


given by


y(t) =
t∫


0


x(τ )h(t − τ )dτ =
t∫


t−1


e−τ (1 − t + τ )dτ


= (1 − t)
t∫


t−1


e−τ dτ


︸ ︷︷ ︸


integral I


+
t∫


t−1


τe−τ dτ


︸ ︷︷ ︸


integral II


.


The two integrals simplify as follows:


integral I = (1 − t)[−e−τ ] tt−1 = (1 − t)(e
−(t−1) − e−t );


integral II = [−τe−τ − e−τ ] tt−1 = (t − 1)e
−(t−1) + e−(t−1) − te−t − e−t


= te−(t−1) − te−t − e−t .


For t > 1, the output y(t) is given by


y(t) =
(


e−(t−1) − te−(t−1) − e−t + te−1
)


+
(


te−(t−1) − te−t − e−t
)


=
(


e−(t−1) − 2e−t
)


.


Combining the above three cases, we obtain


y(t) =











0 t < 0


(2 − t − 2e−t ) 0 ≤ t ≤ 1
(e−(t−1) − 2e−t ) t > 1,


which is plotted in Fig. 3.9.


Example 3.9


Calculate the output for the following input signal and impulse response:


x(t) =
{


1.5 −2 ≤ t ≤ 3
0 otherwise


and h(t) =
{


2 −1 ≤ t ≤ 2
0 otherwise.
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Fig. 3.9. Output y(t ) computed


in Example 3.8.


Solution


Functions x(τ ), h(τ ), h(−τ ), and h(t − τ ) are plotted in Figs. 3.10(a)–(d).
Depending on the value of t , the convolution integral takes five different forms.


We consider these five cases below.


Case 1 (t < −3). As seen in Fig. 3.10(e), the non-zero parts of h(t − τ ) and
x(τ ) do not overlap. Therefore, the output signal y(t) = 0.


Case 2 (−3 ≤ t ≤ 0). As seen in Fig. 3.10(f), the non-zero part of h(t − τ )
partially overlaps with x(τ ) within the region τ = [−2, t + 1]. The product
x(τ )h(t − τ ) becomes a rectangular function in the region with an amplitude
of 1.5 × 2 = 3. Therefore, the output for −3 ≤ t ≤ 0 is given by


y (t) =
t+1∫


−2


3 dτ = 3(t + 3).


Case 3 (0 ≤ t ≤ 2). As seen in Fig. 3.10(g), the non-zero part of h(t − τ )
overlaps completely with x(τ ). The overlapping region is given by τ =
[t − 2, t + 1]. The product x(τ )h(t − τ ) is a rectangular function with an ampli-
tude of 3 in the region τ = [t − 2, t + 1]. The output for 0 ≤ t ≤ 2 is given by


y(t) =
t+1∫


t−2


3 dτ = 9.


Case 4 (2 ≤ t ≤ 5). The non-zero part of h(t − τ ) overlaps partially with x(τ )
within the region τ = [t − 2, 3]. Therefore, the output for 2 ≤ t ≤ 5 is given
by


y(t) =
3∫


t−2


3 dτ = 3(5 − t).


Case 5 (t ≥ 0). We see from Fig. 3.10(i) that the non-zero parts of h(t − τ )
and x(τ ) do not overlap. Therefore, the output y(t) = 0.
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Fig. 3.10. Convolution of the


input signal x(t ) with the


impulse response h(t ) in


Example 3.9. Parts (a)–(i) are


discussed in the text.


Combining the five cases, we obtain


y(t) =





















0 t < −3
3(t + 3) −3 ≤ t ≤ 0
9 0 ≤ t ≤ 2
3(5 − t) 2 ≤ t ≤ 5
0 t > 5.


The waveform for the output response is sketched in Fig. 3.11.
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Fig. 3.11. Output y(t ) obtained


in Example 3.9.


3.6 Properties of the convolution integral


The convolution integral has several interesting properties that can be used to


simplify the analysis of LTIC systems. Some of these properties are presented


in the following discussion.


Commutative property


x1(t) ∗ x2(t) = x2(t) ∗ x1(t). (3.37)


The commutative property states that the order of the convolution operands does


not affect the result of the convolution. In calculating the output of an LTIC


system, the impulse response and input signal can be interchanged without


affecting the output. The commutative property can be proved directly from the


definition of the convolution integral by changing the dummy variable used for


integration.


Proof


By definition,


x1(t) ∗ x2(t) =
∞∫


−∞


x1(τ )x2(t − τ )dτ .


Substituting u = t – τ gives


x1(t) ∗ x2(t) =
−∞∫


∞


x1(t − u)x2(u)(−du).


By interchanging the order of the upper and lower limits, we obtain


x1(t) ∗ x2(t) =
∞∫


−∞


x1(t − u)x2(u)du = x2(t) ∗ x1(t).


Below, we list the remaining properties of convolution. Each of these properties


can be proved by following the approach used in the proof for the commutative


property. To avoid redundancy, the proofs for the remaining properties are not


included.
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Distributive property


x1(t) ∗ [x2(t) + x3(t)] = x1(t) ∗ x2(t) + x1(t) ∗ x3(t). (3.38)


The distributive property states that convolution is a linear operation.


Associative property


x1(t) ∗ [x2(t) ∗ x3(t)] = [x1(t) ∗ x2(t)] ∗ x3(t). (3.39)


This property states that changing the order of the convolution operands does


not affect the result of the convolution integral.


Shift property If x1(t) ∗ x2(t) = g(t) then


x1(t − T1) ∗ x2(t − T2) = g(t − T1 − T2), (3.40)


for any arbitrary real constants T1 and T2. In other words, if the two operands of


the convolution integral are shifted, then the result of the convolution integral


is shifted in time by a duration that is the sum of the individual time shifts


introduced in the operands.


Duration of convolution Let the non-zero durations (or widths) of the con-
volution operands x1(t) and x2(t) be denoted by T1 and T2 time units, respec-


tively. It can be shown that the non-zero duration (or width) of the convolution


x1(t) ∗ x2(t) is T1 + T2 time units.


Convolution with impulse function


x(t) ∗ δ(t − t0) = x(t − t0). (3.41)


In other words, convolving a signal with a unit impulse function whose origin


is at t = t0 shifts the signal to the origin of the unit impulse function.


Convolution with unit step function


x(t) ∗ u(t) =
∞∫


−∞


x(τ )u(t − τ )dτ =
t∫


−∞


x(τ )dτ . (3.42)


Equation (3.42) states that convolving a signal x(t) with a unit step function


produces the running integral of the original signal x(t) as a function of time t .


Scaling property If y(t) = x1(t) ∗ x2(t), then y(αt) = |α|x1(αt) ∗ x2(αt). In
other words, if we scale the two convolution operands x1(t) and x2(t) by a


factor of α, then the result of convolution x1(t) ∗ x2(t) is (i) scaled by α and (ii)
amplified by |α| to determine y(αt).
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3.7 Impulse response of LTIC systems


In Section 2.2, we considered several properties of CT systems. Since an LTIC


system is completely specified by its impulse response, it is therefore logical to


assume that its properties are completely determined from its impulse response.


In this section, we express some of the basic properties of LTIC systems defined


in Section 2.2 in terms of the impulse response of the LTIC systems. We consider


the memorylessness, causality, stability, and invertibility properties for such


systems.


3.7.1 Memoryless LTIC systems


A CT system is said to be memoryless if its output y(t) at time t = t0 depends
only on the value of the applied input signal x(t) at the same time instant


t = t0. In other words, a memoryless LTIC system typically has an input–output
relationship of the form


y(t) = kx(t),


where k is a constant. Substituting x(t) = δ(t), the impulse response h(t) of a
memoryless system can be obtained as follows:


h(t) = kδ(t). (3.43)


An LTIC system will be memoryless if and only if its impulse response


h(t) = 0 for t �= 0.


3.7.2 Causal LTIC systems


A CT system is said to be causal if the output at time t = t0 depends only on


the value of the applied input signal x(t) at and before the time instant t = t0.


The output of an LTIC system at time t = t0 is given by


y(t0) =


∞∫


−∞


x(τ )h(t0 − τ )dτ .


In a causal system, output y(t0) must not depend on x(τ ) for τ > t0. This


condition is only satisfied if the time-shifted and reflected impulse response


h(t0 − τ ) = 0 for τ > t0. Choosing t0 = 0, the causality condition reduces to
h(−τ ) = 0 for τ > 0, which is equivalent to stating that h(τ ) = 0 for τ < 0.
Below we state the causality condition explicitly.


An LTIC system will be causal if and only if its impulse response h(t) = 0
for t < 0.
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3.7.3 Stable LTIC systems


A CT system is BIBO stable if an arbitrary bounded input signal produces a


bounded output signal. Consider a bounded signal x(t) with |x(t)| < Bx for all
t , applied as input to an LTIC system with impulse response h(t). The magnitude


of output y(t) is given by


|y(t)| =


∣
∣
∣
∣
∣
∣


∞∫


−∞


h(τ )x(t − τ )dτ


∣
∣
∣
∣
∣
∣


.


Using the Schwartz inequality, we can say that the output is bounded within the


range


|y(t)| ≤
∞∫


−∞


|h(τ )||x(t − τ )|dτ .


Since x(t) is bounded, |x(t)| < Bx , therefore the above inequality reduces to


|y(t)| ≤ Bx


∞∫


−∞


|h(τ )|dτ .


It is clear from the above expression that for the output y(t) to be bounded, i.e.


|y(t)| < ∞, the integral ∫ h(τ )dτ within the limits [−∞, ∞] should also be
bounded. The stability condition can, therefore, be stated as follows.


If the impulse response h(t) of an LTIC system satisfies the following


condition:


∞∫


−∞


|h(t)|dt < ∞, (3.44)


then the LTIC system is BIBO stable.


Example 3.10


Determine if systems with the following impulse responses:


(i) h(t) = δ(t) – δ(t – 2),
(ii) h(t) = 2 rect(t/2),


(iii) h(t) = 2 exp(−4t)u(t),
(iv) h(t) = [1 − exp(−4t)]u(t),


are memoryless, causal, and stable.
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Solution


System (i)


Memoryless property. Since h(t) �= 0 for t �= 0, system (i) is not memoryless.


The system has a limited memory as it only requires the values of the input


signal within three time units of the time instant at which the output is


being evaluated.


Causality property. Since h(t) = 0 for t < 0, system (i) is causal.


Stability property. To verify if system (i) is stable, we compute the following


integral:


∞∫


−∞


|h(t)|dt =
∞∫


−∞


|δ(t) − δ(t − 2)|dt


≤
∞∫


−∞


|δ(t)|dt +
∞∫


−∞


|δ(t − 2)|dt = 2 < ∞,


which shows that system (i) is stable.


System (ii)


Memoryless property. Since h(t) �= 0 for t �= 0, system (ii) is not memory-
less.


Causality property. Since h(t) �= 0 for t < 0, system (ii) is not causal.
Stability property. To verify if system (ii) is stable, we compute the following


integral:
∞∫


−∞


|h(t)|dt =
1∫


−1


2 dt = 4 < ∞,


which shows that system (ii) is stable.


System (iii)


Memoryless property. Since h(t) �= 0 for t �= 0, system (iii) is not memo-
ryless. The memory of system (iii) is infinite, as the output at any time


instant depends on the values of the input taken over the entire past.


Causality property. Since h(t) = 0 for t < 0, system (iii) is causal.
Stability property. To verify that system (iii) is stable, we solve the following


integral:
∞∫


−∞


|h(t)|dt =
∞∫


0


2e−4t dt = −0.5 × [e−4t ]∞0 = 0.5 < ∞,


which shows that system (iii) is stable.


System (iv)


Memoryless property. Since h(t) �= 0 for t �= 0, system (iv) is not memory-
less.


Causality property. Since h(t) = 0 for t < 0, system (iv) is causal.
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Stability property. To verify that system (iv) is stable, we solve the following


integral:


∞∫


−∞


|h(t)|dt =
∞∫


0


(1 − e−4t )dt = [t − 0.25e−4t ]∞0 = ∞,


which shows that system (iv) is not stable.


3.7.4 Invertible LTIC systems


Consider an LTIC system with impulse response h(t). The output y1(t) of


the system for an input signal x(t) is given by y1(t) = x (t) ∗ h(t). For the
system to be invertible, we cascade a second system with impulse response


hi(t) in series with the original system. The output of the second system is


given by


y2(t) = y1(t) ∗ hi(t).


For the second system to be an inverse of the original system, output y2(t) should


be the same as x(t). Substituting y1(t) = x(t) ∗ h(t) in the above expression
results in the following condition for invertibility:


x(t) = [x(t) ∗ h(t)] ∗ hi(t) = x(t) ∗ [h(t) ∗ hi(t)].


The above equation is true if and only if


h(t) ∗ hi(t) = δ(t). (3.45)


The existence of hi(t) proves that an LTIC system is invertible. At times, it is


difficult to determine the inverse system hi(t) in the time domain. In Chapter 5,


when we introduce the Fourier transform, we will revisit the topic and illustrate


how the inverse system can be evaluated with relative ease in the Fourier-


transform domain.


Example 3.11


Determine if systems with the following impulse responses:


(i) h(t) = δ(t – 2),
(ii) h(t) = δ(t) − δ(t − 2),


are invertible.


Solution


(i) Since δ(t − 2) ∗ δ(t + 2) = δ(t), system (i) is invertible. The impulse
response of the inverse system is given by


hi(t) = δ(t + 2).
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(ii) Assuming that the impulse response of the inverse system is hi(t), the


stability condition is expressed as


h(t) ∗ hi(t) = [δ(t) − δ(t − 2)] ∗ hi(t) = δ(t).


By applying the convolution property, Eq. (3.41), the above expression simpli-


fies to


hi(t) − hi(t − 2) = δ(t)


or


hi(t) = δ(t) + hi(t − 2).


The above expression can be solved iteratively. For example, hi(t − 2) is given
by


hi(t − 2) = δ(t − 2) + hi(t − 4).


Substituting the value of hi(t − 2) in the earlier expression gives


hi(t) = δ(t) + δ(t − 2) + hi(t − 4),


leading to the iterative expression


hi(t) =
∞∑


m=0
δ(t − 2m).


To verify that hi(t) is indeed the impulse response of the inverse system, we


convolve h(t) with hi(t). The resulting expression is as follows:


h(t) ∗ hi(t) = [δ(t) − δ(t − 2)] ∗
∞∑


m=0
δ(t − 2m),


which simplifies to


h(t) ∗ hi(t) = δ(t) ∗
∞∑


m=0
δ(t − 2m) + δ(t − 2) ∗


∞∑


m=0
δ(t − 2m)


or


h(t) ∗ hi(t) =
∞∑


m=0
δ(t − 2m) +


∞∑


m=0
δ(t − 2 − 2m) = δ(t).


Therefore, hi(t) is indeed the impulse response of the inverse system.


3.8 Experiments with MATLAB


In this chapter, we have so far presented two approaches to calculate the output


response of an LTIC system: the differential equation method and the convolu-


tion method. Both methods can be implemented using MATLAB . However, the


convolution method is more convenient for MATLAB implementation in the


discrete-time domain and this will be presented in Chapter 8. In this section,
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therefore, we present the method for constant-coefficient differential equations


with initial conditions.


MATLAB provides several M-files for solving differential equations with


known initial conditions. The list includesode23,ode45,ode113,ode15s,


ode23s, ode23t, and ode23tb. Each of these functions uses a finite-


difference-based scheme for discretizing a CT differential equation and iterates


the resulting DT finite-difference equation for the solution. A detailed analysis


of the implementations of these MATLAB functions is beyond the scope of the


text. Instead we will focus on the procedure for solving differential equations


with MATLAB . Since the syntax used to name these M-files is similar, we


illustrate the procedure for the function call using ode23. Any other M-file


can be used instead of ode23 by replacing ode23 with the selected M-file.


We will solve first- and second-order differential equations, and we compare


the computed values with the analytical solution derived earlier.


Example 3.12


Compute the solution y(t) for Eq. (3.11), reproduced below for convenience:


dy


dt
+ 4y(t) = 2 cos(2t)u(t),


with initial condition y(0) = 2 for 0 ≤ t ≤ 15. Compare the computed solution
with the analytical solution given by Eq. (3.12).


Solution


The first step towards solving Eq. (3.11) is to create an M-file containing the


differential equation. We implement a reordered version of Eq. (3.11), given by


dy


dt
= −4y(t) + 2 cos(2t)u(t),


where the derivative dy/dt is the output of the M-file based on the input y and


time t . Calling the M-file myfunc1, the format for the M-file is as follows:


function [ydot] = myfunc1(t,y)


% MYFUNC1


% Computes first derivative in (3.11) given the value of


% signal y and time t.


% Usage: ydot = myfunc1(t,y)


ydot = -4*y + 2*cos(2*t).*(t >= 0)


The above function is saved in a file named myfunc1.m and placed in a direc-


tory included within the defined paths of the MATLAB environment. To solve


the differential equation defined in myfunc1 over the interval 0 ≤ t ≤ 15,
we invoke ode23 after initializing the input parameters in an M-file as


shown:
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Fig. 3.12. Solution y(t ) for Eq.


(3.11) computed using M A T L A B.


% MATLAB program to solve Equation (3.11) in Example 3.12


tspan = [0:0.01:15]; % duration with resolution


% of 0.01s.


y0 = [2]; % initial condition


[t,y] = ode23(‘myfunc1’, tspan,y0);


% solve ODE using ode23


plot(t,y) % plot the result


xlabel(‘time’) % Label of X-axis


ylabel(‘Output Response y(t)’) % Label of Y-axis


The final plot is shown in Fig. 3.12 and is the same as the analytical solution


given by Eq. (3.12).


Example 3.13


Compute the solution for the following second-order differential equation:


ÿ(t) + 5ẏ(t) + 4y(t) = (3 cos t)u(t) with initial conditions
y(0) = 2 and ẏ(0) = −5,


for 0 ≤ t ≤ 20 using MATLAB . Note that the analytical solution of this problem
is presented in Appendix C (see Example C.6).


Solution


Higher-order differential equations are typically represented by a system of first-


order differential equations before their solution can be computed in MATLAB .


Assuming y2(t) to be the solution of the aforementioned differential equation,


we obtain


ÿ2(t) + 5ẏ2(t) + 4y2(t) = (3 cos t)u(t).


To reduce the second-order differential equation into a system of two first-order


differential equations, assume the following:


ẏ2(t) = y1(t). (3.46)
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Substituting y2(t) in the original equation and rearranging the terms yields


ẏ1(t) = −5y1(t) − 4y2(t) + (3 cos t)u(t). (3.47)


Equations (3.46) and (3.47) collectively define a system of first-order differ-


ential equations that simulate the original differential equation. The coupled


system can be represented in the matrix-vector form as follows:
[


ẏ1(t)


ẏ2(t)


]


=
[


−5y1(t) − 4y2(t) + (3 cos t)u(t)
y1(t)


]


. (3.48)


To simulate the above system, we write an M-file myfunc2 that computes


the vector of derivatives on the left-hand side of Eq. (3.48) based on the input


parameters t and vector y that contains the values of y1 and y2:


function [ydot] = myfunc2(t,y)


% The function computes first derivative of (3.48) from


% vector y and time t.


% Usage: ydot = myfunc2(t,y)


ydot(1,1) = -5*y(1) - 4*y(2)+ 3*cos(t)*(t >= 0);


ydot(2,1) = y(1);


%---end of the function----------------------


Note that the output of the above M-file is the column vector ydot corre-


sponding to Eq. (3.48). The M-file myfunc2.m should be placed in a direc-


tory included within the defined paths of the MATLAB environment. To solve


the differential equation defined in myfunc2 over the interval 0 ≤ t ≤ 20, we
invoke ode23 after initializing the input parameters as given below:


% MATLAB program to solve Example 3.13


tspan = [0:0.02:20]; % duration with resolution of


% 0.02s.


y0 = [-5; 2]; % initial conditions


[t,y] = ode23(‘myfunc2’, tspan,y0);


% solve ODE using ode23


plot(t,y(:,2)) % plot the result


Note that the order of the initial conditions is reversed such that ẏ2(0) = −5 is
mentioned first and y2(0) = 2 later in the initial condition vector y0. Looking
at the structure of Eq. (3.48), it is clear that the top entry in the first row of ydot


corresponds to ẏ1(t), which is equal to ÿ2(t). Similarly, the entry in the second


row of ydot contains the value of ẏ2(t). The function ode23 will integrate


ydot returning the value in y. The vector y, therefore, contains the values


of ẏ2(t) in the top row and the values of y2(t) in the bottom row. The order


of the initial conditions is adjusted according to the returned values such that


ẏ2(0) = −5 is mentioned first and y2(0) = 2 later in the initial condition vector
y0. The solution of the differential equation is also contained in the second


column of vector y.
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Fig. 3.13. Solution y(t ) for


Example 3.13 computed using


MA T L A B.


The solution y(t) is plotted in Fig. 3.13. It can be easily verified that the


plot is same as the analytical solution given by Eq. (C.38), which is reproduced


below


y(t) =
1


2
e−t +


21


17
e−4t +


9


34
cos t +


15


34
sin t for t ≥ 0.


3.9 Summary


In Chapter 3, we developed analytical techniques for LTIC systems. We saw


that the output signal y(t) of an LTIC system can be evaluated analytically in


the time domain using two different methods. In Section 3.1, we determined the


output of an LTIC by solving a linear, constant-coefficient differential equation.


The solution of such a differential equation can be expressed as a sum of


two components: zero-input response and zero-state response. The zero-input


response is the output produced by the LTIC system because of the initial


conditions. For stable LTIC systems, the zero-input response decays to zero


with increasing time. The zero-state response is due to the input signal. The


overall output of the LTIC system is the sum of the zero-input response and


zero-state response.


An alternative representation for determining the output of an LTIC system


is based on the impulse response of the system. In Section 3.3, we defined the


impulse response h(t) as the output of an LTIC system when a unit impulse δ(t)


is applied at the input of the system. In Section 3.4, we proved that the output y(t)


of an LTIC system can be obtained by convolving the input signal x(t) with its


impulse response h(t). The resulting convolution integral can either be solved


analytically or by using a graphical approach. The graphical approach was


illustrated through several examples in Section 3.5. The convolution integral
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satisfies the commutative, distributive, associative, time-shifting, and scaling


properties.


(1) The commutative property states that the order of the convolution operands


does not affect the result of the convolution.


(2) The distributive property states that convolution is a linear operation with


respect to addition.


(3) The associative property is an extension of the commutative property to


more than two convolution operands. It states that changing the order


of the convolution operands does not affect the result of the convolution


integral.


(4) The time-shifting property states that if the two operands of the convolution


integral are shifted in time, then the result of the convolution integral is


shifted by a duration that is the sum of the individual time shifts introduced


in the convolution operands.


(5) The duration of the waveform produced by the convolution integral is the


sum of the durations of the convolved signals.


(6) Convolving a signal with a unit impulse function with origin at t = t0 shifts
the signal to the origin of the unit impulse function.


(7) Convolving a signal with a unit step function produces the running integral


of the original signal as a function of time t .


(8) If the two convolution operands are scaled by a factor α, then the result of


the convolution of the two operands is scaled by α and amplified by |α|.


In Section 3.7, we expressed the memoryless, causality, inverse, and stability


properties of an LTIC system in terms of its impulse response.


(1) An LTIC system will be memoryless if and only if its impulse response


h(t) = 0 for t �= 0.
(2) An LTIC system will be causal if and only if its impulse response h(t) = 0


for t < 0.


(3) The impulse response of the inverse of an LTIC system satisfies the property


hi(t) * h(t) = δ(t).


(4) The impulse response h(t) of a (BIBO) stable LTIC system is absolutely


integrable, i.e.


∞∫


−∞


|h(t)|dt < ∞.


Finally, in Section 3.8 we presented a few MATLAB examples for solving


constant-coefficient differential equations with initial conditions.


In Chapters 4 and 5, we will introduce the frequency representations for CT


signals and systems. Such representations provide additional tools that simplify


the analysis of LTIC systems.
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Problems


3.1 Show that a system whose input x(t) and output y(t) are related by a linear
differential equation of the form


dn y


dtn
+ an−1


dn−1 y


dtn−1
+ · · · + a1


dy


dt
+ a0 y(t)


= bm
dm x


dtm
+ bm−1


dm−1x


dtm−1
+ · · · + b1


dx


dt
+ b0x(t)


is linear and time-invariant if the coefficients {ar , 0 ≤ r ≤ n − 1} and
{br , 0 ≤ r ≤ m} are constants.


3.2 For each of the following differential equations modeling an LTIC system,
determine (a) the zero-input response, (b) the zero-state response, (c) the


overall response and (d) the steady state response of the system for the


specified input x(t) and initial conditions.


(i) ÿ(t) + 4ẏ(t) + 8y(t) = ẋ(t) + x(t) with x(t) = e−4t u(t),
y(0) = 0, and ẏ(0) = 0.


(ii) ÿ(t) + 6ẏ(t) + 4y(t) = ẋ(t) + x(t) with x(t) = cos(6t)u(t),
y(0) = 2, and ẏ(0) = 0.


(iii) ÿ(t) + 2ẏ(t) + y(t) = ẍ(t) with x(t) = [cos(t) + sin(2t)]u(t),
y(0) = 3, and ẏ(0) = 1.


(iv) ÿ(t) + 4y(t) = 5x(t) with x(t) = 4te−t u(t), y(0) = −2,
and ẏ(0) = 0.


(v) ¨ÿ (t) + 2ÿ(t) + y(t) = x(t) with x(t) = 2u(t), y(0) = ÿ(0) =
˙ÿ(0) = 0, and ẏ(0) = 1.


3.3 Find the impulse responses for the following LTIC systems character-
ized by linear, constant-coefficient differential equations with zero initial


conditions.


(i) ẏ(t) = 2x(t);
(ii) ẏ(t) + 6y(t) = x(t);


(iii) 2ẏ(t) + 5y(t) = ẋ(t);


(iv) ẏ(t) + 3y(t) = 2ẋ(t) + 3x(t);
(v) ÿ(t) + 5ẏ(t) + 4y(t) = x(t);


(vi) ÿ(t) + 2ẏ(t) + y(t) = x(t).


3.4 The input signal x(t) = e−αt u(t) is applied to an LTIC system with impulse
response h(t) = e−βt u(t).


(i) Calculate the output y(t) when α �= β.


(ii) Calculate the output y(t) when α = β.


(iii) Intuitively explain why the output signals are different in parts (i) and


(ii).


3.5 Determine the output y(t) for the following pairs of input signals x(t) and
impulse responses h(t):


(i) x(t) = u(t), h(t) = u(t);


(ii) x(t) = u(−t), h(t) = u(−t);


(iii) x(t) = u(t) − 2u(t − 1) + u(t − 2), h(t) = u(t + 1) − u(t − 1);
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(iv) x(t) = e2t u(−t), h(t) = e−3t u(t);
(v) x(t) = sin(2π t)(u(t − 2) − u(t − 5)), h(t) = u(t) − u(t − 2);


(vi) x(t) = e−2|t |, h(t) = e−5|t |;
(vii) x(t) = sin(t)u(t), h(t) = cos(t)u(t).


3.6 For the four CT signals shown in Figs. P3.6, determine the following
convolutions:


(i) y1(t) = x(t) ∗ x(t);
(ii) y2(t) = x(t) ∗ z(t);


(iii) y3(t) = x(t) ∗ w(t);
(iv) y4(t) = x(t) ∗ v(t);
(v) y5(t) = z(t) ∗ z(t);


(vi) y6(t) = z(t) ∗ w(t);
(vii) y7(t) = z(t) ∗ v(t);


(viii) y8(t) = w(t) ∗ w(t);
(ix) y9(t) = w(t) ∗ v(t);
(x) y10(t) = v(t) ∗ v(t).


t


x(t)


1


1 20


−1


(i)


t
−1


1


z(t)


1


0


−1


(ii)


t


1


w(t)


0 1−1


(1− t)(1+ t)


(iii)


t


1


v(t)


0 1−1


e−2te2t


(iv)


Fig. P3.6. CT signals for


Problem P3.6.


3.7 Show that the convolution integral satisfies the distributive, associative,
and scaling properties as defined in Section 3.6.


3.8 When the unit step function, u(t), is applied as the input to an LTIC sys-
tem, the output produced by the system is given by y(t) = (1 − e−t )u(t).
Determine the impulse response of the system. [Hint: If x(t) → y(t) then
dx/dt → dy/dt (see Problem 2.15).]


3.9 A CT signal x(t), which is non-zero only over the time interval, t =
[−2, 3], is applied to an LTIC system with impulse response h(t). The
output y(t) is observed to be non-zero only over the time interval t =
[−5, 6]. Determine the time interval in which the impulse response h(t)
of the system is possibly non-zero.


3.10 An input signal


x(t) =
{


1 − t 0 ≤ t ≤ 1
0 otherwise


is applied to an LTIC system whose impulse response is given by


h(t) = e−t u(t). Using the result in Example 3.8 and the properties of
the convolution integral, calculate the output of the system.


3.11 An input signal g(t) = e−(t−2)u(t − 2) is applied to an LTIC system whose
impulse response is given by


r (t) =
{


5 − t 4 ≤ t ≤ 5
0 otherwise.


Using the result in Example 3.8 and the properties of the convolution


integral, calculate the output of the system.


3.12 Determine whether the LTIC systems characterized by the following
impulse responses are memoryless, causal, and stable. Justify your


answer. For the unstable systems, demonstrate with an example that a


bounded input signal produces an unbounded output signal.
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x(t) h1(t) y(t)


h2(t)


Σ
Fig. P3.15. Feedback system for


Problem P3.15.


(i) h1(t) = δ(t) + e−5t u(t);
(ii) h2(t) = e−2t u(t);


(iii) h3(t) = e−5t sin(2π t)u(t);
(iv) h4(t) = e−2|t | + u(t + 1) − u(t − 1);
(v) h5(t) = t[u(t + 4) − u(t − 4)];


(vi) h6(t) = sin 10t ;
(vii) h7(t) = cos(5t)u(t);


(viii) h8(t) = 0.95|t |;


(ix) h9(t) =











1 −1 ≤ t < 0
−1 0 ≤ t ≤ 1


0 otherwise.


3.13 Consider the systems in Example 3.10. Analyzing the impulse responses,
it was shown that the systems were not memoryless. In this problem,


calculate the input–output relationships of the systems, and from these


relationships determine if the systems are memoryless.


3.14 Determine whether the LTIC systems characterized by the following
impulse responses are invertible. If yes, derive the impulse response of


the inverse systems.


(i) h1(t) = 5δ(t − 2);
(ii) h2(t) = δ(t) + δ(t + 2);


(iii) h3(t) = δ(t + 1) + δ(t − 1);


(iv) h4(t) = u(t);
(v) h5(t) = rect(t/8);


(vi) h6(t) = e−2t u(t).


3.15 Consider the feedback configuration of the two LTIC systems shown in
Fig. P3.15. System 1 is characterized by its impulse response, h1(t) =
u(t). Similarly, system 2 is characterized by its impulse response, h2(t) =
u(t). Determine the expression specifying the relationship between the


input x(t) and the output y(t).


3.16 A complex exponential signal x(t) = ejω0t is applied at the input of an
LTIC system with impulse response h(t). Show that the output signal is


given by


y(t) = ejω0t H (ω)|ω=ω0 ,


where H (ω) is the Fourier transform of the impulse response h(t) given


by


H (ω) =
∞∫


−∞


h(t)e−jωt dt.
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3.17 A sinusoidal signal x(t) = A sin(ω0t + θ ) is applied at the input of an
LTIC system with real-valued impulse response h(t). By expressing the


sinusoidal signal as the imaginary term of a complex exponential, i.e. as


jA sin(ω0t + θ ) = Im
{


Aej(ω0+t)
}


, A ∈ ℜ,


show that the output of the LTIC system is given by


y(t) = A|H (ω0)| sin(ω0t + θ + arg(H (ω0)),


where H (ω) is the Fourier transform of the impulse response h(t) as


defined in Problem 3.16.


Hint: If h(t) is real and x(t) → y(t), then Im{x(t)} → Im{y(t)}.


3.18 Given that the LTIC system produces the output y(t) = 5 cos(2π t) when
the signal x(t) = −3 sin(2π t + π/4) is applied at its input, derive the
value of the tranfer function H (ω) at ω = 2π . Hint: Use the result derived
in Problem 3.17.


3.19 (a) Compute the solutions of the differential equations given in P3.2 for
duration 0 ≤ t ≤ 20 using MATLAB . (b) Compare the computed solution
with the analytical solution obtained in P3.2.
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C H A P T E R


4 Signal representation using
Fourier series


In Chapter 3, we developed analysis techniques for LTIC systems using the


convolution integral by representing the input signal x(t) as a linear combi-


nation of time-shifted impulse functions δ(t). In Chapters 4 and 5, we will


introduce alternative representations for CT signals and LTIC systems based on


the weighted superpositions of complex exponential functions. The resulting


representations are referred to as the continuous-time Fourier series (CTFS)


and continuous-time Fourier transform (CTFT). Representing CT signals as


superpositions of complex exponentials leads to frequency-domain characteri-


zations, which provide a meaningful insight into the working of many natural


systems. For example, a human ear is sensitive to audio signals within the fre-


quency range 20 Hz to 20 kHz. Typically, a musical note occupies a much


wider frequency range. Therefore, the human ear processes frequency com-


ponents within the audible range and rejects other frequency components. In


such applications, frequency-domain analysis of signals and systems provides


a convenient means of solving for the response of LTIC systems to arbitrary


input signals.


In this chapter, we focus on periodic CT signals and introduce the CTFS used


to decompose such signals into their frequency components. Chapter 5 considers


aperiodic CT signals and develops an equivalent Fourier representation, CTFT,


for aperiodic signals. The organization of Chapter 4 is as follows. In Section 4.1,


we define two- and three-dimensional orthogonal vector spaces and use them


to motivate our introduction to orthogonal signal spaces in Section 4.2. We


show that sinusoidal and complex exponential signals form complete sets of


orthogonal functions. By selecting the sinusoidal signals as an orthogonal set of


basis functions, Sections 4.3 and 4.4 present the trigonometric CTFS for a CT


periodic signal. Section 4.5 defines the exponential representation for the CTFS


based on using the complex exponentials as the basis functions. The properties


of the exponential CTFS are presented in Section 4.6. The condition for the


existence of CTFS is described in Section 4.7. Several interesting applications


of the CTFS are presented in Section 4.8, which is followed by a summary of


the chapter in Section 4.9.


141
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4.1 Orthogonal vector space


From the theory of vector space, we know that an arbitrary M-dimensional


vector can be represented in terms of its M orthogonal coordinates. For example,


a two-dimensional (2D) vector �V with coordinates (vi , v j ) can be expressed as
follows:


�V = vi�i + v j �j, (4.1)


where �i and �j are the two basis vectors, respectively, along the x- and y-axis. A
graphical representation for the 2D vector is illustrated in Fig. 4.1(a). The two


basis vectors �i and �j have unit magnitudes and are perpendicular to each other,
as described by the following two properties:


i


j
V


vii 


vj j


V = vii + vj j


(a)


V = vii + vj j  + vkk


i


j


V


vii


vj j


vkk


k


(b)


Fig. 4.1. Representation of


multidimensional vectors in


Cartesian planes: (a) 2D vector;


(b) 3D vector.


orthogonality property �i · �j = |�i | | �j | cos 90◦ = 0; (4.2)


unit magnitude property


{�i · �i = |�i | |�i | cos 0◦ = 1
�j · �j = |�j | | �j | cos 0◦ = 1. (4.3)


In Eqs. (4.2) and (4.3), the operator (·) denotes the dot product between the two
2D vectors.


Similarly, an arbitrary three-dimensional (3D) vector �V , illustrated in
Fig. 4.1(b), with Cartesian coordinates (vi , v j , vk), is expressed as follows:


�V = vi�i + v j �j + +vk�k, (4.4)


where �i , �j , and �k represent the three basis vectors along the x-, y-, and z-axis,
respectively. All possible dot product combinations of basis vectors satisfy the


orthogonality and unit magnitude properties defined in Eqs. (4.2) and (4.3), i.e.


orthogonality property �i · �j = �i · �k = �k · �j = 0; (4.5)
unit magnitude property �i · �i = �j · �j = �k · �k = 1. (4.6)


Collectively, the orthogonal and unit magnitude properties are referred to as


the orthonormal property. Given vector �V , coordinates vi , v j , and vk can be
calculated directly from the dot product of vector �V with the appropriate basis
vectors. In other words,


vu =
�V · �u
�u · �u =


| �V | |�u| cos θ �V �u
|�u||�u| for u ∈ {i, j, k},


(4.7)


where θ �V �u is the angle between �V and �u. Just as an arbitrary vector can be
represented as a linear combination of orthonormal basis functions, it is also


possible to express an arbitrary signal as a weighted combination of orthornor-


mal (or more generally, orthogonal) waveforms. In Section 4.2, we extend the


principles of an orthogonal vector space to an orthogonal signal space.
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4.2 Orthogonal signal space


Definition 4.1 Two non-zero signals p(t) and q(t) are said to be orthogonal


over interval t = [t1, t2] if
t2∫


t1


p(t)q∗(t)dt =
t2∫


t1


p∗(t)q(t)dt = 0, (4.8)


where the superscript ∗ denotes the complex conjugation operator. In addition
to Eq. (4.8), if both signals p(t) and q(t) also satisfy the unit magnitude property:


t2∫


t1


p(t)p∗(t)dt =
t2∫


t1


q(t)q∗(t)dt = 1, (4.9)


they are said to be orthonormal to each other over the interval t = [t1, t2].


Example 4.1


Show that


(i) functions cos(2π t) and cos(3π t) are orthogonal over interval t = [0, 1];
(ii) functions exp(j2t) and exp(j4t) are orthogonal over interval t = [0, π ];


(iii) functions cos(t) and t are orthogonal over interval t = [−1, 1].


Solution


(i) Using Eq. (4.8), we obtain


1∫


0


cos(2π t) cos(3π t)dt = 1
2


1∫


0


[cos(π t) + cos(5π t)]dt


= 1
2


[
1


π
sin(π t) + 1


5π
sin(5π t)


] 1


0


= 0.


Therefore, the functions cos(2π t) and cos(3π t) are orthogonal over interval


t = [0, 1].
Figure 4.2 illustrates the graphical interpretation of the orthogonality con-


dition for the functions cos(2π t) and cos(3π t) within interval t = [0, 1].
Equation (4.8) implies that the area enclosed by the waveform for cos(2π t) ×
cos(3π t) with respect to the t-axis within the interval t = [0, 1], which is shaded
in Fig. 4.2(c), is zero, which can be verified visually.


(ii) Using Eq. (4.8), we obtain


π∫


0


e j2t e−j4t dt =
π∫


0


e−j2t dt = 1−2j [e
−j2t ]π0 = −


1


2j
[e−j2π − 1]π0 = 0,


implying that the functions exp(j2t) and exp(j4t) are orthogonal over interval


t = [0, π ].
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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(a)
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t


(b)


−2 −1.5 −1 −0.5 0 0.5 1 1.5 2


−1


−0.5


0


0.5


1


t


(c)


Fig. 4.2. Graphical illustration of


the orthogonality condition for


the functions cos(2πt ) and


cos(3πt ) used in Example 4.1(i).


(a) Waveform for cos(2πt ).


(b) Waveform for cos(3πt ).


(c) Waveform for cos(2πt )×
cos(3πt ).


(iii) Using Eq. (4.8), we obtain


1∫


−1


t cos(t)dt = [t sin(t) + cos(t)] 1−1 = [1 · sin(1) + cos(1)]


− [(−1) · sin(−1) + cos(−1)] = 0,


implying that the functions cos(t) and t are orthogonal over interval t = [−1, 1].
Further, it is straightforward to verify that these functions are also orthogonal


over any interval t = [−L , L] for any real value of L .


We now extend the definition of orthogonality to a larger set of functions.


Definition 4.2 A set of N functions {p1(t), p2(t), . . . , pN (t)} is mutually


orthogonal over the interval t = [t1, t2] if
t2∫


t1


pm(t)p
∗
n(t)dt =


{


En �= 0 m = n
0 m �= n for 1 ≤ m, n ≤ N . (4.10)


In addition, if En = 1 for all n, the set is referred to as an orthonormal set.


Definition 4.3 An orthogonal set {p1(t), p2(t), . . . , pN (t)} is referred to as a


complete orthogonal set if no function q(t) exists outside the set that satisfies the


orthogonality condition, Eq. (4.6), with respect to the entries pn(t), 1 ≤ n ≤ N,
of the orthogonal set . Mathematically, function q(t) does not exist if


t2∫


t1


q(t)p∗n(t)dt �= 0 for at least one value of n ∈ {1, . . . ,N } (4.11)
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with


t2∫


t1


q(t)q∗(t)dt �= 0. (4.12)


Definition 4.4 If an orthogonal set is complete for a certain class of orthogonal


functions within interval t = [t1, t2], then any arbitrary function x(t) can be
expressed within interval t = [t1, t2] as follows:


x(t) = c1 p1(t) + c2 p2(t) + · · · + cn pn(t) + · · · + cN pN (t), (4.13)


where coefficients cn, n ∈ [1, . . . , N ], are obtained using the following
expression:


cn =
1


En


t2∫


t1


x(t)p∗n(t)dt. (4.14)


The constant En is calculated using Eq. (4.10). The integral Eq. (4.14) is the


continuous time equivalent of the dot product in vector space, as represented


in Eq. (4.7). The coefficient cn is sometimes referred to as the nth Fourier


coefficient of the function x(t).


Definition 4.5 A complete set of orthogonal functions {pn(t)}, 1 ≤ n ≤ N, that
satisfies Eq. (4.10) is referred to as a set of basis functions.


Example 4.2


For the three CT functions shown in Fig. 4.3


(a) show that the functions form an orthogonal set of functions;


(b) determine the value of T that makes the three functions orthonormal;


(c) express the signal


x(t) =
{


A for 0 ≤ t ≤ T
0 elsewhere


in terms of the orthogonal set determined in (a).


t
T


f2(t)


1


−1


−T
t


T


f1(t)


1


−T
t


T


f3(t)


1


−1
−T


(a) (b) (c)
Fig. 4.3. Orthogonal functions


for Example 4.2.
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Solution


(a) We check for the unit magnitude and the orthogonality properties for all


possible combinations of the basis vectors:


unit magnitude property


T∫


−T


|φ1(t)|2dt =
T∫


−T


|φ2(t)|2dt =
T∫


−T


|φ3(t)|2dt


=
T∫


−T


1 dt = 2T ;


orthogonality property


T∫


−T


φ1(t)φ
∗
2(t)dt =


T∫


−T


φ∗2(t)dt = 0,


T∫


−T


φ1(t)φ
∗
3(t)dt =


T∫


−T


φ∗3(t)dt = 0,


and


T∫


−T


φ2(t)φ
∗
3(t)dt =


T∫


0


φ∗2(t)dt −
0∫


−T


φ∗2(t)dt = 0.


In other words,


T∫


−T


φm(t)φ
∗
n (t)dt =


{


2T �= 0 m = n
0 m �= n,


for 1 ≤ m, n ≤ 3. The three functions are orthogonal to each other over the
interval [−T , T ].


(b) The three functions will be orthonormal to each other:


T∫


−T


φm(t)φ
∗
n (t)dt =


{


2T = 1 m = n
0 m �= n,


which implies that T = 1/2.
(c) Using Definition 4.4, the CT function x(t) can be represented as x(t) =


c1φ1(t) + c2φ2(t) + c3φ3(t) with the coefficients cn , for n = 1, 2, and 3 given by


c1 =
1


2T


T∫


−T


x(t)φ1(t)dt =
1


2T


T∫


0


A dt = A
2


,


c2 =
1


2T


T∫


−T


x(t)φ2(t)dt =
1


2T


T∫


0


Aφ 2(t)dt


= 1
2T


T/2∫


0


A dt − 1
2T


T∫


T/2


A dt = 0,
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and


c3 =
1


2T


T∫


−T


x(t)φ3(t)dt =
1


2T


T∫


0


A(−1)dt = −
A


2
.


In other words, x(t) = 0.5A[φ1(t) − φ3(t)].


Example 4.3


Show that the set {1, cos(ω0t), cos(2ω0t), cos(3ω0t), . . . , sin(ω0t), sin(2ω0t),


sin(3ω0t), . . . }, consisting of all possible harmonics of sine and cosine waves


with fundamental frequency of ω0, is an orthogonal set over any interval


t = [t0, t0 + T0], with duration T0 = 2π/ω0.


Solution


It may be noted that the set {1, cos(ω0t), cos(2ω0t), cos(3ω0t), . . . , sin(ω0t),


sin(2ω0t), sin(3ω0t), . . . } contains three types of functions: 1, {cos(mω0t)},


and {sin(nω0t)} for arbitrary integers m, n ∈ Z+, where Z+ is the set of positive
integers. We will consider all possible combinations of these functions.


Case 1 The following proof shows that functions {cos(mω0t), m ∈ Z+} are
orthogonal to each other over interval t = [t0, t0 + T0] with T0 = 2π/ω0.
Equation (4.10) yields


∫


〈T0〉


cos(mω0t) cos(nω0t)dt =
t0+T0∫


t0


cos(mω0t) cos(nω0t)dt for any arbitrary t0.


Using the trigonometric identity cos(mω0t) cos(nω0t) = (1/2)[cos((m −
n)ω0t) + cos((m + n)ω0t)], the above integral reduces as follows:


∫


〈T0〉


cos(mω0t) cos(nω0t)dt =















[ sin(m − n)ω0t
2(m − n)ω0


+ sin(m + n)ω0t
2(m + n)ω0


]t0+T0


t0
m �= n


[ t


2
+ sin 2mω0t


4mω0


]t0+T0


t0
m = n,


or


∫


〈T0〉


cos(mω0t) cos(nω0t)dt =











0 m �= n
T0


2
m = n, (4.15)


for m, n ∈ Z+. Equation (4.15) demonstrates that the functions in the set
{cos(mω0t), m ∈ Z+} are mutually orthogonal.
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Case 2 By following the procedure outlined in case 1, it is straightforward to


show that


∫


〈T0〉


sin(mω0t) sin(nω0t)dt =











0 m �= n
T0


2
m = n, (4.16)


for m, n ∈ Z+. Equation (4.16) proves that the set {sin(nω0t), n ∈ Z+} contains
mutually orthogonal functions over interval t = [t0, t0 + T0] with T0 = 2π/ω0.


Case 3 To verify that functions {cos(mω0t)} and {sin(nω0t)} are mutually


orthogonal, consider the following:


∫


〈T0〉


cos(mω0t) sin(nω0t)dt =
t0+T0∫


t0


cos(mω0t) sin(nω0t)dt


=























1


2


t0+T0∫


t0


[sin((m + n)ω0t) − sin((m − n)ω0t)]dt m �= n


1


2


t0+T0∫


t0


[sin(2mω0t)dt m = n


=

















−1
2


[
cos((m + n)ω0t)


(m + n)ω0


]t0+T0


t0


+ 1
2


[
cos((m − n)ω0t)


(m − n)ω0


]t0+T0


t0


m �= n


−1
2


[
cos(2nω0t)


2mω0


]t0+T0


t0


m = n


=
{


0 m �= n
0 m = n, (4.17)


for m, n ∈ Z+, which proves that {cos(mω0t)} and {sin(nω0t)} are orthogonal
over interval t = [t0, t0 + T0] with T0 = 2π/ω0.


Case 4 The following proof demonstrates that the function “1” is orthogonal


to cos(mω0t)} and {sin(nω0t)}:
∫


〈T0〉


1 · cos(mω0t)dt =
[ sin(mω0t)


mω0


]t0+T0


t0


=
[ sin(mω0t0 + 2mπ ) − sin(mω0t0)


mω0


]


= 0 (4.18)


and
∫


〈T0〉


1 · sin(mω0t)dt =
[


−cos(mω0t)
mω0


]t0+T0


t0


= −
[cos(mω0t0 + 2mπ ) − cos(mω0t0)


mω0


]


= 0 (4.19)
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for m, n ∈ Z+. Combining Eqs. (4.15)–(4.19), it can be inferred that the set {1,
cos(ω0t), cos(2ω0t), cos(3ω0t), . . . , sin(ω0t), sin(2ω0t), sin(3ω0t), . . . } consists


of mutually orthogonal functions. It can also be shown that this particular set is


complete over t = [t0, t0 + T0] with T0 = 2π/ω0. In other words, there exists
no non-trivial function outside the set which is orthogonal to all functions in


the set over the given interval.


Example 4.4


Show that the set of complex exponential functions {exp(jnω0t), n ∈ Z} is an
orthogonal set over any interval t = [t0, t0 + T0] with duration T0 = 2π/ω0.
The parameter Z refers to the set of integer numbers.


Solution


Equation (4.10) yields
∫


〈T0〉


exp(jmω0t)(exp(jmω0t))
∗dt


=
t0+T0∫


t0


exp(j(m − n)mω0t)dt =













[t]t0+T0t0 m = n[
exp(j(m − n)mω0t)


j(m − n)mω0


]t0+T0


t0


m �= n


=
{


T0 m = n
0 m �= n. (4.20)


Equation (4.14) shows that the set of functions {exp(jnω0t), n ∈ Z} is indeed
mutually orthogonal over interval t = [t0, t0 + T0] with duration T0 = 2π/ω0.
It can also be shown that this set is complete.


Examples 4.3 and 4.4 illustrate that the sinusoidal and complex exponential


functions form two sets of complete orthogonal functions. There are sev-


eral other orthogonal set of functions, for example the Legendre polynomi-


als (Problem 4.3), Chebyshev polynomials (Problem 4.4), and Haar functions


(Problem 4.5). We are particularly interested in sinusoidal and complex expo-


nential functions since these satisfy a special property with respect to the LTIC


systems that is not observed for any other orthogonal set of functions. In Section


4.3, we discuss this special property.


4.3 Fourier basis functions


In Example 3.2, it was observed that the output response of an RLC circuit to a


sinusoidal function was another sinusoidal function of the same frequency. The


changes observed in the input sinusoidal function were only in its amplitude


and phase. Below we illustrate that the property holds true for any LTIC system.


Further, we extend the property to complex exponential signals proving that the


output response of an LTIC system to a complex exponential function is another
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complex exponential with the same frequency, except for possible changes in


its amplitude and phase.


Theorem 4.1 If a complex exponential function is applied to an LTIC system


with a real-valued impulse response function, the output response of the system


is identical to the complex exponential function except for changes in amplitude


and phase. In other words,


k1e
jω1t → A1k1e j(ω1t+φ1),


where A1 and φ1 are constants.


Proof


Assume that the complex exponential function x(t) = k1exp(jω1t) is applied to
an LTIC system with impulse response h(t). The output of the system is given


by the convolution of the input signal x(t) and the impulse response h(t) is


given by


y(t) =
∞∫


−∞


h(τ )x(t − τ )dτ = k1e jω1t
∞∫


−∞


h(τ )e−jω1τ dτ . (4.21)


Defining


H (ω) =
∞∫


−∞


h(τ )e−jωτ dτ , (4.22)


Eq. (4.21) can be expressed as follows:


y(t) = k1e jω1t H (ω1). (4.23)
From the definition in Eq. (4.22), we observe that H (ω1) is a complex-valued


constant, for a given value of ω1, such that it can be expressed as H (ω1) =
A1 exp(jφ1). In other words, A1 is the magnitude of the complex constant H (ω1)


and φ1 is the phase of H (ω1). Expressing H (ω1) = A1 exp(jφ1) in Eq. (4.23),
we obtain


y(t) = A1k1ej(ω1t+φ1),
which proves Theorem 4.1.


Corollary 4.1 The output response of an LTIC system, characterized by a real-


valued impulse response h(t), to a sinusoidal input is another sinusoidal function


with the same frequency, except for possible changes in its amplitude and phase.


In other words,


k1 sin(ω1t) → A1k1 sin(ω1t + φ1) (4.24)
and


k1 cos(ω1t) → A1k1 cos(ω1t + φ1), (4.25)
where constants A1 and φ1 are the magnitude and phase of H (ω1) defined in


Eq. (4.22) with ω set to ω1.
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Proof


The proof of Corollary 4.1 follows the same lines as the proof of Theorem 4.1.


The sinusoidal signals can be expressed as real (Re) and imaginary (Im) com-


ponents of a complex exponential function as follows:


cos(ω1t) = Re{e jω1t} and sin(ω1t) = Im{e jω1t}.


Because the impulse response function is real-valued, the output y1(t) to k1
sin(ω1t) is the imaginary component of y(t) given in Eq. (4.23). In other words,


y1(t) = Im
{


A1k1e
j(ω1t+φ1)


}


= A1k1sin(ω1t + φ1).


Likewise, the output y2(t) to k1 cos(ω1t) is the real component of y(t) given in


Eq. (4.23). In other words,


y2(t) = Re
{


A1k1e
j(ω1t+φ1)


}


= A1k1cos(ω1t + φ1).


Example 4.5


Calculate the output response if signal x(t) = 2 sin(5t) is applied as an input to
an LTIC system with impulse response h(t) = 2e−4t u(t).


Solution


Based on Corollary 4.1, we know that output y(t) to the sinusoidal input x(t) =


2 sin(5t) is given by


y(t) = 2A1 sin(5t + φ1),


where A1 and φ1 are the magnitude and phase of the complex constant H (ω1),


given by


H (ω) =
∞∫


−∞


h(τ )e−jωτ dτ = 2
∞∫


0


e−4τ e−jωτ dτ = 2
∞∫


0


e−(4+jω)τ dτ = 2
4 + jω .


The magnitude A1 and phase φ1 are given by


magnitude A1 A1 = |H (ω1)| =
∣
∣
∣
∣


2


4 + jω


∣
∣
∣
∣
ω=5


= 2√
41


.


phase φ1 φ1 = <H (ω1) = <
2


4 + jω


∣
∣
∣
∣
ω=5


= 0 − tan−1
(


5


4


)


= −51.34o.


The output response of the system is, therefore, given by


y(t) = 4√
41


sin(5t − 51.34o).


As shown in Example 3.4, the LTIC system with impulse response h(t) =
2e−4t u(t) can alternatively be represented by the linear, constant-coefficient
differential equation as follows:


dy


dt
+ 4y(t) = 2x(t).
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h(t)
x1(t) = k1e jw1t x1(t) = A1k1e


j(w1t + f1)


x2(t) = A1k1cos(w1t + f1)


x3(t) = A1k1sin(w1t + f1)


input signals output signals


x2(t) = k1cos(w1t)


x3(t) = k1sin(w1t)


Fig. 4.4. Output response of an


LTIC system, with a real-valued


impulse response, to sinusoidal


inputs.


Substituting x(t) = 2 sin(5t) into this equation and solving the differential equa-
tion, we arrive at the same value of the output y(t) obtained using the convolution


approach.


Figure 4.4 illustrates Theorem 4.1 and Corollary 4.1 graphically. It may be


noted that this property is not observed for any other input signal but only for


the sinusoids and complex exponentials.


4.3.1 Generalization of Theorem 4.1


In the preceding discussion, we have restricted the input signal x(t) to sinusoids


or complex exponentials. In such cases, Theorem 4.1 or Corollary 4.1 simplifies


the computation of the output response of a LTIC system. In cases where the


input signal x(t) is periodic but different from a sinusoidal or complex expo-


nential function, we follow an indirect approach. We express the input signal


x(t) as a linear combination of complex exponentials:


x(t) = k1e jω1t + k2e jω2t + · · · + kN e jωN t =
N∑


n=1
kne


jωn t . (4.26)


Applying Theorem 4.1 to each of the N complex exponential terms in


Eq. (4.26), the output ym(t) to the complex exponential term xm(t) =
kmexp(jωm t) is given by ym(t) = Amkm exp(jωm t + φm). Using the principle
of superposition, the overall output y(t) is the sum of the individual outputs and


is expressed as follows:


y(t) = A1k1e j(ω1t+φ1) + A2k2e j(ω2t+φ2) + · · · + AN kN e j(ωN t+φN )


=
N∑


n=1
Ankne


j(ωn t+φn ). (4.27)


In the above discussion, we have illustrated the advantage of expressing a


periodic signal x(t) as a linear combination of complex exponentials. Such a


representation provides an alternative interpretation of the signal. This interpre-


tation is referred to as the exponential CT Fourier series (CTFS).† Alternatively,


† The Fourier series is named after Jean Baptiste Joseph Fourier (1768–1830), a French


mathematician and physicist who initiated its development and applied it to problems of heat


flow for the first time.
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an arbitrary periodic signal can also be expressed as a linear combination of


sinusoidal signals:


x(t) = a0 +
∞∑


n=1
(an cos(nω0t) + bn sin(nω0t)). (4.28)


Corollary 4.1 can then be applied to calculate the output y(t). Expressing a


periodic signal as a linear combination of sinusoidal signals leads to the trigono-


metric CTFS. The trigonometric and exponential CTFS representations of CT


periodic signals are covered in Sections 4.4 and 4.5.


4.4 Trigonometric CTFS


Definition 4.6 An arbitrary periodic function x(t) with fundamental period T0
can be expressed as follows:


x(t) = a0 +
∞∑


n=1
(an cos(nω0t) + bn sin(nω0t)), (4.29)


where ω0 = 2π/T0 is the fundamental frequency of x(t) and coefficients a0, an ,
and bn are referred to as the trigonometric CTFS coefficients. The coefficients


are calculated as follows:


a0 =
1


T0


∫


〈T0〉


x(t)dt, (4.30)


an =
2


T0


∫


〈T0〉


x(t) cos(nω0t)dt, (4.31)


and


bn =
2


T0


∫


〈T0〉


x(t) sin(nω0t)dt . (4.32)


From Eqs. (4.29)–(4.32), it is straightforward to verify that coefficient a0 rep-


resents the average or mean value (also referred to as the dc component) of


x(t). Collectively, the cosine terms represent the even component of the zero


mean signal (x(t) – a0). Likewise, the sine terms collectively represent the odd


component of the zero mean signal (x(t) – a0).


Example 4.6


Calculate the trigonometric CTFS coefficients of the periodic signal x(t) defined


over one period T0 = 3 as follows:


x(t) =
{


t + 1 −1 ≤ t ≤ 1
0 1 < t < 2.


(4.33)








P1: NIG/KTL P2: NIG/RTO QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:14


154 Part II Continuous-time signals


t
−8 −6 −4 −2 0  2      4      6      8     10


x(t)


2


Fig. 4.5. Sawtooth periodic


waveform x(t ) considered in


Example 4.6.


Solution


The periodic signal x(t) is plotted in Fig. 4.5. Since x(t) has a fundamental


period T0 = 3, the fundamental frequency ω0 = 2π/3. Using Eq. (4.30), the dc
CTFS coefficient a0 is given by


a0 =
1


T0


∫


〈T0〉


x(t)dt =
1


3


1∫


−1


(t + 1)dt =
1


3


[
1


2
t2 + t


] 1


−1
=


2


3
. (4.34)


The CTFS coefficients an are given by


an =
2


T0


∫


〈T0〉


x(t) cos(nω0t)dt =
2


3


1∫


−1


(t + 1) cos(nω0t)dt


=
2


3


1∫


−1


t cos(nω0t)
︸ ︷︷ ︸


odd function


dt +
2


3


1∫


−1


cos(nω0t)
︸ ︷︷ ︸


even function


dt .


Since the integral of odd functions within the limit [−t0, t0] is zero,


1∫


−1


t cos(nω0t)dt = 0,


and the value of an is given by


an =
2


3


1∫


−1


cos(nω0t)dt =
4


3


1∫


0


cos(nω0t)dt =
4


3


[
sin(nω0t)


nω0


] 1


0


=
4 sin(nω0)


3nω0
.


Substituting ω0 = 2π/3, we obtain


an =





















0 n = 3k√
3


nπ
n = 3k + 1


−
√


3


nπ
n = 3k + 2,


(4.35)
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for k ∈ Z . Similarly, the CTFS coefficients bn are given by


bn =
2


T0


∫


〈T0〉


x(t) sin(nω0t)dt =
2


3


1∫


−1


(t + 1) sin(nω0t)dt


= 2
3


1∫


−1


t sin(nω0t)
︸ ︷︷ ︸


even function


dt + 2
3


1∫


−1


sin(nω0t)
︸ ︷︷ ︸


odd function


dt .


Since the integral of odd functions within the limits [−t0, t0] is zero,
1∫


−1


sin(nω0t)dt = 0,


and the value of bn is given by


bn =
2


3


1∫


−1


t sin(nω0t)dt =
4


3


1∫


0


t sin(nω0t)dt


= 4
3


[


−t cos(nω0t)
nω0


+ sin(nω0t)
(nω0)2


]1


0


= −4 cos(nω0)
3nω0


+ 4 sin(nω0)
3(nω0)2


.


Substituting ω0 = 2π/3, we obtain


bn =

























− 2
nπ


n = 3k


1


nπ
+ 3


√
3


2(nπ )2
n = 3k + 1


1


nπ
− 3


√
3


2(nπ )2
n = 3k + 2,


(4.36)


for k ∈ Z . The periodic signal x(t) is therefore expressed as follows:


x(t) = 2
3


︸︷︷︸


xav(t)


+
∞∑


n=1
an cos


(
2nπ


3
t


)


︸ ︷︷ ︸


Ev{x(t)−a0}


+
∞∑


n=1
bn sin


(
2nπ


3
t


)


︸ ︷︷ ︸


Odd{x(t)−a0}


, (4.37)


where coefficients an and bn are given in Eqs. (4.35) and (4.36). Coefficient a0
represents the average value of signal x(t), referred to as xav (t). The cosine terms


collectively represent the zero-mean even component of signal x(t), denoted


by Ev{x(t) – a0}, while the sine terms collectively represent the zero-mean


odd component of x(t), denoted by Odd{x(t) – a0}. Based on the values of


the coefficients, the three components of x(t) are plotted in Fig. 4.6. It can be


verified easily that the sum of these three components will indeed produce the


original signal x(t).
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t
−9 −6 −3 0          3          6          9


xav(t)


2/3


(a) (b)


(c)


t


t


−9 −6 −4 0      3          6          9


Ev{x(t) − a0}


1/3


2/3


Odd{x(t) − a0}


1


−1


−9 −6 −4 0      3 6 9
Fig. 4.6. (a) The dc, (b) even,


and (c) odd components for x(t )


shown in Fig. 4.5.


4.4.1 CTFS coefficients for symmetrical signals


If the periodic signal x(t) with angular frequency ω0 exhibits some symme-


try, then the computation of the CTFS coefficients is simplified considerably.


Below, we list the properties of the trigonometric coefficients of the CTFS for


symmetrical signals.


(1) If x(t) is zero-mean, then a0 = 0. In such cases, one does not need to
calculate the dc coefficient a0.


(2) If x(t) is an even function, then bn = 0 for all n. In other words, an even
signal is represented by its dc component and a linear combination of a


cosine function of frequency ω0 and its higher-order harmonics.


(3) If x(t) is an odd function, then a0 = an = 0 for all n. In other words, an
odd signal can be represented by a linear combination of a sine function of


frequency ω0 and its higher-order harmonics.


(4) If x(t) is a real function, then the trigonometric CTFS coefficients a0, an ,


and bn are also real-valued for all n.


(5) If g(t) = x(t) + c (where c is a constant) then the trigonometric DTFS
coefficients {ag0 , a


g
n , b


g
n } of function g(t) are related to the CTFS coefficients


{ax0 , axn , bxn } of x(t) as follows:


dc coefficient a
g
0 = a


x
0 + c, (4.38)


coefficients an a
g
n = a


x
n for n = 1, 2, 3, . . . , (4.39)


coefficients bn b
g
n = b


x
n for n = 1, 2, 3, . . . (4.40)


Application of the aforementioned properties is illustrated in the following


examples.
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Example 4.7


Consider the function w(t) = Ev{x(t) − a0} shown in Fig. 4.6(b). Express w(t)
as a trigonometric CTFS.


Solution


From inspection, we see w(t) is even. Therefore, bn = 0 for all n. Since w(t)
is periodic with a fundamental period T0 = 3, ω0 = 2π/3. The area enclosed
by one period of w(t), say t = [−1, 2], is given by 2(1/3) + 1(−2/3) = 0.
Function w(t) is, therefore, zero-mean, which imples that a0 = 0.


The value of an is calculated as follows:


an =
2


3


1.5∫


−1.5


w(t) cos(nω0t)dt =
4


3


1.5∫


0


w(t) cos(nω0t)dt,


which simplifies to


an =
4


3


1∫


0


1


3
cos(nω0t)dt −


4


3


1.5∫


1


2


3
cos(nω0t)dt


=
4


9


[
sin(nω0t)


nω0


]1


0


−
8


9


[
sin(nω0t)


nω0


]1.5


1


,


or


an =
4


9


sin(nω0)


nω0
−


8


9


sin(1.5nω0)


nω0
+


8


9


sin(nω0)


nω0


=
4


3


sin(nω0)


nω0
−


8


9


sin(1.5nω0)


nω0
.


Substituting ω0 = 2π/3, we obtain


an =
2


nπ
sin


(
2nπ


3


)


,


leading to the CTFS representation


w(t) =
∞∑


n=1


2


nπ
sin


(
2nπ


3


)


cos


(
2nπ


3
t


)


, (4.41)


which is same as the even component Ev{x(t) − a0} in Eq. (4.26) in
Example 4.6. The CTFS coefficients an are plotted in Fig. 4.7.


From Example 4.7, we observe that a rectangular pulse train w(t) = Ev{x(t) −
a0}, as shown in Fig. 4.6(b), has a CTFS representation that includes a lin-


ear combination of an infinite number of cosine functions. A question that


arises is why an infinite number of cosine functions are needed. The answer
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0 5 10 15 20 25 30
−0.4
−0.2


0


0.2


0.4


0.6


a/n


n


Fig. 4.7. DTFS coefficients an for the rectangular pulse in Example 4.7.


−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.99


−0.66


−0.33


0


0.33 n = 100


n = 5


n = 20 


t


Fig. 4.8. Rectangular pulse reconstructed with a finite number n of


DTFS coefficients an . Three different values n = 5, 20, and 100 are
considered.


lies in the shape of the rectangular pulse that includes two constant values


(1/3, −2/3) separated by a discontinuity within one period. The discontinuity
or the sharp transition in w(t) is accounted for by a sinusoidal function with an


infinite fundamental frequency. Generally, if a function has at least one discon-


tinuity, the CTFS representation will contain an infinite number of sinusoidal


functions.


Figure 4.7 shows the exponentially decaying value of the CTFS coefficients


an . To obtain the precise waveform w(t), an infinite number of the CTFS coef-


ficients an are needed. Because of the decaying magnitude of the CTFS coeffi-


cients, however, a fairly reasonable approximation for w(t) can be obtained by


considering only a finite number of the CTFS coefficients an . Figure 4.8 shows


the reconstruction of w(t) obtained for three different values of n. We set n = 5,
20, and 100. It is observed that w(t) provides a close approximation of w(t) for


n = 20. For n = 100, the approximated waveform is almost indistinguishable
from the waveform of w(t).


4.4.2 Jump discontinuity


Figure 4.8 shows that a CT function with a discontinuity can be approximated


more accurately by including a larger number of CTFS coefficients. When


approximating CT periodic functions with a finite number of CTFS coefficients,


two errors arise because of the discontinuity. First, several ripples are observed


in the approximated function. A careful observation of Fig. 4.8 reveals that, as


more terms are added to the CTFS, the separation between the ripples becomes


narrower and the approximated function is closer to the original function. The


peak magnitude of the ripples, however, does not decrease with more CTFS


terms. The presence of ripples near the discontinuity (i.e. around t = ±1 in
Fig. 4.8) is a limitation of the CTFS representation of discontinuous signals,


and is known as the Gibbs phenomenon.


Secondly, an approximation error is observed at the location of the disconti-


nuity (i.e. at t = ±1 in Fig. 4.8). With a finite number of terms, it is impossible
to reconstruct precisely the edge of a discontinuity. However, it is possible to


calculate the value of the approximated function at the discontinuity. Suppose
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0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
−0.99


−0.66


−0.33


0


0.33


0.66


n = 100


n = 5


n = 20


Fig. 4.9. Magnified sketch of Fig. 4.8 at t = 1.


t
−8p −6p −4p −2p 0      2p 4p 6p 8p 10p


g(t)


3
3e−0.2t


Fig. 4.10. CT periodic signal g(t ) with fundamental period T0 = 2π
considered in Example 4.8.


x(t) has a jump discontinuity at t = tj. The reconstructed value for x(tj) is
given by


x̃(tj) =
1


2
[x(tj+) + x(tj−)]. (4.42)


For example, the reconstructed value of w(t) in Fig. 4.8 at t = 1 is given by


w̃(1) =
1


2
[w(1−) + w(1+)] =


1


2


[
1


3
−


2


3


]


= −
1


6
.


Figure 4.9 is an enlargement of part of Fig. 4.8 at t = 1, where it is observed
that the reconstructed signals have a value of −1/6 at t = 1.


Example 4.8


Consider the periodic signal g(t) shown in Fig. 4.10. Calculate the CTFS


coefficients.


Solution


Because T0 = 2π , the fundamental frequency ω0 = 1. The dc coefficient a0 is
given by


a0 =
1


T0


∫


〈T0〉


g(t)dt =
1


2π


2π∫


0


3e−0.2t dt =
3


2π


[
e−0.2t


−0.2


]2π


0


=
15


2π
[1 − e−0.4π ] ≈ 1.7079.


The CTFS coefficients an are given by


an =
1


T0


∫


〈T0〉


g(t) cos(nω0t)dt =
1


2π


2π∫


0


3e−0.2t cos(nt)dt


= 3
2π


1


n2 + 0.22 [e
−0.2t {−0.2 cos(nt) + n sin(nt)}] 2π0


or


an =
3


2π


1


n2 + 0.22 [−0.2e
−0.4π + 0.2]


= 0.3
(n2 + 0.22)π [1 − e


−0.4π ] ≈ 3.4157
1 + 25n2 .
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t
−4 −2      0              2     4


3


−3


f (t)Fig. 4.11. Periodic signal f(t )


considered in Example 4.9.


Similarly, the CTFS coefficients bn are given by


bn =
1


T0


∫


〈T0〉


g(t) sin(nω0t)dt =
1


2π


2π∫


0


3e−0.2t sin(nt)dt


=
3


2π


1


n2 + 0.22
[e−0.2t {−0.2 sin(nt) − n cos(nt)}] 2π0


or


bn =
3


2π


1


n2 + 0.22
[−ne−0.4π + n] =


3n


(n2 + 0.22)π
[1 − e−0.4π ] ≈ 17.0787n


1 + 25n2 .


The trigonometric CTFS representation of g(t) is therefore given by


g(t) = 1.7079 +
∞∑


n=1


3.4157


1 + 25n2 cos(nt) +
∞∑


n=1


17.0787


1 + 25n2 n sin(nt).


Example 4.9


Consider the periodic signal f (t) as shown in Fig. 4.11. Calculate the CTFS


coefficients.


Solution


Because T0 = 4, the fundamental frequencyω0 = π/2. Since f (t) is zero-mean,
the dc coefficient a0 = 0. Also, since f (t) is an even function, bn = 0 for all n.
The CTFS coefficients an are given by


an =
2


4


2∫


−2


f (t) cos(nω0t)
︸ ︷︷ ︸


even function


dt = 4
4


2∫


0


(3 − 3t) cos(nω0t)dt


=
[


(3 − 3t) sin(nω0t)
nω0


− 3cos(nω0t)
(nω0)2


]2


0


.
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Substituting ω0 = π/2, we obtain


an =
[


(−3)
sin(nπ )


0.5nπ
− 3


cos(nπ )


(0.5nπ )2
+ 3


1


(0.5nπ )2


]


= 3
[


0 −
(−1)n


(0.5nπ )2
+


1


(0.5nπ )2


]


=
12


(nπ )2
[1 − (−1)n]


or


an =













0 n is even


24


(nπ )2
n is odd.


The CTFS representation of f (t) is given by


f (t) =
∞∑


n=1,3,5,···


24


(nπ )2
cos(0.5nπ t)


= 24
π2


[


cos(0.5π t) + 1
9


cos(1.5π t) + 1
25


cos(2.5π t) + · · ·
]


.


Example 4.10


Calculate the CTFS coefficients for the following signal:


x(t) = 3 + cos
(


4t + π
4


)


+ sin
(


10t + π
3


)


.


Solution


The fundamental period of cos(4t + π/4) is given by T1 = π/2, while the
fundamental period of sin(10t + π/3) is given by T2 = π/5. Since the ratio


T1


T2
= 5


2


is a rational number, Proposition 1.2 states that x(t) is periodic with a fun-


damental period of π . The fundamental frequency ω0 is therefore given by


ω0 = 2π/T0 = 2.
Since x(t) is a linear combination of sinusoidal functions, the CTFS coef-


ficients can be calculated directly by expanding the sine and cosine terms as


follows:


x(t) = 3 + cos(4t) cos
(π


4


)


− sin(4t) sin
(π


4


)


+ sin(10t) cos
(π


3


)


+ cos(10t) sin
(π


3


)


.


Substituting the values of sin(π/4), cos(π/4), sin(π/3), and cos(π/3), we obtain


x(t) = 3 + 1√
2


cos(4t) − 1√
2


sin(4t) + 1
2


sin(10t) +
√


3


2
cos(10t).








P1: NIG/KTL P2: NIG/RTO QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:14


162 Part II Continuous-time signals


Comparing the above equation with the CTFS expansion,


x(t) = a0 +
∞∑


n=1
(an cos(nω0t) + bn sin(nω0t)),


with ω0 = 2, we obtain


a0 = 3, a2 =
1√
2
, a5 =


√
3


2
, b2 = −


1√
2
, and b5 =


1


2
.


The CTFS coefficients an and bn , for values of n other than n = 0, 2, and 5, are
all zeros.


Example 4.11


A periodic signal is represented by the following CTFS:


x(t) = 2
π


∞∑


m=0


1


2m + 1 sin(4π (2m + 1)t).


(i) From the CTFS representation, determine the fundamental period T0 of


x(t).


(ii) Comment on the symmetry properties of x(t).


(iii) Plot the function to verify if your answers to (i) and (ii) are correct.


Solution


(i) The CTFS representation is obtained by expanding the summation as follows:


x(t) = 2
π


∞∑


m=0


1


2m + 1 sin(4π (2m + 1)t)


= 2
π


[


sin(4π t) + 1
3


sin(12π t) + 1
5


sin(20π t) + 1
7


sin(28π t) + · · ·
]


.


Note that the signal x(t) contains the fundamental component sin(4π t) and its


higher-order harmonics. Hence, the fundamental frequency is ω0 = 4π with
the fundamental period given by T0 = 2π/4π = 1/2.


(ii) Because the CTFS contains only sine terms, x(t) must be odd based on


property (3) on page 156.


(iii) It is generally difficult to evaluate the function x(t) manually. We use a


M A T L A B function ictfs.m (provided in the accompanying CD) to calculate


x(t). The function, reconstructed using the first 1000 CTFS coefficients, is plot-


ted in Fig. 4.12 for −1 ≤ t ≤ 1. It is observed that the function is a rectangular
pulse train with a fundamental period of 0.5. It is also observed that the function


is odd.
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−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
−1


−0.5


0


0.5


1


t


Fig. 4.12. Waveform


reconstructed from the first 1000


CTFS coefficients in Example


4.11.


4.5 Exponential Fourier series


In Section 4.4, we considered the trigonometric CTFS expansion using a set


of sinusoidal terms as the basis functions. An alternative expression for the


CTFS is obtained if complex exponentials {exp(jnω0t)}, for n ∈ Z , are used
as the basis functions to expand a CT periodic signal. The resulting CTFS


representation is referred to as the exponential CTFS, which is defined below.


Definition 4.7 An arbitrary periodic function x(t) with a fundamental period


T0 can be expressed as follows:


x(t) =
∞∑


m=0
Dne


jnω0t , (4.43)


where the exponential CTFS coefficients Dn are calculated as


Dn =
1


T0


∫


〈T0〉


x(t)e−jnω0t dt, (4.44)


ω0 being the fundamental frequency given by ω0 = 2π/T0.


Equation (4.43) is known as the exponential CTFS representation of x(t). Since


the basis functions corresponding to the trigonometric and exponential CTFS


are related by Euler’s identity,


e−jnω0t = cos(nω0t) − j sin(nω0t),


it is intuitively pleasing to believe that the exponential and trigonometric CTFS


coefficients are also related to each other. The exact relationship is derived by


expanding the trigonometric CTFS series as follows:


x(t) = a0 +
∞∑


n=1
(an cos(nω0t) + bn sin(nω0t))


= a0 +
∞∑


n=1


an


2
(e jnω0t + e−jnω0t ) +


∞∑


n=1


bn


2j
(e jnω0t − e−jnω0t ).


Combining terms with the same exponential functions, we obtain


x(t) = a0 +
1


2


∞∑


n=1
(an − jbn)e jnω0t +


1


2


∞∑


n=1
(an + jbn)e−jnω0t .
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The second summation can be expressed as follows:


∞∑


n=1
(an + jbn)e−jnω0t =


−1∑


n=−∞
(a−n + jb−n)e jnω0t ,


which leads to the following expression:


x(t) = a0 +
1


2


∞∑


n=1
(an − jbn)ejnω0t +


1


2


−1∑


n=−∞
(a−n + jb−n)e jnω0t .


Comparing the above expansion with the definition of exponential CTFS,


Eq. (4.31), yields


Dn =



















a0 n = 0
1


2
(an − jbn) n > 0


1


2
(a−n + jb−n) n < 0.


(4.45)


Example 4.12


Calculate the exponential CTFS coefficients for the periodic function g(t) shown


in Fig. 4.10.


Solution


By inspection, the fundamental period T0 = 2π , which gives the fundamental
frequency ω0 = 2π/2π = 1. The exponential CTFS coefficients Dn are given
by


Dn =
1


T0


∫


〈T0〉


g(t)e−jnω0t dt = 1
2π


2π∫


0


3e−0.2t e−jnω0t dt = 3
2π


2π∫


0


e−(0.2+jnω0) t dt


or


Dn = −
3


2π


[
e−(0.2+jnω0)t


(0.2 + jnω0)


]2π


0


= 3
2π


1


(0.2 + jnω0)
[


1 − e−(0.2+jnω0)2π
]


.


Substituting ω0 = 1, we obtain the following expression for the exponential
CTFS coefficients:


Dn =
3


2π (0.2 + jn)
[


1 − e−(0.2+jn)2π
]


= 3
2π (0.2 + jn) [1 − e


−0.4π ] ≈ 0.3416
(0.2 + jn) . (4.46)


Example 4.13


Calculate the exponential CTFS coefficients for f (t) as shown in Fig. 4.11.
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Solution


Since the fundamental period T0 = 4, the angular frequency ω0 = 2π/4 = π/2.
The exponential CTFS coefficients Dn are calculated directly from the definition


as follows:


Dn =
1


T0


∫


〈T0〉


f (t)e−jnω0t dt =
1


4


2∫


−2


f (t)e−jnω0t dt


=
1


4


2∫


−2


f (t) cos(nω0t)
︸ ︷︷ ︸


even function


dt − j
1


4


2∫


−2


f (t) sin(nω0t)
︸ ︷︷ ︸


odd function


dt .


Since the integration of an odd function within the limits [t0, −t0] is zero,


Dn =
1


4


2∫


−2


f (t) cos(nω0t)dt =
1


2


2∫


0


(3 − 3t) cos(nω0t)dt,


which simplifies to


Dn =
1


2


[


(3 − 3t)
sin(nω0t)


nω0
− 3


cos(nω0t)


(nω0)2


]2


0


=
3


2


[


−
sin(2nω0)


nω0
−


cos(2nω0)


(nω0)2
+


1


(nω0)2


]


.


Substituting ω0 = π/2, we obtain


Dn =
3


2


[


−
sin(nπ0)


0.5nπ
−


cos(nπ )


(0.5nπ )2
+


1


(0.5nπ )2


]


=
6


(nπ )2
[1 − (−1)n]


or


Dn =











0 n is even
12


(nπ )2
n is odd.


(4.47)


In Examples 4.11 and 4.12, the exponential CTFS coefficients can also be


derived from the trigonometric CTFS coefficients calculated in Examples 4.7


and 4.8 using Eq. (4.45).


Example 4.14


Calculate the exponential Fourier series of the signal x(t) shown in Fig. 4.13.


Solution


The fundamental period T0 = T , and therefore the angular frequency ω0 =
2π/T . The exponential CTFS coefficients are given by


Dn =
1


T


T/2∫


−T/2


x(t)e−jnω0t dt =
1


T


τ/2∫


−τ/2


1 · e−jnω0t dt .
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t


x(t)
1


2


t
2


t
2


T


2


T− − T−T


Fig. 4.13. Periodic signal x(t ) for


Example 4.14.


From integral calculus, we know that


∫


e−jnω0t dt =











−
1


jnω0
e−jnω0t+c n �= 0


t + c n = 0.
(4.48)


We consider the two cases separately.


Case I For n = 0, the exponential CTFS coefficients are given by


Dn =
1


T
[t]


τ/2


−τ/2 =
τ


T
.


Case II For n �= 0, the exponential CTFS coefficients are given by


Dn = −
1


jnω0T
[e−jnω0t ]τ/2−τ/2 =


1


nπ
sin


(nπτ


T


)


or


Dn =
τ


T


sin
(


π
nτ


T


)


(


π
nτ


T


) = τ
T


sinc
(nτ


T


)


.


In the above derivation, the CTFS coefficients are computed separately for


n = 0 and n �= 0. However, on applying the limit n → 0 to the Dn in case II,
we obtain


lim
n→0


Dn = lim
n→0


τ


T
sinc


(nτ


T


)


= τ
T


lim
n→0


sinc
(nτ


T


)


= τ
T


[


. .. lim
x→0


sinc(mx) = 1
]


.


In other words, the value of Dn for n = 0 is covered by the value of Dn for n �= 0.
Therefore, combining the two cases, the CTFS coefficient for the function x(t)


is expressed as follows:


Dn =
τ


T


sin
(


π
nτ


T


)


(


π
nτ


T


) = τ
T


sinc
(nτ


T


)


, (4.49)


for −∞ < n < ∞. As a special case, we set τ = π/2 and T = 2π . The result-
ing waveform for x(t) is shown in Fig. 4.14(a). The CTFS coefficients for the
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−2p −p 0 p 2p


x(t)
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−0.1


0
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n
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t


Fig. 4.14. Exponential CTFS


coefficients for the signal x(t )


shown in Fig. 4.13 with τ = π /2
and T = 2π . (a) Waveform for
x(t ). (b) Exponential CTFS


coefficients.


special case are given by


Dn =
1


4
sinc


(n


4


)


,


for −∞ < n < ∞. The CTFS coefficients are plotted in Fig. 4.14(b).
As a side note to our discussion on exponential CTFS, we make the following


observations.


(i) The exponential CTFS provide a more compact representation compared


with the trigonometric CTFS. However, the exponential CTFS coefficients


are generally complex-valued.


(ii) For real-valued functions, the coefficients Dn and D−n are complex conju-
gates of each other. This is easily verified from Eq. (4.45) and the symmetry


property (4) described in Section 4.4.


4.5.1 Fourier spectrum


The exponential CTFS coefficients provide frequency information about the


content of a signal. However, it is difficult to understand the nature of the signal


by looking at the values of the coefficients, which are generally complex-valued.


Instead, the exponential CTFS coefficients are generally plotted in terms of


their magnitude and phase. The plot of the magnitude of the exponential CTFS


coefficients |Dn| versus n (or nω0) is known as the magnitude (or amplitude)
spectrum, while the plot of the phase of the exponential CTFS < Dn versus n


(or nω0) is referred to as the phase spectrum.


Example 4.15


Plot the magnitude and phase spectra of the signal g(t) considered in


Example 4.12.


Solution


From Example 4.11, we know that the exponential CTFS coefficients are given


by


Dn =
0.3416


0.2 + jn .
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Table 4.1. Magnitude and phase of Dn for a few values of n given in Example 4.15


n 0 ±1 ±2 ±3 ±4 . . . ±∞
|Dn| 1.7080 0.3350 0.1700 0.1136 0.0853 . . . 0
<Dn 0 ∓0.4372π ∓0.4683π ∓0.4788π ∓0.4841π . . . ∓0.5π


−10 −8 −6 −4 −2 0 2 4 6 8 10
0


0.5


1


1.5


2


n


−10 −8 −6 −4 −2 0 2 4 6 8 10


−0.5p


0


0.25p


0.5p


−0.25p


n


(a) (b)


Fig. 4.15. CTFS coefficients of


signal g(t ) shown in Fig. 4.10.


(a) Magnitude spectrum.


(b) Phase spectrum.


The magnitude and phase of the exponential CTFS coefficients are as follows:


magnitude |Dn| =
0.3416


|(0.2 + jn)| =
0.3416√
0.04 + n2


;


phase <Dn = <3.416− <(0.2 + jn) = − tan−1(5n).


Table 4.1 shows the magnitude and phase of Dn for a few selected values of n.


The phase values are expressed in radians. The magnitude and phase spectra


are plotted in Fig. 4.15.


The magnitude of the exponential CTFS coefficients Dn indicates the strength


of the frequency component nω0 (i.e. the nth harmonic) in the signal x(t). The


phase of Dn provides additional information on how different harmonics should


be shifted and added to reconstruct x(t).


Example 4.16


Calculate and plot the amplitude and phase spectra of signal x(t) considered in


Example 4.14 for τ = π/2 and T = 2π .


Solution


The exponential DTFS coefficients are given by


Dn =
τ


T
sinc


(nτ


T


)


.


Substituting τ = π/2 and T = 2π , we obtain


Dn =
1


4
sinc


(n


4


)


,


which are plotted in Fig. 4.14. Note that the coefficients are all real-valued


but periodically vary between positive and negative values. Because the CTFS


coefficients Dn do not have imaginary components, the phase corresponding to
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0.75p


p


n


(a) (b)


Fig. 4.16. (a) The amplitude and


(b) the phase spectra of the


function shown in Fig. 4.14 (see


Example 4.14). The phase


spectra are given in radians/s.


the CTFS coefficients is calculated from its sign as follows:


if Dn ≥ 0, then the associated phase <Dn = 0;
if Dn < 0, then the associated phase <Dn = π or −π.


The magnitude and phase spectra are plotted in Fig. 4.16. In Fig. 4.16(a),


we observe that the magnitude spectrum is always positive, while the phase


spectrum toggles between the values of 0 and π radians/s. Note that the phase


plot is not unique since the phase of π is equivalent to the value of −π .


4.6 Properties of exponential CTFS


The exponential CTFS has several interesting properties that are useful in


the analysis of CT signals. We list the important properties in the following


discussion.


Symmetry property For real-valued periodic signals, the exponential CTFS


coefficients Dn and D−n are complex conjugates of each other.


Proof


Recall that the exponential CTFS coefficients are related to the trigonometric


CTFS coefficients by Eq. (4.45), given below


Dn =
1


2
(an − jbn) for n > 0


and


D−n =
1


2
(an + jbn) for n > 0.


For real-valued functions, property (4) of the symmetric functions in


Section 4.4.1 states that the trigonometric Fourier coefficients an and bn are


always real. Based on the aforementioned equations, the exponential CTFS


coefficients Dn and D−n are therefore complex conjugates of each other.


As a corollary to this property, consider the magnitude and phase of the expo-


nential CTFS coefficients:


|D−n| = |Dn| =
1


4


√


a2n + b2n (4.50)
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and


<D−n = −<Dn = tan−1
(


bn


an


)


, (4.51)


which illustrate that the magnitude spectrum is an even function and that the


phase spectrum is an odd function. Consider the magnitude and phase spectra


of the function g(t) in Example 4.11. The spectra are shown in Fig. 4.15. It


is observed that the amplitude spectrum is even, whereas the phase spectrum


is odd, which is expected as the function g(t) is real. Consider the rectangular


pulse train in Example 4.16, whose amplitude and phase spectra are shown


in Fig. 4.16. The amplitude function is again observed to be even symmetric.


However, the phase spectrum does not seem to be odd, although the time-domain


function is real-valued. Actually, the angle π r (i.e. 180o) is equivalent to −π r
(i.e. −180o); the phase values π r can be changed appropriately to satisfy the
odd property.


Parseval’s theorem The power of a periodic signal x(t) can be calculated from


its exponential CTFS coefficients as follows (see Problem 1.9 in Chapter 1):


Px =
1


T0


∫


〈T0〉


|x(t)|2dt =
∞∑


n=−∞
|Dn|2. (4.52)


For real-valued signals, |Dn| = |D−n|, which results in the following simplified
formula:


Px =
∞∑


n=−∞
|Dn|2 = |D0|2 + 2


∞∑


n=1
|Dn|2. (4.53)


Example 4.17


Calculate the power of the periodic signal f (t) shown in Fig. 4.11.


Solution


It was shown in Example 4.13 that the exponential CTFS coefficients of the


signal f (t) are given by


Dn =











0 n is even
12


(nπ )2
n is odd.


Since f (t) is real-valued, using Parseval’s theorem (Eq. (4.53)) yields


P f =
∞∑


n=−∞
|Dn|2 = |D0|2 + 2


∞∑


n=0
|Dn|2 = 2


∞∑


n=1,3,5,...


(
12


n2π2


)2


= 288
π4


∞∑


n=1,3,5,...


1


n4
= 288


π4
× 1.015 = 3. (4.54)
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The above value of P f can also be verified by calculating the power directly in


the time domain:


P f =
1


T0


∫


〈T0〉


|x(t)|2dt =
2


4


2∫


0


(3 − 3t)2dt =
1


2


[
(3 − 3t)3


−9


]2


0


=
1


2


[
−27
−9


−
27


−9


]


= 3. (4.55)


Linearity property The exponential CTFS coefficients of a linear combination


of two periodic signals x1(t) and x2(t), both having the same fundamental


period T0, are given by the same linear combination of the exponential CTFS


coefficients for x1(t) and x2(t). Mathematically, this implies the following:


if x1(t)
CTFS


←−−→ Dn and x2(t)
CTFS←−−→ En then


a1x1(t) + a2x2(t)
CTFS←−−→ a1 Dn + a2 En, (4.56)


with the linearly combined signal a1x1(t) + a2x2(t) having a fundamental
period of T0.


A direct application of the linearity property is the periodic signal that is a


magnitude-scaled version of the original periodic signal x(t). The exponential


CTFS coefficients of the magnitude-scaled signal are given by the following


relationship:


if x(t)
CTFS←−−→ Dn then ax(t)


CTFS←−−→ aDn. (4.57)


Time-shifting property If a periodic signal x(t) is time-shifted, the ampli-


tude spectrum remains unchanged. The phase spectrum changes by an expo-


nential phase shift. Mathematically, the time-shifting property is expressed as


follows:


if x(t)
CTFS←−−→ Dn then x(t − t0)


CTFS←−−→ Dne
−jnω0t0 , (4.58)


where x(t − t0) represents the time-shifted signal obtained by shifting x(t)
towards the right-hand side by t0. The proof of the time-shifting property follows


directly by calculating the exponential CTFS representation for the time-shifted


signal x(t − t0) from the definition.


Example 4.18


Calculate the exponential CTFS coefficients of the periodic signal s(t) shown


in Fig. 4.17.


Solution


Comparing the waveform for s(t) in Fig. 4.17 with the waveform for x(t) in


Fig. 4.14, we observe that


s(t) = x(t − π/4).
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s(t)


1


−2p 0−p p 2p  3p
2


p
t


Fig. 4.17. Periodic signal s(t ) for


Example 4.18.


The two waveforms s(t) and x(t) have the same time period T0 = 2π , which
gives ω0 = 1. Based on the time-shifting property, we obtain


s(t) = x
(


t −
π


4


) CTFS


←−−→ Dne−jnπ/4,


where Dn denotes the exponential CTFS coefficients of x(t). Using the value


of Dn from Example 4.14, the CTFS coefficients Sn for s(t) are given by


Sn =
1


4
sinc


(n


4


)


e−jnπ/4,


for −∞ < n < ∞. From the above expression, it is clear that the magnitude
|Sn| = |Dn|, but that the phase of Sn changes by an additive factor of −nπ/4.


Time reversal If a periodic signal x(t) is time-reversed, the amplitude spectrum


remains unchanged. The phase spectrum changes by an exponential phase shift.


Mathematically,


if x(t)
CTFS←−−→ Dn then x(−t)


CTFS←−−→ D−n , (4.59)


which implies that if a signal is time-reversed, the CTFS coefficients of a time-


reversed signal are the time-reversed CTFS coefficients of the original signal.


Example 4.19


Calculate the exponential CTFS coefficients of the periodic signal p(t) shown


in Fig. 4.18. Represent the function as a CTFS.


Solution


From Fig. 4.18, it is observed that p(t) is a time-reversed version of s(t) plotted


in Fig. 4.17. Therefore, the exponential CTFS coefficients can be obtained by


p(t)


1


−3p −2p −p 0 p  2p
2
p−


t
Fig. 4.18. The periodic signal


p(t ) in Example 4.19.
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applying the time-reversal property to the answer in Example 4.18. Using the


latter approach, the CTFS coefficients Pn for p(t) are given by


Pn = S−n =
1


4
sinc


(
−n
4


)


e−j(−n)π/4 =
1


4
sinc


(n


4


)


e jnπ/4. (4.60)


Equation (4.60) can also be obtained directly by applying the time-shifting


property (t0 = −π/2) to the waveform in Fig. 4.14(a) in Example 4.14.
The function p(t) can now be represented as an exponential CTFS as follows:


p(t) =
∞∑


n=−∞
Pne


jnω0t = 1
4


∞∑


n=−∞
sinc


(n


4


)


e jnπ/4e jnt


= 1
4


∞∑


n=−∞
sinc


(n


4


)


e jn(t+π/4),


where the fundamental frequency ω0 is set to 1.


Time scaling If a periodic signal x(t) with period T0 is time-scaled, the CTFS


spectra are inversely time-scaled. Mathematically,


if x(t)
CTFS←−−→ Dn then x


(
t


a


)
CTFS←−−→ Dan, (4.61)


where the time period of the time-scaled signal x(t/a) is given by (T0/a).


Example 4.20


Calculate the exponential CTFS coefficients of the periodic function r (t) shown


in Fig. 4.19. Represent the function as a CTFS.


Solution


From Fig. 4.19, it is observed that r (t) (with T0 = π ) is a time-scaled version
of x(t) (with T0 = 2π ) plotted in Fig. 4.14. The relationship between r (t) and
x(t) is given by


r (t) = 2x(2t).


Using the time-scaling and linearity properties,


if x(t)
CTFS←−−→ Dn then 2x(2t)


CTFS←−−→ 2Dn/2. (4.62)


t


−p 0 p


r (t)


2


2
p


2
p−


8
p


8
p−


Fig. 4.19. Periodic signal r(t ) for


Example 4.20 obtained by


time-scaling Fig. 4.14.
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Using the results obtained in Example 4.14, the CTFS coefficients Rn of r (t)


are given by


Rn = 2
1


4
sinc


(
n/2


4


)


=
1


2
sinc


(n


8


)


, (4.63)


for −∞ < n < ∞. The function r (t) can now be represented as an exponential
CTFS as follows:


x(t) =
∞∑


n=−∞
Rne


jnω0t = 1
2


∞∑


n=−∞
sinc


(n


2


)


e j2nt ,


where the fundamental frequency ω0 is set to 2.


Differentiation and integration The exponential CTFS coefficients of the


time-differentiated and time-integrated signal are expressed in terms of the


exponential CTFS coefficients of the original signal as follows:


if x(t)
CTFS←−−→ Dn then


dx


dt


CTFS←−−→ jnω0 Dn and
∫


T0


x(t)dt
CTFS←−−→ Dn


jnω0
.


(4.64)


It may be noted that the signal obtained by differentiating or integrating a


periodic signal x(t) over one period T0 has the same period T0 as that of the


original signal.


Example 4.21


Calculate the exponential CTFS coefficients of the periodic signal g(t) shown


in Fig. 4.20.


Solution


The function g(t) can be obtained by differentiating x(t) shown in Fig. 4.14.


Therefore, the CTFS coefficients Gn can be expressed in terms of the CTFS


coefficients Dn as follows:


Gn = jnω0 Dn with ω0 = 1.
Substituting the value of


Dn =
1


4
sinc


(n


4


)


t
−2p −p 0 p              2p


g (t)


3


−3 Fig. 4.20. Periodic signal g(t )
for Example 4.21.
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yields


Gn = ( jn)
1


4
sinc


(n


4


)


=
jn


4
sinc


(n


4


)


.


The function r (t) can now be represented as an exponential CTFS as follows:


r (t) =
∞∑


n=−∞
Gne


jnω0t = 1
4


∞∑


n=−∞
( jn) sinc


(n


2


)


e jnt ,


where the fundamental frequency ω0 is set to 1.


4.6.1 CTFS with different periods


In this section, we consider the variation of the CTFS when the period of a


function is changed. We use the rectangular pulse train for simplicity as its


CTFS coefficients are real-valued.


Example 4.22


Consider the periodic function x(t) in Fig. 4.13 (in Example 4.14) for the


following three cases:


(a) τ = 1 ms and T = 5 ms;
(b) τ = 1 ms and T = 10 ms;
(c) τ = 1 ms and T = 20 ms.


In each of the above cases, (i) determine the fundamental frequency, (ii) plot


the CTFS coefficients, and (iii) determine the higher-order harmonics absent in


the function.


Solution


It was shown in Example 4.14 that the exponential DTFS coefficients are given


by


Dn =
τ


T
sinc


(nτ


T


)


.


(a) With T = 5 ms, the fundamental frequency is f0 = 1/T = 1/5 ms =
200 Hz, while the fundamental angular frequency is ω0 = 2π f0 = 400π
radians/s. The corresponding exponential CTFS coefficients are given by


Dn =
1


5
sinc


(n


5


)


,


which are plotted in Fig. 4.21(a) using two scales on the horizontal axis. The


first scale represents the number n of the CTFS coefficients and the second scale








P1: NIG/KTL P2: NIG/RTO QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:14


176 Part II Continuous-time signals


−0.05
0


0.05


0.1


0.15


0.2


−15 −10 −5 0 5 10 15
n


f
−3000 −2000 −1000 0 1000 2000 3000


−30 −20 −10 0 10 20 30
n


−3000 −2000 −1000 0 1000 2000 3000
f


−60 −40 −20 0 20 40 60−0.02


0


0.02


0.04


0.06


0.1


0.05


−0.05


0


n


−3000 −2000 −1000 0 1000 2000 3000
f


(a) (b)


(c)


Fig. 4.21. CTFS coefficients for


square waves with different duty


cycles. (a) τ = 1 ms; T = 5 ms.
(b) τ = 1 ms; T = 10 ms;
(c) τ = 1 ms; T = 20 ms.


represents the corresponding frequency f = n f0 in hertz. The CTFS coefficient
for n = 0 (or f = 0 Hz) has a value of 0.2, which is the strength of the dc
component in the function. The spectrum at n = 1 (or f = 200 Hz) has a value
of 0.19, which is the strength of the fundamental frequency (corresponding to


200 Hz, or 400π radians/s) in the function. The spectrum at n = 2 has a value
of 0.15, which is the strength of the first harmonic corresponding to a frequency


f of 400 Hz, or angular frequency ω0 of 800π radians/s in the function.


From Fig. 4.21(a), we observe that the CTFS coefficients Dn are zero


at n = ±5, ±10, ±15, . . . , which correspond to frequencies ±1000 Hz,
±2000 Hz, ±3000 Hz, . . . (i.e. n f0), respectively. In other words, the miss-
ing harmonics will correspond to frequencies ±1000 Hz, ±2000 Hz,
±3000 Hz, . . . or m × 103 Hz, where m is a non-zero integer.


(b) With T set to 10 ms, the fundamental frequency f0 = 1/T = 1/10 ms =
100 Hz, while the fundamental angular frequency is given by ω0 = 2π f0 =
200π radians/s. The exponential CTFS coefficients are now given by


Dn =
1


10
sinc


( n


10


)


,


which are plotted in Fig. 4.21(b). The CTFS coefficient for n = 0 has a value of
0.1. With T = 10 ms, the harmonics corresponding to n = ±10, ±20, ±30, . . .
are all equal to zero. Interestingly, the missing harmonics correspond to fre-


quencies f = n f0, which are given by ±1000, ±2000, ±3000, . . . Hz, have the
same values as the frequency components missing in part (a).


(c) With T set to 20 ms, the new fundamental frequency f0 = 1/T =
1/20 ms = 50 Hz, while the fundamental angular frequency is given by
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ω0 = 2π f0 = 100π radians/s. The exponential CTFS coefficients are now
given by


Dn =
1


20
sinc


( n


20


)


,


which are plotted in Fig. 4.21(c). The CTFS coefficient for n = 0 has
a value of 0.05. With T = 20 ms, the harmonics corresponding to n =
±20, ±40, ±60, . . . are all equal to zero. As was the case in parts (a) and (b),
the missing harmonics correspond to frequencies f of ±1000, ±2000,
±3000, . . . Hz.


For a square wave, the ratio τ/T is referred to as the duty cycle, which is


defined as the ratio between the time τ that the waveform has a high value


and the fundamental period T . Cases (a)–(c) are illustrated in Figs. 4.21(a)–(c),


where the duty cycle was reduced by keeping τ constant and increasing the value


of the fundamental period T . Alternatively, the duty cycle may be decreased


by reducing the value of τ , while maintaining the fundamental period T at a


constant value. By changing the duty cycle, we observe the following variations


in the exponential DTFS representation.


DC coefficient Since the dc coefficient represents the average value of the


waveform, the value of the dc coefficient D0 decreases as the duty cycle (τ/T )


of the square wave is reduced.


Zero crossings As the duty cycle (τ/T ) is decreased, the energy within one


period of the waveform in the time domain is concentrated over a relatively


narrower fraction of the time period. Based on the time-scaling property, the


energy in the corresponding CTFS representations is distributed over a larger


number of the CTFS coefficients. In other words, the width of the main lobe


and side lobes of the discrete sinc function increases with a reduction in the


duty cycle.


4.7 Existence of Fourier series


In Sections 4.4 and 4.5, the trigonometric and exponential CTFS representations


of a periodic signal were covered. Because the CTFS coefficients are calculated


by integration, there is a possibility that the integral may result in an infinite


value. In this case, we state that the CTFS representation does not exist. Below


we list the conditions for the existence of the CTFS representation.


Definition 4.8 The CTFS representation (trigonometric or exponential) of a


periodic function x(t) exists if all CTFS coefficients are finite and the series


converges for all n. In other words, there is no infinite value in the magnitude


spectrum of the CTFS representation.


For the CTFS representation to exist, the periodic signal x(t) must satisfy the


following three conditions.
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(1) Absolutely integrable. The area under one period of |x(t)| is finite, i.e.
∫


T0


|x(t)|dt < ∞. (4.65)


(2) Bounded variation. The periodic signal x(t) has a finite number of maxima


or minima in one period.


(3) Finite discontinuities. The period x(t) has a finite number of discontinuities


in one period. In addition, each of the discontinuity has a finite value.


The above conditions are known as the Dirichlet conditions.† If these condi-


tions are satisfied, it is guaranteed that perfect reconstruction is obtained from


the CTFS coefficients except at a few isolated points where the function x(t)


is discontinuous. The first condition is also known as the weak Dirichlet con-


dition, whereas the second and third conditions are known as strong Dirichlet


conditions. Most practical signals satisfy these three conditions. Examples of


the CT functions that violate these conditions are included in the following


discussion.


Example 4.23


Determine whether the following functions satisfy the Dirichlet conditions:


(i) h(t) = tan(π t); (4.66)
(ii) g(t) = sin(0.5π/t) for 0 ≤ t < 1 and g(t) = g(t + 1); (4.67)


(iii) x(t) =
{


1 2−2m−1 < t ≤ 2−2m
0 2−2m−2 < t ≤ 2−2m−1 (4.68)


for m ∈ Z+, 0 ≤ t < 1, and x(t) = x(t + 1).


Solution


(i) The CT function h(t) is plotted in Fig. 4.22(a). We now proceed to determine


if h(t) satisfies the Dirichlet conditions. Condition (1) is violated because


∫


T0


|x(t)|dt =
0.5∫


−0.5


tan(π t)dt = ∞.


This is also apparent from the waveform of tan(π t), plotted in Fig. 4.22(a),


where the waveform approaches ±∞ at each discontinuity. Condition (2) is
satisfied as there are only one maximum and one minimum within a single


period of h(t). Condition (3) is violated. Although there is only one discontinuity


within a single period of h(t), the magnitude of the discontinuity is infinite.


(ii) The CT function g(t) is plotted in Fig. 4.22(b). Condition (1) is sat-


isfied as the area enclosed by |g(t)| is finite. Condition (2) is violated as an


† These conditions were derived by Johann Peter Gustav Lejeune Dirichlet (1805–1859), a


German mathematician.
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Fig. 4.22. Functions (a) h(t ),


(b) g(t ), and (c) x (t ) in Example


4.23. These functions violate one


or more of the Dirichlet


conditions, and therefore the


CTFS representation does not


exist for these functions.


infinite number of maxima and minima exist within a single period of g(t).


Condition (3) is satisfied as there are no discontinuities within a single period


of g(t).


(iii) The CT function x(t) is plotted in Fig. 4.22(c). Condition (1) is satisfied


as the area enclosed by |x(t)| is finite. Condition (2) is violated as there are an
infinite number of maxima and minima within a single period of g(t). Condition


(3) is violated as an infinite number of discontinuities exist within a single period


of g(t).


4.8 Application of Fourier series


The exponential CTFS has several interesting applications. In Section 4.7.1, we


highlight an application of the CTFS representation in calculating the sum of


an infinite series. Section 4.7.2 considers the use of the CTFS representation in


calculating the response of an LTIC system to a periodic signal. By using the


CTFS representation, we avoid the convolution integral.


4.8.1 Computing the sum of an infinite series


The following example illustrates an application of the CTFS in calculating the


sum of a series:


Example 4.24


Calculate the sum S of the following infinite series:


S =
∞∑


n=0


1


(2n + 1)4 = 1 +
1


34
+ 1


54
+ 1


74
+ 1


94
+ 1


114
+ · · ·
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Solution


To compute the sum S, we consider the periodic signal f (t) shown in Fig. 4.11.


As shown in Example 4.13, the exponential CTFS coefficients of f (t) are given


by


Dn =











0 n is even
12


(nπ )2
n is odd.


Using Parseval’s theorem, the average power of f (t) is given by


Px =
∞∑


n=−∞
|Dn|2 = |D0|2 + 2


∞∑


n=1
|Dn|2 = 2


∞∑


n=1
n=odd


144


π4
· 1


n4
= 288


π4
S.


(4.69)


Using the time-domain approach, it was shown in Example 4.17 that the average


power of f (t) is given by


P f =
1


T0


∞∫


−∞


|x(t)|2dt = 3. (4.70)


Combining Eqs. (4.69) and (4.70) gives (288/π4) S = 3 or


S =
∞∑


n=0


1


(2n + 1)4 =
3π4


288
= π


4


56
≈ 1.014 7.


4.8.2 Response of an LTIC system to periodic signals


As a second application of the exponential CTFS representation, we consider the


response y(t) of an LTIC system with the impulse response h(t) to an periodic


input x(t). The system is illustrated in Fig. 4.23. Assuming that the input signal


x(t) has the fundamental period T0, the exponential CTFS representation of


x(t) is given by


LTIC


system


h(t)


periodic


input


x(t)


periodic


output


y(t)


Fig. 4.23. Response of an LTIC


system to a periodic input.


x(t) =
∞∑


m=0
Dne


jnω0t , (4.71)


where the fundamental frequency ω0 = 2π/T0. The steps involved in calculat-
ing the output y(t) are as follows.


Step 1 Based on Theorem 4.3.1, the output of an LTIC system yn(t) to a


complex exponential xn(t) = Dnexp(jnω0t) is given by


yn(t) = Dn H (nω0)e jnω0t , (4.72)


where H (nω0) = H (ω), evaluated at ω = nω0. The new term H (ω) is referred
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to as the transfer function of the LTIC system and is given by


H (ω) =
∞∫


−∞


h(t)e−jωt dt. (4.73)


Step 2 Using the principle of superposition, the overall output y(t) by adding


individual outputs yn(t) is given by


y(t) =
∞∑


n=−∞
yn(t) (4.74)


or


y(t) =
∞∑


n=−∞
Dne


jnω0t H (ω)|ω=nω0 . (4.75)


Step 3 Based on Eq. (4.75), it is clear that the response y(t) of an LTIC system


to a periodic input x(t) is also periodic with the same fundamental period as


x(t). In addition, the exponential CTFS coefficients En of the output y(t) are


related to the CTFS coefficients Dn of the periodic input signal x(t) by the


following relationship


En = Dn H (ω)|ω=nω0 . (4.76)


Example 4.25


Calculate the exponential CTFS coefficients of the output y(t) if the square


wave x(t) illustrated in Fig. 4.14 is applied as the input to an LTIC system with


impulse response h(t) = exp(−2t)u(t).


Solution


The exponential CTFS coefficients of the square wave x(t) shown in Fig. 4.14(a)


are given by (see Example 4.14)


Dn =
1


4
sinc


(n


4


)


, for −∞ < n < ∞.


The transfer function H (ω) of the LTIC is given by


H (ω) =
∞∫


−∞


h(t)e−jωt dt =
∞∫


0


e−(2+jω)t dt = 1
(2 + jω) . (4.77)


For ω0 = 1 radian/s, the exponential CTFS coefficients of the output y(t) are
given by


En = Dn H (ω)|ω=n =
1


4
sinc


(n


4


)


× 1
(2 + jn) =


sinc(n/4)


8 + j4n , (4.78)


and the output y(t) is given by


y(t) =
∞∑


n=−∞
Ene


jnω0t =
∞∑


n=−∞


sinc(n/4)


8 + j4n e
jnt . (4.79)
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0.6


0.4


y(t)


0.2


0


−0.2
−8 −4 0 4 8


t


Fig. 4.24. Response of the LTIC


system in Example 4.25.


Using the M A T L A B function ictfs.m (provided in the accompanying CD),


y(t) is calculated and shown in Fig. 4.24. It is observed that y(t) does not have


any sharp (rising or falling) edges. This is primarily because, at high frequencies,


the gain of the system (|H (ω)|) is small. As the high-frequency components
of the inputs are suppressed by the system, the sharp edges are absent at the


output.


Example 4.25 used the CTFS to calculate the output y(t) of a periodic signal


x(t). Such a method is limited to periodic input signals. In Chapter 5, we show


how the continuous-time Fourier transform (CTFT) can be used to compute the


output of the LTIC systems for both periodic and aperiodic inputs. Since the


CTFT is more inclusive than the CTFS representation, our analysis of the LTIC


systems will be based primarily on the frequency decompositions using the


CTFT. The CTFS is, however, used indirectly to compute the CTFT of periodic


signals. We shall explore the relationship between the CTFS and CTFT more


fully in Chapter 5.


4.9 Summary


In Chapter 4, we introduced frequency-domain analysis of periodic sig-


nals based on the trigonometric and exponential CTFS representations. In


Sections 4.1 and 4.2, the basis functions are defined as a complete set {pn(t)},


for 1 ≤ n ≤ N , of orthogonal functions satisfying the following orthogonality
properties over interval [t1, t2]:


orthogonality property


t2∫


t1


pm(t)p
∗
n(t)dt =


{


En �= 0 m = n
0 m �= n


for 1 ≤ m, n ≤ N ,
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for any pair of functions taken from the set {pn(t)}. Section 4.3 proves that


the complex exponentials {exp(jnω0t)}, for −∞ < n < ∞, and sinusoidal
functions {sin(nω0t), 1, cos(mω0t)}, for 0 < n, m < ∞, form two complete
orthogonal sets over any interval [t1, t1 + 2π/ω0] of duration T0 = 2π/ω0. We
refer to ω0 as the angular frequency and to its inverse T0 = 2π/ω0 as the funda-
mental period. Expressing a periodic signal x(t) as a linear combination of the


sinusoidal set of functions {sin(nω0t), 1, cos(mω0t)} leads to the trigonometric


representation of the CTFS. The trigonometric CTFS is defined as follows:


x(t) = a0 +
∞∑


n=1
(an cos(nω0t) + bn sin(nω0t)),


where ω0 = 2π/T0 is the fundamental frequency of x(t) and coefficients a0, an ,
and bn are referred to as the trigonometric CTFS coefficients. The coefficients


are calculated using the following formulas:


a0 =
1


T0


∫


〈T0〉


x(t)dt,


an =
2


T0


∫


〈T0〉


x(t) cos(nω0t)dt,


and


bn =
2


T0


∫


〈T0〉


x(t) sin(nω0t)dt .


The trigonometric CTFS is presented in Section 4.4, while its counterpart, the


exponential CTFS, is covered in Section 4.5. The exponential CTFS is obtained


by expressing the periodic signal x(t) as a linear combination of complex expo-


nentials {exp(jnω0t)} and is given by


x(t) =
∞∑


m=−∞
Dne


jnω0t ,


where the exponential CTFS coefficients Dn are calculated using the following


expression:


Dn =
1


T0


∫


〈T0〉


x(t)e−jnω0t dt .


The exponential CTFS has several interesting properties that are useful in the


analysis of CT signals.


(1) The linearity property states that the exponential CTFS coefficients of a


linear combination of periodic signals are given by the same linear combi-


nation of the exponential CTFS coefficients of each of the periodic signals.


(2) A time shift of t0 in the periodic signal does not affect the magnitude of the


exponential CTFS coefficients. However, the phase changes by an additive
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factor of ±nω0t0, the sign of the phase change depending on the direction
of the shift. This property is referred to as the time-shifting property.


(3) The exponential CTFS coefficients of a time-reversed periodic signal are


the time-reversed CTFS coefficients of the original signal.


(4) If a periodic signal is time-scaled, the exponential CTFS coefficients are


inversely time-scaled.


(5) The exponential CTFS coefficients of a time-differentiated periodic signal


are obtained by multiplying the CTFS coefficients of the original signal by


a factor of jnω0.


(6) The exponential CTFS coefficients of a time-integrated periodic signal are


obtained by dividing the CTFS coefficients of the original signal by a factor


of jnω0.


(7) For real-valued periodic signals, the exponential CTFS coefficients Dn and


D−n are complex conjugates of each other.


(8) Based on Parseval’s property, the power of a periodic signal x(t) with the


fundamental period of T0 is computed directly from the exponential CTFS


coefficients as follows:


Px =
1


T0


∫


〈T0〉


|x(t)|2dt =
∞∑


n=−∞
|Dn|2.


The plot of the magnitude |Dn| of the exponential CTFS coefficients versus the
coefficient number n is referred to as the magnitude spectrum, while the plot of


the phase <Dn of the exponential CTFS coefficients versus the coefficient num-


ber n is referred to as the phase spectrum of the periodic signal x(t). Section 4.6


covers the conditions for the existence of the CTFS representations, and Section


4.7 concludes the chapter by calculating the output response y(t) of an LTIC


system to a periodic input x(t). In such cases, the output y(t) is given by


y(t) =
∞∑


n=−∞
Dne


jnω0t H (ω) |ω=nω0 ,


where the transfer function H (ω) is obtained from the impulse response h(t) of


the LTIC system as follows:


H (ω) =
∞∫


−∞


h(t)e−jωt dt.


The above expression also defines the continuous-time Fourier transform


(CTFT) for aperiodic signals, which is covered in depth in Chapter 5.


Problems


4.1 Express the following functions in terms of the orthogonal basis functions


specified in Example 4.2 and illustrated in Fig. 4.3.








P1: NIG/KTL P2: NIG/RTO QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:14


185 4 Signal representation using Fourier series


(a) x1(t) =
{


A 0 ≤ t ≤ T
−A −T ≤ t ≤ 0;


(b) x2(t) =













A
T


2
≤ |t | ≤ T


−A 0 ≤ |t | ≤ T
2


;


(c) x3(t) =













A
T


2
≤ |t | ≤ T


0 0 ≤ |t | ≤ T
2


.


4.2 For the functions


φ1(t) = e−2|t | and φ2(t) = 1 − K e−4|t |


determine the value of K such that the functions are orthogonal over the


interval [−∞, ∞].
4.3 The Legendre polynomials are widely used to approximate functions. An


nth-order Legendre polynomial Pn(x) is defined as


Pn(x) =
1


n!2n
dn


dxn
(x2 − 1)n =


M∑


m=0
anm x


m,


where the values of anm can be expressed as follows:


anm =
n∑


m=0
n,m odd
n,m even


(−1)(n−m)/2 (n + m)!
2nm!(n − m/2)!(n + m/2)!


Note that anm is non-zero only when both n and m are either odd or even.


For all other values of n and m, anm is zero. The first few orders of Legendre


polynomials are given by


P0(x) = 1; P2(x) =
1


2
(3x2 − 1);


P1(x) = x ; P3(x) =
1


2
(5x3 − 3x);


and are shown in Fig. P4.3.


The Legendre polynomials {Pn(x), n = 0, 1, 2, . . .} form a set of
orthogonal functions over the interval [−1, 1] by satisfying the follow-
ing property:


1∫


−1


Pm(x)Pn(x)dx =











2


2m + 1 m = n
0 m �= n.


Verify the above orthogonality condition for m, n = 0, 1, 2, 3.
4.4 The Chebyshev polynomials of the first kind are used as the approximation


to a least-squares fit. The nth-order polynomial Tn(x) can be expressed as
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1


−1


−0.5


0


0.5


1 P0(x)


P1(x)


P2(x)


P3(x)


Fig. P4.3. Legendre


polynomials with order 0–3.


−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1


−1


−0.5


0


0.5


1 T0(x)


T1(x)


T5(x)T4(x)
T3(x)


T2(x)


Fig. P4.4. First few orders of


Chebyshev polynomials of the


first kind.


follows:


Tn(x) =
n


2


⌊n/2⌋∑


k=0
(−1)k


(n − k − 1)!
k!(n − 2k)!


(2x)n−2k, n = 0, 1, 2, 3, . . .


The first few Chebyshev polynomials are given by


T0(x) = 1; T3(x) = 4x3 − 3x ;
T1(x) = x ; T4(x) = 8x4 − 8x2 + 1;
T2(x) = 2x2 − 1; T5(x) = 16x5 − 20x3 + 5x ;


which satisfy the following relationship:


Tn+1(x) = 2xTn(x) − Tn−1(x)


and are shown in Fig. P4.4.


The Chebyshev polynomials {Tn(x), n = 0, 1, 2, . . .} form an orthog-
onal set on the interval [−1, 1] with respect to the weighting function by
satisfying the following:


1∫


−1


1√
1 − x2


Tm(x)Tn(x)dx =











π m = n = 0
π/2 m = n = 1, 2, 3
0 m �= n.


Verify the above orthogonality condition for m, n = 0, 1, 2, 3, 4.
4.5 The Haar functions are very popular in signal processing and wavelet appli-


cations. These functions are generated using a scale parameter (m) and a


translation parameter (n). Let the mother Haar function (m = n = 0) be
defined as follows:


H0,0(t) =








1 0 ≤ t < 0.5
−1 0.5 ≤ t ≤ 1


0 otherwise.
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H0,0(t)


1


0 0.5 1.0
t


H1,0(t)


1


0 0.5 1.0
t


H2,0(t)


1


0 0.5 1.0
t


H2,1(t)


1


0 0.5 1.0
t


H2,2(t)


1


0 0.5 1.0
t


H2,3(t)


1


0 0.5 1.0
t


H1,1(t)


1


0 0.5 1.0
t


Fig. P4.5. Haar functions for


m = 0, 1, and 2.
The other Haar functions, at scale m and with translation n, are defined


using the mother Haar function as follows:


Hm,n(t) = H0,0(2m t − n), n = 0, 1, . . . , (2m − 1).


The Haar functions for m = 0, 1, 2 are shown in Fig. P4.5.
Show that the Haar wavelet functions {Hm,n(t), m = 0, 1, 2, . . . , n =


0, 1, 2, . . . (2m − 1)} form a set of orthogonal functions over the interval
[0, 1] by proving the following:


1∫


0


Hm,n(t)Hp,q (t)dt =
{


2−m m = p, n = q
0 otherwise.


4.6 Calculate the trigonometric CTFS coefficients for the periodic functions


shown in Figs. P4.6(a)–(e).


(a) Rectangular pulse train with period 2π :


x1(t) =
{


3 for 0 ≤ t < π
0 for π ≤ t < 2π.


(b) Raised square wave with period 2T :


x2(t) =













0.5 for
−T


2
≤ t < T


2


1 for
T


2
≤ t < 3T


2
.


(c) Half sawtooth wave with period T :


x3(t) = 1 − t
T


for 0 ≤ t < T .
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x1(t)


3


t


−2π −π 0 π 2π   3π


(a)


x2(t)


1


t


−4T −2T 0 2T 4T


(b)


x3(t)


1


t


−4T −2T 0 2T 4T


(c) (d)


(e)


x4(t)


1


t


−4T −2T 0 2T 4T


x5(t)


1


t
−4T −2T 0 2T 4TFig. P4.6. Periodic functions in


Problem 4.6; (a)–(e) refer to the


Problem.


(d) Sawtooth wave with period 2T :


x4(t) = 1 −
∣
∣
∣


t


T


∣
∣
∣ for −T ≤ t < T .


(e) Periodic wave with period 2T .


x5(t) =
{


0 for −T ≤ t < 0
1 − 0.5 sin


(π t


T


)


for 0 ≤ t < T .


4.7 Calculate the trigonometric CTFS coefficients for the periodic function


shown in Fig. P4.7. Note that the function


s(t) =
k=∞∑


k=−∞
δ(t − kT )


is known as the sampling function and that it is used to obtain a discrete-


time signal by sampling a continuous-time signal (see Chapter 9).


4.8 Calculate the trigonometric CTFS coefficients for the following functions:


(i) xt (t) = cos 7t + sin(15t + π/2);
(ii) x2(t) = 3 + sin 2t + cos(4t + π/4);


(iii) x3(t) = 1.2 + e j2t+1 + e j(5t+2) + e−j(3t+1);
(iv) x4(t) = et+1 + e j(2t+3).


4.9 Show that if x(t) is an even periodic function with period T0, the expo-


nential CTFS coefficients can be calculated by evaluating the following
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s(t)


1


t
−4T −2T 0 2T 4T


Fig. P4.7. Periodic function (an


impulse train with period T ) in


Problem 4.7.


integral:


Dn =
2


T0


T0/2∫


0


x(t) cos(nω0t)dt,


where ω0 = 2π/T0.


4.10 Show that if x(t) is an odd periodic function with period T0, the exponential


CTFS coefficients can be calculated by evaluating the following integral:


Dn =
−2j
T0


T0/2∫


0


x(t) sin(nω0t)dt,


where ω0 = 2π/T0.


4.11 For the periodic functions shown in Fig. P4.6:


(i) calculate the exponential CTFS coefficients directly using Eq. (4.44);


(ii) plot the magnitude and phase spectra.


4.12 Repeat Problem 4.11 for the function shown in Fig. P4.7.


4.13 For the periodic functions shown in Fig. P4.6, calculate the exponential


CTFS coefficients by applying Eq. (4.45) to the trigonometric CTFS coef-


ficients calculated in Problem 4.6. Compare your answers with the CTFS


coefficients obtained in Problem 4.11.


4.14 Consider the raised square wave shown in Fig. P4.6(b). Using the time-


differentiation property and the exponential CTFS coefficients calcu-


lated in Problem 4.11, calculate the exponential CTFS coefficients of an


impulse train with period T0 = 2T , with impulses located at T/2 + 2kT
with k ∈ Z .


4.15 Calculate the exponential CTFS coefficients for the functions given in


Problem 4.8.


4.16 The derivative of the square wave x(t) shown in Fig. 4.14 can be expressed


in terms of two shifted impulse trains as


dx(t)


dt
=


∞∑


k=−∞
δ


(


t + π
4


− 2kπ
)


− δ
(


t − π
4


− 2kπ
)


.


Using the time-shifting and time-scaling properties, express the exponen-


tial CTFS coefficients Dn for the square wave in terms of the exponential
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CTFS coefficients En of the impulse train. Calculate the CTFS coef-


ficients of the square wave and compare with the values evaluated in


Example 4.14.


4.17 Repeat Example 4.22 with the following values of τ and T such that the


duty cycle (τ/T ) is fixed at 0.2:


(i) τ = 1 ms, T = 5 ms;
(ii) τ = 2 ms, T = 10 ms;


(iii) τ = 4 ms, T = 20 ms.
Discuss the changes in the CTFS representations for the above selections


of τ and T .


4.18 For the periodic functions shown in Fig. P4.6:


(i) calculate the average power in the time domain, and


(ii) calculate the average power using Parseval’s theorem. Verify your


result with that obtained in step (i).


[Hint: If you find it difficult to calculate the summation


n=∞∑


n=−∞
|Dn|2


analytically, write a MATLAB program to calculate an approximate


value of


n=∞∑


n=−∞
|Dn|2 for −1000 ≤ n ≤ 1000.]


4.19 Determine whether the periodic functions shown in Fig. P4.6 satisfy the


Dirichlet conditions and have CTFS representation.


4.20 Determine if the following functions satisfy the Dirichlet conditions and


have CTFS representation:


(i) x(t) = 1/t, t = (0, 2] and x(t) = x(t + 2);
(ii) g(t) = cos(π/2t), t = (0, 1] and g(t) = g(t + 1);


(iii) h(t) = sin(ln(t)), t = (0, 1] and h(t) = h(t + 1).
4.21 Consider the periodic signal f (t) considered in Example 4.9 and shown


in Fig. 4.11. From the CTFS representation, prove the following identity:


π2


8
= 1 + 1


32
+ 1


52
+ 1


72
+ · · · .


4.22 From the half sawtooth wave shown in Fig. P4.6(c) and its trigonometric


CTFS coefficients (calculated in Problem 4.6(c)), prove the following


identity:


π


4
= 1 − 1


3
+ 1


5
− 1


7
+ 1


9
− 1


11
+ · · · .


[Hint: Evaluate the function at t = T/4.]
4.23 Using the exponential CTFS coefficients of the function shown in


Fig. P4.6(c) (calculated in Problem 4.11) and Parseval’s power theorem,


prove the following identity:


π2


6
= 1 + 1


22
+ 1


32
+ 1


42
+ 1


52
+ · · · .
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4.24 The impulse response of an LTIC system is given by


h(t) = e−2|t |.


(a) Based on Eq. (4.54), calculate the transfer function H (ω) of the LTIC


system.


(b) The plot of magnitude |H (ω)| with respect to ωgs referred to as the
magnitude spectrum of the LTIC system. Plot the magnitude spectrum


of the LTIC system for the range −∞ < ω < ∞.
(c) Calculate the output response y(t) of the LTIC system if the impulse


train shown in Fig. P4.7 is applied as an input to the LTIC system.


4.25 Repeat P4.24 for the following LTIC system:


h(t) = [e−2t − e−4t ]u(t),


with the raised square wave function shown in Fig. P4.6(b) applied at the


input of the LTIC system.


4.26 Repeat P4.24 for the following LTIC system:


h(t) = te−4t u(t),


with the sawtooth wave function shown in Fig. P4.6(d) applied at the input


of the LTIC system.


4.27 Consider the following periodic functions represented as CTFS:


(i) x1(t) =
7


π


∞∑


m=0


1


2m + 1 sin[8π (2m + 1)t];


(ii) x2(t) = 1.5 +
∞∑


m=0


1


4m + 1 cos[2π (4m + 1)t].


(a) Determine the fundamental period of x(t).


(b) Determine if x(t) is an even signal or an odd signal.


(c) Using the ictfs.m function provided in the CD, calculate and plot


the functions in the time interval −1 ≤ t ≤ 1. [Hint: You may calcu-
late x(t) for t = [−1:0.01:1]. The MA T L A B “plot” function will
give a smooth interpolated plot.]


(d) From the plot in step (c), determine the period of x(t). Does it match


your answer to part (a)?


4.28 Using the M A T L A B function ictfs.m (provided in the CD), show


that the periodic function f (t) (shown in Fig. 4.10) considered in


Example 4.8, can be reconstructed from its trigonometric Fourier series


coefficients.


4.29 Using the M A T L A B function ictfs.m (provided in the CD), show that


the periodic function g(t) (shown in Fig. 4.11) considered in Example 4.9,


can be reconstructed from its trigonometric Fourier series coefficients.
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192 Part II Continuous-time signals


4.30 Using the M A T L A B function ictfs.m (provided in the CD), show that


the periodic function g(t) (shown in Fig. 4.10) considered in Example


4.12, can be reconstructed from its exponential Fourier series coefficients.


4.31 Using the M A T L A B function ictfs.m (provided in the CD), show that


the periodic function f (t) (shown in Fig. 4.11) considered in Example


4.13, can be reconstructed from its trigonometric Fourier series coeffi-


cients.


4.32 Using the M A T L A B function ictfs.m (provided in the CD), plot the


output response y(t) obtained in Problem 4.24 for T = 1 s.


4.33 Using the M A T L A B function ictfs.m (provided in the CD), plot the


output response y(t) obtained in Problem 4.25. for T = 1 s.
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C H A P T E R


5 Continuous-time Fourier transform


In Chapter 4, we introduced the frequency representations for periodic sig-


nals based on the trigonometric and exponential continuous-time Fourier series


(CTFS). The exponential CTFS is useful in calculating the output response of


a linear time-invariant (LTI) system to a periodic input signal. In this chapter,


we extend the Fourier framework to continuous-time (CT) aperiodic signals.


The resulting frequency decompositions are referred to as the continuous-time


Fourier transform (CTFT) and are used to express both aperiodic and periodic


CT signals in terms of linear combinations of complex exponential functions.


We show that the convolution in the time domain is equivalent to multiplication


in the frequency domain. The CTFT, therefore, provides an alternative analysis


technique for LTIC systems in the frequency domain.


Chapter 5 is organized as follows. Section 5.1 considers the CTFT as a


limiting case of the CTFS and formally defines the CTFT and its inverse. In


Section 5.2, we provide several examples to illustrate the steps involved in the


calculation of the CTFT for a number of elementary signals. Section 5.3 presents


the look-up table and partial fraction methods for calculating the inverse CTFT.


Section 5.4 lists the symmetry properties of the CTFT for real-valued, even, and


odd signals, while Section 5.5 lists the CTFT properties arising due to linear


transformations in the time domain. The condition for the existence of the


CTFT is derived in Section 5.6, while the relationship between the CTFT and


the CTFS for periodic signals is discussed in Sections 5.7 and 5.8. Section 5.9


applies the convolution property of the CTFT to evaluate the output response of


an LTIC system to an arbitrary CT input signal. The gain and phase responses


of LTIC systems are also defined in this section. Section 5.10 demonstrates how


M A T L A B is used to compute the CTFT, and Section 5.11 concludes the chapter.


5.1 CTFT for aperiodic signals


Consider the aperiodic signal x(t) shown in Fig. 5.1(a). In order to extend


the Fourier framework of the CTFS to aperiodic signals, we consider several


193
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t


0


x(t)


L−L


t


−T0 0 T0


~
xT (t)


L−L


(a) (b)


Fig. 5.1. Periodic extension of a


time-limited aperiodic signal.


(a) Aperiodic signal and (b) its


periodic extension.


repetitions of x(t) uniformly spaced from each other by duration T0 such that


there is no overlap between two adjacent replicas of x(t). The resulting signal


is denoted by x̃T (t) and is shown in Fig. 5.1(b). Clearly, the new signal x̃T (t) is


periodic with the fundamental period of T0 and in the limit


lim
T0→∞


x̃T (t) = x(t). (5.1)


Since x̃T (t) is a periodic signal with a fundamental frequency of ω0 = 2π /T0
radians/s, its exponential CTFS representation is expressed as follows:


x̃T (t) =
∞∑


n=−∞
D̃ne


jnω0t , (5.2)


where the exponential CTFS coefficients are given by


D̃n =
1


T0


∫


〈T0〉


x̃T (t)e
−jnω0t dt . (5.3)


The spectra of x̃T (t) are the magnitude and phase plots of the CTFS coefficients


D̃n as a function of nω0. Because n takes on integer values, the magnitude


and phase spectra of x̃T (t) consist of vertical lines separated uniformly by


ω0. Applying the limit T0 → ∞ to x̃T (t) causes the spacing ω0 = 2π/T0 in
the spectral lines of the magnitude and phase spectra to decrease to zero. The


resulting spectra represent the Fourier representation of the aperiodic signal x(t)


and are continuous along the frequency (ω) axis. The CTFT for aperiodic signals


is, therefore, a continuous function of frequency ω. To derive the mathematical


definition of the CTFT, we apply the limit T0 → ∞ to Eq. (5.3). The resulting
expression is as follows:


lim
T0→∞


D̃n = lim
T0→∞


1


T0


∫


〈T0〉


x(t)e−jnω0t dt


or


Dn = lim
T0→∞


1


T0


∞∫


−∞


x(t)e−jnω0t dt since lim
T0→0


x̃T (t) = x(t). (5.4)


In Eq. (5.4), the term Dn denotes the exponential CTFT coefficients of x(t).


Let us define a continuous function X (ω) (with the independent variable ω) as
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follows:


X (ω) =
∞∫


−∞


x(t)e−jωt dt . (5.5)


In terms of X (ω), Eq. (5.4) can, therefore, be expressed as follows:


Dn = lim
T0→∞


1


T0
X (nω0). (5.6)


Using the exponential CTFS definition, x(t) can be evaluated from the CTFS


coefficients Dn as follows:


x(t) =
∞∑


n=−∞
Dne


jnω0t = lim
T0→∞


∞∑


n=−∞


1


T0
X (nω0)e


jnω0t . (5.7)


As T0 → ∞, the fundamental frequencyω0 approaches a small value denoted by
�ω. The fundamental period T0 is therefore given by T0 = 2π /�ω. Substituting
T0 = 2π /�ω as ω0 → �ω in Eq. (5.7) yields


x(t) =
1


2π
lim


�ω→0


∞∑


n=−∞
X (n�ω) e jn�ωt�ω


︸ ︷︷ ︸


A


. (5.8)


In Eq. (5.8), consider the term A as illustrated in Fig. 5.2. In the limit �ω → 0,
term A represents the area under the function X (ω)exp(jωt). Therefore Eq.


(5.8) can be rewritten as follows:


CTFT synthesis equation x(t) =
1


2π
=


∞∫


−∞


X (ω)e−jωt dt, (5.9)


which is referred to as the synthesis equation for the CTFT used to express


any aperiodic signal in terms of complex exponentials, exp(jωt). The analysis


equation of the CTFT is given by Eq. (5.5), which, for convenience of reference,


is repeated below.


CTFT analysis equation X (ω) =
∞∫


−∞


x(t)e−jωt dt . (5.10)


w


0


X (w)e jwt


n∆w (n + 1)∆w∆w


A = X(nw)e jn∆wt∆wFig. 5.2. Approximation of the


term
∞∑


n=−∞
X(n�ω)


e jn�ωt �ω as the area under the


function X (ω)exp( jωt ).
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Collectively, Eqs. (5.9) and (5.10) form the CTFT pair, which is denoted by


x(t)
DTFT←−−→ X (ω). (5.11)


Alternatively, the CTFT pair may also be represented as follows:


X (ω) = ℑ{x(t)} (5.12)


or


x(t) = ℑ−1{X (ω)}, (5.13)


where ℑ denotes for the CTFT and ℑ−1 denotes the inverse of the CTFT. Based
on Eqs. (5.10) and (5.11), we make the following observations about the CTFT.


(1) The frequency representation of a periodic signal x̃(t) is obtained by


expressing x̃(t) in terms of the CTFS. The basis function of the CTFS


consists of complex exponentials {exp(jnω0t)}, which are defined at the


fundamental frequency ω0 and its harmonics nω0. The frequency repre-


sentation of an aperiodic signal x(t) is obtained through the CTFT, where


the complex exponential exp(jnωt) is the basis function. The variable ω


in the basis function of the CTFT is a continuous variable and may have


any value within the range −∞ < ω < ∞. Unlike the CTFS, the CTFT is
therefore defined for all frequencies ω.


(2) In general, the CTFT X (ω) is a complex function of the angular frequency


ω. A great deal of information is obtained by plotting the magnitude and


phase of X (ω) with respect to ω. The plots of magnitude |X (ω)| and phase
<X (ω) with respect to ω are, respectively, referred to as the magnitude and


phase spectra of the aperiodic function x(t).


(3) In deriving the definition of the CTFT, we assumed that the aperiodic


function x(t) is time-limited such that x(t) = 0 for |t | > L . This is not
a required condition for the existence of the CTFT. In other words, the


function x(t) may be infinitely long but its CTFT can exist.


5.2 Examples of CTFT


In Section 5.2, we calculate the forward and inverse CTFT of several well known


functions. We assume that the CTFT exists in all cases. A general condition for


the existence of the CTFT is derived in Section 5.6.


Example 5.1


Determine the CTFT of the following functions and plot the corresponding


magnitude and phase spectra:


(i) x1(t) = exp(−at)u(t), a ∈ R+;
(ii) x2(t) = exp(−a|t |), a ∈ R+.
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Table 5.1. Magnitude |X (ω)| and phase <X (ω) for the CTFT of x (t ) = exp(−3t )u(t ) in Example 5.1


ω (radians/s) −∞ −1000 −100 −10 −1 0 1 10 100 ∞
Magnitude: |X (ω)| 0 0.001 0.01 0.096 0.316 0.333 0.316 0.096 0.01 0
Phase: <X (ω) π/2 1.57 1.54 1.28 0.32 0 −0.32 −1.28 −1.54 −π/2


The notation a ∈ R+ implies that a is real-valued within the range −∞ <
a < ∞.


Solution


(i) Based on the definition of the CTFT, Eq. (5.10), we obtain


X1(ω) = ℑ{e−at u(t)} =
∞∫


−∞


e−at u(t)e−jωt dt =
∞∫


0


e−(a+jω)t dt


= −
1


(a + jω)
[


e−(a+jω)t
]∞


0
= −


1


(a + jω)


[


lim
t→∞


e−(a+jω)t − 1
]


,


where the term


lim
t→∞


e−(a+jω)t = lim
t→∞


e−at · lim
t→∞


e−jωt = 0 · lim
t→∞


e−jωt = 0.


Therefore,


X1(ω) =
1


a + jω
.


The magnitude and phase of X1(ω) are given by


magnitude |X1(ω)| =
∣
∣
∣
∣


1


a + jω


∣
∣
∣
∣
=


1
√


a2 + ω2
;


phase <X1(ω) = <
1


a + jω
= <1 − <(a + jω) = −tan−1


(ω


a


)


.


Table 5.1 lists the amplitude and phase of X (ω) for several values of ω with


a = 3. The exponentially decaying function x1(t) and its magnitude and phase
spectra are plotted in Fig. 5.3.


(ii) Based on the definition of the CTFT, Eq. (5.10), we obtain


X2(ω) = ℑ{e−a|t |} =
∞∫


−∞


e−a|t |e−jωt dt


=
∞∫


−∞


e−a|t | cos(ωt)
︸ ︷︷ ︸


even function


dt − j
∞∫


−∞


e−a|t | sin(ωt)
︸ ︷︷ ︸


odd function


dt.


Since the integral of an odd function with limits [−L , L] is zero, the above
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t
0


x1(t)


w
0


X1(w)1/a


w
0


< X1(w)
p/2


−p/2


(a) (b) (c)


Fig. 5.3. CTFT of the causal


decaying exponential function


x(t ) = e−at u(t ). (a) x(t );
(b) magnitude spectrum;


(c) phase spectrum.


equation reduces to


X2(ω) =
∞∫


−∞


e−a|t | cos(ωt)dt = 2
∞∫


0


e−at cos(ωt)dt


=
2


a2 + ω2
[−ae−at cos(ωt) + ωe−at sin(ωt)]∞0 =


2a


a2 + ω2
.


Since X2(ω) is positive real-valued, the magnitude and phase of X2(ω) are given


by


magnitude |X2(ω)| =
∣
∣
∣
∣


2a


a2 + ω2


∣
∣
∣
∣
=


2a


a2 + ω2
.


phase <X2(ω) = 0.


The non-causal exponentially decaying function x2(t) and its magnitude and


phase spectra are plotted in Fig. 5.4.


We note from Example 5.1 that the magnitude spectrum is symmetric along


the vertical axis while the phase spectrum is symmetric about the origin. The


magnitude spectrum is, therefore, an even function of ω, while the phase spec-


trum is an odd function of ω. This is a consequence of the symmetry properties


observed by real-valued functions. The symmetry properties are discussed in


detail in Section 5.3.


Example 5.2


Calculate the CTFT of a constant function x(t) = 1.


0
t


x2(t)


ω
0


X2(w)2a


w
0


< X2(w) = 0
p/2


−p/2


(a) (b) (c)


Fig. 5.4. CTFT of the causal


decaying exponential function


x2(t ) = exp(−a|t |). (a) x2(t );
(b) Magnitude spectrum;


(c) phase spectrum for a > 0.
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t
0


x(t) = 1
1


w
0


X(ω) = 2pd(w)2p


<X(w) = 0
|X(w)|


(a) (b)


Fig. 5.5. CTFT of a constant


function. (a) Constant function,


x(t ) = 1; (b) its CTFT,
X (ω) = 2πδ(ω).


Solution


Based on the definition of the CTFT, Eq. (5.10), we obtain


X (ω) = ℑ{1} =
∞∫


−∞


e−jωt dt . (5.14)


It can be shown that (see Problem 5.10)


∞∫


−∞


e jωt dt = 2πδ(ω). (5.15)


Substituting ω by −ω on both sides of Eq. (5.15), we obtain
∞∫


−∞


e−jωt dt = 2πδ(−ω) = 2πδ(ω),


which results in


X (ω) =
∞∫


−∞


e−jωt dt = 2πδ(ω).


In other words,


1
CTFT
–−→ 2πδ(ω). (5.16)


The magnitude spectrum of a constant function x(t) = 1 therefore consists of
an impulse function with area 2π located at the origin, ω = 0, in the frequency
domain. The magnitude spectrum is plotted in Fig. 5.5(b). The phase is zero for


all frequencies (∞ ≤ ω ≤ −∞).


Example 5.3


The CTFT of an aperiodic function g(t) is given by G(ω) = 2πδ(ω). Determine
the aperiodic function g(t).


Solution


Based on the CTFT analysis equation, Eq. (5.10), we obtain


g(t) = ℑ−1{2πδ(ω)} =
1


2π


∞∫


−∞


2πδ(ω)e jωt dω =
∞∫


−∞


δ(ω)dω = 1.
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t
0


x(t) = d(t)1


w
0


X(w) = 11


<X(w) = 0


|X(w)|


(b)(a)


Fig. 5.6. CTFT of an impulse


function. (a) Impulse function,


x(t ) = δ(t ); (b) its CTFT,
X(ω) = 1.


In other words,


1
CTFT←−– 2πδ(ω). (5.17)


Combining the results in Examples 5.2 and 5.3, we obtain the CTFT pair:


1
CTFT←−−→ 2πδ(ω). (5.18)


Example 5.4


Determine the Fourier transform of the impulse function x(t) = δ(t).


Solution


Based on the definition of the CTFT, Eq. (5.10), we obtain


X (ω) = ℑ{δ(t)} =
∞∫


−∞


δ(t)e−jωt dt =
∞∫


−∞


δ(t)dt = 1.


Therefore,


δ(t)
CTFT
–−→ 1.


The CTFT of the impulse function located at the origin (t = 0) is a constant.
The magnitude spectrum is shown in Fig. 5.6. The phase spectrum is zero for


all frequencies ω.


Example 5.5


The CTFT of an aperiodic function g(t) is given by G(ω) = 1. Determine the
aperiodic function g(t).


Solution


Based on the CTFT analysis equation, Eq. (5.10), we obtain


g(t) = ℑ−1{1} =
1


2π


∞∫


−∞


1 · e jωt dt . (5.19)
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By interchanging the role of ω and t in Eq. (5.15), we obtain


∞∫


−∞


e jωt dω = 2πδ(t).


Substituting the above relationship in Eq. (5.19) yields


g(t) =
1


2π


∞∫


−∞


e jωt dt =
1


2π
× 2πδ(t) = δ(t).


Therefore,


δ(t)
CTFT←−– 1. (5.20)


Combining the results derived in Examples 5.4 and 5.5, we can form the CTFT


pair:


δ(t)
CTFT←−−→ 1. (5.21)


In Example 5.5, we proved that the inverse CTFT of G(ω) = 1 is given by the
impulse function g(t) = δ(t). In Example 5.4, we showed the converse: that
the CTFT of g(t) = δ(t) is G(ω) = 1. Likewise, in Examples 5.2 and 5.3, we
established the CTFT pair,


1
CTFT←−−→ 2πδ(ω),


by computing the forward and inverse CTFT. Since the CTFT pair is unique,


it is sufficient to compute either the CTFT or its inverse. Once the CTFT is


derived, its inverse is established automatically, and vice versa. In the remaining


examples, we form the CTFT pair by deriving either the forward CTFT or its


inverse.


A second observation made from the CTFT pairs given in Eqs. (5.18) and


(5.21),


1
CTFT←−−→ 2πδ(ω) and δ(t) CTFT←−−→ 1,


is that the CTFT exhibits a duality property. The CTFT of a constant is the


impulse function, while the CTFT of an impulse function is a constant. A factor


of 2π is also introduced. We revisit the duality property in Section 5.5.


Example 5.6


Calculate the CTFT of the rectangular function f (t) shown in Fig. 5.7(a).


Solution


Based on the definition of the CTFT, Eq. (5.10), we obtain


F(ω) = ℑ {rect (t /τ )} =
τ/2∫


−τ/2


1 · e−jωt dt =
[


e−jωt


−jω


]τ/2


−τ/2
,
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t


0


1 f (t) = rect( )


2
t


t
t


2
t−


0
t
2p


t
2p−


w


t
ωt
2p


F(w) = tsinc(     )


(a) (b)


Fig. 5.7. CTFT of the rectangular


function. (a) Rectangular


function; (b) its CTFT given by


the sinc function.


which simplifies to


F(ω) = −
1


jω
[e−jωt ]


τ/2


−τ/2 = −
1


jω
[e−jωτ/2 − e jωτ/2] = −


1


jω


[


−2j sin
(ωτ


2


)]


or


F(ω) =
2


ω
sin


(ωτ


2


)


= τ sinc
(ωτ


2π


)


.


The Fourier transform F(ω) is plotted in Fig. 5.7(b). The CTFT pair for a


rectangular function is given by


rect


(
t


τ


)


CTFT←−−→ τ sinc
(ωτ


2π


)


. (5.22)


Example 5.7


Determine the aperiodic function g(t) whose CTFT G(ω) is the rectangular


function shown in Fig. 5.8(a).


Solution


From Fig. 5.8(a), we observe that


G(ω) =
{


1 |ω| ≤ W
0 |ω| > W.


Based on the CTFT analysis equation, Eq. (5.10), we obtain


g(t) = ℑ−1
{


rect
( ω


2W


)}


=
1


2π


W∫


−W


1 · e jωt dω =
1


2π


[
e jωt


jt


]W


−W
, (5.23)


which simplifies to


g(t) =
1


j2π t
[e jW t − e−jW t ] =


1


j2π t
[2j sin(W t)] =


sin(W t)


π t


=
W


π
sinc


(
W


π
t


)


.
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w


0 0W


1 2W
w


G(w) = rect (   )


−W


(a)


t


t (     )Wpg(t) = sinc(     )Wtp


W
− p


W
p


(b)


Fig. 5.8. Inverse CTFT of the


rectangular function.


(a) Frequency domain


representation G(ω) =
rect(ω/2W ); (b) its inverse


CTFT given by the sinc function.


The aperiodic function g(t) and its CTFT are plotted in Fig. 5.8. Example 5.7


establishes the following CTFT pair:


W


π
sinc


(
W


π
t


)


CTFT←−−→ rect
( ω


2W


)


=
{


1 |ω| ≤ W
0 |ω| > W. (5.24)


Example 5.8


Determine the signal x(t) whose CTFT is a frequency-shifted impulse function


X (ω) = δ(ω – ω0).


Solution


Based on the CTFT analysis equation, Eq. (5.10), we obtain


x(t) = ℑ−1{δ(ω − ω0)} =
1


2π


∞∫


−∞


δ(ω − ω0)e−jωt dω


=
1


2π
e−jω0t


∞∫


−∞


δ(ω − ω0)dω =
1


2π
e−jω0t .


Example 5.8 proves the following CTFT pair:


e jω0t
CTFT←−−→ 2πδ(ω − ω0). (5.25)


Substituting ω0 by −ω0 in Eq. (5.25), we obtain another CTFT pair:


e−jω0t
CTFT←−−→ 2πδ(ω + ω0). (5.26)


In Examples 5.1 to 5.8, we evaluated several CTFT pairs for some elementary


time functions. Table 5.2 lists the CTFTs for additional time functions. In prac-


tice, a graphical plot of the CTFT helps to understand the frequency properties


of the function. In Table 5.3, we illustrate the frequency responses of several


functions by plotting their magnitude and phase spectra. In the plots, the magni-


tude spectra are shown as solid lines and the phase spectra are shown as dashed


lines. In certain cases, the values of the corresponding phases are zero for all


frequencies, and in these cases the phase spectra are not plotted.
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Table 5.2. CTFT pairs for elementary CT signals


Time domain Frequency domain


CT signals x(t) =
1


2π


∞∫


−∞


X (ω)e jωt dt X (ω) =
∞∫


−∞


x(t)e−jωt dt Comments


(1) Constant 1 2πδ(ω)


(2) Impulse function δ(t) 1


(3) Unit step function u(t) πδ(ω) +
1


jω


(4) Causal decaying


exponential function


e−at u(t)
1


a + jω
a > 0


(5) Two-sided decaying


exponential function


e−a|t |
2a


a2 + ω2
a > 0


(6) First-order time-rising


causal decaying


exponential function


te−at u(t)
1


(a + jω)2
a > 0


(7) N th-order time-rising


causal decaying


exponential function


tne−at u(t)
n!


(a + jω)n+1
a > 0


(8) Sign function sgn(t) =
{


1 t > 0


−1 t < 0
2


jω


(9) Complex exponential ejω0 t 2πδ(ω − ω0)
(10) Periodic cosine function cos(ω0t) π [δ(ω − ω0) + δ(ω + ω0)]


(11) Periodic sine function sin(ω0t)
π


j
[δ(ω − ω0) − δ(ω + ω0)]


(12) Causal cosine function cos(ω0t)u(t)
π


2
[δ(ω − ω0) + δ(ω + ω0)] +


jω


ω20 − ω2


(13) Causal sine function sin(ω0t)u(t)
π


2j
[δ(ω − ω0) − δ(ω + ω0)] +


ω0


ω20 − ω2


(14) Causal decaying


exponential cosine


function


e−at cos(ω0t)u(t)
a + jω


(a + jω)2 + ω20
a > 0


(15) Causal decaying


exponential sine function


e−at sin(ω0t)u(t)
ω0


(a + jω)2 + ω20
a > 0


(16) Rectangular function rect


(
t


τ


)


=
{


1 |t | ≤ τ/2
0 |t | > τ/2 τ sinc


(ωτ


2π


)


τ �= 0


(17) Sinc function
W


π
sinc


(
W t


π


)


rect
( ω


2W


)


=
{


1 |ω| ≤ W
0 |ω| > W


(18) Triangular function △
(


t


τ


)


=


{


1 −
|t |
τ


|t | ≤ τ
0 otherwise


τ sinc
2(ωτ


2π


)


τ > 0


(19) Impulse train


∞∑


k=−∞
δ(t − kT0) ω0


∞∑


m=−∞
δ(ω − mω0) angular


frequency


ω0 = 2π /T0
(20) Gaussian function e−t


2/2σ 2 σ
√


2πe−σ
2ω2/2
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209 5 Continuous-time Fourier transform


5.3 Inverse Fourier transform


Evaluation of the inverse CTFT is an important step in analysis of LTIC systems.


There are three main approaches that may be taken to calculate the inverse


CTFT:


(i) using the synthesis equation;


(ii) using a look-up table;


(iii) using partial fraction expansion.


In the first approach, the inverse CTFT is calculated by solving the synthe-


sis equation, Eq. (5.9). This method was used in Examples 5.3, 5.5, 5.7, and


5.8. However, this approach is difficult. We now present the second and third


approaches. Approach (ii) is straightforward as it determines the inverse CTFT


by comparing the entries with Table 5.2. We illustrate this with an example.


Example 5.9


Using the look-up table method, calculate the inverse CTFT of the following


function:


X (ω) =
2(jω) + 24


(jω)2 + 4(jω) + 29
. (5.27)


Solution


The function X (ω) is decomposed into simpler terms, whose inverse CTFT


can be determined directly from Table 5.2. One possible decomposition is as


follows:


X (ω) = 2
2 + ( jω)


(2 + jω)2 + 52
+ 4


5


(2 + jω)2 + 52
. (5.28)


From Entries (14) and (15) of Table 5.2, we know that


e−2t cos(5t)u(t)
CTFT←−−→


2 + jω
(2 + jω)2 + 52


and


e−2t sin(5t)u(t)
CTFT←−−→


5


(2 + jω)2 + 52
.


Therefore, the inverse CTFT is calculated as follows:


x(t) = 2e−2t cos(5t)u(t) + 4e−2t sin(5t)u(t). (5.29)


5.3.1 Partial fraction expansion


The look-up table approach is simple to use once a suitable decomposition is


obtained. A major problem, however, is faced in the decomposition of the CTFT


X (ω) in terms of simpler functions whose inverse CTFTs are listed in Table 5.2.
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We now present approach (iii), which uses the partial fraction expansion to


decompose systematically a rational function in simpler terms. Consider the


CTFT


X (ω) =
N (ω)


D(ω)
=


bm( jω)
m + bm−1( jω)m−1 + · · · + b1( jω) + b0


( jω)n + an−1( jω)n−1 + · · · + a1( jω) + a0
, (5.30)


where the numerator is an mth-order polynomial and the denominator is an


nth-order polynomial. The partial fraction method is explained in more detail


in Appendix D (see Section D.2). The main steps are summarized as follows.


(1) Factorize D(ω) into n first-order factors and express X (ω) as follows:


X (ω) =
N (ω)


( jω − p1)( jω − p2) · · · ( jω − pn)
. (5.31)


(2) If there are no repeated or complex roots in D(ω), X (ω) is expressed in


terms of n partial fractions:


X (ω) =
k1


( jω − p1)
+


k2


( jω − p2)
+ · · · +


kn


( jω − pn)
, (5.32)


where the partial fraction coefficients are calculated using the Heaviside


formula as follows:


kr = [( jω − pr )X (ω)]jω=pr , (5.33)


for 1 ≤ r ≤ n. For repeated or complex roots, the partial fraction expansion
is more complicated and is discussed in Appendix D.


(3) The inverse CTFT can then be calculated as follows:


x(t) = [k1ep1t + k2ep2t + · · · + knepn t ]u(t). (5.34)


Example 5.10


Using the partial fraction method, calculate the inverse CTFT of the following


function:


X (ω) =
5(jω) + 30


(jω)3 + 17(jω)2 + 80(jω) + 100
.


Solution


In terms of jω, the roots of D(ω) = (jω)3 + 17(jω)2 + 80(jω) + 100 are given
by jω = −2, −5, and −10. The partial fraction expansion of X (ω) is given by


X (ω) =
5(jω) + 30


(jω + 2)( jω + 5)( jω + 10)
≡


k1


( jω + 2)
+


k2


( jω + 5)
+


k3


( jω + 10)
,
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where the partial fraction coefficients are given by


k1 = ( jω + 2)
5(jω) + 30


(jω + 2)( jω + 5)( jω + 10)


∣
∣
∣
∣
jω=−2


=
5(jω) + 30


(jω + 5)( jω + 10)


∣
∣
∣
∣
jω=−2


=
20


(3)(8)
=


5


6
,


k2 = ( jω + 5)
5(jω) + 30


(jω + 2)( jω + 5)( jω + 10)


∣
∣
∣
∣
jω=−5


=
5(jω) + 30


(jω + 2)( jω + 10)


∣
∣
∣
∣
jω=−5


=
5


(−3)(5)
= −


1


3
,


and


k3 = ( jω + 10)
5(jω) + 30


(jω + 2)( jω + 5)( jω + 10)


∣
∣
∣
∣
jω=−10


=
5(jω) + 30


(jω + 2)( jω + 5)


∣
∣
∣
∣
jω=−10


=
−20


(−8)(−5)
= −


1


2
.


Therefore, the partial fraction expansion of X (ω) is given by


X (ω) ≡
5


6(jω + 2)
−


1


3(jω + 5)
−


1


2(jω + 10)
. (5.35)


Using the CTFT pairs in Table 5.2 to calculate the inverse CTFT, the function


x(t) is calculated as


x(t) =


[
5


6
e−2t −


1


3
e−5t −


1


2
e−10t


]


u(t). (5.36)


5.4 Fourier transform of real, even, and odd functions


In Example 5.1, it was observed that the CTFT of a causal decaying exponential,


e−at u(t)
CTFT←−−→


1


(a + jω)
,


has an even magnitude spectrum, while the phase spectrum is odd. This is


known as Hermitian symmetry and holds true for the CTFT of any real-valued


function. In this section, we consider various properties of the CTFT for real-


valued functions.


5.4.1 CTFT of real-valued functions


5.4.1.1 Hermitian symmetry property


The CTFT X (ω) of a real-valued signal x(t) satisfies the following:


X (−ω) = X∗(ω) , (5.37)


where X∗(ω) denotes the complex conjugate of X (ω).
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Proof


By definition,


X∗(ω) = [ℑ{x(t)}]∗ =








∞∫


−∞


x(t)e−jωt dt








∗


=
∞∫


−∞


[x(t)e−jωt ]∗dt,


which simplifies to


X∗(ω) =
∞∫


−∞


x∗(t)e jωt dt .


Since x(t) is a real-valued signal, x∗(t) = x(t) and we obtain


X∗(ω) =
∞∫


−∞


x(t)e−j(−ω)t dt = X (−ω),


which completes the proof.


The Hermitian property can also be expressed in terms of: (i) the real and


imaginary components of the CTFT X (ω), and (ii) the magnitude and phase


of X (ω). These lead to alternative representations for the Hermitian property,


which are listed below.


5.4.1.2 Alternative form I for Hermitian symmetry property


The real component of the CTFT X (ω) of a real-valued signal x(t) is even,


while its imaginary component is odd. Mathematically,


Re{X (−ω)} = Re{X (ω)} and Im{X (−ω)} = −Im{X (ω)}. (5.38)


Proof


Substituting X (ω) = Re{X (ω)} + j Im{X (ω)} in the Hermitian symmetry prop-
erty, Eq. (5.37), yields


Re{X (−ω)} + j Im{X (−ω)} = Re{X (ω)} − j Im{X (ω)}.


Separating the real and imaginary components in the above expression proves


the alternative form I of the Hermitian symmetry property.


5.4.1.3 Alternative form II for Hermitian symmetry property


The magnitude spectrum |X (ω)| of the CTFT X (ω) of a real-valued signal x(t)
is even, while its phase spectrum <X (ω) is odd. Mathematically,


|X (−ω)| = |X (ω)| and <X (−ω) = −<X (−ω). (5.39)
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Proof


The magnitude of the complex function X (−ω) = Re{X (−ω)} + j Im{X (−ω)}
is given by


|X (−ω)| =
√


(Re{X (−ω)})2 + (Im{X (−ω)})2 .


Substituting Re{X (−ω)} = Re{X (ω)} and Im{X (−ω)} = −Im{X (ω)},
obtained from the alternative form I of the Hermitian symmetry property in


the above expression, yields


|X (−ω)| =
√


(Re{X (ω)})2 + (−Im{X (ω)})2 = |X (ω)|,


which proves that the magnitude spectrum |X (ω)| of a real-valued signal is
even. Alternatively, consider the phase of the complex function X (−ω) =
Re{X (−ω)} + j Im{X (−ω)} as given by


<X (−ω) = tan−1
(


Re{X (−ω)}
Im{X (−ω)}


)


.


Substituting Re{X (−ω)} = Re{X (ω)} and Im{X (−ω)} = −Im{X (ω)} yields


<X (−ω) = tan−1
(


Re{X (−ω)}
−Im{X (−ω)}


)


= −<X (ω),


which proves that the phase spectrum <X (ω) of a real-valued signal is odd.


Example 5.11


Consider a function g(t) whose CTFT is given by G(ω) = 1 + 2πδ(ω − ω0).
Determine if g(t) is a real-valued function.


Solution


Substituting ω by −ω in the CTFT G(ω) yields


G(−ω) = 1 + 2πδ(−ω − ω0) = 1 + 2πδ(ω + ω0).


The complex conjugate of G(ω) is given by


G∗(ω) = [1 + 2πδ(ω − ω0)]∗ = 1 + 2πδ(ω − ω0).


Comparing the two expressions, it is clear that G*(ω) �= G(−ω), and therefore
that g(t) is not a real-valued function. In order to verify the result, we calculate


the inverse CTFT of G(ω) as follows:


g(t) = ℑ−1{G(ω)} = ℑ−1{1+2πδ(ω − ω0)} = ℑ−1{1}+2πℑ−1{δ(ω − ω0)},


which results in


g(t) = δ(t) + e jω0t ,


or


g(t) = δ(t) + cos(ω0t) + j sin(ω0t),
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verifying that g(t) is indeed not real-valued. In deriving the inverse CTFT of


G(ω), we have assumed that the CTFT satisfies the linearity property, which is


formally proved in Section 5.5.


5.4.2 CTFT of real-valued even and odd functions


A second set of symmetry properties is obtained if we assume that, in addition


to being real-valued, x(t) is an even or odd function. Before expressing these


properties, we show that the expression of the CTFT is simplified considerably


if we assume that x(t) is an even or odd function.


Using the Euler identity, the CTFT is expressed as follows:


X (ω) =
∞∫


−∞


x(t)e−jωt dt =
∞∫


−∞


x(t) cos(ωt)dt − j
∞∫


−∞


x(t) sin(ωt)dt.


Case I If x(t) is even, then x(t) cos(ωt) is also an even function, while x(t)
sin(ωt) is an odd function. Therefore, the CTFT for the even-valued function


can alternatively be calculated from


X (ω) = 2
∞∫


0


x(t) cos(ωt)dt. (5.40)


Case II If x(t) is odd, then x(t) sin(ωt) is an even function, while x(t) cos(ωt)
is an odd function. An alternative expression for the CTFT for the odd-valued


function is given by


X (ω) = −j2
∞∫


0


x(t) sin(ωt)dt. (5.41)


By combining the Hermitian property with Eqs. (5.40) and (5.41), the following


two properties are obtained.


Property 5.1 CTFT of real-valued, even functions The CTFT X (ω) of a real-


valued, even function x(t) is also real and even. In other words, Re{X (ω)} =
Re{X (−ω)} and Im{X (ω)} = 0.


Property 5.2 CTFT of real-valued, odd functions The CTFT X (ω) of a real-


valued, odd function x(t) is imaginary and odd. In other words, Re{X (ω)} =
0 and Im{X (ω)} = −Im{X (−ω)}.


The proofs of Properties 5.1 and 5.2 are left as exercises for the readers. See


Problems 5.6 and 5.7. The symmetry properties of the CTFT are summarized


in Table 5.4.
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t
0 1 2


2


x1(t)


−1−2


t


0 1 2


2
x2(t)


−2


−1−2


(a) (b)


Fig. 5.9. CT signals used in


Example 5.12. (a) x1(t );


(b) x2(t ).


Example 5.12


Calculate the Fourier transform of the functions x1(t) and x2(t) shown in


Fig. 5.9.


Solution


(a) The mathematical expression for the CT function x1(t), illustrated in


Fig. 5.9(a), is given by


x1(t) =











2|t | −1 ≤ t ≤ 1
2 1 < |t | ≤ 2
0 elsewhere.


Since x1(t) is an even function, its CTFT is calculated using Eq. (5.40) as


follows:


X1(ω) = 2
∞∫


0


x(t) cos(ωt)dt = 2
1∫


0


(2t) cos(ωt) dt + 2
2∫


1


2 cos(ωt) dt,


which simplifies to


X1(ω) = 4
[


t
sin(ωt)


ω
+ 1


cos(ωt)


ω2


]1


0


+ 4
[


sin(ωt)


ω


]2


1


or


X1(ω) = 4
⌊


sin(ω)


ω
+


cos(ω)


ω2
−


1


ω2


⌋


+ 4
⌊


sin(2ω)


ω
−


sin(ω)


ω


⌋


=
4


ω2
[ω sin(2ω) + cos(ω) − 1]. (5.42)


The above result validates the symmetry property for real-valued, even func-


tions. Property 5.1 states that the CTFT of a real-valued, even function is real


and even. This is indeed the case for X1(ω) in Eq. (5.42).


(b) The function x2(t), shown in Fig. 5.9(b), is expressed as follows:


x2(t) =















−2 −2 ≤ t ≤ 1
2t −1 ≤ t ≤ 1
2 1 < t ≤ 2
0 elsewhere.
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Since x2(t) is an odd function, its CTFT, based on Eq. (5.41), is given by


X2(ω) = −j2
∞∫


0


x(t) sin(ωt)dt = −j2
1∫


0


(2t) sin(ωt)dt − j2
2∫


1


2 sin(ωt)dt,


which simplifies to


X2(ω) = −j4
[


−t
cos(ωt)


ω
+ 1


sin(ωt)


ω2


]1


0


− j4
[


−
cos(ωt)


ω


]2


1


or


X2(ω) = j4
[


cos(ω)


ω
−


sin(ω)


ω2


]


+ j4
[


cos(2ω)


ω
−


cos(ω)


ω


]


= j
4


ω2
[ω cos(2ω) − sin(ω)]. (5.43)


The above result validates the symmetry property for real-valued odd functions.


Property 5.2 states that the CTFT of a real-valued odd function is imaginary


and odd. This is indeed the case for X2(ω) in Eq. (5.43).


5.5 Properties of the CTFT


In Section 5.4, we covered the symmetry properties of the CTFT. In this section,


we present the properties of the CTFT based on the transformations of the


signals. Given the CTFT of a CT function x(t), we are interested in calculating


the CTFT of a function produced by a linear operation on x(t) in the time


domain. The linear operations being considered include superposition, time


shifting, scaling, differentiation and integration. We also consider some basic


non-linear operations like multiplication of two CT signals, convolution in the


time and frequency domain, and Parseval’s relationship. A list of the CTFT


properties is included in Table 5.4.


5.5.1 Linearity


Often we are interested in calculating the CTFT of a signal that is a linear


combination of several elementary functions whose CTFTs are known. In such


a scenario, we use the linearity property to show that the overall CTFT is


given by the same linear combination of the individual CTFTs used in the time


domain. The linearity property is defined below.


If x1(t) and x2(t) are two CT signals with the following CTFT pairs:


x1(t)
CTFT←−−→ X1(ω)


and


x2(t)
CTFT←−−→ X2(ω)
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Table 5.4. Symmetry and transformation properties of the CTFT


Transformation


Time domain Frequency domain


properties x(t) =
1


2π


∞∫


−∞


X (ω)e jωt dω X (ω) =
∞∫


−∞


x(t)e− jωt dt Comments


Linearity a1x1(t) + a2x2(t) a1 X1(ω) + a2 X2(ω) a1, a2 ∈ C


Scaling x(at)
1


|a|
X


(ω


a


)


a ∈ ℜ, real-valued


Time shifting x(t − t0) e−jωt0 X (ω) t0 ∈ ℜ, real-valued
Frequency shifting e jω0t x(t) X (ω − ω0) ω0 ∈ ℜ, real-valued


Time differentiation
dn x


dtn
( jω)n X (ω) provided dx/dt exists


Time integration


t∫


−∞


x(τ )dτ
X (ω)


jω
+ π X (0)δ(ω) provided


t∫


−∞


x(τ )dτ


exists


Frequency differentiation tn x(t) ( j)n
dn X


dωn
provided dX/dω exists


Duality X (t) 2πx(−ω) if x(t) CTFT←−−→ X (ω)
Time convolution x1(t) ∗ x2(t) X1(ω)X2(ω) convolution in time


domain


Frequency convolution x1(t) × x2(t)
1


2π
[X1(ω) ∗ X2(ω)] multiplication in time


domain


Parseval’s relationship Ex =
∞∫


−∞


|x(t)|2dt =
1


2π


∞∫


−∞


|X (ω)|2dω energy in a signal


Symmetry properties


CTFT: X (−ω) = X∗(ω)


Hermitian property x(t) is a real-valued


function


real and imaginary components
{


Re{X (ω)} = Re{X (−ω)}
Im{X (ω)} = −Im{X (−ω)}


real component is even;


imaginary component


is odd


magnitude and phase spectra
{


|X (−ω)| = |X (ω)|
<X (−ω) = −<X (ω)


magnitude spectrum is


even; phase spectrum


is odd


Even function x(t) is even X (ω) = 2
∞∫


0


x(t) cos(ωt)dt simplified CTFT


expression for even


signals


Odd function x(t) is odd X (ω) = −j2
∞∫


0


x(t) sin(ωt)dt simplified CTFT


expression for odd


signals


Real-valued and even


function


x(t) is even and real-valued Re{X (ω)} = Re{X (−ω)}
Im{X (ω)} = 0


CTFT is real-valued and


even


Real-valued and odd


function


x(t) is odd and real-valued Re{X (ω)} = 0
Im{X (ω)} = −Im{X (−ω)}


CTFT is imaginary and


odd
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then, for any arbitrary constants a1 and a2, the linearity property states that


a1x1(t) + a2x2(t)
CTFT←−−→ a1 X1(ω) + a2 X2(ω), for a1, a2 ∈ C, (5.44)


where C denotes the set of complex numbers.


Proof


By Eq. (5.10), the CTFT of the linear combination a1x1(t) and a2x2(t) is given


by


ℑ{a1x1(t) + a2x2(t)} =
∞∫


−∞


[a1x1(t) + a2x2(t)]e−jωt dt


= a1


∞∫


−∞


x1(t)e
−jωt dt


︸ ︷︷ ︸


X1(ω)


+ a2


∞∫


−∞


x2(t)e
−jωt dt


︸ ︷︷ ︸


X2(ω)


or


ℑ{a1x1(t) + a2x2(t)} = a1 X1(ω) + a2 X2(ω),


which completes the proof.


The application of the linearity property is demonstrated through the following


example.


Example 5.13


Using the CTFT pairs given in Eqs. (5.25) and (5.27),


e jω0t
CTFT←−−→ 2πδ(ω − ω0)


and


e−jω0t
CTFT←−−→ 2πδ(ω + ω0),


calculate the CTFT of the cosine function cos(ω0t).


Solution


Using Euler’s formula,


ℑ{cos(ω0t)} =
{


1


2
[e jω0t + e−jω0t ]


}


=
1


2
ℑ{e jω0t } +


1


2
ℑ{e−jω0t }.


Using the aforementioned CTFT pairs for exp(jω0t) and exp(−jω0t), we obtain


ℑ{cos(ω0t)} = π [δ(ω − ω0) + δ(ω + ω0)],


which is the same as the CTFT for the periodic cosine function in Table 5.2.
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2


g(t)


0 1 2
t


Fig. 5.10. Waveform g(t ) used


in Example 5.14.


Example 5.14


Calculate the CTFT of the waveform g(t) plotted in Fig. 5.10.


Solution


By inspection, the waveform g(t) can be expressed as a linear combination of


x1(t) and x2(t) from Fig. 5.9, as follows:


g(t) =
1


2
[x1(t) + x2(t)].


Using the linearity property, the CTFT of g(t) is given by


G(ω) =
1


2
X1(ω) +


1


2
X2(ω).


Based on Eqs. (5.42) and (5.43), the CTFT pairs for x1(t) and x2(t) are given


by


X1(ω) =
4


ω2
[ω sin(2ω) + cos(ω) − 1]


and


X2(ω) = j
4


ω2
[ω cos(2ω) − sin(ω)].


The CTFT of g(t) is therefore given by


G(ω) =
2


ω2
[ω sin(2ω) + cos(ω) − 1] + j


2


ω2
[ω cos(2ω) − sin(ω)]


=
2


ω2
[jωe−j2ω + e−jω − 1].


5.5.2 Time scaling


In Section 1.4.1, we showed that the time-scaled version of a signal x(t) is given


by x(at). If a > 1, the signal compresses in time. If a < 1, the signal expands in


time. The time-scaling property expresses the CTFT of the time-scaled signal


x(at) in terms of the CTFT of the original signal x(t).


If x(t)
CTFT←−−→ X (ω) then


x(at)
CTFT←−−→


1


|a|
X


(ω


a


)


, for a ∈ ℜ and a �= 0, (5.45)


where ℜ denotes the set of real values.
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0 42


3
h(t)


t


Fig. 5.11. Waveform h(t ) used


in Example 5.15.


Proof


Equation (5.45) can be proved separately for the two cases a > 0 and a < 0.


Case I (a > 0). By Eq. (5.10), the CTFT of the time-scaled signal x(at) is given


by


ℑ{x(at)} =
∞∫


−∞


x(at)e−jωt dt .


Substituting τ = at, the above integral reduces to


ℑ{x(at)} =
∞∫


−∞


x(τ )e−jωτ/2
dτ


a
=


1


a
X


(ω


a


)


,


which proves Eq. (5.45) for a > 0. The proof for a < 0 follows the above


procedure and is left as an exercise for the reader (see Problem 5.13).


Example 5.15


To illustrate the usefulness of the time-scaling property, let us calculate the


CTFT of the function h(t) shown in Fig. 5.11.


Solution


By inspection, the waveform h(t) can be expressed as a scaled version of g(t)


illustrated in Fig. 5.10 as follows:


h(t) =
3


2
g


(
t


2


)


=
3


2
g(0.5t).


Applying the linearity and time-scaling properties with a = 0.5, the CTFT of
g(t) is given by


H (ω) =
3


2


[
1


0.5
G


( ω


0.5


)
]


= 3G(2ω).


Based on the result of Example 5.14, G(ω) = (2/ω2)[jωe−j2ω + e−jω − 1],
which yields


H (ω) = 3
2


(2ω)2
[ j(2ω)e−j2(2ω) + e−j(2ω) − 1] =


3


2ω2
[ j2ωe−j4ω + e−j2ω − 1].
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5.5.3 Time shifting


The time-shifting operation delays or advances the reference signal in time.


Given a signal x(t), the time-shifted signal is given by x(t − t0). If the value of
the shift t0 is positive, the reference signal x(t) is delayed and shifted towards


the right-hand side of the t-axis. On the other hand, if the value of the shift t0 is


negative, signal x(t) advances forward and is shifted towards the left-hand side


of the t-axis.


If x(t)
CTFT←−−→ X (ω) then


g(t) = x(t − t0)
CTFT←−−→ e−jωt0 X (ω) for t0 ∈ ℜ, (5.46)


where ℜ denotes the set of real values.


Proof


By Eq. (5.10), the CTFT of the time-shifted signal x(t − t0) is given by


ℑ{x(t − t0)} =
∞∫


−∞


x(t − t0)e−jωt dt


= e−jωt0
∞∫


−∞


x(τ )e−jωτ dτ by substituting τ = (t − t0)


= e−jωt0 X (ω),


which proves the time-shifting property, Eq. (5.46).


The CTFT time-shifting property states that if a signal is shifted by t0 time


units in the time domain, the CTFT of the original signal is modified by a


multiplicative factor of exp(−jω0t). The magnitude and phase of the CTFT of
the time-shifted signal g(t) = x(t − t0) are given by


magnitude |G(ω)| = |e−jωt0 X (ω)| = |e−jωt0 ||X (ω)| = |X (ω)|; (5.47)
phase <G(ω) = <{e−jωt0 X (ω)} = <e−jωt0+ <X (ω) = −ωt0+ <X (ω).


(5.48)


Based on Eqs. (5.47) and (5.48), we can conclude that the time shifting does not


change the magnitude spectrum of the original signal, while the phase spectrum


is modified by an additive factor of −ωt0.
In Example 5.16, we illustrate the application of the time-shifting property


by calculating the CTFT of the waveform illustrated in Fig. 5.12.


Example 5.16


Express the CTFT of the function f (t) shown in Fig. 5.12 in terms of the CTFT


of g(t) shown in Fig. 5.10.
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3


f (t)5


3 7 10 130−3


t


Fig. 5.12. Waveform f(t ) used in


Example 5.16.


Solution


By inspection, f (t) can be expressed in terms of g(t) as


f (t) =
3


2
g


(
t + 3


3


)


+
5


2
g


(
t − 7


3


)


.


We calculate the CTFT of each term in f (t) separately. By considering the


CTFT pair g(t)
CTFT←−−→ G(ω) and applying the time-shifting property with


a = 3, we obtain


g


(
t


3


)


CTFT←−−→ 3G(3ω).


Using the time-shifting property,


g


(
t + 3


3


)


CTFT←−−→ 3e j3ωG(3ω) and g
(


t − 7
3


)


CTFT←−−→ 3e−j7ωG(3ω).


Finally, by applying the linearity property, we obtain


3


2
g


(
t + 3


3


)


+
5


2
g


(
t − 7


3


)


CTFT←−−→
3


2
· 3e j3ωG(3ω) +


5


2
· 3e−j7ωG(3ω).


Expressed in terms of the CTFT of g(t), the CTFT F(ω) of the function f (t) is


therefore given by


F(w) =
9


2
e j3ωG(3ω) +


15


2
e−j7ωG(3ω).


5.5.4 Frequency shifting


In the time-shifting property, we observed the change in the CTFT when a signal


x(t) is shifted in the time domain. The frequency-shifting property addresses


the converse problem of how a signal x(t) is modified in the time domain if its


CTFT is shifted in the frequency domain.


If x(t)
CTFT←−−→ X (ω) then


h(t) = e jω0t x(t) CTFT←−−→ X (ω − ω0), for ω0 ∈ ℜ, (5.49)


where ℜ denotes the set of real values.
The frequency-shifting property can be proved directly from Eq. (5.10) by


considering the CTFT of the signal exp(jω0t)x(t). The proof is left as an exercise


for the reader (see Problem 5.15).
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By calculating the magnitude and phase of the term exp(jω0t)x(t) on the


left-hand side of the CTFT pair shown in Eq. (5.49), we obtain


magnitude |h(t)| = |e jω0t x(t)| = |e jω0t ||x(t)| = |x(t)|; (5.50)
phase <h(t) = <e jω0t x(t) = <e jω0t + <x(t) = ω0t + <x(t). (5.51)


In other words, frequency shifting the CTFT of a signal does not change the


amplitude |x(t)| of the signal x(t) in the time domain. The only change is in the
phase <x(t) of the signal x(t), which is modified by an additive factor of ω0t .


Example 5.17


In Section 2.1.3, we considered an amplitude modulator used in the AM band of


the radio transmission to transmit an information signal m(t) to the receiver. In


terms of the information signal m(t), the amplitude-modulated signal is given


by


s(t) = A[1 + km(t)] cos(ω0t).


Express the CTFT of the amplitude-modulated signal s(t) in terms of the CTFT


M(ω) of the information signal m(t).


Solution


The amplitude-modulated signal is a sum of two terms: A cos(ω0t) and Akm(t)


cos (ω0t). In Example 5.13, we calculated the CTFT of the A cos(ω0t) as


A cos(ω0t)
CTFT←−−→ Aπ [δ(ω − ω0) + δ(ω + ω0)].


By expanding cos(ω0t), the second term Akm(t) cos(ω0t) is expressed as fol-


lows:


Akm(t) cos(ω0t) =
1


2
Akm(t)[e jω0t + e−jω0t ].


By using the frequency-shifting property, the CTFT of the terms m(t) exp(jω0t)


and m(t) exp(−jω0t) are given by


m(t)e jω0t
CTFT←−−→ M(ω − ω0) and m(t)e−jω0t


CTFT←−−→ M(ω + ω0).


By using the linearity property, the CTFT of Akm(t) cos(ω0t) is then given by


Akm(t) cos(ω0t)
CTFT←−−→


1


2
Ak[M(ω − ω0) + M(ω + ω0)].


By adding the CTFTs of the two terms, the CTFT of the amplitude-modulated


signal is given by


s(t)
CTFT←−−→ A


[


πδ(ω − ω0) + πδ(ω + ω0) +
k


2
M(ω − ω0) +


k


2
M(ω + ω0)


]


.








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 20:5


224 Part II Continuous-time signals and systems


5.5.5 Time differentiation


The time-differentiation property expresses the CTFT of a time-differentiated


signal dx/dt in terms of the CTFT of the original signal x(t). We state the


time-differentiation property next.


If x(t)
CTFT←−−→ X (ω) then


dx


dt


CTFT←−−→ jωX (ω) (5.52)


provided the derivative dx/dt exists at all time t.


Proof


From the CTFT synthesis equation, Eq. (5.9), we have


x(t) =
1


2π


∞∫


−∞


X (ω)e jωt dω.


Taking the derivative with respect to t on both sides of the equation yields


dx


dt
=


d


dt











1


2π


∞∫


−∞


X (ω)e jωt dω









.


Interchanging the order of differentiation and integration, we obtain


dx


dt
=


1


2π


∞∫


−∞


X (ω)
d


dt
{e jωt }dω =


1


2π


∞∫


−∞


[ jωX (ω)]e jωt dω.


Comparing this with Eq. (5.9), we obtain


dx


dt


CTFT←−−→ jωX (ω).


Corollary By repeatedly applying the time differentiation property, it is


straightforward to verify that


dn x


dtn
CTFT←−−→ ( jω)n X (ω).


Example 5.18


In Example 5.11, we showed that the CTFT for the periodic cosine function is


given by


cos(ω0t)
CTFT←−−→ π [δ(ω − ω0) + δ(ω + ω0)].


Using the above CTFT pair, derive the CTFT for the periodic sine function


sin(ω0t).
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Solution


Taking the derivative of the CTFT pair for the cosine function yields


d


dt
{cos(ω0t)}


CTFT←−−→ ( jω)π [δ(ω − ω0) + δ(ω + ω0)].


By rearranging terms, we obtain


−ω0 sin(ω0t)
CTFT←−−→ jπ [ω0δ(ω − ω0) − ω0δ(ω + ω0)],


which can be expressed as follows:


ω0 sin(ω0t)
CTFT←−−→


π


j
[ω0δ(ω − ω0) − ω0δ(ω + ω0)],


obtained by using the multiplicative property of the impulse function,


x(t)δ(t + t0) = x(−t0)δ(t + t0). The CTFT of the periodic sine function is
therefore given by


sin(ω0t)
CTFT←−−→


π


j
[δ(ω − ω0) − δ(ω + ω0)].


5.5.6 Time integration


The time-integration property expresses the CTFT of a time-integrated signal


∫ x(t)dt in terms of the CTFT of the original signal x(t).


If x(t)
CTFT←−−→ X (ω), then


t∫


−∞


x(τ )dτ
CTFT←−−→


X (ω)


jω
+ π X (0)δ(ω). (5.53)


The proof of the time-integration property is left as an exercise for the reader


(see Problem 5.14).


Example 5.19


Given δ(t)
CTFT←−−→ 1, calculate the CTFT of the unit step function u(t) using


the time-integration property.


Solution


Integrating the CTFT pair for the unit impulse function yields


t∫


−∞


δ(t)dt
CTFT←−−→


1


jω
+ πδ(ω).


By noting that the left-hand side of the aforementioned CTFT pair represents


the unit step function, we obtain


u(t)
CTFT←−−→


1


jω
+ πδ(ω).


The above CTFT pair can be verified from Table 5.2.
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5.5.7 Duality


The CTFTs of a constant signal x(t) = 1 and of an impulse function x(t) = δ(t)
are given by the following CTFT pairs (see Table 5.2):


and


1
CTFT←−−→ 2πδ(ω) and δ(t) CTFT←−−→ 1.


For the above examples, the CTFT exhibits symmetry across the time and


frequency domains in the sense that the CTFT of a constant x(t)=1 is an impulse
function, while the CTFT of an impulse function x(t) = δ(t) is a constant. This
symmetry extends to the CTFT of any arbitrary signal and is referred to as the


duality property. We formally define the duality property below.


If x(t)
CTFT←−−→ X (ω), then


X (t)
CTFT←−−→ 2πx(−ω) (5.54)


is also a CTFT pair.


Proof


By the definition of the inverse CTFT, Eq. (5.9), we know that


x(t) =
1


2π


∞∫


−∞


X (r )e jr t dr ,


where the dummy variable r is used instead of ω. Substituting t = −ω in the
above equation yields


2πx(−ω) =
∞∫


−∞


X (r )e−jωr dr = ℑ{X (t)}.


To illustrate the application of the duality property, consider the CTFT pair


δ(t)
CTFT←−−→ 1,


with x(t) = δ(t) and X (ω) = 1. By interchanging the role of the independent
variables t and ω, we obtain X (t) = 1 and x(ω) = δ(ω). Using the duality
property, the converse CTFT pair is given by


1
CTFT←−−→ 2πδ(−ω) = 2πδ(ω),


which is indeed the CTFT of the constant signal x(t) = 1.


Example 5.20


As stated in Eq. (5.22), the following is a CTFT pair (see Example 5.6):


rect


(
t


τ


)


CTFT←−−→ τ sinc
(ωτ


2π


)


.
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Calculate the CTFT of x(t) = (W/π ) sinc(W t/π ) using the duality property.


Solution


By interchanging the role of variables t and ω in the following CTFT pair:


x(t) = rect
(


t


τ


)


CTFT←−−→ τ sinc
(ωτ


2π


)


= X (ω),


we obtain X (t) = τ sinc(tτ/2π ) and x(−ω) = rect(−ω/τ ). Using the duality
property, we obtain


τ sinc


(
tτ


2π


)


CTFT←−−→ 2π rect
(


−ω
τ


)


.


Substituting τ = 2W and dividing both sides of the above equation by 2π yields


W


π
sinc


(
W t


π


)


CTFT←−−→ rect
( ω


2W


)


.


The above result was proved in Example 5.7 by deriving it directly from the


definition of the CTFT.


5.5.8 Convolution


In Section 3.4, we showed that the output response of an LTIC system is obtained


by convolving the input signal with the impulse response of the system. At times,


the resulting convolution integral is difficult to solve analytically in the time


domain. The convolution property provides us with an alternative approach,


based on the CTFT, of calculating the output response. Below we define the con-


volution property and explain its application in calculating the output response


of an LTIC system.


If x1(t)
CTFT←−−→ X1(ω) and x2(t)


CTFT←−−→ X2(ω), then


x1(t) ∗ x2(t)
CTFT←−−→ X1(ω)X2(ω) (5.55)


and


x1(t)x2(t)
CTFT←−−→


1


2π
[X1(ω) ∗ X2(ω)]. (5.56)


In other words, convolution between two signals in the time domain is equivalent


to the multiplication of the CTFTs of the two signals in the frequency domain.


Conversely, convolution in frequency domain is equivalent to multiplication of


the inverse CTFTs in the time domain. In the case of the frequency-domain


convolution, one has to be careful in including a normalizing factor of 1/2π .


We prove the convolution property next.
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Proof


To prove Eq. (5.55), consider the CTFT of the convolved signal [x1(t) ∗ x2(t)].
By the definition in Eq. (5.9),


ℑ{x1(t) ∗ x2(t)} =
∞∫


−∞


{x1(t) ∗ x2(t)}e−jωt dt .


Substituting the convolution [x1(t) ∗ x2(t)] by its integral, we obtain


ℑ{x1(t) ∗ x2(t)} =
∞∫


−∞








∞∫


−∞


x1(τ )x2(t − τ )dτ





 e−jωt dt .


By changing the order of the two integrations, we obtain


ℑ{x1(t) ∗ x2(t)} =
∞∫


−∞


x1(τ )








∞∫


−∞


x2(t − τ )e−jωt dt





 dτ ,


where the inner integral is given by


∞∫


−∞


x2(t − τ )e−jωt dt = ℑ{x2(t − τ )} = X2(ω)e−jωτ .


Therefore,


ℑ{x1(t) ∗ x2(t)} = X2(ω)
∞∫


−∞


x1(τ )e
−jωτ dτ = X2(ω)X1(ω).


The convolution property, Eq. (5.56), in the frequency domain can be proved


similarly by taking the inverse CTFT of [X1(ω) ∗ X2(ω)] and following the
aforementioned procedure.


Equation (5.55) provides us with an alternative method to calculate the convo-


lution integral using the CTFT. Expressed in terms of the CTFT pairs


x(t)
CTFT←−−→ X (ω), h(t) CTFT←−−→ H (ω), and y(t) CTFT←−−→ Y (ω),


the output signal y(t) is expressed in terms of the impulse response h(t) and


the input signal x(t) as follows:


y(t) = x(t) ∗ h(t) CTFT←−−→ Y (ω) = X (ω)H (ω),


obtained by applying the convolution property in the time domain. In other


words, the CTFT of the output signal is obtained by multiplying the CTFTs


of the input signal and the impulse response. The procedure for evaluating the


output y(t) of an LTIC system in the frequency domain, therefore, consists of


the following four steps.
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(1) Calculate the CTFT X (ω) of the input signal x(t).


(2) Calculate the CTFT H (ω) of the impulse response h(t) of the LTIC system.


The CTFT H (ω) is referred to as the transfer function of the LTIC system.


(3) Based on the convolution property, the CTFT Y (ω) of the output y(t) is


given by Y (ω) = X (ω)H (ω).
(4) Calculate the output y(t) by taking the inverse CTFT of Y (ω) obtained in


step (3).


The CTFT-based approach is convenient for three reasons. First, in most cases


we can use Table 5.2 to look up the expression of the CTFTs and their inverses.


In such cases, the CTFT-based approach is simpler to use than the time-domain


approach based on the convolution integral. In cases where the CTFTs are


difficult to evaluate analytically, they are obtained by using fast computational


techniques for calculating the Fourier transform. The CTFT-based approach,


therefore, allows the use of digital computers to calculate the output. Finally, the


CTFT-based approach provides us with a meaningful insight into the behavior of


many systems. An LTIC system is typically designed in the frequency domain.


Example 5.21


In Example 3.6, we showed that in response to the input signal x(t)= e−t u(t), the
LTIC system with the impulse response h(t) = e−2t u(t) produces the following
output:


y(t) = (e−t − e−2t )u(t).


We will verify the above result using the CTFT-based approach.


Solution


Based on Table 5.2, the CTFTs for the input signal and the impulse response


are as follows:


e−t u(t)
CTFT←−−→


1


1 + jω
and e−2t u(t)


CTFT←−−→
1


2 + jω
.


The CTFT of the output signal is therefore calculated as follows:


Y (ω) = ℑ{[e−t u(t)] ∗ e[−2t u(t)]} = ℑ{e−t u(t)} × ℑ{e−2t u(t)}.


Using the CTFT pair


e−at u(t)
CTFT←−−→


1


a + jω
,


we obtain


Y (ω) =
1


1 + jω
×


1


2 + jω
,
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which can be expressed in terms of the following partial fraction expansion:


Y (ω) =
1


1 + jω
−


1


2 + jω
.


Taking the inverse CTFT yields


y(t) = (e−t − e−2t )u(t)


which is identical to the result obtained in Example 3.6 by direct convolution.


5.5.9 Parseval’s energy theorem


Parseval’s theorem relates the energy of a signal in the time domain to the


energy of its CTFT in the frequency domain. It shows that the CTFT is a


lossless transform as there is no loss of energy if a signal is transformed by the


CTFT.


For an energy signal x(t), the following relationship holds true:


Ex =
∞∫


−∞


|x(t)|2dt =
1


2π


∞∫


−∞


|X (ω)|2dω. (5.57)


Proof


To prove the Parseval’s theorem, consider


∞∫


−∞


|X (ω)|2dω =
∞∫


−∞


X (ω)X∗(ω)dω.


Substituting for the CTFT X (ω) using the definition in Eq. (5.10) yields


∞∫


−∞


|X (ω)|2dω =
∞∫


−∞








∞∫


−∞


x(α)e−jωαdα














∞∫


−∞


x(β)e−jωβdβ








∗


dω,


where we have used the dummy variables α and β to differentiate between the


two CTFT integrals. Taking the conjugate of the third integral and rearranging


the order of integration, we obtain


∞∫


−∞


|X (ω)|2dω =
∞∫


−∞


x(α)


∞∫


−∞


x∗(β)








∞∫


−∞


e jω(β−α)dω





 dβ dα.


Based on Eq. (5.15), we know that


∞∫


−∞


e jω(β−α)dω = 2πδ(β − α),
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which reduces the earlier expression to


∞∫


−∞


|X (ω)|2dω = 2π
∞∫


−∞


x(α)


∞∫


−∞


x∗(β)δ(β − α)dβ


︸ ︷︷ ︸


x∗(α)


dα


or


Ex =
∞∫


−∞


|x(α)|2dα =
1


2π


∞∫


−∞


|X (ω)|2dω.


Example 5.22


Calculate the energy of the CT signal x(t) = e−at u(t) in the (a) time and
(b) frequency domains. Verify that Eq. (5.57) is valid by comparing the two


answers.


Solution


(a) The energy in the time domain is obtained by


Ex =
∞∫


−∞


|x(t)|2dt =
∞∫


0


e−2at dt =
[


e−2at


−2a


]∞


0


=
1


2a
.


(b) From Table 5.2, the CTFT of x(t) = e−at u(t) is given by


e−at u(t)
CTFT←−−→


1


a + jω
.


The energy in the frequency domain is therefore given by


Ex =
1


2π


∞∫


−∞


|X (ω)|2dω =
1


2π


∞∫


−∞


1


a2+ω2
dω =


1


2π


[
1


a
tan−1


(ω


a


)
]∞


−∞
=


1


2a
.


By comparison, the results in (a) and (b) are the same.


5.6 Existence of the CTFT


The CTFT X (ω) of a function x(t) is said to exist if


|X (ω)| < ∞ for −∞ < ω < ∞. (5.58)


The above definition for the existence of the CTFT agrees with our intuition


that the amplitude of a valid function should be finite for all values of the


independent variable. A simpler condition in the time domain can be derived


by considering the inverse CTFT of X (ω) as


|X (ω)| =


∣
∣
∣
∣
∣
∣


∞∫


−∞


x(t)e−jωt dt


∣
∣
∣
∣
∣
∣


.
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Applying the triangle inequality in the CT domain, we obtain


|X (ω)| ≤
∞∫


−∞


|x(t)e−jωt |dt =
∞∫


−∞


|x(t)||e−jωt |dt =
∞∫


−∞


|x(t)|dt,


which leads to the following condition for the existence of the CTFT.


Condition for existence of CTFT The Fourier CTFT X (ω) of a function x(t)
exists if


∞∫


−∞


|x(t)|dt < ∞. (5.59)


Equation (5.59) is a sufficient condition to verify the existence of the CTFT.


Example 5.23


Determine if the CTFTs exist for the following functions:


(i) causal decaying exponential function f (t) = exp(−at)u(t);
(ii) exponential function g(t) = exp(−at);


(iii) periodic cosine waveform h(t) = cos(ω0t),


where a, ω0 ∈ ℜ+.


Solution


(i) Equation (5.59) yields


∞∫


−∞


| f (t)|dt =
∞∫


−∞


|e−at u(t)|dt =
∞∫


−∞


e−at u(t)dt =
∞∫


0


e−at dt


=
1


−a
[e−at ]∞0 =


1


a
< ∞.


Therefore, the CTFT exists for the causal decaying exponential function.


(ii) Equation (5.59) yields


∞∫


−∞


|g(t)|dt =
∞∫


−∞


|e−at |dt =
∞∫


−∞


e−at dt =
0∫


−∞


e−at dt


︸ ︷︷ ︸


=∞


+
∞∫


0


e−at dt


︸ ︷︷ ︸


=1/a


= ∞.


Therefore, the CTFT does not exist for the exponential function.


(iii) Equation (5.59) reduces to


∞∫


−∞


|h(t)|dt =
∞∫


−∞


|cos(ω0t)|dt = ∞.


Therefore, the CTFT does not exist for the exponential function.
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In part (iii), we proved that the CTFT does not exist for a periodic cosine


function. This appears to be in violation of Table 5.2, which lists the following


CTFT pair for the periodic cosine function:


cos(ω0t)
CTFT←−−→ π [δ(ω − ω0) + δ(ω + ω0)].


Actually, the two statements do not contradict each other. The condition for the


existence of the CTFT assumes that the CTFT must be finite for all values of


ω. The above CTFT pairs indicate that the CTFT of the periodic cosine func-


tion consists of two impulses at ω = ±ω0. From the definition of the impulses,
we know that the magnitudes of the two impulse functions in the aforemen-


tioned CTFT pair are infinite at ω = ±ω0, and therefore that the periodic cosine
function violates the condition for the existence of the CTFT.


In Section 5.7, we show that the CTFTs of most periodic signals are derived


from the CTFS representation of such signals, not directly from the CTFT


definition. Therefore, we make an exception for periodic signals and ignore the


condition of CTFT existence for periodic signals.


5.7 CTFT of periodic functions


Consider a periodic function x(t) with a fundamental period of T0. Using the


exponential CTFS, the frequency representation of x(t) is obtained from the


following expression:


x(t) =
∞∑


n=−∞
Dne


jnω0t , (5.60)


where ω0 = 2π/T0 is the fundamental frequency of the periodic signal and Dn
denotes the exponential CTFS coefficients Dn , given by


Dn =
1


T0


∫


〈T0〉


x(t)e−jnω0t dt . (5.61)


Calculating the CTFT of both sides of Eq. (5.60), we obtain


X (ω) = ℑ{x(t)} = ℑ


{
∞∑


n=−∞
Dne


jnω0t


}


.


Using the linearity property, the above expression is simplified to


X (ω) =
∞∑


n=−∞
Dnℑ{e jnω0t } = 2π


∞∑


n=−∞
Dnδ(ω − nω0).


In other words, the CTFT of a periodic function x(t) is given by


x(t)
CTFT←−−→ 2π


∞∑


n=−∞
Dnδ(ω − nω0). (5.62)
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Fig. 5.13. Alternative


representations for the periodic


function considered in Example


5.24. (a) A periodic rectangular


wavefunction q(t ), (b) CTFS


coefficients Dn for q(t ), and


(c) the CTFT Q(ω) of q(t ).


Equation (5.62) provides us with an alternative method for calculating the CTFT


of periodic signals using the exponential CTFS. We illustrate the procedure in


Examples 5.24 and 5.25.


Example 5.24


Calculate the CTFT representation of the periodic waveform q(t) shown in


Fig. 5.13(a).


Solution


The waveform q(t) is a special case of the rectangular wave x(t) considered in


Example 4.14 with τ = π and T = 2π . Mathematically,


q(t) = 3x(t) with duty cycle τ/T = 1/2.


Using Eq. (4.49), the CTFS coefficients of s(t) are given by


Dn =
3


2
sinc


(n


2


)


or


Dn =
3


2
sinc


(n


2


)


=

























3


2
n = 0


0 n = 2k �= 0
3


nπ
n = 4k + 1


−
3


nπ
n = 4k + 3.


Substituting ω0 = 1 in Eq. (5.62) results in the following expression for the
CTFT:


q(t)
CTFT←−−→ 2π


∞∑


n=−∞
Dnδ(ω − n).
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0 2 4 6 8−2−4−6−8


Dn


n


j1.5


−j1.5


−2w0 0−4w0−6w0−8w0


H(w)


w
2w0 4w0 6w0 8w0


j3p


−j3p


(a) (b)


Fig. 5.14. Alternative


representations for the sine


wave considered in Example


5.25. (a) CTFS coefficients Dn ;


(b) CTFT representation H(ω).


The CTFS coefficients Dn and the CTFT Q(ω) of the periodic rectangular wave


are plotted in Figs. 5.13(b) and (c).


Example 5.25


Calculate the CTFT for the periodic sine wave h(t) = 3 sin(ω0t).


Solution


To obtain the CTFS representation of the periodic sine wave, we expand sin(ω0t)


using Euler’s identity. The resulting expression is as follows:


h(t) = 3 sin(ω0t) =
3


2j
[e jω0t − e−jω0t ],


which yields the following values for the exponential CTFS coefficients:


Dn =











−j1.5 n = 1
j1.5 n = −1
0 otherwise.


Based on Eq. (5.62), the CTFT of a periodic sine wave is given by


H (ω) = 2π
∞∑


n=−∞
Dnδ(ω − nω0) = j3π [δ(ω + ω0) − δ(ω − ω0)].


The CTFS coefficients and the CTFT for a periodic sine wave are plotted in Fig.


5.14. The above result is the same as derived in Example 5.18, with a scaling


factor of 3.


5.8 CTFS coefficients as samples of CTFT


In Section 5.7, we presented a method of calculating the CTFT of a periodic


signal from the CTFS representation. In this section, we solve the converse


problem of calculating the CTFS coefficients from the CTFT.


Consider a time-limited aperiodic function x(t), whose CTFT X (ω) is known.


By following the procedure used in Section 5.1, we construct several repetitions


of x(t) uniformly spaced from each other with a duration of T0. The process is


illustrated in Fig. 5.1, where x(t) is the aperiodic signal plotted in Fig. 5.1(a). Its
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periodic extension x̃T (t) is shown in Fig. 5.1(b). Using Eq. (5.3), the exponential


CTFS coefficients of the periodic extension are given by


D̃n =
1


T0


∫


〈T0〉


x(t)e−jnω0t dt =
1


T0


T0/2∫


−T0/2


x(t)e−jnω0t dt .


Since x̃T (t) = x(t) within the range −T0 ≤ t ≤ T0, the above expression
reduces to


D̃n =
1


T0


T0/2∫


−T0/2


x(t)e−jnω0t dt =
1


T0


∞∫


−∞


x(t)e−jnω0t dt =
1


T0
X (ω)|ω=nω0 , (5.63)


which is the relationship between the CTFT of the aperiodic signal x(t) and the


CTFS coefficients of its periodic extension x̃T (t). In other words, we can derive


the exponential CTFS coefficients of a periodic signal with period T0 from the


CTFT using the following steps.


(1) Compute the CTFT X (ω) of the aperiodic signal x(t) obtained from one


period of x̃T (t) as


x(t) =
{


x̃T (t) −T0/2 ≤ t ≤ T0/2
0 elsewhere.


(2) The exponential CTFS coefficients Dn of the periodic signal x̃T (t) are given


by


Dn =
1


T0
X (ω)|ω=nω0 ,


where ω0 denotes the fundamental frequency of the periodic signal x̃T (t)


and is given by ω0 = 2π/T0.


Example 5.26


Calculate the exponential CTFS coefficients of the periodic signal x̃T (t) shown


in Fig. 5.13(a).


Solution


Step 1 The aperiodic signal representing one period of x̃T (t) is given by


x(t) = 3 rect
(


t


π


)


.


Using Table 5.2, the CTFT of the rectangular gate function is given by


3 rect


(
t


π


)


CTFT←−−→ 3π sinc
(ω


2


)


.
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Step 2 The exponential CTFS coefficients Dn of the periodic signal x̃T (t) are
obtained from Eq. (5.63) as


Dn =
1


T0
X (ω)|ω=nω0 with T0 = 2π and ω0 = 1.


The above expression simplifies to


Dn =
3


2
sinc


(n


2


)


=
3


nπ
sin


(nπ


2


)


.


5.9 LTIC systems analysis using CTFT


In Chapters 2 and 3, we showed that an LTIC system can be modeled either


by a linear, constant-coefficient differential equation or by its impulse response


h(t). A third representation for an LTIC system is obtained by taking the CTFT


of the impulse response:


h(t)
CTFT←−−→ H (ω).


The CTFT H (ω) is referred to as the Fourier transfer function of the LTIC


system and provides meaningful insights into the behavior of the system. The


impulse response relates the output response y(t) of an LTIC system to its input


x(t) using


y(t) = h(t) ∗ x(t).


Calculating the CTFT of both sides of the equation, we obtain


Y (ω) = H (ω)X (ω), (5.64)


where Y (ω) and X (ω) are the respective CTFTs of the output response y(t) and


the input signal x(t). Equation (5.64) provides an alternative definition for the


transfer function as the ratio of the CTFT of the output response and the CTFT


of the input signal. Mathematically, the transfer function H (ω) is given by


H (ω) =
Y (ω)


X (ω)
. (5.65)


5.9.1 Transfer function of an LTIC system


It was mentioned in Section 3.1 that, for an LTIC system, the relationship


between the applied input x(t) and output y(t) can be described using a constant-


coefficient differential equation of the following form:


n∑


k=0
ak


dk x


dtk
=


m∑


k=0
bk


dk x


dtk
. (5.66)


From the time-differentiation property of the CTFT, we know that


dn x


dtn
CTFT←−−→ ( jω)n X (ω).
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Calculating the CTFT of both sides of Eq. (5.66) and applying the time-


differentiation property, we obtain


n∑


k=0
ak( jω)


kY (ω) =
m∑


k=0
bk( jω)


k X (ω)


or


H (ω) =
Y (ω)


X (ω)
=


n∑


k=0
bk( jω)


k


m∑


k=0
ak( jω)


k


. (5.67)


Given one representation for an LTIC system, it is straightforward to derive


the remaining two representations based on the CTFT and its properties. We


illustrate the procedure through the following examples.


Example 5.27


Consider an LTIC system whose input–output relationship is modeled by the


following third-order differential equation:


d3 y


dt3
+ 6


d2 y


dt2
+ 11


dy


dt
+ 6y(t) = 2


dx


dt
+ 3x(t). (5.68)


Calculate the transfer function H (ω) and the impulse response h(t) for the LTIC


system.


Solution


Using the time-differentiation property for the CTFT, we know that


dn x


dtn
CTFT←−−→ ( jω)n X (ω).


Taking the CTFT of both sides of Eq. (5.47) and applying the time-


differentiation property yields


( jω)3Y (ω) + 6(jω)2Y (ω) + 11(jω)Y (ω) + 6Y (ω) = 2(jω)X (ω) + 3X (ω).


Making Y (ω) common on the left-hand side of the above expression, we obtain


[( jω)3 + 6(jω)2 + 11(jω) + 6]Y (ω) = [2( jω) + 3]X (ω).


Based on Eq. (5.46), the transfer function is therefore given by


H (ω) =
Y (ω)


X (ω)
=


2(jω) + 3
(jω)3 + 6(jω)2 + 11(jω) + 6


. (5.69)


The impulse response h(t) is obtained by taking the inverse CTFT of Eq. (5.69).


Factorizing the denominator, Eq. (5.69) is expressed as


H (ω) =
2(jω) + 3


(1 + jω)(2 + jω)(3 + jω)
,
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which, by partial fraction expansion, reduces to


H (ω) =
1


2(1 + jω)
+


1


(2 + jω)
−


3


2(3 + jω)
.


Taking the inverse CTFT:


h(t) =
(


1


2
e−t + e−2t −


3


2
e−3t


)


u(t). (5.70)


Equations (5.68)–(5.70) provide three equivalent representations of the LTIC


system.


Example 5.28


Consider an LTIC system with the following impulse response function:


h(t) = rect
(


t


τ


)


=
{


1 |t | ≤ τ/2
0 |t | > τ/2. (5.71)


Calculate the transfer function H (ω) and the input–output relationship for the


LTIC system.


Solution


From Table 5.2, we obtain the following transfer function:


H (ω) = τ sinc
(ωτ


2π


)


=
2


ω
sin


(ωτ


2


)


.


In other words,


Y (ω)


X (ω)
=


2


ω
sin


(ωτ


2


)


,


which is expressed as


jωY (ω) = j2 sin
(ωτ


2


)


X (ω)


or


jωY (ω) = e jωτ/2 X (ω) − e−jωτ/2 X (ω).


Taking the inverse CTFT of both sides, we obtain


dy


dt
= x


(


t +
τ


2


)


− x
(


t −
τ


2


)


. (5.72)


5.9.2 Response of LTIC systems to periodic signals


In Section 4.7.2, we derived the output response of an LTIC system, shown in


Fig. 5.15, of the following periodic signal:


x(t) =
∞∑


n=−∞
Dne


jnω0t (5.73)
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as


y(t) =
∞∑


n=−∞
Dne


jnω0t H (ω)|ω=nω0 , (5.74)


where H (ω) is the CTFT of the impulse response h(t) of the system and is


referred to as the transfer function of the LTIC system. Corollary 4.1 is a


special case of Eq. (5.74), where the input is a sinusoidal signal and the impulse


response h(t) is real-valued. In such cases, the output y(t) can be expressed as


follows:


k1 exp(jω0t) → A1k1 exp(jω0t + jφ1), (5.75)


k1 sin(ω0t) → A1k1 sin(ω0t + φ1), (5.76)


and


k1 cos(ω0t) → A1k1 cos(ω0t + φ1), (5.77)


where A1 and φ1 are the magnitude and phase of H (ω) evaluated at ω = ω0.


LTIC


system


h(t)


periodic


input


x(t)


periodic


output


y(t)


Fig. 5.15. Response of an LTIC


system to a periodic input.


Equations (5.73)–(5.77) can be derived directly by using the CTFT. We now


prove Eq. (5.74).


Proof


The CTFT of a periodic signal x(t) is given by


x(t)
CTFT←−−→ 2π


∞∑


n=−∞
Dnδ(ω − nω0).


Using the convolution property, the output of an LTIC with transfer function


H (ω) is given by


Y (ω) = 2π
∞∑


n=−∞
Dnδ(ω − nω0)H (ω) = 2π


∞∑


n=−∞
Dnδ(ω − nω0)H (nω0).


Taking the inverse CTFT of the above equation yields


y(t) =
∞∑


n=−∞
Dnℑ−1{2πδ(ω − nω0)}H (nω0) =


∞∑


n=−∞
Dn H (nω0)e


jnω0t ,


which proves Eq. (5.74).


Example 5.29


Consider an LTIC system with impulse response given by


h(t) =
10


π
sinc


(
10t


π


)


, (5.78)
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w
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1 20
w


H(w) = rect (   )


−10


(b)


0


t


(           )10tp10ph(t) =      sinc


5
−4p


5
−2p


10
− p


5
− p


5
4p


5
2p


10
p


p
10


5
p


(a)


Fig. 5.16. LTIC system


considered in Example 5.29.


(a) Impulse response h(t );


(b) transfer function H(ω).


sketched as a function of time t in Fig. 5.16(a). Determine the output response


of the system for the following inputs:


(i) x1(t) = sin(5t);
(ii) x2(t) = sin(15t);


(iii) x3(t) = sin(8t) + sin(20t).


Solution


Calculating the CTFT of Eq. (5.78), the transfer function H (ω) is given by


H (ω) = rect
( ω


20


)


. (5.79)


The magnitude spectrum of the LTIC system is plotted in Fig. 5.16(b). The


phase of the LTIC system is zero for all frequencies.


(i) Input x1(t) = sin(5t). The CTFT of the input signal x1(t) is given by


X1(ω) =
π


j
[δ(ω − 5) − δ(ω + 5)].


The CTFT Y1(ω) of the output signal is obtained by multiplying X1(ω) by H (ω)


and is given by


Y1(ω) = X1(ω)H (ω) =
π


j
δ(ω − 5)H (ω) −


π


j
δ(ω + 5)H (ω).


Using the multiplication property of the impulse function, we have


Y1(ω) =
π


j
δ(ω − 5)H (5) −


π


j
δ(ω + 5)H (−5).


Since H (±5) = 1, the CTFT Y1(ω) of the output signal is given by


Y1(ω) =
π


j
δ(ω − 5) −


π


j
δ(ω − 5).


Taking the inverse CTFT, the output is given by


y1(t) = sin(5t).


The CTFT Y1(ω) of the output signal can also be obtained by graphical multipli-


cation, as shown in Fig. 5.17(a), where the magnitude spectrum of the transfer


function H (ω) is shown as a dashed line. Since the magnitude of the transfer


function H (ω) is one at the location of the two impulses contained in the CTFT


of the input signal, the CTFT Y1(ω) of the output signal is identical to the CTFT
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w


0


1 X1(w) Y1(w)


10−10
−jp


jp


w


0 10−10
−jp


jp


(a)


w


0


1 X2(w) Y2(w)


10−10


−jp


jp


w


0 10−10


(b)


w
0


1 X3(w) Y3(w)


10−10
−jp −jp


jp jp
jp


−jp


w
0 10−10


(c)


Fig. 5.17. Frequency


interpretation of the output


response of an LTIC system.


Response of the LTIC system


(transfer function shown


as a dashed line) to:


(a) x1(t ) = sin(5t );
(b) x2(t ) = sin(15t );
(c) x3(t ) = sin(8t ) + sin(20t ).


of the input signal. By calculating the inverse CTFT, we obtain the output as


y1(t) = x1(t) = sin(5t).
(ii) Input x2(t) = sin(15t). The CTFT of the input signal x2(t) is given by


X2(ω) =
π


j
[δ(ω − 15) − δ(ω + 15)].


The CTFT Y2(ω) of the output signal is obtained by multiplying X1(ω) by H (ω)


and is given by


Y2(ω) = X2(ω)H (ω) =
π


j
δ(ω − 15)H (ω) −


π


j
δ(ω + 15)H (ω).


Using the multiplication property of the impulse function, we have


Y1(ω) = X1(ω)H (ω) =
π


j
δ(ω − 15)H (15) −


π


j
δ(ω + 15)H (−15).


Since H (±5) = 0, the CTFT Y1(ω) of the output signal is given by


Y1(ω) = 0.


Taking the inverse CTFT, the output is y2(t) = 0.
As in part (i), the CTFT Y2(ω) of the output signal can be obtained by


graphical multiplication shown in Fig. 5.17(b). Since the magnitude of the


transfer function H (ω) is zero at the location of the two impulses contained in


the CTFT of the input signal, the two impulses are blocked from the output of
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the LTIC system. The CTFT Y1(ω) of the output signal is zero, which results in


y2(t) = 0.
(iii) Input x3(t) = sin(8t) + sin(20t). Taking the CTFT of the input x3(t)


yields


X3(ω) =
π


j
[δ(ω − 8) − δ(ω + 8)] +


π


j
[δ(ω − 20) − δ(ω + 20)].


By following the procedure used in part (i), the CTFT Y3(ω) of the output signal


is given by


Y3(ω) =
[
π


j
δ(ω − 8)H (8) −


π


j
δ(ω + 8)H (−8)


]


+
[
π


j
δ(ω − 20)H (20) −


π


j
δ(ω + 20)H (−20)


]


.


The input signal consists of four impulse functions with two impulses located


at ω = ±8 and two located at ω = ±20. The magnitude of the transfer function
at frequencies ω = ±8 is one, therefore the two impulse functions δ(ω – 8) and
δ(ω + 8) are unaffected. The magnitude of the transfer function at frequencies
ω = ±20 is zero, therefore the two impulses δ(ω – 20) and δ(ω + 20) are
eliminated from the output. The CTFT of the output signal therefore consists


of only two impulse functions located at (ω = ±8), and is given by


Y3(ω) =
[
π


j
δ(ω − 8) −


π


j
δ(ω + 8)


]


,


which has the inverse CTFT of


y3(t) = sin(8t).


In signal processing, the LTIC system with h(t) = (10/π ) sinc(10t/π ) is
referred to as an ideal low-pass filter since it eliminates high-frequency com-


ponents and leaves the low-frequency components unaffected. In this example,


all input frequency components with frequencies greater than ω > 10 are elim-


inated. Any input components with lower frequencies (ω < 10) appear unaf-


fected in the output of the LTIC system. The frequency (ω = 10) is referred to
as the cutoff frequency of the ideal low-pass filter.


5.9.3 Response of an LTIC system to quasi-periodic signals


The response of an LTIC system to ideal periodic signals is given by Eqs.


(5.73)−(5.77). In practice, however, it is difficult to produce ideal periodic
signals of infinite duration. Most practical signals start at t = 0 and are of finite
duration. In this section, we calculate the output of an LTIC system for input


signals that are not completely periodic. We refer to such signals as quasi-


periodic signals.
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Example 5.30


Consider the RC series circuit shown in Fig. 5.18. Determine the overall and


steady state values of the output of the RC series circuit if the input signal is


given by x(t) = sin(3t)u(t). Assume that the capacitor is uncharged at t = 0.


Solution


The CTFT of the input signal x(t) is given by


+
y (t)
−


x(t) = sin(3t)


R = 1 MΩ


C = 0.5 µF


Fig. 5.18. RC series circuit


considered in Example 5.30.


X (ω) =
π


2j
[δ(ω − 3) − δ(ω + 3)] +


3


9 − ω2
.


From the theory of electrical circuits, the transfer function of the RC series


circuit is given by


H (ω) =
1/jωC


R + 1/jωC
=


1


1 + jωC R
.


Substituting the value of the product C R = 0.5 yields


H (ω) =
1


1 + j0.5ω
.


By multiplying the CTFT of the input signal by the transfer function, the CTFT


of the output y(t) is given by


Y (ω) =
{


π


2j
[δ(ω − 3) − δ(ω + 3)] +


3


9 − ω2


}


×
1


1 + j0.5ω
.


Solving the above expression results in the following:


Y (ω) =
π


2j


⌊
δ(ω − 3)
1 + j1.5


−
δ(ω + 3)
1 − j1.5


⌋


+
3


(9 − ω2)(1 + j0.5ω)
.


Taking the inverse CTFT of the above expression (see Problem 5.10) yields the


following value for the output signal:


y(t) =
2


√
13


sin(3t − 56◦)u(t)
︸ ︷︷ ︸


steady state value


+
6


13
e−2t u(t)


︸ ︷︷ ︸


transient value


.


An alternative way of obtaining the steady state value of the output of the RC


series circuit is suggested in Corollary 4.1. Expressed in terms of the given


input, Corollary 4.1 states


sin(3t) u(t)
︸ ︷︷ ︸


x(t)


−→ A1 sin(3t + φ1) u(t)
︸ ︷︷ ︸


y(t)


,


where A1 and φ1 are, respectively, the magnitude and phase of the transfer


function at ω = 3. The values of A1 and φ1 are given by


A1 = |H (3)| =
∣
∣
∣
∣


1


1 + j0.5(3)


∣
∣
∣
∣
=


2
√


13
and


φ1 = <H (3) = <
(


1


1 + j0.5(3)


)


= − tan−1(1.5) = −56◦.
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Substituting the values of A1 and φ1 in Corollary 4.1, the steady state value of


the output is given by


yss(t) =
2


√
13


sin(3t − 56◦)u(t).


For sinusoidal signals, Corollary 4.1 provides a simpler approach of determining


the steady state output.


5.9.4 Gain and phase responses


The Fourier transfer function H (ω) provides a complete description of the


LTIC system. In many applications, the graphical plots of |H (ω)| and < H (ω)
versus frequency ω are used to analyze the characteristics of the LTIC system.


The magnitude spectrum |H (ω)| response function is also referred to as the
gain response of the system, while the phase spectrum <H (ω) is referred to as


the phase response of the system. Below, we provide an example to illustrate


the procedure involved in plotting the magnitude and phase spectra. We also


introduce Bode plots, where a logarithmic scale is used for the frequency ω-axis.


Example 5.31


Consider an LTIC system with the impulse response h(t) = 1.25e−0.6t
sin(0.8t)u(t). Plot the gain and phase responses of the LTIC system.


Solution


The transfer function H (ω) of the LTIC system is given by


H (ω) = ℑ{1.25e−0.6t sin(0.8t)u(t)} = 1.25 ×
0.8


(0.6 + jω)2 + 0.82


=
1


1 − ω2 + j1.2ω
.


The magnitude and phase spectra are as follows:


magnitude spectrum |H (ω)| =
1


√


(1 − ω2)2 + (1.2ω)2


=
1


√
1 − 0.56ω2 + ω4


;


phase spectrum <H (ω) = − tan−1
(


1.2ω


1 − ω2


)


.


Figure 5.19(a) plots the magnitude spectrum and Fig. 5.19(b) plots the phase


spectrum of the LTIC system. Figure 5.19(a) illustrates that the magnitude


|H (ω)| = 1 for ω = 0. As the frequency ω increases, the magnitude |H (ω)|
drops and approaches zero at very high frequencies. From Fig. 5.19(b), we


observe that the phase <H (ω) is zero at ω = 0. At high frequencies, the phase
<H (ω) converges to −π radians, or −180◦.
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Fig. 5.19. Magnitude and phase spectra of LTIC system with impulse response h(t ) = 1.25


e−0.6t sin(0.8t )u(t ). (a) Magnitude spectrum; (b) phase spectrum.
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Fig. 5.20. Bode plots for the


LTIC system considered in


Example 5.31. (a) Magnitude


plot; (b) phase plot.


Bode plots In Bode plots, the magnitude |H (ω)| in decibels and phase <H (ω)
are plotted as functions of frequency ω using a logarithmic scale. Use of a loga-


rithmic scale, with base 10, on the frequency ω-axis offers two main advantages.


(1) Compared to a linear scale, the use of a logarithmic scale allows a wider


range of frequencies to be plotted, with the lower frequencies represented


at a higher resolution.


(2) The asymptotic approximations of the magnitude and phase spectra can


easily be sketched graphically by hand.


Figure 5.20 illustrates the Bode plots of the LTIC system considered in


Example 5.31 using a logarithmic scale on the frequency axis. Figure 5.20(a)


shows the magnitude Bode plot, where the magnitude |H (ω)| is expressed in
decibels (dB) as 20 log10|H (ω)| and plotted as a function of log10(ω). Figure
5.20(b) shows the phase Bode plot, where the phase <H (ω) is plotted as a


function of log10(ω).


5.10 M A T L A B exercises


In this section, we will consider two applications of M A T L A B . First, we


illustrate the procedure for calculating the CTFT of a CT signal x(t) using


M A T L A B . In our explanation, we consider an example, x(t) = 4 cos(10π t),
and write the appropriate M A T L A B commands for the example at each step.


Second, we list the procedure for plotting the Bode plots in M A T L A B .
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5.10.1 CTFT using M A T L A B


Step 1 Sampling In order to manipulate the CT signals on a digital computer,
the CT signals must be discretized. This is normally achieved through a process


called sampling. In reality, sampling is followed by quantization, but because


of the high resolution supported by M A T L A B , we can neglect quantization


without any appreciable loss of accuracy, at least for our purposes here. Sam-


pling converts a CT signal x(t) into an equivalent DT signal x[k]. To prevent


any loss of information and for x[k] to be an exact representation of x(t), the


sampling rate ωs must be greater than at least twice the maximum frequency


ωmax present in the signal x(t), i.e.


ωs ≥ 2ωmax. (5.80)


This is referred to as the Nyquist criterion. We will consider sampling in depth


in Chapter 9, but the information presented above is sufficient for the following


discussion.


The CTFT of the periodic cosine signal is given by (see Table 5.2)


4 cos(10π t)
CTFT←−−→ 4π [δ(ω − 10π ) + δ(ω + 10π )]; (5.81)


hence, the maximum frequency in x(t) is given by ωmax = 10π radians/s. Based
on the Nyquist criterion, the lower bound for the sampling rate is given by


ωs ≥ 20π radians/s. (5.82)


We choose a sampling rate that is 20 times the Nyquist rate, i.e. ωs =
400π radians/s. The sampling interval Ts is given by


Ts =
2π


ωs
= 5 ms. (5.83)


Selecting a time interval from −1 to 1 second to plot the sinusoidal wave, the
number N of samples in x[k] is 401. The M A T L A B command that computes


x[k] is therefore given by


> t = -1:0.005:1; % define time instants


> x = 4*cos(10*pi*t); % samples of cosine wave


> subplot(221); plot(t,x) % for CT plot


> subplot(222); stem(t,x) % for DT plot


The subplots are plotted in Fig. 5.21(a) and (b) and provide a fairly accurate


representation of the cosine wave.


Step 2 Fast Fourier transform In M A T L A B , numeric computation of the
CTFT is performed by using a fast implementation referred to as the fast


Fourier transform (FFT). At this time, we will simply name the function without
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Fig. 5.21. MA T L A B subplots for


the time and frequency domain


representations of


x(t ) = 4 cos(10π t ). (a) CT plot
for x (t ); (b) DT plot for x(t );


(c) uncompensated CTFT of x(t );


(d) CTFT of x(t ).


worrying about its implementation. The function that evaluates FFT is fft (all
lower-case letters). The M A T L A B command for calculating fft is


> y = fft(x); % fft computes CTFT


> subplot(223); plot(abs(y)); % abs calculates magnitude


The subplot of y is plotted in Fig. 5.21(c). There are two differences between


y (output of the fft function) and the CTFT pair,


4 cos(10π t)
CTFT←−−→ 4π [δ(ω − 10π ) + δ(ω + 10π )].


By looking at the peak value of the magnitude spectrum |y|, we note that the
magnitude is not given by 4π as the CTFT pair suggests. Also, the x-axis


represents the number of points instead of the appropriate frequency range ω.


In steps (3) and (4), we compensate for these differences without going into


the details of why the differences occur. The differences between the output of


fft and CTFT will be discussed in Chapter 11.


Step 3 Compensation Scale the magnitude of y by multiplying it by π times
the sampling rate (πTs). In our example, Ts is 5 ms. The following M A T L A B


command performs the scaling:


> z = pi*0.005*y; % scale the magnitude of y


We also center z about an integer index of zero. This is accomplished by


fftshift.


> z = fftshift(z); % centre the CTFT about w = 0
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Step 4 Frequency axis For a sequence x[k] of length N with a sampling
frequency ωs, the fft function y = fft(x) produces the CTFT of x(t) at N
equispaced points within the frequency interval [0, ωs]. The resolution �ω in the


frequency domain is, therefore, given by �ω = ωs/(N − 1). After centering,
performed by the fftshift function, the limits of the interval are changed
to [−ωs/2, ωs/2]. The M A T L A B commands to compute the appropriate values
for the ω-axis are given by


> dw = 400* pi/ 400;


> w = -400* pi/2:dw:400* pi/2; % calculates frequency


% axis;


> subplot(224); plot(w,abs(z)); % magnitude spectrum


The subplot of the CTFT is plotted in Fig. 5.21(d). By inspection, it is confirmed


that it does correspond to the CTFT pair in Eq. (5.81).


The phase spectrum of the CTFT can be plotted using the angle function.
For our example, the M A T L A B command to plot the angle is given by


> subplot(224); plot(w,angle(z)); % phase spectrum


The above command replaces the magnitude spectrum in subplot(224)
by the phase spectrum. For the given signal, x(t) = 4 cos(10π t), the phase
spectrum is zero for all frequencies ω. The M A T L A B code for calculating the


CTFT of a cosine wave is provided below in a function called myctft.


function [w,z] = myctft


% MYCTFT: computes CTFT of 4*cos(10*pi*t)


% Usage: [w,z] = myctft


% compute 4 cos(10*pi*t) in time domain


A = 4; % amplitude of cosine wave


w0 = 10*pi; % maximum frequency in signal


ws = 20*w0; % sampling rate


Ts = 2*pi/ws; % sampling interval


t = -1:Ts:1; % define time instants


x = A*cos(w0*t); % samples of cosine wave


% compute the CTFT


y = fft(x); % fft computes CTFT


z = pi*Ts*y; % scale the magnitude of y


z = fftshift(z); % centre CTFT about w = 0


% compute the frequency axis


w = -ws/2:ws/length(z):ws/2-ws/length(z);


% plots


subplot(211); plot(t,x) % CT plot of cos(w0*t)


subplot(212); plot(w,abs(z)) % CTFT plot of cos(w0*t)


% end
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To calculate the inverse CTFT, we replace the function fft with ifft and
reverse the order of the instructions. The M A T L A B code to compute the inverse


CTFT is provided in a second function called myinvctft:


function [t,x] = myinvctft(w,z)


% MYINVCTFT: computes inverse CTFT of y known at


% frequencies w


% Usage: [t,x] = myinvctft(w,z)


% compute the inverse CTFT


x = ifftshift(z);


x = ifft(x); % inverse fft


% compute the time instants


ws = w(length(w)) - w(1); % sampling rate


Ts = 2*pi/ws; % sampling interval


t = Ts*[-floor(length(w))/2:floor(length(w))/2-1];


% sampling instants% amplify signal by 1/(pi*Ts)


x = x/Ts;


% plots


subplot(211); plot(w,abs(z)) % CTFT plot of cos(w0*t)


subplot(212); plot(t,real(x)) % CT plot of cos(w0*t)


% end


5.10.2 Bode plots


M A T L A B provides the bode function to sketch the Bode plot. To illustrate the
application of the bode function, consider the LTIC system of Example 5.31.
The system transfer function is given by


H (ω) = 1.25 ×
0.8


(0.6 + jω)2 + 0.82
.


In order to avoid a complex-valued representation, M A T L A B expresses the


Fourier transfer function in terms of the Laplace variable s = jω. In Chapter
6, we will show that the independent variable s represents the entire complex


plane and leads to the generalization of the Fourier transfer function into an


alternative transfer function, referred to as the Laplace transfer function. Sub-


stituting (s = jω) in H (ω) results in the following expression for the transfer
function:


H (s) =
1


(0.6 + s)2 + 0.82
=


1


s2 + 1.2s + 1
.


Given H (s), the Bode plots are obtained in M A T L A B using the following


instructions:
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> clear; % clear the MATLAB environment


> num coeff = [1]; % coefficients of the numerator


% in decreasing powers of s


> denom coeff = [1 1.2 1]; % coefficient of the denominator


% in decreasing powers of s


> sys = tf(num coeff,denom coeff);


% specify the transfer function


> bode(sys,{0.01,100}); % sketch the Bode plots


In the above set of M A T L A B instructions, we have used two new functions: tf
and bode. The built-in function tf specifies the LTIC system H (s) in terms
of the coefficients of the polynomials of s in the numerator and denominator.


Since the numerator N (s) = 1, the coefficients of the numerator are given by
num coeff = 1. The denominator D(s) = s2 + 1.2s + 1. The coefficients
of the denominator are given by denom coeff = [1 1.2 1].


The built-in function bode sketches the Bode plots. It accepts two input
arguments. The first input argument sys in used to represent the LTIC system,
while the second input argument {0.01,100} specifies the frequency range,
0.01 radians/s to 100 radians/s, used to sketch the Bode plots. In setting the


values for the frequency range, we use the curly parenthesis. Since the square


parenthesis [0.01,100] represents only two frequencies, ω = 0.01 and ω =
100, it will result in the wrong plots. The second argument is optional. If


unspecified, M A T L A B uses a default scheme to determine the frequency range


for the Bode plots.


5.11 Summary


In this chapter, we introduced the frequency representations for CT aperiodic


signals. These frequency decompositions are referred to as the CTFT, which


for a signal x(t) is defined by the following two equations:


CTFT synthesis equation x(t) =
1


2π


∞∫


−∞


X (ω)e jωt dω;


CTFT analysis equation X (ω) =
∞∫


−∞


x(t)e−jωt dt.


Collectively, the synthesis and analysis equations form the CTFT pair, which


is denoted by


x(t)
CTFT←−−→ X (ω).


In Section 5.1, we derived the synthesis and analysis equations by expressing


the CTFT as a limiting case of the CTFS. Several important CTFT pairs were
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calculated in Section 5.2. The results are listed in Table 5.2, and their magni-


tude and phase spectra of the CTFT are plotted in Table 5.3. In Section 5.3,


we presented the partial fraction method for calculating the inverse CTFT. In


Section 5.4, we covered the following symmetry properties of the CTFT.


(1) The CTFT X (ω) of a real-valued signal x(t) is Hermitian symmetrical, i.e.


X (ω) = X∗(−ω). Due to the Hermitian symmetry property, the magnitude
spectrum |X (ω)| is an even function of ω, while the phase spectrum <X (ω)
is an odd function of ω.


(2) The CTFT X (ω) of a real-valued and even signal x(t) is also real-valued


and even, i.e. Re{X (ω)} = Re{X (−ω)} and Im{X (ω)} = 0.
(3) The CTFT X (ω) of a real-valued and odd signal x(t) is also pure imaginary


and odd, i.e. Re{X (ω)} = 0 and Im{X (ω)} = −Im{X (−ω)}.


Section 5.5 considered the transformation properties of the CTFT, which are


summarized as follows.


(1) The linearity property states that the CTFT of a linear combination of


aperiodic signals is given by the same linear combination of the CTFT of


the individual aperiodic signals.


(2) If an aperiodic signal is time-scaled, the CTFT is inversely time-scaled.


(3) A time shift of t0 in the aperiodic signal does not affect the magnitude of


the CTFT. However, the phase changes by an additive factor of ωt0. This


property is referred to as the time-shifting property.


(4) A frequency shift of ω0 in the aperiodic signal does not affect the magnitude


of the signal in the time domain. However, the phase of the signal in the


time domain changes by an additive factor of ωt0. This property is referred


to as the frequency-shifting property.


(5) The CTFT of a time-differentiated periodic signal is obtained by multiplying


the CTFT of the original signal by a factor of jω.


(6) The CTFT of a time-integrated periodic signal is obtained by dividing the


CTFT of the original signal by a factor of jω with a scaled impulse function


at ω = 0.
(7) The duality property states that there is symmetry between the time wave-


form and its frequency-domain representation such that the two functions


in a CTFT pair are dual with respect to each other. Given an arbitrary


time-domain waveform x(t) and its CTFT waveform X (ω), for example, a


second CTFT pair exists with the time-domain representation X (t), having


the same waveform as X (ω), and the CTFT 2πx(−ω) in the frequency
domain.


(8) Convolution in the time domain is equivalent to multiplication of the CTFT


in the frequency domain, and vice versa. The convolution property leads


to an alternative approach for evaluating the output response of an LTIC


system to any arbitrary input.
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(9) The Parseval’s theorem states that the total energy in a function is the same


in the time and frequency domains. Therefore, the energy in a function can


be obtained either in the time domain by calculating the energy per unit time


and integrating it over all time, or in the frequency domain by calculating


the energy per unit frequency and integrating over all frequencies.


In Section 5.6 we derived the following condition for the existence of the CTFT


of the signalx(t):


∞∫


−∞


|x(t)|dt < ∞,


while in Sections 5.7 and 5.8 we discussed the relationship between the CTFS


and CTFT of periodic signals. In particular, the CTFT of a periodic signal x(t)


is obtained by the relationship


x(t)
CTFT←−−→ 2π


∞∑


n=−∞
Dnδ(ω − nω0),


where Dn denotes the exponential CTFS coefficients and ω0 is the fundamental


frequency. Conversely, the CTFS of a periodic signal is obtained by sampling


the CTFT of one period of the periodic signal at frequencies ω = nω0. Section
5.9 showed that the three representations (linear, constant-coefficient differen-


tial equation; impulse response; and transfer function) for LTIC systems are


equivalent. Given one representation, it is straightforward to derive the remain-


ing two representations based on the CTFT and its properties. The transfer


function H (ω) plays an important role in the analysis of LTIC systems, and is


typically the preferred model for representing LTIC systems. In Section 5.10,


we concluded the chapter by showing the steps involved in computing the CTFT


of a CT signal using M A T L A B .


Problems


5.1 For each of the following CT functions, calculate the expression for the
CTFT directly by using Eq. (5.10). Compare the CTFT with the corre-


sponding entry in Table 5.2 to confirm the validity of your result.


(a) x1�
(


t
τ


)


= (1 − |t |/τ )
[


u(t + τ ) − u(t − τ )
]


;


(b) x2(t) = t4e−at u(t), with a ∈ ℜ+;
(c) x3(t) = e−at cos(ω0t)u(t), with a, ω0 ∈ ℜ+;
(d) x4(t) = e−t


2/2σ 2 , with σ ∈ ℜ.


5.2 Calculate the CTFT of the functions shown in Figs. P5.2 (a)–(e).


5.3 Three functions x1(t), x2(t), and x3(t) have an identical magnitude
spectrum |X (ω)| but different phase spectra denoted, respectively, by
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Fig. P5.2. Aperiodic signals for


Problem 5.2.


<X1(ω), <X2(ω), and <X3(ω); magnitude and phase plots are shown


in Figs. P5.3(a)–(d). By representing the CTFTs as X p(ω) = |X (ω)
| exp(j< Xn(ω)), for p = 1, 2, and 3, and calculating the inverse CTFT,
determine the functions x1(t), x2(t), and x3(t).


5.4 Using the partial fraction method, calculate the inverse Fourier transform
of the following functions:


(a) X1(ω) =
(1 + jω)


(2 + jω)(3 + jω)
;


(b) X2(ω) =
2 − jω


(1 + jω)(2 + jω)(3 + jω)
;


(c) X3(ω) =
2 − jω


(1 + jω)(2 + jω)2(3 + jω)
;


(d) X4(ω) =
1


(1 + jω)(2 + 2jω + ( jω)2)
;


(e) X5(ω) =
1


(1 + jω)2(2 + 2jω + ( jω)2)2
.
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Fig. P5.3. Amplitude and phase


spectra of the three functions in


Problem 5.3.


5.5 Prove the following identity:
∞∫


−∞


e jωt dt = 2πδ(ω).


[Hint: Show that the integral on the left-hand side is a generalized function


that satisfies Eq. (1.47) presented in Chapter 1.]


5.6 Show that the CTFT X (ω) of a real-valued even function x(t) is also real and
even. In other words, that Re{X (ω)} = Re{X (−ω)} and Im{X (ω)} = 0.


5.7 Show that the CTFT X (ω) of a real-valued odd function x(t) is imag-
inary and odd. In other words, that Re{X (ω)} = 0 and Im{X (ω)} =
−Im{X (−ω)}.


5.8 Using the Hermitian property, determine if the time-domain functions cor-
responding to following CTFTs are real-valued or complex-valued. If a


time-domain function is real-valued, determine if it has even or odd sym-


metry.


(a) X1(ω) =
5


2 + j(ω − 5)
;


(b) X2(ω) = cos
(


2ω +
π


6


)


;


(c) X3(ω) = 5 sin[4(ω − π )](ω − π ) ;


(d) X4(ω) = (3 + j2)δ(ω − 10) + (1 − j2)δ(ω + 10);


(e) X5(ω) =
1


(1 + jω)(3 + jω)2(5 + ω2)
.
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t
0


2


h(t)


2 4−2−4


Fig. P5.12. CT signal for


Problem 5.12.


5.9 Using Table 5.2 and the properties of the CTFT, calculate the CTFT of
the following functions:


(a) x1(t) = 5 + 3 cos(10t) − 7e−2t sin(3t)u(t);


(b) x2(t) =
1


π t
;


(c) x3(t) = t2e−4|t−5|;


(d) x4(t) = 5sin(3π t) sin(5π t)
t2


;


(e) x4(t) = 4
sin(3π t)


t
∗


d


dt


[
sin(4π t)


t


]


.


5.10 Using Table 5.2 and the linearity property, show that the CTFT of the
function


x(t) =
[


6


13
e−2t −


6


13
cos(3t) +


4


13
sin(3t)


]


u(t)


is given by


X (ω) =
6


(9 − ω2)(2 + jω)


−
π


13
[(3 + j2)δ(ω − 3) + (3 − j2)δ(ω + 3)].


5.11 Prove the following time-scaling property (see Eq. (5.45)) of the CTFT:


x(at)
CTFT←−−→


1


|a|
X


(ω


a


)


, for a ∈ ℜ and a �= 0.


5.12 Using the time-scaling property and the results in Example 5.12, calculate
the CTFT of the function h(t) shown in Fig. P5.12.


5.13 Prove the following frequency-shifting property (see Eq. (5.49)) of the
CTFT:


h(t) = e jω0t x(t) CTFT←−−→ X (ω − ω0), for ω0 ∈ ℜ.


5.14 Prove the following time-integration property (see Eq. (5.53)) of the
CTFT:


t∫


−∞


x(τ )dτ
CTFT←−−→


X (ω)


jω
+ π X (0)δ(ω).








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 20:5


257 5 Continuous-time Fourier transform


5.15 Assume that for the CTFT pair x(t)
CTFT←−−→ X (ω), the CTFT is given by


the triangular function


X (ω) = �
(ω


3


)


=











1 −
|ω|
3


|ω| ≤ 3


0 elsewhere.


Using the CTFT properties (listed in Table 5.4), derive the CTFT for the


following set of functions:


(a) e−j5t x(2t); (d) x2(t);


(b) t2x(t); (e) x(t) ∗ x(t);
(c) (t + 5)dx


dt
; (f) cos(ω0t)x(t) with ω0 = 3/2, 3, and 6.


5.16 Using the transform pairs in Table 5.2 and the properties of the CTFT,
calculate the inverse Fourier transform of the functions in Problem 5.8.


5.17 For each of the following functions, (i) draw a rough sketch of the function,
and (ii) determine if the CTFT exists by evaluating Eq. (5.59):


(a) x1(t) = e−a|t |, with a ∈ ℜ+;
(b) x2(t) = e−at cos(ω0t)u(t), with a, ω0 ∈ ℜ+;
(c) x3(t) = t4e−at u(t), with a ∈ ℜ+;
(d) x4(t) = sin(ln(t))u(t);
(e) x5(t) =


1


t
;


(f) x6(t) = cos
( π


2t


)


;


(g) x7(t) = e
−t2/2σ 2 , with σ ∈ ℜ.


5.18 Using the exponential CTFS representations (calculated in Problem 4.11),
calculate the CTFT for the periodic signals shown in Fig. P4.6.


5.19 Determine the CTFS coefficients for the periodic functions shown in Fig.
P4.6 from the CTFTs calculated in Problem 5.2.


5.20 Determine (i) the transfer function, and (ii) the impulse response for the
LTIC systems whose input–output relationships are represented by the


following linear, constant-coefficient differential equations. Assume zero


initial conditions in each case.


(a)
d3 y


dt3
+ 6


d2 y


dt2
+ 11


dy


dt
+ 6y(t) = x(t).


(b)
d2 y


dt2
+ 3


dy


dt
+ 2y(t) = x(t).


(c)
d2 y


dt2
+ 2


dy


dt
+ y(t) = x(t).


(d)
d2 y


dt2
+ 6


dy


dt
+ 8y(t) =


dx


dt
+ 4x(t).


(e)
d3 y


dt3
+ 8


d2 y


dt2
+ 19


dy


dt
+ 12y(t) = x(t).
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1


0
2


T−
t


2


T


v(t)


LTIC system


+
y(t)


v(t)


R


C
−


(a) (b)


Fig. P5.22. (a) RC circuit


system; (b) input signal.


+
y(t)


x(t)


R


C
−


Fig. P5.23. RC circuit with


sinusoidal input signal


considered in Problem 5.23.


5.21 Consider the LTIC systems with the following input–output pairs:
(a) x(t) = e−2t u(t) and y(t) = 5e−2t u(t);
(b) x(t) = e−2t u(t) and y(t) = 3e−2(t−4)u(t − 4);
(c) x(t) = e−2t u(t) and y(t) = t3e−2t u(t);
(d) x(t) = e−2t u(t) and y(t) = e−t u(t) + e−3t u(t).
For each of the above systems, determine (i) the transfer function, (ii) the


impulse response function, and (iii) the input–output relationship using


linear constant-coefficient differential equations.


5.22 Determine the transfer function of the system shown in Fig. P5.22(a).
Calculate the output of the system for the input signal shown in Fig.


P5.22(b).


5.23 Using the convolution property of the CTFT, calculate the output of the
system shown in Fig. P5.23 for the input signals (i) x1(t) = cos(ω0t), and
(ii) x2(t) = sin(ω0t).


5.24 Sketch the gain and phase responses for the LTIC systems in
Problem 5.20.


5.25 Sketch the gain and phase responses for the LTIC systems in
Problem 5.21.
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5.26 Show that if the transfer function H (ω) of a system is Hermitian symmetric
(i.e. its impulse response h(t) is real-valued), the outputs of the system to


cosine and sine inputs are as follows:


cos(ω0t)
Hermitian Symmetric H (ω)


−−−−−−−−−−−−→ |H (ω0)| cos(ω0t +<H (ω0))


and


sin(ω0t)
Hermitian Symmetric H (ω)


−−−−−−−−−−−−→ |H (ω0)| sin(ω0t +<H (ω0)).


5.27 Using the results in Problem 5.26, verify the answers in Problem 5.23.


5.28 Using the results derived in Section 5.9.2 and the linearity property of
the CTFT, calculate the output of the system shown in Fig. P5.23 for the


following input signals. Assume that R = 1 M� and C = 0.1 µF.
(i) x1(t) = sin(3t);


(ii) x2(t) = cos(3t) − 5 sin(6t + 30◦);
(iii) x3(t) = cos(2t) + sin(2000t);
(iv) x4(t) = e j3t + e j2000t .


5.29 Suppose the CT signal


x(t) = e−t u(t)


is applied as input to a causal LTIC system modeled by the impulse


response


h(t) = e−2t u(t)


Calculate the resulting output y(t) using:


(a) direct convolution;


(b) transfer function H (ω);


(c) differential equation.


5.30 The periodic signals shown in Figs. P4.6(a)–(e) are applied to the follow-
ing LTIC systems:


(i) H1(ω) =











1 |ω| ≤
4


T
0 elsewhere;


(ii) H2(ω) =











1
4


T
≤ |ω| ≤


8


T
0 elsewhere.


Sketch the magnitude and phase spectra of the CTFT of the resulting


outputs.


5.31 The transfer function of two LTIC systems are given by


(i) H1(ω) =
20 − jω
20 + jω


;


(ii) H2(ω) =
{


1 |ω| ≥ 20
0 elsewhere.
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(a) By sketching the magnitude spectrum of each of the LTIC systems,


comment on the frequency properties of the two systems. Classify


the two systems as a lowpass, highpass, bandpass, or an allpass fil-


ter. Recall that a lowpass filter blocks high-frequency components; a


highpass filter blocks low-frequency components; a bandpass filters


blocks frequency components within a certain band of frequencies;


while an allpass filters allows all frequency components to be passed


on to the output.


(b) Determine the impulse response for each of the two LTIC systems.


5.32 Sketch the gain and phase responses for the three LTIC systems given
below:


(a) h1(t) = 2te−t u(t);
(b) h2(t) = u(t);
(c) h3(t) = −2δ(t) + 5e−2t u(t).
For each of the three systems, show that the input signal x(t) = cos t
produces the same output response. How can this result be explained?


5.33 (M A T L A B exercise) By making modifications to the myctft function
listed in Section 5.10, sketch the magnitude and phase spectra of the


following signals:


(i) x1(t) = sin(5π t) for −2 ≤ t ≤ 2 with sampling rate ωs = 200π
samples/s;


(ii) x2(t) = sin(8π t) + sin(20π t) for −1.25 ≤ t ≤ 1.25 with sampling
rate ωs = 1000π samples/s.


5.34 (M A T L A B exercise) Compute the CTFTs of the CT functions specified
in Problem 5.1. By plotting the magnitude and phase spectra, compare


your computed result with the analytical expressions listed in Tables 5.2


and 5.3.


5.35 (M A T L A B exercise) Compute the output response y(t) for Problem 5.29
by computing the CTFT for x(t) and h(t), multiplying the CTFTs and


then taking the inverse CTFT of the result.


5.36 (M A T L A B exercise) Sketch the magnitude and phase Bode plots for the
LTIC systems specified in Problems 5.20 and 5.21.
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C H A P T E R


6 Laplace transform


In Chapters 4 and 5, we introduced the continuous-time Fourier series (CTFS)


for CT periodic signals and the continuous-time Fourier transform (CTFT)


for both CT periodic and aperiodic signals. These frequency representations


provide a useful tool for determining the output of an LTIC system. Unfortu-


nately, the CTFT is not defined for all aperiodic signals. In cases where the


CTFT does not exist, an alternative procedure, based on the Laplace trans-


form, is used to analyze the LTIC systems. Even for the CT signals for which


the CTFT exists, the Laplace transforms are always real-valued, rational func-


tions of the independent variable s provided that the CT functions are real. The


CTFTs are complex-valued in most cases. Therefore, using the Laplace trans-


form simplifies algebraic manipulations and leads to important flow diagram


representations of the CT systems from which the hardware implementations


of the CT systems are derived. Finally, the CTFT can only be applied to stable


LTIC systems for which the impulse response is absolutely integrable. Since


the Laplace transform exists for both stable and unstable LTIC systems, it can


be used to analyze a broader range of LTIC systems.


The difference between the CTFT and the Laplace transform lies in the choice


of the basis functions used in the two representations. The CTFT expands an


aperiodic signal as a linear combination of complex exponential functions e jωt ,


which are referred to as its basis functions. The Laplace transform uses est as


the basis functions, where the independent Laplace variable s is complex and is


given by s = σ + jω. The Laplace transform is, therefore, a generalization of the
CTFT, since the independent variable s can take any value in the complex s-plane


and is not simply restricted to the imaginary jω-axis, as is the case for the CTFT.


In this chapter, we will cover the Laplace transform and its applications in the


analysis of LTIC systems. To illustrate the usefulness of the Laplace transforms


in signal processing, some real-world applications are presented in Chapter 8.


Chapter 6 is organized as follows. Section 6.1 defines the bilateral, or two-


sided, Laplace transform and provides several examples to illustrate the steps


involved in its computation. The bilateral Laplace transform is used for non-


causal and causal signals. For causal signals, the bilateral Laplace transform


simplifies to the one-sided, or unilateral, Laplace transform, which is covered in


261
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262 Part II Continuous-time signals and systems


Section 6.2. Section 6.3 computes the time-domain representation of a Laplace-


transformed signal, while Section 6.4 considers the properties of the Laplace


transform. Sections 6.5 to 6.9 propose several applications of the Laplace trans-


form, ranging from solving differential equations (Section 6.5), evaluating the


location of poles and zeros (Section 6.6), determining the causality and stability


of LTIC systems from their Laplace transfer functions (Sections 6.7 and 6.8),


and analyzing the outputs of LTIC systems (Section 6.9). Section 6.10 presents


the cascaded, parallel, and feedback configurations for interconnecting LTI


systems, and Section 6.11 concludes the chapter.


6.1 Analytical development


In Section 5.1, the CTFT pair, x(t)
CTFT←−−→X ( jω), was defined as follows:


CTFT synthesis equation x(t) =
1


2π


∞∫


−∞


X ( jω)e jωt dω; (6.1)


CTFT analysis equation X ( jω) =
∞∫


−∞


x(t)e−jωt dt . (6.2)


In Eqs. (6.1) and (6.2), the CTFT of x(t) is expressed as X ( jω), instead of


the earlier notation X (ω), to emphasize that the CTFT is computed on the


imaginary jω-axis in the complex s-plane. For a CT signal x(t), the expression


for the bilateral Laplace transform is derived by considering the CTFT of the


modified version, x(t)e−σ t , of the signal. Based on Eq. (6.2), the CTFT of the


modified signal x(t)e−σ t is given by


ℑ{x(t)e−σ t } =
∞∫


−∞


x(t)e−σ t e−jωt dt, (6.3)


which reduces to


ℑ{x(t)e−σ t } =
∞∫


−∞


x(t)e−(σ+jω)t dt


= X (σ + jω). (6.4)


Substituting s = σ + jω in Eq. (6.4) leads to the following definition for the
bilateral Laplace transform:†


Laplace analysis equation X (s) = ℑ{x(t)e−σ t } =
∞∫


−∞


x(t)e−st dt . (6.5)


† The Laplace transform was discovered originally by Leonhard Euler (1707–1783), a prolific


Swiss mathematician and physicist. However, it is named in honor of another mathematician


and astronomer, Pierre-Simon Laplace (1749–1827), who used the transform in his work on


probability theory.
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To derive the synthesis equation for the bilateral Laplace transform, consider


the inverse transform of the CTFT pair, x(t)e−σ t
CTFT←−−→X (σ + jω) = X (s).


Based on Eq. (6.1), we obtain


x(t)e−σ t =
1


2π


∞∫


−∞


X (s)e jωt dω. (6.6)


Multiplying both sides of Eq. (6.6) by eσ t and changing the integral variable ω


to s using the relationship s = σ + jω yields


Laplace synthesis equation x(t) =
1


2π j


σ−j∞∫


σ−j∞


X (s)est ds. (6.7)


Solving Eq. (6.7) involves the use of contour integration and is seldom used


in the computation of the inverse Laplace transform. In Section 6.3, we will


consider an alternative approach based on the partial fraction expansion to


evaluate the inverse Laplace transform. Collectively, Eqs. (6.5) and (6.7) form


the bilateral Laplace transform pair, which is denoted by


x(t)
L←→ X (s). (6.8)


To illustrate the steps involved in computing the Laplace transform, we consider


the following examples.


Example 6.1


Calculate the bilateral Laplace transform of the decaying exponential function:


x(t) = e−at u(t).


Solution


Substituting x(t) = e−at u(t) in Eq. (6.5), we obtain


X (s) =
∞∫


−∞


e−at u(t)e−st dt =
∞∫


0


e−(s+a) t dt = −
1


(s + a)
e−(s+a) t


∣
∣
∣
∣


∞


0


.


At the lower limit, t → 0, e−(s+a)t = 1. At the upper limit, t → ∞, e−(s+a)t = 0
if Re{s + a} > 0 or Re{s} > −a. If Re{s} ≤ −a, then the value of e−(s+a)t is
infinite at the upper limit, t → ∞. Therefore,


X (s) =











1


(s + a)
for Re{s} > −a


undefined for Re{s} ≤ −a.


The set of values of s over which the bilateral Laplace transform is defined


is referred to as the region of convergence (ROC). Assuming a to be a real


number, the ROC is given by Re{s} > −a for the Laplace transform of the
decaying exponential function, x(t) = e−at u(t). Figure 6.1 highlights the ROC
by shading the appropriate area in the complex s-plane.
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t
0


x(t) = e−atu(t)


Im{s}


(a)(a) (b)


0
Re{s}


−a


Fig. 6.1. (a) Exponential


decaying function


x(t ) = e−at u(t ); (b) its
associated ROC, Re{s} > −a ,
over which the bilateral Laplace


transform exists.


Example 6.1 shows that the bilateral Laplace transform of the decaying expo-


nential function x(t) = e−at u(t) will converge to a finite value X (s) = 1/(s + a)
within the ROC (Re{s} > −a). In other words, the bilateral Laplace transform
of x(t) = e−at u(t) exists for all values of a within the specified ROC. No restric-
tion is imposed on the value of a for the existence of the Laplace transform.


On the other hand, the CTFT of the decaying exponential function exists only


for a > 0. For a < 0, the exponential function x(t) = e−at u(t) is not absolutely
integrable, and hence its CTFT does not exist. This is an important distinction


between the CTFT and the bilateral Laplace transform. The CTFT exists for a


limited number of absolutely integrable functions. By associating an ROC with


the bilateral Laplace transform, we can evaluate the Laplace transform for a


much larger set of functions.


Example 6.2


Calculate the bilateral Laplace transform of the non-causal exponential function


g(t) = −e−at u(−t).


Solution


Substituting g(t) = −e−at u(−t) in Eq. (6.5), we obtain


G(s) =
∞∫


−∞


−e−at u(−t)e−st dt = −


0∫


−∞


e−(s+a) t dt =
1


(s + a)
e−(s+a) t


∣
∣
∣
∣


0


−∞


.


At the upper limit, t → 0, e−(s+a)t = 1. At the lower limit, t → −∞, e−(s+a)t


is finite only if Re{s + a} < 0, where it equals zero. The bilateral Laplace


transform is therefore given by


G(s) =











1


(s + a)
for Re{s} < −a


undefined for Re{s} ≥ −a.


Figure 6.2 illustrates the ROC, Re{s} < −a, for the bilateral Laplace transform
of g(t) = −e−at u(−t).
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t
0


x(t) = −e−atu(−t)


Im{s}


(a) (b)


0
Re{s}


−a


Fig. 6.2. (a) Non-causal


decaying function


x(t ) = −e−atu(−t ); (b) its
associated ROC, Re{s} < −a ,
over which the bilateral Laplace


transform exists.


In Examples 6.1 and 6.2, we have proved the following Laplace transform pairs:


e−at u(t)
L←→


1


(s + a)
with ROC: Re{s} > −a


and


−e−at u(−t) L←→
1


(s + a)
with ROC: Re{s} < −a.


Although the algebraic expressions for the bilateral Laplace transforms are the


same for the two functions, the ROCs are different. This implies that a bilateral


Laplace transform is completely specified only if the algebraic expression and


the ROC are both specified. This is illustrated further in Example 6.3.


Example 6.3


Calculate the inverse Laplace transform of the function H (s) = 1/(s + a) .


Solution


From Examples 6.1 and 6.2, we know that


e−at u(t)
L←→


1


(s + a)
with ROC: Re{s} > −a


and


−e−at u(−t) L←→
1


(s + a)
with ROC: Re{s} < −a.


Therefore, the inverse bilateral Laplace transform is either h(t) = e−at u(t) or
h(t) = −e−at u(−t). If we want to determine a unique inverse, we need to
specify the ROC associated with the Laplace transform. If the ROC is specified


as Re{s} > −a, then the inverse Laplace transform h(t) = e−at u(t). On the
other hand, if the ROC is Re{s} > −a, then h(t) = e−at u(t).


The need to specify the ROC is also evident from the synthesis equation,


Eq. (6.7), of the Laplace transform. To evaluate the inverse Laplace transform


using Eq. (6.7), a straight line, parallel to the jω-axis, corresponding to all points


s satisfying Re{s} = σ within the ROC, is used as the contour of integration. The
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complex integral, therefore, cannot be computed without having prior knowl-


edge of the ROC.


6.2 Unilateral Laplace transform


In Section 6.1, we introduced the bilateral Laplace transform that is used to


analyze both causal and non-causal LTIC systems. In signal processing, most


physical systems and signals are causal. Applying the causality condition, the


bilateral Laplace transform reduces to a simpler version of the Laplace trans-


form. The Laplace transform for causal signals and systems is referred to as the


unilateral Laplace transform and is defined as follows:


X (s) = L{x(t)} =
∞∫


0−


x(t)e−st dt, (6.9)


where the initial conditions of the system are incorporated by the lower limit


(t = 0−). In our subsequent discussions, we will mostly use the unilateral


Laplace transform. For simplicity, we will omit the term “unilateral,” there-


fore the Laplace transform implies the unilateral Laplace transform. When we


refer to the bilateral Laplace transform, the term “bilateral” will be explicitly


stated. To clarify further the differences between the unilateral and bilateral


Laplace transform, we summarize the major points.


(1) The unilateral Laplace transform simplifies the analysis of causal LTIC sys-


tems. However, it cannot analyze non-causal systems directly. Since most


physical systems are naturally causal, we will use the unilateral Laplace


transform in our computations. The bilateral transform will be used only


to analyze non-causal systems.


(2) For causal signals and systems, the unilateral and bilateral Laplace trans-


forms are the same.


(3) The synthesis equation used for calculating the inverse of the unilateral


Laplace transform is the same as Eq. (6.7) used for evaluating the inverse


of the bilateral transform.


Example 6.4


Calculate the unilateral Laplace transform for the following functions:


(i) unit impulse function, x1(t) = δ(t);


(ii) unit step function, x2(t) = u(t);


(iii) shifted gate function,


x3(t) =


{


1 2 ≤ t ≤ 4
0 otherwise;


(iv) causal complex exponential function, x4(t) = e−jω0t u(t);
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(v) causal sine function, x5(t) = sin(ω0t)u(t);
(vi) causal ramp function, x6(t) = tu(t);


(vii) x7(t) =











2t 0 ≤ t ≤ 1
2 1 ≤ t ≤ 2
0 otherwise.


Solution


(i) Unit impulse function. Substituting x1(t) = δ(t) in Eq. (6.9) yields


X1(s) =
∞∫


0−


δ(t)e−st dt .


Since δ(t)e−st = δ(t), the above equation reduces to


X1(s) =
∞∫


0−


δ(t)dt = 1.


The Laplace transform for an impulse function is given by


δ(t)
L←→ 1 with ROC: entire s-plane.


(ii) Unit step function. Substituting x2(t) = u(t) in Eq. (6.9) yields


X2(s) =
∞∫


0−


u(t)e−st dt .


For Re{s} > 0, the above integral reduces to


X2(s) =
∞∫


0−


e−st dt = −
1


s
e−st


∣
∣
∣
∣


∞


0


= 1.


The Laplace transform for a unit step function is given by


u(t)
L←→


1


s
with ROC: Re{s} > 0.


(iii) Shifted gate function. Substituting x3(t) in Eq. (6.9) yields


X3(s) =
4∫


2


e−st dt = −
1


s
e−st


∣
∣
∣
∣


4


2


=
1


s
(e−2s − e−4s).


Clearly, the above expression for the Laplace transform is not valid for s = 0.
The value of the Laplace transform for s = 0 is obtained by substituting s = 0
in Eq. (6.9). The resulting expression is given by


X3(s) =
∞∫


0−


x3(t)dt =
4∫


2


1 · dt = t |42 = 2, for s = 0.
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The Laplace transform for the shifted gate function is therefore given by


X3(s) =











2 for s = 0
1


s
(e−2s − e−4s) for s �= 0.


The associated ROC is the entire s-plane.


(iv) Causal complex exponential function. From Example 6.1, we know that


e−at u(t)
L←→


1


(s + a)
with ROC: Re{s} > −Re{a}.


Substituting a = jω0, we obtain


e−jω
t
0 u(t)


L←→
1


(s + jω0)
with ROC: Re{s} > 0.


(v) Causal sine function. By expanding sin(ω0t) = [exp(jω0t) −
exp(−jω0t)]/2j, the Laplace transform for the causal sine function is
given by


X5(s) =
1


2j


∞∫


0−


[e jω0t − e−jω0t ]e−st dt =
1


2j


∞∫


0−


e−(s−jω0)t dt −
1


2j


∞∫


0−


e−(s−jω0)t dt .


Both integrals are finite for Re{s ±jω0} > 0 or Re{s} > 0. The Laplace trans-
form is given by


X5(s) =
1


2j


[
1


s − jω0


]


−
1


2j


[
1


s + jω0


]


=
ω0


s2 + ω20
.


In other words, the Laplace transform pair is given by


sin(ω0t)u(t)
L←→


ω0


s2 + ω20
with ROC: Re{s} > 0.


(vi) Causal ramp function. Substituting x6(t) = tu(t) in Eq. (6.9) yields


X6(s) =
∞∫


0−


tu(t)e−st dt =
∞∫


0


te−st dt =
te−st


(−s)


∣
∣
∣
∣


∞


0


−
e−st


(−s)2


∣
∣
∣
∣


∞


0


,


which, on simplification, leads to the following Laplace transform pair:


tu(t)
L←→


1


s2
with ROC: Re{s} > 0 .


(vii) Substituting


x7(t) =











2t 0 ≤ t ≤ 1
2 1 ≤ t ≤ 2
0 otherwise


in Eq. (6.9) leads to the following Laplace transform:


X7(s) = 2
1∫


0−


te−st dt + 2
2∫


1


e−st dt = 2
[


te−st


−s
−


e−st


(−s)2


] 1


0−
+ 2


[
e−st


−s


] 2


1


.
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Clearly, the above integral is not defined for s = 0. For s �= 0, the above expres-
sion reduces to


X7(s) = 2
[


e−s


−s
−


e−s


(−s)2
+


1


(−s)2


]


+ 2
[


e−2s


−s
−


e−s


−s


]


=
2


s2
[1 − e−s − se−2s].


For s = 0, the Laplace transform is given by


X7(s) =
∞∫


0−


x7(t)dt =
1∫


0


2t · dt +
2∫


1


2 · dt = t2|10 + 2t |
2
1 = 3.


The Laplace transform pair is therefore given by


X7(s) =











3 for s = 0
2


s2
[1 − e−s − se−2s] for s �= 0.


The associated ROC is the entire s-plane.


6.2.1 Relationship between Fourier and Laplace transforms


Comparing Eq. (6.2) with Eq. (6.5), the CTFT can be related to the bilateral


Laplace transform as follows:


X ( jω) =
∞∫


−∞


x(t)e−jωt dt = X (s)|s=jω. (6.10)


Since, for causal functions, the bilateral and unilateral Laplace transforms are


the same, the above relationship is also valid for the unilateral Laplace transform


for causal functions. Equation (6.8) proves that the CTFT is a special case of


the Laplace transform when s = jω, i.e. σ = 0. In other words, the CTFT is
the Laplace transform computed along the imaginary jω-axis in the s-plane.


Table 6.1 lists the Laplace transforms for several commonly used functions. To


compare the results with the corresponding CTFTs, we also include the CTFTs


for the same functions in the second column of Table 6.1. When the function


is causal and its CTFT exists, it is observed that the CTFT can be obtained


from the Laplace transform by substituting s = jω. An alternative condition for
the existence of the CTFT is, therefore, the inclusion of the jω-axis within the


ROC of the Laplace transform. If the ROC does not contain the jω-axis, the


substitution s = jω cannot be made and the CTFT does not exist. For example,
the ROC Re{s} > 0 for the unit step function x(t) = u(t) does not contain the
jω-axis. Based on our earlier reasoning, its CTFT should not exist. This appears


to be in violation with the second entry in Table 6.1, where the CTFT of the


unit step function is listed as follows:


u(t)
CTFT←−−→ πδ(ω) + 1/jω.
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Table 6.1. CTFT and Laplace transform pairs for several causal CT signals


CT signals x(t) CTFT


X ( jω) =
∞∫


−∞


x(t)e−jωt dt


Laplace transform


X (s) =


∞∫


−∞


x(t)e−st dt


(1) Impulse function


x(t) = δ(t)


1 1


ROC: entire s-plane


(2) Unit step function


x(t) = u(t)


πδ(ω) +
1


jω


1


s


ROC: Re{s} > 0


(3) Causal gate function


x(t) = u(t) − u(t − a)


(1 − e−jaω)


(


πδ(ω) +
1


jω


)
1


s
(1 − e−as)


ROC: Re{s} > 0


(4) Causal decaying exponential function


x(t) = e−at u(t)


1


a + jω


1


a + s


ROC: Re{s} > −a


(5) Causal ramp function


x(t) = tu(t)


does not exist
1


s2


ROC: Re{s} > 0


(6) Higher-order causal ramp function


x(t) = tnu(t)


does not exist
n!


sn+1


ROC: Re{s} > 0


(7) First-order time-rising causal decaying


exponential function


x(t) = te−at u(t)


1


(a + jω)2


provided a > 0.


1


(a + s)2


ROC: Re{s} > −a


(8) Higher-order time-rising causal


decaying exponential function


x(t) = tne−at u(t)


n!


(a + jω)n+1


provided a > 0


n!


(a + s)n+1


ROC: Re{s} > −a


(9) Causal cosine wave


x(t) = cos(ω0t)u(t)


π [δ(ω − ω0) + δ(ω + ω0)]


+
jω


ω20 − ω
2


s


ω20 + s
2


ROC: Re{s} > 0


(10) Causal sine wave


x(t) = sin(ω0t)u(t)


π


2j
[δ(ω − ω0) − δ(ω + ω0)]


+
ω0


ω20 − ω
2


ω0


ω20 + s
2


ROC: Re{s} > 0


(11) Squared causal cosine wave


x(t) = cos2(ω0t)u(t)


π


2
[δ(ω) + δ(ω − 2ω0) + δ(ω + 2ω0)]


+
1


j2ω
+


jω


2
(


4ω20 − ω
2
)


(


2ω20 + s
2
)


s
(


4ω20 + s
2
)


ROC: Re{s} > 0


(12) Squared causal sine wave


x(t) = sin2(ω0t)u(t)


π


2
[δ(ω) − δ(ω − 2ω0) − δ(ω + 2ω0)]


+
1


j2ω
−


jω


2
(


4ω20 − ω
2
)


2ω20


s
(


4ω20 + s
2
)


ROC: Re{s} > 0


(13) Causal decaying exponential cosine


function


x(t) = exp(−at) cos(ω0t)u(t)


a + jω


(a + jω)2 + ω20
provided a > 0


a + s


(a + s)2 + ω20


ROC: Re{s} > −a


(14) Causal decaying exponential sine


function


x(t) = exp(−at) sin(ω0t)u(t)


ω0


(a + jω)2 + ω20
provided a > 0


ω0


(a + s)2 + ω20


ROC: Re{s} > −a


270
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The above argument is not true because the CTFT of the unit step function


contains a discontinuity at ω = 0 due to the presence of the impulse function
δ(ω). Therefore, the CTFT violates the condition for the existence of CTFT. In


such cases, the CTFT is not derived from its definition but is expressed using


the impulse function, which is not a mathematical function in the strict sense.


It is therefore natural to expect Eq. (6.10) to be invalid. Likewise, the ROC for


the Laplace transform of the sine wave, cosine wave, squared cosine wave, and


squared sine wave do not contain the jω-axis, and Eq. (6.10) is also not valid


in these cases.


6.2.2 Region of convergence


As a side note to our discussion, we observe that the Laplace transform is


guaranteed to exist at all points within the ROC. For example, consider the


causal sine wave h(t) = sin(4t)u(t). We are interested in calculating the values
of the Laplace transform at two points, s1 = 2 + j3 and s2 = j3 in the complex
s-plane. Since s1 lies within the ROC, Re{s} > 0, the value of the Laplace
transform at s1 is given by


H (2 + j3) =
4


(2 + j3)2 + 42
=


4


4 + j12 − 9 + 16
=


4


11 + j12
,


which, as expected, is a finite value. The point s2 = j3 lies outside the ROC.
However, the Laplace transform is not necessarily infinite at s2. In fact, the


Laplace transform of the causal sine wave h(t) = sin(4t)u(t) is finite for all
values of s on the imaginary axis except at s = ±j4. The value of the Laplace
transform at s2 is given by


H ( j3) =
4


(j3)2 + 42
= −


4


5
.


Since the Laplace transform is not defined at two points (s = ±j4) on the
imaginary axis, the entire imaginary axis is excluded from the ROC. In short, if


a point lies on the boundary of the ROC, it is possible that the Laplace transform


exists, though the point may not be included in the ROC.


6.2.3 Spectra for the Laplace transform


In Chapter 5, the magnitude and phase spectra of the CTFT provided mean-


ingful insights into the frequency properties of the reference function. Except


for one difference, the magnitude and phase spectra of the Laplace transform


(collectively referred to as the Laplace spectra) can be plotted in a similar way.


Since the Laplace variable s is a complex variable, the Laplace spectra are


plotted with respect to a 2D complex plane with Re{s} = σ and Im{s} = ω
being the two independent axes. For the magnitude spectrum, the magnitude


of the Laplace transform is plotted along the z-axis within the ROC defined


in the 2D complex plane. Likewise, for the phase spectrum, the phase of the








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:31


272 Part II Continuous-time signals and systems


5


0


0


2


4


−5
−3 −2 −1 0


Re{s} = sIm{s} = w Im{s} = w


<
H


(s
) 


(d
eg


re
e
s)


H
(s


)


1 2 3 4 −3
−5


−90


90


−2 −1 0


0


0


5


Re{s} = s


1 2 3 4


(a) (b)


Fig. 6.3. Laplace spectra for


x(t ) = e−3t u(t ). (a) Laplace
magnitude spectrum;


(b) Laplace phase spectrum.


Laplace transform is plotted along the vertical z-axis within the ROC. Both


Laplace magnitude and phase spectra are, therefore, 3D plots. To illustrate the


steps involved in plotting the magnitude and phase spectra, we consider the


following example.


Example 6.5


Plot the Laplace spectra of the decaying exponential function x(t) = e−3t u(t).


Solution


Based on entry (4) of Table 6.1, the Laplace transform of the decaying expo-


nential function is given by


X (s) =
1


(s + 3)
=


1


(σ + jω + 3)
with ROC: σ = Re(s) > −3.


The Laplace spectra are therefore given by


magnitude spectrum |X (s)| =
1


√


(σ + 3)2 + ω2
;


phase spectrum <X (s) = −tan−1
ω


(σ + 3)
.


The magnitude and phase spectra are plotted with respect to the 2D complex


s-plane in Fig. 6.3. To obtain the CTFT spectra, we can simply splice out the


2D plot along the Re{s} = σ = 0 axis from the Laplace spectra. Figure 6.4
shows the resulting CTFT magnitude and phase spectra. These are identical to


the CTFT spectra obtained directly from the CTFT and plotted in Fig. 6.4.


w
0


X(w)1/4


w
0


< X(w)
p/2


−p/2


(a) (b)


Fig. 6.4. CTFT spectra for


x(t ) = e−3t u(t ) obtained by
extracting the 2D plot along the


Re{s} = σ = 0 axis in Fig. 6.3.
(a) CTFT magnitude spectrum;


(b) CTFT phase spectrum.
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6.3 Inverse Laplace transform


Evaluation of the inverse Laplace transform is an important step in the analysis


of LTIC systems. The inverse Laplace transform can be calculated directly by


solving the complex integral in the synthesis equation, Eq. (6.7). This approach


involves contour integration, which is beyond the scope of this text. In cases


where the Laplace transform takes the following rational form:


X (s) =
N (s)


D(s)
=


bms
m + bm−1sm−1 + bm−2sm−2 + · · · + b1s + b0


sn + an−1sn−1 + an−2sn−2 + · · · + a1s + a0
, (6.11)


an alternative approach based on the partial fraction expansion is commonly


used. The approach eliminates the need for computing Eq. (6.7) and consists


of the following steps.


(1) Calculate the roots of the characteristic equation of the rational fraction, Eq.


(6.11). The characteristic equation is obtained by equating the denominator


D(s) in Eq. (6.11) to zero, i.e.


D(s) = sn + an−1sn−1 + an−2sn−2 + · · · + a1s + a0 = 0. (6.12)


For an nth-order characteristic equation, there will be n first-order roots.


Depending on the value of the coefficients {bl}, 0 ≤ l ≤ (n − 1), roots
{pr}, 1 ≤ r ≤ n, of the characteristic equation may be real-valued and/or
complex-valued. Assuming that roots are real-valued and do not repeat, the


Laplace transform X (s) is represented as


X (s) =
N (s)


(s − p1)(s − p2) · · · (s − pn−1)(s − pn)
. (6.13)


(2) Using Heaviside’s partial fraction expansion formula, explained in


Appendix D, decompose X (s) into a summation of the first- or second-


order fractions. If no roots are repeated, X (s) is decomposed as follows:


X (s) =
k1


(s − p1)
+


k2


(s − p2)
+ · · · +


kn−1


(s − pn−1)
+


kn


(s − pn)
, (6.14)


where the coefficients {kr}, 1 ≤ r ≤ n, are obtained from


kr =
[


(s − pr )
N (s)


D(s)


]


s=pr
. (6.15)


If there are repeated or complex roots, X (s) takes a slightly different form.


See Appendix D for more details.


(3) From Table 6.1,


epr t u(t)
L←→


1


(s − pr )
with ROC: Re{s} > pr .
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Using the above transform pair, the inverse Laplace transform of X (s) is


given by


x(t) = k1ep1t u(t) + k2ep2t u(t) + · · · + kn−1epn−1t u(t) + knepn t u(t)


=
n∑


r=1
kr e


pr t u(t). (6.16)


To illustrate the aforementioned procedure (steps (1) to (3)) for evaluating the


inverse Laplace transform using the partial fraction expansion, we consider the


following examples.


Example 6.6


Calculate the inverse Laplace transform of a right-sided sequence with transfer


function


G(s) =
7s − 6


(s2 − s − 6)
.


Solution


The characteristic equation of G(s) is given by s2 − s − 6 = 0, which has
two roots at s = 3 and −2. Using the partial fraction expansion, the Laplace
transform G(s) is expressed as


G(s) =
7s − 6


(s + 2)(s − 3)
≡


k1


(s + 2)
+


k2


(s − 3)
.


The coefficients of the partial fractions k1 and k2 are given by


k1 =
[


(s + 2)
(7s − 6)


(s + 2)(s − 3)


]


s=−2
=


[
(7s − 6)
(s − 3)


]


s=2
= 4


and


k2 =
[


(s − 3)
(7s − 6)


(s + 2)(s − 3)


]


s=3
=


[
(7s − 6)
(s + 2)


]


s=3
= 3.


The partial fraction expansion of the Laplace transform G(s) is therefore given


by


G(s) =
4


(s + 2)
+


3


(s − 3)
.


Using entry (4) of Table 6.1, the inverse Laplace transform is


g(t) = (4e−2t + 3e3t )u(t).


Example 6.7


Calculate the inverse Laplace transform of right-sided sequences with the fol-


lowing transfer functions:


(i) X1(s) =
s + 3


s(s + 1)(s + 2)
;


(ii) X2(s) =
s + 5


s3 + 5s2 + 17s + 13
.
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Solution


(i) In X1(s), the characteristic equation is already factorized. In terms of the


partial fractions, X1(s) can be expressed as follows:


X1(s) =
s + 3


s(s + 1)(s + 2)
≡


k1


s
+


k2


(s + 1)
+


k3


(s + 2)
,


where the partial fraction coefficients k1, k2, and k3 are given by


k1 =
[


s
(s + 3)


s(s + 1)(s + 2)


]


s=0
=


[
(s + 3)


(s + 1)(s + 2)


]


s=0
=


3


2
,


k2 =
[


(s + 1)
(s + 3)


s(s + 1)(s + 2)


]


s=−1
=


[
(s + 3)
s(s + 2)


]


s=−1
= −2,


and


k3 =
[


(s + 2)
(s + 3)


s(s + 1)(s + 2)


]


s=−2
=


[
(s + 3)
s(s + 1)


]


s=−2
=


1


2
.


The partial fraction expansion of the Laplace transform X1(s) is given by


X1(s) =
s + 3


s(s + 1)(s + 2)
≡


3


2s
−


2


(s + 1)
+


1


2(s + 2)
,


which leads to the following inverse Laplace transform:


x1(t) =
(


3


2
− 2e−t +


1


2
e−2t


)


u(t).


(ii) The characteristic equation of X2(s) is given by


D(s) = s3 + 5s2 + 17s + 13 = 0,


which has three roots at s = −1, −2, and ±j3. The partial fraction expansion
of X2(s) is given by


X2(s) =
s + 5


(s + 1)(s + 2 + j3)(s + 2 − j3)
≡


k1


(s + 1)
+


k2s + k3
(s2 + 4s + 13)


.


The partial fraction coefficient k1 is calculated to be


k1 =
[


(s + 1)
(s + 5)


(s + 1)(s2 + 4s + 13)


]


s=−1
=


[
(s + 5)


(s2 + 4s + 13)


]


s=−1
=


2


5
.


To compute coefficients k2 and k3, we substitute k1 = 2/5 in X2(s) and expand
s + 5


(s + 1)(s2 + 4s + 13)
≡


2


5(s + 1)
+


k2s + k3
(s2 + 4s + 13)


as


s + 5 ≡ 0.4(s2 + 4s + 13) + (k2s + k3)(s + 1).


Comparing the coefficients of s2 on both sides of the above expression yields


k2 + 0.4 = 0 ⇒ k2 = −0.4.
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Similarly, comparing the coefficients of s yields


k2 + k3 + 1.6 = 1 ⇒ k3 = −0.2.


The partial fraction expansion of X2(s) reduces to


X2(s) =
2


5(s + 1)
− 0.2


2s + 1
(s + 2)2 + 9


,


which is expressed as


X2(s) =
2


5(s + 1)
− 0.2


2(s + 2)
(s + 2)2 + 9


+ 0.2
3


(s + 2)2 + 9
.


Based on entries (4) and (13) in Table 6.1, the inverse Laplace transform is


given by


x1(t) = (0.4e−t − 0.4e−2t cos(3t) + 0.2e−2t sin(3t))u(t).


6.4 Properties of the Laplace transform


The unilateral and bilateral Laplace transforms have several interesting prop-


erties, which are used in the analysis of signals and systems. These properties


are similar to the properties of the CTFT covered in Section 5.4. In this section,


we discuss several of these properties, including their proofs and applications,


through a series of examples. A complete listing of the properties is provided


in Table 6.2. In most cases, we prove the properties for the unilateral Laplace


transform. The proof for the bilateral Laplace transform follows along similar


lines and is not included to avoid repetition.


6.4.1 Linearity


If x1(t) and x2(t) are two arbitrary functions with the following Laplace trans-


form pairs:


x1(t)
L←→ X1(s) with ROC: R1


and


x2(t)
L←→ X2(s) with ROC: R2 ,


then


a1x1(t) + a2x2(t)
L←→ a1 X1(s) + a2 X2(s) with ROC: at least R1 ∩ R2


(6.17)


for both unilateral and bilateral Laplace transforms.
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Proof


Calculating the Laplace transform of{a1x1(t) + a1x2(t)} using Eq. (6.9) yields


L{a1x1(t) + a2x2(t)} =
∞∫


0−


{a1x1(t) + a2x2(t)}e
−st dt


=


∞∫


0−


a1x1(t)e
−st dt +


∞∫


0−


a2x2(t)e
−st dt


= a1


∞∫


0−


x1(t)e
−st dt + a2


∞∫


0−


x2(t)e
−st dt


= a1 X1(s) + a2 X2(s),


which proves Eq. (6.17).


By definition of the ROC, the Laplace transform X1(s) is finite within the


specified region R1. Similarly, X2(s) is finite within its ROC R2. Therefore, the


linear combination a1 X1(s) + a2 X2(s) must at least be finite in region R that


represents the intersection of the two regions i.e. R = R1 ∩ R2. If there is no
common region between R1 and R2, then the Laplace transform of {a1x1(t) +
a1x2(t)} does not exist. Due to the cancellation of certain terms in a1 X1(s) +
a2 X2(s), it is also possible that the overall ROC of the linear combination is


larger than R1 ∩ R2. To illustrate the application of the linearity property, we
consider the following example.


Example 6.8


Calculate the Laplace transform of the causal function g(t) shown in Fig. 6.5.


t
0


g(t)
4


1 4−1−2−3−4 32


Fig. 6.5. Causal function g(t )


considered in Example 6.8.


Solution


The causal function g(t) is expressed as the linear combination


g(t) = 4x3(t) + 2x7(t),


where the CT functions x3(t) and x7(t) are defined in Example 6.4. Based on


the results of Example 6.4, the Laplace transforms for x3(t) and x7(t) are given


by


X3(s) =











2 for s = 0
1


s
[e−2s − e−4s] for s �= 0


with ROC: entire s-plane


and


X7(s) =











3 for s = 0
2


s2
[1 − e−s − se−2s] for s �= 0.


with ROC: entire s-plane








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:31


278 Part II Continuous-time signals and systems


Applying the linearity property, the Laplace transform of g(t) is given by


G(s) =











4(2) + 2(3) for s = 0
4


s
(e−2s − e−4s) +


4


s2
[1 − e−s − se−2s] for s �= 0,


which reduces to


G(s) =











14 for s = 0
4


s2
[1 − e−s − se−4s] for s �= 0.


Note that the ROC of G(s) is the intersection of the individual regions R1 and


R2. The overall ROC R is, therefore, the entire s-plane.


6.4.2 Time scaling


If x(t)
L←→ X (s) with ROC:R,then the Laplace transform of the scaled signal


x(at), where a ∈ ℜ+, a > 0, is given by


x(at)
L←→


1


|a|
X


( s


a


)


with ROC: a R (6.18)


for both unilateral and bilateral Laplace transforms. For the unilateral Laplace


transform, the value of a must be greater than zero. If a < 0, the scaled signal


x(at) will be non-causal such that its unilateral Laplace transform will not exist.


Proof


By Eq. (6.9), the Laplace transform of the time-scaled signal x(at) is given by


L{x(at)} =
∞∫


0−


x(at)e−st dt


=
∞∫


0−


x(τ )e−sτ/a
dτ


a
(by substituting τ = at)


=
1


a
X


( s


a


)


,


which proves Eq. (6.18) for a > 0. To prove that the ROC of the Laplace


transform of the time-scaled signal is aR, note that the values of X (s) are finite


within region R. For X (s/a), the new region over which X (s/a) is finite will


transform to aR.


Example 6.9


Calculate the Laplace transform of the function h(t) shown in Fig. 6.6.
h(t)


t
0


3


1 4−1−2−3−4 32


Fig. 6.6. Causal function h(t )


considered in Example 6.9.


Solution


In terms of the causal function x7(t), signal h(t) is expressed as


h(t) = 1.5x7
(


t


2


)


or h(t) = 1.5x7(0.5t).
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In Example 6.4, the Laplace transform of x7(t) is given by


X7(s) =











3 for s = 0
2


s2
[1 − e−s − se−2s] for s �= 0,


with the entire s-plane as the ROC.


Using the time-scaling property the Laplace transform of h(t) is given by


h(t) = 1.5x7(0.5t)
L←→


1


0.5
(1.5)X7


( s


0.5


)


= 3X7(2s) with ROC: 2R1,


which reduces to


H (s) =











9 for s = 0
1.5


s2
[1 − e−2s − 2se−4s] for s �= 0.


The ROC associated with H (s) is the entire s-plane.


6.4.3 Time shifting


If x(t)
L←→ X (s) with ROC:R,then the Laplace transform of the time-shifted


signal is


x(t − t0)
L←→ e−st0 X (s) with ROC: R (6.19)


for both unilateral and bilateral Laplace transforms. For the unilateral Laplace


transform, the value of t0 should be carefully selected such that the time-shifted


signal x(t – t0) remains causal. There is no such restriction for the bilateral


Laplace transform. Also, it may be noted that time shifting a signal does not


change the ROC of its Laplace transform.


Proof


By Eq. (6.9), the Laplace transform of the time-shifted signal x(t – t0) is given


by


L{x(t − t0)} =
∞∫


−∞


x(t − t0)e−st dt


= e−st0
∞∫


−∞


x(τ )e−sτ dτ (by substituting τ = t − t0)


= e−st0 X (s),


which proves the time-shifting property, Eq. (6.19). The Laplace transform of


the time-shifted signal x(t – t0) is a product of two terms: exp(−st0) and X (s).
For finite values of s and t0, the first term is always finite. Therefore, the ROC


of the Laplace transform of the time-shifted signal is the same as X (s).
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Example 6.10


Calculate the Laplace transform of the causal function f (t) shown in Fig. 6.7.


f (t)


t


3


6


4 7210−1 65


Fig. 6.7. Waveform f(t ) used in


Example 6.10.


Solution


In terms of the waveform h(t) shown in Fig. 6.6, f (t) is expressed as follows:


f (t) = 2h(t − 3).


In Example 6.9, the Laplace transform of h(t) is given by


H (s) =











9 for s = 0
1.5


s2
[1 − e−2s − 2se−4s] for s �= 0,


with the entire s-plane as the ROC. Using the time-shifting property, the Laplace


transform of f (t) is


f (t) = 2h(t − 3) L←→ 2e−3s H (s) with ROC: R,


which results in the following Laplace transform for f (t):


H (s) =











[18e−3s]s=0 = 18 for s = 0
3


s2
[e−3s − e−5s − 2se−7s] for s �= 0,


with the entire s-plane as the ROC.


6.4.4 Shifting in the s-domain


If x(t)
L←→ X (s) with ROC: R, then the Laplace transform of


es0t x(t)
L←→ X (s − s0) with ROC: R + Re{s0} (6.20)


for both unilateral and bilateral Laplace transforms. Shifting a signal in the


complex s-domain by s0 causes the ROC to shift by Re{s0}. Although the


amount of shift s0 can be complex, the shift in the ROC is always a real number.


In other words, the ROC is always shifted along the horizontal axis, irrespective


of the value of the imaginary component in s0.


The shifting property can be proved directly from Eq. (6.9) by considering


the CTFT of the signal exp(s0t)x(t). The proof is left as an exercise for the


reader (see Problem 6.6).


Example 6.11


Using the Laplace transform pair


u(t)
L←→


1


s
with ROC: Re{s} > 0,


calculate the Laplace transform of (i) x1(t) = cos(ω0t)u(t) and (ii) x2(t) =
sin(ω0t)u(t).
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Solution


Using the above Laplace transform pair and s-shifting property, the Laplace


transforms of exp(jω0t)u(t) and exp(−jω0t) u(t) are given by


e jω0t u(t)
L←→


1


(s − jω0)
with ROC: Re{s} > 0


and


e−jω0t u(t)
L←→


1


(s + jω0)
with ROC: Re{s} > 0.


(i) To calculate the Laplace transform of x1(t) = cos(ω0t) u(t), we add the
above transform pairs to obtain


e jω0t u(t) + e−jω0t u(t) L←→
1


(s − jω0)
+


1


(s + jω0)
with ROC: Re{s} > 0,


which reduces to


cos(ω0t)u(t)
L←→


s


s2 + ω20
with ROC: Re{s} > 0.


(ii) To evaluate the Laplace transform of x2(t) = sin(ω0t)u(t), we take the
difference of the above transform pairs to obtain


e jω0t u(t) − e−jω0t u(t) L←→
1


(s − jω0)
−


1


(s + jω0)
with ROC: Re{s} > 0 ,


which simplifies to


sin(ω0t)u(t)
L←→


ω0


s2 + ω20
with ROC: Re{s} > 0.


6.4.5 Time differentiation


If x(t)
L←→ X (s) with ROC:R, then the Laplace transform of


dx


dt


L←→ s X (s) − x(0−) with ROC: R. (6.21)


Note that if the function x(t) is causal, x(0−) = 0.


Proof


By Eq. (6.9), the Laplace transform of the derivative dx/dt is given by


L


{
dx


dt


}


=
∞∫


0−


dx


dt
e−st dt .


Applying integration by parts on the right-hand side of the equation yields


L


{
dx


dt


}


= x(t)e−st
︸ ︷︷ ︸


A


∣
∣
∣
∣
∣
∣


∞


0−


− (−s)
∞∫


0−


x(t)e−st dt.


︸ ︷︷ ︸


X (s)
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Considering the first term, denoted by A, we note that for the upper limit,


t → ∞, the value of A is zero due to the decaying exponential term. For the


lower limit, t → 0−, A equals x(0−). The above equation therefore reduces to


L


{
dx


dt


}


= x(0−) + s X (s).


Corollary 6.1 By repeatedly applying the differentiation property n times, it is


straightforward to prove that


dn x


dtn
L←→ sn X (s) − sn−1x(0−) − · · · − sx (n−2)(0−)


− x (n−1)(0−) with ROC: R, (6.22)


where x (k) denotes the kth derivative of x(t), i.e. x (k) = dk x /dtk .


Example 6.12


Based on the Laplace transform pair


u(t)
L←→


1


s
with ROC: Re{s} > 0,


calculate the Laplace transform for the impulse function x(t) = δ(t).


Solution


Based on entry (2) of Table 6.1, we know that


u(t)
L←→


1


s
with ROC: Re{s} > 0.


Using the time-differentiation property, the Laplace transform of the first deriva-


tive of u(t) is given by


du(t)


dt


L←→ s ·
1


s
+ u(t)|t=0− with ROC: Re{s} > 0.


Knowing that du/dt = δ(t) and u(0−) = 0, we obtain


δ(t)
L←→ 1 with ROC: Re{s} > 0.


6.4.6 Time integration


If x(t)
L←→ X (s) with ROC:R, then


unilateral Laplace transform


t∫


0−


x(τ )dτ
L←→


X (s)


s


with ROC: R ∩ Re{s}>0; (6.23)


bilateral Laplace transform


t∫


−∞


x(τ )dτ
L←→


X (s)


s
+


1


s


0−∫


−∞


x(τ )dτ


with ROC: R ∩ Re{s} > 0. (6.24)
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Table 6.2. Properties of the Laplace transform


The corresponding properties of the CTFT are also listed in the table for comparison


CTFT


X ( jω) =
∞∫


−∞


x(t)e−jωt dt


Laplace transform


X (s) =


∞∫


−∞


x(t)e−st dt


Properties in the time domain


Linearity


a1x1(t) + a2x2(t)


a1 X1(ω) + a2 X2(ω) a1 X1(s) + a2 X2(s)


ROC: at least R1 ∩ R2


Time scaling


x(at)


1


|a|
X


(ω


a


) 1


|a|
X


( s


a


)


with ROC: a R


Time shifting


x(t − t0)
e−jω0t X (ω) e−st0 X (s)


with ROC: R


Frequency/s-domain shifting


x(t)e jω0t or x(t)es0t
X (ω − ω0) X (s − s0)


with ROC: R + Re{s0}
Time differentiation


dx/dt


jωX (ω) s X (s) − x(0−)
with ROC: R


Time integration
t∫


−∞


x(τ )dτ


X (ω)


jω
+ π X (0)δ(ω)


X (s)


s
with ROC: R ∩ Re{s} > 0


Frequency/s-domain


differentiation


(−t)x(t)


−jdX/dω dX/ds


Duality


X (t)


2πx(ω) not applicable


Time convolution


x1(t) ∗ x2(t)
X1(ω)X2(ω) X1(s)X2(s)


ROC includes R1 ∩ R2


Frequency/s-domain convolution


x1(t)x2(t)


1


2π
X1(ω) ∗ X2(ω)


1


2π
X1(s) ∗ X2(s)


ROC includes


R1 ∩ R2


Parseval’s relationship


∞∫


−∞


|x(t)|2dt =
1


2π


∞∫


−∞


|X (ω)|2dω not applicable


Initial value


x(0+) if it exists


1


2π


∞∫


−∞


X (ω)dω lim
s→∞


sX (s)


provided s = ∞ is included
in the ROC of sX(s)


Final value


x(∞) if it exists
not applicable lim


s→0
sX (s)


provided s = 0 is included
in the ROC of sX(s)
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The proof of the time-integration property is left as an exercise for the reader


(see Problem 6.7).


Example 6.13


Given the Laplace transform pair


cos(ω0t)u(t)
L←→


s


(s2 + ω20)
with ROC: Re{s} > 0,


derive the unilateral Laplace transform of sin(ω0t)u(t).


Solution


By applying the time-integration property to the aforementioned unilateral


Laplace transform pair yields
t∫


0−


cos(ω0τ )u(τ )dτ
L←→


1


s


s
(


s2 + ω20
) with ROC: Re{s} > 0,


where the left-hand side of the transform pair is given by
t∫


0−


cos(ω0τ )u(τ )dτ =
t∫


0


cos(ω0τ )dτ =
sin(ω0τ )


ω0


∣
∣
∣
∣


t


0


=
1


ω0
sin(ω0t).


Substituting the value of the integral in the transform pair, we obtain


sin(ω0t)u(t)
L←→


ω0


(s2 + ω20)
with ROC: Re{s} > 0,


6.4.7 Time and s-plane convolution


If x1(t) and x2(t) are two arbitrary functions with the following Laplace trans-


form pairs:


x1(t)
L←→ X1(s) with ROC: R1 and x2(t)


L←→ X2(s) with ROC: R2,
then the convolution property states that


time convolution x1(t) ∗ x2(t)
L←→ X1(s)X2(s)


containing at least ROC: R1 ∩ R2; (6.25)


s-plane convolution x1(t)x2(t)
L←→


1


2π j
[X1(s) ∗ X2(s)]


containing at least ROC: R1 ∩ R2. (6.26)


The convolution property is valid for both unilateral (for causal signals) and


bilateral (for non-causal signals), Laplace transforms. The overall ROC of the


convolved signals may be larger than the intersection of regions R1 and R2
because of possible cancellation of poles in the products.


Proof


Consider the Laplace transform of x1(t) ∗ x2(t):


L{x1(t) ∗ x2(t)} =
∞∫


0−


[x1(t) ∗ x2(t)]e−st dt =
∞∫


0−








∞∫


−∞


x1(τ )x2(t − τ )dτ





 e−st dt .
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Interchanging the order of integration, we get


L{x1(t) ∗ x2(t)} =
∞∫


−∞


x1(τ )








∞∫


0−


x2(t − τ )e
−st dt





 dτ.


By noting that the inner integration ∫ x2(t − τ ) exp(−st)dt = X2(s) exp(−sτ ),


the above integral simplifies to


L{x1(t) ∗ x2(t)} = X2(s)


∞∫


−∞


x1(τ )e
−sτ dτ = X2(s)X1(s),


which proves Eq. (6.25). The s-plane convolution property may be proved in a


similar fashion.


Like the CTFT convolution property discussed in Section 5.5.8, the Laplace


time-convolution property provides us with an alternative approach to cal-


culate the output y(t) when a CT signal x(t) is applied at the input of an


LTIC system with the impulse response h(t). In Chapter 3, we proved that


the zero-state output response y(t) is obtained by convolving the input signal


x(t) with the impulse response h(t), i.e. y(t) = h(t) ∗ x(t). Using the time-


convolution property, the Laplace transform Y (s) of the resulting output y(t) is


given by


y(t) = x(t) ∗ h(t)
L←→ Y (s) = X (s)H (s),


where X (s) and H (s) are the Laplace transforms of the input signal x(t) and


the impulse response h(t) of the LTIC systems. In other words, the Laplace


transform of the output signal is obtained by multiplying the Laplace transforms


of the input signal and the impulse response. The procedure for calculating the


output y(t) of an LTI system in the complex s-domain, therefore, consists of


the following four steps.


(1) Calculate the Laplace transform X (s) of the input signal x(t). If the input


signal and the impulse response are both causal functions, then the unilateral


Laplace transform is used. If either of the two functions is non-causal, the


bilateral Laplace transform must be used.


(2) Calculate the Laplace transform H (s) of the impulse response h(t) of the


LTIC system. The Laplace transform H (s) is referred to as the Laplace


transfer function of the LTIC system and provides a meaningful insight


into the behavior of the system.


(3) Based on the convolution property, the Laplace transform Y (s) of the output


response y(t) is given by the product of the Laplace transforms of the input


signal and the impulse response of the LTIC systems. Mathematically, this


implies that Y (s) = X (s)H (s).
(4) Calculate the output response y(t) in the time domain by taking the inverse


Laplace transform of Y (s) obtained in step (3).
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Since the Laplace-transform-based approach for calculating the output response


of an LTIC system does not involve integration, it is preferred over the time-


domain approaches.


Example 6.14


In Example 3.6, we showed that in response to the input signal x(t) = e−t u(t),
the LTIC system with the impulse response h(t) = e−2t u(t) produces the
following output:


y(t) = (e−t − e−2t )u(t).


Example 5.21 derived the result using the CTFT. We now derive the result using


the Laplace transform.


Solution


Since the input signal and impulse response are both causal functions, we


take the unilateral Laplace transform of both signals. Based on Table 6.1, the


resulting transform pairs are given by


x(t) = e−t u(t) L←→ X (s) =
1


(s + 1)
with ROC: Re{s} > −1


and


h(t) = e−2t u(t) L←→ X (s) =
1


(s + 2)
with ROC: Re{s} > −2.


Based on the time-convolution property, the Laplace transform Y (s) of the


resulting output y(t) is given by


y(t) = h(t) ∗ x(t) L←→ Y (s) =
1


(s + 1)(s + 2)
with ROC: Re{s} > −1,


where the ROC of the Laplace transform of the output is obtained by taking the


intersection of the regions Re{s} > −1 and Re{s} > −2, associated with the
applied input and the impulse response. Using partial fraction expansion, Y (s)


may be expressed as follows:


Y (s) =
1


(s + 1)
︸ ︷︷ ︸


ROC : Re{s}>−1


−
1


(s + 2)
︸ ︷︷ ︸


ROC : Re{s}>−2


.


Taking the inverse Laplace transform of the individual terms on the right-hand


side of this equation yields


y(t) = (e−t − e−2t )u(t),


which is the same as the result produced by direct convolution and the approach


based on the CTFT time-convolution property.
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6.4.8 Initial- and final-value theorems


If x(t)
L←→ X (s) with ROC:R, then


initial-value theorem x(0+) = lim
t→0+


x(t) = lim
s→∞


s X (s) provided x(0+) exists;


(6.27)


final-value theorem x(∞) = lim
t→∞


x(t) = lim
s→0


s X (s) provided x(∞) exists.


(6.28)


The initial-value theorem is valid only for the unilateral Laplace transform


as it requires the reference signal x(t) to be zero for t < 0. In addition, x(t)


should not contain an impulse function or any other higher-order discontinuities


at t = 0. The second constraint is required to ensure a unique value of x(t) at
t = 0+. However, the final-value theorem may be used with either the unilateral
or bilateral Laplace transform. The proof of these theorems is left as an exercise


for the reader (see Problems 6.8 and 6.9).


Example 6.15


Calculate the initial and final values of the functions x1(t), x2(t), and x3(t),


whose Laplace transforms are specified below:


(i) X1(s) =
s + 3


s(s + 1)(s + 2)
with ROC R1: Re{s} > 0;


(ii) X2(s) =
s + 5


s3 + 5s2 + 17s + 13
with ROC R2: Re{s} > −1;


(iii) X3(s) =
5


s2 + 25
with ROC R3: Re{s} > 0.


Solution


(i) Applying the initial-value theorem, Eq. (6.27), to X1(s), we obtain


x1(0
+) = lim


t→0+
x1(t) = lim


s→∞
s X1(s) = lim


s→∞


s(s + 3)
s(s + 1)(s + 2)


= lim
s→∞


(s + 3)
(s + 1)(s + 2)


= 0.


Applying the final-value theorem, Eq. (6.28), to X1(s) yields


x1(∞) = lim
t→∞


x1(t) = lim
s→0


s X1(s) = lim
s→0


s(s + 3)
s(s + 1)(s + 2)


= lim
s→0


(s + 3)
(s + 1)(s + 2)


= 1.5.


These initial and final values of x(t) can be verified from the following inverse


Laplace transform of X1(s) derived in Example 6.7(i):


x1(t) = (1.5 − 2e−t + 0.5e−2t )u(t).
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(ii) Applying the initial-value theorem, Eq. (6.27), to X2(s), we obtain


x2(0
+) = lim


t→0+
x2(t) = lim


s→∞
s X2(s) = lim


s→∞


s(s + 5)


s3 + 5s2 + 17s + 13


= lim
s→∞


2


6s
= 0.


Applying the final-value theorem, Eq. (6.28), to X2(s) yields


x2(∞) = lim
t→∞


x2(t) = lim
s→0


s X2(s) = lim
s→0


s(s + 5)


s3 + 5s2 + 17s + 13
= 0.


The initial and final values of x(t) can be verified from the following inverse


Laplace transform of X1(s) derived in Example 6.7(ii):


x1(t) = (0.4e
−t − 0.4e−2t cos(3t) + 0.2e−2t sin(3t))u(t).


(iii) Applying the initial-value theorem, Eq. (6.27), to X3(s), we obtain


x3(0
+) = lim


t→0+
x3(t) = lim


s→∞
s X3(s) = lim


s→∞


5s


s2 + 25
= lim


s→∞


5


2s
= 0.


Applying the final-value theorem, Eq. (6.28), to X3(s) yields


x3(∞) = lim
t→∞


x3(t) = lim
s→0


s X3(s) = lim
s→0


5s


s2 + 25
= 0.


To confirm the initial and final values obtained in (iii), we determine these values


directly from the inverse transform of X3(s) = 5/(s
2 + 25). From Table 6.1, the


inverse Laplace transform of X3(s) is given by x3(t) = sin(5t)u(t). Substituting


t = 0+, the initial value x3(0
+) = 0, which verifies the value determined from


the initial-value theorem. Applying the limit t → ∞ to x3(t), the final value


of x3(t) cannot be determined due to the oscillatory behavior of the sinusoidal


wave. As a result, the final-value theorem provides an erroneous answer. The


discrepancy between the result obtained from the final-value theorem and the


actual value x3(∞) occurs because the point s = 0 is not included in the ROC


of sX3(s) R3: Re{s} > 0. As such, the expression for the Laplace transform


sX3(s) is not valid for s = 0. In such cases, the final-value theorem cannot be


used to determine the value of the function as t → ∞. Similarly, the point


s = ∞ must be present within the ROC of sX3(s) to apply the initial-value


theorem.


6.5 Solution of differential equations


An important application of the Laplace transform is to solve linear, constant-


coefficient differential equations. In Section 3.1, we used a time-domain


approach to obtain the zero-input, zero-state, and overall solution of differ-


ential equations. In this section, we discuss an alternative approach based on


the Laplace transform. We illustrate the steps involved in the Laplace-transform-


based approach through Examples 6.16 and 6.17.
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Example 6.16


In Example 3.2, we calculated the output voltage y(t) across resistor R = 5 �
of an RC series circuit, which is modeled by the linear, constant-coefficient


differential equation


dy


dt
+ 4y(t) =


dx


dt
(6.29)


for an initial condition y(0−) = 2 V and a sinusoidal voltage x(t) = sin(2t)u(t)
applied at the input of the RC circuit. Repeat Example 3.2 using the Laplace-


transform-based approach.


Solution


Overall response To compute the overall response of the RC circuit, we take
the Laplace transform of each term on both sides of Eq. (6.29). The Laplace


transform X (s) of the input signal x(t) is given by


X (s) = L{x(t)} = L{sin(2t)u(t)} =
2


s2 + 4
.


Using the time-differentiation property,


L


{
dx


dt


}


= s X (s) − x(0−) =
2s


s2 + 4
.


Expressed in terms of the Laplace transform pair, y(t)
L←→ Y (s), the transform


of the first derivative of y(t) is given by


L


{
dy


dt


}


= sY (s) − y(0−) = sY (s) − 2.


Taking the Laplace transform of Eq. (6.29) and substituting the above values


yields


[sY (s) − 2] + 4Y (s) =
2s


s2 + 4
. (6.30)


Rearranging and collecting the terms corresponding to Y (s) on the left-hand


side of the equation results in the following:


[s + 4]Y (s) = 2 +
2s


s2 + 4
or


Y (s) =
2s2 + 2s + 8


(s + 4)(s2 + 4)
≡


A


(s + 4)
+


Bs + C
(s2 + 4)


, (6.31)


where Eq. (6.31) is obtained by the partial fraction expansion. The partial


fraction coefficient A is given by


A =
[


(s + 4)
2s2 + 2s + 8


(s + 4)(s2 + 4)


]


s=−4
=


32


20
= 1.6.
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To obtain the values of the partial fraction coefficients B and C , we multiply


both sides of Eq. (6.31) by (s + 4) (s2 + 4) and substitute A = 1.6. The resulting
expression is as follows:


2s2 + 2s + 8 = A(s2 + 4) + (s + 4)(Bs + C)
= (A + B)s2 + (4B + C)s + 4(A + C)
= (1.6 + B)s2 + (4B + C)s + 4(1.6 + C).


Comparing the coefficients of s2, we obtain 1.6 + B = 2, or B = 0.4. Similarly,
comparing the coefficients of s gives 4B + C = 2, or C = 0.4. The expression
for Y (s) is, therefore, given by


Y (s) =
1.6


(s + 4)
+


0.4s + 0.4
(s2 + 4)


=
1.6


(s + 4)
+ 0.4


s


(s2 + 4)
+ 0.2


2


(s2 + 4)
,


which has the following inverse Laplace transform:


y(t) = [1.6e−4t + 0.4 cos(2t) + 0.2 sin(2t)]u(t).


The aforementioned value of the overall output signal is same as the solution


derived in Eq. (3.10) using the time-domain approach. We now proceed with


the calculation of the zero-input response yzi(t) and zero-state response yzs(t).


Zero-input response To obtain the zero-input response yzi(t), we assume that
the value of input x(t) = 0 in Eq. (6.29), i.e.


dyzi


dt
+ 4yzi(t) = 0.


Taking the Laplace transform of the above equation and substituting:


L


{
dyzi


dt


}


= sYzi(s) − yzi(0−) = sYzi(s) − 2,


gives


[s + 4]Yzi(s) = 2,


which reduces to


Yzi(s) =
2


s + 4
.


Taking the inverse Laplace transform results in the following expression for the


zero-input response:


yzi(t) = 2e−4t u(t),


which is same as the result derived in Example 3.2.


Zero-state response To obtain the zero-state response, we assume that the
initial condition yzs(0


−) = 0. This changes the value of the Laplace transform
of the first derivative of y(t) as follows:


L


{
dyzs


dt


}


= sYzs(s) − yzs(0−) = sYzs(s).








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:31


291 6 Laplace transform


Taking the Laplace transform of Eq. (6.29) yields


(s + 4)Yzs(s) =
2s


s2 + 4
.


Using the partial fraction expansion, the above equation is expressed as follows:


Yzs(s) =
2s


(s + 4)(s2 + 4)
≡ −


0.4


(s + 4)
+


0.4s + 0.4
(s2 + 4)


.


Taking the inverse Laplace transform, the zero-state response is given by


y(t) = [−0.4e−4t + 0.4 cos(2t) + 0.2 sin(2t)]u(t),


which is same as the result derived in Example 3.2.


We also know from Chapter 3 that the overall response y(t) is the sum of


the zero-input response yzi(t) and the zero-state response yzs(t). This is easily


verifiable for the above results.


Example 6.17


In Example 3.3, the following differential equation


d2w


dt2
+ 7


dw


dt
+ 12w(t) = 12x(t) (6.32)


was used to model the RLC series circuit shown in Fig. 3.1. Determine the


zero-input, zero-state, and overall response of the system produced by the input


x(t) = 2e−t u(t) given the initial conditions, w(0−) = 5 V and ẇ(0−) = 0.


Solution


Overall response The Laplace transforms of the individual terms in Eq. (6.32)
are given by


X (s) = L{x(t)} = L{2e−t u(t)} =
2


s + 1
,


W (s) = L{w(t)},


L


{
dw


dt


}


= sW (s) − w(0−) = sW (s) − 5,


and


L


{
d2w


dt2


}


= s2W (s) − sw(0−) − ẇ(0−) = s2W (s) − 5s.


Taking the Laplace transform of both sides of Eq. (6.32) and substituting the


above values yields


[s2W (s) − 5s] + 7[sW (s) − 5] + 12W (s) =
24


s + 1
or


[s2 + 7s + 12]W (s) = 5s + 35 +
24


s + 1
=


5s2 + 40s + 59
s + 1


,
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which reduces to


W (s) =
5s2 + 40s + 59


(s + 1) (s2 + 7s + 12)
=


5s2 + 40s + 59
(s + 1)(s + 3)(s + 4)


.


Taking the partial fraction expansion, we obtain


5s2 + 40s + 59
(s + 1)(s + 3)(s + 4)


≡
k1


(s + 1)
+


k2


(s + 3)
+


k3


(s + 4)
,


where the partial fraction coefficients are given by


k1 =
[


(s + 1)
5s2 + 40s + 59


(s + 1)(s + 3)(s + 4)


]


s=−1
=


5 − 40 + 59
(2)(3)


= 4,


k2 =
[


(s + 3)
5s2 + 40s + 59


(s + 1)(s + 3)(s + 4)


]


s=−3
=


45 − 120 + 59
(−2)(1)


= 8,


and


k3 =
[


(s + 4)
5s2 + 40s + 59


(s + 1)(s + 3)(s + 4)


]


s=−4
=


80 − 160 + 59
(−3)(−1)


= −7.


Substituting the values of the partial fraction coefficients k1, k2, and k3, we


obtain


W (s) ≡
4


(s + 1)
+


8


(s + 3)
−


7


(s + 4)
.


Calculating the inverse Laplace transform of both sides, we obtain the output


signal as follows:


w(t) ≡ [4e−t + 8e−3t − 7e−4t ]u(t).


Zero-input response To calculate the zero-input output, the input signal is
assumed to be zero. Equation (6.32) reduces to


d2wzi


dt2
+ 7


dwzi


dt
+ 12wzi(t) = 0, (6.33)


with initial conditions w(0−) = 5 and ẇ(0−) = 0. Calculating the Laplace
transform of Eq. 6.33 yields


[s2Wzi(s) − 5s] + 7[sWzi(s) − 5] + 12Wzi(s) = 0


or


Wzi(s) =
5s + 35


s2 + 7s + 12
.


Using the partial fraction expansion, the above equation is expressed as follows:


Wzi(s) =
5s + 35


s2 + 7s + 12
≡


20


s + 3
−


15


s + 4
.


Taking the inverse Laplace transform, the zero-input response is given by


wzi(t) ≡ [20e−3t − 15e−4t ]u(t).
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Zero-state response To calculate the zero-state output, the initial conditions
are assumed to be zero, i.e. w(0−) = 0 and ẇ(0−) = 0. Taking the Laplace
transform Eq. (6.31) and applying zero initial conditions yields


s2Wzs(s) + 7sWzs(s) + 12Wzs(s) =
24


s + 1
or


Wzs(s) =
24


(s + 1)(s2 + 7s + 12)
.


Using the partial fraction expansion, we obtain


Wzs(s) =
24


(s + 1)(s + 3)(s + 4)
≡


4


(s + 1)
−


12


(s + 3)
+


8


(s + 4)
.


Taking the inverse Laplace transform, the zero-state response of the system is


given by


wzs(t) ≡ [4e−t − 12e−3t + 8e−4t ]u(t).


The overall, zero-input, and zero-state responses calculated in the Laplace


domain are the same as the results computed in Example 3.3 using the time-


domain approach


A direct consequence of solving a linear, constant-coefficient differential equa-


tion is the evaluation of the Laplace transfer function H (s) for the LTIC system.


The Laplace transfer function is defined as the ratio of the Laplace transform


Y (s) of the output signal y(t) to the Laplace transform X (s) of the input signal


x(t). Mathematically,


H (s) =
Y (s)


X (s)
, (6.34)


which is obtained by taking the Laplace transform of the differential equation


and solving for H (s), as defined in Eq. (6.34). The above procedure provides


an algebraic expression for the Laplace transfer function. Its ROC is obtained


by observing whether the LTIC is causal or non-causal. Given the algebraic


expression and the ROC, the inverse Laplace transform of the Laplace transfer


function H (s) leads to the impulse response h(t) of the LTIC system. The


Laplace transfer function is also useful for analyzing the stability of the LTIC


systems, which is considered in Sections 6.6 and 6.7.


6.6 Characteristic equation, zeros, and poles


In this section, we will define the key concepts related to the stability of LTIC


systems. Although these concepts can be applied to general LTIC systems, we


will assume a system with a rational transfer function H (s) of the following
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form:


X (s) =
N (s)


D(s)
=


bms
m + bm−1sm−1 + bm−2sm−2 + · · · + b1s + b0


sn + an−1sn−1 + an−2sn−2 + · · · + a1s + a0
. (6.35)


Characteristic equation The characteristic equation for the transfer function
in Eq. (6.35) is defined as follows:


D(s) = sn + an−1sn−1 + an−2sn−2 + · · · + a1s + a0 = 0. (6.36)


It will be shown later that the characteristic equation determines the behavior


of the system, including its stability and possible modes of the output response.


In other words, it characterizes the system very well.


Zeros The zeros of the transfer function H (s) of an LTIC system are the finite
locations in the complex s-plane where |H (s)| = 0. For the transfer function in
Eq. (6.35), the location of the zeros can be obtained by solving the following


equation:


N (s) = bmsm + bm−1sm−1 + bm−2sm−2 + · · · + b1s + b0 = 0. (6.37)


Since N (s) is an mth-order polynomial, it will have m roots leading to m zeros


for transfer function H (s).


Poles The poles of the transfer function H (s) of an LTIC system are the loca-
tions in the complex s-plane where |H (s)| has an infinite value. At these loca-
tions, the Laplace magnitude spectrum takes the form of poles (due to the infinite


value), and this is the reason the term “pole” is used to denote such locations.


The poles corresponding to the transfer function in Eq. (6.35) can be obtained


by solving the characteristic equation, Eq. (6.36).


Because D(s) is an nth-order polynomial, it will have n roots leading to n


poles. In order to calculate the zeros and poles, a transfer function is factorized


and typically represented as follows:


H (s) =
N (s)


D(s)
=


bm(s − z1)(s − z2) · · · (s − zm)
(s − p1)(s − p2) · · · (s − pn)


. (6.38)


Note that a transfer function H (s) must be finite within its ROC. On the other


hand, the magnitude of the transfer function H (s) is infinite at the location of a


pole. Therefore, the ROC of a system must not include any pole. However, an


ROC may contain any number of zeros.


Example 6.18


Determine the poles and zeros of the following LTIC systems:


(i) H1(s) =
(s + 4)(s + 5)


s2(s + 2)(s − 2)
;


(ii) H2(s) =
(s + 4)


s3 + 5s2 + 17s + 13
;


(iii) H3(s) =
1


es + 10
.
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Re{s}
0


Im{s}
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6


(a)


(c)


(b)


Fig. 6.8. Locations of zeros and


poles of LTIC systems specified


in Example 6.18. The ROCs for


causal LTIC systems are


highlighted by the shaded


regions. Parts (a)–(c) correspond


to parts (i)–(iii) of Example 6.18.


Solution


(i) The zeros are the roots of the quadratic equation (s + 4)(s + 5) = 0, which
are given by s = −4, −5. The poles are the roots of the fourth-order equation
s2(s + 2)(s − 2) = 0, and are given by s = 0, 0, −2, 2. Figure 6.8(a) plots the
location of poles and zeros in the complex s-plane. The poles are denoted by


the “×” symbols, while the zeros are denoted by the “◦” symbols.
(ii) The zeros are the roots of the equation s + 4 = 0, which are given by


s = −4. The poles are the roots of the third-order equation s3 + 5s2 + 17s +


13 = 0, and are given by s = −1, −2 ± j3. Figure 6.8(b) plots the location of


poles and zeros in the complex s-plane.


(iii) Since the numerator is a constant, there is no zero for the LTIC system.


The poles are the roots of the characteristic equation es + 0.1 = 0. Following


the procedure shown in Appendix B, it can be shown that there are an infinite


number of roots for the equation es + 0.1 = 0. The locations of the poles are


given by


s = ln 0.1 + j(2m + 1)π ≈ −2.3 + j(2m + 1)π.


The poles are plotted in Fig. 6.8(c).


6.7 Properties of the ROC


In Section 3.7.2, we showed that the impulse response h(t) of a causal LTIC


system satisfies the following condition:


h(t) = 0 for t < 0.
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For such right-sided functions, it is straightforward to show that the ROC R of


its transfer function H (s) will be of the form Re{s} > σ0, containing the right
side of the s-plane. Consider, for example, the bilateral Laplace transform pairs


e−at u(t)
L←→


1


s + a
with ROC: Re{s} > −a


and


−e−at u(−t) L←→
1


s + a
with ROC: Re{s} < −a.


The first function e−at u(t) is right sided and its ROC: Re{s} > −a occupies the
right side of the s-plane. On the other hand, the second function −e−at u(−t) is
left sided, and its ROC: Re{s} < −a occupies the left side of the s-plane. Based
on the above observations and the Laplace transform pairs listed in Table 6.1,


we state the following properties for the ROC.


Property 1 The ROC consists of 2D strips that are parallel to the imaginary
jω-axis.


Property 2 For a right-sided function, the ROC takes the form Re{s} > σ0
and consists of the right side of the complex s-plane.


Property 3 For a left-sided function, the ROC takes the form Re{s} < σ0 and
consists of the most of the left side of the complex s-plane.


Property 4 For a finite duration function, the ROC consists of the entire s-plane
except for the possible deletion of the point s = 0.


Property 5 For a double-sided function, the ROC takes the form σ1 < Re{s} <
σ2 and is a confined strip within the complex s-plane.


Property 6 The ROC of a rational transfer function does not contain any pole.


Combining Property 6 with the causality constraint (Re{s} > σ0) discussed
earlier in the section, we obtain the following condition for a causal LTIC


system.


Property 7 The ROC R for a right-sided LTIC system with the rational transfer
function H (s) is given by R: Re{s} > Re{pr}, where pr is the
location of the rightmost pole among the n poles determined using


Eq. (6.36).


Since the impulse response of a causal system is a right-sided function, the


ROC of a causal system satisfies Property 7. The converse of Property 7 leads


to Property 8 for a left-sided sequence.


Property 8 The ROC R for a left-sided function with the rational transfer func-
tion H (s) is given by R: Re{s} < Re{pl} where pl is the leftmost
pole among the n poles determined using Eq. (6.36).


To illustrate the application of the properties of the ROC, we consider the


following example.
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Example 6.19


Consider the LTIC systems in Example 6.18(i) and (ii). Calculate the impulse


response if the specified LTIC systems are causal. Repeat for non-causal


systems.


Solution


(i) Using the partial fraction expansion, H1(s) can be expressed as follows:


H1(s) =
(s + 4)(s + 5)


s2(s + 2)(s − 2)
≡


k1


s
+


k2


s2
+


k3


(s + 2)
+


k4


(s − 2)
,


where


k1 =
[


d


ds


(
(s + 4)(s + 5)
(s + 2)(s − 2)


)]


s=0
≡


[
2s + 9
s2 − 4


−
(s + 4)(s + 5)


(s2 − 4)2
2s


]


s=0
= −


9


4
,


k2 =
[


s2
(s + 4)(s + 5)


s2(s + 2)(s − 2)


]


s=0
≡


(4)(5)


2(−2)
= −5,


k3 =
[


(s + 2)
(s + 4)(s + 5)


s2(s + 2)(s − 2)


]


s=−2
≡


(2)(3)


4(−4)
= −


3


8
,


and


k4 =
[


(s − 2)
(s + 4)(s + 5)


s2(s + 2)(s − 2)


]


s=2
≡


(6)(7)


4(4)
=


21


8
.


Therefore,


H1(s) ≡ −
9


4s
−


5


s2
−


3


8(s + 2)
+


21


8(s − 2)
.


If H1(s) represents a causal LTIC system, then its ROC, based on Property 7,


is given by Rc: Re{s} > 2. Based on the linearity property, the overall ROC Rc
is only possible if the ROCs for the individual terms in H1(s) are given by


H1(s) = −
9


4s
︸︷︷︸


ROC:Re{s}>0


−
5


s2
︸︷︷︸


ROC:Re{s}>0


−
3


8(s + 2)
︸ ︷︷ ︸


ROC:Re{s}>−2


+
21


8(s − 2)
.


︸ ︷︷ ︸


ROC:Re{s}>2


By calculating the inverse Laplace transform, the impulse response for a causal


LTIC system is obtained as follows:


h1(t) =
[


−
9


4
− 5t −


3


8
e−2t +


21


8
e2t


]


u(t).


If H1(s) represents a non-causal system, then its ROC can have three different


values: Re{s} < −2; −2 < Re{s} < 0; or 0 < Re{s} < 2 in the s-plane. Select-
ing Re{s} < −2 as the ROC will lead to a left-sided signal. The remaining two
choices will lead to a double-sided signal. Assuming that we select the overall


ROC to be Rnc: Re{s} < −2 , the ROCs for the individual terms in H1(s) are
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given by


H1(s) = −
9


4s
︸︷︷︸


ROC:Re{s}<0


−
5


s2
︸︷︷︸


ROC:Re{s}<0


−
3


8(s + 2)
︸ ︷︷ ︸


ROC:Re{s}<−2


+
21


8(s − 2)
.


︸ ︷︷ ︸


ROC:Re{s}<2


Taking the inverse Laplace transform, the impulse response for a non-causal


LTIC system is given by


h1(t) =
[


9


4
+ 5t +


3


8
e−2t −


21


8
e2t


]


u(−t).


(ii) Using the partial fraction expansion, H2(s) may be expressed as follows:


H2(s) =
3


10(s + 1)
−


3s − 1
10(s2 + 4s + 13)


.


If H2(s) represents a causal system, then its ROC is given by Rc: Re{s} > −1.
The ROCs associated with the individual terms in H2(s) are given by


H2(s) =
3


10(s + 1)
︸ ︷︷ ︸


ROC:Re{s}>−1


−
3s − 1


10(s2 + 4s + 13)
︸ ︷︷ ︸


ROC:Re{s}>−2


.


Taking the inverse Laplace transform, the impulse response for a causal LTIC


system is given by


h2(t) =
[


3


10
e−t −


3


10
e−2t cos(3t) +


7


30
e−2t sin(3t)


]


u(t).


If H2(s) represents a non-causal system, then several different choices of ROC


are possible. One possible choice is given by Rnc: Re{s} < −2. The ROCs
associated with the individual terms in H2(s) are given by


H2(s) =
3


10(s + 1)
︸ ︷︷ ︸


ROC:Re{s}<−1


−
3s − 1


10(s2 + 4s + 13)
︸ ︷︷ ︸


ROC:Re{s}<−2


.


Taking the inverse Laplace transform, the impulse response for a causal LTIC


system is given by


h2(t) =
[


−
3


10
e−t +


3


10
e−2t cos(3t) −


7


30
e−2t sin(3t)


]


u(−t).


6.8 Stable and causal LTIC systems


In Section 3.7.3, we showed that the impulse response h(t) of a BIBO stable


system satisfies the condition


∞∫


−∞


|h(t)|dt < ∞. (6.39)
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In this section, we derive an equivalent condition to determine the stability of


an LTIC system modeled with a rational Laplace transfer function H (s) given


in Eq. (6.35). Since we are mostly interested in causal systems, we assume


that the Laplace transfer function H (s) corresponds to a right-sided system.


The poles of a system with a transfer function as given in Eq. (6.35) can be


calculated by solving the characteristic equation, Eq. (6.36). Three types of


poles are possible. Out of the n possible poles, assume that there are L poles at


s = 0, K real poles at s = −σk , 1 ≤ k ≤ K , and M pairs of complex-conjugate
poles at s = −αm ± jωm , 1 ≤ m ≤ M , such that L + K + 2M = n. In terms
of its poles, the transfer function, Eq. (6.35), is given by


H (s) =
N (s)


D(s)
=


N (s)


sL
K∏


k=1
(s + σk)


M∏


m=1


(


s2 + 2αms +
(


α2m + ω
2
m


))


. (6.40)


From Table 6.1, the repeated roots at s = 0 correspond to the following term
in the time domain:


1


n!
tnu(t)


L←→
1


sn
. (6.41)


Since term tnu(t) is unbounded as t → ∞, a stable LTIC system will not contain
such unstable terms. Therefore, we assume that L = 0. The partial fraction
expansion of Eq. (6.40) with L = 0 results in the following expression:


H (s) =
A1


(s + σ1)
+ · · · +


AK


(s + σK )
+


B1s + C1
(


s2 + 2α1s +
(


α21 + ω21
)) + · · ·


+
BM s + CM


(


s2 + 2αM s +
(


α2M + ω2M
)) , (6.42)


where {Ak , Bm , Cm} are the partial fraction coefficients. Calculating the inverse


Laplace transform of Eq. (6.42) and assuming a causal system, we obtain the


following expression for the impulse response h(t) of the LTIC system:


h(t) =
K∑


k=1
Ake


−σk t u(t)
︸ ︷︷ ︸


hk (t)


+
M∑


m=1
rme


−αm t cos(ωm t + θm) u(t)
︸ ︷︷ ︸


hm (t)


, (6.43)


where we have expressed the terms with conjugate poles in the polar format.


Constants {rm , θm} are determined from the values of the partial fraction coef-


ficients {Bm , Cm} and αm .


In Eq. (6.43), we have two types of terms on the right-hand side of the


equation. Summation I consists of K real exponential functions of the type


hk(t) = Ak exp(−σk t)u(t). Depending upon the value of σk , each of these func-
tions hk(t) may have a constant, decaying exponential or a rising exponential


waveform.


Summation II consists of exponentially modulated sinusoidal functions of


the type hm(t) = rm exp(−αm t) cos(ωm t + θm)u(t). The stability characteristic
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(−s1, 2w1) (s1, 2w1)


(s1, w1)


(s1, 0)


(−s1, w1)


(−s1, 0)
Re{s}


Im{s}


t


(0, 2w1)


(0, w1)


(0, 0) 


Fig. 6.9. Nature of the shape of


the terms hk (t ) and hm (t ) for


different sets of values for


σk and αm . For real-valued


coefficients bn in D(s ), the


complex poles occur as


complex-conjugate pairs.


of the functions hm(t) included in the second summation depends upon the


value of αm . To illustrate the effect of the values of σk and αm on the stability of


the LTIC system, Fig. 6.9 plots the shape of the waveforms in the time domain


corresponding to terms hk(t) and hm(t) for different sets of values for σk and


αm . The three plots along the real axis, Re{s}, at coordinates (−σ1, 0), (0, 0),
and (σ1, 0) represent the terms hk(t) in summation I. For H (s) to correspond to


a stable LTIC system, each of the terms in Eq. (6.43) should satisfy the stability


condition, Eq. (6.39). Clearly, terms hk(t) = Ak exp(−σk t)u(t) are stable if
σk > 0, where terms hk(t) would correspond to decaying exponential functions.


In the three cases plotted along the real axis in Fig. 6.9, this is observed by the


impulse response hk(t) at coordinate (−σ1, 0). In other words, summation I will
be stable if the value of σk in term hk(t) = Ak exp(−σk t)u(t) is positive. The
real roots s = −σk , for 1 ≤ k ≤ K , must therefore lie in the left-half s-plane
for summation I to be stable.


Similarly, term hm(t) = rm exp(−αm t) cos(ωm t + θm)u(t) in summation II
is stable if αm > 0, where hm(t) would correspond to a decaying sinusoidal


waveform. This is evident from the remaining six coordinates selected in


Fig. 6.9. If the value of αm in term hm(t) = rm exp(−αm t) cos(ωm t + θm)u(t)
is set to a negative value, corresponding to the two impulse responses hm(t)


at coordinates (α1, ω1) and (α1, 2ω1), term hm(t) corresponds to an unstable


waveform. Only when the value of αm is set to be positive, corresponding


to the waveforms at coordinates (−α1, ω1) and (−α1, 2ω1), is term hm(t)
stable. This implies that the location of the complex poles s = −αm ± jωm ,
1 ≤ m ≤ M , should also lie in the left-half s-plane for the LTIC system to be
stable. Based on the above discussion, we state the following conditions for


the stability of the LTIC systems with causal implementation for the impulse


responses.
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Property 9 A causal LTIC system with n poles {pl}, 1 ≤ l ≤ n, will be abso-
lutely BIBO stable if and only if the real part of all poles are


non-zero negative numbers, i.e. if


Re{pl} < 0 for all l. (6.44)


Equation (6.44) states that a causal LTIC system will be absolutely BIBO stable


if and only if all of its poles lie in the left half of the s-plane, (i.e. to the left of the


jω-axis). In other words, a causal LTIC system will be absolutely BIBO stable


and causal if the ROC occupies the entire right half of the s-plane including the


jω-axis.


We illustrate the application of the stability condition in Eq. (6.44) in Example


6.20.


Example 6.20


In Example 6.18, we considered the following LTIC systems:


(i) H1(s) =
(s + 4)(s + 5)


s2(s + 2)(s − 2)
;


(ii) H2(s) =
(s + 4)


s3 + 5s2 + 17s + 13
;


(iii) H3(s) =
1


es + 10
.


Assuming that the systems are causal, determine if the systems are BIBO stable.


Solution


(i) The LTIC system with transfer function H1(s) has four poles located at


s = −2, 0, 0, 2. Since all the poles do not lie in the left half of the s-plane,
the transfer function does not represent an absolutely BIBO stable and causal


system. The impulse response of the causal implementation of the LTIC system


was calculated in Example 6.19. It can be easily verified that the time-domain


stability condition, Eq. (6.39), is not satisfied because of the rising exponential


function 21/8 exp(2t)u(t) and the ramp function 5t , which have infinite areas.


(ii) The LTIC system with transfer function H2(s) has three poles located


at s = −1, −2 ± j3. Since all the poles lie in the left-half s-plane, the transfer
function represents an absolutely BIBO stable and causal system. The impulse


response of the causal implementation of the LTIC system was calculated in


Example 6.19. It can be easily verified that the time-domain stability condition,


Eq. (6.39), is satisfied as all terms are decaying exponential functions with finite


areas.


(iii) The LTIC system with transfer function H3(s) has multiple poles located


at s = −2.3 + j(2m + 1)π , for m = 0, ±1, ±2, . . . Since all the poles lie in the
left-half s-plane, the transfer function represents an absolutely BIBO stable and


causal system.
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6.8.1 Marginal stability


In our previous discussion, we considered absolutely stable and unstable sys-


tems. An absolutely stable system has all the poles in the left half of the complex


s-plane. A causal implementation of such a system is stable in the sense that


as long as the input is bounded, the system produces a bounded output. On


the contrary, an absolutely unstable system has one or more poles in the right


half of the complex s-plane. The impulse response of a causal implementation


of such a system includes a growing exponential function, making the system


unstable. An intermediate case arises when a system has unrepeated poles on


the imaginary jω-axis. The remaining poles are in the left half of the complex s-


plane. Such a system is referred to as a marginally stable system. The condition


for marginally stable system is stated below.


Property 10 An LTIC system, with K unrepeated poles sk = jωk, 1 ≤ k ≤ K ,
on the imaginary jω-axis and all remaining poles in the left-half s-plane, is


stable for all bounded input signals that do not include complex exponential


terms of the form exp(−jωk t), for 1 ≤ k ≤ K . If the poles on the imaginary
jω-axis are repeated, then the LTIC system is unstable.


The following example demonstrates that a marginally stable system becomes


unstable if the input signal includes a complex exponential exp(−jω0t) with
frequency ω0 corresponding to coordinate s = jω0 of the location of the pole
of the system on the imaginary jω-axis in the complex s-plane.


Example 6.21


Consider an LTIC system with transfer function


H (s) =
25


s2 + 25
representing a marginally stable system. Determine the output of the LTIC


system for the following inputs:


(i) x1(t) = u(t);
(ii) x2(t) = sin(5t)u(t).


Solution


(i) Taking the Laplace transform of the input gives X1(s) = 1/s. The Laplace
transform of the output is given by


Y1(s) = H (s)X1(s) =
25


s(s2 + 25)
≡


1


s
−


s


(s2 + 25)
.


Taking the inverse Laplace transform gives the following value of the output in


the time domain:


y1(t) = (1 − cos(5t))u(t).
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t


0


2


y1(t)


1


0.4p 0.8p 1.2p 1.6p 2.0p 2.4p 2.8p


t


y2(t)


0


25


12.5


−12.5


−25


0.4p 0.8p 1.2p 1.6p 2.0p 2.4p 2.8p


(a) (b)


Fig. 6.10. Waveforms of the


output signals produced by a


marginally stable system


resulting from


(a) x1(t ) = u(t ) and (b)
x2(t ) = sin(5t )u(t ), as
considered in Example 6.21.


As expected for a marginally stable system, the output y1(t) produced by a


bounded input x1(t) = u(t) in the above expression is bounded for all time t .
Figure 6.10(a) plots the bounded output y1(t) as a function of time t .


(ii) Taking the Laplace transform of the input gives X2(s) = 5/s2 + 25. The
Laplace transform of the output is given by


Y2(s) = H (s)X2(s) =
125


(s2 + 25)2
.3


Using the transform pair


1


2a3
(sin(at) − at cos(at))u(t) L←→


1


(s2 + a2)2
,


the output y2(t) in the time domain is given by


y2(t) = 0.5(sin(5t) − 5t cos(5t))u(t).


1In part (ii), a sinusoidal signal sin(5t) = (exp(j5t) − exp(−j5t))/2j is applied
at the input of a marginally stable system with poles located at s = ±j5 on
the imaginary jω-axis. Note that the fundamental frequency (ω0 = 5) of the
sinusoidal input is the same as the location (s = ±j5) of the poles in the com-
plex s-plane. In such cases, Property 6.10 states that the resulting output y2(t)


will be unbounded. The second term −5t cos(5t)u(t) indeed makes the output
unbounded. This is illustrated in Fig. 6.10(b), where y2(t) is plotted as a function


of time t .


6.8.2 Improving stability using zeros


To conclude our discussion on stability, let us consider an LTIC system with


transfer function given by


Hap(s) =
(s − a − jb)
(s + a − jb)


, (6.45)
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Re{s}
0


Im{s}


−a


x jb


a


Fig. 6.11. Locations of poles


“×” and zeros “o” of an allpass
system in the complex s-plane.


The ROC of the causal


implementation of the allpass


system is highlighted by the


shaded region.


having a pole at s = (−a + jb) and a zero at s = (a + jb). As shown in
Fig. 6.11, the locations of the pole and zero are symmetric about the


imaginary jω-axis in the complex s-plane. Clearly, a causal implementa-


tion of the transfer function H (s) of the system will be stable as its ROC:


Re{s} > −a includes the imaginary jω-axis. The CTFT of the LTIC system is
evaluated as


Hap( jω) = Hap(s)|s=jω =
( jω − a − jb)
( jω + a − jb)


, (6.46)


with the CTFT spectra as follows:


magnitude spectrum |Hap( jω)| =
√


(−a)2 + (ω − b)2
√


(a)2 + (ω − b)2
= 1; (6.47)


phase spectrum <Hap( jω) = tan−1
(


ω − b
−a


)


− tan−1
(


ω − b
a


)


. (6.48)


Such a system is referred to as an allpass system, since it allows all frequencies


present in the input signal to pass through the system without any attenuation.


Of course, the phase of the input signal is affected, but in most applications we


are more concerned about the magnitude of the signal.


An allpass system specified in Eq. (6.45) is frequently used to stabilize an


unstable system. Consider an LTIC system with the transfer function


H (s) =
H1(s)


(s − a − jb)
, (6.49)


where the component H1(s) is assumed to have all poles in the left half of


the s-plane and is, therefore, stable. A causal implementation of the transfer


function H (s) is unstable because of the existence of the term (s − a − jb)
into the denominator. This term results in a pole at s = (a + jb) and introduces
instability into the system. Such a system can be made stable by cascading it
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with an allpass system that has a zero at the location of the unstable pole. The


transfer function of the overall cascaded system is given by


Hoverall(s) = H (s)Hap(s) =
H1(s)


(s + a − jb)
, (6.50)


which is stable because the unstable pole at s = (a + jb) is canceled by the
zero of the allpass system. The new pole at s = (−a + jb) lies in the left-half
s-plane and satisfies the stability requirements. Note that the magnitude response


of the overall cascaded system is the product of the magnitude responses of the


unstable and allpass systems, and is given by


|Hoverall( jω)| = |H ( jω)||Hap( jω)| = |H ( jω)|, (6.51)


since |Hap( jω)| = 1. Hence, by cascading an unstable system with an allpass
system, which has a zero at the location of the unstable pole, we have stabilized


the system without affecting its magnitude response. The only change in the


system is in its phase. Such a pole–zero cancelation approach is frequently


used in applications where information is contained in the magnitude of the


signal and the phase is relatively unimportant. One such application is the


amplitude modulation system described in Section 2.1.3, which is used for


radio communications.


6.9 LTIC systems analysis using Laplace transform


In Section 6.4.7, we showed that the output response of an LTIC system could


be computed using the convolution property in the complex s-plane. This elim-


inates the need to compute the computationally intense convolution integral in


the time domain. Below, we provide another example for calculating the output


using the Laplace transform. Our motivation in reintroducing this topic is to


compare the Laplace-transform-based analysis technique with the CTFT-based


approach.


Example 6.22


In Example 5.26, we determined the overall and steady state values of the output


of the RC series circuit with the CTFT transfer function


H (ω) =
1/jωC


R + 1/jωC
=


1


1 + jωCR


and constant CR = 0.5 for the input signal x(t) = sin(3t)u(t). For simplicity, we
assumed that the capacitor is uncharged at t = 0. Here we solve the problem in
Example 5.26 using the Laplace transform.
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Solution


The Laplace transform of the input signal x(t) is given by


X (s) = L{sin(3t)u(t)} =
3


s2 + 9
.


The Laplace transfer function of the RC series circuit is given by


H (s) = H (ω)| jω=s =
1


1 + sCR
.


Substituting the value of the product CR = 0.5 yields


H (s) =
1


1 + 0.5 s
=


2


s + 2
.


The Laplace transform Y (s) of the output signal is given by


Y (s) = H (s)X (s) =
6


(s + 2) (s2 + 9)
≡


6


13(s + 2)
−


6s − 12
13(s2 + 9)


or


Y (s) =
6


13(s + 2)
−


6


13


s


(s2 + 9)
+


4


13


3


(s2 + 9)
.


Taking the inverse transform leads to the following expression for the overall


output in the time domain:


y(t) =
[


6


13
e−2t −


6


13
cos(3t) +


4


13
sin(3t)


]


u(t) =
[


6


13
e−2t +


2
√


13
sin(3t − 56◦)


]


u(t).


The steady state value of the output is computed by applying the limit t → ∞
to the overall output:


yss(t) = lim
t←∞


y(t) =
2


√
13


sin(3t − 56◦)u(t).


In Chapters 5 and 6, we presented two frequency-domain approaches to analyze


CT signals and systems. The CTFT-based approach introduced in Chapter 5 uses


the real frequency ω, whereas the Laplace-transform-based approach uses the


complex frequency σ . Both approaches have advantages. Depending upon the


application under consideration, the appropriate transform is selected.


Comparing Example 6.22 with Example 5.26, the Laplace transform appears


to be a more convenient tool for the transient analysis. For the steady state


analysis, the Laplace transform does not seem to offer any advantage over


the CTFT. The transient analysis is very important for applications in control


systems, including process control and guided missiles. In signal processing


applications, such as audio, image, and video processing, the transients are


generally ignored. In such applications, the CTFT is sufficient to analyze the


steady state response. This is precisely why most signal processing literature


uses the CTFT, while the control systems literature uses the Laplace transform.


Important applications of the Laplace transforms such as analysis of the spring
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damper system and the modeling of the human immune system are presented


in Chapter 8.


6.10 Block diagram representations


In the preceding discussion, we considered relatively elementary LTIC systems


described by linear, constant-coefficient differential equations. Most practi-


cal structures are more complex, consisting of a combination of several LTIC


systems. In this section, we analyze the cascaded, parallel, and feedback con-


figurations used to synthesize larger systems.


6.10.1 Cascaded configuration


A series or cascaded configuration between two systems is illustrated in


Fig. 6.12(a). The output of the first system H1(s) is applied as input to the


second system H2(s). Assuming that the Laplace transform of the input x(t),


applied to the first system, is given by X (s), the Laplace transform W (s) of the


output w(t) of the first system is given by


w(t) = x(t) ∗ h1(t)
L←→ W (s) = X (s)H1(s). (6.52)


The resulting signal w(t) is applied as input to the second system H2(s), which


leads to the following overall output:


y(t) = w(t) ∗ h2(t)
L←→ Y (s) = W (s)H2(s). (6.53)


Substituting the value of w(t) from Eq. (6.52), Eq. (6.53) reduces to


y(t) = x(t) ∗ h1(t) ∗ h2(t)
L←→ Y (s) = W (s)H1(s)H2(s). (6.54)


In other words, the cascaded configuration is equivalent to a single LTIC system


with transfer function


h(t) = h1(t) ∗ h2(t)
L←→ H (s) = H1(s)H2(s). (6.55)


The system H (s) equivalent to the cascaded configuration is shown in


Fig. 6.12(b).


H2(s) Y(s)
W(s)


H1(s)X(s) Y(s)X(s) H(s) = H1(s)H2(s)


(a) (b)


Fig. 6.12. Cascaded


configuration for connecting


LTIC systems: (a) cascaded


connection; (b) its equivalent


single system.
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Y(s)X(s)


H2(s)


H1(s)
Y1(s)


Y2(s)


∑


+


+


Y(s)X(s) H(s) = H1(s) + H2(s)


(b)(a)


Fig. 6.13. Parallel configuration for connecting LTIC systems: (a) parallel connection; (b) its equivalent


single system.


6.10.2 Parallel configuration


The parallel configuration between two systems is illustrated in Fig. 6.13(a).


A single input x(t) is applied simultaneously to the two systems. The overall


output y(t) is obtained by adding the individual outputs y1(t) and y2(t) of the


two systems. The individual outputs of the two systems are given by


system (1) y1(t) = x(t) ∗ h1(t)
L←→ Y1(s) = X (s)H1(s); (6.56)


system (2) y2(t) = x(t) ∗ h2(t)
L←→ Y2(s) = X (s)H2(s). (6.57)


Combining the two outputs, the overall output y(t) is given by


y(t) = y1(t) + y2(t)
L←→ Y (s) = Y1(s) + Y2(s). (6.58)


Substituting Eqs. (6.56) and (6.57) into the above equation yields


y(t) = x(t) ∗ [h1(t) + h2(t)]
L←→ Y (s) = X (s)[H1(s) + H2(s)]. (6.59)


In other words, the parallel configuration is equivalent to a single LTIC system


with transfer function


h(t) = h1(t) + h2(t)
L←→ H (s) = H1(s) + H2(s). (6.60)


The parallel configuration and its equivalent single-stage system are shown in


Fig. 6.13.


6.10.3 Feedback configuration


The feedback connection between two systems is shown in Fig. 6.14(a). In a


feedback system, the overall output y(t) is applied at the input of the second


system H2(s). The output w(t) of the second system is fed back into the input


of the overall system through an adder. In terms of the applied input x(t) and


w(t), the output of the adder is given by


E(s) = X (s) − W (s). (6.61)


The outputs of the two LTIC systems are given by


system (1) Y (s) = E(s)H1(s); (6.62)
system (2) W (s) = Y (s)H2(s). (6.63)
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Y(s)X(s)


H2(s)


H1(s)
E(s)


W(s)


∑
+


−


(b)(a)


Y(s)X(s) H(s) =
 H1(s)


1+H1(s)H2(s)


Fig. 6.14. Feedback


configuration for connecting


LTIC systems: (a) feedback


connection; (b) its equivalent


single system.


Substituting the value of E(s) = Y (s)/H1(s) from Eq. (6.62) and W (s) from
Eq. (6.63) into Eq. (6.61) yields


Y (s) = H1(s)[X (s) − H2(s)Y (s)]. (6.64)


Rearranging terms containing Y (s), we obtain


[1 + H1(s)H2(s)]Y (s) = H1(s)X (s),


which leads to the following transfer function for the feedback system:


H (s) =
Y (s)


X (s)
=


H1(s)


1 + H1(s)H2(s)
. (6.65)


The feedback configuration and its equivalent single system are shown in


Fig. 6.14.


Example 6.23


Determine (i) the impulse response and (ii) the transfer function of the inter-


connected systems shown in Figs. 6.15(a)–(c).


Solution


(a) To calculate the overall impulse response, we proceed in the Laplace


domain. The transfer function H1(s) of the cascaded systems shown in the


lower branch of the system in Fig.6.15(a) is given by


H1(s) = L{δ(t − 1)}H (s) = e−s H (s).


The overall transfer function Ha(s) is therefore given by


Ha(s) = H (s) + H1(s) = (1 + e−s)H (s).


Taking the inverse of the above transfer function gives the impulse response:


ha(t) = h(t) + h(t − 1).


(b) The system in Fig. 6.15(b) is the feedback configuration with transfer


functions H1(s) = 1 and H2(s) = L{αδ(t – T )} = αe−T s . Substituting the val-
ues of H1(s) and H2(s) into Eq. (6.65) yields


Hb(s) =
1


1 + αe−Ts
.
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∑


+


−


d(t−1) h(t)


h(t)


x(t) y (t)


h1(t) = d(t−1)∗h(t)


+


−


∑ y (t)x(t)


ad(t−T )


(a) (b)


(c)


h4(t)


h1(t) ∑


+


−


∑


+


y (t)


h2(t)


h23(t) = h2(t)−h3(t)


h3(t)


x(t)
+


Fig. 6.15. Interconnections


between LTIC systems. Parts


(a)–(c) correspond to parts


(a)–(c) of Example 6.23.


Since Hb(s) is not a rational function of s, the inverse Laplace transform is


evaluated from the definition in Eq. (6.7), which involves contour integration.


(c) The transfer function of the parallel configuration shown in the dashed


box is given by


H23(s) = H2(s) − H3(s).


In terms of H23(s), the transfer function H123(s) of the top path is given by


H123(s) = H1(s)H23(s).


Substituting the value of H23(s), the above expression reduces to


H123(s) = H1(s)[H2(s) − H3(s)].


The overall transfer function of the system in Fig. 6.15(c) is given by


Hc(s) = H123(s) + H4(s)


or


Hc(s) = H1(s)[H2(s) − H3(s)] + H4(s).
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Taking the inverse Laplace transform of the above equation leads to the follow-


ing expression for the overall impulse response:


hc(t) = h1(t) ∗ h2(t) − h1(t) ∗ h3(t) + h4(t).


6.11 Summary


In this chapter, we introduced the bilateral and unilateral Laplace transforms


used for the analysis of LTIC signals and systems. The Laplace transforms


are a generalization of the CTFT, where the independent Laplace variable,


s = σ + jω, can take any value in the complex s-plane and is not simply
restricted to the jω-axis, as is the case for the CTFT. The values of s for


which the Laplace transforms converge constitute the region of convergence


(ROC) of the Laplace transforms. In Section 6.2, we derived the unilateral


Laplace transforms and the associated ROCs for a number of elementary CT


signals; these transform pairs are listed in Table 6.1. Direct computation of


the inverse Laplace transform involves contour integration, which is difficult


to compute analytically. For Laplace transforms, which take a rational form,


the inverse can be easily determined using the partial fraction approach cov-


ered in Section 6.3. The properties of the Laplace transform are covered in


Section 6.4 and listed in Table 6.2. In particular, we covered the linearity, scaling,


shifting, differentiation, integration, and convolution properties, as summarized


below.


(1) The linearity property implies that the Laplace transform of a linear com-


bination of signals is obtained by taking the same linear combination in the


complex s-domain. In other words,


a1x1(t) + a2x2(t)
L←→ a1 X1(s) + a2 X2(s) with ROC: at least R1 ∩ R2.


(2) Scaling a signal by a factor of a in the time domain is equivalent to scaling


its Laplace transform by a factor of 1/a in the s-domain; i.e.


x(at)
L←→


1


|a|
X


(
s


a


)


with ROC: a R.


(3) Shifting a signal in the time domain is equivalent to multiplication by a


complex exponential in the s-domain. Mathematically, the time-shifting


property is expressed as follows:


x(t − t0)
L←→ e−st0 X (s) with ROC: R.


(4) The converse of the time-shifting property is also true. In other words,


shifting a signal in the s-domain is equivalent to multiplication by a complex


exponential in the time domain:


es0t x(t)
L←→ X (s − s0) with ROC: R + Re{s0}.
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(5) Differentiation in the time domain is equivalent to multiplication by s in the


complex s-domain. This is referred to as the time-differentiation property


and is expressed as follows:


dx


dt


L←→ s X (s) − x(0−) with ROC: R.


(6) Integration in the time domain is equivalent to division by s in the complex


s-domain. This is referred to as the time-integration property and is


expressed as follows:


unilateral Laplace transform


t∫


0−


x(τ )dτ
L←→


X (s)


s


with ROC: R ∩ Re{s} > 0;


bilateral Laplace transform


t∫


−∞


x(τ )dτ
L←→


X (s)


s
+


1


s


0−∫


−∞


x(τ )dτ


with ROC: R ∩ Re{s} > 0.


(7) The convolution property states that convolution in the time domain is


equivalent to multiplication in the s-domain, and vice versa. Mathemati-


cally, the convolution property is stated as follows:


time convolution x1(t) ∗ x2(t)
L←→ X1(s)X2(s)


containing at least ROC: R1 ∩ R2;


s-plane convolution x1(t)x2(t)
L←→


1


2π j
[X1(s) ∗ X2(s)]


containing at least ROC: R1 ∩ R2.


(8) The initial- and final-value theorems provide us with an alternative approach


for calculating the limits of a CT function x(t) as t → 0 and t → ∞ from
the following expressions:


initial-value theorem x(0+) = lim
t→0+


x(t) = lim
s→∞


s X (s)


provided x(0+) exists;


final-value theorem x(∞) = lim
t→∞


x(t) = lim
s→0


s X (s)


provided x(∞) exists.


The initial-value theorem is valid for the unilateral Laplace transform, while


the final-value theorem is valid for both unilateral and bilateral transforms.


Sections 6.5 to 6.9 discussed various applications of the Laplace transform. The


time-differentiation property is used in Section 6.5 to solve linear, constant-


coefficient differential equations. Section 6.6 uses the properties of the ROC


associated with the Laplace transform with an emphasis on causal systems.


Sections 6.7 and 6.8 define the stability of the causal LTIC systems in terms


of the poles and zeros of its transfer function. The key points are summarized


below.








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 18:31


313 6 Laplace transform


(1) The causal implementation of an absolutely BIBO stable system must have


all of its poles in the left half of the complex s-plane.


(2) If even a single pole lies in the right half of the s-plane, the causal imple-


mentation of the system is unstable.


(3) If no pole lies in the right half of the s-plane, but one or more first-order


poles lie on the imaginary jω-axis, the LTIC system is referred to as a


marginally stable system.


(4) An unstable system may be transformed into a stable system by cascading


the unstable system with an allpass system, which has zeros at the locations


of the unstable poles.


Section 6.9 described an analysis technique based on the Laplace transform to


calculate the output of an LTIC system. We showed that the Laplace-transform-


based analysis approach is suitable for studying the transient response of the


systems. The CTFT-based approach is appropriate for analyzing the steady state


response of the system.


Finally, Section 6.10 discussed the cascaded, parallel, and feedback config-


urations used to interconnect two LTIC systems. If two systems with impulse


responses h1(t) and h2(t) are connected, the overall impulse response and the


corresponding transfer functions are as follows:


cascaded configuration h(t) = h1(t) ∗ h2(t)
L←→ H (s) = H1(s)H2(s);


parallel configuration h(t) = h1(t) + h2(t)
L←→ H (s) = H1(s) + H2(s);


feedback configuration H (s) =
H1(s)


1 + H1(s)H2(s)
.


A practical system comprises multiple LTIC systems interconnected with a


combination of cascaded, parallel, and feedback configurations.


Problems


6.1 Using the definition in Eq. (6.5), calculate the bilateral Laplace transform
and the associated ROC for the following CT functions:


(a) x(t) = e−5t u(t) + e4t u(−t); (d) x(t) = e−3|t | cos(5t);
(b) x(t) = e−3|t |; (e) x(t) = e7t cos(9t)u(−t);


(c) x(t) = t2 cos(10t)u(−t); (f) x(t) =
{


1 − |t | 0 ≤ |t | ≤ 1
0 otherwise.


6.2 Using Eq. (6.9), calculate the unilateral Laplace transform and the associ-
ated ROC for the following CT functions:


(a) x(t) = t5u(t); (d) x(t) = e−3t cos(9t)u(t);
(b) x(t) = sin(6t)u(t); (e) x(t) = t2 cos(10t)u(t);


(c) x(t) = cos2(6t)u(t); (f) x(t) =
{


1 − |t | 0 ≤ |t | ≤ 1
0 otherwise.
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6.3 Using the partial fraction expansion approach, calculate the inverse Laplace
transform for the following rational functions of s:


(a) X (s) =
s2 + 2s + 1


(s + 1)(s2 + 5s + 6)
; ROC : Re{s} > −1;


(b) X (s) =
s2 + 2s + 1


(s + 1)(s2 + 5s + 6)
; ROC : Re{s} < −3;


(c) X (s) =
s2 + 3s − 4


(s + 1)(s2 + 5s + 6)
; ROC : Re{s} > −1;


(d) X (s) =
s2 + 3s − 4


(s + 1)(s2 + 5s + 6)
; ROC : Re{s} < −3;


(e) X (s) =
s2 + 1


s(s + 1)(s2 + 2s + 17)
; ROC : Re{s} > 0;


(f) X (s) =
s + 1


(s + 2)2(s2 + 7s + 12)
; ROC : Re{s} > −2;


(g) X (s) =
s2 − 2s + 1


(s + 1)3(s2 + 16)
; ROC : Re{s} < −1.


6.4 The Laplace transforms of two CT signals x1(t) and x2(t) are given by the
following expressions:


x1(t)
L←→


s


s2 + 5s + 6
with ROC(R1) : Re{s} > −2


and


x2(t)
L←→


1


s2 + 5s + 6
with ROC(R2) : Re{s} > −2.


Determine the Laplace transform and the associated ROC R of the com-


bined signal x1(t) + 2x2(t). Explain how the ROC R of the combined
signal exceeds the intersection (R1 ∩ R2) of the individual ROCs R1
and R2.


6.5 Calculate the time-domain representation of the bilateral Laplace transform


X (s) =
s2


(s2 − 1)(s2 − 4s + 5)(s2 + 4s + 5)


if the ROC R is specified as follows:


(a) R : Re{s} < −2;
(b) R : −2 < Re{s} < −1;
(c) R : −1 < Re{s} < 1;


(d) R : 1 < Re{s} < 2;
(e) R : Re{s} > 2.


6.6 Prove the frequency-shifting property, Eq. (6.20), as stated in Section 6.4.4.


6.7 Prove the time-integration property for the unilateral and bilateral Laplace
transform as stated in Section 6.4.6.


6.8 Prove the initial-value theorem, Eq. (6.27), as stated in Section 6.4.8.
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6.9 Prove the final-value theorem, Eq. (6.28), as stated in Section 6.4.8.


6.10 Using the transform pairs in Table 6.1 and the properties of the Laplace
transform, prove the following Laplace transform pairs:


(a) t cos(ω0t)u(t)
L←→


s2 − ω20
(s2 + a2)2


;


(b) t sin(ω0t)u(t)
L←→


2ω0s


(s2 + a2)2
;


(c)
1


2a3
(sin(at) − at cos(at))u(t) L←→


1


(s2 + a2)2
.


6.11 Express the Laplace transform and the associated ROC for the following
functions in terms of the Laplace transform X (s) with ROC Rx of the CT


function x(t):


(a) cos(10t)x(t);


(b) e−5t x(4t − 3);


(c) (t − 4)4
d


dt
[x(t − 4)];


(d) [x(t) + 2]2;


(e)


t∫


−∞


e−αs0 x(α)dα.


6.12 Using the initial- and final-value theorems, calculate the initial and final
values of the causal CT functions with the following unilateral Laplace


transforms. In each case, first determine the ROC to see if the initial value


exists.


(a) X (s) =
s


s2 + 7s + 1
;


(b) X (s) =
s


s2 + 5s − 4
;


(c) X (s) =
s2 + 9


s2 − 25
;


(d) X (s) =
s2 + 2s + 1
s2 + 3s + 4


;


(e) X (s) = e−5s
s2 + 4


s(s + 1)(s + 2)(s + 3)
.


6.13 Solve the following initial-value differential equations using the Laplace
transform method:


(a)
d2 y


dt2
+ 3


dy


dt
+ 2y(t) = δ(t); y(0−) = ẏ(0−) = 0;


(b)
d2 y


dt2
+ 4


dy


dt
+ 4y(t) = u(t); y(0−) = ẏ(0−) = 0;


(c)
d2 y


dt2
+ 6


dy


dt
+ 8y(t) = te−3t u(t); y(0−) = ẏ(0−) = 1;


(d)
d3 y


dt3
+ 8


d2 y


dt2
+ 19


dy


dt
+ 12y(t) = tu(t);


y(0−) = 1; ẏ(0−) =ÿ(0−) = 0;


(e)
d4 y


dt4
+ 2


d2 y


dt2
+ y(t) = u(t); y(0−) = ẏ(0−) = ÿ(0−) = ¨ẏ(0−) = 0.


6.14 Determine (i) the Laplace transfer function, (ii) the impulse response
function, and (iii) the input–output relationship (in the form of a linear


constant-coefficient differential equation) for the causal LTIC systems
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Fig. P6.17. Pole – zero plots for


Problem 6.17.


with the following input–output pairs:


(a) x(t) = 4u(t) and y(t) = tu(t) + e−2t u(t);
(b) x(t) = e−2t u(t) and y(t) = 3e−2(t−4)u(t − 4);
(c) x(t) = tu(t) and y(t) = [t2 − 3e−4t ]u(t);
(d) x(t) = e−2t u(t) and y(t) = e−t u(t) + e−3t u(t);
(e) x(t) = e−3t u(t) and y(t) = et u(−t) + e−3t u(t).


6.15 Sketch the location of the poles and zeros for the following transfer func-
tions, and determine if the corresponding causal systems are stable, unsta-


ble, or marginally stable:


(a) H (s) =
s2 + 1


s2 + 2s + 1
;


(b) H (s) =
2s + 5


s2 + s − 6
;


(c) H (s) =
3s + 10


s2 + 9s + 18
;


(d) H (s) =
s + 2
s2 + 9


;


(e) H (s) =
s2 + 3s + 2


s3 + 3s2 + 2s
.


6.16 Without explicitly calculating the output, determine if the LTIC system
with the transfer function


H (s) =
s2 + 1


(s + 5)(s2 + 4)(s2 + 9)(s2 + 4s + 5)


produces a bounded output for the following set of inputs:


(a) x(t) = e−j2t u(t);
(b) x(t) = [e−(1+j4)t + e−(2+j5)t ]u(t);
(c) x(t) = [cos(t) + sin(4t)]u(t);
(d) x(t) = [cos(2t) + sin(3t)]u(t);
(e) x(t) = [e−(1+j2)t sin(3t)]u(t).


6.17 The pole–zero plots of four causal LTIC systems are shown in Fig. P6.17.
Determine if the LTIC systems are stable. Also determine the transfer


function H (s) for each system. Assume that H (4) = 1 in all cases, and
the poles and zeros are all located at integer coordinates in the s-plane.


6.18 Determine the transfer functions of all possible non-causal implementa-
tions of the LTIC systems considered in Fig. P6.17. Specify which transfer


functions represent stable systems.
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6.19 The inverse of an LTIC system is defined as the system that when cascaded
with the original system results in an overall transfer function of unity.


Without calculating the transfer functions, determine the pole–zero plots


of the inverse systems associated with the LTIC systems whose pole–zero


plots are specified in Fig. P6.17.


6.20 An LTIC system has an impulse response h(t) with the Laplace transfer
function H (s), which satisfies the following properties:


(a) the impulse response h(t) is even and real-valued;


(b) the area enclosed by the impulse response is 8, i.e.


∞∫


−∞


h(t)dt = 8;


(c) the Laplace transfer function H (s) has four poles but no zeros;


(d) the Laplace transfer function H (s) has a complex pole at s =


0.5 exp(jπ/4).


Determine the Laplace transfer function H (s) and the associated ROC.


6.21 Consider the RLC series circuit shown in Fig. 3.1. The relationship
between the input voltage x(t) and the output voltage w(t) is given by the


following differential equation:


d2w


dt2
+


R


L


dw


dt
+


1


L
w(t) =


1


LC
x(t).


By determining the locations of the poles of the transfer function describ-


ing the RLC series circuit, show that the causal implementation of the RLC


circuit is always stable for positive values (R > 0, L > 0, and C > 0) of


the passive components.


6.22 Given the transfer function


H (s) =
s2 − s − 6


(s2 + 3s + 1)(s2 + 7s + 12)


(a) determine all possible choices for the ROC;


(b) determine the impulse response of a causal implementation of the


transfer function H (s);


(c) determine the left-sided impulse response with the specified transfer


function H (s);


(d) determine all possible choices of double-sided impulse responses hav-


ing the specified transfer function H (s).


(e) Which of the four impulse responses obtained in (b)–(d) are stable?


6.23 Repeat Problem 6.22 for the following transfer function:


H (s) =
s2 − 5s − 84


(s2 − 2s − 35)(s2 + 9s + 20)
.


6.24 For most practical applications, we are interested in implementing a causal
and stable system. The causal implementations of some of the transfer


functions specified in Problem 6.15 are not stable. For each such trans-


fer function, specify an allpass system that may be cascaded in a series
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Fig. P6.25. Interconnected


systems specified in Problem


6.25.


configuration to the specified transfer function to make its causal imple-


mentation stable.


6.25 Determine the overall transfer function for the three interconnected sys-
tems shown in Fig. P6.25.


6.26 Using the function residue available in M A T L A B toolboxes, calculate
the partial fraction coefficients for the transfer functions considered in


Problem 6.3.


6.27 Using the functions tf and bode available in the M A T L A B control
toolbox, plot the frequency characteristics of the systems with transfer


functions considered in Problem 6.15.


6.28 Repeat Problem 6.27 using the functionfreqs available in the M A T L A B
signal toolbox.


6.29 Using the functions tf and impulse available in the M A T L A B con-
trol toolbox, calculate the impulse response of the systems with transfer


functions considered in Problem 6.15.
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6.30 (a) Using the M A T L A B function roots, calculate the location of poles
and zeros of the following transfer functions:


(i) H1(s) =
s2 − 5s − 84


s4 + 7s3 − 33s2 − 355s − 700
;


(ii) H2(s) =
s2 − 19s + 84


s4 + 7s3 − 33s2 − 355s − 700
;


(iii) H3(s) =
s3 + 20s2 + 15s + 61


s4 + 5s3 + 31s2 + 125s + 150
;


(iv) H4(s) =
s3 − 10s2 + 25s + 7


s6 + 6s5 + 42s4 + 48s3 + 288s2 + 96s + 544
;


(v) H5(s) =
s2 + 3s + 7


s3 + (6 − j7)s2 + (11 − j28)s + (6 − j21)
.


(b) From the location of poles and zeros in the s-plane, determine if the


systems are (i) absolutely stable, (ii) marginally stable, or (iii) unstable.
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7 Continuous-time filters


A common requirement in signal processing is to modify the frequency contents


of a continuous-time (CT) signal in a predefined manner. In communication sys-


tems, for example, noise and interference from the neighboring channels cor-


rupt the information-bearing signal transmitted via a communication channel,


such as a telephone line. By exploiting the differences between the frequency


characteristics of the transmitted signal and the channel noise, a linear time-


invariant system (LTI) system can be designed to compensate for the distortion


introduced during the transmission. Such an LTI system is referred to as a


frequency-selective filter, which processes the received signal to eliminate the


high-frequency components introduced by the channel interference and noise


from the low-frequency components constituting the information-bearing sig-


nal. The range of frequencies eliminated from the CT signal applied at the input


of the filter is referred to as the stop band of the filter, while the range of fre-


quencies that is left relatively unaffected by the filter constitute the pass band


of the filter.


Graphic equalizers used in stereo sound systems provide another application


for the continuous-time (CT) filters. A graphic equalizer consists of a combina-


tion of CT filters, each tuned to a different band of frequencies. By selectively


amplifying or attenuating the frequencies within the operational bands of the


constituent filters, a graphic equalizer maintains sound consistency within dis-


similar acoustic environments and spaces. The operation of a graphic equalizer


is somewhat different from that of a frequency-selective filter used in our earlier


example of the communication system since it amplifies or attenuates selected


frequency components of the input signal. A frequency-selective filter, on the


other hand, attempts to eliminate the frequency components completely within


the stop band of the filter.


This chapter focuses on the design of CT filters. We are particularly interested


in the frequency-selective filters that are categorized in four different categories


(lowpass, highpass, bandpass, and bandstop) in Section 7.1. Practical approxi-


mations to the frequency characteristics of the ideal frequency-selective filters


are presented in Section 7.2, where acceptable levels of distortion is tolerated


320
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within the pass and stop bands of the ideal filters. Section 7.3 designs three


realizable implementations of an ideal lowpass filter. These implementations


are referred to as the Butterworth, Chebyshev, and elliptic filters. Section 7.4


transforms the frequency characteristics of the highpass, bandpass, and band-


stop filters in terms of the characteristics of the lowpass filters. These transfor-


mations are exploited to design the highpass, bandpass, and bandstop filters.


Finally, the chapter is concluded with a summary of important concepts in


Section 7.5.


7.1 Filter classification


An ideal frequency-selective filter is a system that passes a prespecified range


of frequency components without any attenuation but completely rejects the


remaining frequency components. As discussed earlier, the range of input fre-


quencies that is left unaffected by the filter is referred to as the pass band of the


filter, while the range of input frequencies that are blocked from the output is


referred to as the stop band of the filter. In terms of the magnitude spectrum, the


absolute value of the transfer function |H (ω)| of the frequency filter, therefore,
toggles between the values of A and zero as a function of frequency ω. The
gain |H (ω)| is A, typically set to one, within the pass band, while |H (ω)| is
zero within the stop band. Depending upon the range of frequencies within the


pass and stop bands, an ideal frequency-selective filter is categorized in four


different categories. These categories are defined in the following discussion.


7.1.1 Lowpass filters


The transfer function Hlp(ω) of an ideal lowpass filter is defined as follows:


Hlp(ω) =
{


A |ω| ≤ ωc
0 |ω| > ωc,


(7.1)


where ωc is referred to as the cut-off frequency of the filter. The pass band of


the lowpass filter is given by |ω| ≤ ωc, while the stop band of the lowpass filter
is given by ωc < |ω| < ∞. The frequency characteristics of an ideal lowpass
filter are plotted in Fig. 7.1(a), where we observe that the magnitude |Hlp(ω)|
toggles between the values of A within the pass band and zero within the stop
band. The phase <Hlp(ω) of an ideal lowpass filter is zero for all frequencies.


7.1.2 Highpass filters


The transfer function Hhp(ω) of an ideal highpass filter is defined as follows:


Hhp(ω) =
{


0 |ω| ≤ ωc
A |ω| > ωc,


(7.2)
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Fig. 7.1. Magnitude spectra of


ideal frequency-selective filters.


(a) Lowpass filter; (b) highpass


filter; (c) bandpass filter;


(d) bandstop filter.


where ωc is the cut-off frequency of the filter. In other words, the transfer


function of an ideal highpass filter Hhp(ω) is related to the transfer function of
an ideal lowpass filter Hlp(ω) by the following relationship:


Hhp(ω) = A − Hlp(ω). (7.3)


The pass band of the lowpass filter is given by ωc < |ω| < ∞, while the stop
band of the lowpass filter is given by |ω| ≤ ωc. The frequency characteristics
of an ideal lowpass filter are plotted in Fig. 7.1(b). As was the case for the


ideal lowpass filter, the phase <Hhp(ω) of an ideal highpass filter is zero for all
frequencies.


7.1.3 Bandpass filters


The transfer function Hbp(ω) of an ideal bandpass filter is defined as follows:


Hbp(ω) =
{


A ωc1 ≤ |ω| ≤ ωc2
0 ωc1 < |ω| and ωc2 < |ω| < ∞,


(7.4)


where ωc1 and ωc2 are collectively referred to as the cut-off frequencies of the


ideal bandpass filter. The lower frequency ωc1 is referred to as the lower cut


off, while the higher frequency ωc2 is referred to as the higher cut off. Unlike


the highpass filter, the bandpass filter has a finite bandwidth as it only allows a


range of frequencies (ωc1 ≤ ω ≤ ωc2) to be passed through the filter.


7.1.4 Bandstop filters


The transfer function Hbs(ω) of an ideal bandstop filter is defined as follows:


Hbp(ω) =
{


0 ωc1 ≤ |ω| ≤ ωc2
A ωc1 < |ω| and ωc2 < |ω| < ∞,


(7.5)
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where ωc1 and ωc2 are, respectively, referred to as the lower cut-off and higher


cut-off frequencies of the ideal bandstop filter. A bandstop filter can be imple-


mented from a bandpass filter using the following relationship:


Hbs(ω) = A − Hbp(ω). (7.6)


The ideal bandstop filter is the converse of the ideal bandpass filter as it elimi-


nates a certain range of frequencies (ωc1 ≤ ω ≤ ωc2) from the input signal.


In the above discussion, we used the transfer function to categorize different


types of frequency selective filters. Example 7.1 derives the impulse response


for ideal lowpass and highpass filters.


Example 7.1


Determine the impulse response of an ideal lowpass filter and an ideal highpass


filter. In each case, assume a gain of A within the pass band and a cut-off
frequency of ωc.


Solution


Taking the inverse CTFT of Eq. (7.1), we obtain


hlp(t) = ℑ−1{H (ω)} =
1


2π


ωc∫


−ωc


A · e jωt dω =
Ae jωt


j2π t


∣
∣
∣
∣


ωc


ωc


=
A


j2π t
[ejωct − e−jωct ],


which reduces to


hlp(t) =
2jA sin(ωct)


j2π t
=


ωc A


π
sinc


(
ωct


π


)


. (7.7)


To derive the impulse response hhp(t) of the ideal highpass filter, we take the
inverse CTFT of Eq. (7.3). The resulting relationship is given by


hhp(t) = Aδ(t) − hlp(t) = Aδ(t) −
ωc A


π
sinc


(
ωct


π


)


. (7.8)


0
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Fig. 7.2. Impulse responses h(t )


of: (a) ideal lowpass filter and


(b) ideal highpass filter derived


in Example 7.1.
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The impulse responses of ideal lowpass and highpass filters are plotted in


Fig. 7.2. In both cases, we note that the filters have an infinite length in the


time domain. Also, both filters are non-causal since h(t) �= 0 for t < 0.


7.2 Non-ideal filter characteristics


As is true for any ideal system, the ideal frequency-selective filters are not


physically realizable for a variety of reasons. From the frequency characteristics


of the ideal filters, we note that the gain A of the filters is constant within the
pass band, while the gain within the stop band is strictly zero. A second issue


with the transfer functions H (ω), specified for ideal filters in Eqs. (7.1)–(7.5),
is the sharp transition between the pass and stop bands such that there is a


discontinuity in H (ω) at ω = ωc. In practice, we cannot implement filters with
constant gains within the pass and stop bands. Also, abrupt transitions cannot


be designed. This is observed in Example 7.1, where the constant gains and


the sharp transition in the ideal lowpass and highpass filters lead to non-causal


impulse responses which are of infinite length. Clearly, such LTI systems cannot


be implemented in the physical world.


To obtain a physically realizable filter, it is necessary to relax some of the


requirements of the ideal filters. Figure 7.3 shows the frequency characteristics


of physically realizable versions of various ideal filters. The upper and lower


bounds for the gains are indicated by the shaded line, while examples of the


frequency characteristics of physically realizable filters that satisfy the specified


bounds are shown using bold lines. These filters are referred to as non-ideal


or practical filters and are different from the ideal filters in the following two


ways.


(i) The gains of the practical filters within the pass and stop bands are not


constant but vary within the following limits:


pass bands 1 − δp ≤ |H (ω)| ≤ 1 + δp; (7.9)
stop bands 0 ≤ |H (ω)| ≤ δs. (7.10)


The oscillations within the pass and stop bands are referred to as ripples. In


Fig. 7.3, the pass band ripples are constrained to a value of δp for lowpass,


highpass, and bandpass filters. In the case of the bandstop filter, the pass


band ripple is limited to δp1 and δp2, corresponding to the two pass bands.


Similarly, the stop band ripples in Fig. 7.3 are constrained to δs for lowpass,


highpass, and bandstop filters. In the case of the bandstop filter, the stop


band ripple is limited to δs1 and δs2 for the two stop bands of the bandstop


filter.


(ii) Transition bands of non-zero bandwidth are included in between the pass


and stop bands of the practical filters. Consequently, the discontinuity at


the cut-off frequency ωc of the ideal filters is eliminated.
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Fig. 7.3. Frequency


characteristics of practical filters.


(a) Practical lowpass filter;


(b) practical highpass filter;


(c) practical bandpass filter;


(d) practical bandstop filter.


Example 7.2 considers a practical lowpass filter and derives the values for the


pass band and the stop band, and the associated gains of the filter.


Example 7.2
Consider a practical lowpass filter with the following transfer function:


H (s) =
5.018×103s4+2.682×1014s3−1.026×104s+3.196×1024


s5+9.863×104s4+2.107×1010s3+1.376×1015s2+1.026×1020s+3.196×1024
.


Assuming that the ripple δp within the pass band is limited to 1 dB and the


ripple δs within the stop band is limited to 40 dB, determine the pass band,


transition band and stop band of the lowpass filter.


Solution


Recall that the CTFT transfer function H (ω) of the lowpass filter can be obtained
by substituting s = jω in the Laplace transfer function. The resulting magnitude
spectrum |H (ω)| of the lowpass filter is plotted in Fig. 7.4, where Fig. 7.4(a)
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Fig. 7.4. Magnitude spectrum of


the practical lowpass filter in


Example 7.2 using (a) a linear


scale and (b) a decibel scale


along the y-axis.


uses a linear scale for the magnitude. Figure 7.4(b) uses a decibel scale to plot


the magnitude spectrum.


Expressed on a linear scale, the pass-band ripple δp is given by 10
−1/20 or


0.8913. From Fig. 7.4(a), we observe that the pass-band frequency ωp corre-


sponding to |H (ω)| = 0.8913 is given by 3.4π × 104 radians/s. Therefore, the
pass band is specified by |ω| ≤ 3.4π × 104 radians/s.


To determine the stop band, we use Fig. 7.4(b), which uses a decibel scale


20 × log10|H (ω)| to plot the magnitude spectrum. Figure 7.4(b) shows that
the smallest frequency for which the magnitude spectrum equals a gain of


40 dB is given by 4.12π × 104 radians/s. The stop band is therefore specified
by |ω| > 4.12π × 104 radians/s.


Based on the aforementioned results, it is straightforward to derive the tran-


sition band as follows:


3.4π × 104 < |ω| < 4.12π × 104 radians/s.


7.2.1 Cut-off frequency


An important parameter in the design of CT filters is the cut-off frequency


ωc of the filter, which is defined as the frequency at which the gain of the


filter drops to 0.7071 times its maximum value. Assuming a gain of unity


within the pass band, the gain at the cut-off frequency ωc is given by 0.7071 or


−3 dB on a logarithmic scale. Since the cut-off frequency lies typically within
the transitional band of the filter, therefore


ωp ≤ ωc ≤ ωs (7.11)


For a lowpass filter. Note that the equality ωp = ωc = ωs implies a transitional
band of zero bandwidth and is valid only for ideal filters.


As a side note to our discussion, we observe that in this chapter we only


consider positive values of frequencies ω in plotting the magnitude spectrum.


The majority of our designs are based on real-valued impulse responses, which


lead to frequency spectra that satisfy the Hermitian symmetry. Exploiting the


even symmetry for the magnitude spectrum, it is therefore sufficient to spec-


ify the magnitude spectrum only for positive frequencies in such cases. The


pass-band, stop-band, and cut-off frequencies are also specified by positive


values, though their counter-negative values exist for all three parameters.
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Example 7.3


Determine the cut-off frequency for the lowpass filter specified in Example 7.2.


Solution


Based on the magnitude spectrum, we note that the maximum gain of the filter


is given by 1 or 0 dB. At the cut off frequency ωc,


|H (ωc)| = 0.7071 × 1 = 0.7071,


which implies that
∣
∣
∣
∣


5.018×103( jωc)4+2.682 × 1014( jωc)2−1.026×104( jωc)+3.196 × 1024


( jωc)5+9.863×104( jωc)4+2.107×1010( jωc)3+1.376×1015( jωc)2+1.026×1020( jωc)+3.196×1024


∣
∣
∣
∣


= 0.7071.


The above equality can be solved for ωc using numerical techniques in


M A T L A B . The value of the cut-off frequency is given by ωc = 3.462π ×
104 radians/s. Note that the cut-off frequency lies within the transitional


band in between the pass and stop bands of the lowpass filter as derived in


Example 7.2.


7.3 Design of CT lowpass filters


To begin our discussion of the design of CT filters, we consider a prototype or


normalized lowpass filter, defined as a lowpass filter, with a cut-off frequency


of ωc = 1 radians/s. The remaining specifications for the pass and stop bands
of the normalized lowpass filter are assumed to be given by


pass band (0 ≤ |ω| ≤ ωp radians/s) 1 − δp ≤ |H (ω)| ≤ 1 + δp; (7.12)
stop band (|ω| > ωs radians/s)| H (ω)| ≤ δs, (7.13)


with ωp ≤ ωc ≤ ωs. Using the transfer function of the normalized lowpass filter,
it is straightforward to implement any of the more complicated CT filters.


Section 7.4 considers the frequency transformations used to convert a lowpass


filter into another category of frequency-selective filters.


There are several specialized implementations such as Butterworth, Type I


Chebyshev, Type II Chebysev, and elliptic filters, which may be used to design


a normalized lowpass filter. Figure 7.5 shows representative characteristics of


these implementations, where we observe that the Butterworth filter (Fig. 7.5(a))


has a monotonic transfer function such that the gain decreases monotonically


from its maximum value of unity at ω = 0 along the positive frequency axis.
The magnitude spectrum of the Butterworth filter has negligible ripples within


the pass and stop bands, but has a relatively lower fall off leading to a wide


transitional band. By allowing some ripples in either the pass or stop band,


the Type I and Type II Chebyshev filters incorporate a sharper fall off. The


Type I Chebyshev filter constitutes ripples within the pass band, while the
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Type II Chebyshev filter allows for the stop-band ripples. Compared with the


Butterworth filter, both Type I and Type II Chebyshev filters have narrower


transitional bands. The elliptic filters allow for the sharpest fall off by incorpo-


rating ripples in both the pass and stop bands of the filter. The elliptic filters


have the narrowest transitional band. To compare the transitional bands, Fig. 7.5


plots the magnitude spectra resulting from the Butterworth, Type I Chebyshev,


Type II Chebysev, and elliptic filters with the same order N .
Figure 7.5 confirms our earlier observations that the Butterworth filter


(Fig. 7.5(a)) has the widest transitional band. Both the Type I and Type II


Chebyshev filters (Figs. 7.5(b) and (c)) have roughly equal transitional bands,


which are narrower than the transitional band of the Butterworth filter. The ellip-


tic filter (Fig. 7.5(d)) has the narrowest transitional band but includes ripples in


both the pass and stop bands.


We now consider the design techniques for the four specialized implemen-


tations with a brief explanation of the M A T L A B library functions useful for


computing the transfer functions of the implementations.


7.3.1 Butterworth filters


The frequency characteristics of an N th-order lowpass Butterworth filter are
given by


|H (ω)| =
1


√


1 +
( ω


ωc


)2N
, (7.14)


where ωc is the cut-off frequency of the filter. Substituting ωc = 1 for the
normalized implementation, the transfer function of the normalized lowpass


Butterworth filter of order N is given by


|H (ω)| =
1


√
1 + ω2N


. (7.15)


To derive the Laplace transfer function H (s) of the normalized Butterworth
filter, we use the following relationship:


|H (ω)|2 = H (s)H (−s)|s=jω. (7.16)


Substituting ω = s/j, Eq. (7.16) reduces to


H (s)H (−s) = |H (s/j)|2. (7.17)








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 25, 2007 19:0


329 7 Continuous-time filters


pass band stop band


pass band stop band


pass band


pass band


stop band


stop band


w
0


1+dp


ds ds


wp


wp wp


wpws


ws ws


ws


1−dp
1


1+dp


ds ds


1−dp
1


1+dp


1−dp
1


1+dp


1−dp
1


w
0


(a)


(c)


(b)


(d)


w
0


w
0


Fig. 7.5. Frequency


characteristics of standard


implementations of lowpass


filters of order N .


(a) Butterworth filter; (b) Type-I


Chebyshev filter; (c) Type-II


Chebyshev filter; (d) elliptic filter.


Further substituting H (s/j) from Eq. (7.15) leads to the following expression:


H (s)H (−s) =
1


1 +
( s


j


)2N , (7.18)


where the denominator represents the characteristic function for H (s)H (−s).
The poles of H (s)H (−s) occur at


(
s


j


)2N


= −1 = ej(2n−1)π (7.19)


or


s = j exp
[


j
(2n − 1)π


2N


]


= exp
[


j
π


2
+ j


(2n − 1)π
2N


]


(7.20)


for 0 ≤ n ≤ 2N−1. It is clear that the 2N poles for H (s)H (−s), specified in
Eq. (7.20), are evenly distributed along the unit circle in the complex s-plane.


Of these, N poles would lie in the left half of the s-plane, while the remaining
N poles would be in the right half of the s-plane. To ensure a causal and
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Table 7.1. Location of the 2N poles for H(s )H(−s ) in Example 7.4 for N = 7


n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
pn ej3π/7 ej4π/7 ej5π/7 ej6π/7 ejπ e−j6π/7 e−j5π/7 e−j4π/7 e−j3π/7 e−j2π/7 e−jπ/7 1 ejπ/7 e j2π/7


stable implementation, the transfer function H (s) of the normalized lowpass
Butterworth filter is determined from the N poles lying in the left half of the
s-plane and is given by


H (s) =
1


N∏


n=1
(s − pn)


, (7.21)


wherepn , for 1 ≤ n ≤ N , denotes the location of the poles in the left-half
s-plane.


Example 7.4


Determine the Laplace transfer function H (s) for the normalized Butterworth
filter with cut-off frequency ωc = 1 and order N = 7.


Solution


Using Eq. (7.20), the poles of H (s)H (−s) are given by


s = exp
[


j
π


2
+ j


(2n − 1)π
14


]


for 0 ≤ n ≤ 13. Substituting different values of n, the locations of the poles are
specified by Table 7.1. Figure 7.6 plots the locations of the poles for H (s)H (−s)
in the complex s-plane. Allocating the poles located in the left-half s-plane


(1 ≤ n ≤ 7), the Laplace transfer function H (s) of the Butterworth filter is
given by


Re{s}


Im{s}


1.0
7π


n = 7


n = 1


n = 2


n = 3


n = 4


n = 5


n = 6


n = 0


n = 13


n = 12


n = 11


n = 10
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n = 8 


Fig. 7.6. Location of the poles


for H(s )H(−s ) in the complex
s-plane for N = 7. The poles
lying in the left-half s-plane are


allocated to the Butterworth


filter.


H (s) =
1


(s − ej4π/7)(s−ej5π/7)(s−ej6π/7)(s−ejπ )(s−e−j6π/7)(s−e−j5π/7)(s−e−j4π/7)
,


which simplifies to


H (s) =
1


(s+1)[(s−ej4π/7)(s−e−j4π/7)][(s−ej5π/7)(s−e−j5π/7)][(s−ej6π/7)(s−e−j6π/7)]


or


H (s) =
1


(s + 1)(s2 + 0.4450 s + 1)(s2 + 1.2470 s + 1)(s2 + 1.8019 s + 1)
.


In Example 7.4, we observed that the locations of poles for the normalized


Butterworth filter are complex. Since the poles occur in complex-conjugate


pairs, the coefficients of the Laplace transfer function for the normalized
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Table 7.2. Denominator D (s ) for transfer function H (s ) of the Butterworth filter


N D(s)


1 (s + 1)
2 (s2 + 1.414s + 1)
3 (s + 1)(s2 + s + 1)
4 (s2 + 0.7654s + 1)(s2 + 1.8478s + 1)
5 (s + 1)(s2 + 0.6810 s + 1)(s2 + 1.6810 s + 1)
6 (s2 + 0.5176s + 1)(s2 + 1.4142s + 1)(s2 + 1.9319s + 1)
7 (s + 1)(s2 + 0.4450 s + 1)(s2 + 1.2470 s + 1)(s2 + 1.8019 s + 1)
8 (s2 + 0.3902s + 1)(s2 + 1.1111s + 1)(s2 + 1.6629s + 1)(s2 + 1.9616s + 1)
9 (s + 1)(s2 + 0.3473 s + 1)(s2 + s + 1)(s2 + 1.5321 s + 1)(s2 + 1.8794 s + 1)


10 (s2 + 0.3129 s + 1)(s2 + 0.9080s + 1)(s2 + 1.4142s + 1)(s2 + 1.7820s + 1)(s2 + 1.9754 s + 1)


Butterworth filter are all real-valued. In general, Eq. (7.21) can be simplified as


follows:


H (s) =
1


D(s)
=


1


s N + aN−1s N−1 + · · · + a1s + 1
(7.22)


and represents the transfer function of the normalized Butterworth filter of


order N .
Repeating Example 7.4 for different orders (1 ≤ N ≤ 10), the transfer func-


tions H (s) of the resulting normalized Butterworth filters can be similarly com-
puted. Since the numerator of the transfer function is always unity, Table 7.2


lists the polynomials for the denominator D(s) for 1 ≤ N ≤ 10.


7.3.1.1 Design steps for the lowpass Butterworth filter


In this section, we will design a Butterworth lowpass filter based on the spec-


ifications illustrated in Fig. 7.3(a). Mathematically, the specifications can be


expressed as follows:


pass band (0 ≤ |ω| ≤ ωp radians/s) 1 − δp ≤ |H (ω)| ≤ 1 + δp; (7.23)
stop band (|ω| > ωs radians/s) |H (ω)| ≤ δs. (7.24)


At times, Eq. (7.23) is also expressed in terms of the pass-band ripple as


20 log10δp dB. Similarly, Eq. (7.24) is expressed in terms of the stop-band


ripple as 20 log10δs dB. The design of the Butterworth filter consists of the


following steps, which we refer to as Algorithm 7.3.1.1.


Step 1 Determine the order N of the Butterworth filter. To determine the order
N of the filter, we calculate the gain of the filter at the corner frequencies ω = ωp
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and ω = ωs. Using Eq. (7.15), the two gains are given by


pass-band corner frequency (ω = ωp) |H (ωp)|2 =
1


1 + (ωp/ωc)2N
= (1 − δp)2;


(7.25)


stop-band corner frequency (ω = ωs) |H (ωs)|2 =
1


1 + (ωs/ωc)2N
= (δs)2.


(7.26)


Equations (7.25) and (7.26) can alternatively be expressed as follows:


(ωp/ωc)
2N =


1


(1 − δp)2
− 1 (7.27)


and


(ωs/ωc)
2N =


1


(δs)2
− 1. (7.28)


Dividing Eq. (7.27) by Eq. (7.28) and simplifying in terms of N , we obtain the
following expression:


N =
1


2
×


ln(Gp/Gs)


ln(ωp/ωs)
, (7.29)


where the gain terms are given by


Gp =
1


(1 − δp)2
− 1 and Gs =


1


(δs)2
− 1. (7.30)


Step 2 Using Table 7.2 or otherwise determine the transfer function for the nor-
malized Butterworth filter of order N . The transfer function for the normalized
Butterworth filter is denoted by H (S) with the Laplace variable S capitalized
to indicate the normalized domain.


Step 3 Determine the cut-off frequency ωc of the Butterworth filter using either
of the following two relationships:


pass-band constraint ωc =
ωp


(Gp)1/2N
; (7.31)


stop-band constraint ωc =
ωs


(Gs)1/2N
. (7.32)


If Eq. (7.31) is used to compute the cut-off frequency, then the Butterworth filter


will satisfy the pass-band constraint exactly. Similarly, the stop-band constraint


will be satisfied exactly if Eq. (7.32) is used to determine the cut-off frequency.


Step 4 Determine the transfer function H (s) of the required lowpass filter
from the transfer function for the normalized Butterworth filter H (S), obtained
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in Step 2, and the cut-off frequency ωc, using the following transformation:


H (s) = H (S)|S=s/ωc .


Note that the transformation S = s/ωc represents scaling in the Laplace domain.
It is therefore clear that the normalized cut-off frequency of 1 radian/s used in


the normalized Butterworth filter is transformed to a value of ωc as required in


Step 3.


Step 5 Sketch the magnitude spectrum from the transfer function H (s) deter-
mined in Step 4. Confirm that the transfer function satisfies the initial design


specifications.


Examples 7.5 and 7.6 illustrate the application of the design algorithm.


Example 7.5


Design a Butterworth lowpass filter with the following specifications:


pass band (0 ≤ |ω| ≤ 5 radians/s) 0.8 ≤ |H (ω)| ≤ 1;
stop band (|ω| > 20 radians/s) |H (ω)| ≤ 0.20.


Solution


Using Step 1 of Algorithm 7.3.1.1, the gain terms Gp and Gs are given by


Gp =
1


(1 − δp)2
− 1 =


1


0.82
− 1 = 0.5625


and


Gs =
1


(δs)2
− 1 =


1


0.22
− 1 = 24.


Using Eq. (7.29), the order of the Butterworth filter is given by


N =
1


2
×


ln(Gp/Gs)


ln(ωp/ωs)
=


1


2
×


ln(0.5625/24)


ln(5/20)
= 1.3538.


We round off the order of the filter to the higher integer value as N = 2.
Using Step 2 of Algorithm 7.3.1.1, the transfer function H (S) of the normal-


ized Butterworth filter with a cut-off frequency of 1 radian/s is given by


H (S) =
1


S2 + 1.414S + 1
.


Using the pass-band constraint, Eq. (7.31), in Step 3 of Algorithm 7.3.1.1, the


cut-off frequency of the required Butterworth filter is given by


ωc =
ωp


(Gp)1/2N
=


5


(0.5625)1/4
= 5.7735 radians/s.
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Fig. 7.7. Magnitude spectra of


the Butterworth lowpass filters,


designed in Example 7.5, as a


function of ω. Part (a) satisfies


the constraint at the pass-band


corner frequency, while part (b)


satisfies the magnitude


constraint at the stop-band


corner frequency.


Using Step 4 of Algorithm 7.3.1.1, the transfer function H (s) of the required
Butterworth filter is obtained by the following transformation:


H (s) = H (S)|S=s/ωc =
1


S2 + 1.414S + 1


∣
∣
∣
∣


S=s/5.7735
,


which simplifies to


H (s) =
1


(s/5.7735)2 + 1.414s/5.7735 + 1
=


33.3333


s2 + 8.1637s + 33.3333
.


Step 5 plots the magnitude spectrum of the Butterworth filter. The CTFT transfer


function of the Butterworth filter is given by


H (ω) = H (s)|s=jω =
33.3333


(jω)2 + 8.1637(jω) + 33.3333
.


The magnitude spectrum |H (ω)| is plotted in Fig. 7.7(a) with the specifications
shown by the shaded lines. We observe that the design specifications are indeed


satisfied by the magnitude spectrum.


Alternative implementation An alternative implementation of the aforemen-
tioned Butterworth filter can be obtained by using the stop-band constraint,


Eq. (7.32), in Step 3 of Algorithm 7.3.1.1. The cut-off frequency of the alter-


native implementation of the Butterworth filter is given by


ωc =
ωs


(Gs)1/2N
=


20


(24)1/4
= 9.0360 radians/s.


Using Step 4 of Algorithm 7.3.1.1, the transfer function H (s) of the alternative
implementation is obtained by the following transformation:


H (s) = H (S)|S=s/ωc =
1


S2 + 1.414S + 1


∣
∣
∣
∣


S=s/9.0360
,


which simplifies to


H (s) =
1


(s/9.0360)2 + 1.414s/9.0360 + 1
=


81.6497


s2 + 12.7769s + 81.6497
.


Step 5 plots the magnitude spectrum of the alternative implementation of the


Butterworth filter in Fig. 7.7(b), which satisfies the initial design specifications.
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Example 7.6


Design a lowpass Butterworth filter with the following specifications:


pass band (0 ≤ |ω| ≤ 50 radians/s) −1 dB ≤ 20 log10|H (ω)| ≤ 0;
stop band (|ω| > 100 radians/s) 20 log10|H (ω)| ≤ −15 dB.


Solution


Expressed on a linear scale, the pass-band gain is given by (1 − δp) = 10−1/20 =
0.8913. Similarly, the stop-band gain is given by δs = 10−15/20 = 0.1778.


Using Step 1 of Algorithm 7.3.1.1, the gain terms Gp and Gs are given by


Gp =
1


(1 − δp)2
− 1 =


1


0.89132
− 1 = 0.2588


and


Gs =
1


(δs)2
− 1 =


1


0.17782
− 1 = 30.6327.


The order N of the Butterworth filter is obtained using Eq. (7.29) as follows:


N =
1


2
×


ln(Gp/Gs)


ln(ωp/ωs)
=


1


2
×


ln(0.2588/30.6327)


ln(50/100)
= 3.4435.


We round off the order of the filter to the higher integer value as N = 4.
Using Step 2 of Algorithm 7.3.1.1, the transfer function H (S) of the normal-


ized Butterworth filter with a cut-off frequency of 1 radian/s is given by


H (S) =
1


(S2 + 0.7654S + 1)(S2 + 1.8478S + 1)
.


Using the pass-band constraint, Eq. (7.31), in Step 3 of Algorithm 7.3.1.1, the


cut-off frequency of the required Butterworth filter is given by


ωc =
ωp


(Gp)1/2N
=


50


(0.2588)1/8
= 59.2038 radians/s.


Using Step 4 of Algorithm 7.3.1.1, the transfer function H (s) of the required
Butterworth filter is obtained by the following transformation:


H (s) = H (S)|S=s/ωc =
1


(S2 + 0.7654S + 1)(S2 + 1.8478S + 1)


∣
∣
∣
∣


S=s/59.2038
,


which simplifies to


H (s) =
(3.5051 × 103)2


(s2 + 45.3146s + 3.5051 × 103)(s2 + 109.396s + 3.5051 × 103)
or


H (s) =
1.2286 × 107


s4 + 154.7106 s3 + 1.1976 × 104s2 + 5.4228 × 105s + 1.2286 × 107
.
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Fig. 7.8. Magnitude spectra of


the Butterworth lowpass filters,


designed in Example 7.6, as a


function of ω. Part (a) satisfies


the constraint at the pass-band


corner frequency, while part (b)


satisfies the magnitude


constraint at the stop-band


corner frequency.


Step 5 plots the magnitude spectrum of the Butterworth filter. The CTFT transfer
function of the Butterworth filter is given by


H (ω) = H (s)|s=jω


=
1.2286×107


( jω)4+154.7106 ( jω)3+1.1976×104( jω)2+5.4228×105( jω)+1.2286×107
.


The magnitude spectrum |H (ω)| is plotted in Fig. 7.8(a), where the labels on the
y-axis are chosen to correspond to the specified gains for the filter. We observe
that the design specifications are satisfied by the magnitude spectrum.


Alternative implementation An alternative implementation of the aforemen-
tioned Butterworth filter can be obtained by using the stop-band constraint,


Eq. (7.32), in Step 3 of Algorithm 7.3.1.1. The cut-off frequency of the alter-


native implementation of the Butterworth filter is given by


ωc =
ωs


(Gs)1/2N
=


100


(30.6327)1/4
= 65.1969 radians/s.


Using Step 4 of Algorithm 7.3.1.1, the transfer function H (s) of the alternative
implementation is obtained by the following transformation:


H (s) = H (S)|S=s/ωc =
1


(S2 + 0.7654S + 1)(S2 + 1.8478S + 1)


∣
∣
∣
∣


S=s/65.1969
,


which simplifies to


H (s) =
(4.2506 × 103)2


(s2 + 49.9017s + 4.2506 × 103)(s2 + 120.4708s + 4.2506 × 103)
or


H (s) =
1.8068 × 107


s4 + 170.3725 s3 + 1.4513 × 104s2 + 7.2419 × 105s + 1.8068 × 107
.


Step 5 plots the magnitude spectrum of the alternative implementation of the


Butterworth filter in Fig. 7.8(b), which satisfies the initial design specifications.


7.3.1.2 Butterworth filter design using M ATL AB


M A T L A B incorporates a number of functions to implement the design algo-


rithm for the Butterworth filter specified in Section 7.3.1.1. The order N and the
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cut-off wc frequency for the filter in Step 1 of Algorithm 7.3.1.1 can be deter-


mined using the library function buttord, which has the following calling


syntax:


>> [N,wc] = buttord(wp,ws,Rp,Rs,‘s’);


where wp is the corner frequency of the pass band, ws is the corner frequency


of the stop band, Rp is the permissible ripple in the pass band in decibels,


and Rs is the permissible attenuation in the stop band in decibels. The last


argument ‘s’ specifies that a CT filter in the Laplace domain is to be designed.


In determining the cut-off frequency, M A T L A B uses the stop-band constraint,


Eq. (7.32).


Having determined the order and the cut-off frequency, the coefficients


of the numerator and denominator polynomials of the Butterworth filter can


be determined using the library function butter with the following calling


syntax:


>> [num,den] = butter(N,wc,‘s’);


where num is a vector containing the coefficients of the numerator and den is


a vector containing the coefficients of the denominator in decreasing powers


of s.
Finally, the transfer function H (s) can be determined using the library func-


tion tf as follows:


>> H = tf(num,den).


For Example 7.5, the M A T L A B commands for designing the Butterworth filter


are given by


>> wp=5; ws=20; Rp=1.9382; Rs=13.9794;
% specify design parameters


% Rp = -20*log10(0.8)
% = 1.9382dB


% Rs = -20*log10(0.2)
% = 13.9794dB


>> [N,wc]=buttord (wp,ws,Rp,Rs,‘s’);
% determine order and


% cut-off freq


>> [num,den]=butter (N,wc,‘s’);
% determine num and denom


% coeff.


>> Ht = tf(num,den); % determine transfer
% function


>> [H,w] = freqs(num,den); % determine magnitude
% spectrum


>> plot(w,abs(H)); % plot magnitude spectrum
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Stepwise implementation of the above code returns the following values for


different variables:


Instruction II: N = 2; wc = 9.0360;
Instruction III: num = [0 0 81.6497]; den = [1.0000


12.7789 81.6497];


Instruction IV: Ht = 1/(s 2̂ + 12.78s + 81.65);


The magnitude spectrum is the same as that given in Fig. 7.7(b).


7.3.2 Type I Chebyshev filters


Butterworth filters have a relatively low roll off in the transitional band, which


leads to a large transitional bandwidth. Type I Chebyshev filters reduce the


bandwidth of the transitional band by using an approximating function, referred


to as the Type I Chebyshev polynomial, with a magnitude response that has


ripples within the pass band. We start with the definition of the Chebyshev


polynomial.


7.3.2.1 Type I Chebyshev polynomial


The N th-order Type I Chebyshev polynomial is defined as


TN (ω) =
{


cos(N cos−1(ω)) |ω| ≤ 1
cosh(N cosh−1(ω)) |ω| > 1, (7.33)


where cosh(x) denotes the hyperbolic cosine function, which is given by


cosh(x) = cos( jx) =
ex + e−x


2
. (7.34)


Starting from the initial values of T0(ω) = 1 and T1(ω) = ω, the higher orders
of the Type I Chebyshev polynomial can be recursively generated using the


following expression:


Tn(ω) = 2ωTn−1(ω) − Tn−2(ω). (7.35)


Table 7.3 lists the Chebyshev polynomial for different values of n within the
range 0 ≤ n ≤ 10.


Using Eq. (7.33), the roots of the Type I Chebyshev polynomial TN (ω) can
be derived as follows:


ωn = cos
[


(2n + 1)π
2N


]


, (7.36)


for 0 ≤ n ≤ N − 1.
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Table 7.3. Chebyshev polynomial T N (ω) for different


values of N


N TN (ω)


0 1


1 ω


2 2ω2 − 1
3 4ω3 − 3ω
4 8ω4 − 8ω2 + 1
5 16ω5 − 20ω3 + 5ω
6 32ω6 − 48ω4 + 18ω2 − 1
7 64ω7 − 112ω5 + 56ω3 − 7ω
8 128ω8 − 256ω6 + 160ω4 − 32ω2 + 1
9 256ω9 − 576ω7 + 432ω5 − 120ω3 + 9ω


10 512ω10 − 1280ω8 + 1120ω6 − 400ω4 + 50ω2 − 1


7.3.2.2 Type I Chebyshev filter


The frequency characteristics of the Type I Chebyshev filter of order N are
defined as follows:


|H (ω)| =
1


√


1 + ε2T 2N (ω/ωp)
, (7.37)


where ωp is the pass-band corner frequency and ε is the ripple control parameter


that adjusts the magnitude of the ripple within the pass band. Substituting


ωp = 1, the frequency characteristics of the normalized Type I Chebyshev filter
of order N are expressed in terms of the Chebyshev polynomial as follows:


|H (ω)| =
1


√


1 + ε2T 2N (ω)
. (7.38)


Based on Eqs. (7.35) and (7.38), we make the following observations for the


frequency characteristics of the normalized Type I Chebyshev filter.


(1) For ω = 0, the Chebyshev polynomial TN (ω) has a value of ±1 or 0. This
can be shown by substituting ω = 0 in Eq. (7.33), which yields


TN (0) = cos(N cos−1(0)) = cos
(


N (2n + 1)π
2


)


=
{


±1 N is even
0 N is odd.


(7.39)
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Equation (7.37) implies that the dc component |H (0)| of the Type I
Chebyshev filter is given by


|H (0)| =











1
√


1 + ε2
N is even


1 N is odd.
(7.40)


(2) For ω = 1 radian/s, the value of the Chebyshev polynomial TN (ω) is given
by


TN (1) = cos(N cos−1(1)) = cos(2nNπ ) = 1. (7.41)


Therefore, the magnitude |H (ω)| of the normalized Type I Chebyshev filter
at ω = 1 radian/s is given by


|H (1)| =
1


√
1 + ε2


, (7.42)


irrespective of the order N of the normalized Chebyshev filter.
(3) For large values of ω within the stop band, the magnitude response of the


normalized Type I Chebyshev filter can be approximated by


|H (ω)| ≈
1


εTN (ω)
, (7.43)


since εTN (ω) ≫ 1. If N ≫ 1, then a second approximation can be made
by ignoring the lower degree terms in TN (ω) and using the approximation
TN (ω) ≈ 2N−1ωN . Equation (7.43) is therefore simplified as follows:


|H (ω)| ≈
1


ε
×


1


2N−1ωN
. (7.44)


(4) Since


H (s)H (−s)|s=jω = |H (ω)|2,


H (s)H (−s) can be derived from Eq. (7.38) as follows:


H (s)H (−s) =
1


1 + ε2T 2N (s/j)
. (7.45)


The 2N poles of H (s)H (−s) are obtained by solving the characteristic
equation,


1 + ε2T 2N (s/j) = 0, (7.46)


and are given by


sn = sin
(


2n − 1
2N


π


)


sinh


(
1


N
sinh−1


(
1


ε


))


+ j cos
(


2n − 1
2N


π


)


cosh


(
1


N
sinh−1


(
1


ε


))


(7.47)


for 1 ≤ n ≤ 2N−1. To derive a stable implementation of the normalized
Type I Chebyshev filter, the N poles in the left-hand s-plane are included
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in the Laplace transfer function of H (s). From Eq. (7.45), it is clear that
there are no zeros for the normalized Type I Chebyshev filter.


Properties (1)–(4) are used to derive the design algorithm for the Type I Cheby-


shev filter, which is explained in the following.


7.3.2.3 Design steps for the lowpass filter


In this section, we will design a lowpass Type I Chebyshev filter based on the


following specifications:


pass band (0 ≤ |ω| ≤ ωp radians/s) 1 − δp ≤ |H (ω)| ≤ 1 + δp;
stop band (|ω| > ωs radians/s) |H (ω)| ≤ δs.


Since the Type I Chebyshev filter is designed in terms of its normalized version,


Eq. (7.37), we normalize the aforementioned specifications by the pass-band


corner frequency ωp. The normalized specifications are as follows:


pass band (0 ≤ |ω| ≤ 1) 1 − δp ≤ |H (ω)| ≤ 1 + δp;
stop band (|ω| > ωs/ωp) |H (ω)| ≤ δs.


Step 1 Determine the value of the ripple control factor ε. Equation (7.42)
computes the value of the ripple control factor ε:


ε =
√


Gp with Gp =
1


(1 − δp)2
− 1. (7.48)


Step 2 Calculate the order N of the Chebyshev polynomial. The gain at the
normalized stop-band corner frequency ωs/ωp is obtained from Eq. (7.37) as


|H (ωs/ωp)|2 =
1


1 + ε2T 2N (ωs/ωp)
= (δs)2. (7.49)


Substituting the value of the Chebyshev polynomial TN (ω) from Eq. (7.33) and
simplifying the resulting equation, we obtain


N =
cosh−1[(Gs/Gp)0.5]


cosh−1[ωs/ωp]
, (7.50)


where the gain terms Gp and Gs are given by


Gp =
1


(1 − δp)2
− 1 with Gs =


1


(δs)2
− 1. (7.51)


Step 3 Determine the location of the 2N poles of H (S)H (−S) using Eq. (7.47).
To derive a stable implementation for the normalized Type I Chebyshev filter


H (S), the N poles lying in the left-half s-plane are selected to derive the transfer
function H (S). If required, a constant gain term K is also multiplied with H (S)
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such that the gain |H (0)| of the normalized Type I Chebyshev filter is unity at
ω = 0.


Step 4 Derive the transfer function H (s) of the required lowpass filter from
the transfer function H (S) of the normalized Type I Chebyshev filter, obtained
in Step 3, using the following transformation:


H (s) = H (S)|S=s/ωp . (7.52)


Step 5 Sketch the magnitude spectrum from the transfer function H (s) deter-
mined in Step 4. Confirm that the transfer function satisfies the initial design


specifications.


Example 7.7


Repeat Example 7.6 using the Type I Chebyshev filter.


Solution


For the given specifications, Example 7.6 calculates the pass-band and stop-


band gain on a linear scale as (1 − δp) = 0.8913 and δs = 10−15/20 = 0.1778
with the gain terms given by Gp = 0.2588 and Gs = 30.6327.


Step 1 determines the value of the ripple control factor ε:


ε =
√


Gp =
√


0.2588 = 0.5087.


Step 2 determines the order N of the Chebyshev polynomial:


N =
cosh−1[(30.6327/0.2588)0.5]


cosh−1 [100/50]
= 2.3371.


We round off N to the closest higher integer, N = 3.
Step 3 determines the location of the six poles of H (S)H (−S):


[−0.2471 + j0.9660, −0.2471 − j0.9660, 0.2471 + j0.9660,
0.2471 − j0.9660, 0.4943, −0.4943].


The three poles lying in the left-half s-plane are included in the transfer


function H (S) of the normalized Type I Chebyshev filter. These poles are
located at


[−0.2471 + j0.9660, −0.2471 − j0.9660, −0.4943] .


The transfer function for the normalized Type I Chebyshev filter is therefore


given by


H (S) =
K


(S + 0.2472 + j0.9660)(S + 0.2472 − j0.9660)(S + 0.4943)
,


which simplifies to


H (S) =
K


S3 + 0.9885S2 + 1.2386S + 0.4914
.
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1Fig. 7.9. Magnitude spectrum of


the Type I Chebyshev lowpass


filter designed in Example 7.7.


Since |H (ω)| at ω = 0 is K /0.4914, K is set to 0.4914 to make the dc gain equal
to unity. The new transfer function with unity gain at ω = 0 is given by


H (S) =
0.4914


S3 + 0.9885S2 + 1.2386S + 0.4914
.


Step 4 transforms the normalized Type I Chebyshev filter using the following


relationship:


H (s) = H (S)|S=s/50 =
0.4914


(s/50)3 + 0.9885(s/50)2 + 1.2386(s/50) + 0.4914
or


H (s) =
6.1425 × 104


s3 + 49.425s2 + 3.0965 × 103s + 6.1425 × 104
,


which is the transfer function of the required lowpass filter.


The magnitude spectrum of the Type I Chebyshev filter is plotted in Fig. 7.9.


It is observed that Fig. 7.9 satisfies the initial design specifications.


Examples 7.6 and 7.7 used the Butterworth and Type I Chebyshev implemen-


tations to design a lowpass filter based on the same specifications. Comparing


the magnitude spectra (Figs. 7.8 and 7.9) for the resulting filters, we note that


the Butterworth filter has a monotonic gain with negligible ripples in the pass


and stop bands. By introducing pass-band ripples, the Type I Chebyshev imple-


mentation is able to satisfy the design specifications with a lower order N for
the lowpass filter, thus reducing the complexity of the filter. However, savings


in the complexity are achieved at the expense of ripples, which are added to the


the pass band of the frequency characteristics of the Type I Chebyshev filter.


7.3.2.4 Type I Chebyshev filter design using M ATL AB


M A T L A B uses the cheb1ord and cheby1 functions to implement the


Type I Chebyshev filter. The cheb1ord function determines the order N of


the Type I Chebyshev filter from the pass-band corner frequency wp, stop-band


corner frequency ws, pass-band attenuation rp, and the stop-band attenuation


rs. In terms of the filter specifications, Eqs. (7.23) and (7.24), the values of the


pass-band attenuation rp and the stop-band attenuation rs are given by


rp = 20 × log10(δp) and rs = 20 × log10(δs).
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The cheb1ord also returns wn, another design parameter referred to as the


Chebyshev natural frequency to use with cheby1 to achieve the design spec-


ifications. The syntax for cheb1ord is given by


>> [N,wn] = cheb1ord(wp,ws,rp,rs,‘s’);


To determine the coefficients of the numerator and denominator of the


Type I Chebyshev filter, M A T L A B uses thecheb1 function with the following


syntax:


>> [num,den] = cheby1(N,rp,wn,‘s’);


The transfer function H (s) can be determined using the library function tf as
follows:


>> H = tf(num,den);


For Example 7.7, the M A T L A B commands for designing the Butterworth filter


are given by


>> wp=50; ws=100; rp=1; rs=15;
% specify design parameters


>> [N,wn] = cheb1ord (wp,ws,rp,rs,‘s’);
% determine order and


% natural freq


>> [num,den] = cheby1 (N,rp,wn,‘s’);
% determine num and denom


% coeff.


>> Ht = tf(num,den); % determine transfer
% function


>> [H,w] = freqs(num,den); % determine magnitude
% spectrum


>> plot(w,abs(H)); % plot magnitude spectrum


Stepwise implementation of the above code returns the following values for


different variables:


Instruction II: N = 3; wn = 50;
Instruction III: num = [0 0 0 61413.3]; den =


[1.0000 49.417 3096 61413.3];


Instruction IV: Ht = 61413.3/ (s 3̂ + 49.417s 2̂ + 3096s
+ 61413.3);


The magnitude spectrum is the same as that given in Fig. 7.9.


7.3.3 Type II Chebyshev filters


The Type II Chebyshev filters, or the inverse Chebyshev filters, are monotonic


within the pass band and introduce ripples in the stop band. Such an imple-


mentation is preferred over the Type I Chebyshev filter in applications where a


constant gain is desired within the pass band.
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The frequency characteristics of the Type II Chebyshev filter are given by


|H (ω)| =
1


√


1 +
[


ε2T 2N (ωs/ω)
]−1


=


√


ε2T 2N (ωs/ω)


1 + ε2T 2N (ωs/ω)
, (7.53)


whereωs is the lower corner frequency of the stop band. To derive the normalized


version of the Type II Chebyshev filter, we set ωs = 1 in Eq. (7.53) leading to
the following expression for the frequency characteristics of the normalized


Type II Chebyshev filter:


|H (ω)| =
1


√


1 +
[


ε2T 2N (1/ω)
]−1


=


√


ε2T 2N (1/ω)


1 + ε2T 2N (1/ω)
. (7.54)


In the following section, we list the steps involved in the design of the Type II


Chebyshev filter.


7.3.3.1 Design steps for the lowpass filter


The design of the lowpass Type II Chebyshev filter is based on the following


specifications:


pass band (0 ≤ |ω| ≤ ωp radians/s) 1 − δp ≤ |H (ω)| ≤ 1 + δp;
stop band (|ω| > ωs radians/s) |H (ω)| ≤ δs.


Normalizing the specifications with the stop-band corner frequency ωs, we


obtain


pass band (0 ≤ |ω| ≤ ωp/ωs) 1 − δp ≤ |H (ω)| ≤ 1 + δp;
stop band (|ω| > 1) |H (ω)| ≤ δs.


Step 1 Compute the value of the ripple factor by setting the normalized fre-
quency ω = 1 in Eq. (7.54). Since the Type II Chebyshev filter is normalized
with respect to ωs, the normalized frequency ω = 1 corresponds to ωs and the
filter gain H (1) = δs. Substituting H (1) = δs in Eq. (7.54), we obtain


|H (1)| =


√


ε2


1 + ε2
= δs,


which simplifies to


ε =
1


√
Gs


, (7.55)


with the gain term specified in Eq. (7.51).
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Step 2 Compute the order N of the Type II Chebyshev filter. To derive an
expression for the order N , we compute the gain |H (ω)| at the normalized pass-
band corner frequency ωp/ωs. Substituting |H (ω)| = (1 − δp) at ω = ωp/ωs,
we obtain


ε2T 2N (ωs/ωp)


1 + ε2T 2N (ωs/ωp)
= (1 − δp)2.


Substituting the value of the Chebyshev polynomial from Eq. (7.33) and sim-


plifying the resulting expression with respect to N yields


N =
cosh−1[(Gs/Gp)0.5]


cosh−1[ωs/ωp]
, (7.56)


where the gain terms Gp and Gs are defined in Eq. (7.51). Note that the expres-
sion for the order of the filter for the Type II Chebyshev filter is the same as the


corresponding expression, Eq. (7.50), for the Type I Chebyshev filter.


Step 3 Determine the location of the poles and zeros of the transfer function
H (S) of the normalized Type II Chebyshev filter. Substituting


H (s)H (−s)|s=jω = |H (ω)|2,


the Laplace transfer function for the normalized Type II Chebyshev filter is


given by


H (s)H (−s) =
ε2T 2N ( j/s)


1 + ε2T 2N ( j/s)
. (7.57)


The poles of H (s)H (−s) are obtained by solving for the roots of the character-
istic equation,


1 + ε2T 2N ( j/s) = 0. (7.58)


Comparing with the characteristic equation for H (s)H (−s) of the Type I Cheby-
shev filter, Eq. (7.46), we note that (s/j) in the Chebyshev polynomial of
Eq. (7.46) is replaced by (j/s) in Eq. (7.58). This implies that the poles of
the normalized Type II Chebyshev filter are simply the inverse of the poles of


the Type I Chebyshev filter. Hence, the location of the poles for the normalized


Type II Chebyshev filter can be computed by determining the locations of the


poles for the normalized Type I Chebyshev filter and then taking the inverse.


The zeros of H (s)H (−s) are obtaining by solving


T 2N ( j/s) = 0. (7.59)


The zeros of H (s)H (−s) are therefore the inverse of the roots of the Chebyshev
polynomial TN (ω) = TN (s/j), which are given by


ω = cos
[


(2n + 1)π
2N


]


.
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The zeros of H (s) are therefore given by


s =
j


cos


(
2n + 1π


2N


) (7.60)


for 0 ≤ n ≤ N− 1. The poles and zeros are used to evaluate the transfer function
H (S) for the normalized Type II Chebyshev filter. If required, a constant gain
term K is also multiplied by H (S) such that the gain |H (0)| of the normalized
Type II Chebyshev filter is unity at ω = 0.


Step 4 Derive the transfer function H (s) of the required lowpass filter from the
transfer function H (S) of the normalized Type II Chebyshev filter, obtained in
Step 3, using the following transformation:


H (s) = H (S)|S=s/ωs . (7.61)


Step 5 Sketch the magnitude spectrum from the transfer function H (s) deter-
mined in Step 4. Confirm that the transfer function satisfies the initial design


specifications.


Example 7.8


Repeat Example 7.6 using the Type II Chebyshev filter.


Solution


As calculated in Example 7.6, the pass-band and stop-band gain are (1 −δp) =
0.8913 and δs = 10−15/20 = 0.1778. The gain terms are also calculated as
Gp = 0.2588 and Gs = 30.6327.


Step 1 determines the value of the ripple control factor ε:


ε =
1


√
Gs


=
1


√
30.6327


= 0.1807.


Step 2 determines the order N of the Chebyshev polynomial:


N =
cosh−1[(30.6327/0.2588)0.5]


cosh−1[100/50]
= 2.3371.


We round off N to the closest higher integer, N = 3.
Step 3 determines the location of the poles and zeros of H (S)H (−S). We


first determine the location of poles for the Type I Chebyshev filter with ε =
0.1807 and N = 3. Using Eq. (7.47), the location of poles for H (s)H (−s) of
the Type I Chebyshev filter is given by


[−0.4468 + j1.1614, −0.4468 − j1.1614, 0.4468 + j1.1614, 0.4468
−j1.1614, 0.8935, −0.8935].
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Selecting the poles located in the left-half s-plane, we obtain


[−0.4468 + j1.1614, −0.4468 + j1.1614, −0.8935] .


The poles of the normalized Type II Chebyshev filter are located at the inverse


of the above locations and are given by


[−0.2885 − j0.7501, −0.2885 + j0.7501, −1.1192] .


The zeros of the normalized Chebyshev Type II filter are computed using


Eq. (7.60) and are given by


[−j1.1547, +j1.1547, ∞] .


The zero at s = ∞ is neglected. The transfer function for the normalized
Type II Chebyshev filter is given by


H (S) =
K (S + j1.1547)(S − j1.1547)


(S + 0.2885 + j0.7501)(S + 0.2885 − j0.7501)(S + 1.1192)
,


which simplifies to


H (S) =
K (S2 + 1.3333)


S3 + 1.6962S2 + 1.2917S + 0.7229
.


Since |H (ω)| at ω = 0 is 1.3333/0.7229 = 1.8444, K is set to 1/1.8444 =
0.5422 to make the dc gain equal to unity. The new transfer function with unity


gain at ω = 0 is given by


H (S) =
0.5422(S2 + 1.3333)


S3 + 1.6962S2 + 1.2917S + 0.7229
.


Step 4 normalizes H (S) based on the following transformation:


H (s) = H (S)|S=s/100 =
0.5422((s/100)2 + 1.3333)


(s/100)3 + 1.6962(s/100)2 + 1.2917(s/100) + 0.7229
,


which simplifies to


H (s) =
54.22(s2 + 1.3333 × 104)


s3 + 1.6962 × 102s2 + 1.2917 × 104s + 0.7229 × 106
.


Step 5 plots the magnitude spectrum, which is shown in Fig. 7.10. As expected,


the frequency characteristics in Fig. 7.10 have a monotonic gain within the


pass band and ripples within the stop band. Also, it is noted that the magnitude


spectrum |H (ω)|= 0 between the frequencies of ω = 100 and ω = 150 radians/s.
This zero value corresponds to the location of the complex zeros in H (s). Setting


0 50 100 150 200 250
0


0.1778


0.4


0.6


0.8913
1


Fig. 7.10. Magnitude spectrum


of the Type II Chebyshev lowpass


filter designed in Example 7.8.
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the numerator of H (s) equal to zero, we get two zeros at s = ±j115.4686, which
lead to a zero magnitude at a frequency of ω = 115.4686.


7.3.3.2 Type II Chebyshev filter design using M ATL AB


M A T L A B provides the cheb2ord and cheby2 functions to implement the


Type II Chebyshev filter. The usage of these functions is the same as the


cheb1ord and cheby1 functions for the Type I Chebyshev filter except for


the cheby2 function, for which the stop-band constraints (stop-band ripple rs


and stop-band corner frequency ws) are specified. The code for Example 7.8 is


as follows:


>> wp=50; ws=100; rp=1; rs=15;
% specify design parameters


>> [N,wn] = cheb2ord (wp,ws,rp,rs,‘s’);
% determine order and


% natural freq


>> [num,den] = cheby2(N,rs,ws,‘s’);
% determine num and denom


% coeff.


>> Ht = tf(num,den); % determine transfer
% function


>> [H,w] = freqs(num,den); % determine magnitude
% spectrum


>> plot(w,abs(H)); % plot magnitude spectrum


Stepwise implementation of the above code returns the following values for


different variables:


Instruction II: N = 3; wn = 78.6980;
Instruction III: num = [0 54.212 0 722835];


den = [1.0000 169.63 12917 722835];
Instruction IV: Ht = (54.21sˆ2 + 722800) /(sˆ3 + 169.6sˆ2


+ 12920s + 722800);


The magnitude spectrum is the same as that given in Fig. 7.10.


7.3.4 Elliptic filters


Elliptic filters, also referred to as Cauer filters, include both pass-band and stop-


band ripples. Consequently, elliptic filters can achieve a very narrow bandwidth


for the transition band. The frequency characteristics of the elliptic filter are


given by


|H (ω)| =
1


√


1 + ε2U 2N (ω/ωp)
, (7.62)
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where UN (ω) is an N th-order Jacobian elliptic function. By setting ωp = 1, we
obtain the frequency characteristics of the normalized elliptic filter as follows:


|H (ω)| =
1


√


1 + ε2U 2N (ω)
. (7.63)


The design procedure for elliptic filters is similar to that for Type I and


Type II Chebyshev filters. Since UN (1) = 1, for all N , it is straightforward
to derive the value of the ripple control factor as


ε =
√


Gp, (7.64)


where Gp is the pass-band gain term defined in Eq. (7.51). The order N of the
elliptic filter is calculated using the following expression:


N =
ψ[(ωp/ωs)


2]ψ⌊
√


1 − Gp/Gs⌋
ψ[Gp/Gs]ψ[


√


1 − (ωp/ωs)2]
, (7.65)


where ψ[x] is referred to as the complete elliptic integral of the first kind and
is given by


ψ[x] =
π/2∫


0


dφ
√


1 − x2 sin φ
. (7.66)


M A T L A B provides the ellipke function to compute Eq. (7.66) such that


ψ[x] = ellipke(xˆ2).
Finding the transfer function H (s) for the elliptic filters of order N and


ripple control factor ε requires the computation of its poles and zeros from


non-linear simultaneous integral equations, which is beyond the scope of the


text. In Section 7.3.4.1, which follows Example 7.9, we provide a list of library


functions in M A T L A B that may be used to design the elliptic filters.


Example 7.9


Calculate the ripple control factor and order of the elliptic filter that satisfies


the filter specifications listed in Example 7.6.


Solution


Example 7.6 computes the gain terms as Gp = 0.2588 and Gs = 30.6327. The
pass-band and stop-band corner frequencies are specified as ωp = 50 radians/s
and ωs = 100 radians/s. Using Eq. (7.65), the ripple control factor is given by


ε =
√


Gp =
√


0.2588 = 0.5087.


Using Eq. (7.65) with ωp/ωs = 0.5 and Gp/Gs = 0.0085, the order N of the
elliptic filter is given by


N =
ψ[(ωp/ωs)


2] ψ⌊
√


1 − Gp/Gs⌋
ψ[Gp/Gs] ψ[


√


1 − (ωp/ωs)2]
=


ψ[0.25] ψ[0.9958]


ψ[0.0085] ψ[0.8660]
.
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Table 7.4. Comparison of the different implementations of a lowpass filter


Type of filter Order Pass band Transition band Stop band


Butterworth highest order (4) monotonic gain widest width monotonic gain


either pass or stop bands specs are met; the other is overdesigned


Type I Chebyshev moderate order (3) ripples are present;


exact specs are met


narrow width monotonic gain;


overdesigned specs


Type II Chebyshev moderate order (3);


same as Type I


montonic gain;


overdesigned specs


narrow width; similar


to Type I


ripples are present;


exact specs are met


Elliptic lowest order (2) ripples are present;


exact specs are met


narrowest width ripples are present;


exact specs are met


Using M A T L A B , ψ[0.25] = ellipke(0.25ˆ2)= 1.5962, ψ[0.9958] =
ellipke(0.9968ˆ2)= 3.9175, ψ[0.0085] = ellipke(0.0085ˆ2) =
1.5708, and ψ[0.8660] = ellipke(0.8660ˆ2) = 2.1564. The value of
N is given by


N =
1.5962 × 3.9715
1.5708 × 2.1564


= 1.8715.


Rounding off to the nearest higher integer, the order N of the filter equals 2.


Examples 7.6 to 7.9 designed a lowpass filter for the same specifications based


on four different implementations derived from the Butterworth, Type I Cheby-


shev, Type II Chebyshev, and elliptic filters. Table 7.4 compares the properties


of these four implementations with respect to the frequency responses within


the pass, transition, and stop bands.


In terms of the complexity of the implementations, the elliptic filters provide


the lowest order at the expense of equiripple gains in both the pass and stop


bands. The Chebyshev filters provide monotonic gain in either the pass or stop


band, but increase the order of the implementation. The Butterworth filters


provide monotonic gains of maximally flat nature in both the pass and stop


bands. However, the Butterworth filters are of the highest order and have the


widest transition bandwidth.


Another factor considered in choice of implementation is the phase response


of the filter. Generally, ripples add non-linearity to the phase responses. There-


fore, the elliptic filter may not be the best choice in applications where a linear


phase is important.


7.3.4.1 Elliptic filter design using M ATL AB


M A T L A B provides the ellipord and ellip functions to implement the


elliptic filters. The usage of these functions is similar to the cheb1ord and
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1Fig. 7.11. Magnitude spectrum


of the elliptic lowpass filter


designed in Example 7.9.


cheby1 functions used to design Type I Chebyshev filters. The code to imple-


ment an elliptic filter for Example 7.9 is as follows:


>> wp=50; ws=100; rp=1; rs=15;
% specify design parameters


>> [N,wn] = ellipord (wp,ws,rp,rs,‘s’);
% determine order and


% natural freq


>> [num,den] = ellip(N,rp,rs,wn,‘s’);
% determine num and denom


% coeff.


>> Ht = tf(num,den); % determine transfer
% function


>> [H,w] = freqs(num,den); % determine magnitude
% spectrum


>> plot(w,abs(H)); % plot magnitude spectrum


Stepwise implementation of the above code returns the following values for


different variables:


Instruction II: N = 2; wn = 50;
Instruction III: num = [0.1778 0 2369.66];


den = [1.0000 48.384 2961.75];
Instruction IV: Ht = (0.1778sˆ2 + 2640)/(sˆ2 + 48.38s


+ 2962);


The magnitude spectrum is plotted in Fig. 7.11.


7.4 Frequency transformations


In Section 7.3, we designed a collection of specialized CT lowpass filters. In


this section, we consider the design techniques for the remaining three cat-


egories (highpass, bandpass, and bandstop filters) of CT filters. A common


approach for designing CT filters is to convert the desired specifications into


the specifications of a normalized or prototype lowpass filter using a frequency


transformation that maps the required frequency-selective filter into a lowpass


filter. Based on the transformed specifications, a normalized lowpass filter is


designed using the techniques covered in Section 7.3. The transfer function


H (S) of the normalized lowpass filter is then transformed back into the original
frequency domain. Transformation for converting a lowpass filter to a highpass
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filter is considered next, followed by the lowpass to bandpass, and lowpass to


bandstop transformations.


7.4.1 Lowpass to highpass filter


The transformation that converts a lowpass filter with the transfer function H (S)
into a highpass filter with transfer function H (s) is given by


S =
ξp


s
, (7.67)


where S = σ + jω represents the lowpass domain and s = γ + jξ represents
the highpass domain. The frequency ξ = ξp represents the pass-band corner
frequency for the highpass filter. In terms of the CTFT domain, Eq. (7.67) can


be expressed as follows:


ω = −
ξp


ξ
or ξ = −


ξp


ω
. (7.68)


Figure 7.12 shows the effect of applying the frequency transformation in


Eq. (7.68) to the specifications of a highpass filter. Equation (7.68) maps the


highpass specifications in the range −∞ < ξ ≤ 0 to the specifications of a
lowpass filter in the range 0 ≤ ω < ∞. Similarly, the highpass specifications
for the positive range of frequencies (0 < ξ ≤ ∞) are mapped to the lowpass
specifications within the range −∞ ≤ ω < 0. Since the magnitude spectra are
symmetrical about the y-axis, the change from positive ξ frequencies to negative
ω frequencies does not affect the nature of the filter in the entire domain.


Highpass to lowpass transformation


w = −xp/x 


1


xs


xp


pass band


stop band


transition band


Hhp(x)


−xp −xs


1−dp


1−dp


1+d
p


1+d
p


pass band stop bandtransition


band


x
0


ds


ds


x


w w


|Hlp(w)|


Fig. 7.12. Highpass to lowpass


transformation.
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From Fig. 7.12, it is clear that Eq. (7.68), or alternatively Eq. (7.67), represents


a highpass to lowpass transformation. We now exploit this transformation to


design a highpass filter.


Example 7.10


Design a highpass Butterworth filter with the following specifications:


stop band (0 ≤ |ξ | ≤ 50 radians/s) −1 dB ≤ 20 log10|H (ξ )| ≤ 0;
pass band (|ξ | > 100 radians/s) 20 log10|H (ξ )| ≤ −15 dB.


Solution


Using Eq. (7.67) with ξp = 100 radians/s to transform the specifications from
the domain s = γ + jξ of the highpass filter to the domain S = σ + jω of the
lowpass filter, we obtain


pass band (2 < |ω| ≤ ∞ radians/s) −1 dB ≤ 20 log10|H (ω)| ≤ 0;
stop band (|ω| < 1 radian/s) 20 log10|H (ω)| ≤ 15 dB.


The above specifications are used to design a normalized lowpass Butterworth


filter. Expressed on a linear scale, the pass-band and stop-band gains are given


by


(1 − δp) = 10−1/20 = 0.8913 and δs = 10−15/20 = 0.1778.


The gain terms Gp and Gs are given by


Gp =
1


(1 − δp)2
− 1 =


1


0.89132
− 1 = 0.2588


and


Gs =
1


(δs)2
− 1 =


1


0.17782
− 1 = 30.6327.


The order N of the Butterworth filter is obtained using Eq. (7.29) as follows:


N =
1


2
×


ln(Gp/Gs)


ln(ξp/ξs)
=


1


2
×


ln(0.2588/30.6327)


ln(1/2)
= 3.4435.


We round off the order of the filter to the higher integer value as N = 4.
Using the pass-band constraint, Eq. (7.31), the cut-off frequency of the


required Butterworth filter is given by


ωc =
ωs


(Gs)1/2N
=


2


(30.6327)1/8
= 1.3039 radians/s.
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1Fig. 7.13. Magnitude spectrum


of the Butterworth highpass


filter designed in Example 7.10.


The poles of the lowpass filter are located at


S = ωc exp
[


j
π


2
+ j


(2n − 1)π
8


]


for 1 ≤ n ≤ 4. Substituting different values of n yields


S = [−0.4990 + j1.2047 −1.2047 + j0.4990 −1.2047
−j0.4990 −0.4990 − j1.2047].


The transfer function of the lowpass filter is given by


H (S) =
K


(S+0.4490−j1.2047)(S+0.4490+j1.2047)(S+1.2047−j0.4990)(S+1.2047+j0.4990)


or


H (S) =
K


S4 + 3.4074S3 + 5.8050S2 + 5.7934S + 2.8909
.


To ensure a dc gain of unity for the lowpass filter, we set K = 2.8909. The
transfer function of a unity gain lowpass filter is given by


H (S) =
2.8909


S4 + 3.4074S3 + 5.8050S2 + 5.7934S + 2.8909
.


To derive the transfer function of the required highpass filter, we use Eq. (7.67)


with ξp = 100 radians/s. The transfer function of the highpass filter is given by


H (s) = H (S)|S=100/s


=
2.8909


(100/s)4 + 3.4074(100/s)3 + 5.8050(100/s)2 + 5.7934(100/s) + 2.8909
or


H (s)=
s4


s4 + 2.004 × 102s3 + 2.008 × 104s2 + 1.179 × 106s + 3.459 × 107
.


The magnitude spectrum of the highpass filter is given in Fig. 7.13, which


confirms that the given specifications are satisfied.


7.4.1.1 M ATL AB code for designing highpass filters


The M A T L A B code for the design of the highpass filter required in


Example 7.10 using the Butterworth, Type I Chebyshev, Type II Chebyshev,
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and elliptic implementations is included below. In each case, M A T L A B auto-


matically designs the highpass filter. No explicit transformations are needed.


>> % Matlab code for designing highpass filter


>> wp=100; ws=50; Rp=1; Rs=15;
% design


% specifications


>> % for Butterworth


% filter


>> [N, wc] = buttord(wp,ws,Rp,Rs,‘s’);
% determine order


% and cut off


>> [num1,den1] = butter(N,wc,‘high’,‘s’);
% determine


% transfer


% function


>> H1 = tf(num1,den1);
>> %%%%% % Type I Chebyshev


% filter


>> [N, wn] = cheb1ord(wp,ws,Rp,Rs,‘s’);
>> [num2,den2] = cheby1(N,Rp,wn,‘high’,‘s’);
>> H2 = tf(num2,den2);
>> %%%%% % Type II Chebyshev


% filter


>> [N,wn] = cheb2ord(wp,ws,Rp,Rs,‘s’) ;
>> [num3,den3] = cheby2(N,Rs,wn,‘high’,‘s’) ;
>> H3 = tf(num3,den3);
>> %%%%% % Elliptic filter


>> [N,wn] = ellipord(wp,ws,Rp,Rs,‘s’) ;
>> [num4,den4] = ellip(N,Rp,Rs,wn,‘high’,‘s’) ;
>> H4 = tf(num4,den4);


In the above code, note thatwp > ws. Also, an additional argument of‘high’


is included in the design statements for different filters, which is used to specify


a highpass filter. The aforementioned M A T L A B code results in the following


transfer functions for the different implementations:


Butterworth


H (s) =
s4


s4 + 2.004 × 102s3 + 2.008 × 104s2 + 1.179 × 106s + 3.459 × 107
;


Type I Chebyshev H (s) =
s3


s3 + 252.1s2 + 2.012 × 104s + 2.035 × 106
;


Type II Chebyshev H (s) =
s3 + 3.027 × 103s


s3 + 113.5s2 + 9.473 × 103s + 3.548 × 105
;


elliptic H (s) =
0.8903s2 + 1501


s2 + 81.68s + 8441
.
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The transfer function for the Butterworth filter is the same as that derived by


hand in Example 7.9.


7.4.2 Lowpass to bandpass filter


The transformation that converts a lowpass filter with the transfer function H (S)
into a bandpass filter with transfer function H (s) is given by


S =
s2 + ξp1ξp2
s(ξp2 − ξp1)


, (7.69)


where S = S = σ + jω represents the lowpass domain and s = γ + jξ repre-
sents the bandpass domain. The frequency ξ = ξp1 and ξp2 represents the two
pass-band corner frequencies for the bandpass filter with ξp2 > ξp1. In terms of


the CTFT variables ω and ξ , Eq. (7.69) can be expressed as follows:


ωs1 =
ξp1ξp2 − ξ 2


ξ (ξp2 − ξp1)
. (7.70)


From Eq. (7.70), it can be shown that the pass-band corner frequencies ξp1 and


−ξp2 of the bandpass filter are both mapped in the lowpass domain to ω = 1,
whereas the pass-band corner frequencies −ξp1 and ξp2 are mapped to ω = −1.
Also, the pass band ξp1 ≤ |ξ | = ξp2 of the bandpass filter is mapped to the
pass band −1 ≤ |ξ | ≤ 1 of the lowpass filter. These results can be confirmed
by substituting different values for the bandpass domain frequencies ξ and


evaluating the corresponding lowpass domain frequencies.


Considering the stop-band corner frequencies of the bandpass filter,


Eq. (7.70) can be used to show that the stop-band corner frequency ±ξs1 is
mapped to


ωs1 =
∣
∣
∣
∣


ξp1ξp2 − ξ 2s1
ξs1(ξp2 − ξp1)


∣
∣
∣
∣
, (7.71)


and that the stop-band corner frequency ±ξs2 is mapped to


ωs2 =
∣
∣
∣
∣


ξp1ξp2 − ξ 2s2
ξs2(ξp2 − ξp1)


∣
∣
∣
∣
. (7.72)


As a lower value for the stop-band frequency for the lowpass filter leads to


more stringent requirements, the stop-band corner frequency for the lowpass


filter is selected from the minimum of the two values computed in Eqs. (7.71)


and (7.72). Mathematically, this implies that


ωs = min(ωs1, ωs2). (7.73)


Example 7.11 designs a bandpass filter.
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Example 7.11


Design a bandpass Butterworth filter with the following specifications:


stop band I (0 ≤ |ξ | ≤ 50 radians/s) 20 log10|H (ξ )| ≤ −20 dB;
pass band (100 ≤ |ξ | ≤ 200 radians/s) −2 dB ≤ 20 log10|H (ξ )| ≤ 0;
stop band II (|ξ | ≥ 380 radians/s) 20 log10|H (ξ )| ≤ −20 dB.


Solution


For ξp1 = 100 radians/s and ξp2 = 200 radians/s, Eq. (7.70) becomes


ω =
2 × 104 − ξ 2


100ξ
,


to transform the specifications from the domain s = γ + jξ of the bandpass
filter to the domain S = σ + jω of the lowpass filter. The specifications for the
normalized lowpass filter are given by


pass band (0 ≤ |ω| < 1 radian/s) −2 ≤ 20 log10|H (ω)| ≤ 0;
stop band (|ω| ≥ min(3.2737, 3.5) radians/s 20 log10|H (ω)| ≤ −20.


The above specifications are used to design a normalized lowpass Butterworth


filter. Expressed on a linear scale, the pass-band and stop-band gains are given


by


(1 − δp) = 10−2/20 = 0.7943 and δs = 10−20/20 = 0.1.


The gain terms Gp and Gs are given by


Gp =
1


(1 − δp)2
− 1 =


1


0.79432
− 1 = 0.5850


and


Gs =
1


(δs)2
− 1 =


1


0.17782
− 1 = 99.


The order N of the Butterworth filter is obtained using Eq. (7.29) as follows:


N =
1


2
×


ln(Gp/Gs)


ln(ξp/ξs)
=


1


2
×


ln(0.5850/99)


ln(1/3.2737)
= 2.1232.


We round off the order of the filter to the higher integer value as N = 3.
Using the stop-band constraint, Eq. (7.31), the cut-off frequency of the low-


pass Butterworth filter is given by


ωc =
ωs


(Gs)1/2N
=


3.2737


(99)1/6
= 1.5221 radians/s.


The poles of the lowpass filter are located at


S = ωc exp
[


j
π


2
+ j


(2n − 1)π
6


]
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Fig. 7.14. Magnitude spectrum


of the Butterworth bandpass


filter designed in Example 7.11.


for 1 ≤ n ≤ 3. Substituting different values of n yields


S = [−0.7610 + j1.3182 −0.7610 − j1.3182 −1.5221].


The transfer function of the lowpass filter is given by


H (S) =
K


(S + 0.7610 + j1.3182)(S + 0.7610 + j1.3182)(S + 1.5221)


or


H (S) =
K


S3 + 3.0442S2 + 4.6336S + 3.5264
.


To ensure a dc gain of unity for the lowpass filter, we set K = 3.5364. The
transfer function of the unity gain lowpass filter is given by


H (S) =
3.5264


S3 + 3.0442S2 + 4.6336S + 3.5264
.


To derive the transfer function of the required bandpass filter, we use Eq. (7.69)


with ξp1 = 100 radians/s and ξp2 = 200 radians/s. The transformation is given
by


S =
s2 + 2 × 104


100 s
,


from which the transfer function of the bandpass filter is calculated as follows:


H (s) = H (S)|
S= s2+2×104


100 s


=
3.5264


[
s2 + 2 × 104


100 s


]3


+ 3.0442
[


s2 + 2 × 104


100 s


]2


+ 4.6336
[


s2 + 2 × 104


100 s


]


+ 3.5264
,


which reduces to


H (s) =
3.5264 × 106s3


s6 + 3.0442 × 102s5 + 1.0633 × 105s4 + 1.5703 × 107s3 + 2.1267 × 109s2 + 1.2177 × 1011s + 8 × 1012
.


The magnitude spectrum of the bandpass filter is given in Fig. 7.14, which


confirms that the given specifications for the bandpass filter are satisfied.
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7.4.2.1 M ATL AB code for designing bandpass filters


The M A T L A B code for the design of the bandpass filter required in


Example 7.11 using the Butterworth, Type I Chebyshev, Type II Chebyshev,


and elliptic implementations is as follows:


>> % MATLAB code for designing bandpass filter


>> wp=[100 200]; ws=[50 380]; Rp=2;
Rs=20;


% Specifications


>> % Butterworth filter


>> [N, wc] = buttord(wp,ws,Rp,Rs,‘s’);
>> [num1,den1] = butter(N,wc,‘s’);
>> H1 = tf(num1,den1);
>> % Type I Chebyshev filter


>> [N, wn] = cheb1ord(wp,ws,Rp,Rs,‘s’);
>> [num2,den2] = cheby1(N,Rp,wn,‘s’);
>> H2 = tf(num2,den2);
>> % Type II Chebyshev filter


>> [N,wn] = cheb2ord(wp,ws,Rp,Rs,‘s’);
>> [num3,den3] = cheby2(N,Rs,wn,‘s’);
>> H3 = tf(num3,den3);
>> % Elliptic filter


>> [N,wn] = ellipord(wp,ws,Rp,Rs,‘s’);
>> [num4,den4] = ellip(N,Rp,Rs,wn,‘s’);
>> H4 = tf(num4,den4);


The type of filter is specified by the dimensions of the pass-band and stop-band


frequency vectors. Since wp and ws are both vectors, M A T L A B knows that


either a bandpass or bandstop filter is being designed. From the range of the


values within wp and ws, M A T L A B is also able to differentiate whether a


bandpass or a bandstop filter is being specified. In the above example, since


the range (50–380 Hz) of frequencies specified within the stop-band frequency


vector ws exceeds the range (100–200 Hz) specified within the pass-band fre-


quency vector wp, M A T L A B is able to make the final determination that a


bandpass filter is being designed. For a bandstop filter, the converse would hold


true.
The aforementioned M A T L A B code produces bandpass filters with the fol-


lowing transfer functions:


Butterworth H (s) =
3.526×106s4


s6+304.4s5+1.063×105s4+1.57×107s3+2.127×109s2+1.218×1011s+8×1012
;


Type I Chebyshev H (s) =
6.538 × 103s2


s4 + 80.38s3 + 4.8231 × 104s2 + 1.608 × 106s + 4 × 108
;


Type II Chebyshev H (s) =
0.1s4 + 1.801 × 104s2 + 4 × 107


s4 + 1.588 × 102s3 + 5.4010 × 104s2 + 3.176 × 106s + 4 × 108
;


elliptic H (s) =
0.1s4 + 1.101 × 104s2 + 4 × 107


s4 + 74.67s3 + 4.8819 × 104s2 + 1.493 × 106s + 4 × 108
.
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Note that the transfer function for the bandpass Butterworth filter is the same


as that derived by hand in Example 7.9.


7.4.3 Lowpass to bandstop filter


The transformation to convert a lowpass filter with the transfer function H (S)
into a bandstop filter with transfer function H (s) is given by the following
expression:


S =
s(ξp2 − ξp1)
s2 + ξp1ξp2


, (7.74)


where S = σ + jω represents the lowpass domain and s = γ + jξ represents
the bandstop domain. The frequency ξ = ξp1 and ξp2 represents the two pass-
band corner frequencies for the bandpass filter with ξp2 > ξp1. Note that the


transformation in Eq. (7.74) is the inverse of the lowpass to bandpass transfor-


mation specified in Eq. (7.69).


In terms of the CTFT domain, Eq. (7.74) can be expressed as follows:


ω =
ξ (ξp2 − ξp1)
ξp1ξp2 − ξ 2


, (7.75)


which can be used to confirm that Eq. (7.74) is indeed a lowpass to bandstop


transformation.


As for the bandpass filter, Eq. (7.75) leads to two different values of the


stop-band frequencies,


ωs1 =
∣
∣
∣
∣


ξs1(ξp2 − ξp1)
ξp1ξp2 − ξ 2s1


∣
∣
∣
∣


and ωs2 =
∣
∣
∣
∣


ξs2(ξp2 − ξp1)
ξp1ξp2 − ξ 2s2


∣
∣
∣
∣


(7.76)


for the lowpass filter. The smaller of the two values is selected as the stop-band


corner frequency for the normalized lowpass filter. Example 7.12 designs a


bandstop filter.


Example 7.12


Design a bandstop Butterworth filter with the following specifications:


pass band I (0 ≤ |ξ | ≤ 100 radians/s) −2 dB ≤ 20 log10|H (ξ )| ≤ 0;
stop band (150 ≤ |ξ | ≤ 250 radians/s) 20 log10|H (ξ )| ≤ −20 dB;
pass band II (|ξ | ≥ 370 radians/s) −2 dB ≤ 20 log10|H (ξ )| ≤ 0.


Solution


For ξp1 = 100 radians/s and ξp2 = 370 radians/s, Eq. (7.70) becomes


ω =
270ξ


3.7 × 104 − ξ 2
,


to transform the specifications from the domain s = γ + jξ of the bandstop
filter to the domain S = σ + jω of the lowpass filter. The specifications for the
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normalized lowpass filter are given by


pass band (0 ≤ |ω| < 1 radian/s) − 2 ≤ 20 log10 |H (ω)| ≤ 0;
stop band (|ω| ≥ min(2.7931, 2.6471) radians/s 20 log10 |H (ω)| ≤ −20.


The above specifications are used to design a normalized lowpass Butterworth


filter. Since the pass-band and stop-band gains of the transformed lowpass filter


are the same as the ones used in Example 7.11, i.e.


(1 − δp) = 10−2/20 = 0.7943 and δs = 10−20/20 = 0.1,


with gain terms


Gp = 0.5850 and Gs = 99,


the order N = 3 of the Butterworth filter is the same as in Example 7.11.
Using the stop-band constraint, Eq. (7.31), the cut-off frequency of the low-


pass Butterworth filter is given by


ωc =
ωs


(Gs)1/2N
=


2.6471


(99)1/6
= 1.2307 radians/s.


The poles of the lowpass filter are located at


S = ωc exp
[


j
π


2
+ j


(2n − 1)π
6


]


for 1 ≤ n ≤ 3. Substituting different values of n yields


S = [−0.6153 + j0.06581 −0.6153 − j0.06581 −1.2307].


The transfer function of the lowpass filter is given by


H (S) =
K


(S + 0.6153 − j0.06581)(S + 0.6153 + j0.06581)(S + 1.2307)
or


H (S) =
K


S3 + 2.4614S2 + 3.0292S + 1.8640
.


To ensure a dc gain of unity for the lowpass filter, we set K = 1.8640. The
transfer function of the unity gain lowpass filter is given by


H (S) =
1.8640


S3 + 2.4614S2 + 3.0292S + 1.8640
.


To derive the transfer function of the required bandstop filter, we use Eq. (7.74)


with ξp1 = 100 radians/s and ξp2 = 370 radians/s. The transformation is given
by


S =
270s


s2 + 3.7 × 104
,
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Fig. 7.15. Magnitude spectrum


of the Butterworth bandstop


filter designed in Example 7.12.


with the transfer function of the bandstop filter is given by


H (s) = H (S)|S=270s/s2+3.7×104


=
1.8640


[
270s


s2+3.7×104


]3


+ 2.4641
[


270s


s2+3.7×104


]2


+ 3.0292
[


270s


s2+3.7×104


]


+1.8640
,


which reduces to


H (s) =
s6+1.11×105s4+4.107×109s2+5.065×1013


s6+4.388×102s5+2.0737×105s4+4.302×107s3+7.673×109s2+6 × 1011s+5.065×1013
.


The magnitude spectrum of the bandstop filter is included in Fig. 7.15, which


confirms that the given specifications are satisfied.


7.4.3.1 M ATL AB code for designing bandstop filters


The M A T L A B code for the design of the bandstop filter required in


Example 7.12 using the Butterworth, Type I Chebyshev, Type II Chebyshev,


and elliptic implementations is as follows:


% MATLAB code for designing bandstop filter


>> wp=[100 370]; ws=[150 250]; Rp=2; Rs=20;


% Specifications


>> % Butterworth Filter


>> [N, wn] = buttord(wp,ws,Rp,Rs,‘s’);


>> [num1,den1] = butter(N,wn, ‘stop’,‘s’);


>> H1 = tf(num1,den1);


>> % Type I Chebyshev filter


>> [N, wn] = cheb1ord(wp,ws,Rp,Rs,‘s’);


>> [num2,den2] = cheby1(N,Rp,wn, ‘stop’,‘s’);


>> H2 = tf(num2,den2);


>> % Type II Chebyshev filter


>> [N,wn] = cheb2ord(wp,ws,Rp,Rs,‘s’);


>> [num3,den3] = cheby2(N,Rs,wn, ‘stop’,‘s’);


>> H3 = tf(num3,den3);


>> % Elliptic filter


>> [N,wn] = ellipord(wp,ws,Rp,Rs,‘s’);


>> [num4,den4] = ellip(N,Rp,Rs,wn, ‘stop’,‘s’);


>> H4 = tf(num4,den4);
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The aforementioned M A T L A B code produces the following transfer functions
for the four filters:


Butterworth H (s) =
s6 +1.125×105s4 +4.219×109s2 +5.273×1013


s6 +430.2s5 +2.05×105s4 +4.221×107s3 +7.688×109s2 +6.049×1011s+5.273×1013
;


Type I Chebyshev H (s) =
0.7943s4 + 5.957 × 104s2 + 1.117 × 109


s4 + 262.4s3 + 1.627 × 105s2 + 9.839 × 106s + 1.406 × 109
;


Type II Chebyshev H (s) =
0.7943s4 + 8.015 × 104s2 + 1.406 × 109


s4 + 304.5s3 + 1.265 × 105s2 + 1.142 × 106s + 1.406 × 109
;


elliptic H (s) =
0.7943s4 + 6.776 × 104s2 + 1.117 × 109


s4 + 227.5s3 + 1.568 × 105s2 + 8.53 × 106s + 1.406 × 109
.


7.5 Summary


Chapter 7 defines the CT filters as LTI systems used to transform the frequency


characteristics of the CT signals in a predefined manner. Based on the magnitude


spectrum |H (ω)|, Section 7.1 classifies the frequency-selective filters into four
different categories.


(1) An ideal lowpass filter removes frequency components above the cut-off


frequency ωc from the input signal, while retaining the lower frequency


components ω ≤ ωc.
(2) An ideal highpass filter is the converse of the lowpass filter since it removes


frequency components below the cut-off frequency ωc from the input signal,


while retaining the higher frequency components ω ≤ ωc.
(3) An ideal bandpass filter retains a selected range of frequency components


between the lower cut-off frequency ωc1 and the upper cutoff frequency


ωc2 of the filter. All other frequency components are eliminated from the


input signal.


(4) A bandstop filter is the converse of the bandpass filter, which rejects all


frequency components between the lower cut-off frequency ωc1 and the


upper cut-off frequency ωc2 of the filter. All other frequency components


are retained at the output of the bandstop filter.


The ideal frequency filters are not physically realizable. Section 7.2 introduces


practical implementations of the ideal filters obtained by introducing ripples


in the pass and stop bands. A transition band is also included to eliminate the


sharp transition between the pass and stop bands.


In Section 7.3, we considered the design of practical lowpass filters. We pre-


sented four implementations of practical filters: Butterworth, Type I Chebyshev,


Type II Chebyshev, and elliptic filters, for which the design algorithms were


covered. The Butterworth filters provide a maximally flat gain within the pass


band but have a higher-order N than the Chebyshev and elliptic filters designed
with the same specifications. By introducing ripples within the pass band,


Type I Chebyshev filters reduce the required order N of the designed filter.
Alternatively, Type II Chebyshev filters introduce ripples within the stop band
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to reduce the order N of the filter. The elliptic filters allow ripples in both the
pass and stop bands to derive a filter with the lowest order N among the four
implementations. M A T L A B instructions to design the four implementations


are also presented in Section 7.3.


In Section 7.4, we covered three transformations for converting a highpass


filter to a lowpass filter, a lowpass to a bandpass filter, and a bandstop to a lowpass


filter. Using these transformations, we were able to map the specifications of


any type of the frequency-selective filters in terms of a normalized lowpass


filter. After designing the normalized lowpass filter using the design algorithms


covered in Section 7.3, the transfer function of the lowpass filter is transformed


back into the original domain of the frequency-selective filter.


Problems


7.1 Determine the impulse response of an ideal bandpass filter and an ideal
bandstop filter. In each case, assume a gain of A within the pass bands and
cut off frequencies of ωc1 and ωc2.


7.2 Derive and sketch the location of the poles for the Butterworth filters of
orders N = 12 and 13 in the complex s-plane.


7.3 Show that a lowpass Butterworth filter with an odd value of order N will
always have at least one pole on the real axis in the complex s-plane.


7.4 Show that all complex poles of the lowpass Butterworth filter occur in
conjugate pairs.


7.5 Show that the N th -order Type I Chebyshev polynomial TN (ω) has N simple
roots in the interval [−1, 1], which are given by


ωn = cos
[


(2n + 1)π
2N


]


0 ≤ n ≤ N − 1.


7.6 Show that the roots of the characteristic equation


1 + ε2T 2N ( j/s) = 0


for the Type II Chebyshev filter are the inverse of the roots of the charac-


teristic equation


1 + ε2T 2N (s/j) = 0


for the Type I Chebyshev filter.


7.7 Design a Butterworth lowpass filter for the following specifications:


pass band (0 ≤ |ω| ≤ 10 radians/s) 0.9 ≤ |H (ω)| ≤ 1;
stop band (|ω| > 20 radians/s) |H (ω)| ≤ 0.10,
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by enforcing the pass-band requirements. Repeat for the stop-band


requirements. Sketch the magnitude spectrum and confirm that the mag-


nitude spectrum satisfies the design specifications.


7.8 Repeat Problem 7.7 for the following specifications:


pass band (0 ≤ |ω| ≤ 50 radians/s) −1 ≤ 20 log10|H (ω)| ≤ 0;
stop band (|ω| > 65 radians/s) 20 log10|H (ω)| ≤ −25.


7.9 Repeat (a) Problem 7.7 and (b) Problem 7.8 for the Type I Chebyshev
filter.


7.10 Repeat (a) Problem 7.7 and (b) Problem 7.8 for the Type II Chebyshev
filter.


7.11 Determine the order of the elliptic filters for the specifications included
in (a) Problem 7.7 and (b) Problem 7.8.


7.12 Using the results in Problems 7.7–7.11, compare the implementation
complexity of the Butterworth, Type I Chebyshev, Type II Chebyshev,


and elliptic filters for the specifications included in (a) Problem 7.7 and


(b) Problem 7.8.


7.13 By selecting the corner frequencies of the pass and stop bands, show that
the transformation


S =
s(ξp2 − ξp1)
s2 + ξp1ξp2


maps a normalized lowpass filter into a bandstop filter.


7.14 Design a Butterworth highpass filter for the following specifications:


stop band (0 ≤ |ω| ≤ 15 radians/s) |H (ω)| ≤ 0.15;
pass band (|ω| > 30 radians/s) 0.85 ≤ |H (ω)| ≤ 1.


Sketch the magnitude spectrum and confirm that it satisfies the design


specifications.


7.15 Repeat Problem 7.14 for the Type I Chebyshev filter.


7.16 Repeat Problem 7.14 for the Type II Chebyshev filter.


7.17 Design a Butterworth bandpass filter for the following specifications:


stop band I (0 ≤ |ξ | ≤ 100 radians/s) 20 log10|H (ω)| ≤ −15;
pass band (100 ≤ |ξ | ≤ 150 radians/s) −1 ≤ 20 log10|H (ω)| ≤ 0;
stop band II (|ξ | ≥ 175 radians/s) 20 log10|H (ω)| ≤ −15.


Sketch the magnitude spectrum and confirm that it satisfies the design


specifications.


7.18 Repeat Problem 7.17 for the Type I Chebyshev filter.
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7.19 Repeat Problem 7.17 for the Type II Chebyshev filter.


7.20 Design a Butterworth bandstop filter for the following specifications:


pass band I (0 ≤ |ξ | ≤ 25 radians/s) −4 ≤ 20 log10|H (ω)| ≤ 0;
stop band (100 ≤ |ξ | ≤ 250 radians/s) 20 log10|H (ω)| ≤ −20;
pass band II (|ξ | ≥ 325 radians/s) −4 ≤ 20 log10|H (ω)| ≤ 0.


Sketch the magnitude spectrum and confirm that it satisfies the design


specifications.


7.21 Repeat Problem 7.20 for the Type I Chebyshev filter.


7.22 Repeat Problem 7.20 for the Type II Chebyshev filter.


7.23 Determine the transfer function of the four implementations: (a) Butter-
worth, (b) Type I Chebyshev, (c) Type II Chebyshev, and (d) elliptic, of


the lowpass filter specified in Problem 7.7 using M A T L A B . Plot the fre-


quency characteristics and confirm that the specifications are satisfied by


the designed implementations.


7.24 Determine the transfer function of the four implementations: (a) Butter-
worth, (b) Type I Chebyshev, (c) Type II Chebyshev, and (d) elliptic, of


the lowpass filter specified in Problem 7.8 using M A T L A B . Plot the fre-


quency characteristics and confirm that the specifications are satisfied by


the designed implementations.


7.25 Determine the transfer function of the four implementations: (a) Butter-
worth, (b) Type I Chebyshev, (c) Type II Chebyshev, and (d) elliptic, of


the highpass filter specified in Problem 7.14 using M A T L A B . Plot the


frequency characteristics and confirm that the specifications are satisfied


by the designed implementations.


7.26 Determine the transfer function of the four implementations (a) Butter-
worth, (b) Type I Chebyshev, (c) Type II Chebyshev, and (d) elliptic, of


the bandpass filter specified in Problem 7.17 using M A T L A B . Plot the


frequency characteristics and confirm that the specifications are satisfied


by the designed implementations.


7.27 Determine the transfer function of the four implementations: (a) Butter-
worth, (b) Type I Chebyshev, (c) Type II Chebyshev, and (d) elliptic, of


the bandstop filter specified in Problem 7.20 using M A T L A B . Plot the


frequency characteristics and confirm that the specifications are satisfied


by the designed implementations.
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C H A P T E R


8 Case studies for CT systems


Several aspects of continuous-time (CT) systems were covered in Chapters


3–7. Among the concepts covered, we used the convolution integral in


Chapter 3 to determine the output y(t) of a linear time-invariant, continuous-
time (LTIC) system from the input signal x(t) and the impulse response h(t).
Chapters 4 and 5 defined the frequency representations, namely the CT Fourier


transform (CTFT) and the CT Fourier series (CTFS) and evaluated the out-


put signal y(t) of the LTIC system in the frequency domain. The CTFT was
also used to estimate the frequency characteristics of the LTIC system by plot-


ting the magnitude and phase spectra. Chapter 6 introduced the Laplace trans-


form widely used as an alternative for the CTFT in control systems, where


the analysis of the transient response is of paramount importance. Chapter 7


presented techniques for designing LTIC systems based on the specified fre-


quency characteristics. When an LTIC system is described in terms of its fre-


quency characteristics, it is referred to as a frequency-selective filter. Design


techniques for four types of analog filters, lowpass filters, highpass filters, band-


pass filters, and bandstop filters, were also covered in Chapter 7. In this chap-


ter, we provide applications for the LTIC systems. Our goal is to illustrate


how the tools developed in the earlier chapters can be utilized in real-world


applications.


The organization of this chapter is as follows. Section 8.1 considers analog


communication systems. In particular, we illustrate the use of amplitude modu-


lation in communication systems for transmitting information to the receivers.


Based on the CTFT, spectral analysis of the process of modulation provides


insight into the performance of the communication systems. Section 8.2 intro-


duces a spring damper system and shows how the Laplace transform is useful


in analyzing the stability of the system. Section 8.3 analyzes the armature-


controlled, direct current (dc) motor by deriving its impulse response and trans-


fer function. The immune system of humans is considered in Section 8.4. Ana-


lytical models for the immune system are considered and later analyzed using


the simulink toolbox available in M A T L A B .


368
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m(t)


modulating
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+
Fig. 8.1. Schematic diagram


modeling the process of


amplitude modulation.


8.1 Amplitude modulation of baseband signals


Section 2.1.3 introduced modulation as a frequency-shifting operation where


the frequency contents of the information-bearing signal are moved to a higher


frequency range. Modulation leads to two main advantages in communications.


First, since the length of the antenna is inversely proportional to the frequency


of the information signal, transmitting information bearing low-frequency


baseband signals directly leads to antennas with impractical lengths. By shift-


ing the frequency content of the information signal to a higher frequency range,


the length of the antenna is considerably reduced. Secondly, modulation leads


to frequency division multiplexing (FDM), where multiple signals are coupled


together by shifting them to a range of different frequencies and are then trans-


mitted simultaneously. This provides considerable savings in the transmission


time and the power consumed by the communication systems. In this section,


we consider a common form of modulation, referred to as amplitude modulation


(AM), used frequently in radio communications.


Amplitude modulation is a popular technique used for broadcasting radio


stations within a local community. In North America, a frequency range of 520


to 1710 kHz is assigned to the AM stations. Typically, each station occupies a


bandwidth of 10 kHz. To limit the range of transmission to a few kilometers,


the transmitted power for a station ranges from 0.1 to 50 kW, such that the same


AM band can be reused by another community without interference. In this


section, we use the CTFT to analyze AM-based communication systems.


A schematic diagram of an AM system is shown in Fig. 8.1, where m(t)
represents a baseband signal with non-zero frequency components within the


range –ωmax ≤ ω ≤ ωmax. The output of the AM system is given by


s(t) = A[1 + km(t)] cos(ωct + φc). (8.1)


The multiplication term A cos(ωct + φc) represents the sinusoidal carrier,
whose amplitude is denoted by A, and the radian frequency is given by
ωc = 2π fc.† The constant phase term φc is referred to as the epoch of the carrier,
while the factor k is referred to as the modulation index, which is adjusted such
that the intermediate signal (1 + km(t)) is always positive for all t ≥ 0.


† Note that ωc represents the fundamental frequency of the sinusoidal carrier signal c(t), and
should not be confused with ωc , used to denote the cut-off frequency of the CT filter.
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Fig. 8.2. Amplitude modulation


in time domain for two different


modulating signals: (a) pure


sinusoidal signal with


fundamental frequency of 2 kHz;


(b) synthetic audio signal. The


modulated signal for the pure


sinusoidal signal is shown in (c)


and that for real speech is


shown in (d).


Figure 8.2 shows the results of amplitude modulation for two different modu-


lating signals: a pure sinusoidal signal with the fundamental frequency of 2 kHz


is plotted in Fig. 8.2(a) and a synthetic audio signal is plotted in Fig. 8.2(b). Both


signals are amplitude modulated with the carrier signal cos(ωct + φc) having
a fundamental frequency of fc = 40 kHz and an epoch of φc = 0 radians. In
the case of the pure sinusoidal signal, the modulation index k is selected to
have a value of 0.2, while for the real audio signal the modulation index is set


to 0.7. The results of amplitude modulation are shown in Fig. 8.2(c) for the


pure sinusoidal signal and in Fig 8.2(d) for the audio signal. In both cases, we


observe that the amplitude of the carrier signal is adjusted according to the


magnitude of the modulating signal. In other words, the modulating signal acts


as an envelope and controls the amplitude of the carrier.


To illustrate the effect of modulation on the frequency content of the modu-


lating signal, we use the CTFT. Equation (8.1) is expressed as follows:


s(t) = A cos(ωct + φc) + Akm(t) cos(ωct + φc). (8.2)


Without loss of generality, we set A = 1 and φc = 0. Using the multiplication
property for the CTFT, we obtain


S(ω) = π [δ(ω − ωc) + δ(ω + ωc)] +
1


2
k[M(ω − ωc) + M(ω + ωc)]. (8.3)


Equation (8.3) proves that the spectrum of the modulated signal s(t) is the
sum of three components: the scaled spectrum of the carrier signal, the scaled


replica of the modulating signal m(t) shifted to +ωc, and the scaled replica of
the modulating signal m(t) shifted to −ωc. This result is illustrated in Fig. 8.3(c)
for the baseband signal m(t), which is band-limited to ωmax and has the spectrum
shown in Fig. 8.3(a). The two replicas of the CTFT M(ω) of the modulating
signal in Fig. 8.3(c) are referred to as the side bands of the AM signal.
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Fig. 8.3. Amplitude modulation
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We now consider the extraction of the information signal x(t) from the mod-
ulated signal s(t). This procedure is referred to as demodulation, which is
explained in Sections 8.1.1 and 8.1.2.


8.1.1 Synchronous demodulation


The objective of demodulation is to reconstruct m(t) from s(t). Analyzing the
spectrum S(ω) of the modulated signal s(t), the following method extracts the
information-bearing signal m(t) from s(t).


(1) Frequency shift the modulated signal s(t) by ωc (or −ωc). If the modulated
signal is frequency-shifted by ωc, one of the side bands is shifted to zero


frequency, while the second side band is shifted to 2ωc. Conversely, if


the modulated signal is frequency-shifted by −ωc, the two side bands are
shifted to zero and −2ωc.


(2) In order to remove the side band shifted to the non-zero frequency, the


result obtained in Step (1) is passed through a lowpass filter having a pass


band of (−ωmax ≤ ω ≤ ωmax). The output of the lowpass filter consists
of a scaled version of the modulating signal and an impulse at ω = 0.
The impulse represents the dc component and is removed by subtracting a


constant value in the time domain as shown in Step (3).


(3) A constant voltage equal to the dc component is subtracted from the output


of the lowpass signal.


Step (1) can be performed by multiplying the AM signal s(t) by the demodulat-
ing carrier cos(ωct) having the same fundamental frequency and phase as the
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Fig. 8.4. Demodulation in the


frequency domain. (a) Spectrum


of the modulated signal.


(b) Spectrum of the carrier


signal. (c) Spectrum of the


demodulated signal.


modulating carrier. In the time domain, the result of the multiplication is given


by


d(t) = s(t)c(t) = [cos(ωct) + km(t) cos(ωct)] cos(ωct), (8.4)


which is expressed as


d(t) = s(t)c(t) =
1


2
[1 + km(t)]


︸ ︷︷ ︸


dlow(t)


+
1


2
[1 + km(t)] cos(2ωct)


︸ ︷︷ ︸


dhigh(t)


. (8.5)


Equation (8.5) shows that the demodulated signal d(t) has two components.
The first component dlow(t) is the low-frequency component, which consists of
a constant factor of 1/2 and a scaled replica of the modulated signal. The second


component dhigh(t) is the higher-frequency component and can be filtered out,
as explained next. Taking the CTFT of Eq. (8.5) yields


D(ω) =
1


2π
[S(ω) ∗ C(ω)] =


[


πδ(ω) +
k


2
M(ω)


]


︸ ︷︷ ︸


dlow(t)


+
[π


2
δ(ω − 2ωc) +


k


4
M(ω − 2ωc)


]


+
[π


2
δ(ω + 2ωc) +


k


4
M(ω + 2ωc)


]


︸ ︷︷ ︸


dhigh(t)


,


(8.6)


which is plotted in Fig. 8.4(c). Recall that Fig. 8.4(a) represents the spectrum


of the modulated signal m(t) and that Fig. 8.4(b) represents the spectrum of the
carrier signal c(t). By filtering d(t) with a lowpass filter having a pass band of
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−ωc ≤ ω ≤ ωc, the lowpass component dlow(t) is extracted. The information
signal m(t) is then obtained from dlow(t) using the following relationship:


m(t) = 2[dlow(t) − 1]. (8.7)


8.1.2 Synchronous demodulation with non-zero epochs


In synchronous demodulation, the epoch φc of the modulating carrier is assumed


to be identical to the epoch of the demodulating carrier. In practice, perfect syn-


chronization between the carriers is not possible, which leads to distortion in


the signal reconstructed from demodulation. To illustrate the effect of distor-


tion introduced by unsynchronized carriers, consider the following modulated


signal:


s(t) = A cos(ωct + φc) + Akm(t) cos(ωct + φc), (8.8)


as derived in Eq. (8.2). Assume that the demodulator carrier is given by


c2(t) = A cos(ωct + θc(t)), (8.9)


which has a time-varying epoch θc(t) �= φc. Using c2(t), the demodulated signal
is given by


d(t) = s(t)c2(t) = [A cos(ωct+φc) + Akm(t) cos(ωct + φc)] cos(ωct+θc(t)),
(8.10)


which simplifies to


d(t) =
A


2
[1 + km(t)] cos(φc − θc(t))


︸ ︷︷ ︸


dlow(t)


+
A


2
[1 + km(t)] cos(2ωct + φc + θc(t))


︸ ︷︷ ︸


dhigh(t)


.


(8.11)


Equation (8.11) illustrates that the demodulated signal contains a low-frequency


component dlow(t) and a higher-frequency component dhigh(t). By passing the
demodulated signal through a lowpass filter, the higher-frequency component


is removed. The output of the lowpass filter is given by


y(t) =
A


2
[1 + km(t)] cos(φc − θc(t)). (8.12)


Even after eliminating the dc component, the reconstructed signal has the fol-


lowing form:


y(t) =
A


2
km(t) cos(φc − θc(t)), (8.13)


where distortion is caused by the factor of cos(φc − θc(t)). Since the epoch
θc(t) is time-varying, it is difficult to eliminate the distortion. To reconstruct
x(t) precisely, the phase difference between the carrier signals used at the mod-
ulator and demodulator must be kept equal to zero over time. In other words,
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Fig. 8.5. Asynchronous AM


demodulation. (a) RC parallel


circuit coupled with a diode to


implement the envelope


detector. (b) Reconstructed


signal d(t ) is shown as a solid


line. For comparison, the


information component


[1 + km(t )] is shown as the
envelope of the AM signal


(dashed line).


perfect synchronization between the modulator and demodulator is essential to


retrieve the information signal m(t). For this reason, the aforementioned mod-
ulation scheme based on multiplying the modulated signal by the carrier signal


and lowpass filtering is referred to as synchronous demodulation. Although syn-


chronous demodulation is an elegant way of retrieving the information signal


m(t), the demodulator has a high implementation cost due to the synchroniza-
tion required between the two carriers. An alternative scheme, which does not


require synchronization of the modulating and demodulating carriers, is referred


to as asynchronous demodulation, which is considered in the following section.


8.1.3 Asynchronous demodulation


In amplitude modulation, the information-bearing signal m(t) modulates the
magnitude of the carrier signal c(t). This is illustrated in Figs. 8.2(c) and (d),
where the envelope of the amplitude modulated signal follows the informa-


tion component [1 + km(t)]. In asynchronous demodulation, we reconstruct
the information signal m(t) by tracking the envelope of the modulated signal.


Figure 8.5(a) shows a parallel RC circuit used to reconstruct the information-


bearing signal m(t) from the amplitude modulated signal s(t) applied at the input
of the RC circuit. The diode acts as a half-wave rectifier removing the negative


values from the modulated signal, while the capacitor C tracks the envelope
of the AM signal by charging to the peak of the sinusoidal carrier during the


positive transition of the signal. During the negative transitions of the carrier,


the capacitor discharges slightly, but is again recharged by the next positive


transition. The process is illustrated in Fig. 8.5(b), where the demodulated signal


is represented by a solid line. We observe that the demodulated signal closely


follows the envelope of the modulated signal and is a good approximation of


the information-bearing signal.


8.2 Mechanical spring damper system


The spring damping system, considered in Section 2.1.5, is a classic example


of a second-order system; the schematic diagram for such a system is shown in
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Fig. 8.6. The input–output relationship of the spring damping system is given


by Eq. (2.16), which for convenience of reference is repeated below:


M
d2 y


dt
+ r


dy


dt
+ ky(t) = x(t). (8.14)


In Eq. (8.14), M is the mass attached to the spring, r is the frictional coefficient,
k is the spring constant, x(t) is the force applied to pull the mass, and y(t) is
the displacement of the mass caused by the force. In this section, we analyze


the spring damping system using the methods discussed in Chapters 5 and 6.


Using the Laplace transform, the transfer function determines the stability of


the system.


8.2.1 Transfer function


Taking the Laplace transform of both sides of Eq. (8.14) and assuming zero


initial conditions, we obtain


(Ms2 + rs + k)Y (s) = X (s), (8.15)


which results in the following transfer function:


M


x(t)


kyby


y(t)


M


x(t)


r y(t)wall
friction


kspring


constant


(a)


(b)


.


Fig. 8.6. Mechanical spring


damping system.


H (s) =
Y (s)


X (s)
=


1


(Ms2 + rs + k)
. (8.16)


Alternatively, Eq. (8.16) can be expressed as follows:


H (s) =
1/M


s2 + (r/M)s + k/M
=


1/M


s2 + 2ξnωns + ω2n
, (8.17)


where


ωn =
√


k


M
and ξn =


r


2
√


k M
.


The characteristic equation of the mechanical spring damping system is given


by


s2 + 2ξnωns + ω2n = 0, (8.18)


which has two poles at


p1 = −ξnωn + ωn
√


ξ 2n − 1 and p2 = −ξnωn − ωn
√


ξ 2n − 1 . (8.19)


Depending on the value of ξn , the poles p1 and p2 may lie in different locations
within the s-plane. If ξn = 1, poles p1 and p2 are real-valued and identical. If
ξn > 1, poles p1 and p2 are real-valued but not equal. Finally, if ξn < 1, poles
p1 and p2 are complex conjugates of each other. In the following, we calculate
the impulse response h(t) of the spring damping system for three sets of values
of ξn and show that the characteristics of the system depend on the value of ξn .
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Case 1 (ξn = 1) For ξn = 1, Eq. (8.17) reduces to


H (s) =
1/M


s2 + 2ωns + ω2n
=


1/M


(s + ωn)2
, (8.20)


with repeated roots at s = −ωn , −ωn .Taking the inverse transform, the impulse
response is given by


h(t) =
1


M
te−ωn t u(t). (8.21)


Case 2 (ξn > 1) For ξn > 1, the poles p1 and p2 of the spring damping system
are real-valued and given by


p1 = −ξnωn + ωn
√


ξ 2n − 1 and p2 = −ξnωn − ωn
√


ξ 2n − 1 . (8.22)


The transfer function of the spring damping system can be expressed as follows:


H (s) =
1/M


s2 + 2ξnωns + ω2n
=


1/M


(s − p1)(s − p2)
, (8.23)


which leads to the impulse response


h(t) =
1


M


1


(p1 − p2)
[ep1t − ep2t ] u(t) =


1


2ωn M
√


ξ 2n − 1
e−ξ nωn t


×
[


eωn
√


ξ 2n −1 t − e−ωn
√


ξ 2n −1 t
]


u(t). (8.24)


Case 3 (ξn < 1) For ξn > 1, the poles p1 and p2 of the spring damping system
are complex and are given by


p1 = −ξnωn + jωn
√


1 − ξ 2n and p2 = −ξnωn − jωn
√


1 − ξ 2n . (8.25)


By repeating the procedure for Case 2, the impulse response of the spring


damping system is given by


H (s) =
1/M


s2 + 2ξnωns + ω2n
=


1/M


(s − p1)(s − p2)
, (8.26)


which leads to the impulse response


h(t) =
1


ωn M
√


1 − ξ 2n
e−ξnωn t sin


[


ωn


√


1 − ξ 2n t
]


u(t). (8.27)


Figure 8.7 shows the impulse response of the spring damping system for the


three cases considered earlier. We set M = 10 and ωn = 0.3 radians/s in each
case. For Case 1 with ξn = 1, the impulse response decreases monotonically
approaching the steady state value of zero. Such systems are referred to as


critically damped systems.


For Case 2 with ξn = 4, the impulse response of the spring damping system
again approaches the steady state value of zero. Initially, the deviation from the


steady state value is smaller than that of the critically damped system, but the
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Fig. 8.7. Impulse responses of


the spring damping system for


M = 10 and ωn = 0.3.


overall duration over which the steady state value is achieved is much longer.


Such systems are referred to as overdamped systems.


For Case 3 with ξn = 0.2, the spring acts as a flexible system. The impulse
response approaches the steady state value of zero after several oscillations.


Such systems are referred to as underdamped systems. Since the fundamental


frequency ωn is 0.3 radians/s, the period of oscillation is given by


T =
2π


ωn
=


2π


0.3
= 21.95 seconds. (8.28)


Based on Eq. (8.28), parameter ωn is referred to as the fundamental frequency of


the spring damping system. Since parameter ξn determines the level of damping,


it is referred to as the damping constant.


8.3 Armature-controlled dc motor


Electrical motors form an integral component of most electrical and mechan-


ical devices such as automobiles, ac generators, and power supplies. Broadly


speaking, electrical motors can be classified into two categories: direct current


(dc) motors and alternating current (ac) motors. Within each category, there are


additional subclassifications covering different applications. In this section, we


analyze the armature-controlled dc motor by deriving its transfer function and


impulse response.


Figure 8.8(a) shows an armature-controlled dc motor, in which an armature,


consisting of several copper conducting coils, is placed within a magnetic field


generated by a permanent or an electrical magnet. A voltage applied across the


armature results in a flow of current through the armature circuit. Interaction


between the electrical and magnetic fields causes the armature to rotate, the


direction of rotation being determined by the following empirical rule, derived


by Faraday.


Extend the thumb, index finger, and middle finger of the right hand such that


the three are mutually orthogonal to each other. If the index finger points in the


direction of the current and the middle finger in the direction of the magnetic


field, then the thumb points in the direction of motion of the armature.
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Fig. 8.8. Armature-controlled dc


motor. (a) Cross-section; (b)


schematic representation.


8.3.1 Mathematical model


The linear model of the armature-controlled dc motor is shown in Fig. 8.8(b),


where a load J is coupled to the armature through a shaft. Rotation of the arma-
ture of the dc motor causes the desired motion in the attached load J . Moving
a conductor within a magnetic field also generates a back electromagnetic field


(emf) to be induced in the dc motor. The back emf results in an opposing emf


voltage, which is denoted by Vemf in Fig. 8.8(b). In the following analysis, we
decompose the motors into three components: armature, motor, and load. The


equations for the three components are presented below.


Armature circuit Applying Kirchhoff’s voltage law to the armature circuit,
we obtain


La
dia
dt


+ Raia + kfω(t)
︸ ︷︷ ︸


Vemf(t)


= Va(t), (8.29)


where Va(t) denotes the armature voltage and ia(t) denotes the armature current.
The electrical components of the armature circuit are given by La and Ra, where
La denotes the self inductance of the armature and Ra denotes the self resistance
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of the armature. The emf voltage Vemf(t) is approximated by the product of the
feedback factor kf and the angular velocity ω(t).


Motor circuit The torque Tm, induced by the applied voltage across the arma-
ture, is given by


Tm = kmia(t), (8.30)


where km is referred to as the motor or armature constant and ia(t) is the armature
current. The armature constant km depends on the physical properties of the dc
motor such as the strength of the magnetic field and the density of the armature


coil.


Load The load component of the dc motor is obtained by applying Newton’s
third law of motion, which states that the sum of the applied and reactive forces


is zero. The applied forces are the torques around the motor shaft. The reactive


force causes acceleration of the armature and equals the product of the inertial


load J and the derivative of the angular rate ω(t). In other words,


∑


p


Tp = J
dω


dt
, (8.31)


where J denotes the inertia of the rotor. There are three different torques, i.e.
p = 3, observed at the shaft: (i) motor torque Tm represented by Eq. (8.30); (ii)
frictional torque Tf given by rω(t), r being the frictional constant; and (iii) load
disturbance torque Td. In other words, Eq. (8.31) can be expressed as follows:


J
dω


dt
= Tm − rω(t) − Td. (8.32)


Since the angular velocity ω(t) is related to the shaft position θ (t) by the fol-
lowing expression:


ω(t) =
dθ


dt
, (8.33)


Eq. (8.32) can be expressed as follows:


J
d2θ


dt2
+ r


dθ


dt
= Tm − Td = TL, (8.34)


where TL denotes the difference between the motor torque Tm and the load
disturbance torque Td.


8.3.2 Transfer function


The dc motor shown in Fig. 8.8 is modeled as a linear time-invariant (LTI)


system with the armature voltage va(t) considered as the input signal and the
shaft position θ (t) as the output signal. We now derive the transfer function of
the linearized model.
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Taking the Laplace transform of Eq. (8.29) yields


[sLa + Ra] Ia(s) + kfΩ(s) = Va(s), (8.35)


where Va(s), Ia(s), andΩ(s) are the Laplace transforms of va(t), ia(t), and ω(t),
respectively. Substituting the value of Ia(s) from Eq. (8.30), Eq. (8.35) can be
expressed as follows:


1


km
[sLa + Ra]Tm(s) + kfΩ(s) = Va(s). (8.36)


We also take the Laplace transform of Eq. (8.34) to derive


[Js2 + rs]θ (s) = Tm(s), (8.37)


where we have ignored the disturbance torque Td(s), which will later be approx-
imated as noise to the system’s input. Substituting θ (s) = Ω(s)/s, Eq. (8.37) is
expressed as follows:


Tm(s) = [Js + r ]Ω(s). (8.38)


Finally, substituting the value of Tm(s) from Eq. (8.38) into Eq. (8.35) yields


[sLa + Ra] [Js + r ]Ω(s) + kmkfΩ(s) = kmVa(s)


or


Ω(s)


Va(s)
=


km
La Js2 + [Ra J + Lar ]s + [Rar + kmkf]


. (8.39)


The transfer function H (s) can therefore be expressed as follows:


H (s) =
θ (s)


Va(s)
=


Ω(s)


sVa(s)
=


km/J La


s3 +
[


Ra J + Lar
La J


]


s2 +
[


Rar + kmkf
La J


]


s


or


H (s) =
k ′m


s3 + 2ξnωns2 + ω2ns
, (8.40)


where


k ′m =
km
J La


, ξn =
1


2ωn


[
Ra
La


+
r


J


]


and ωn =
√


Rar + kmkf
La J


.


From Eq. (8.40), we note that the system transfer function H (s) has a third-
order characteristic equation with one pole at the origin (s = 0) of the s-plane.
The remaining two poles are located at


p1 = −ξnωn + ωn
√


ξ 2n − 1 and p2 = −ξnωn − ωn
√


ξ 2n − 1. (8.41)


As ξn and ωn are positive, the two non-zero poles lie in the left half of the


complex s-plane. Due to the zero pole, however, the system is a marginally


stable system.
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Impulse response Since


H (s) =
1


s
×


k ′m
s2 + 2ξnωns + ω2n
︸ ︷︷ ︸


H ′(s)


,


the impulse response of the dc motor equals the integral of the impulse response


h′(t), the inverse Laplace transform of H′(s). Since the form of H′(s) is similar
to the transfer function of the spring damping system, Eqs. (8.20)–(8.27) are


used to derive the impulse response h(t) of the dc motor. Depending upon the
value of ξn , we consider three different cases.


Case 1 (ξn = 1) As derived in Eq. (8.21), the inverse Laplace transform of
H′(s) for ξn = 1 is given by


k ′mte
−ωn t u(t)


L←→
k ′m


s2 + 2ξnωns + ω2n
.


Taking the integral of h′(t) yields


h(t) =
∫


k ′m te
−ωn t dt = −k ′m


[ t


ωn
+


1


ω2n


]


e−ωn t + C for t ≥ 0. (8.42)


Case 2 (ξn > 1) Equation (8.24) derives the inverse Laplace transform of H′(s)
for ξn > 1 as follows:


k ′m
2ωn


√


ξ 2n − 1
e−ξnωn t


[


eωn
√


ξ 2n−1 t − e−ωn
√


ξ 2n−1 t
]


u(t)
L←→


k ′m
s2 + 2ξnωns + ω2n


.


The impulse response of the dc motor is given by


h(t) =
k ′m


2ωn
√


ξ 2n − 1


∫


e−ξnωn t
[


eωn
√


ξ 2n−1 t − e−ωn
√


ξ 2n−1 t
]


dt


=
k ′me


−ξnωn t


2ωn
√


ξ 2n − 1


[
e−ωn


√
ξ 2n−1 t


ξnωn + ωn
√


ξ 2n − 1
−


eωn
√


ξ 2n−1 t


ξnωn − ωn
√


ξ 2n − 1


]


+ C for t ≥ 0. (8.43)


Case 3 (ξn < 1) Equation (8.27) derives the inverse Laplace transform of H′(s)
for ξn < 1 as follows:


k ′m
ωn


√


1 − ξ 2n
e−ξnωn t sin


[


ωn


√


1 − ξ 2n t
]


u(t)
L←→


k ′m
s2 + 2ξnωns + ω2n


.


The impulse response of the dc motor is given by


h(t) =
k ′m


ωn
√


1 − ξ 2n


∫


e−ξnωn t sin
[


ωn


√


1 − ξ 2n t
]


dt


= −
k ′me


−ξnωn t


ω2n


√


1 − ξ 2n


[√


1 − ξ 2n cos
[


ωn


√


1 − ξ 2n t
]


+ ξn sin
[


ωn


√


1 − ξ 2n t
]]


+ C for t ≥ 0. (8.44)
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Fig. 8.9. Impulse response of


the armature-controlled dc


motor for k ′m = 1000 and
ωn = 50.


In Eqs. (8.42)–(8.44), C is the integration constant, which can be computed
from the initial conditions.


Figure 8.9 plots the impulse response of the armature-controlled dc motor for


k
′


m = 1000 and ωn = 50. Three different values of ξn are chosen and the value
of the integration constant C is set to 0.4. As is the case for the spring damping
system, the impulse response is critically damped for ξn = 1, underdamped
for ξn = 0.2, and overdamped for ξn = 4. In the case of the underdamped
system, the frequency of oscillations is given by ωn = 50 radians/s, with the
fundamental period given by 2π/50, or 0.126 seconds.


Block diagram To derive the feedback representation of the armature-
controlled dc motor, Eq. (8.35) is expressed as follows:


[sLa + Ra] Ia(s) = Va(s) − kfΩ(s). (8.45)


Substituting Ia(s) = Tm(s)/km, Eq. (8.35) is given by


[sLa + Ra]Tm(s) = km[Va(s) − kfΩ(s)]. (8.46)


Taking the Laplace transform of Eq. (8.32), we obtain


Tm(s) = [s J + r ]Ω(s) + Td. (8.47)


Substituting Eq. (8.47) into Eq. (8.46), the relationship between the input volt-


age Va(s) and the angular velocity Ω(s) is given by


Ω(s) =
1


[Js + r ]


[
km


[Las + Ra]
[Va(s) − kfΩ(s)] − Td


]


. (8.48)


Equation (8.48) is used to develop the block diagram representation for the


transfer function:


H ′(s) =
Ω(s)


Va(s)
=


k ′m
s2 + 2ξnωns + ω2n


,


which is shown in Fig. 8.10. In this case, the system has two poles, both are


in the left-half of the s-plane. Therefore, the system is a stable system. The


block diagram representation of the transfer function H (s) can be obtained by
integrating ω(t), which in the Laplace domain is equivalent to multiplyingΩ(s)
by a factor of 1/s. A block with the transfer function 1/s can, therefore, be
cascaded at the end of Fig. 8.10 to derive the feedback configuration for H (s).
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Fig. 8.10. Schematic models for


the dc motor with transfer


function H ′(s ).


8.4 Immune system in humans


We now apply the Laplace transform to model a more natural system, such as


the human immune system. The human immune system is non-linear but, with


some assumptions, it can be modeled as a linear time-invariant (LTI) system.


Below we provide the biological working of the human immune system, which


is followed by an explanation of its linearized model.


Human blood consists of a suspension of specialized cells in a liquid, referred


to as plasma. In addition to the commonly known erythrocytes (red blood


cells) and leukocytes (white blood cells), blood contains a variety of other


cells, including lymphocytes. The lymphocytes are the main constituents of


the immune system, which provides a natural defense against the attack of


pathogenic microorganisms such as viruses, bacteria, fungi, and protista. These


pathogenic microorganisms are referred to as antigens. When the lymphocytes


come into contact with the foreign antigens, they yield antibodies and arrange


the antibodies on their membrane. The antibody is a molecule that binds itself


to antigens and destroys them in the process. When sufficient numbers of anti-


bodies are produced, the destruction of the antigens occurs at a higher rate than


their creation, resulting in the suppression of the disease or infection. Based on


this simplified explanation of the human immune system, we now develop the


system equations.


8.4.1 Mathematical model


The following notation is used to develop a mathematical model for the human


immune system:


g(t) = number of antigens entering the human body;
a(t) = number of antigens already existing within the human body;
l(t) = number of active lymphocytes;
p(t) = number of plasma cells;
b(t) = number of antibodies.
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Number of antigens At any given time, the total number of antigens present
in the human body depends on three factors: (i) external antigens entering


the human body from outside; (ii) reproduced antigens produced within the


human body by the already existing antigens; and (iii) destroyed antigens that


are eradicated by the antibodies. The net change in the number of antigens is


modeled by the following equation:


da


dt
= αa(t) − ηb(t) + g(t), (8.49)


where α denotes the reproduction rate at which the antigens are multiplying


within the human body and η is the destruction rate at which the antigens are


being destroyed by the antibodies.


Number of lymphocytes Assuming that the number of lymphocytes is pro-
portional to the number of antigens, the number of lymphocytes present within


the human body is given by


l(t) = βa(t), (8.50)


where β is the proportionality constant relating the number of lymphocytes to


the number of antigens. The value of β generally depends on many factors,


including the health of the patient and external stimuli. In general, β varies


with time in a non-linear fashion. For simplicity, however, we can assume that


β is a constant.


Number of plasma cells The change in the number of plasma cells is pro-
portional to the number of lymphocytes l(t). Typically, there is a delay of τ
seconds between the instant that the antigens are detected and the instant that


the plasma cells are generated. Therefore, the number of plasma cells depends


on l(t − τ ), where the proportionality constant is assumed to be unity. Also, a
large portion of plasma cells die due to aging. The number of plasma cells at


any time t can therefore be expressed as follows:


dp


dt
= l(t − τ ) − γ p(t), (8.51)


where γ denotes the rate at which the plasma cells die due to aging.


Number of antibodies The number of antibodies depends on three factors:
(i) new antibodies being generated by the human body (the rate of generation µ


of the new antibodies is proportional to the number of plasma cells in the human


body); (ii) destroyed antibodies lost to the antigens (the rate of destruction σ


of such antibodies is proportional to the number of existing antigens); and


(iii) dead antibodies lost to aging. We assume that the antibodies die at the rate


of λ because of aging. Combining the three factors, the number of antibodies
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at any time t is given by


db


dt
= µp(t) − σa(t) − λb(t). (8.52)


8.4.2 Transfer function


Equations (8.49)–(8.52) describe the linearized model used to analyze the


human immune system. To develop the transfer function, we take the Laplace


transform of Eqs. (8.49)–(8.52). The resulting expressions can be expressed as


follows:


number of antigens A(s) =
1


(s − α)
[G(s) − ηB(s)]; (8.53)


number of lymphocytes L(s) = β A(s); (8.54)


number of antigens P(s) =
e−τ s


(s + γ )
L(s); (8.55)


number of antibodies B(s) =
1


(s + λ)
[µP(s) − σ A(s)]. (8.56)


In Eqs. (8.53)–(8.56), variables A(s), G(s), L(s), P(s), and B(s) are, respec-
tively, the Laplace transforms of the number of antigens a(t) present within the
human body, the number of antigens g(t) entering the human body, the number
of lymphocytes l(t) within the blood, the total number of antigens p(t) within
the human body, and the number of antibodies b(t) in the blood. Assuming the
number of antigens g(t) entering the human body to be the input and the number
of antibodies b(t) produced to be the output, the human immune system can be
modeled by the schematic diagram shown in Fig. 8.11(a). Figure 8.11(b) is the


simplified version of Fig. 8.11(a), which yields the following transfer function


for the human immune system:


T (s) =
M(s)


(1 + η M(s))
=


µβe−τ s − σ (s + γ )
(s − α)(s + λ)(s + γ ) + η[µβe−τ s − σ (s + γ )]


.


(8.57)


8.4.3 System simulations


The simplified model of the human immune system is still a fairly complex


system to be analyzed analytically. The characteristic equation of the human


immune system is not a polynomial of s, therefore evaluation of its poles is
difficult. In this section, we simulate the human immune system using the


simulink toolbox available in M A T L A B .


8.4.3.1 Simulation 1


In simulink, a system is simulated using a block diagram where the subblocks


represent different subsystems. Figure 8.12 shows the simulink representation of
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Fig. 8.11. Schematic models for


the immune response system.


(a) Detailed model;


(b) simplified model.


the human immune system shown in Fig. 8.11. We have assumed a hypothetical


case with the values of the proportionality constants given by


α = 0.1, β = 0.5, γ = 0.1, µ = 0.5, τ = 0.2, λ = 0.1,
σ = 0.1, and η = 0.5.


The proportionality constants α, γ , σ , and λ related to the antigens are deliber-


ately kept smaller than the proportionality constants β, η, and µ related to the


antibodies for quick recovery from the infection. The input signal g(t) modeling
the number of antigens entering the human body is approximated by a pulse


and is shown in Fig. 8.13(a). The duration of the pulse is 0.5 s, implying that


the antigens keep entering the human body at a constant level for the first 0.5 s.


The outputs a(t), p(t), and b(t) are monitored by the simulated scope available
in simulink. The output of the scope is shown in Fig. 8.13(b), where we observe
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Fig. 8.12. Simulink model for


Simulation 1 modeling the


immune response system of


humans.
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Fig. 8.13. Results of Simulations


1 and 2. (a) Number of antigens


g(t ) entering the human body.


(b) Time evolution of the


number of antigens a(t ), plasma


cells p(t ), and antibodies b(t ) in


Simulation 1. (c) Same as (b) for


Simulation 2.


that the number of antigens increases linearly for the initial duration of 0.5 s.


Since the human body generates lymphocytes with a delay τ , which is 0.2 s in


our simulation, the number of plasma cells p(t) starts rising with a delay of 0.2 s.
After 0.5 s, no external antigens enter the human body. However, new antigens


are being reproduced by the already existing antigens present inside the human


body. As a result, the number of antigens a(t) keeps rising, even after 0.5 s.
After roughly 3 s, the respective strengths of lymphocytes and plasma cells is


high enough to impact the overall population of the antigens. The number of


antigens a(t) starts decreasing after 3 s. After 5.3 s, all antigens in the body
are destroyed. At this time, the body stops producing any further plasma cells.


After this stage, the number of plasma cells p(t) starts decreasing, as some of
these cells die naturally due to aging. As the number of plasma cells decreases,


the number of antibodies b(t) also decreases such that after 10 s no antibodies
are present in the simulation.


8.4.3.2 Simulation 2


Simulation 1 models successful eradication of the antigens. Let us now consider


the other extreme, where the antigens are lethal such that the human immune


system is unable to terminate the infection. The proportionality constants β and


µ related to the antibodies have lower values than those specified in Simulation


1. Also, the delay τ between the instant when the antigens are detected to the


instant when antibodies are produced is increased to 1 s. The simulated values


of the constants are given by


α = 0.1, β = 0.1, γ = 0.1, µ = 0.3, τ = 1, λ = 0.1, σ = 0.1,
and η = 0.5.
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As in Simulation 1, the input signal g(t) representing the number of antigens
entering the human body is assumed to be a pulse of duration 0.5 s. The numbers


of antigens a(t), plasma cells p(t), and antibodies b(t) are monitored with the
simulated scope available in simulink and are plotted in Fig. 8.13(c). We observe


that the number of antigens a(t) increases at an exponential rate. Although the
number of plasma cells p(t), and consequently the number of antibodies b(t),
also increases, it does so at a slower pace due to the small value of β and large


delay τ . Since the number of antigens exceeds the number of plasma cells, the


antibodies are destroyed by the antigens. This is shown by negative values for


the number of antibodies b(t). In reality, the minimum number of antibodies is
zero. The negative values are observed because of the unconstrained analytical


model. We can make Simulation 2 more realistic by constraining the number


of antigens, plasma cells, and antibodies to be greater than zero.


In summary, Simulation 1 presents a scenario where the patient will survive,


whereas Simulation 2 presents a scenario where the patient will die. Although


this model presents a very simplistic view of a highly complex system, it is pos-


sible to improve the model by using more accurate model parameters. Similar


mathematical models can be used in several applications, such as population


prediction, ecosystem analysis, and weather forecasting.


8.5 Summary


We have presented applications of signal processing in analog communica-


tions, mechanical systems, electrical machines, and human immune systems.


In particular, the CTFT and Laplace transform were used to analyze these


systems. Section 8.1 introduced amplitude modulation (AM) and used the


CTFT to analyze the frequency characteristics of AM-based communication


systems. Both synchronous and asynchronous detection schemes for recon-


structing the information-bearing signals were developed. Sections 8.2 and 8.3


used the Laplace transform to analyze the spring damping system and armature-


controlled dc motor. For the two applications, the transfer function and impulse


response of the overall systems were derived. Section 8.4 used the Laplace


transform to model the human immune system. An analytical model for the


human immune system was developed and later analyzed using the simulink


toolbox available in M A T L A B .


Problems


8.1 The information signal given by


x(t) = 3 sin(2π f1t) + 2 cos(2π f2t)
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modulates the carrier signal c(t) = cos(2π fct) with the AM signal s(t)
given by Eq. (8.1).


(a) Determine the value of the modulation index k to ensure |s(t)| ≥ 0 for
all t .


(b) Determine the ratio of the power lost because of the transmission of


the carrier in s(t) versus the total power of s(t).
(c) Sketch the spectrum of x(t) and s(t) for f1 = 10 kHz, f2 = 20 kHz,


and fc = 50 kHz.
(d) Show how synchronous demodulation can be used to reconstruct x(t)


from s(t).


8.2 Repeat Problem 8.1 for the information signal


x(t) = sinc(5 × 103t)


if the fundamental frequency of the carrier is given by fc = 20 kHz.


8.3 An AM station uses a modulation index k of 0.75. What fraction of the
total power resides in the information signal? By repetition for different


values of k within the range 0 ≤ k ≤ 1, deduce whether low or high values
of modulation index are better for improved efficiency.


8.4 Synchronous demodulation requires both phase and frequency coherence
for perfect reconstruction of the information signal. Assume that the infor-


mation signal


x(t) = 2 sin(2π f1t)


is used to modulate the carrier c(t) = cos(2π fct). However, the demod-
ulating carrier has a frequency offset given by c(t) = cos[2π fc + � f )t].
Determine the spectrum of the demodulated signal. Can the information


signal be reconstructed in such situations?


8.5 A special case of amplitude modulation, referred to as the quadrature ampli-
tude modulation (QAM), modulates two information-bearing signals x1(t)
and x2(t) simultaneously using two different carriers c1(t) = A1 cos(2π fct)
and c2(t) = A2 sin(2π fct). The QAM signal is given by


s(t) = A1[1 + k1x1(t)] cos(2π fct) + A2[1 + k2x2(t)] sin(2π fct),


where k1 and k2 are the two modulation indexes used for modulating x1(t)
and x2(t). Draw the block diagram of the demodulator that reconstructs
x1(t) and x2(t) from the modulated signal.


8.6 Assume the frictional coefficient r of the spring damping system, shown in
Fig. 8.6, to equal zero. Determine the transfer function H (s) and impulse
response h(t) for the modified model. Based on the location of the poles,
comment on the stability of the spring damping system.
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f1(t)
input


phase loop filter


v(t)


output


voltage


K1


∫ dt
−∞


t


+
+


−


K2


integrator


G(s)


q(t)


× ×


Fig. P8.11. Block diagram


representation of a phase-locked


loop.
8.7 By integrating the impulse response h(t) of the armature-controlled dc


motor, derive Eq. (8.42) for ξn = 1.


8.8 Assume that the inductance La of the induction motor, shown in Fig. 8.8(b),
is zero. Determine the transfer function H (s) and impulse response h(t)
for the modified model. Based on the location of the poles, comment on


the stability of the induction motor.


8.9 Repeat Problem 8.7 for Eq. (8.43) with ξn > 1 and Eq. (8.44) with ξn < 1.


8.10 Based on Eqs. (8.53)–(8.56), derive the expression for the transfer function
H (s) of the human immune system shown in Eq. (8.57).


8.11 In order to achieve synchronization between the modulating and demod-
ulating carriers, a special circuit referred to as a phase-locked loop (PLL)


is commonly used in communications. The block diagram representing


the PLL is shown in Fig. P8.11.


Show that the transfer function of the PLL is given by


V (s)


φ(s)
= K1 K2


sG(s)


s + K1G(s)
,


where K1 and K2 are gain constants and G(s) is the transfer function of
a loop filter. Specify the condition under which the PLL acts as an ideal


differentiator. In other words, derive the expression for G(s) when the
transfer function of the PLL equals Ks, with K being a constant.


8.12 Repeat the simulink simulation for the human immune system for the
following values of the proportionality constants:


α = 0.3, β = 0.1, γ = 0.25, µ = 0.6, τ = 1, λ = 0.1,
σ = 0.4, and η = 0.2


Sketch the time evolution of the antigens, plasma cells, and antibodies.
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C H A P T E R


9 Sampling and quantization


Part II of the book covered techniques for the analysis of continuous-time (CT)


signals and systems. In Part III, we consider the corresponding analysis tech-


niques for discrete-time (DT) sequences and systems. A DT sequence may


occur naturally. Examples are the one-dimensional (1D) hourly measurements


x[k] made with an electronic thermometer, or the two-dimensional (2D) image


x[m, n] recorded with a digital camera, as illustrated earlier in Fig. 1.1. Alter-


natively, a DT sequence may be derived from a CT signal by a process known as


sampling. A widely used procedure for processing CT signals consists of trans-


forming these signals into DT sequences by sampling, processing the resulting


DT sequences with DT systems, and converting the DT outputs back into the


CT domain. This concept of DT processing of CT signals is illustrated by the


schematic diagram shown in Fig. 9.1. Here, the input CT signal x(t) is con-


verted to a DT sequence x[k] by the sampling module, also referred to as the


A/D converter. The DT sequence is then processed by the DT system module.


Finally, the output y[k] of the DT module is converted back into the CT domain


by the reconstruction module. The reconstruction module is also referred to as


the D/A converter. Although the intermediate waveforms, x[k] and y[k], are


DT sequences, the overall shaded block may be considered as a CT system


since it accepts a CT signal x(t) at its input and produces a CT output y(t). If


the internal working of the shaded block is hidden, one would interpret that the


overall operation of Fig. 9.1 results from a CT system.


In practice, a CT signal can either be processed by using a full CT setup,


in which the individual modules are themselves CT systems (as explained in


Chapters 3–8), or by using a CT–DT hybrid setup (as shown in Fig. 9.1). Both


approaches have advantages and disadvantages. The primary advantage of CT


signal processing is its higher speed as DT systems are not as fast as their


counterparts in the CT domain due to limits on the sampling rate of the A/D


converter and the clock rate of the processor used to implement the DT systems.


In spite of its limitation in speed, there are important advantages with DT sig-


nal processing, such as improved flexibility, self-calibration, and data-logging.


Whereas CT systems have a limited performance range, DT systems are more


393
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samplingx(t)
DT


system reconst.
y(t)


xx[k] y[k]


Fig. 9.1. Processing CT signals


using DT systems.


flexible and can be reprogrammed such that the same hardware can be used in a


variety of different applications. In addition, the characteristics of CT systems


tend to vary with changes in the operating conditions and with age. The DT


systems have no such problems as the digital hardware used to implement these


systems does not drift with age or with changes in the operating conditions and,


therefore, can be self-calibrated easily. Digital signals, obtained by quantizing


DT sequences, are less sensitive to noise and interference than analog signals


and are widely used in communication systems. Finally, the data available from


the DT systems can be stored in a digital server so that the performance of the


system can be monitored over a long period of time. In summary, the advan-


tages of the DT system outweigh their limitations in most applications. Until


the late 1980s, most signal processing applications were implemented with CT


systems constructed with analog components such as resistors, capacitors, and


operational amplifiers. With the recent availability of cheap digital hardware,


it is a common practice now to perform signal processing in the DT domain


based on the hybrid setup shown in Fig. 9.1.


Although, a CT–DT hybrid setup similar to Fig. 9.1 is advantageous in many


applications, care should be taken during the design stage. For example, during


the sampling process some loss of information is generally inevitable. Conse-


quently, if the system is not designed properly, the performance of a CT–DT


hybrid setup may degrade significantly as compared with a CT setup. In this


chapter, we focus on the analysis of the sampling process and the converse


step of reconstructing a CT signal from its DT version. In addition, we also


analyze the process of quantization for converting an analog signal to a digi-


tal signal. Both time-domain and frequency-domain analyses are used where


appropriate.


The organization of Chapter 9 is as follows. Section 9.1 introduces the


impulse-train sampling process and derives a necessary condition, referred to as


the sampling theorem, under which a CT signal can be perfectly reconstructed


from its sampled DT version. We observe that violating the sampling theorem


leads to distortion or aliasing in the frequency domain. Section 9.2 introduces


the practical implementations for impulse-train sampling. These implementa-


tions are referred to as pulse-train sampling and zero-order hold.


In Section 9.3, we introduce another discretization process called quantiza-


tion, which, in conjunction with sampling, converts a CT signal into a digital


signal. In Section 9.4, we present an application of sampling and quantization
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used in recording music on a compact disc (CD). Finally, Section 9.5 con-


cludes our discussion with a summary of the key concepts introduced in the


chapter.


9.1 Ideal impulse-train sampling


In this section, we consider sampling of a CT signal x(t) with a bounded CTFT


X (ω) such that


X (ω) = 0 for |ω| > 2πβ. (9.1)


A CT signal x(t) satisfying Eq. (9.1) is referred to as a baseband signal, which


is band-limited to 2πβ radians/s or β Hz. In the following discussion, we prove


that a baseband signal x(t) can be transformed into a DT sequence x[k] with


no loss of information if the sampling interval Ts satisfies the criterion that


Ts ≤ 1/2β.
To derive the DT version of the baseband signal x(t), we multiply x(t) by an


impulse train:


s(t) =
∞∑


k=−∞
δ(t − kTs), (9.2)


where Ts denotes the separation between two consecutive impulses and is called


the sampling interval. Another related parameter is the sampling rate ωs, with


units of radians/s, which is defined as follows:


ωs =
2π


Ts
. (9.3)


Mathematically, the resulting sampled signal, xs(t) = x(t) · s(t), is given by


xs(t) = x(t)
∞∑


k=−∞
δ(t − kTs) =


∞∑


k=−∞
x(kTs)δ(t − kTs). (9.4)


Figure 9.2 illustrates the time-domain representation of the process of the


impulse-train sampling. Figure 9.2(a) shows the time-varying waveform repre-


senting the baseband signal x(t). In Figs. 9.2(b) and (c), we plot the sampled


signal xs(t) for two different values of the sampling interval. In Fig. 9.2(b), the


sampling interval Ts = T and the sampled signal xs(t) provides a fairly good
approximation of x(t). In Fig. 9.2(c), the sampling interval Ts is increased to


2T . With Ts set to a larger value, the separation between the adjacent samples


in xs(t) increases. Compared to Fig. 9.2(b), the sampled signal in Fig. 9.2(c)


provides a coarser representation of x(t). The choice of Ts therefore determines


how accurately the sampled signal xs(t) represents the original CT signal x(t).


To determine the optimal value of Ts, we consider the effect of sampling in the


frequency domain.
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t


0


x(t)


t
0 2T 4T 6T−2T−4T−6T


xs(t) with Ts = T 


xs(t) with Ts = 2T 


t
0 2T 4T 6T−2T−4T−6T


(a) (b)


(c)


Fig. 9.2. Time-domain


illustration of sampling as a


product of the band-limited


signal and an impulse train.


(a) Original signal x(t );


(b) sampled signal xs(t ) with


sampling interval T s = T ;
(c) sampled signal xs(t ) with


sampling interval T s = 2T .


Calculating the CTFT of Eq. (9.4), the CTFT Xs(ω) of the sampled signal


xs(t) is given by


Xs(ω) = ℑ


{


x(t)
∞∑


k=−∞
δ(t − kTs)


}


=
1


2π
F{x(t)} ∗ ℑ


{
∞∑


k=−∞


δ(t − kTs)


}


=
1


2π


[


X (ω) ∗
2π


Ts


∞∑


m=−∞


δ


(


ω −
2mπ


Ts


)
]


=
1


Ts


∞∑


m=−∞


X


(


ω −
2mπ


Ts


)


(9.5)


where ∗ denotes the CT convolution operator. In deriving Eq. (9.5), we used


the following CTFT pair:


∞∑


k=−∞


δ(t − kTs)
CTFT
←→


2π


Ts


∞∑


m=−∞


δ


(


ω −
2mπ


Ts


)


based on entry (19) of Table 5.2. Equation (9.5) implies that the spectrum Xs(ω)


of the sampled signal xs(t) is a periodic extension, consisting of the shifted


replicas of the spectrum X (ω) of the original baseband signal x(t). Figure 9.3


illustrates the frequency-domain interpretation of Eq. (9.5). The spectrum of the


original signal x(t) is assumed to be an arbitrary trapezoidal waveform and is


shown in Fig. 9.3(a). The spectrum Xs(ω) of the sampled signal xs(t) is plotted


0


X(w)


2pb−2pb


1


0


Xs(w) with ws ≥ 4pb Xs(w) with ws < 4pb


2pb−2pb ws−ws


1/Ts


0


2pb
ws−ws−2ws 2ws


(ws − 2pb)


1/Ts 


(a) (b) (c)


w ww


Fig. 9.3. Frequency-domain


illustration of the impulse-train


sampling. (a) Spectrum X(ω) of


the original signal x(t );


(b) spectrum Xs(ω) of the


sampled signal xs(t ) with


sampling rate ωs ≥ 4πβ ; (c)


spectrum Xs(ω) of the sampled


signal xs(t ) with sampling rate


ωs < 4πβ .
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in Figs. 9.3(c) and (d) for the following two cases:


case I ωs ≥ 4πβ;


case II ωs < 4πβ.


When the sampling rate ωs ≥ 4πβ, no overlap exists between consecutive repli-


cas in Xs(ω). However, as the sampling rate ωs is decreased such that ωs < 4πβ,


adjacent replicas overlap with each other. The overlapping of replicas is referred


to as aliasing, which distorts the spectrum of the original baseband signal x(t)


such that x(t) cannot be reconstructed from its samples. To prevent aliasing, the


sampling rate ωs ≥ 4πβ. This condition is referred to as the sampling theorem


and is stated in the following.†


Sampling theorem A baseband signal x(t), band-limited to 2πβ radians/s, can


be reconstructed accurately from its samples x(kT) if the sampling rate ωs, in


radians/s, satisfies the following condition:


ωs ≥ 4πβ. (9.6a)


Alternatively, the sampling theorem may be expressed in terms of the sampling


rate fs = ωs/2π in samples/s, or the sampling interval Ts. To prevent aliasing,


sampling rate (samples/s) fs ≥ 2β; (9.6b)


or


sampling interval Ts ≤ 1/2β. (9.6c)


The minimum sampling rate fs (Hz) required for perfect reconstruction of the


original band-limited signal is referred to as the Nyquist rate.


The sampling theorem is applicable for baseband signals, where the sig-


nal contains low-frequency components within the range 0 − β Hz. In some


applications, such as communications, we come across bandpass signals that


also contain a band of frequencies, but the occupied frequency range lies


within the band β2 − β1 Hz with β1 	= 0. In these cases, although the max-


imum frequency of β2 Hz implies the Nyquist sampling rate of 2β2 Hz it


is possible to achieve perfect reconstruction with a lower sampling rate (see


Problem 9.8).


† The sampling theorem was known in various forms in the mathematics literature before its


application in signal processing, which started much later, in the 1950s. Several people


developed independently or contributed towards its development. Notable contributions,


however, were made by E. T. Whittaker (1873–1956), Harry Nyquist (1889–1976), Karl


Küpfmüller (1897–1977), V. A. Kotelnikov (1908–2005), Claude Shannon (1916–2001), and


I. Someya.
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9.1.1 Reconstruction of a band-limited signal from its samples


Figure 9.3(b) illustrates that the CTFT Xs(ω) of the sampled signal xs(t) is a


periodic extension of the CTFT of the original signal x(t). By eliminating the


replicas in Xs(ω), we should be able to reconstruct x(t). This is accomplished


by applying the sampled signal xs(t) to the input of an ideal lowpass filter (LPF)


with the following transfer function:


H (ω) =
{


Ts |ω| ≤ ωs/2
0 elsewhere.


(9.7)


The CTFT Y (ω) of the output y(t) of the LPF is given by Y (ω) = Xs(ω)H (ω),


and therefore all shifted replicas at frequencies ω > ωs/2 are eliminated. All


frequency components within the pass band ω ≤ ωs/2 of the LPF are amplified


by a factor of Ts to compensate for the attenuation of 1/Ts introduced during


sampling. The process of reconstructing x(t) from its samples in the frequency


domain is illustrated in Fig. 9.4. We now proceed to analyze the reconstruction


process in the time domain.


According to the convolution property, multiplication in the frequency


domain transforms to convolution in the time domain. The output y(t) of


the lowpass filter is therefore the convolution of its impulse response h(t)


with the sampled signal xs(t). Based on entry (17) of Table 5.2, the impulse


response of an ideal lowpass filter with the transfer function given in Eq. (9.7) is


given by


h(t) = sinc


(
ωst


2π


)


. (9.8)


Convolving the impulse response h(t) with the sampled signal, xs(t) =
∞∑


k=−∞


x(kTs)δ(t − kTs) yields


y(t) = sinc


(
ωst


2π


)


∗


∞∑


k=−∞


x(kTs)δ(t − kTs), (9.9)


which reduces to


y(t) =
∞∑


k=−∞


x(kTs)


[


sinc


(
ωst


2π


)


∗ δ(t − kTs)


]


(9.10)


w
0


Y(w)


2pb−2pb


1


w
0


Xs(w) H(w)


2pb−2pb ws−ws


1/Ts


w
0−ws/2 ws/2


Ts


Fig. 9.4. Reconstruction of the


original baseband signal x(t ) by


ideal lowpass filtering.


(a) Spectrum of the sampled


signal xs(t ); (b) transfer function


H(ω) of the lowpass filter;


(c) spectrum of the


reconstructed signal x(t ).
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0 Ts 2Ts 3Ts 4Ts3Ts2TsTs−Ts −Ts−2Ts −2Ts−3Ts −3Ts−4Ts


xs(t) ( )wst2ph(t) = sinc


0


(a)


(c)


(b)


t t


4Ts3Ts2TsTs−Ts−2Ts−3Ts−4Ts 0


y(t)


t


Fig. 9.5. Reconstruction of the


band-limited signal in the time


domain. (a) Sampled signal


xs(t ); (b) impulse response h(t )


of the lowpass filter;


(c) reconstructed signal x(t )


obtained by convolving xs(t )


with h(t ).


or


y(t) =
∞∑


k=−∞


x(kTs)


[


sinc


(
ωs(t − kTs)


2π


)]


. (9.11)


Equation (9.11) implies that the original signal x(t) is reconstructed by adding


a series of time-shifted sinc functions, whose amplitudes are scaled according


to the values of the samples at the center location of the sinc functions. The


sinc functions in Eq. (9.11) are called the interpolating functions and the over-


all process is referred to as the band-limited interpolation. The time-domain


interpretation of the reconstruction of the original band-limited signal x(t) is


illustrated in Fig. 9.5. At t = kTs, only the kth sinc function, with amplitude


x(kTs), is non-zero. The remaining sinc functions are all zero. The value of the


reconstructed signal at t = kTs is therefore given by x(kTs). In other words,


the values of the reconstructed signal at the sampling instants are given by the


respective samples. The values in between two samples are interpolated using


a linear combination of the time-shifted sinc functions.


Example 9.1


Consider the following sinusoidal signal with the fundamental frequency f0 of


4 kHz:


g(t) = 5 cos(2π f0t) = 5 cos(8000π t).


(i) The sinusoidal signal is sampled at a sampling rate fs of 6000 samples/s


and reconstructed with an ideal LPF with the following transfer function:


H1(ω) =


{


1/6000 |ω| ≤ 6000π


0 elsewhere.


Determine the reconstructed signal.
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(ii) Repeat (i) for a sampling rate fs of 12 000 samples/s and an ideal LPF with


the following transfer function:


H2(ω) =
{


1/12 000 |ω| ≤ 12 000π
0 elsewhere.


Solution


(i) The CTFT G(ω) of the sinusoidal signal g(t) is given by


G(ω) = 5π [δ(ω − 8000π ) + δ(ω + 8000π )].


Using Eq. (9.4), the CTFT Gs(ω) of the sampled signal with a sampling rate


ωs = 2π (6000) radians/s (Ts = 1/6000 s) is expressed as follows:


Gs(ω) = 6000
∞∑


m=−∞


G(ω − 2πm(6000)) = 6000
∞∑


m=−∞


G(ω − 12 000mπ ).


Substituting the value of G(ω) in the above expression yields


Gs(ω) = 6000
∞∑


m=−∞


5π [δ(ω − 8000π − 12 000 mπ )


+ δ(ω + 8000π − 12 000 mπ )]


= 6000(5π )





· · · + δ(ω + 16 000π ) + δ(ω + 32 000π )
︸ ︷︷ ︸


m=−2


+ δ(ω + 4000π ) + δ(ω + 20 000π )
︸ ︷︷ ︸


m=−1


+ δ(ω − 8000π ) + δ(ω + 8000π )
︸ ︷︷ ︸


m=0


+ δ(ω − 20 000π ) + δ(ω − 4000π )
︸ ︷︷ ︸


m=1


+ δ(ω − 32 000π ) + δ(ω − 16 000π )
︸ ︷︷ ︸


m=2


+ · · ·





 .


When the sampled signal is passed through the ideal LPF with transfer func-


tion H1(ω), all frequency components |ω| > 6000π radians/s) are eliminated


from the output. The CTFT Y (ω) of the output y(t) of the LPF is given


by


Y (ω) = H1(ω)Gs(ω) =
1


6000
· 6000(5π )[δ(ω + 4000π ) + δ(ω − 4000π )].


Calculating the inverse CTFT, the reconstructed signal is given by y(t) =


5 cos(4000π t).
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G(w)
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(× 1000p)8 16 24−8−16−24 0


5p(6000)
Gs(w)
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Fig. 9.6. Sampling and


reconstruction of a sinusoidal


signal g(t ) = 5 cos(8000πt ) at
a sampling rate of


6000 samples/s. CTFTs of:


(a) the sinusoidal signal g(t );


(b) the impulse train s(t ); (c) the


sampled signal gs (t );


and (d) the signal reconstructed


with an ideal LPF H 1(ω) with a


cut-off frequency of


6000π radians/s.


The graphical representation of the sampling and reconstruction of the sinu-


soidal signal in the frequency domain is illustrated in Fig. 9.6. The CTFTs of


the sinusoidal signal g(t) and the impulse train s(t) are plotted, respectively,


in Fig. 9.6(a) and Fig. 9.6(b). Since the CTFT S(ω) of s(t) consists of several


impulses, the CTFT Gs(ω) of the sampled signal gs(t) is obtained by convolving


the CTFT G(ω) of the sinusoidal signal g(t) separately with each impulse in


Gs(ω) and then applying the principle of superposition. To emphasize the results


of individual convolutions, a different pattern is used in Fig. 9.6(b) for each


impulse in S(ω). For example, the impulse δ(ω) located at origin in S(ω) is


shown in Fig. 9.6(b) by a solid line. Convolving G(ω) with δ(ω) results in two


impulses located at ω = ±8000π , which are shown in Fig. 9.6(c) by solid lines.
Similarly for the other impulses in S(ω).


The output y(t) is obtained by applying Gs(ω) to the input of an ideal LPF


with a cut-off frequency of 6000π radians/s. Clearly, only the two impulses at


ω = ± 4000π , corresponding to the sinusoidal signal cos(4000π t), lie within
the pass band of the lowpass filter. The remaining impulses are eliminated from


the output. This results in an output, y(t) = cos(4000π t), which is different
from the original signal.


(ii) The CTFT Gs(ω) of the sampled signal with ωs = 2π (12 000) radians/s
(Ts = 1/12 000 s) is given by


Gs(ω) = 12 000
∞∑


m=−∞


G(ω − 2πm(12 000))


= 12 000


∞∑


m=−∞


G(ω − 24 000mπ ).
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Substituting the value of the CTFT G(ω) = 5π [δ(ω − 8000π ) + δ(ω +
8000π )] in the above equation, we obtain


Gs(ω) = 12 000
∞∑


m=−∞


5π [δ(ω − 8000π − 24 000mπ )


+ δ(ω + 8000π − 24 000mπ )]


= 12 000(5π )





· · · + δ(ω + 40 000π ) + δ(ω + 56 000π )
︸ ︷︷ ︸


m=−2


+ δ(ω + 16 000π ) + δ(ω + 32 000π )
︸ ︷︷ ︸


m=−1


+ δ(ω − 8000π ) + δ(ω + 8000π )
︸ ︷︷ ︸


m=0


+ δ(ω − 32 000π ) + δ(ω − 16 000π )
︸ ︷︷ ︸


m=1


+ δ(ω − 56 000π ) + δ(ω − 40 000π )
︸ ︷︷ ︸


m=2


+ · · ·





 .


To reconstruct the original sinusoidal signal, the sampled signal is passed


through an ideal LPF H2(ω). The frequency components outside the pass-band


range |ω| ≤ 12 000π radians/s are eliminated from the ouput. The CTFT Y (ω)


of the output y(t) of the LPF is therefore given by


Y (ω) = 5π [δ(ω + 8000π ) + δ(ω − 8000π )],


which results in the reconstructed signal


y(t) = 5 cos(8000π t).


The graphical interpretation of the aforementioned sampling and reconstruction


process is illustrated in Fig. 9.7.


As the signal g(t) is a sinusoidal signal with frequency 4 kHz, the Nyquist


sampling rate is 8 kHz. In part (i), the sampling rate (6 kHz) is lower than the


Nyquist rate, and consequently the reconstructed signal is different from the


original signal due to the aliasing effect. In part (ii), the sampling rate is higher


than the Nyquist rate, and as a result the original sinusoidal signal is accurately


reconstructed.


9.1.2 Aliasing in sampled sinusoidal signals


As demonstrated in Example 9.1, undersampling of a baseband signal at a


sampling rate less than the Nyquist rate leads to aliasing. Under such conditions,


perfect reconstruction of the baseband signal is not possible from its samples.


In this section, we consider undersampling of a sinusoidal signal


x(t) = cos(2π f0t)


with a fundamental frequency of f0 Hz. The sampling rate fs, in samples/s,


is assumed to be less than the Nyquist rate of 2 f0, i.e. fs < 2 f0. We show
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(× 1000p)8 16 24−8−16−24 0 32−32


S(w)
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…


…


…


…


8 16 24−8−16−24 0 32−32


5π(12 000)


Gs(w)


(× 1000p)8 16 24−8−16−24 0 32−32


w
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w
(× 1000p)


(a) (b)


(c) (d)


Fig. 9.7. Sampling and


reconstruction of a sinusoidal


signal g(t ) = 5 cos(8000π t ) at
a sampling rate of


12 000 samples/s. CTFTs of:


(a) the sinusoidal signal g(t );


(b) the impulse train s(t );


(c) the sampled signal gs(t ); and


(d) the signal reconstructed with


an ideal LPF H2(ω) with a cut-off


frequency of 12 000π radians/s.


that the reconstructed signal is sinusoidal but with a different fundamental


frequency.


Using Eq. (9.4), the CTFT Xs(ω) of the sampled sinusoidal signal xs(t) is


given by


Xs(ω) = fs
∞∑


m=−∞


X (ω − 2mπ fs). (9.12)


In Eq. (9.12), we substitute the CTFT, X (ω) = π [δ(ω – 2π f0) + δ(ω + 2π f0)],


of the sinusoidal signal x(t). The resulting expression is as follows:


Xs(ω) = π fs


∞∑


m=−∞


δ(ω + 2π ( f0 − m fs)) + π fs


∞∑


k=−∞


δ(ω − 2π ( f0 + k fs)).


(9.13)


To reconstruct x(t), the sampled signal xs(t) is filtered with an ideal LPF with


transfer function


H (ω) =


{


Ts |ω| ≤ π fs
0 elsewhere.


(9.14)


Within the pass band |ω| ≤ π fs of the LPF, the input frequency components are


amplified by a factor of Ts or 1/ fs. All frequency components within the stop


band |ω| > π fs are eliminated from the reconstructed signal y(t). In addition,


the CT FT of the reconstructed signal y(t) satisfies the following properties.


(1) The CTFT Y (ω) consists of impulses located at frequencies ω = −2π ( f0 −


m fs) and ω = 2π ( f0 + k fs), where m and k are integers such that |( f0 −


m fs)| ≤ fs/2 and |( f0 + k fs)| ≤ fs/2. Since the two conditions are satisfied


only for m = −k, the locations of the impulses are given by ω = ±2π ( f0 −


m fs).


(2) If |( f0 − m fs)| ≤ fs/2, then |( f0 − (m + 1) fs)| > fs/2 and |( f0 − (m −


1) fs)| > fs/2. Combined with (1), this implies that only two impulses at


ω = ±2π ( f0 − m fs) will be present in Y (ω).


(3) Each impulse in Y (ω) will have a magnitude (enclosed area) of π .
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Based on properties (1)–(3) listed above, the spectrum of the reconstructed


signal is given by


Y (ω) = π [δ(ω + 2π ( f0 − m fs)) + δ(ω − 2π ( f0 − m fs))]. (9.15)


Calculating the inverse CTFT of Eq. (9.15) leads to the following sinusoidal


signal:


y(t) = cos(2π ( f0 − m fs)t), (9.16)


where m is an integer such that |( f0 − m fs)| ≤ fs/2.


Lemma 9.1 If a sinusoidal signal x(t) = cos(2π f0t) is undersampled such that


the sampling rate fs < 2 f0, then the signal reconstructed with an ideal LPF,


with pass band |ω| ≤ π fs, is another sinusoidal signal


y(t) = cos(2π ( f0 − m fs)t),


where m is a positive integer satisfying the condition |( f0 − m fs)| < fs/2.


In Example 9.1(i), for example, the fundamental frequency f0 = 4000 Hz and


the sampling rate fs = 6000 samples/s is less than the Nyquist rate. Selecting


m = 1, the reconstructed signal y(t) is given by


y(t) = cos(2π ( f0 − m fs)t) = cos(2π (4000 − 6000)t) = cos(4000π t).


The result obtained from Lemma 9.1 is in agreement with the expression derived


in Example 9.1(i).


Example 9.2


A signal generator produces a sinusoidal tone x(t) = cos(2π f0t) with funda-


mental frequency f0 between 1 Hz and 1000 kHz. The signal is sampled with a


sampling rate fs = 6000 samples/s and is reconstructed using an ideal LPF with


a cut-off frequency ωc = π fs = 6000π radians/s. Determine the reconstructed


signal for f0 = 500 Hz, 2.5 kHz, 2.8 kHz, 3.2 kHz, 3.5 kHz, 7 kHz, 10 kHz,


20 kHz, and 1000 kHz.


Solution


Table 9.1 lists the reconstructed signals obtained by applying Lemma 9.1. The


sampling frequency fs in the top three entries of Table 9.1 satisfies the sampling


theorem. Therefore, the original signal is reconstructed without any distortion.


In the remaining entries, the sampling theorem is violated. Lemma 9.1 is used


to determine the fundamental frequency of the reconstructed sinusoidal sig-


nal, which is different from that of the original signal due to aliasing. The


reconstructed signals are tabulated in entries (4)–(9) of Table 9.1. An inter-


esting observation is that the reconstructed signals for the sinusoidal wave-


forms x(t) = cos(5600π t) and x(t) = cos(6400π t), listed in entries (3)–(4)
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Table 9.1. Signals reconstructed from samples of a sinusoidal tone x (t ) = cos(2π f0t ) for different values of the
fundamental frequency f0; the sampling frequency fs is kept constant at 6000 samples/s


Funadmental Original Reconstructed


frequency ( f0) signal |( f0 − m fs)| < fs/2 signal Comments


(1) 500 Hz cos(1000π t) fs > 2 f0 cos(1000π t) no aliasing


(2) 2.5 kHz cos(5000π t) fs > 2 f0 cos(5000π t) no aliasing


(3) 2.8 kHz cos(5600π t) fs > 2 f0 cos(5600π t) no aliasing


(4) 3.2 kHz cos(6400π t) |3200 − 1 × 6000| cos(5600π t) aliasing
(5) 3.5 kHz cos(7000π t) |3500 − 1 × 6000| cos(5000π t) aliasing
(6) 7 kHz cos(14000π t) |7000 − 1 × 6000| cos(2000π t) aliasing
(7) 10 kHz cos(20000π t) |10000 − 2 × 6000| cos(4000π t) aliasing
(8) 20 kHz cos(40000π t) |20000 − 3 × 6000| cos(4000π t) aliasing
(9) 1000 kHz cos(2 × 106π t) |106 − 167 × 6000| cos(4000π t) aliasing


of Table 9.1, are identical. Similarly, the reconstructed signals for the sinu-


soidal waveforms x(t) = cos(5000π t) and x(t) = cos(7000π t), listed in entries
(2) and (5) of Table 9.1, are also identical. Finally, the reconstructed signals


for the sinusoidal waveforms x(t) = cos(20 000π t), x(t) = cos(40 000π t), and
x(t) = cos(2 × 106π t), listed in entries (7)–(9) of Table 9.1, are the same. The
identical waveforms are the consequences of aliasing.


9.2 Practical approaches to sampling


Section 9.1 introduced the impulse-train sampling used to derive the DT version


of a band-limited CT signal. In practice, impulses are difficult to generate and


are often approximated by narrow rectangular pulses. The resulting approach


is referred to as pulse-train sampling, which is discussed in Section 9.2.1. A


second practical implementation, referred to as the zero-order hold, is discussed


in Section 9.2.2.


9.2.1 Pulse-train sampling


In pulse-train sampling, the impulse train s(t) is approximated by a rectangular


pulse train of the form


r (t) =
∞∑


k=−∞


p1(t − kTs) =


[


p1(t) ∗
∞∑


k=−∞


δ(t − kTs)


]


, (9.17)


where p1(t) represents a rectangular pulse of duration τ ≪ Ts, which is given


by


p1(t) = rect


(
t


τ


)


.
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t


0


x(t) ∑
∞


k = −∞


p(t−kTs)r(t) =


0 Ts 2Ts 3Ts−Ts−2Ts−3Ts


0 Ts 2Ts 3Ts−Ts−2Ts−3Ts


xs(t)


(a) (b)


(c)


t


t


Fig. 9.8. Time-domain


illustration of the pulse-train


sampling of a CT signal.


(a) Original signal x(t ); (b) pulse


train r(t ); (c) sampled signal


xs(t ) = x(t )r(t ).


As in impulse-train sampling, the sampled signal xs(t) is obtained by multiply-


ing the reference signal x(t) by r (t) such that


xs(t) = x(t)r (t) = x(t)


[


p1(t) ∗
∞∑


k=−∞


δ(t − kTs)


]


. (9.18)


Based on Eq. (9.18), the time-domain representation of the process of pulse-


train sampling is shown in Fig. 9.8. The sampled signal, shown in Fig. 9.8(c),


consists of several pulses of duration τ . The magnitude of the rectangular pulses


in xs(t) follows the reference signal x(t) within the duration of the pulses.


To analyze the process in the frequency domain, we consider the CTFS


expansion of the periodic pulse train. The exponential CTFS representation of


r (t) is given by(see Example 9.14)


r (t) =
∞∑


n=−∞


Dne
jnωst with Dn =


ωsτ


2π
sinc


(nωsτ


2π


)


, (9.19)


where ωs is the sampling rate in radians/s and is given by ωs = 2π fs = 2π /Ts.


the CTFT of r (t) is given by


R(ω) = 2π
∞∑


n=−∞


Dnδ(ω − nωs) with Dn =
ωsτ


2π
sinc


(
nωsτ


2π


)


. (9.20)


Based on Eq. (9.18), the CTFT Xs(ω) of sampled signal xs(t) is given by


Xs(ω) =
1


2π
X (ω) ∗ R(ω). (9.21a)


Substituting the value of R(ω) from Eq. (9.20) yields


Xs(ω) =
1


2π
X (ω) ∗ R(ω) =


∞∑


n=−∞


Dn X (ω − nωs). (9.21b)
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2ws 3ws−3ws −2ws
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(b)
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(c)


Fig. 9.9. Frequency-domain


illustration of the pulse-train


sampling of a CT signal.


Spectrum of (a) the original


signal x(t ); (b) the pulse train


r(t ); (c) the sampled signal


xs(t ) = x(t )r(t ).


Based on Eq. (9.21b), Fig. 9.9 illustrates the frequency-domain interpretation


of the pulse-train sampling. The spectrum X (ω) of the original signal x(t) is


shown in Fig. 9.9(a), while the spectrum R(ω) of the pulse train r (t) is shown


in Fig. 9.9(b). The spectrum Xs(ω) of the sampled signal xs(t) is obtained


by convolving X (ω) with R(ω). As shown in Fig. 9.9(c), Xs(ω) consists of


several shifted replicas of X (ω) attenuated with a factor of Dn . Compared to


the impulse-train sampling, the spectra of the two sampled signals are identical


except for a varying attenuation factor of Dn introduced by the pulse-train


sampling.


Reconstruction of the original signal x(t) from the pulse-train sampled signal


xs(t) is achieved by filtering xs(t) with an ideal LPF having a cut-off frequency


ωc = ωs/2 and a gain of 1/D0 in the pass band. The LPF eliminates all shifted
replicas present at frequencies |ω| > ωs/2. This leaves a single replica at ω = 0,
which is the same as the CTFT of the original signal. For perfect reconstruc-


tion, pulse-train sampling should not introduce any aliasing. To prevent alias-


ing between different replicas, the sampling rate fs must satisfy the sampling


theorem, i.e. ωs = 2π fs ≥ 4πβ.


9.2.2 Zero-order hold


A second practical implementation of sampling is achieved by the sample-and-


hold circuit, which samples the band-limited input signal x(t) at discrete time


(t = kTs) and maintains the sampled value for the next Ts seconds. To pre-


vent aliasing, the sampling interval Ts must satisfy the sampling theorem. This
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0


x(t) xs(t)


0−3Ts 3Ts−2Ts 2Ts−Ts Ts


tt


(a) (b)


Fig. 9.10. Time-domain


illustration of the zero-order


hold operation for a CT signal.


(a) Original signal x(t );


(b) zero-order hold output xs(t ).


zero-order hold operation is illustrated in Fig. 9.10. Unlike the pulse-train sam-


pling, the amplitude of the sampled signal is maintained constant for Ts seconds


until the next sample is taken.


For mathematical analysis, the zero-order hold operation can be modeled by


the following expression:


xs(t) =
∞∑


k=−∞


x(kTs)p2(t − kTs) (9.22a)


or


xs(t) = p2(t) ∗
∞∑


k=−∞


x(kTs)δ(t − kTs) = p2(t) ∗


[


x(t)
∞∑


k=−∞


δ(t − kTs)


]


,


(9.22b)


where p2(t) represents a rectangular pulse given by


p2(t) = rect


(
t − 0.5 Ts


Ts


)


. (9.23)


Equation (9.22b) models the zero-hold operation and is different from Eq. (9.18)


in two ways. First, the duration of the pulse p2(t) in Eq. (9.22b) is the same as


the sampling interval Ts, whereas the duration of the pulse p1(t) is much smaller


than Ts in pulse-train sampling. Secondly, the order of operation in the sampled


signal xs(t) is different from that used in the corresponding sampled signal in


pulse-train sampling. In Eq. (9.22b), the sampled signal xs(t) is obtained by


convolving p2(t) with a periodic impulse train, which is scaled by the values


of the reference signal at the location of the impulse functions. In Eq. (9.18),


on the other hand, xs(t) is obtained by multiplying the original signal directly


by the periodic pulse train r (t).


The CTFT of Eq. (9.22b) is given by


Xs(ω) = P2(ω) ·
1


2π


[


X (ω) ∗
2π


Ts


∞∑


k=−∞


δ


(


ω −
2kπ


Ts


)
]


, (9.24)


where P2(ω) denotes the CTFT of the rectangular pulse p2(t). Based on entry


(16) of Table 5.2, the CTFT of p2(t) is given by the following transform pair:


rect


(
t − 0.5 Ts


Ts


)


CTFT
←→ Ts sinc


(
ωTs


2π


)


e−j 0.5 ωTs .
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Fig. 9.11. Frequency-domain


illustration of the zero-order


hold operation for a CT signal.


CTFTs of the: (a) original signal


x(t ); (b) periodic replicas; and


(c) the sampled signal xs(t ).


Substituting the value of P2(ω), Eq. (9.23) can be expressed as follows:


Xs(ω) = e−j 0.5 ωTs sinc
(


ωTs


2π


)


·
∞∑


k=−∞


X


(


ω −
2kπ


Ts


)


. (9.25)


Based on Eq. (9.25), Fig. 9.11 illustrates the frequency-domain interpretation


of the zero-hold operation. The spectrum Xs(ω) of the sampled signal is shown


in Fig. 9.11(c), which contains scaled replicas of the CTFT of the original base-


band signal. Unlike the pulse-train sampling, some distortion in the amplitude


is introduced in the central replica located at ω = 0. This distortion can be


minimized by increasing the width of the main lobe of the sinc function in Eq.


(9.25). Since the width of the main lobe is given by 2π /Ts, it is equivalent to


reducing the sampling interval Ts.


To recover the original CT signal, the sampled signal is filtered with an


LPF having a cut-off frequency ωc = ωs/2. Due to the amplitude distortion


introduced in the central replica, ideal lowpass filtering recovers an approximate


version of the original CT signal. For perfect reconstruction, the filter with the


transfer function given by


H (ω) =











1


sinc(ωTs/2π )
|ω| ≤ ωs/2


0 elsewhere


(9.26)
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Fig. 9.12. Input–output


relationship of an L-level


quantizer used to discretize the


sample values x[kTs] of a DT


sequence x[k ]. (a) Uniform


quantizer; (b) non-uniform


quantizer.


is used. The above filter is referred to as the compensation, or anti-imaging,


filter. Filtering Xs(ω) with the anti-imaging filter introduces a linear phase −ωTs
corresponding to the exponential term exp(−jωTs). Inclusion of a linear phase
in the frequency domain is equivalent to a delay in the time domain and is


therefore harmless and not considered as a distortion.


9.3 Quantization


The process of sampling, discussed in Sections 9.1 and 9.2, converts a CT signal


x(t) into a DT sequence x[k], with each sample representing the amplitude of


the CT signal x(t) at a particular instant t = kTs. The amplitude x[kTs] of a
sample in x[k] can still have an infinite number of possible values. To produce


a true digital sequence, each sample in x[k] is approximated to a finite set


of values. The last step is referred to as quantization and is the focus of our


discussion in this section.


9.3.1 Uniform and non-uniform quantization


Figure 9.12(a) illustrates the input–output relationship for an L-level uniform


quantizer. The peak-to-peak range of the input sequence x[k] is divided uni-


formly into (L + 1) quantization levels {d0, d1, . . . , dL} such that the sepa-
ration � = (dm+1 – dm) is the same between any two consecutive levels. The
separation � between two quantization levels is referred to as the quantile inter-


val or quantization step size. For a given input, the output of the quantizer is


calculated from the following relationship:


y[k] = rm =
1


2
[dm + dm+1] for dm ≤ x[k] < dm+1 and 0 ≤ m < L .


(9.27)
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In other words, the quantized value of the input lying within the levels dm and


dm+1 is given by rm , which equals 0.5(dm + dm+1). The quantization levels
{d0, d1, . . . , dL} are referred to as the decision levels, while the output levels


{r0, r1, . . . , rL−1} are referred to as the reconstruction levels.


Equation (9.27) approximates the analog sample values by using a finite


number of quantization levels. The approximation introduces a distortion, which


is referred to as the quantization error. The peak value of the quantization error


is one-half of the quantile interval in the positive or negative direction.


The quantizer illustrated in Fig. 9.12(a) is called a uniform quantizer because


the quantization levels are uniformly distributed between the minimum and


maximum ranges of the input sequence. In most practical applications, the


distribution of the amplitude of the input sequence is skewed towards low


values. In speech communication, for example, low speech volumes dominate


the sequence most of the time. Large-amplitude values are extremely rare and


typically occupy only 15% to 25% of the communication time. A uniform


quantizer will be wasteful, with most of the quantization levels rarely used.


In such applications, we use non-uniform quantization, which provides fine


quantization at frequently occurring lower volumes and coarse quantization at


higher volumes. The input–output relationship of a non-uniform quantizer is


shown in Fig. 9.12(b). The quantile interval is small at low values of the input


sequence and large at high values of the sequence.


Example 9.3


Consider an audio recording system where the microphone generates a CT


voltage signal within the range [−1, 1] volts. Calculate the decision and recon-
struction levels for an eight-level uniform quantizer.


Solution


For an L = 8 level quantizer with peak-to-peak range of [−1, 1] volts, the
quantile interval � is given by


� =
1 − (−1)


8
= 0.25 V.


Starting with the minimum voltage of −1 V, the decision levels dm are uniformly
distributed between −1 V and 1 V. In other words,


dm = −1 + m� for 0 ≤ m ≤ L.


Substituting different values of m, we obtain


dm = −1 V, −0.75 V, −0.5 V, −0.25 V, 0 V, 0.25 V,


0.50 V, 0.75 V, 1 V.
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Fig. 9.13. Derivation of a PCM


sequence from a CT signal x(t ).


The original CT signal x(t ) is


shown by the dotted line, while


the PCM sequence is shown as a


stem plot.


Using Eq. (9.27), the reconstruction levels rm are given by


rm = −0.875 V, −0.625 V, −0.375 V, −0.125 V, 0.125 V,
0.375 V, 0.625 V, 0.875 V.


The maximum quantization error is one-half of the quantile interval � and is


given by 0.125 V.


9.3.1.1 Pulse code modulation


Pulse code modulation (PCM) is the analog-to-digital conversion of a CT signal,


where the quantized samples of the CT signal are represented by finite-length


digital words. The essential features of PCM are illustrated in Fig. 9.13, where


a CT signal, with a peak-to-peak range of ±1 V, is sampled and quantized by an
eight-level uniform quantizer. As derived in Example 9.3, the decision levels


dm are located at [−1 V, −0.75 V, −0.5 V, −0.25 V, 0 V, 0.25 V, 0.50 V, 0.75 V, 1
V], while the corresponding reconstruction levels rm are located at [−0.875 V,
−0.625 V, −0.375 V, −0.125 V, 0.125 V, 0.375 V, 0.625 V, 0.875 V]. Since there
are eight reconstruction levels, each quantized sample can be encoded by a


minimum of ℓ = log2(L) = log2(8) = 3-bit word. We assign the 3-bit word
000 to the reconstruction level r0 = −0.875 V, 001 to the reconstruction level
r1 = −0.625, and so on for the remaining reconstruction levels as shown in
Fig. 9.13. The PCM representation of the waveform x(t) shown in Fig. 9.13 is


therefore given by the following bits:


[011 010 001 000 001 111 111 110 101 100],


where the final output is parsed in terms of 3-bit codewords.


9.3.2 Fidelity of quantized signal


In Table 9.2, we list the sampling frequency, the total number of quantization


levels, and the resulting raw (uncompressed) data rate for a number of commer-


cial audio applications. Low-fidelity applications, for example the telephone
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Table 9.2. Raw data rates for digital audio used in commercial applications


Bandwidth Sampling rate Quantization Raw data rate


Applications (Hz) (samples/s) levels (L) (bytes/s)


Telephone 200–3400 8000 28 8000


AM radio 11 025 28 11 025


FM radio (stereo) 22 050 216 88 200


CD (stereo) 20–20 000 44 100 216 176 400


Digital audio tape (stereo) 20–20 000 48 000 216 192 000


and the AM radio, are sampled at a relatively low sampling rate followed by


a coarse quantizer to generate the PCM sequence. The quality of the recon-


structed audio is moderate in such applications. In high-fidelity applications,


for example the FM radio, compact disc (CD), and digital audio tape (DAT),


the sampling rate is much higher to ensure accurate reconstruction of the high-


frequency components. The number of levels in the quantizer is also increased


to 216 to reduce the effect of the quantization error. Two channels, one for


the right speaker and the other for the left speaker, are transmitted for high-


fidelity applications. Compared to a single channel, the data rate is effectively


doubled with the transmission of two channels. The CD and DAT provide


excellent audio quality and are generally recognized as world standards for


achieving fidelity of audio reproduction that surpasses any other existing tech-


nique. In the following section, we discuss the CD digital audio system in more


detail.


9.4 Compact discs


The compact disc (CD) digital audio system was defined jointly in 1979 by the


Sony Corporation of Japan and the Philips Corporation of the Netherlands. The


most important component of the CD digital audio system is an optical disc


about 120 mm in diameter, which is used as the storage medium for recording


data. The optical disc is referred to as the compact disc (CD) and stores about


1010 bits of data in the form of minute pits. To read data, the CD is optically


scanned with a laser.


Before music can be recorded on a CD, it is preprocessed and converted


into PCM data. The schematic diagram of the preprocessing stage for a single


music channel is illustrated in Fig. 9.14(a). Each channel of the music signal is


amplified and applied at the input of a lowpass filter (LPF), referred to as the anti-


aliasing filter. Since the human ear is only sensitive to frequency components


within the range 20 Hz–20 kHz, the anti-aliasing filter limits the bandwidth of


the input channel to 20 kHz. Following the anti-aliasing filter is the PCM system,


which converts the CT music channel into binary data. The sampling rate used in
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pulse code modulation (PCM)
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analog to digital


conversion
channel Cm of


CT music signal


digital data


for channel Cm


error


protection


PCM


PCM


PCM


multiplexer


channel C1 


channel C2


channel CN 


CD


(a)


(b)


Fig. 9.14. Storing digital music


on a compact disk.


(a) Preprocessing stage to


convert CT music channels into


PCM data. (b) Multiplexing stage


to interleave data from multiple


channels.


the sample-and-hold circuit is 44.1 ksamples/s, which exceeds the Nyquist rate


by a margin of 4.1 ksamples/s. The additional margin reduces the complexity


of the anti-aliasing filter by allowing a fair transition bandwidth between the


pass and stop bands of the filter. The audio samples obtained from the sample-


and-hold circuit are quantized using 216-level uniform quantization. Finally,


each quantized sample is encoded with a 16-bit codeword, which results in a


raw data rate of (44 100 samples/s × 16 bits/sample) = 705.6 kbits per second
(kbps) or 705.6/8 = 88.2 kBytes per second (kBps).


For high-fidelity performance, several channels of the music signal are


recorded on a CD. For commonly used stereo systems, only two channels


corresponding to the left and right speakers are recorded. Many home theatre


systems now record a much higher number of channels to simulate surround


sound and other audio effects. Each channel of the music signal is prepro-


cessed by the system illustrated in Fig. 9.14(a) and converted into raw PCM


data. Figure 9.14(b) illustrates the multiplexing stage, where data streams from


different channels are interleaved together into a single continuous bit stream.


The final step in the multiplexing stage is an error control scheme, which adds


an additional layer of protection to the music data. Any scanning errors that


were introduced whilst data were being read out from the CD are concealed


by the error control scheme. The output of the error control circuit is stored on


the CD. To record more music on a single CD, PCM data may be compressed


using an audio compression standard such as MP3.


A CD player reverses each step illustrated in Fig. 9.14. Data read from the


CD is checked for possible scanning errors. After correcting or concealing


the detected errors, the data streams for the individual channels are derived from


the interleaved bit stream. By following the reconstruction procedure outlined


in Section 9.1.1, each data stream is used to reconstruct the corresponding music
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channel. The reconstructed channels are played simultaneously to simulate the


effect of real audio.


Example 9.4


Consider a digital monochrome CCD camera that records an image x[m, n]


at a resolution of 800 × 1200 picture elements (pixels). In other words, each
image consists of 800 × 1200 = 0.96 × 106 pixels. Assuming that the human
visual system cannot distinguish between more than 200 different shades of


gray, determine how many bytes are required to store a single image. If the


CCD camera has 32 million bytes of memory space to store images, how many


images can be saved simultaneously in the camera?


Solution


An image pixel can have 200 different shades of gray. The number of bits


required to represent the intensity value of each pixel is given by ⌈log2(200)⌉


or ⌈7.64⌉ or 8 bits;


space required to save one image


= 0.96 × 106 pixels × 8 bits/pixel


= 7.68 × 106 bits or 0.96 × 106 bytes.


Since the disc space for storing images is 32 × 106 bytes,


number of images that can be stored simultaneously


= 32 × 106 bytes/0.96 × 106 bytes


= 33.


9.5 Summary


In this chapter, we introduced the principle of sampling that is used to transform


a CT baseband signal into an equivalent DT sequence. Section 9.1 discussed


the ideal impulse-train sampling, where a periodic impulse train is multiplied


by a CT baseband signal, resulting in a sequence of equally spaced samples at


the location of the impulses (t = kTs). In the frequency domain, the spectrum


of the sampled signal consists of several shifted replicas of the spectrum of the


original signal. We observe that the original CT signal is recoverable from its


DT version by ideal lowpass filtering if the sampling rate fs = 1/Ts is greater


than twice the highest frequency present in the baseband signal. This condition


is referred to as the sampling theorem. Violating the sampling theorem distorts


the spectrum of the original baseband signal; a phenomenon known as aliasing.


In practice, impulses are difficult to generate and are often approximated by


narrow rectangular pulses. This leads to a more practical approach to sampling,


covered in Section 9.2, in which a periodic rectangular pulse train is multiplied


by the CT baseband signal to produce the sampled signal. Compared with the
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ideal impulse train sampling, the spectra of the two sampled signals are identical,


except that the shifted replicas in the spectrum of the pulse-train are attenuated


by a sinc function. Reconstruction of the original signal in rectangular pulse-


train sampling is also achieved by lowpass filtering the sampled signal. A second


practical implementation of sampling uses a zero-order hold circuit to sample


the CT signal; this is covered in Section 9.2.2.


To encode a CT signal into a digital waveform, Section 9.3 introduces the


process of quantization, in which the values of the samples are approximated to a


finite set of levels. This involves replacing the exact sample value with the closest


level defined by the L-level quantizer. In uniform quantization, the quantization


levels are distributed uniformly between the maximum and minimum ranges


of the input sequence. A uniform quantizer results in high quantization error


in most practical applications, where the distribution of the sample values is


skewed towards low amplitudes. In such cases, most of the quantization levels


in the uniform quantizer are rarely used. A non-uniform quantizer reduces the


overall quantization error by providing finer quantization at frequently occurring


lower amplitudes and coarser quantization at less frequent higher amplitudes.


Sampling is used in a number of important applications. Section 9.4 intro-


duces the compact disc (CD) and illustrates how sampling and quantization are


used to convert an analog music signal into binary data, which can be stored on


a CD. Since digital signals are less sensitive to distortion and interference than


analog signals, the audio CD provides excellent audio quality that surpasses


most analog storage mechanisms.


Problems


9.1 For the following CT signals, calculate the maximum sampling period Ts
that produces no aliasing:


(a) x1(t) = 5 sinc(200t);
(b) x2(t) = 5 sinc(200t) + 8 sin(100π t);
(c) x3(t) = 5 sinc(200t) sin(100π t);
(d) x4(t) = 5 sinc(200t) ∗ sin(100π t), where ∗ denotes the CT convolu-


tion operation.


9.2 A famous theorem known as the uncertainty principle states that a baseband
signal cannot be time-limited. By calculating the inverse CTFT of the


following baseband signals, show that the uncertainty principle is indeed


satisfied by the following signals (assume that ω0 and W are real, positive


constants):


(a) X1(ω) = rect
( ω


2W


)


e−j2ω;


(b) X2(ω) =


{


1 |ω| ≤ W


0 elsewhere;
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(c) X3(ω) = rect
(


ω − ω0
2W


)


+ rect
(


ω + ω0
2W


)


;


(d) X4(ω) = u(ω − ω0) − u(ω − 2ω0).


9.3 The converse of the uncertainty principle, explained in Problem 9.2, is
also true. In other words, a time-limited signal cannot be band-limited. By


calculating the CTFT of the following time-limited signals, show that the


converse of the uncertainty principle is indeed true (assume that τ, T , and


α are real, positive constants):


(a) x1(t) = cos(ω0t)[u(t + T ) − u(t − T )];


(b) x2(t) = rect
(


t


τ


)


∗ rect


(
t


τ


)


(∗ denotes the CT convolution operator);


(c) x3(t) = e
−α|t | rect


(
t


τ


)


;


(d) x4(t) = δ(t − 5) + δ(t + 5).


9.4 The CT signal x(t) = v1(t) v2(t) is sampled with an ideal impulse train:


s(t) =
∞∑


k=−∞


δ(t − kTs).


(a) Assuming that v1(t) and v2(t) are two baseband signals band-limited


to 200 Hz and 450 Hz, respectively, compute the minimum value of


the sampling rate fs that does not introduce any aliasing.


(b) Repeat part (a) if the waveforms for v1(t) and v2(t) are given by the


following expression:


v1(t) = sinc(600t) and v2(t) = sinc(1000t).


(c) Assuming that a sampling interval of Ts = 2 ms is used to sample


x(t) = v1(t)v2(t) specified in part (b), sketch the spectrum of the sam-


pled signal. Can x(t) be accurately recovered from the sampled signal?


(d) Repeat part (c) for a sampling interval of Ts = 0.1 ms.


9.5 The CT signal x(t) = sin(400π t) + 2 cos(150π t) is sampled with an ideal
impulse train. Sketch the CTFT of the sampled signal for the following


values of the sampling rate:


(a) fs = 100 samples/s;


(b) fs = 200 samples/s;


(c) fs = 400 samples/s;


(d) fs = 500 samples/s.


In each case, calculate the reconstructed signal using an ideal LPF with the


transfer function given in Eq. (9.7) and a cut-off frequency of ωs/2 = π fs.
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9.6 Consider the following CT signal:


x(t) =
{


0.25(3 − |t |) 0 ≤ |t | ≤ 3
0 otherwise.


(a) Calculate the CTFT X (ω). Determine the bandwidth of the signal and


the ideal Nyquist sampling rate.


(b) If the bandwidth is infinite, approximate the bandwidth as β Hz, such


that


|X (ω)| < 0.01 max|X (ω)| for |ω| > 2πβ


and recalculate a practical Nyquist sampling rate.


(c) Discretize x(t) using a sampling interval of Ts = 1 s. Plot the resulting


DT sequence x[k] corresponding to the duration −5 ≤ t ≤ 5.


(d) Quantize the signal x[k] obtained in (c) with the uniform quantizer


derived in Example 9.3. Plot the quantization error with respect to k.


What is the maximum value of the quantization error?


(e) Repeat (d) using a uniform quantizer with L = 16 reconstruction levels


defined within the dynamic range [−1, 1]. Plot the quantization error


with respect to k. What is the maximum value of the quantization error?


Compare the plot with your answer obtained in (d).


9.7 Show that the CTFS representation of the rectangular pulse train r (t) as
defined in Eq. (9.17) is given by Eq. (9.19).


9.8 The spectrum of a CT signal x(t) satisfies the following conditions:


X (ω) = 0 for |ω| < ω1 or |ω| > ω2 with ω2 > ω1 > 0.


In other words, the CTFT X (ω) of x(t) is non-zero only within the range


of frequencies ω1 ≤ |ω| ≤ ω2. Such a signal is referred to as a bandpass


signal.


(a) Show that the bandpass signal x(t) can be sampled with an ideal


impulse train at a rate less than the Nyquist rate of 2(ω2/2π )


samples/s and can be perfectly reconstructed with a bandpass filter


with the following transfer function:


Hbp(ω) =


{


p ωℓ ≤ |ω| ≤ ωu
0 elsewhere.


(b) Determine the minimum sampling rate for which perfect reconstruction


is possible.


(c) Compute the values of parameters p, ωℓ, and ωu used to specify the


transfer function of the bandpass filter.


9.9 An alternative to the bandpass sampling procedure introduced in
Problem 9.8 is the system illustrated in Fig. P9.9. For a real-valued


bandpass signal x(t) with the spectrum shown in Fig. P9.9(a), the
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Fig. P. 9.9. (a) Spectrum of a


bandpass signal x(t ); (b) ideal


sampling of a bandpass


baseband signal.


cut-off frequency of the ideal LPF Hlp(ω) in Fig. P9.9(b) is given by


ωc = 0.5(ω2 − ω1).
(a) Sketch the spectrum of the sampled signal xs(t).


(b) Determine the maximum value of the sampling interval Ts that intro-


duces no aliasing. Compare this sampling interval with that obtained


from the Nyquist rate.


(c) Implement a reconstruction system to recover x(t) from the sampled


signal xs(t).


9.10 An alternative to ideal impulse train sampling is sawtooth wave sampling.
Here, a CT signal x(t) is multiplied with a periodic sawtooth wave s(t)


(shown in Fig. P9.10). Denote the resulting signal by z(t) = x(t) ∗ s(t).
s(t)


1


−2Ts −Ts 0 Ts 2Ts
t


Fig. P. 9.10. Sawtooth function


used in sawtooth wave


sampling.


(a) Derive an expression for the CTFT Z (ω) of the signal z(t) in terms


of the CTFT of the original signal x(t).


(b) Assuming that the CTFT of the original signal x(t) is shown in


Fig. 9.3(a), sketch the spectrum of the CTFT of the signal z(t).


(c) Based on your answer to part (b), can x(t) be reconstructed from z(t)?


If yes, state the conditions under which x(t) may be reconstructed.


Sketch the block diagram of the reconstruction system including the


specifications of any filters used.


(d) By comparing the CTFTs, state how z(t) relates to the sampled signal


xs(t) obtained by ideal impulse train sampling.


9.11 Repeat Problem 9.10 with an alternating sign impulse train,


s(t) =
∞∑


k=−∞


(−1)kδ(t − kTs),


as the sampling signal.


9.12 Repeat Problem 9.10 with the periodic signal,


s(t) =
∞∑


k=−∞


[δ(t − kTs) + δ(t − � − kTs)],


as the sampling signal.
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9.13 A CT band-limited signal x(t) is sampled at its Nyquist rate fs and trans-
mitted over a band-limited channel modeled with the transfer function


Hch(ω) =
{


1 4π fs ≤ |ω| ≤ 8π fs
0 otherwise.


Let the signal received at the end of the channel be xch(t). Determine the


reconstruction system that recovers the CT signal x(t) from xch(t).


9.14 If the quantization noise needs to be limited to ±p% of the peak-to-peak
value of the input signal, show that the number of bits in each PCM word


must satisfy the following inequality:


n ≥ 3.32 log10


(
50


p


)


.


9.15 A voice signal with a bandwidth of 4 kHz and an amplitude range of
±20 mV is converted to digital data using a PCM system.


(a) Determine the maximum sampling interval Ts that can be used to


sample the voice signal.


(b) If the PCM system has an accuracy of ±5% during the quantization


step, determine the length of the codewords in bits.


(c) Determine the data rate in bps (bits/s) of the resulting PCM sequence.


9.16 A baseband signal with a bandwidth of 100 kHz and an amplitude range
of ±1 V is to be transmitted through a channel which is constrained to


a maximum transmission speed of 2 Mbps. Your task is to design a uni-


form quantizer that introduces minimum quantization error. Determine


the maximum number of levels L in the uniform quantizer. What is the


maximum distortion introduced by the uniform quantizer? Assume the


Nyquist rate for sampling.


9.17 Consider the input–output relationship of an ideal sampling system given
by


xs(t) = x(t)
∞∑


k=−∞


δ(t − kTs) =
∞∑


k=−∞


x(kTs)δ(t − kTs).


Determine if the ideal sampling system is (i) linear, (ii) time-invariant,


(iii) memoryless, (iv) causal, (v) stable, and (vi) invertible.


9.18 Consider the input–output relationship of a DT quantizer with L decision
levels, given by


y[k] = Q{x[k]} =
1


2
[dm + dm+1] for dm ≤ x[k] < dm+1 and


0 ≤ m < L .


Determine if the DT quantizer is (i) linear, (ii) time-invariant, (iii) mem-


oryless, (iv) causal, (v) stable, and (vi) invertible.
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9.19 Consider a digital mp3 player that has 1024 × 106 bytes of memory.
Assume that the audio clips stored in the player have an average duration


of five minutes.


(a) Assuming a sampling rate of 44 100 samples/s and 16 bits/sample/


channel quantization, determine the average storage space required


(without any form of compression) to store a stereo (i.e. two-channel)


audio clip.


(b) Assume that the audio clips are stored in the mp3 format, which


reduces the audio file size to roughly one-eighth of its original size.


Calculate the storage space required to store an mp3-compressed


audio clip.


(c) How many mp3-compressed audio files can be stored in the mp3


player?


9.20 Consider a digital color camera with a resolution of 2560 × 1920 pixels.
(a) Calculate the storage space required to store an image in the camera


without any compression. Assume three color channels and quanti-


zation of 8 bit/pixel/channel.


(b) Assume that the images are stored in the camera in the JPEG format,


which reduces an image to roughly one-tenth of its original size.


Calculate the storage space required to store a JPEG-compressed


image.


(c) If the camera has 512 × 106 bytes of memory, determine the number
of JPEG-compressed images that can be stored in the camera.
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C H A P T E R


10 Time-domain analysis of
discrete-time systems


An important subset of discrete-time (DT) systems satisfies the linearity and


time-invariance properties, discussed in Chapter 2. Such DT systems are


referred to as linear, time-invariant, discrete-time (LTID) systems. In this chap-


ter, we will develop techniques for analyzing LTID systems. As was the case


for the LTIC systems discussed in Part II, we are primarily interested in cal-


culating the output response y[k] of an LTID system to a DT sequence x[k]


applied at the input of the system.


In the time domain, an LTID system is modeled either with a linear, constant-


coefficient difference equation or with its impulse response h[k]. Section 10.1


covers linear, constant-coefficient difference equations and develops numer-


ical techniques for solving such equations. Section 10.2 defines the impulse


response h[k] as the output of an LTID system to an unit impulse function δ[k]


applied at the input of the system and shows how the impulse response can


be derived from a linear, constant-coefficient difference equation. Section 10.3


proves that any arbitrary DT sequence can be represented as a linear combina-


tion of time-shifted DT impulse functions. This development leads to a second


approach for calculating the output y[k] based on convolving the applied input


sequence x[k] with the impulse response h[k] in the DT domain. The resulting


operation is referred to as the convolution sum and is defined in Section 10.4.


Section 10.5 introduces two graphical methods for calculating the convolution


sum, and Section 10.6 lists several important properties of the convolution sum.


A special case of convolution sum, referred to as the periodic or circular con-


volution, occurs when the two operands are periodic sequences. Section 10.7


develops techniques for computing the periodic convolution and shows how


it may be used to compute the linear convolution. In Section 10.8, we revisit


the causality, stability, and invertibility properties of LTID systems and express


these properties in terms of the impulse response h[k]. M A T L A B instructions


for computing the convolution sum are listed in Section 10.9. The chapter is


concluded in Section 10.10 with a summary of the important concepts covered


in the chapter.


422
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10.1 Finite-difference equation representation of LTID systems


As discussed in Section 3.1, an LTIC system can be modeled using a linear,


constant-coefficient differential equation. Likewise, the input–output relation-


ship of a linear DT system can be described using a difference equation, which


takes the following form:


y[k + n] + an−1 y[k + n − 1] + · · · + a0 y[k]
= bm x[k + m] + bm−1x[k + m − 1] + · · · + b0x[k], (10.1)


where x[k] denotes the input sequence and y[k] denotes the resulting out-


put sequence, and coefficients ar (for 0 ≤ r ≤ n − 1), and br (for 0 ≤ r ≤ m)


are parameters that characterize the DT system. The coefficients ar and br


are constants if the DT system is also time-invariant. For causal signals and


systems analysis, the following n initial (or ancillary) conditions must be spec-


ified in order to obtain the solution of the nth-order difference equation in


Eq. (10.1):


y[−1], y[−2], . . . , y[−n].


We now consider an iterative procedure for solving linear, constant-coefficient


difference equations.


Example 10.1


The DT sequence x[k] = 2ku[k] is applied at the input of a DT system described


by the following difference equation:


y[k + 1] − 0.4y[k] = x[k].


By iterating the difference equation from the ancillary condition y[−1] = 4,


compute the output response y[k] of the DT system for 0 ≤ k ≤ 5.


Solution


Express y[k + 1] − 0.4y[k] = x[k] as follows:


y[k] = 0.4y[k − 1] + x[k − 1]


= 0.4y[k − 1] + 2(k − 1) u(k − 1) { . .. x[k] = 2k u[k]} ,


which can alternatively be expressed as


y[k] =


{


0.4y[k − 1] k = 0


0.4y[k − 1] + 2(k − 1) k ≥ 1.
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(a) (b)


Fig. 10.1. Input and output


sequences for Example 10.1.


(a) Input sequence x[k ];


(b) output sequence y [k ].


By iterating from k = 0, the output response is computed as follows:
y[0] = 0.4y[−1] = 1.6,
y[1] = 0.4y[0] + 2 × 0 = 0.64,
y[2] = 0.4y[1] + 2 × 1 = 2.256,
y[3] = 0.4y[2] + 2 × 2 = 4.902,
y[4] = 0.4y[3] + 2 × 3 = 7.961,
y[5] = 0.4y[4] + 2 × 4 = 11.184.


Additional values of the output sequence for k > 5 can be similarly evaluated


from further iterations with respect to k. The input and output sequences are


plotted in Fig. 10.1 for 0 ≤ k ≤ 5.


In Chapter 3, we showed that the output response of a CT system, represented by


the differential equation in Eq. (3.1), can be decomposed into two components:


the zero-state response and the zero-input response. This is also valid for the


DT systems represented by the difference equation in Eq. (10.1). The output


response y[k] can be expressed as


y[k] = yzi[k]
︸ ︷︷ ︸


zero-input response


+ yzs[k],
︸ ︷︷ ︸


zero-state response


(10.2)


where yzi[k] denotes the zero-input response (or the natural response) of the


system and yzs[k] denotes the zero-state response (or the forced response) of


the DT system.


The zero-input component yzi[k] for a DT system is the response produced by


the system because of the initial conditions, and is not due to any external input.


To calculate the zero-input component yzi[k], we assume that the applied input


sequence x[k] = 0. On the other hand, the zero-state response yzs[k] arises due


to the input sequence and does not depend on the initial conditions of the system.


To calculate the zero-state response yzs[k], the initial conditions are assumed


to be zero. Based on Eq. (10.2), a DT system represented by Eq. (10.1) can


be considered as an incrementally linear system (see Section 2.2.1) where the


additive offset is caused by the initial conditions (see Fig. 2.10). If the initial


conditions are zero, the DT system becomes on LTID system. We now solve


Example 10.1 in terms of the zero-input and zero-state components of the output.


Example 10.2


Repeat Example 10.1 to calculate (i) the zero-input response yzi[k], (ii) the zero-


state response yzs[k], and (iii) the overall output response y[k] for 0 ≤ k ≤ 5.
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Solution


(i) The zero-input response of the system is obtained by solving the following


difference equation:


y[k + 1] − 0.4y[k] = x[k],


with input x[k] = 0 and ancillary condition y[−1] = 4. The difference equation
reduces to


yzi[k] = 0.4yzi[k − 1],


with ancillary condition yzi[−1] = 4. Iterating for k = 0, 1, 2, 3, 4, and 5 yields


yzi[0] = 0.4yzi[−1] = 1.6,
yzi[1] = 0.4yzi[0] = 0.64,
yzi[2] = 0.4yzi[1] = 0.256,
yzi[3] = 0.4yzi[2] = 0.1024,
yzi[4] = 0.4yzi[3] = 0.0410,
yzi[5] = 0.4yzi[4] = 0.0164.


(ii) The zero-state response of the system is calculated by solving the fol-


lowing difference equation:


yzs[k] = 0.4yzs[k − 1] + 2(k − 1)u[k − 1],


with ancillary condition yzs[−1] = 0. Iterating the difference equation for
k = 0, 1, 2, 3, 4, and 5 yields


yzs[0] = 0.4yzs[−1] + 2 × (−1) × 0 = 0,
yzs[1] = 0.4yzs[0] + 2 × 0 × 1 = 0,
yzs[2] = 0.4yzs[1] + 2 × 1 × 1 = 2,
yzs[3] = 0.4yzs[2] + 2 × 2 × 1 = 4.8,
yzs[4] = 0.4yzs[3] + 2 × 3 × 1 = 7.92,
yzs[5] = 0.4yzs[4] + 2 × 4 × 1 = 11.168.


(iii) Adding the zero-input and zero-state components obtained in parts


(i) and (ii), yields


y[0] = yzi[0] + yzs[0] = 1.6,
y[1] = yzi[1] + yzs[1] = 0.64,
y[2] = yzi[2] + yzs[2] = 2.256,
y[3] = yzi[3] + yzs[3] = 4.902,
y[4] = yzi[4] + yzs[4] = 7.961,
y[5] = yzi[5] + yzs[5] = 11.184.


Note that the overall output response y[k] is identical to the output response


obtained in Example 10.1. By iterating with respect to k, additional values for


the output response y[k] for k > 5 can be computed.
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In Section 10.1, we used a linear, constant-coefficient difference equation to


model an LTID system. A second model is based on the impulse response h[k]


of a system. This alternative representation leads to a different approach for


analyzing LTID systems. Section 10.2 presents this alternative approach.


10.2 Representation of sequences using Dirac delta functions


In this section, we show that any arbitrary sequence x[k] may be represented as


a linear combination of time-shifted, DT impulse functions. Recall that a DT


impulse function is defined in Eq. (1.51) as follows:


δ[k] =
{


1 k = 0
0 k �= 0.


(10.3)


We are interested in representing any DT sequence x[k] as a linear combina-


tion of shifted impulse functions, δ[k − m], for −∞ < m < ∞. We illustrate


the procedure using the arbitrary function x[k] shown in Fig. 10.2(a). Figures


10.2(b)–(f) represent x[k] as a linear combination of a series of simple functions


xm[k], for−∞ < m < ∞. Since xm[k] is non-zero only at one location (k = m),


it represents a scaled and time-shifted impulse function. In other words,


xm[k] = x[m]δ[k − m]. (10.4)


In terms of xm[k], the DT sequence x[k] is, therefore, represented by


x[k] = · · · + x−2[k] + x−1[k] + x0[k] + x1[k] + x2[k] + · · ·


= · · · + x[−2]δ[k + 2] + x[−1]δ[k + 1] + x[0]δ[k]


+ x[1]δ[k − 1] + x[2]δ[k − 2] + · · · ,


k


x[k]


0 32


1


4 5−5 −4 −3 −2 −1 0 321 4 5−5 −4 −3 −2 −1


k


x−2[k] = x[−2]d[k+2]


0 321 4 5−5 −4 −3 −2 −1
k


−


x−1[k] = x[−1]d[k+1]


0 321 4 5−5 −4 −3 −2 −1
k


x0[k] = x[0]d[k]


0 32 4 5−5 −4 −3 −2 −1
k


1


x1[k] = x[1]d[k−1]


0 321 4 5−5 −4 −3 −2 −1
k


x2[k] = x[2]d[k−2]


(a) (b) (c)


(d) (e) (f)


Fig. 10.2. Representation of a


DT sequence as a linear


combination of time-shifted


impulse functions. (a) Arbitrary


sequence x[k ]; (b)–(f) its


decomposition using DT impulse


functions.
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which reduces to


x[k] =
∞∑


m=−∞


x[m]δ[k − m]. (10.5)


Equation (10.5) provides an alternative representation of an arbitrary DT func-


tion using a linear combination of time-shifted DT impulses. In Eq. (10.5),


variable m denotes the dummy variable for the summation that disappears as


the summation is computed. Recall that a similar representation exists for the


CT functions and is given by Eq. (3.24).


10.3 Impulse response of a system


In Section 10.1, a constant-coefficient difference equation is used to specify the


input–output characteristics of an LTID system. An alternative representation of


an LTID system is obtained by specifying its impulse response. In this section,


we will formally define the impulse response and illustrate how the impulse


response of an LTID system can be derived directly from the difference equation


modeling the LTID system.


Definition 10.1 The impulse response h[k] of an LTID system is the output of


the system when a unit impulse δ[k] is applied at the input of the LTID system.


Following the notation introduced in Eq. (2.1b), the impulse response can be


expressed as follows:


δ[k] → h[k], (10.6)


with zero ancillary conditions.


Note that an LTID system satisfies the linearity and the time-shifting properties.


Therefore, if the input is a scaled and time-shifted impulse function aδ[k − k0],


the output, Eq. (10.6), of the DT system is also scaled by a factor of a and


time-shifted by k0, i.e.


aδ[k − k0] → ah[k − k0], (10.7)


for any arbitrary constants a and k0. Section 10.4 illustrates how Eq. (10.7) can


be generalized to calculate the output of LTID systems for any arbitrary input.


Example 10.3


Consider the LTID systems with the following input–output relationships:


(i) y[k] = x[k − 1] + 2x[k − 3]; (10.8)


(ii) y[k + 1] − 0.4y[k] = x[k]. (10.9)


Calculate the impulse responses for the two LTID systems. Also, determine


the output responses of the LTID systems when the input is given by x[k] =


2δ[k] + 3δ[k − 1].
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Solution


(i) The impulse response of a system is the output of the system when the input


sequence x[k] = δ[k]. Therefore, the impulse response h[k] of system (i) can
be obtained by substituting y[k] by h[k] and x[k] by δ[k] in Eq. (10.8). In other


words, the impulse response for system (i) is given by


h[k] = δ[k − 1] + 2δ[k − 3].


To evaluate the output response resulting from the input sequence x[k] =
2δ[k] + 3δ[k − 1], we use the linearity and time-invariance properties of the
system. The outputs resulting from the two terms 2δ[k] and 3δ[k − 1] in the
input sequence are as follows:


2δ[k] → 2h[k] = 2δ[k − 1] + 4δ[k − 3]


and


3δ[k − 1] → 3h[k − 1] = 3δ[k − 2] + 6δ[k − 4].


Applying the superposition principle, the output y[k] to input x[k] = 2δ[k] +


3δ[k − 1] is given by


2δ[k] + 3δ[k − 1] → 2h[k] + 3h[k − 1]


or


y[k] = (2δ[k − 1] + 4δ[k − 3]) + (3δ[k − 2] + 6δ[k − 4])


= 2δ[k − 1] + 3δ[k − 2] + 4δ[k − 3] + 6δ[k − 4]).


(ii) On substituting y[k] by h[k] and x[k] by δ[k] in Eq. (10.9), the impulse


response of the LTID system (ii) is represented by the following recursive


equation:


h[k + 1] − 0.4h[k] = δ[k]. (10.10a)


Equation (10.10a) is a difference equation, which can be solved by substituting


k = m − 1. The resulting equation is given by


h[m] = δ[m − 1] + 0.4h[m − 1]. (10.10b)


To solve for the delayed response h[m − 1], we substitute k = m − 2 in


Eq. (10.10a). The resulting expression is given by


h[m − 1] = δ[m − 2] + 0.4h[m − 2]. (10.10c)


Substituting the above value of h[m− 1] from Eq. (10.10c) in Eq. (10.10a)


yields


h[m] = δ[m − 1] + 0.4δ[m − 2] + 0.42h[m − 3].








P1: NIG/RTO P2: RPU


CUUK852-Mandal & Asif May 28, 2007 13:52


429 10 Time-domain analysis of DT systems


The aforementioned procedure can be repeated for the delayed impulse response


h[m − 3] on the right-hand side of the equation, then for the resulting h[m − 4],
and so on. The final result is as follows:


h[m] = δ[m − 1] + 0.4δ[m − 2] + 0.42δ[m − 3] + 0.43δ[m − 4] + · · ·


or


h[m] =
∞∑


ℓ=1


0.4ℓ−1δ[m − ℓ] = 0.4m−1u[m − 1]


or


h[k] = 0.4k−1u[k − 1],


which is the required expression for the impulse response of the system.


Next, we proceed to calculate the output of the LTID system for the


input sequence x[k] = 2δ[k] + 3δ[k − 1]. Because the system is linear and


time-invariant, the output sequence y[k] resulting from input x[k] = 2δ[k] +


3δ[k − 1] is given by


2δ[k] + 3δ[k − 1] → 2h[k] + 3h[k − 1]


or


y[k] = 2 × 0.4k−1u[k − 1] + 3 × 0.4k−2u[k − 2]


= 2 × 0.40δ[k − 1] + (2 × 0.4k−1u[k − 2] + 3 × 0.4k−2u[k − 2])


= 2δ[k − 1] + 3.8 × 0.4k−2u[k − 2].


Example 10.4


The impulse response of an LTID system is given by h[k] = 0.5ku[k]. Deter-


mine the output of the system for the input sequence x[k] = δ[k − 1] + 3δ[k −


2] + 2δ[k − 6].


Solution


Because the system is LTID, it satisfies the linearity and time-shifting properties.


The individual responses to the three terms δ[k − 1], 3δ[k − 2], and 2δ[k − 6]


in the input sequence x[k] are given by


δ[k − 1] → h[k − 1] = 0.5k−1u[k − 1],


3δ[k − 2] → 3h[k − 2] = 3 × 0.5k−2u[k − 2],


and


2δ[k − 6] → 2h[k − 6] = 2 × 0.5k−6u[k − 6].
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k


y[k]


1


3.5


1.75


0.88


0.44


2.22


1.11


0.55


k
3 41 2 5 6 7 8−1 0−2 3 41 2 5 6 7 8−1 0−2


h[k]1


0.5
0.52


0.530.54


(a) (b)


Fig. 10.3. (a) Impulse response


h[k ] of the LTID system specified


in Example 10.4. (b) Output y [k ]


of the LTID system for input


x[k ] = δ[k − 1] + 3δ[k − 2] +
2δ[k − 6].


Applying the principle of superposition, the overall response to the input


sequence x[k] is given by


y[k] = h[k − 1] + 3h[k − 2] + 2h[k − 6].


Substituting the value of h[k] = 0.5ku[k] results in the output response:


y[k] = 0.5k−1u[k − 1] + 3 × 0.5k−2u[k − 2] + 2 × 0.5k−6u[k − 6] .


The impulse response h[k] and the resulting output sequence are plotted in


Figs 10.3(a) and (b).


10.4 Convolution sum


Examples 10.3 and 10.4 compute the output of an LTID system for relatively


elementary input sequences x[k] consisting of a few scaled and time-shifted


impulses. In this section, we extend the approach to more complex input


sequences.


It was shown in Eq. (10.5), which is reproduced below for clarity, that any


arbitrary input sequence can be represented as a linear combination of time-


shifted impulse functions as follows:


x[k] =
∞∑


m=−∞


x[m]δ[k − m]. (10.11)


Note that in Eq. (10.11), x[m] is a scalar representing the magnitude of the


impulse δ[k − m] located at k = m. In terms of the impulse response h[k], the


output resulting from a single impulse x[m]δ[k − m] is given by


x[m]δ[k − m] −→ x[m]h[k − m]. (10.12)
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DT system


h[k]
∞


m=−∞


∞


m=−∞
x[k] = ∑ x[m]d[k−m] y[k]= ∑x[m]h[k −m] = x[m]∗h [m]


Fig. 10.4. Output response of a


system to an arbitrary input


sequence x[k ].


Applying the principle of superposition, the overall output y[k] resulting from


the input sequence x[k], represented by Eq. (10.11), is given by


∞∑


m=−∞


x[m]δ[k − m]


︸ ︷︷ ︸


x[k]


−→


∞∑


m=−∞


x[m]h[k − m]


︸ ︷︷ ︸


y[k]


, (10.13)


where the summation on the right-hand side, used to compute the output


response y[k], is referred to as the convolution sum. Equation (10.13) pro-


vides us with a second approach for calculating the output y[k]. It states that


the output y[k] can be calculated by convolving the input sequence x[k] with


the impulse response h[k] of the LTID system. Mathematically, Eq. (10.13) is


expressed as follows:


y[k] = x[k] ∗ h[k] =


∞∑


m=−∞


x[m]h[k − m], (10.14)


where ∗ denotes the convolution sum. Figure 10.4 illustrates the process of


convolution. The convolution operation defined in Eq. (10.14) is commonly


referred to as the linear convolution, in contrast to a special type of convolution


known as periodic convolution, which is discussed in Section 10.6.


We now consider several examples to illustrate the steps involved in com-


puting the convolution sum.


Example 10.5


Assuming that the impulse response of an LTID system is given by h[k] =


0.5ku[k], determine the output response y[k] to the input sequence x[k] =


0.8ku[k].


Solution


Using Eq. (10.14), the output response y[k] of the LTID system is given by


y[k] =


∞∑


m=−∞


x[m]h[k − m] =


∞∑


m=−∞


0.8mu[m]0.5k−mu[k − m].


Using the values of the unit step function u[m], the above summation simplifies


as follows:


y[k] =


∞∑


m=0


0.8m0.5k−mu[k − m].


Depending on the value of k, the output response y[k] of the system may take


two different forms for k ≥ 0 or k < 0. We consider the two cases separately.
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10 2 3 4 5−3 −2 −1 6−4


1.31.291.16
0.99


0.82
0.67


k


10


3
[0.8k+1 − 0.5k+1]u[k]=


1


Fig. 10.5. Output of an LTID


system, with impulse response


h[k ] = 0.2ku[k ], to the input
sequence x[k ] = 0.5ku[k ] as
calculated in Example 10.5.


Case 1 (k < 0) When k < 0, the unit step function u[k − m] = 0 within the
limits of summation (0 ≤ m ≤ ∞). Therefore, the output sequence y[k] = 0


for k < 0.


Case II (k ≥ 0) When k ≥ 0, the unit step function u[k − m] has the following
values:


u[k − m] =


{


1 m ≤ k


0 m > k.


The output sequence y[k] is therefore given by


y[k] =


k∑


m=0


0.8m0.5k−m = 0.5k
k∑


m=0


(
0.8


0.5


)m


,


for k ≥ 0. The above summation represents a geometric progression (GP) series.


Using the GP series sum formula provided in Appendix A, Section A.3, the


output response y[k] is calculated as follows:


y[k] = 0.5k
[


1 − (0.8/0.5)k+1


1 − (0.8/0.5)


]


=
10


3
[0.8k+1 − 0.5k+1].


Combining the two cases (k < 0 and k ≥ 0), the output response y[k] is given


by


y[k] =











0 k < 0
10


3
[0.8k+1 − 0.5k+1] k ≥ 0


=
10


3
[0.8k+1 − 0.5k+1]u[k].


The output response of the system is plotted in Fig. 10.5.


Example 10.5 shows how to calculate the convolution sum analytically. In


many situations, it is more convenient to use a graphical approach to evaluate


the convolution sum. Section 10.5 describes the graphical approach.


10.5 Graphical method for evaluating the convolution sum


The graphical approach for calculating the convolution sum is similar to the


graphical procedure for calculating the convolution integral for the LTIC system,
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discussed in Chapter 3. In the following, we highlight the main steps in calcu-


lating the convolution sum between two sequences x[k] and h[k].


Algorithm 10.1 Graphical procedure for computing the linear convolution


(1) Sketch the waveform for input x[m] by changing the independent variable


of x[k] from k to m and keep the waveform for x[m] fixed during steps


(2)–(7).


(2) Sketch the waveform for the impulse response h[m] by changing the inde-


pendent variable from k to m.


(3) Reflect h[m] about the vertical axis to obtain the time-inverted impulse


response h[−m].
(4) Shift the sequence h[−m] by a selected value of k. The resulting function


represents h[k − m].
(5) Multiply the input sequence x[m] by h[k − m] and plot the product function


x[m]h[k − m].
(6) Calculate the summation


∑∞


m=−∞
x[m]h[k − m].


(7) Repeat steps (4)–(6) for −∞ ≤ k ≤ ∞ to obtain the output response y[k]


over all time k.


The graphical approach for calculating the output response is illustrated through


a series of examples.


Example 10.6


Repeat Example 10.5 with input x[k] = 0.8ku[k] and impulse response h[k] =


0.5ku[k] to determine the output of the LTID system using the graphical con-


volution approach.


Solution


Following steps (1)–(3) of Algorithm 10.1, the DT sequences x[m] = 0.8mu[m],


h[m] = 0.5mu[m] and its time reflection h[−m] = 0.5−mu[−m] are plotted in


Fig. 10.6. Based on step (4), the sequence h[k − m] = h[−(m − k)] is obtained


by shifting h[−m] by k samples. To compute the output sequence, we consider


two cases based on the values of k.


Case 1 For k < 0, the waveform h[k − m] is on the left-hand side of the vertical
axis. As is apparent in Fig. 10.6, step (5a), waveforms for h[k − m] and x[m] do


not overlap. In other words, the product x[m]h[k − m] = 0, for −∞ ≤ m ≤ ∞,


as long as k < 0. The output sequence y[k] is therefore zero for k < 0.


Case 2 For k ≥ 0, we see from Fig. 10.6, step (5b), that the non-zero parts of
h[k − m] and x[m] overlap over the range m = [0, k]. Therefore,


y[k] =


k∑


m=0


x[m]h[k − m] =


k∑


m=0


0.8m0.5k−m .
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1


1.3 1.29
1.16


0.99
0.82


0.67


y[k]


Fig. 10.6. Convolution of the


input sequence x[k ] with the


impulse response h[k ] in


Example 10.6.


As shown in Example 10.5, the above summation simplifies to


y[k] =
10


3
[0.8k+1 − 0.5k+1] for k ≥ 0.


Combining Cases 1 and 2, the overall output sequence is given by


y[k] =
10


3
[0.8k+1 − 0.5k+1]u[k].


The final output response is plotted in Fig. 10.6, step (6).


Example 10.7


For the following DT sequences:


x[k] =


{


2 0 ≤ k ≤ 2


0 otherwise
and h[k] =


{


k + 1 0 ≤ k ≤ 4


0 otherwise,


calculate the convolution sum y[k] = x[k] ∗ h[k] using the graphical approach.


Solution


Following steps (1)–(3) of Algorithm 10.1, the sequences x[m], h[m], and its


reflection h[−m] are plotted as a function of the independent variable m in


Fig. 10.7, steps (1)–(3). The DT sequence h[k − m] = h[−(m − k)] is obtained


by shifting the time-reflected function h[−m] by k. Depending on the value of


k, five special cases arise. We consider these cases separately.


Case 1 For k < 0, we see from Fig. 10.7, step (5a), that the non-zero parts of
h[k − m] and x[m] do not overlap. In other words, output y[k] = 0 for k < 0.


Case 2 For 0 ≤ k ≤ 2, we see from Fig. 10.7, step (5b), that the non-zero parts
of h[k − m] and x[m] overlap over the duration m = [0, k]. Therefore, the
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step (1) step (2) step (3)
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Fig. 10.7. Convolution of the


input sequence x [k ] with the


impulse response h[k ] in


Example 10.7.


output response for 0 ≤ k ≤ 2 is given by


y[k] =


k∑


m=0


x[m]h[k − m] =


k∑


m=0


2 × (k − m + 1) = 2(k + 1)


k∑


m=0


1 − 2


k∑


m=0


m


= 2(k + 1)2 − 2


k∑


m=1


m.


The summation
∑k


m=1 m is an arithmetic progression (AP) series. Using the


AP series summation formula provided in Appendix A, Section A.3, the output


response y[k] for 0 ≤ k ≤ 2 is calculated as follows:


y[k] = 2(k + 1)2 − k(k + 1) = k2 + 3k + 2.


Case 3 For 2 ≤ k ≤ 4, we see from Fig. 10.7, step (5c), that the non-zero part
of h[k − m] completely overlaps x[m] over the region m = [0, 2]. The output


response y[k] for 2 ≤ k ≤ 4 is given by


y[k] =


2∑


m=0


x[m]h[k − m] =


2∑


m=0


2 × (k − m + 1)


= 2(k + 1)


2∑


m=0


1 − 2


2∑


m=0


m = 6(k + 1) − 6 = 6k.
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Case 4 For 4 ≤ k ≤ 6, we see from Fig. 10.7, step (5d), that the non-zero part
of h[k − m] partially overlaps x[m] over the region m = [k − 4, 2]. The output


y[k] for 5 ≤ k ≤ 6 is given by


y[k] =


2∑


m=k−4


x[m]h[k − m] =


2∑


m=k−4


2 × (k − m + 1)


= 2(k + 1)


2∑


m=k−4


1 − 2


2∑


m=k−4


m


= 2(k + 1)(7 − k) − (7 − k)(k − 2) = −k2 + 3k + 8.


Case 5 For k > 6, we see from Fig. 10.7, step (5e), that the non-zero parts of
h[k − m] and x[m] do not overlap. Therefore, the product x[m]h[k − m] = 0


for all values of m. The value of the output sequence y[k] = 0 for k > 6.


Combining the above five cases, we obtain


y[k] =















0 k < 0, k > 6


k2 + 3k + 2 0 ≤ k ≤ 2


6k 2 ≤ k ≤ 4


−k2 + 3k + 8 4 ≤ k ≤ 6,


which is plotted in Fig. 10.7, step (6).


10.5.1 Sliding tape method


The graphical convolution approach, illustrated in Examples 10.6 and 10.7,


for LTID systems is similar to the graphical convolution procedure for LTIC


systems. However, sketching the figures for the time-reversed and time-shifted


impulse functions may prove to be difficult in certain cases. There is a variant


of the graphical method for DT convolution, known as the sliding tape method,


which is convenient in cases where the convolved sequences are relatively


short in length. Instead of drawing the figures in such cases, we compute the


convolution sum using a table whose entries are the values of the DT sequences


at different instances. We illustrate the sliding tape method in Examples 10.8


and 10.9.


Example 10.8


For the two sequences x[k] and h[k] defined in Example 10.7, calculate the


convolution y[k] = x[k] ∗ h[k] using the sliding tape method.


Solution


The convolution of x[k] and h[k] using the sliding tape method is illustrated


in Table 10.1. The first row represents the m-axis; the second row represents


the input sequence x[m]; and the third row represents the impulse response
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Table 10.1. Convolution of x [k ] and h[k ] using the sliding tape method for Example 10.8


m . . . −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 . . . k y[k]


x[m] 2 2 2


h[m] 1 2 3 4 5


h[−m] 5 4 3 2 1
h[−1 − m] 5 4 3 2 1 −1 0
h[0 − m] 5 4 3 2 1 0 2
h[1 − m] 5 4 3 2 1 1 6
h[2 − m] 5 4 3 2 1 2 12
h[3 − m] 5 4 3 2 1 3 18
h[4 − m] 5 4 3 2 1 4 24
h[5 − m] 5 4 3 2 1 5 18
h[6 − m] 5 4 3 2 1 6 10
h[7 − m] 5 4 3 2 1 7 0


h[m] for different values of m. Following the steps involved in convolution,


we generate the values for the sequence h[k − m] and store the value in a row.
To generate the values of h[k − m], we first form the function h[−m], which
is obtained by time-inverting h[m]. The result is illustrated in the fourth row


of Table 10.1. The time-reversed function h[−m] is used to generate h[k − m]
by right-shifting h[−m] by k time units. For example, the fifth row contains
the values of the function h[−1 − m] = h[−(m + 1)]. Similarly, rows (6)–(13)
contain the values of the function h[k − m] = h[−(m − k)] for the range 0
≤ k ≤ 7. In order to calculate y[k] for a fixed value of k, we multiply the entries


in the row containing x[m] by the corresponding entries contained in the row


for h[k − m] and then evaluate the summation:


y[k] =


∞∑


m=−∞


x[m]h[k − m].


For k = −1, we note that the non-zero entries of x[m] and h[k − m] do not


overlap. Therefore, y[k] = 0 for k = −1. Since there is also no overlap for


k < −1, the output y[k] = 0 for k ≤ −1.


The aforementioned multiplication process is repeated for different values


of k. For k = 0, we note that the only overlap between the non-zero values of


x[m] and h[−m] occurs for m = 0. The output response is therefore given by


y[0] = 2 · 1 = 2.


These values of time instant k = 0 and the output response y[0] = 2 are stored


in the last two columns of row (6), corresponding to the entries of h[0 − m]


in Table 10.1. Similarly, for k = 1, we observe that the overlap between the


non-zero values of x[m] and h[1 − m] occurs for m = 0 and 1. The output


response is given by


y[0] = 2 · 2 + 2 · 1 = 6
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Table 10.2. Convolution of x [k ] and h[k ] using the sliding tape method for Example 10.9


m . . . −5 −4 −3 −2 −1 0 1 2 3 4 5 6 . . . k y[k]


h[m] 3 1 −2 3 −2
x[m] −1 1 2
x[−m] 2 1 −1
x[−3 − m] 2 1 −1 −3 0
x[−2 − m] 2 1 −1 −2 −3
x[−1 − m] 2 1 −1 −1 2
x[0 − m] 2 1 −1 0 9
x[1 − m] 2 1 −1 1 −3
x[2 − m] 2 1 −1 2 1
x[3 − m] 2 1 −1 3 4
x[4 − m] 2 1 −1 4 −4
x[5 − m] 2 1 −1 5 0


and is stored in the last column of Table 10.1. We repeat the process for increas-


ing values of k until the overlap between x[m] and h[k − m] is eliminated.
In Table 10.1, this occurs for k > 7, beyond which the output response y[k] is


zero.


By comparison with the result obtained in Example 10.7, we note that the


output response y[k] obtained using the sliding tape method is identical to the


one obtained using the graphical approach.


Example 10.9


For the following pair of the input sequence x[k] and impulse response h[k]:


x[k] =















−1 k = −1
1 k = 0
2 k = 1
0 otherwise


and h[k] =















3 k = −1, 2
1 k = 0


−2 k = 1, 3
0 otherwise,


calculate the output response using the sliding tape method.


Solution


The output y[k] can be calculated by convolving the input sequence x[k] with


the impulse response h[k]. Since convolution satisfies the distributive property,


i.e.


y[k] = x[k] ∗ h[k] = h[k] ∗ x[k],


Table 10.2 reverses the role of the input sequence x[k] with that of the impulse


response h[k] and computes the following summation:


y[k]


k
0 2 3


−2


−1


1 4


5−4 −3−5


2


9


1


−3
−4


−3


4≈≈


Fig. 10.8. Output response


calculated using the sliding tape


method in Example 10.9.


y[k] =


∞∑


m=−∞


h[m]x[k − m],


implying that the input sequence is time-reversed and time-shifted, while the


impulse response is kept fixed. The results of Table 10.2 are plotted in Fig. 10.8.
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10.6 Periodic convolution


Linear convolution is used to convolve aperiodic sequences. If the convolv-


ing sequences are periodic, the result of linear convolution is unbounded. In


such cases, a second type of convolution, referred to as periodic or circular


convolution, is generally used.


Consider two periodic sequences xp[k] and hp[k], with identical fundamental


period K0. The subscript p denotes periodicity. The relationship for the periodic


convolution between two periodic sequences is defined as follows:


yp[k] = xp[k] ⊗ hp[k] =
∑


m=〈K0〉


xp[m]hp[k − m], (10.15)


where the summation on the right-hand side of Eq. (10.15) is defined over


one complete period K0. In calculating the summation, we can, therefore, start


from any arbitrary position (say m = m0) as long as one complete period of


the sequences is covered by the summation. For the lower limit m = m0, the


upper limit is given by m = m0 + K0− 1. In the text, the periodic convolu-


tion is denoted by the operator ⊗, whereas the linear convolution is denoted


by ∗.


The steps involved in calculating the periodic convolution are given in the


following algorithm.


Algorithm 10.2 Graphical procedure for computing the periodic convolution


(1) Sketch the waveform for input xp[m] by changing the independent vari-


able of xp[k] from k to m and keep the waveform for xp[m] fixed during


steps (2)–(7).


(2) Sketch the waveform for the impulse response hp[m] by changing the inde-


pendent variable from k to m.


(3) Reflect hp[m] about the vertical axis to obtain the time-inverted impulse


response hp[−m]. Set the time index k = 0.


(4) Shift the function hp[−m] by a selected value of k. The resulting sequence


represents hp[k − m].


(5) Multiply input sequence xp[m] by hp[k − m] and plot the product function


xp[m]hp[k − m].


(6) Calculate the summation
∑


m=〈K0〉
xp[m]hp[k − m] for m = [m0, m0 +


K0 − 1] to determine yp[k] for the value of k selected in step (4).


(7) Increment k by one and repeat steps (4)–(6) till all values of k in the specified


range (0 ≤ k ≤ K0 − 1) are exhausted.


(8) Since yp[k] is periodic with period K0, the values of yp[k] outside the range


0 ≤ k ≤ K0 − 1 are determined from the values obtained in steps (6) and


(7).
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step (1)
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Fig. 10.9. Periodic convolution


of the periodic sequences x[k ]


and h[k ] in Example 10.10.


By comparing the aforementioned procedure for computing the periodic con-


volution with the procedure specified for evaluating the linear convolution in


Section 10.5, we observe that steps (4), (6), and (7) are different in the two


algorithms. In the linear convolution, the summation


∞∑


m=−∞


x[m]h[k − m]


is computed within the limits m = [−∞, ∞] for different values of k in the


range −∞ ≤ k ≤ ∞. In the periodic convolution, however, the summation is


computed over one complete period, say m = [m0, m0 + K0 − 1] for a reduced


range (0 ≤ k ≤ K0 − 1).


Example 10.10


Determine the periodic convolution between the following periodic sequences:


xp[k] = k, for 0 ≤ k ≤ 3 and hp[k] =


{


5 k = 0, 1


0 k = 2, 3,


with the fundamental period K0 = 4.


Solution


Following steps (1)–(3), the periodic sequences xp[m], hp[m], and its reflected


version hp[−m] are plotted in Fig. 10.9, steps (1)–(3). Since the fundamental


period K0 = 4, we compute the result of the periodic convolution as follows:


yp[k] = xp[k] ⊗ hp[k] =


3∑


m=0


xp[m]hp[k − m] (10.16)


for 0 ≤ k ≤ 3. The DT periodic sequences hp[k − m] and xp[m] for k = 0, 1,


2, and 3 are plotted, respectively, in Fig. 10.9, steps 4(a)–(d). The convolution
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summation, Eq. (10.16), has the following values:


(k = 0) yp[0] = xp[0]hp[0] + xp[1]hp[−1] + xp[2]hp[−2] + xp[3]hp[−3]


= 0 × 5 + 1 × 0 + 2 × 0 + 3 × 5 = 15;


(k = 1) yp[1] = xp[0]hp[1] + xp[1]hp[0] + xp[2]hp[−1] + xp[3]hp[−2]


= 0 × 0 + 1 × 5 + 2 × 0 + 3 × 0 = 5;


(k = 2) yp[2] = xp[0]hp[2] + xp[1]hp[1] + xp[2]hp[0] + xp[3]hp[−1]


= 0 × 0 + 1 × 5 + 2 × 5 + 3 × 0 = 15;


(k = 3) yp[3] = xp[0]hp[3] + xp[1]hp[2] + xp[2]hp[1] + xp[3]hp[0]


= 0 × 0 + 1 × 0 + 2 × 5 + 3 × 5 = 25.


The remaining values of yp[k] are easily determined by exploiting the period-


icity property of yp[k]. The output yp[k] is plotted in Fig. 10.9, step (8).


An alternative procedure for computing the periodic convolution can be


obtained by calculating the limits of Eq. (10.15) for m = 0 to m = K0 − 1.
The resulting expression is given by


yp[k] =
K0−1∑


m=0
xp[m]hp[k − m]


or


yp[k] = xp[0]hp[k] + xp[1]hp[k − 1] + xp[2]hp[k − 2]
+ · · · + xp[K0 − 1]hp[k − (K0 − 1)],


for 0 ≤ k ≤ K0 − 1. Expanding the above equation in terms of the time index


k yields


yp[0] = xp[0]hp[0] + xp[1]hp[−1] + xp[2]hp[−2] + · · ·


+ xp[K0 − 1]hp[−(K0 − 1)],


yp[1] = xp[0]hp[1] + xp[1]hp[0] + xp[2]hp[−1]


+ · · · + xp[K0 − 1]hp[−(K0 − 2)],


yp[2] = xp[0]hp[2] + xp[1]hp[1] + xp[2]hp[0] + · · ·


+ xp[K0 − 1]hp[−(K0 − 3)],


...


yp[K0 − 1] = xp[0]hp[K0 − 1] + xp[1]hp[K0 − 2]


+ xp[2]hp[K0 − 3] + · · · + xp[K0 − 1]hp[0].













































(10.17)


Since hp[k] is periodic,


hp[k] = hp[k + K0] or hp[−k] = hp[K0 − k]. (10.18)
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Equation (10.18) is referred to as periodic or circular reflection. Before pro-


ceeding with the alternative algorithm for periodic convolution, we explain


circular reflection in more detail.


2 30
k


1


hp[k]


2 30
k


1


hp[k]


2 30
k


1


hp[k]


k


hp[−k]


2 30 1


2 30 1


k


hp[k−1]


(a)


(c)


(b)


(e)


(d)


Fig. 10.10. Circular reflection


and shifting for a periodic


sequence. (a) Original periodic


sequence hp[k ]. (b) Procedure


to determine circularly reflected


sequence hp[−k ] from hp[k ].
(c) Circularly reflected sequence


hp[−k ]. (d) Procedure to
determine circularly shifted


sequence hp[k − 1] from hp[k ].
(e) Circularly shifted sequence


hp[k − 1].


Example 10.11


For the periodic sequence


hp[k] =
{


5 k = 0, 1
0 k = 2, 3,


with fundamental period K0 = 4, determine the circularly reflected sequence
hp[−k] and the circular shifted sequence hp[k−1].


Solution


Let vp[k] denote the circular reflected sequence hp[−k]. Using vp[k] =
hp[−k] = hp[K0 − k], the values of the circularly reflected signals are given
by


k = 0 vp[0] = hp[K0] = hp[0] = 5;
k = 1 vp[1] = hp[K0 − 1] = hp[3] = 0;
k = 2 vp[2] = hp[K0 − 2] = hp[2] = 0;
k = 3 vp[3] = hp[K0 − 3] = hp[1] = 5.


The original sequence hp[k] is plotted in Fig. 10.10(a), and the circularly


reflected sequence hp[−k] is plotted in Fig. 10.10(c). Note that the circu-
larly reflected signal hp[−k] can be obtained directly from hp[k] by keep-
ing the value of hp[0] fixed and then reflecting the remaining values of


hp[k] for 1 ≤ k ≤ K0 − 1 about k = K0/2. This procedure is illustrated in


Fig. 10.10(b).


Substituting 0 ≤ k ≤ K0 − 1, the values for the circularly shifted signal wp[k]


= hp[k−1] are obtained as follows:


k = 0 wp[0] = hp[−1] = hp[K0 − 1] = 0;


k = 1 wp[1] = hp[0] = 5;


k = 2 vp[2] = hp[1] = 5;


k = 3 vp[3] = hp[2] = 0.


The circularly shifted sequence hp[k − 1] is plotted in Fig. 10.10(e). The circu-


larly shifted signal hp[k − 1] can also be obtained directly from hp[k] by shift-


ing hp[k] towards the left by one time unit and moving the overflow value of


hp[K0 − 1] back into the sequence. This procedure is illustrated in Fig. 10.10(d).


To derive the alternative algorithm for periodic convolution, we substitute


different values of k within the range 1 ≤ k ≤ K0 − 1 in Eq. (10.18). The


resulting equations are given by


hp[−1] = hp[K0 − 1]; hp[−2] = hp[K0 − 2]; . . . ; hp[−(K0 − 1)] = hp[1],
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which are substituted in Eq. (10.18) to obtain


yp[0] = xp[0]hp[0] + xp[1]hp[K0 − 1] + xp[2]hp[K0 − 2]


+ · · · xp[K0 − 1]hp[1],


yp[1] = xp[0]hp[1] + xp[1]hp[0] + xp[2]hp[K0 − 1]


+ · · · xp[K0 − 1]hp[2],


yp[2] = xp[0]hp[2] + xp[1]hp[1] + xp[2]hp[0] + · · · xp[K0 − 1]hp[3],


...


yp[K0 − 1] = xp[0]hp[K0 − 1] + xp[1]hp[K0 − 2]


+ xp[2]hp[K0 − 3] + · · · xp[K0 − 1]hp[0].















































(10.19)


These expressions require values from only one period (0 ≤ k ≤ K0 − 1) of


the input sequence xp[k] and the impulse response hp[k]. Therefore, we can


implement the periodic convolution from a single period of the convolving


functions. The main steps involved in such an implementation are listed in the


following algorithm.


Algorithm 10.3 Alternative procedure for computing the periodic convolution


(1) Sketch one period of the waveform for input xp[m] by changing the inde-


pendent variable of xp[k] from k to m within the range 0 ≤ k ≤ K0 − 1.


(2) Sketch one period of the waveform for the impulse response hp[m] by


changing the independent variable from k to m within the range 0 ≤ k ≤


K0 − 1.


(3) Reflect hp[m] such that hp[−m] = hp[K0 − m] as defined by the circular


reflection. Set k = 0.


(4) Using the circularly reflected function hp[−m], determine the waveform


for hp[k − m] = hp[−(m − k)].


(5) Multiply the function xp[m] by hp[k − m] for 0 ≤ m ≤ K0 − 1 and plot


the product function xp[m]hp[k − m].


(6) Calculate the summation
∑K0−1


m=0
xp[m]hp[k − m] to determine yp[k] for


the value of k selected in step (4).


(7) Increment k by one and repeat steps (4)–(6) till all values of k within the


range 0 ≤ k ≤ K0 − 1 are exhausted.


(8) Since yp[k] is periodic with period K0, the values of yp[k] outside the range


0 ≤ k ≤ K0 − 1 are determined from the values obtained in steps (7).


We illustrate the alternative implementation by repeating Example 10.12 and


using the modified algorithm.
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step (2) step (3)


step (4c) step (4d)
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k
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15 15 15 15


25 25


5 5
Fig. 10.11. Periodic convolution


using circular shifting in Example


10.12.


Example 10.12


Using Algorithm 10.3, determine the periodic convolution of the periodic


sequences


xp[k] = k (0 ≤ k ≤ 3) and hp[k] =
{


5 k = 0, 1


0 k = 2, 3,


with fundamental period K0 = 4.


Solution


Following steps (1) and (2), the applied input and the impulse response are


plotted as a function of m in Fig. 10.11, steps (1) and (2).


Following step (3), the circularly reflected impulse response vp[m] =


hp[−m] = hp[K0 − m] for 0 ≤ m ≤ 3 is calculated as follows:


vp[0] = hp[0] = 1; vp[1] = hp[−1] = hp[3] = 0; vp[2] = hp[−2]


= hp[2] = 0; and vp[3] = hp[−3] = hp[1] = 3.








P1: NIG/RTO P2: RPU


CUUK852-Mandal & Asif May 28, 2007 13:52


445 10 Time-domain analysis of DT systems


For k = 0, the DT sequence hp[k − m] = hp[−m]. The value of the output
response at k = 0 is given by


yp[0] =
K0−1∑


m=0
xp[m]hp[−m] = 0(5) + 1(0) + 2(0) + 3(5) = 15.


For k = 1, the DT sequence hp[k − m] = hp[1 − m]. The new sequence
hp[1 − m] = hp[−(m − 1)] is obtained by circularly shifting hp[−m] towards
the right by one sample, with the last sample at m = 3 taking the place of the
first sample at m = 0. The sequence hp[1 − m] is plotted in Fig. 10.11, step
(4b). Multiplying by hp[m], the value of the output response at k = 1 is given
by


yp[1] =
K0−1∑


m=0
xp[m]hp[1 − m] = 0(5) + 1(5) + 2(0) + 3(0) = 5.


For k = 2, the DT sequence hp[k − m] = hp[2 − m]. The new sequence
hp[2 − m] is obtained by circularly shifting hp[1 − m] towards the right by
one sample, with the last sample at m = 3 taking the place of the first sample at
m = 0. The sequence hp[2 − m] is plotted in Fig. 10.11, step (4c). Multiplying
by hp[m], the value of the output response at k = 2 is given by


yp[2] =
K0−1∑


m=0
xp[m]hp[2 − m] = 0(0) + 1(5) + 2(5) + 3(0) = 15.


For k = 3, the DT sequence hp[k − m] = hp[3 − m]. The new sequence
hp[3 − m] is obtained by circularly shifting hp[2 − m] towards the right by
one sample, with the last sample at m = 3 taking the place of the first sample at
m = 0. The sequence hp[3 − m] is plotted in Fig. 10.11, step (4d). Multiplying
by hp[m], the value of the output response at k = 3 is given by


yp[3] =
K0−1∑


m=0
xp[m]hp[3 − m] = 0(0) + 1(0) + 2(5) + 3(5) = 25.


The final output yp[k], obtained from steps (5)–(8) of Algorithm 10.3, is


plotted in Fig. 10.11, Steps (5)–(8). Observe that the result is identical to that in


Fig. 10.9, which was obtained using the full periodic convolution.


10.6.1 Linear convolution through periodic convolution


In this chapter, we have introduced two types of DT convolution. The linear


convolution, defined in Eq. (10.14), is used to convolve aperiodic sequences,


while the periodic convolution, defined in Eq. (10.15), is used for convolving


periodic sequences. Definition 10.3 states a condition under which the results


of the periodic and linear convolution are the same.


Definition 10.3 Assume that x[k] and h[k] are two aperiodic DT sequences of


finite length such that the following are true.
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(i) The DT sequence x[k] = 0 outside the range kℓ1 ≤ k ≤ ku1. Note that it is
possible for x[k] to have some zero values within the range kℓ1 ≤ k ≤ ku1.


The length Kx of x[k] is given by Kx = (ku1 − kℓ1 + 1) samples.


(ii) The DT sequence h[k] = 0 outside the range kℓ2 ≤ k ≤ ku2. As for x[k], it


is possible for h[k] to have intermittent zero values within the range kℓ2 ≤


k ≤ ku2. The length Kh of h[k] is given by Kh = ku2 − kℓ2 + 1 samples.


Add the appropriate number of zeros to the two sequences x[k] and h[k] so


that they have the same length K0 ≥ (Kx + Kh − 1). The procedure of adding


zeros to a sequence is referred to as zero padding. The periodic extensions of


zero-padded x[k] and h[k] are denoted by xp[k] and hp[k], which have the


same fundamental period of K0 ≥ (Kx + Kh − 1). Mathematically, the single


periods of xp[k] and hp[k] are defined as follows:


xp[k] =


{


x[k] kℓ1 ≤ k ≤ ku1


0 ku1 < k ≤ K0 + kℓ1 − 1
(10.20a)


and


hp[k] =


{


h[k] kℓ2 ≤ k ≤ ku2


0 ku2 < k ≤ K0 + kℓ2 − 1.
(10.20b)


It can be shown that the linear convolution between x[k] and h[k] can be


obtained from the periodic convolution between xp[k] and hp[k] using the fol-


lowing relationship:


x[k] ∗ h[k] = xp[k] ⊗ hp[k],


for (kℓ1 + kℓ2) ≤ k ≤ (ku1 + ku2).


Definition 10.3 provides us with an alternative algorithm for implementing


the linear convolution through the periodic convolution. The advantage of the


above approach lies in computationally efficient implementations of the peri-


odic convolution, which are much faster than the implementations of the linear


convolution. Chapter 12 presents one such approach using the discrete Fourier


transform (DFT) to compute the periodic convolution.


Algorithm 10.4 Computing linear convolution from periodic convolution


(1) Consider two time-limited DT sequences x[k] and h[k]. The DT sequence


x[k] = 0 outside the range kℓ1 ≤ k ≤ ku1 of length Kx = ku1 − kℓ1 + 1


samples. Similarly, the DT sequence h[k] = 0 outside the range kℓ2 ≤ k ≤


ku2 of length Kh = ku2 − kℓ2 + 1 samples.


(2) Select an arbitrary integer K0 ≥ Kx + Kh− 1.


(3) Compute the periodic extension xp[k] of x[k] using Eq. (10.20a).


(4) Compute the periodic extension hp[k] of h[k] using Eq. 10.20b).
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Fig. 10.12. Periodic convolution


using circular shifting in Example


10.13.


(5) Calculate the periodic convolution yp[k] = xp [k] ⊗ hp[k]. The result of
the linear convolution is obtained by selecting the range kℓ1 + kℓ2 ≤ k ≤


ku1 + ku2 of yp[k].


Example 10.13 illustrates the aforementioned procedure.


Example 10.13


Compute the linear convolution of the following DT sequences:


x[k] =











2 k = 0


−1 |k| = 1


0 otherwise


and h[k] =















2 k = 0


3 |k| = 1


−1 |k| = 2


0 otherwise,


using the periodic convolution method outlined in Algorithm 10.4.


Solution


The DT sequences x[k] and h[k] are plotted in Fig. 10.12, step (1). We observe


that the length Kx of x[k] is 3, while the length Kh of h[k] is 5.


Based on step (2), the value of K0 ≥ 3 + 5 − 1 or 7. We select K0 = 8.


Following step (3), we form xp[k] by padding x[k] with K0 − Kx or five


zeros. The resulting sequence xp[k] is shown in Fig. 10.12, step (3).


Following step (4), we form hp[k] by padding h[k] with K0 − Kh , or three


zeros. The resulting sequence hp[k] is shown in Fig. 10.12, step (4).


Following step (5), the periodic convolution of the DT sequences xp[k] and


hp[k] is performed using the sliding tape method. The final result is shown


in Table 10.3, where only one period (K0 = 8) of each sequence within the


duration k = [−3, 4] is considered.


The sliding tape approach illustrated in Table 10.3 is slightly different from


that of Table 10.2. The reflection and shifting operations in Table 10.3 are


based on circular reflection and circular shifting since periodic sequences are
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Table 10.3. Periodic convolution of xp[k ] and hp[k ] in Example 10.13


m −3 −2 −1 0 1 2 3 4 k yp[k]


hp[k] 0 −1 3 2 3 −1 0 0
xp[k] 0 0 −1 2 −1 0 0 0
xp[−k] 0 0 −1 2 −1 0 0 0
xp[−4 − k] −1 0 0 0 0 0 −1 2 −4 0
xp[−3 − k] 2 −1 0 0 0 0 0 −1 −3 1
xp[−2 − k] −1 2 −1 0 0 0 0 0 −2 −5
xp[−1 − k] 0 −1 2 −1 0 0 0 0 −1 5
xp[0 − k] 0 0 −1 2 −1 0 0 0 0 −2
xp[1 − k] 0 0 0 −1 2 −1 0 0 1 5
xp[2 − k] 0 0 0 0 −1 2 −1 0 2 −5
xp[3 − k] 0 0 0 0 0 −1 2 −1 3 1
xp[4 − k] −1 0 0 0 0 0 −1 2 4 0


being convolved. The values of the output sequence yp[k] over one period


(−3 ≤ k ≤ 4) are listed in the right-hand column of Table 10.3.
The plot of the periodic output yp[k] is sketched in Fig. 10.12, step (5).


The result of the linear convolution y[k] = x[k] ∗ h[k] is obtained by selecting


one period of the periodic output yp[k] within the duration kℓ1 + kℓ2 ≤ k ≤


ku1 + ku2, which equals −3 ≤ k ≤ 3.


10.7 Properties of the convolution sum


The properties of the DT linear convolution sum are similar to the proper-


ties of the CT convolution integral presented in Chapter 3. In the following,


we list the properties of linear convolution for DT sequences followed by the


corresponding properties for the periodic convolution.


Commutative property


x1[k] ∗ x2[k] = x2[k] ∗ x1[k]. (10.21)


The commutative property states that the order of the convolution operands


does not affect the result of the convolution. In the context of LTID systems, the


commutative property implies that the input sequence and the impulse response


of the DT system may be interchanged without affecting the output response.


The periodic convolution also satisfies the commutative property provided that


the two sequences have the same fundamental period K0.


Distributive property


x1[k] ∗ {x2[k] + x3[k]} = x1[k] ∗ x2[k] + x1[k] ∗ x3[k]. (10.22)
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The distributive property states that convolution is a linear operation with respect


to addition. The periodic convolution also satisfies the distributive property


provided that the three sequences have the same fundamental period K0.


Associative property


x1[k] ∗ {x2[k] ∗ x3[k]} = {x1[k] ∗ x2[k]} ∗ x3[k]. (10.23)


This property states that changing the order of the linear convolution operands


does not affect the result of the linear convolution. The periodic convolution


also satisfies the associative property provided that the three sequences have


the same fundamental period K0.


Shift property If x1[k] ∗ x2[k] = g[k], then


x1[k − k1] ∗ x2[k − k2] = g[k − k1 − k2] (10.24)


for any arbitrary integer constants k1 and k2. In other words, if the two operands


of the linear convolution sum are shifted then the result of the convolution sum


is shifted in time by a duration that is the sum of the individual time shifts


introduced in the operands. The periodic convolution satisfies the shift property


with respect to the circular shift operation.


Length of convolution Let the non-zero lengths of the convolution operands
x1[k] and x2[k] be denoted by K1 and K2 time units, respectively. It can be shown


that the non-zero length of the linear convolution (x1[k] ∗ x2[k]) is K1 + K2 − 1


time units. The periodic convolution does not satisfy the length property. The


circular convolution of two periodic sequences with fundamental period K0 is


also of length K0.


Convolution with impulse function


x1[k] ∗ δ[k − k0] = x1[k − k0]. (10.25)


In other words, convolving a DT sequence with a unit impulse function whose


origin is located at k = k0 shifts the DT sequence by k0 time units. Since periodic


convolution is defined in terms of periodic sequences and the impulse function


is not a periodic sequence, Eq. (10.25) is not valid for the periodic convolution.


Convolution with unit step function


x1[k] ∗ u[k] =


∞∑


m=−∞


x[m]u[k − m] =


k∑


m=−∞


x[m]. (10.26)


Equation (10.26) states that convolving a DT sequence x[k] with a unit step


function produces the running sum of the original sequence x[k] as a function


of time k. Since periodic convolution is defined in terms of periodic sequences
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and the unit step function is not periodic, Eq. (10.26) is not valid for the periodic


convolution.


Causal functions If one of the sequences is causal, the expression for linear
convolution, Eq. (10.14), can be written in a simpler form. For example, if


h[k] = 0 for k < 0, the convolution sum y[k] in Eq. (10.14) is expressed as
follows:


y[k] = x[k] ∗ h[k] =
∞∑


m=−∞


h[m]x[k − m]


=


∞∑


m=0


h[m]x[k − m]. (10.27a)


However, if h[k] is both causal and time-limited, i.e. if h[k] = 0 for k < 0 and


k > K , then the convolution sum is expressed as follows:


y[k] =


K∑


m=0


h[m]x[k − m]. (10.27b)


Since periodic convolution is defined in terms of periodic sequences, which are


not causal, Eqs. (10.27a) and (10.27b) are not valid for the periodic convolution.


Example 10.14


Simplify the following expressions using the properties of the discrete-time


convolution:


(i) (x[k] + 2δ[k − 1]) ∗ δ[k − 2],


(ii) (x[k − 1] − 3δ[k + 1]) ∗ (δ[k − 2] + u[k − 1]),


where x[k] is an arbitrary function and δ[k] is the unit impulse function.


Solution


(i) Applying the distributive property,


(x[k] + 2δ[k − 1]) ∗ δ[k − 2] = x[k] ∗ δ[k − 2]
︸ ︷︷ ︸


term I


+ 2δ[k − 1] ∗ δ[k − 2]
︸ ︷︷ ︸


term II


.


In both terms I and II, convolution with an impulse function is involved.


Equation (10.25) yields


term I = x[k] ∗ δ[k − 2] = x[k − 2]


and


term II = 2δ[k − 1] ∗ δ[k − 2] = 2δ[k − 3].


The simplified expression for (i) is as follows:


(x[k] + 2δ[k − 1]) ∗ δ[k − 2] = x[k − 2] + 2δ[k − 3].
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(ii) Applying the distributive property,


(x[k − 1] − 3δ[k + 1]) ∗ (δ[k − 2] + u[k − 1])


= x[k − 1] ∗ δ[k − 2]
︸ ︷︷ ︸


term I


− 3δ[k + 1] ∗ δ[k − 2]
︸ ︷︷ ︸


term II


+ x[k − 1] ∗ u[k − 1]
︸ ︷︷ ︸


term III


− 3δ[k + 1] ∗ u[k − 1]
︸ ︷︷ ︸


term IV


.


Terms I, II, and IV involve convolution with an impulse function. Equation


(10.24) yields


term I = x[k − 1] ∗ δ[k − 2] = x[k − 3],


term II = 3δ[k + 1] ∗ δ[k − 2] = 3δ[k − 1],


and


term IV = 3δ[k + 1] ∗ u[k − 1] = 3u[k].


Term III involves convolution with a unit step function. We express term III as


follows:


term III = x[k − 1] ∗ u[k − 1] = (δ[k − 1] ∗ x[k]) ∗ (u[k] ∗ δ[k − 1])


= (x[k] ∗ u[k]) ∗ (δ[k − 1] ∗ δ[k − 1]) = (x[k] ∗ u[k]) ∗ δ[k − 2].


Using Eq. (10.26) we can further simplify term III to obtain


term III = (x[k] ∗ u[k]) ∗ δ[k − 2] =


(
k∑


m=−∞


x[m]


)


∗ δ[k − 2]


=


k−2∑


m=−∞


x[m].


The simplified expression for (ii) is given by


(x[k − 1] − 3δ[k + 1]) ∗ (δ[k − 2] + u[k − 1])


= x[k − 3] − 3δ[k − 1] + 3u[k] +


k−2∑


m=−∞


x[m].


10.8 Impulse response of LTID systems


In Section 2.2, we considered several properties of DT systems. Since the char-


acteristics of an LTID system is completely specified by its impulse response, it


is logical to assume that its properties can also be completely determined from


its impulse response. In this section, we express some of the basic properties of


the LTID systems defined in Section 2.2 in terms of the impulse response of the


LTID systems. We consider the memory, causality, stability, and invertibility


properties for the LTID systems.
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10.8.1 Memoryless LTID systems


A DT system is said to be memoryless if its output y[k] at time instant k = k0
depends only on the value of the applied input sequence x[k] at the same time


instant k = k0. In other words, a memoryless LTID system typically has the
input–output relationship of the following form:


y[k] = ax[k],


where a is a constant. By substituting x[k] = δ[k], the impulse response h[k]
of a memoryless system can be expressed as


h[k] = aδ[k]. (10.28)


An LTID system will be memoryless if and only if its impulse response


h[k] = aδ[k]. Equivalently, an LTID system is memoryless if and only if
h[k] = 0 for k �= 0.


10.8.2 Causal LTID systems


A DT system is said to be causal if the output at time instant k = k0 depends


only on the value of the applied input sequence x[k] at and before the time


instant k = k0. Using the reasoning similar to that given in Section 3.7.2 for the


CT system, the following can be stated.


An LTID system will be causal if and only if its impulse response h[k] = 0


for k < 0.


10.8.3 Stable LTID systems


A DT system is BIBO stable if an arbitrary bounded input sequence always


produces a bounded output sequence. Consider a bounded sequence x[k] with


|x[k]| < Bx , for all k, applied as the input to an LTID system with impulse


response h[k]. The magnitude of the output y[k] is given by


|y[k]| =


∣
∣
∣
∣
∣


∞∑


m=−∞


h[m]x[k − m]


∣
∣
∣
∣
∣
.


Using the traingle inequality, we can say that the output is bounded by the


following limit:


|y[k]| ≤


∞∑


m=−∞


|h[m]| x[k − m]|.
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Since |x[k]| < Bx , the above inequality reduces to


|y[k]| ≤ Bx
∞∑


m=−∞


|h[m]|.


It is clear from the above expression that for the output y[k] to be bounded


(i.e. |y[k]| < ∞), the summation
∑∞


m=−∞
|h[m]| needs to be bounded. The


stability condition can therefore be stated as follows.


If the impulse response h[k] of an LTID system satisfies the following


condition:


∞∑


k=−∞


|h[k]| < ∞, (10.29)


the LTID system is BIBO stable.


Example 10.15


Determine which of the LTID systems with impulse responses, shown in


Figs 10.13(a)–(c), are memoryless, causal, and stable.


h1[k]


k
−1−2−3−4−5 210 3 4 5


2222


−1−2−3−4−5 210 3 4 5


h2[k]


k


3
2


1


−1−2−3−4−5 210 3 4 5


h3[k]


k


5


(a)


(b)


(c)


Fig. 10.13. Impulse responses


for systems considered in


Example 10.15.


Solution


(a) Memoryless: since h1[k] �= 0 for k �= 0, the DT system in Fig. 10.13(a) is


not memoryless. In fact, the impulse response h1[k] extends to −∞, therefore


this system has an infinite memory.


Causality: since h1[k] �= 0 for all k < 0, the system is not causal.


Stability: using Eq. (10.29),


∞∑


k=−∞


|h1[k]| =


2∑


k=−∞


|h1[k]| =


2∑


k=−∞


k is even


2 = ∞.


Therefore, the system is not stable.


(b) Memoryless: since h2[k] �= 0 for k �= 0, the DT system in Fig. 10.13(b)


is not memoryless. The impulse response h2[k] has a finite memory of two time


units.


Causality: since h2[k] = 0 for all k < 0, the system is causal.


Stability: using Eq. (10.29),


∞∑


k=−∞


|h2[k]| =


2∑


k=0


|h2[k]| = 3 + 2 + 1 = 6.


Therefore, the system is BIBO stable.


(c) Memoryless: since h3[k] = 0 for k �= 0, the DT system in Fig. 10.13(c)


is memoryless.








P1: NIG/RTO P2: RPU


CUUK852-Mandal & Asif May 28, 2007 13:52


454 Part III Discrete-time signals and systems


Causality: since h3[k] = 0 for all k < 0, the system is causal. Also note that
all memoryless systems are causal.


Stability using Eq. (10.29),


∞∑


k=−∞


|h3[k]| = |h3[0]| = 5.


Therefore, the system is BIBO stable.


10.8.4 Invertible LTID systems


Consider an LTID system with impulse response h[k]. The output y1[k] of the


system for an input sequence x[k] is given by y1[k] = x[k] ∗ h[k]. To check its


invertibility property, we cascade a second LTID system with impulse response


hi[k] in series with the original system. The output of the second system is


given by


y2[k] = y1[k] ∗ hi[k] = (x[k] ∗ h[k]) ∗ hi[k]


= x[k] ∗ (h[k] ∗ hi[k]),


based on the associative property.


For the second system to be an inverse of the original system, the final output


y2[k] should be the same as x[k], the input to the first LTID system. This is


possible only if


h[k] ∗ hi[k] = δ[k]. (10.30)


The existence of hi[k] proves that an LTID system is invertible. At times, it is


difficult to determine the inverse system hi[k] in the time domain. In Chapter 11,


when we introduce the discrete Fourier transform, we will revisit the topic and


illustrate how the impulse response of the inverse system can be evaluated with


relative ease in the frequency domain.


Example 10.16


Determine which of the following systems is invertible:


(i) h[k] = δ[k − 3];


(ii) h[k] = δ[k] + δ[k − 1].


Solution


(i) Because δ[k − 3] ∗ δ[k + 3] = δ[k], system (i) is invertible. The impulse


response hi[k] of the inverse of system (i) is given by


hi[k] = δ[k + 3].


(ii) It is difficult to calculate the impulse response of the inverse system in


the time domain. Using the DTFT introduced in Chapter 11, we can show that








P1: NIG/RTO P2: RPU


CUUK852-Mandal & Asif May 28, 2007 13:52


455 10 Time-domain analysis of DT systems


the impulse response of the inverse of system (ii) is given by


hi[k] =
∞∑


m=0


(−1)mδ[k − m] = δ[k] − δ[k − 1] + δ[k − 2] − δ[k − 3] ± · · ·


We can show indirectly that hi[k] is indeed the impulse response of the inverse


of system (ii) by proving that h[k] ∗ hi[k] = δ[k]:


h[k] ∗ hi[k] = (δ[k] + δ[k − 1]) ∗ hi[k] = hi[k] + hi[k − 1]


= (δ[k] − δ[k − 1] + δ[k − 2] − δ[k − 3] ± · · ·) + (δ[k − 1]


− δ[k − 2] + δ[k − 3] − δ[k − 4] ± · · ·)


= δ[k].


10.9 Experiments with M A T L A B


M A T L A B provides several functions (also referred to as M-files) for processing


DT signals and LTID systems. In this section, we will focus on the M A T L A B


implementations of the difference equations with known ancillary conditions,


convolution of two DT signals, and deconvolution.


10.9.1 Difference equations


Consider the following linear, constant-coefficient difference equation:


y[k + n] + an−1 y[k + n − 1] + · · · + a0 y[k]


= bm x[k + m] + bm−1x[k + m − 1] + · · · + b0x[k], (10.31)


which models the relationship between the input sequence x[k] and the output


response y[k] of an LTID system. The ancillary conditions y[−1], y[−2], . . . ,


y[−n] are also specified.


To solve the difference equation, M A T L A B provides a built-in function


filter with the syntax


>> [y] = filter(B,A,X,Zi);


In terms of the difference equation, Eq. (10.31), the input variables B and A are


defined as follows:


A = [1, an−1, . . . , a0] and B = [bm, bm−1, . . . , b0],


while X is the vector containing the values of the input sequence and Zi denotes


the initial conditions of the delays used to implement the difference equation.


The initial conditions used by the filter function are not the past values of


the output y[k] but a modified version of these values. The initial conditions


used by M A T L A B can be obtained by using another built-in function,filtic.


The calling syntax for the filtic function is as follows:


>> [Zi] = filtic(B,A,yinitial);
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For an n-order difference equation, the input variable yinitial is set to


yinitial = [y[−1], y[−2], . . . , y[−n]].


To illustrate the usage of the built-in function filter, let us repeat


Example 10.1 using M A T L A B .


Example 10.17


The DT sequence x[k] = 2ku[k] is applied at the input of an LTID system
described by the following difference equation:


y[k + 1] − 0.4 y[k] = x[k],


with the ancillary condition y[−1] = 4. Compute the output response y[k] of
the LTID system for 0 ≤ k ≤ 50 using M A T L A B.


Solution


The M A T L A B code used to solve the difference equation is listed below. The


explanation follows each instruction in the form of comments.


>> k = [0:50]; % time index k = [-1, 0, 1,


% ...50]


>> X = 2*k.*(k>=1); % Input signal


>> A = [1 -0.4]; % Coefficients with y[k]


>> B = [0 1]; % Coefficients with x[k]


>> Zi = filtic(B,A,4); % Initial condition


>> Y = filter(B,A,X,Zi); % Calculate output


The output response is stored in the vector Y. Printing the first six values of the


output response yields


Y = [1.6 0.6400 2.2560 4.9024 7.9610 11.1844],


which corresponds to the values of the output response y[k] for the duration


0 ≤ k ≤ 5. Comparing with the numerical solution obtained in Example 10.1,


we observe that the two results are identical.


Next we proceed with a second-order difference equation.


Example 10.18


The DT sequence x[k] = 0.5ku[k] is applied at the input of an LTID system


described by the following second-order difference equation:


y[k + 2] + y[k + 1] + 0.25y[k] = x[k + 2],


with ancillary conditions y[−1] = 1 and y[−2] = −2. Compute the output


response y[k] of the LTID system for 0 ≤ k ≤ 50 using M A T L A B.
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Solution


The M A T L A B code used to solve the difference equation is listed below. The


explanation follows each instruction in the form of comments.


>> k = [0:50]; % time index k = [-1, 0, 1,


% ...50]


>> X = 0.5.ˆk.*(k>=0); % Input signal


>> A = [1 1 0.25]; % Coefficients with y[k]


>> B = [1 0 0]; % Coefficients with x[k]


>> Zi = filtic(B,A,[1 -2]); % Initial condition


>> Y = filter(B,A,X,Zi); % Calculate output


The output response is stored in the vector Y. Printing the first five values of


the output response yields


Y = [0.5000 -0.2500 0.3750 -0.1875 0.1563


-0.0781 0.0547].


To confirm if the M A T L A B code is correct, we also compute the values of


the output response in the range 0 ≤ k ≤ 5. We express y[k + 2] + y[k + 1] +


0.25y[k]=x[k + 2] as follows:


y[k] = −y[k − 1] − 0.25y[k − 2] + x[k],


with ancillary conditions y[−1] = 1 and y[−2] = −2. Solving the difference


equation iteratively yields


y[0] = −y[−1] − 0.25y[−2] + x[0] = −1 − 0.25(−2) + 1 = 0.5,


y[1] = −y[0] − 0.25y[−1] + x[1] = −0.5 − 0.25(1) + 0.5 = −0.25,


y[2] = −y[1] − 0.25y[0] + x[2] = −(−0.25) − 0.25(0.5) + 0.25 = 0.375,


y[3] = −y[2] − 0.25y[1] + x[3] = −0.375 − 0.25(−0.25) + 0.125


= −0.1875,


y[4] = −y[3] − 0.25y[2] + x[4] = −(−0.1875) − 0.25(0.375) + 0.0625


= 0.1563,


and


y[5] = −y[4] − 0.25y[3] + x[2] = −0.1563 − 0.25(−0.1875) + 0.031 25


= −0.0782,


which are the same as the values computed using M A T L A B .


The expressions for the initial conditions for the higher-order difference equa-


tions are more complex. Fortunately, most systems are causal with zero ancillary


conditions. The initial conditions Zi are zero in such cases.
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10.9.2 Convolution


Consider two time-limited DT sequences x1[k] and x2[k], where x1[k] �= 0


within the range kℓ1 ≤ k ≤ ku1 and x2[k] �= 0 within the range kℓ2 ≤ k ≤ ku2.


The length K1 of the DT sequence x1[k] is given by K1 = ku1 − kℓ1 + 1 samples,


while the length K2 of the DT sequence x2[k] is K2 = ku2 − kℓ2 + 1 samples.


In M A T L A B , two vectors are required to represent each DT signal. The first


vector contains the sample values, while the second vector stores the time


indices corresponding to the sample values. For example, the following DT


sequence:


x[k] =















−1 k = −1


1 k = 0


2 k = 1


0 otherwise


has the following M A T L A B representation:


>> kx = [-1 0 1]; % time indices where x is nonzero


>> x = [-1 1 2]; % Sample values for DT sequence x


To perform DT convolution, M A T L A B provides a built-in function conv. We


illustrate its usage by repeating Example 10.9 with M A T L A B .


Example 10.19


Consider the following two DT sequences x[k] and h[k] specified in


Example 10.9:


x[k] =















−1 k = −1


1 k = 0


2 k = 1


0 otherwise


and h[k] =















3 k = −1, 2


1 k = 0


−2 k = 1, 3


0 otherwise.


Compute the convolution y[k] = x[k] ∗ h[k] using M A T L A B.


Solution


The M A T L A B code used to convolve the two functions is given below. As


before, the explanation follows each instruction in the form of comments.


>> kx = [-1 0 1]; % time indices where x is nonzero


>> x = [-1 1 2]; % Sample values for DT sequence x


>> kh = [-1 0 1 2 3]; % time indices where y is nonzero


>> h = [3 1 -2 3 -2]; % Sample values for DT sequence y


>> y = conv(x,h); % Convolve x with h


>> ky = kx(1)+kh(1):kx(length(kx))+kh(length(kh));


% ky= time indices for y


In the above instructions, note that M A T L A B does not calculate the indices of


the result of convolution. These indices have to be calculated separately based
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on the observation that we made on the starting and last indices of the convolved


result.


The computed values of y are given by


y = [-3 2 9 -3 1 4 -4],


with the computed indices


ky = [-2 -1 0 1 2 3 4].


Note that the above result is the same as the one obtained in Example 10.9.


The function deconv performs the inverse of the convolution sum. Given a DT


input sequence x and the output sequence y, for example, the impulse response


h can be determined using the following instructions:


>> h2 = deconv(y,x); % Deconvolve x out of y


>> kh2 = ky(1)-kx(1):ky(length(ky)) -kx(length(kx));


% kh2 = indices for h2


Note that h2 has the same sample values and indices kh2 as those of h.


10.10 Summary


In this chapter, we developed analytical techniques for LTID systems. We saw


that the output sequence y[k] of an LTID system can be calculated analytically


in the time domain using two different methods. In Section 10.1, we determined


the output of a DT system by solving a linear, constant-coefficient difference


equation. The solution of such a difference equation can be expressed as a sum


of two components: the zero-input response and the zero-state response. The


zero-input response is the output produced by the DT system because of the


initial conditions. For most DT systems, the zero-input response decays to zero


with increasing time. The zero-state response results from the input sequence.


The overall output of a DT system is the sum of the zero-input response and


the zero-state response. A DT system, of the form shown in Eq. (10.1), will be


an LTID system if all initial conditions are zero. In other words, the zero-input


response of an LTID system is always zero.


An alternative representation for determining the output of an LTID system


is based on the impulse response of the system. In Section 10.3, we defined the


impulse response h[k] as the output of an LTID system when a unit impulse δ[k]


is applied at the input of the system. In Section 10.4, we proved that the output


y[k] of an LTID system could be obtained by convolving the input sequence


x[k] with its impulse response h[k]. The resulting convolution sum can either


be solved analytically or by using a graphical approach. The graphical approach


was illustrated through several examples in Section 10.5. In discrete time, the


convolution of two periodic functions is also defined and is known as periodic








P1: NIG/RTO P2: RPU


CUUK852-Mandal & Asif May 28, 2007 13:52


460 Part III Discrete-time signals and systems


or circular convolution. The periodic convolution is discussed in Section 10.6,


where we mentioned that the linear convolution may be efficiently calculated


through periodic convolution. The convolution sum satisfies the commutative,


distributive, associative, and time-shifting properties.


(1) The commutative property states that the order of the convolution operands


does not affect the result of the convolution.


(2) The distributive property states that convolution is a linear operation with


respect to addition.


(3) The associative property is an extension of the commutative property to


more than two convolution operands. It states that changing the order of


the convolution operands does not affect the result of the convolution sum.


(4) The time-shifting property states that if the two operands of the convolution


sum are shifted in time then the result of the convolution sum is shifted


by a duration that is the sum of the individual time shifts introduced in the


convolution operands.


(5) If the lengths of the two functions are K1 and K2 samples, the convolution


sum of these two functions will have a length of K1 + K2 − 1 samples.
(6) Convolving a sequence with a unit DT impulse function with the origin at


k = k0 shifts the sequence by k0 time units.
(7) Convolving a sequence with a unit DT step function produces the running


sum of the original sequence as a function of time k.


Finally, in Section 10.8, we expressed the memoryless, causality, stability, and


invertibility properties of an LTID system in terms of its impulse response.


(1) An LTID system will be memoryless if and only if its impulse response


h[k] = 0 for k �= 0.
(2) An LTID system will be causal if and only if its impulse response h[k] = 0


for k < 0.


(3) The impulse response h[k] of a (BIBO) stable LTID system is absolutely


summable, i.e.


∞∑


k=−∞


|h[k]| < ∞.


(4) An LTID system will be invertible if there exists another LTID system with


impulse response hi[k] such that h[k] ∗ hi[k] = δ[k]. The system with the


impulse response hi[k] is the inverse system.


In the next chapter, we consider the frequency representations of DT sequences


and systems.


Problems


10.1 Consider the input sequence x[k] = 2u[k] applied to a DT system modeled
with the following input–output relationship:


y[k + 1] − 2y[k] = x[k],
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and ancillary condition y[−1] = 2.
(a) Determine the response y[k] by iterating the difference equation for


0 ≤ k ≤ 5.


(b) Determine the zero-state response yzi[k] for 0 ≤ k ≤ 5.


(c) Calculate the zero-input response yzs[k] for 0 ≤ k ≤ 5.


(d) Verify that y[k] = yzi[k] + yzs[k].


10.2 Repeat Problem 10.1 for the applied input x[k] = 0.5ku[k] and the input–
output relationship


y[k + 2] − y[k + 1] + 0.5y[k] = x[k],


with ancillary conditions y[−1] = 0 and y[−2] = 1.


10.3 Repeat Problem 10.1 for the applied input x[k] = (−1)ku[k] and the
input–output relationship


y[k + 2] − 0.75y[k + 1] + 0.125y[k] = x[k],


with ancillary conditions y[−1] = 1 and y[−2] = −1.


10.4 Show that the convolution of two sequences aku[k] and bku[k] is given
by


(aku[k]) ∗ (bku[k]) =











(k + 1)aku[k] a = b
1


a − b
(ak+1 − bk+1)u[k] a �= b.


10.5 Calculate the convolution (x1[k] ∗ x2[k]) for the following pairs of
sequences:


(a) x1[k] = u[k + 2] − u[k − 3], x2[k] = u[k + 4] − u[k − 5];


(b) x1[k] = 0.5
ku[k], x2[k] = 0.8


ku[k − 5];


(c) x1[k] = 7
ku[−k + 2], x2[k] = 0.4


ku[k − 4];


(d) x1[k] = 0.6
ku[k], x2[k] = sin(πk/2)u[−k];


(e) x1[k] = 0.5
|k|, x2[k] = 0.8


|k|.


10.6 For the following pairs of sequences:


(a) x[k] =


{


k 0 ≤ k ≤ 3


0 otherwise
and h[k] =


{


2 −1 ≤ k ≤ 2


0 otherwise;


(b) x[k] =


{


|k| |k| ≤ 2


0 otherwise
and h[k] =


{


2−k 0 ≤ k ≤ 3


0 otherwise,


calculate the DT convolution y[k] = x[k] ∗ h[k] using (i) the graphical


approach and (ii) the sliding tape method.


10.7 Using the sliding tape method and the following equation:


y[k] =


∞∑


m=−∞


h[m]x[k − m],


calculate the convolution of the sequences in Example 10.8 and show that


the convolution output is identical to that obtained in Example 10.8.
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10.8 Using the sliding tape method and the following equation:


y[k] =
∞∑


m=−∞


x[m]h[k − m],


calculate the convolution of the sequences in Example 10.9 and show


that the convolution output is identical to that obtained in Example 10.9.


10.9 The linear convolution between two sequences x[k] and h[k] of lengths
K1 and K2, respectively, can be performed using periodic convolution by


considering periodic extensions of the two zero-padded sequences. Cal-


culate the linear convolution of the sequences defined in Example 10.8


using the periodic convolution approach with the fundamental period


K0 set to 10. Repeat for K0 set to 13.


10.10 Repeat Example 10.7 using the periodic convolution approach with K
set to 10.


10.11 Repeat Example 10.7 using the periodic convolution approach with K
set to 15.


10.12 Repeat Example 10.12 with K set to 8.


10.13 Calculate the unit step response of the DT systems with the following
impulse responses:


(a) h[k] = u[k + 7] − u[k − 8];


(b) h[k] = 0.4ku[k];


(c) h[k] = 2ku[−k];


(d) h[k] = 0.6|k|;


(e) h[k] =


∞∑


m=−∞


(−1)mδ(k − 2m).


10.14 Simplify the following expressions using the properties of discrete-time
convolution:


(a) (x[k] + 2δ[k − 1]) ∗ δ[k − 2];


(b) (x[k] + 2δ[k − 1]) ∗ (δ[k + 1] + δ[k − 2]);


(c) (x[k] − u[k − 1]) ∗ δ[k − 2];


(d) (x[k] − x[k − 1]) ∗ u[k],


where x[k] is an arbitrary function, δ[k] is the unit impulse function, and


u[k] is the unit step function.


10.15 Prove Definition 10.3 by expanding the right-hand side of the periodic
convolution and showing it to be equal to the left-hand side.


10.16 Prove the time-shifting property stated in Eq. (10.24).


10.17 Show that the linear convolution y[k] of a time-limited DT sequence
x1[k] that is non-zero only within the range kℓ1 ≤ k ≤ ku1 with another


time-limited DT sequence x2[k] that is non-zero only within the range
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kℓ2 ≤ k ≤ ku2 is time-limited, and is non-zero only within the range


kℓ1 + kℓ2 ≤ k ≤ ku1 + ku2.


10.18 For each of the following impulse responses, determine if the DT system
is (i) memoryless; (ii) causal; and (iii) stable:


(a) h[k] = u[k + 7] − u[k − 8];


(b) h[k] = sin
(


πk
8


)


u[k];


(c) h[k] = 6ku[−k];


(d) h[k] = 0.9|k|;


(e) h[k] =


∞∑


m=−∞


(−1)mδ(k − 2m).


10.19 Determine which of the following pair of impulse responses correspond
to inverse systems:


(a) h1[k] = u[−k − 1], h2[k] = δ[k − 1] − δ[k];


(b) h1[k] = 0.5
ku[k], h2[k] = δ[k] − 0.5δ[k − 1];


(c) h1[k] = 0.8
kku[k], h2[k] = 0.8δ[k − 1] − 2δ[k]


+ 1.25δ[k + 1];


(d) h1[k] = ku[k], h2[k] = δ[k + 1] − 2δ[k] + δ[k − 1];


(e) h1[k] = (k + 1)0.8
ku[k], h2[k] = δ[k] − 1.6δ[k − 1]


+ 0.64δ[k − 2].


10.20 Repeat Problems 10.1–10.3 to compute the first 50 samples of the out-
put response using the filter and filtic functions available in


M A T L A B.


10.21 Repeat Problem 10.5 using the conv function available in M A T L A B .
For a sequence with infinite length, you may truncate the sequence when


the value of the sequence is less than 0.1% of its maximum value.


10.22 The M A T L A B function impz can be used to determine the impulse
response of an LTID system from its difference equation representation.


Determine the first 50 samples of the impulse response of the LTID


systems with the difference equations specified in Problems 10.1–10.3.
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C H A P T E R


11 Discrete-time Fourier series
and transform


In Chapter 10, we developed analysis techniques for LTID systems based on the


convolution sum by representing the input sequence x[k] as a linear combination


of time-shifted unit impulse functions. In this chapter, we introduce frequency-


domain representations for DT sequences and LTID systems based on weighted


superpositions of complex exponential functions. For periodic sequences, the


resulting representation is referred to as the discrete-time Fourier series (DTFS),


while for aperiodic sequences the representation is called the discrete-time


Fourier transform (DTFT). We exploit the properties of the discrete-time Fourier


series and Fourier transform to develop alternative techniques for analyzing DT


sequences. The derivations of these results closely parallel the development of


the CT Fourier series (CTFS) and CT Fourier transform (CTFT) as presented


in Chapters 4 and 5.


The organization of this chapter is as follows. In Section 11.1, we intro-


duce the exponential form of the DTFS and illustrate the procedure used to


calculate the DTFS coefficients through a series of examples. The DTFT pro-


vides frequency representations for aperiodic sequences and is presented in


Section 11.2. Section 11.3 defines the condition for the existence of the DTFT,


and Section 11.4 extends the scope of the DTFT to represent periodic sequences.


Section 11.5 lists the properties of the DTFT and DTFS, including the time-


convolution property, which states that the convolution of two DT sequences


in the time domain is equivalent to the multiplication of the DTFTs of the


two sequences in the frequency domain. The convolution property provides


us with an alternative technique to compute the output response of the LTID


system. The DTFT of the impulse response is referred to as the transfer func-


tion, which is covered in Section 11.6. Section 11.7 defines the magnitude and


phase spectra for LTID systems, and Section 11.8 relates the CTFT and DTFT


of periodic and aperiodic waveforms to each other. Finally, the chapter is con-


cluded in Section 11.9 with a summary of important concepts covered in the


chapter.


464
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11.1 Discrete-time Fourier series


In Example 4.4, we proved that the set of complex exponential functions


exp(jnω0t), n ∈ Z , defines an orthonormal set of functions over the interval


t = (t0, t0 + T0) with duration T0 = 2π/ω0. This orthonormal set of exponen-


tials was used to derive the CT Fourier series. In the same spirit, we now show


that the discrete-time (DT) complex exponential sequences form an orthonor-


mal set in the DT domain and are used to derive the DTFS. We start with the


definition of the orthonormal sequences.


Definition 11.1 Two sequences p[k] and q[k] are said to be orthogonal over


interval k = [k1, k2] if


orthogonality property


k2∑


k=k1


p[k]q∗[k] =
k2∑


k=k1


p∗[k]q[k] = 0, p[k] �= q[k],


(11.1)


where the superscript ∗ denotes complex conjugation. In addition to Eq. (11.1),
both signals p[k] and q[k] must also satisfy the following unit magnitude prop-


erty to satisfy the orthonormality condition:


unit magnitude property


k2∑


k=k1


p[k]p∗[k] =
k2∑


k=k1


q∗[k]q[k] = 1. (11.2)


Definition 11.2 A set comprising an arbitrary number of N functions, say{p1[k],


p2[k], . . . , pN [k]}, is mutually orthogonal over interval k = [k1, k2] if


k2∑


k=k1


pm[k]p
∗
n[k] =


{


En �= 0 m = n
0 m �= n, (11.3)


for 1 ≤ m, n ≤ N. In addition, if En = 1 for all n, the orthogonal set is referred
to as an orthonormal set.


Based on Definitions 11.1 and 11.2, we show that the DT complex sequences


form an orthogonal set.


Proposition 11.1 The set of discrete-time complex exponential sequences


{exp(jnΩ0k), n ∈ Z}, is orthogonal over the interval [r , r + K0 − 1], where
the duration K0 = 2π/Ω0 and r is an arbitrary integer.


Proof


Consider the following summation:


r+K0−1∑


k=r
e jmΩ0ke−jnΩ0k =


r+K0−1∑


k=r
e j(m−n)Ω0k .
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Substituting p = k − r to make the lower limit of the summation equal to zero
yields


r+K0−1∑


k=r
e j(m−n)Ω0k =


K0−1∑


p=0
e j(m−n)Ω0(p+r ) = e j(m−n)Ω0r


K0−1∑


p=0
e j(m−n)Ω0 p.


The above summation is solved for two different cases, m = n and m �= n.


Case I For m = n, the summation reduces to


e j(m−n)Ω0r
K0−1∑


p=0


e j(m−n)Ω0 p = 1 ·


K0−1∑


p=0


1 = K0.


Case II For m �= n, the summation forms a GP series and is simplified as
follows:


e j(m−n)Ω0r
K0−1∑


p=0


e j(m−n)Ω0 p = e j(m−n)Ω0r
[


1 − e j(m−n)Ω0 K0


1 − e j(m−n)Ω0


]


.


Because Ω0 K0 = 2π and indices m and n are integers, the exponential term in


the numerator is given by


e j(m−n)Ω0 K0 = e j(m−n)2π = 1.


Therefore, for m �= n the summation reduces to


e j(m−n)Ω0r
K0−1∑


p=0


e j(m−n)Ω0 p = e j(m−n)Ω0r
[


1 − 1


1 − e j(m−n)Ω0


]


= 0.


Combining the results of cases I and II, we obtain


r+K0−1∑


k=r


e jmΩ0ke−jnΩ0k =


{


K0 if m = n


0 if m �= n.


In other words, the set of DT complex exponential sequences {exp(jnΩ0k),


n ∈ Z} is orthogonal over the specified interval [r, r + K0 − 1].


An important difference between the DT and CT complex exponential functions


lies in the frequency–periodicity property of the DT exponential sequences.


Since


e jn(Ω0+2π )k = e jnΩ0ke jn2πk = e jnΩ0k,


the exponential sequence exp(jnΩ0k) is identical to exp(jn(Ω0 + 2π )k). This
is in contrast to the CT exponentials, where exp(jnω0t) is different from


exp(jn(ω0 + 2π )t). The following example illustrates the frequency period-
icity for the DT sinusoidal signals. Using the Euler property, a DT complex


exponential exp(jnΩ0k) can be expressed as follows:


e jnΩ0k = cos(nΩ0k) + j sin(nΩ0k).
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Example 11.1 shows that both the real and imaginary components of the com-


plex exponential satisfy the frequency–periodicity property; therefore, the DT


complex exponential should also satisfy the frequency–periodicity property.


Example 11.1


Consider a CT sinusoidal function with a fundamental frequency of 1.4 Hz, i.e.


x(t) = cos(2.8π t + φ),


where φ is the constant phase. Sample the function with a sampling rate of


1 sample/s and determine the fundamental frequency of the resulting DT


sequence.


Solution


In the time domain, the DT sequence is obtained by sampling x(t) at t = kT .
Since the sampling interval T = 1 s,


x[k] = x(kT ) = cos(2.8πk + φ),


which is periodic with a periodΩ1 = 2.8π radians/s. Because the CT signal x(t)
is a sinusoid with a fundamental frequency of 1.4 Hz, the minimum sampling


rate, required to avoid aliasing, is given by 2.8 samples/s. Since the sampling


rate of 1 samples/s is less than the Nyquist sampling rate, aliasing is introduced


due to sampling. Based on Lemma 9.1, the reconstructed signal is given by


y(t) = cos(2π (1.4 − 1)t) = cos(0.8π t + φ).


Substituting t = kT , the DT representation of the reconstructed signal is given
by


y[k] = cos(0.8πk + φ),


which is periodic with a periodΩ2 = 0.8π radians/s. From the above analysis, it
is clear that the DT sequences x[k] = cos(2.8πk + φ) and y[k] = cos(0.8πk +
φ) are identical. This is because the difference in the fundamental frequenciesΩ1


and Ω2 is 2π .


Proposition 11.2 A discrete-time periodic function x[k] with period K0 can be


expressed as a superposition of DT complex exponentials as follows:


x[k] =
∑


n=<K0>
Dne


jnΩ0k, (11.4)


whereΩ0 is the fundamental frequency, given byΩ0 = 2π/K0, and the discrete-
time Fourier series (DTFS) coefficients Dn for 1 ≤ n ≤ K0 are given by


Dn =
1


K0


∑


k=〈K0〉
x[k]e−jnΩ0k . (11.5)
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In Eq. (11.5), the limit of k = 〈K0〉 implies that the sum can be taken over any
K0 consecutive samples of x[k]. Unless otherwise specified, we would consider


the range 0 ≤ k ≤ K0 − 1 in our derivations.


Proof


To verify the DTFS, we expand the right-hand side of Eq. (11.4) by substituting


the value of Dn from Eq. (11.5). With K0 consecutive exponentials in the range


0 ≤ n ≤ k0 − 1, the resulting expression is given by


K0−1∑


n=0
Dne


jnΩ0k =
K0−1∑


n=0


[


1


K0


K0−1∑


m=0
x[m]e−jnΩ0m


]


e jnΩ0k .


Interchanging the order of the summation yields


K0−1∑


n=0
Dne


jnΩ0k =
1


K0


K0−1∑


m=0
x[m]


[
K0−1∑


n=0
e jnΩ0(k−m)


]


. (11.6)


From Proposition 11.1, we have


K0−1∑


n=0
e jnΩ0(k−m) =


{


K0 if k = m
0 if k �= m.


The right-hand side of Eq. (11.6) reduces to


K0−1∑


n=0
Dne


jnΩ0k =
1


K0


K0−1∑


m=0
x[m]K0δ[m − k] =


1


K0
K0x[k] = x[k],


and therefore proves Proposition 11.2.


Examples 11.2–11.5 calculate the DTFS for selected DT periodic sequences.


Example 11.2


Determine the DTFS coefficients of the following periodic sequence:


h[k] =
{


1 |k| ≤ N
0 N + 1 ≤ k ≤ K0 − N − 1,


(11.7)


with a fundamental period K0 > (2N + 1).


Solution


With K0 consecutive samples in the range −N ≤ k ≤ K0 − N − 1, Eq. (11.5)
reduces to


Dn =
1


K0


N∑


k=−N
1 · e−jnΩ0k +


1


K0


K0−N−1∑


k=N+1
0 · e−jnΩ0k =


1


K0


N∑


k=−N
e−jnΩ0k .
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Table 11.1. Values of Dn for 0 ≤ n ≤ 9 in Example 11.2


n 0 1 2 3 4 5 6 7 8 9


Dn 0.300 0.262 0.162 0.038 −0.062 −0.100 −0.062 0.038 0.162 0.262


h[k]


k
0 2 4 6 8 10 12 14−8 −6 −4 −2−10−12−14


1 11 1 111 11


Dn


n
0 2


4 6


8 10 12


14


−8


−6 −4


−2−10−12


−14


0.16


0.04


0.26


−0.06
−0.1


−0.06


0.04
0.16


0.26 0.3


0.16


0.04


0.26


−0.06
−0.1


0.16
0.04


0.26


−0.1


0.3


−0.06 −0.06


0.04


0.16
0.260.3


−0.06


0.04
0.16


0.26


(a)


(b)


Fig. 11.1. (a) DT periodic


sequence h[k ]; (b) its DTFS


coefficients calculated in


Example 11.2.


The summation represents a GP series and simplifies as follows:


Dn =
1


K0


[


e jnΩ0 N
1 − e−jnΩ0(2N+1)


1 − e−jnΩ0


]


=
1


K0


[


e jnΩ0 N
e−jnΩ0(2N+1)/2


e− jnΩ0/2
e jnΩ0(2N+1)/2 − e−jnΩ0(2N+1)/2


e jnΩ0/2 − e−jnΩ0/2


]


=
1


K0










sin


(
2N + 1


2
nΩ0


)


sin


(
1


2
nΩ0


)










.


Substituting the value of the fundamental frequency Ω0 = 2π/K0 yields


Dn =
1


K0










sin
(


2N + 1
K0


nπ
)


sin


(
1


K0
nπ


)










, (11.8)


which represents a DT sinc function.


As a special case, we plot the values of the coefficients Dn for N = 1 and
K0 = 10 in Fig. 11.1. The expression for the DTFS coefficients is given by


Dn =
1


10


[
sin(0.3nπ )


sin(0.1nπ )


]


,


with the values for 0 ≤ n ≤ 9 given in Table 11.1.
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The value of the DTFS coefficient D0 is calculated using L’Hôpital’s rule as


follows:


D0 = lim
n→0


1


10


[
sin(0.3nπ )


sin(0.1nπ )


]


= lim
n→0


1


10


[
(0.3π ) cos(0.3nπ )


(0.1π ) cos(0.1nπ )


]


= 0.3.


In Fig. 11.1(b), we observe that the DTFS coefficients are periodic with a period


of 10, which is the same as the fundamental period of the original sequence


h[k]. One such period is highlighted in Fig. 11.1(b).


11.1.1 Periodicity of DTFS coefficients


In Example 11.2, we noted that the DTFS coefficients Dn of a periodic sequence


are themselves periodic with a period of K0. In Proposition 11.3, we show that


this is true for any DT periodic sequence.


Proposition 11.3 The DTFS coefficients Dn of a periodic sequence x[k], with a


period of K0, are themselves periodic with a period of K0. In other words,


Dn = Dn+mK0 for m ∈ Z . (11.9)


Proof


By definition, the DTFS coefficients are expressed as follows:


Dn+mK0 =
1


K0


∑


k=〈K0〉
x[k]e−j(n+mK0)Ω0k


=
1


K0


∑


k=〈K0〉
x[k]e−jnΩ0ke−jmΩ0 K0k


where the exponential term exp(−jmΩ0 K0k) = exp(−j2mπk) = 1. The above
expression reduces to


Dn+mK0 =
1


K0


∑


k=〈K0〉
x[k]e−jnΩ0k,


which, by definition, is Dn .


In the following examples, we calculate the DTFS coefficients Dn over one


period (n = 〈K0〉) and exploit the periodicity property to obtain the DTFS
coefficients outside this range.


Example 11.3


Determine the DTFS coefficients of the periodic DT sequence x[k] with one


fundamental period defined as


x[k] = 0.5ku[k], 0 ≤ k ≤ 14. (11.10)
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x[k]


k
0 2 4 6 8 10 12 14−8 −6 −4 −2−10−12−14−16−18−20 201816


1


0.5
0.25


0.13


1


0.5


0.25
0.13


1


0.5
0.250.13


Fig. 11.2. Periodic DT sequence


defined in Example 11.3.
Solution


The DT sequence x[k] is plotted in Fig. 11.2. Since its period K0 = 15, the
fundamental frequency Ω0 = 2π/15. The DTFS coefficients Dn are given by


Dn =
1


15


14∑


k=0
0.5ke−jnΩ0k =


1


15


14∑


k=0
(0.5e−jnΩ0 )k,


which is a GP series that simplifies to


Dn =
1


15
·


1 −
(


0.5e−jnΩ0
)15


1 − 0.5e−jnΩ0
=


1


15
·


1 − 0.515e−j15nΩ0
1 − 0.5e−jnΩ0


.


Since Ω0 = 2π/15, the exponential term in the numerator, exp(−j15nΩ0) =
exp(−j2nπ ) = 1. Expanding the exponential term in the denominator as
exp(−jnΩ0) = cos(nΩ0) − j sin(nΩ0), the DTFS coefficients are given by


Dn =
1


15
·


1 − 0.515


1 − 0.5 cos(nΩ0) + j0.5 sin(nΩ0)


≈
1


15
·


1


1 − 0.5 cos(nΩ0) + j0.5 sin(nΩ0)
. (11.11)


As the DTFS coefficients are complex, we determine the magnitude and phase


of the coefficients as follows:


magnitude |Dn| =
1


15
·


1
√


(1 − 0.5 cos(nΩ0))2 + (0.5 sin(nΩ0))2


=
1


15
·


1
√


1.25 − cos(nΩ0)
; (11.12)


phase <Dn = − tan−1
[


0.5 sin(nΩ0)


1 − 0.5 cos(nΩ0)


]


, (11.13)


whereΩ0 = 2π/15. The magnitude and phase spectra of the DTFS coefficients
are plotted in Figs. 11.3(a) and (b), in which one period of Dn is highlighted by


a shaded region.


Example 11.4


Determine the DTFS coefficients of the following periodic function:


x[k] = Ae j((2πm/N )k+θ ), (11.14)
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Dn


n
0 2 4 6 8 10 12 14−8 −6 −4 −2−10−12−14−16−18−20 201816


0.13
0.11


0.090.070.060.050.050.050.050.050.050.06
0.070.09


0.11
0.13


0.11
0.090.070.060.050.050.050.050.050.050.06


0.070.09
0.11


0.050.06
0.070.09


0.11
0.13


0.11
0.090.070.060.05


<Dn


n
0 2 4 6


8 10 12 14


−8


−6 −4 −2


−10−12−14


−16−18−20


2018160.070.21


−0.51
−0.44


−0.33
−0.21


−0.07


0.51
0.44


0.33


0.51


0.36


−0.51


−0.36


0.07
0.21


−0.51
−0.44


−0.33
−0.21


−0.07


0.51
0.44


0.33


0.51


0.36


−0.51


−0.36


−0.51
−0.44


−0.33


−0.51


−0.36


0.51
0.44


0.33


0.51


0.36


(a)


(b)


Fig. 11.3. (a) Magnitude


spectrum and (b) phase


spectrum of the DTFS


coefficients in Example 11.3.


where the greatest common divisor between the fundamental period N and the


integer constant m is one.


Solution


We first show that the DT sequence x[k] is periodic and determine its fundamen-


tal period. It was mentioned in Proposition 1.1 that a DT complex exponential


sequence x[k] = exp(j(Ω0k + θ )) is periodic if 2π/Ω0 is a rational number. In
this case, 2π/Ω0 = N/m, which is a rational number as m, K and N are all
integers. In other words, the sequence x[k] is periodic. Using Eq. (1.8), the


fundamental period of x[k] is calculated to be


K0 = (2π/Ω0)p = pN/m,


where p is the smallest integer that results in an integer value for K0. Note


that the fraction N/m represents a rational number, which cannot be reduced


further since the greatest common divisor between m and N is given to be one.


Selecting p = m, the fundamental period is obtained as K0 = N .
To compute the DTFS coefficients, we express x[k] as follows:


x[k] = Ae jθe j�0mk


and compare this expression with Eq. (11.4). For 0 ≤ n ≤ K0 − 1, we observe
that


Dn =
{


Ae jθ if n = m
0 if n �= m. (11.15)


As a special case, we consider A = 2, K0 = 6, m = 5, and θ = π/4. The
magnitude and phase spectra for the selected values are shown in Figs.


11.4(a) and (b), where we have used the periodicity property of the DTFS
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nD


n


0 2 4 6 8 10 12 14−8 −6 −4 −2−10−12−14−16−18−20 201816


0 2 4 6 8 10 12 14−8 −6 −4 −2−10−12−14−16−18−20 201816


2 2 22 2 22


<Dn


n


p/4 p/4 p/4p/4 p/4 p/4p/4


(a)


(b)


420


Fig. 11.4. (a) Magnitude


spectrum and (b) phase


spectrum of the DTFS


coefficients in Example 11.4.


coefficients to plot the values of the coefficients outside the duration 0 ≤ n ≤
(K0 − 1).


Substituting θ = 0 in Example 11.4 results in Corollary 11.1.


Corollary 11.1 The DTFS coefficients corresponding to the complex exponential


sequence x[k] = A exp(j2πmk/K0) with the fundamental period K0 are given
by


Dn =
{


A if n = m, m ± K0, m ± 2K0, . . .
0 elsewhere,


(11.16)


provided the greatest common divisor between the m and K0 is one.


Example 11.5


Determine the DTFS coefficients of the following sinusoidal sequence:


y[k] = B sin
(


2πm


K0
k + θ


)


, (11.17)


where the greatest common divisor between integers m and N is one. The phase


component θ is constant with respect to time.


Solution


Using Proposition 1.1, it is straightforward to show that the sinusoidal sequence


y[k] is periodic with fundamental period K0. The fundamental frequency is


given by Ω0 = 2π/K0.
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Based on Eq. (11.5), and noting thatΩ0 = 2π/K0, the DTFS coefficients are
given by


Dn =
1


K0


∑


k=<K0>
B sin(mΩ0k + θ ) · e− jnΩ0k


=
1


K0


∑


k=<K0>
B


[
e j(mΩ0k+θ ) − e j(mΩ0k+θ )


2 j


]


· e−jnΩ0k


= − j
B


2K0
e jθ


∑


k=〈K0〉
e j(m−n)Ω0k


︸ ︷︷ ︸


summation I


+ j
B


2K0
e−jθ


∑


k=〈K0〉
e−j(m+n)Ω0k


︸ ︷︷ ︸


summation II


.


In proving Proposition 11.2, we used the following summation:


K0−1∑


n=0
e jnΩ0(k−m) =


{


K0 if k = m
0 if k �= m.


Therefore, summations I and II are given by


I =
∑


k=〈K0〉
e j(m−n)Ω0k =


{


K0 if n = m
0 if n �= m;


II =
∑


k=〈K0〉
e−j(m+n)Ω0k =


{


K0 if n = −m
0 if n �= −m,


which results in the following values for the DTFS coefficients:


Dn =

















−j
B


2
e jθ for n = m


j
B


2
e−jθ for n = −m


0 elsewhere,


(11.18)


within one period (−m ≤ n ≤ (K0 − m − 1)).
As a special case, let us consider the DTFS for the following discrete sinu-


soidal sequence:


y[k] = 3 sin
(


2π


7
k +


π


4


)


,


which has a fundamental period of K0 = 7. Substituting B = 3, m = 1, and
θ = π /4 into Eq. (11.18), we obtain


Dn =



















−j
3


2
e


j
π
4 for n = 1


j
3


2
e
−j π


4 for n = −1


0 elsewhere,


(11.19)


for −1 ≤ n ≤ 5. The magnitude and phase spectra for the sinusoidal sequence
are shown in Figs. 11.5(a) and (b).
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8 10 12 14−8 −6 −4 −2−10−12−14−16−18−20 201816


Dn


n


1.5 1.51.5 1.5 1.51.5 1.5 1.51.5 1.5 1.51.5


<Dn


n


0 2 4 6


8


10 12 14−8


−6


−4 −2−10−12−14−16−18


−20


201816


−p/4 −p/4−p/4 −p/4 −p/4−p/4


p/4 p/4p/4 p/4 p/4p/4


0 2 4 6


(a)


(b)


Fig. 11.5. (a) Magnitude


spectrum and (b) phase


spectrum of the DTFS


coefficients in Example 11.5.


Corollary 11.2 The DTFS coefficients of the sinusoidal sequence x[k] = B
sin(2πmk/K0) are given by


Dn =



















−j
B


2
for n = m, m ± K0, m ± 2K0, . . .


j
B


2
for n = −m, −m ± K0, −m ± 2K0, . . .


0 elsewhere,


(11.20)


provided that the greatest common divisor between integers m and K0 is one.


11.2 Fourier transform for aperiodic functions


In Section 11.1, we used the exponential DTFS to derive the frequency repre-


sentations for periodic sequences. In this section, we consider the frequency


representations for aperiodic sequences. The resulting representation is called


the DT Fourier transform (DTFT).


Figure 11.6(a) shows the waveform of an aperiodic sequence x[k], which


is zero outside the range M1 ≤ k ≤ M2. Such a sequence is referred to as a
time-limited sequence having a length of M2 − M1 + 1 samples. As was the
case for the CTFT, we consider periodic repetitions of x[k] uniformly spaced


with a duration of K0 between each other; K0 ≥ (M2 − M1 + 1) such that the
adjacent replicas of x[k] do not overlap with each other. The resulting sequence


is referred to as the periodic extension of x[k] and is denoted by x̃K0 [k]. If we


increase the value of K0, in the limit, we obtain


lim
K0→∞


x̃K0 [k] = x[k]. (11.21)
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M1 M20−K0


k


xK0[k]


M1 M20


K0


k


x[k]


(a)


(b)


˜


Fig. 11.6. (a) Time-limited


sequence x[k ]; (b) its periodic


extension.


Since x̃K0 [k] is periodic with fundamental period K0 (or fundamental frequency


Ω0), we can express it using the DTFS as follows:


x̃K0 [k] =
∑


n=〈K0〉
Dne


jnΩ0k, (11.22)


where the DTFS coefficients Dn are given by


Dn =
1


K0


∑


k=〈K0〉
x̃K0 [k]e


−jnΩ0k,


for 1 ≤ n ≤ K0. Using Eq. (11.21), the above equation can be expressed as
follows:


Dn = lim
K0→∞


1


K0


∞∑


k=−∞
x[k]e−jnΩ0k (11.23)


for 1 ≤ n ≤ K0. Let us now define a new function X (Ω), which is continuous
with respect to the independent variable Ω:


X (Ω) =
∞∑


k=−∞
x[k]e−jΩk . (11.24)


In Eq. (11.24), the independent variable Ω is continuous in the range −∞ ≤
Ω ≤ ∞. In terms of X (Ω), Eq. (11.23) can be expressed as follows:


Dn = lim
K0→∞


1


K0
X (nΩ0). (11.25)


The function X (nΩ0) is obtained by sampling X (Ω) at discrete pointsΩ = nΩ0.
Given the DTFS coefficients Dn of x̃K0 [k], the aperiodic sequence x[k] can


be obtained by substituting the values of Dn in Eq. (11.22) and solving for


M1 ≤ k ≤ M2. The resulting expression is given by


x[k] = lim
K0→∞


x̃K0 [k] = lim
K0→∞


∑


n=〈K0〉


1


K0
X (nΩ0)e


jnΩ0k . (11.26a)
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In the limit K0 → ∞, the angular frequency Ω0 takes a very small value,
say �Ω, with the fundamental period K0 = 2π/�Ω. In the limit K0 → ∞,
Eq. (11.26a) can, therefore, be expressed as follows:


x[k] = lim
�Ω→0


∑


n=〈K0〉


1


2π
X (n�Ω)e jnk�Ω�Ω. (11.26b)


Substituting Ω = n�Ω and applying the limit �Ω → 0, Eq. (11.26b) reduces
to the following integral:


x[k] =
1


2π


∫


〈2π〉


X (Ω)e jkΩdΩ. (11.27)


In Eq. (11.27), the limits of integration are derived by evaluating the duration


n = 〈K0〉 in terms of Ω as follows:


Ω = 〈n�Ω〉|n=〈K0〉 =
⟨


n


(
2π


K0


)⟩∣
∣
∣
∣
n=〈K0〉


= 〈2π〉,


implying that any frequency range of 2π may be used to solve the integral in


Eq. (11.27). Collectively, Eq. (11.24), in conjunction with Eq. (11.27), is


referred to as the DTFT pair.


Definition 11.3 The DTFT pair for an aperiodic sequence x[k] is given by


DTFT synthesis equation x[k] =
1


2π


∫


〈2π〉


X (Ω)e jkΩdΩ; (11.28a)


DTFT analysis equation X (Ω) =
∞∑


k=−∞
x[k]e−jΩk . (11.28b)


In the subsequent discussion, we will denote the DTFT pair as follows:


x[k]
DTFT←−−→ X (Ω). (11.28c)


Example 11.6


Calculate the Fourier transform of the following functions:


(i) unit impulse sequence, x1[k] = δ[k];


(ii) gate sequence, x2[k] = rect
(


k


2N + 1


)


=
{


1 |k| ≤ N
0 elsewhere;


(iii) decaying exponential sequence, x3[k] = pku[k] with |p| < 1.


Solution


(i) By definition,


X1(Ω) =
∞∑


k=−∞
δ[k]e−jΩk = e−jΩk |k=0 = 1.
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0 2 4 6 8 10−8 −6 −4 −2−10


x2[k]


1


k


X2(W)


p 2p 3p0−3p −2p −p
W


7


(a) (b)


Fig. 11.7. (a) Rectangular


sequence x2[k ] with a width of


seven samples. (b) DTFT of the


rectangular sequence derived in


Example 11.6(ii).


(ii) By definition,


X2(Ω) =
∞∑


k=−∞


x2[k]e
−jΩk =


N∑


k=−N


1 · e−jΩk .


The summation represents a GP series with exp(−jΩ) as the ratio between two


consecutive terms. The GP series simplifies to


X2(Ω) = (e
−jΩ)−N


1 − (e−jΩ)2N+1


1 − e−jΩ


= (e−jΩ)−N
(e−jΩ)(2N+1)/2


(e−jΩ)1/2
(e−jΩ)−(2N+1)/2 − (e−jΩ)(2N+1)/2


(e−jΩ)−1/2 − (e−jΩ)1/2


=
ej(2N+1)Ω/2 − e−j(2N−1)Ω/2


ejΩ/2 − e−jΩ/2
=


sin


(
2N + 1


2
Ω


)


sin


(
1


2
Ω


) .


As a special case, we assume N = 3 and plot the rectangular sequence x2[k]


and its DTFT X2(Ω) in Fig. 11.7.


(iii) By definition,


X3(Ω) =


∞∑


k=−∞


pku[k]e−jΩk =


∞∑


k=0


(pe−jΩ)k .


The summation represents a GP series, which can be simplified to


X3(Ω) =
1


1 − pe−jΩ
=


1


1 − p cosΩ+ jp sinΩ
.


The DTFT X3(Ω) is a complex-valued function of the angular frequency Ω. Its


magnitude and phase spectra are determined below:


magnitude spectrum |X3(Ω)| =
|1|


|1 − p cosΩ+ jp sinΩ|


=
1


√


1 − 2p cosΩ+ p2
;


phase spectrum <X3(Ω) = <1 − <(1 − p cosΩ+ jp sinΩ)


= − tan−1
(


p sinΩ


1 − p cosΩ


)


.
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0 2 4 6 8 10−8 −6 −4 −2−10


1
0.6


k


x3[k] = 0.6
k u[k]


0.36


X3(W)


0 p 2p 3p
W


−2p−3p −p


2.5


0.2p


0 p 2p 3p−2p−3p −p


−0.2p


W


<X3(W)


(a) (b)


(c)


Fig. 11.8. (a) Decaying


exponential sequence x3[k ]


with a decay factor p = 0.6.
(b) Magnitude spectrum and


(c) phase spectrum of x3[k ] as


derived in Example 11.6(iii).


As a special case, we plot the DT sequence x3[k] and its magnitude and phase


spectra for p = 0.6 in Figs. 11.8(a)–(c).


In Example 11.6, we calculated the DTFTs for three different sequences and


observed that all three DTFTs are periodic with periodΩ0 = 2π . This property
is referred to as the frequency–periodicity property and is satisfied by all DTFTs.


In Section 11.4, we present a mathematical proof verifying the frequency–


periodicity property.


Example 11.7


Calculate the DT sequences for the following DTFTs:


(i) X1(Ω) = 2π
∞∑


m=−∞


δ(Ω− 2mπ );


(ii) X2(Ω) = 2π


∞∑


m=−∞


δ(Ω− Ω0 − 2mπ ).


Solution


(i) Using the synthesis equation, Eq. (11.28a), the inverse DTFT of X1(Ω) is


given by


x1[k] =
1


2π


∫


〈2π〉


X1(Ω)e
jkΩdΩ =


1


2π


π∫


−2π


2π


∞∑


m=−∞
δ(Ω− 2mπ )e jkΩdΩ


=
π∫


−π


∞∑


m=−∞
δ(Ω− 2mπ ) ejk2mπ


︸ ︷︷ ︸


=1


dΩ [∵ δ(Ω− θ ) f (Ω) = δ(Ω− θ ) f (θ )]


=
π∫


−π


∞∑


m=−∞
δ(Ω− 2mπ )dΩ.
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The integral on the right-hand side of the above equation includes several


impulse functions located at Ω = 0, ±2π, ±4π, . . . Only the impulse function
located at Ω = 0 falls in the frequency range Ω = [−π, π ]. Therefore, x1[k]
can be simplified as follows:


x1[k] =
π∫


−π


δ(Ω)dΩ = 1.


(ii) Using the synthesis equation, (11.28a), the inverse DTFT of X2(Ω) is


given by


x1[k] =
1


2π


∫


〈2π〉


X2(Ω)e
jkΩdΩ =


1


2π


π∫


−π


2π


∞∑


m=−∞
δ(Ω− Ω0 − 2mπ )e jkΩdΩ.


=
π∫


−π


∞∑


m=−∞
δ(Ω− Ω0 − 2mπ )ejk(Ω0−2mπ ) dΩ


=
π∫


−π


∞∑


m=−∞
δ(Ω− Ω0 − 2mπ )ejkΩ0 ejk2mπ︸ ︷︷ ︸


=1


dΩ


= ejkΩ0
π∫


−π


∞∑


m=−∞
δ(Ω− Ω0 − 2mπ )dΩ.


The integral on the right-hand side of the above equation includes several


impulse functions located at Ω = Ω0 + 2mπ . Only one of these infinite num-
ber of impulse functions will be present in the frequency range Ω = [−π, π ].
Therefore, the integral will have a vaue of unity and the function x2[k] can be


simplified as follows:


x2[k] = ejkΩ0 .


Table 11.2 lists the DTFT and DTFS representations for several DT sequences.


In situations where a DT sequence is aperiodic, the DTFS representation is


not possible and therefore not included in the table. The DTFT of the peri-


odic sequences is determined from its DTFS representation and is covered in


Section 11.4.


Table 11.3 plots the DTFT for several DT sequences. In situations where a


DT sequence or its DTFT is complex, we plot both the magnitude and phase


components. The magnitude component is shown using a bold line, and the


phase component is shown using a dashed line.


Example 11.7 illustrates the calculation of a DT function from its DTFT


using Eq. (11.28a). In many cases, it may be easier to calculate a DT


function from its DTFT using the partial fraction expansion and the DTFT


pairs listed in Table 11.2. This procedure is explained in more detail in
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Table 11.2. DTFTs and DTFSs for elementary DT sequences


Note that the DTFS does not exist for aperiodic sequences


Sequence: x[k] DTFS: Dn =
1


K0


∑


k=〈K0〉
x[k]e−jnΩ0k DTFT: X (Ω) =


∞∑


k=−∞
x[k]e−jΩk


(1) x[k] = 1 Dn = 1 X (Ω) = 2π
∞∑


m=−∞
δ(Ω− 2mπ )


(2) x[k] = δ[k] does not exist X (Ω) = 1
(3) x[k] = δ[k − k0] does not exist X (Ω) = e−jΩk0


(4) x[k] =
∞∑


m=−∞
δ(k − mK0) Dn =


1


K0
for all n X (Ω) =


2π


K0


∞∑


m=−∞
δ


(


Ω−
2mπ


K0


)


(5) x[k] = u[k] does not exist X (Ω) = π
∞∑


m=−∞
δ(Ω− 2mπ ) +


1


1 − e−jΩ


(6) x[k] = pku[k] with |p| < 1 does not exist X (Ω) =
1


1 − pe−jΩ


(7) First-order time-rising


decaying exponential


x[k] = (k + 1)pku[k], with
|p| < 1.


does not exist X (Ω) =
1


(1 − pe−jΩ)2


(8) Complex exponential


(periodic)


x[k] = e jkΩ0
K0 = 2πp/Ω0


Dn =


{


1 n = p ± r K0
0 elsewhere


for −∞ < r < ∞


X (Ω) = 2π
∞∑


m=−∞
δ(Ω− Ω0 − 2mπ )


(9) Complex exponential


(aperiodic)


x[k] = e jkΩ0 , 2π/Ω0 �=
rational


does not exist X (Ω) = 2π
∞∑


m=−∞
δ(Ω− Ω0 − 2mπ )


(10) Cosine (periodic)


x[k] = cos(Ω0k)
K0 = 2πp/Ω0


Dn =











1


2
n = ±p ± r K0


0 elsewhere


for −∞ < r < ∞


X (Ω) = π
∞∑


m=−∞
δ(Ω+ Ω0 − 2mπ )


+ π
∞∑


m=−∞
δ(Ω− Ω0 − 2mπ )


(11) Cosine (aperiodic)


x[k] = cos(Ω0k),
2π/Ω0 �= rational


does not exist X (Ω) = π
∞∑


m=−∞
δ(Ω+ Ω0 − 2mπ )


+ π
∞∑


m=−∞
δ(Ω− Ω0 − 2mπ )


(12) Sine (periodic)


x[k] = sin(Ω0k)
K0 = 2πp/Ω0


Dn =











1


2
j n = ±p ± r K0


0 elsewhere


for −∞ < r < ∞


X (Ω) = jπ
∞∑


m=−∞
δ(Ω+ Ω0 − 2mπ )


− jπ
∞∑


m=−∞
δ(Ω− Ω0 − 2mπ )


(13) Sine (aperiodic)


x[k] = sin(Ω0k),
2π/Ω0 �= rational


does not exist X (Ω) = jπ
∞∑


m=−∞
δ(Ω+ Ω0 − 2mπ )


− jπ
∞∑


m=−∞
δ(Ω− Ω0 − 2mπ )


(cont.)
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Table 11.2. (cont.)


Sequence: x[k] DTFS: Dn =
1


K0


∑


k=〈K0〉
x[k]e−jnΩ0k DTFT: X (Ω) =


∞∑


k=−∞
x[k]e−jΩk


(14) Rectangular (periodic)


x[k]=
{


1 |k| ≤ N
0 N < |k| ≤ K0/2


x[k]= x[k + K0]


Dn =















(2N + 1)/K0 k = r K0


1


K0








sin
(


2N+1
K0


nπ
)


sin
(


1


K0
nπ


)





 elsewhere


X (Ω) = 2π
∞∑


n=−∞
Dnδ


(


Ω−
2nπ


K0


)


(15) Rectangular (aperiodic)


x[k] =
{


1 |k| ≤ N
0 elsewhere


does not exist


X (Ω) =
sin


(
2N + 1


2
Ω


)


sin


(
1


2
Ω


)


(16) Sinc


x[k] =
W


π
sinc


(
W k


π


)


=


sin(W k)


πk
for 0 < W < π


does not exist
X (Ω) =


{


1 |Ω| ≤ W
0 W < |Ω| ≤ π


X (Ω) = X (Ω+ 2π )


(17) Arbitrary periodic sequence


with period K0
x[k] =


∑


n=〈K0〉
Dne


jnΩ0k


Dn =
1


K0


∑


k=〈K0〉
x[k]e−jnΩ0k X (Ω) = 2π


∞∑


n=−∞
Dnδ


(


Ω−
2nπ


K0


)


Appendix D, and has been used later in this chapter in solving Examples 11.15


and 11.18.


11.3 Existence of the DTFT


Definition 11.4 The DTFT X (Ω) of a DT sequence x[k] is said to exist if


|X (Ω)| < ∞, for − ∞ < Ω < ∞. (11.29)


The above definition for the existence of the DTFT satisfies our intuition that


a valid function should be finite for all values of the independent variable.


Substituting the value of the DTFT X (Ω) from Eq. (11.28b), Eq. (11.29) can


be expressed as follows:
∣
∣
∣
∣
∣


∞∑


k=−∞
x[k]e−jΩk


∣
∣
∣
∣
∣
< ∞,


which is satisfied if


∞∑


k=−∞
|x[k]| · |e−jΩk | < ∞.
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Table 11.3. DTFT spectra for elementary DT sequences


Sequence Time-domain waveform Magnitude and phase spectra


(1) Constant


x[k] = 1
1


x[k] = 1


0 2 4 6−6 −4 −2
k


… …
(W−2mp)∑


∞


−∞=


d=
m


X(W) ∑
∞


W


2π


0 2p 4p 6p−6p −4p −2p


… …


(2) Unit impulse


x[k] = δ[k]
1


x[k] = δ[k]


0 2         4 6−6 −4 −2
k


1=WX
1


( ) 1=X


0 p 2p 3p−3p −2p −p
W


(3) Unit step


x[k] = u[k]
][][ kukx =


0 6−−6 −4 2 2 4
k


…
( ) ( )∑


∞


−∞=


+π−Ωδπ=Ω
m


mX 2


0 p 2p 3p−3p −2p


p


W


( +−Ω
1 − e−jΩ


1


−p


… …


(4) Decaying exponential


x[k] = pku[k]
with |p| < 1


k


p
p


2


][][ kupkx k=


0 2         4          6 −6 −4 −2


1


…


( ) =WX
1 − pe−jW


0 p 2p 3p−3p −2p −p
W


1− p


=
1


1


(5) Rectangular


x[k] =
{


1 |k| ≤ N
0 elsewhere


≤
=


elsewhere0


1
][


Nk
kx


0 N−N


1


k


( ) =WX


0 p 2p 3p− −2p −p


2N+1


( ) = sin((2N + 1)W/2)
sin(W/2)


X


−3p


W


(6) First-order time-rising


decaying exponential


x[k] = (k + 1)pku[k]
with |p| < 1


][)1(][ kupkkx k+=


0 2 4 6−6 −4 −2


1


k


2p
3p2


][)1(][ kupkkx k+=


0 2 4 6−6 −4 −2


1


k


2p
3p2


0 2 4 6−6 −4 −2


1


k


2p
3p2


…


0 p 2p 3p−3p −2p −p


( )
(1− pe−jW)2


=WX


−−
W


1


(1− p)2
1


=


(7) Sinc


x[k] =
W


π
sinc


(
W k


π


) =kx sinc][
1


0 2


k
4 6−6 −4 −2


……


( )pp= WkW
11


( )
p≤W<


≤W
=W


W


W
X


0


1


1


=
1


=
1


0 2p−2π
W


−
2
p


+
W


 


2
p


+
WW


−
2
p


−
W


2
p


−
W


−
W


(8) Complex exponential


x[k] = e jkΩ0
k


kx ][
W=


… …
1


][kx je 0][ =


0 2


k
4 6−6 −4 −2


][


][kx<


( ) ( )∑
∞


pm−W−Wd=Ω
m=−∞


X 22 0


−
4


p
+


W
0


−−= 2p


−
4


0 2p−2p


2p


W


−
2


p
+


W
0


2
p


+
W


0


W
0


(9) Cosine


x[k] = cos(Ω0k) 1… …


0 2 4 6−6 −4 −2


( )kkx 0cos][ Ω=
11


k


( ) ( ) ([                                           )]∑
∞


−− W  Wd+W−WdW 2mp00


0 2p−2p


p


W


−
2


p
+


W
0


−
4


p
+


W
0


2
p


+
W


0


W
0


−
2


p
−


W
0


4
p


−
W


0


2
p


−
W


0


−
W


0


m=−∞


+−+=X 2mpp


2−2


−
2


−
4 2


0


−
2 42


0


483
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From the Euler’s formula, we know that |exp(−jΩk)| = 1. Therefore, an alter-
native expression to verify the existence of the DTFT is given by


∞∑


k=−∞


|x[k]| < ∞.


Condition for the existence of DTFT The DTFT X (Ω) of a DT sequence x[k]
exists if


∞∑


k=−∞


|x[k]| < ∞. (11.2830)


Equation (11.2830) is a sufficient condition to verify the existence of the DTFT.


Example 11.8


Determine if the DTFTs exist for the following functions:


(i) causal exponential function, x1[k] = p
ku[k].


(ii) cosine waveform, x2[k] = cos(Ω0k).


Solution


(i) Equation (11.2830) yields


∞∑


k=−∞


|x1[k]| =


∞∑


k=−∞


|pku[k]| =


∞∑


k=0


|pk | =











1


1 − p
0 < |p| > 1


∞ |p| ≥ 1.


Therefore, the DTFT of the exponential sequence x1[k] = p
ku[k] exists if 0 <


|p| < 1. Under such a condition, x1[k] is a decaying exponential sequence with


the summation in Eq. (11.2830) having a finite value.


(ii) Equation (11.2830) yields
∞∑


k=−∞


|x2[k]| =


∞∑


k=−∞


|cos(Ω0k)| → ∞.


Therefore, the DTFT does not exist for the cosine waveform. However, this


appears to be in violation of Table 11.2, which lists the following DTFT pair


for the cosine sequence:


cos(Ω0k)
DTFT←−−→ π


∞∑


m=−∞
[δ(Ω+ Ω0 − 2πm) + δ(Ω− Ω0 − 2πm)].


Looking closely at the above DTFT pair, we note that the DTFT X (Ω) of the


cosine function consists of continuous impulse functions at discrete frequencies


Ω = (±Ω0 − 2πm), for −∞ < m < ∞. Since the magnitude of a continuous
impulse function is infinite, |X (Ω)| is infinite at the location of the impulses.
The infinite magnitude of the impulses in the DTFT X (Ω) leads to the violation


of the existence condition stated in Eq. (11.2830).


Example 11.8 has introduced a confusing situation for the cosine sequence.


We proved that the condition of the existence of the DTFT is violated by the
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cosine waveform, yet its DTFT can be expressed mathematically. A similar


behavior is exhibited by most periodic sequences. So how do we determine


the DTFT for a periodic sequence? We cannot use the definition of the DTFT,


Eq. (11.28b), since the procedure will lead to infinite DTFT values. In such


cases, an alternative procedure based on the DTFS is used; this is explained in


Section 11.4.


11.4 DTFT of periodic functions


Consider a periodic function x[k] with fundamental period K0. The DTFS


representation for x[k] is given by


x[k] =
∑


n=〈K0〉
Dne


jnΩ0k, (11.2831)


where Ω0 = 2π/K0 and the DTFS coefficients are given by


Dn =
1


K0


∑


k=〈K0〉
x[k]e−jnΩ0k . (11.2832)


Calculating the DTFT of both sides of Eq. (11.2831), we obtain


X (Ω) = ℑ


{


∑


n=〈K0〉
Dne


jnΩ0k


}


.


Since the DTFT satisfies the linearity property, the above equation can be


expressed as follows:


X (Ω) =
∑


n=〈K0〉
Dnℑ{e jnΩ0k}, (11.2833)


where the DTFT of the complex exponential sequence is given by


ℑ{e jnΩ0k} = 2π
∞∑


m=−∞
δ(Ω− nΩ0 − 2πm).


Using the above value for the DTFT of the complex exponential, Eq. (11.2833)


takes the following form:


X (Ω) =
∑


n=〈K0〉
Dn2π


∞∑


m=−∞
δ(Ω− nΩ0 − 2πm).


By changing the order of summation in the above equation and substituting


Ω0 = 2π/K0, we have


X (Ω) = 2π
∞∑


m=−∞


∑


n=〈K0〉
Dnδ


(


Ω−
2nπ


K0
− 2πm


)


.


Since the DTFT is periodic with a period of 2π , we determine the DTFT in


the range Ω = [0, 2π ] and use the periodicity property to determine the DTFT
values outside the specified range. Taking n = 0, 1, 2, . . . , K0 − 1 and m = 0,
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the following terms of X (Ω) lie within the range Ω = [0, 2π ]:


X (Ω) = 2π D0δ(Ω) + 2π D1δ
(


Ω−
2π


K0


)


+ 2π D2δ
(


Ω−
4π


K0


)


+ · · · + 2π DK0−1δ
(


Ω−
2(K0 − 1)π


K0


)


(11.34a)


or


X (Ω) = 2π
∑


n=〈K0〉
Dnδ


(


Ω−
2nπ


K0


)


, (11.34b)


for 0 ≤ Ω ≤ 2π . Since X(Ω) is periodic, Eq. (11.34b) can also be expressed as
follows:


X (Ω) = 2π
∞∑


n=−∞
Dnδ


(


Ω−
2nπ


K0


)


, (11.35)


which is the DTFT of the periodic sequence x[k] for the entire Ω-axis. The


values of the DTFS coefficients lying outside the range 0 ≤ n ≤ (K0 − 1) are
evaluated from Eq. (11.9) to be


Dn = Dn+mK0 for m ∈ Z .


Definition 11.5 The DTFT X (Ω) of a periodic sequence x[k] is given by


X (Ω) = 2π
∞∑


n=−∞
Dnδ


(


Ω−
2nπ


K0


)


, (11.36a)


where Dn are the DTFS coefficients of x[k]. The DTFS coefficients are given


by


Dn =
1


K0


∑


k=〈K0〉
x[k]e−jnΩ0k (11.36b)


for 0 ≤ n ≤ K0 − 1 and the values outside the range are evaluated from the
following periodicity relationship:


Dn = Dn+mK0 for m ∈ Z . (11.36c)


Example 11.9


Calculate the DTFT of the following periodic sequences:


(i) x1[k] = k for 0 ≤ k ≤ 3, with the fundamental period K0 = 4;


(ii) x2[k] =
{


5 k = 0, 1
0 k = 2, 3, with the fundamental period K0 = 4;


(iii) x3[k] = 0.5k for 0 ≤ k ≤ 14, with the fundamental period K0 = 15;


(iv) x4[k] = 3 sin
(


2π


7
k +


π


4


)


, with the fundamental period K0 = 7.
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3p


2p p 2p


3p


2p p 2p


0 2p−p p−2p 0.5p 1.5p−1.5p −0.5p


3p


W


X1(W)


<X1(W)


−2p


W


p
4


3p


4


3p


4


3p
−


4


3p
−


p


0 2p−p p0.5p


1.5p


−1.5p


−0.5p


(a)


(b)


Fig. 11.9. DTFT of the periodic


sequence x1[k ] = k,
0 ≤ k ≤ 3, with fundamental
period K0 = 4. (a) Magnitude
spectrum; (b) phase spectrum.


Solution


(i) Using Eq. (11.36a), the DTFT of x1[k] is given by


X1(Ω) = 2π
∞∑


n=−∞
Dnδ


(


Ω−
2nπ


4


)


= 2π
∞∑


n=−∞
Dnδ


(


Ω−
nπ


2


)


.


SubstitutingΩ0 = 2π/K0 = π/2 in Eq. (11.36b), the DTFS coefficients Dn for
x1[k] are given by


Dn =
1


4


3∑


k=0
ke−jnπk/2 =


1


4
[e−jnπ/2 + 2e−jnπ + 3e−j3nπ/2].


For 0 ≤ n ≤ 3, the values of the DTFS coefficients are as follows:


n = 0 D0 =
1


4
[1 + 2 · 1 + 3 · 1] =


3


2
;


n = 1 D1 =
1


4
[e−jπ/2 + 2 · e−jπ + 3 · e−j3π/2]


=
1


4
[−j + 2(−1) + 3( j)] = −


1


2
[1 − j];


n = 2 D2 =
1


4
[e−jπ + 2 · e−j2π + 3 · e−j3π ]


=
1


4
[−1 + 2(1) + 3(−1)] = −


1


2
;


n = 3 D3 =
1


4
[e−j3π/2 + 2 · e−j3π + 3 · e−j9π/2]


=
1


4
[ j + 2(−1) + 3(−j)] = −


1


2
[1 + j].


The values of the DTFS coefficients that lie outside the range 0 ≤ n ≤ 3 can
be obtained by using the periodicity property Dn+4 = Dn .


Since X1(Ω) is a complex-valued function, its magnitude and phase spectra


are plotted separately in Figs. 11.9(a) and (b). The area enclosed by the impulse
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0 2p−p−2p 0.5p p 1.5p−1.5p −0.5p


W


X2(W)


5p 5p
p


2


55p


W


<X2(W)


p


0.5p−1.5p


4


p
−


4


p
−


4


p


4


p
0 2p−p−2p 1.5p−0.5p


p
2


5
p


2


5
p


2


5


(a)


(b)


Fig. 11.10. DTFT of the periodic


sequence x2[k ], with


fundamental period K0 = 4.
(a) Magnitude spectrum; (b)


phase spectrum.


functions in the magnitude spectrum is given by 2π Dn and is indicated at the


top of each impulse in Fig. 11.9(a).


(ii) Using Eq. (11.36a), the DTFT of x2[k] is given by


X2(Ω) = 2π
∞∑


n=−∞


Dnδ


(


Ω−
2nπ


4


)


= 2π


∞∑


n=−∞


Dnδ
(


Ω−
nπ


2


)


.


SubstitutingΩ0 = 2π/K0 = π/2 in Eq. (11.36b), the DTFS coefficients Dn are


as follows:


Dn =
1


4


1∑


k=0


5e−jnπk/2 =
1


4
[5 + 5e−jπn/2] =


5


2
e−jπn/4 cos


(πn


4


)


.


For 0 ≤ n ≤ 3, the values of the DTFS coefficients are as follows:


n = 0 (Ω = 0) D0 =
5


2
with |D0| =


5


2
, <D0 = 0;


n = 1 (Ω = 0.5π ) D1 =
5


2
√


2
e−jπ/4 with |D0| =


5


2
√


2
, <D0 = −


π


4
;


n = 2 (Ω = π ) D2 = 0 with |D0| = 0, <D0 = 0;


n = 3 (Ω = 1.5π ) D3 = −
5


2
√


2
e−j3π/4 with |D0| =


5


2
√


2
,


<D0 = π −
3π


4
=


π


4
.


The magnitude and phase spectra are plotted separately in Figs. 11.10(a) and


(b), where the values of the DTFS coefficients lying outside 0 ≤ n ≤ 3 are
obtained using the periodicity property Dn+4 = Dn .


(iii) Using Eq. (11.36a), the DTFT of x3[k] is given by


X3(Ω) = 2π
∞∑


n=−∞
Dnδ


(


Ω−
2nπ


15


)


.
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Table 11.4. Values of |D n | and <D n for 0 ≤ n ≤ 14 in Example 11.9(iii)
The radian frequency Ω corresponding to each value of n is given in the second row


n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14


Ω 0 2π/15 4π /15 6π/15 8π /15 10π/15 12π /15 14π/15 16π/15 18π /15 20π /15 22π/15 24π /15 26π/15 28π/15


|Dn | 0.133 0.115 0.088 0.069 0.057 0.050 0.047 0.045 0.045 0.047 0.050 0.057 0.069 0.088 0.115
<Dn 0 −0.11π −0.16π −0.16π −0.14π −0.11π 0.07π 0.02π 0.02π 0.07π 0.11π 0.14π 0.16π 0.16π 0.11π


The DTFS coefficients of x3[k] are computed in Example 11.3. Substituting


Ω0 = 2π/K0 = 2π/15 in Eqs. (11.11)–(11.13), we obtain


Dn =
1


15










1


1 − 0.5 cos
(


2nπ


15


)


+ j0.5 sin
(


2nπ


15


)










,


where the magnitude component is given by


|Dn| =
1


15












1
√


1.25 − cos
(


2nπ


15


)












and the phase component is given by


<Dn = −tan−1










0.5 sin


(
2nπ


15


)


1 − 0.5 cos
(


2nπ


15


)










.


The magnitude and phase components of the DTFS coefficients Dn for 0 ≤
n ≤ 14 are given in Table 11.4.


The values of the DTFS coefficients, lying outside 0 ≤ n ≤ 14 are obtained
using the periodicity property Dn+14 = Dn . The magnitude and phase of X3(Ω)
are plotted in Fig. 11.11.


(iv) In Example 11.5, the DTFS coefficients Dn of x4[k] are computed and


are given by Eq. (11.19), which is reproduced here:


Dn =















−j1.5e jπ/4; for n = 1


j1.5e−jπ/4; for n = −1 for −1 ≤ n ≤ 5


0 elsewhere.


The values of the DTFS coefficients lying outside −1 ≤ n ≤ 5 are obtained
using the periodicity property Dn+7 = Dn . Using Eq. (11.36a), the DTFT of
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X2(W)


<X3(W)


W


0.266p 0.266p0.266p


−2p


0.5p−0.5p
W


0.163p


−0.163p


0.163p


−0.163p


0 2p−p p p−2p 0.5p 1.5p−1.5p −0.5p


0 2p−p 1.5pp−0.5p


(a)


(b)


Fig. 11.11. DTFT of the periodic


sequence


x3[k ] = 0.5k u[k ], 0 ≤ k ≤ 14,
with fundamental period


K0 = 15. (a) Magnitude
spectrum; (b) phase spectrum.


X4(W)


<X4(W)


W


3p 3p3p 3p


W


0.25p


−0.25p −0.25p


0.25p


0 2p−p p−2p 0.5p 1.5p−1.5p −0.5p


0 2p−p p


p


p −2p 0.5p 1.5p−1.5p −0.5p


(a)


(b)


Fig. 11.12. DTFT of the periodic


sequence x4[k ], with


fundamental period K0 = 7.
(a) Magnitude spectrum;


(b) phase spectrum.


x4[k] is given by


X4(Ω) = 2π
∞∑


n=−∞
Dnδ


(


Ω−
2nπ


7


)


= 2π
∞∑


n=−∞
n=7m+1


D1δ


(


Ω−
2nπ


7


)


+ 2π
∞∑


n=−∞
n=7m−1


D−1δ


(


Ω−
2nπ


7


)


= −j3πe j(π/4)
∞∑


m=−∞
δ


(


Ω−
2π


7
− 2mπ


)


+ j3πe−j(π/4)
∞∑


m=−∞
δ


(


Ω+
2π


7
− 2mπ


)


.


The magnitude and phase of X4(Ω) are plotted in Fig. 11.12.
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11.5 Properties of the DTFT and the DTFS


In this section, we present the properties of the DTFT. These properties are


similar to the properties for the CTFT discussed in Chapter 5. In most cases,


we do not explicitly state the DTFS properties, but a list of the DTFS properties


is included in Table 11.5.


11.5.1 Periodicity


DTFT The DTFT X (Ω) of an arbitrary DT sequence x[k] is periodic with a
period Ω0 = 2π . Mathematically,


X (Ω) = X (Ω+ 2π ). (11.37)


DTFS The DTFS coefficients Dn of a periodic sequence x[n] with period K0
are periodic with respect to the coefficient number n and has a period K0. In


other words,


Dn = Dn+mK0 , (11.38)


for 0 ≤ n ≤ K0 − 1 and −∞ < m < ∞. Recall that the coefficient num-
ber n = K0 corresponds to the frequency Ωn = 2πn/K0 = 2π . Therefore,
the frequency–periodicity property of the DTFS and DTFT are in fact the


same.


11.5.2 Hermitian symmetry


The DTFT X (Ω) of a real-valued sequence x[k] satisfies


X (−Ω) = X∗(Ω), (11.39a)


where X∗(Ω) denotes the complex conjugate of X (Ω). By expressing the DTFT


X (Ω) in terms of its real and imaginary components,


X (Ω) = Re{X (Ω)} + j Im{X (Ω)},


Eq. (11.39a) can be expressed as follows:


Re{X (−Ω)} + j Im{X (−Ω)} = Re{X (Ω)} − j Im{X (Ω)}.


Separating the real and imaginary components yields


Re{X (−Ω)} = Re{X (Ω)} and Im{X (−Ω)} = −Im{X (Ω)}, (11.39b)


which implies that the real component Re{X (Ω)} of the DTFT X (Ω) of a real-


valued sequence x[k] is an even function of frequency Ω and that its imaginary


component Im{X (Ω)} is an odd function of Ω. In terms of the magnitude and
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phase spectra of the DTFT X (Ω), the Hermitian symmetry property can be


expressed as follows:


|X (−Ω)| = |X (Ω)| and <X (−Ω) = − <X (Ω), (11.39c)


implying that the magnitude spectrum is even and that the phase spectrum is


odd.


As extensions of the Hermitian symmetry properties, we consider the special


cases when: (a) x[k] is real-valued and even and (b) x[k] is imaginary-valued


and odd.


Case 1 If x[k] is both real-valued and even, then its DTFT X (Ω) is also real-
valued and even, with the imaginary component Im{X (Ω)} = 0. In other words,


Re{X (−Ω)} = Re{X (Ω)} and Im{X (−Ω)} = 0. (11.39d)


Case 2 If x[k] is both imaginary-valued and odd, then its DTFT X (Ω) is also
imaginary-valued and odd, with the real component Re{X (Ω)} = 0. In other
words,


Re{X (−Ω)} = 0 and Im{X (−Ω)} = −Im{X (Ω)}. (11.39e)


11.5.3 Linearity


Like the CTFT, both the DTFT and DTFS satisfy the linearity property.


DTFT If x1[k] and x2[k] are two DT sequences with the following DTFT pairs:


x1[k]
DTFT


←−−→ X1(Ω) and x2[k]
DTFT←−−→ X2(Ω),


then the linearity property states that


a1x1[k] + a2x2[k]
DTFT←−−→ a1 X1(Ω) + a2 X2(Ω), (11.40a)


for any arbitrary constants a1 and a2, which may be complex-valued.


DTFS If x1[k] and x2[k] are two periodic DT sequences with the same funda-
mental period K0 and the following DTFS pairs:


x1[k]
DTFS←−−→ Dx1n and x2[k]


DTFS←−−→ Dx2n ,


then the DTFS coefficients of the periodic DT sequence x3[k] = a1x1[k] +
a2x2[k], which also has a period of K0, are given by


a1x1[k] + a2x2[k]
︸ ︷︷ ︸


x3[k]


DTFS←−−→ a1 Dx1n + a2 D
x2
n


︸ ︷︷ ︸


D
n3
n


, (11.40b)


for any arbitrary constants a1 and a2, which may be complex-valued.
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11.5.4 Time scaling


The time-scaling property of the CTFT, defined in Section 5.4.2, states that if a


CT function x(t) is time-compressed by a factor of a (a �= 0), its CTFT X (ω) is


expanded in the frequency domain by a factor of a, and vice versa. For the DTFT,


the time-scaling property has a limited scope, as illustrated in the following.


Decimation Since decimation is an irreversible nature of the decimation oper-
ation, the DTFT of x[k] and the decimated sequence y[k] = x[mk] are not


related to each other.


Interpolation In the DT domain, interpolation is defined in Chapter 1 as
follows:


x (m)[k] =













x


[
k


m


]


if k is a multiple of integer m


0 otherwise.


(11.41a)


The interpolated sequence x (m)[k] inserts (m − 1) zeros in between adjacent


samples of the DT sequence x[k]. The time-scaling property for the interpolated


sequence x (m)[k] is given as follows.


If


x[k]
DTFT


←−−→ X (Ω),


then the DTFT X (m)(Ω) of x (m)[k] is given by


X (m)(Ω) = X (mΩ), (11.41b)


for 2 ≤ m < ∞. Equation (11.41b) shows that interpolation in time results in
compression in the frequency domain. To demonstrate the application of the


interpolation property, consider the DTFT of a rectangular sequence:


x[k] = rect
(


k


3


)


DTFT←−−→
sin (3.5Ω)


sin (0.5Ω)
.


Using the interpolation property, the DTFT of the interpolated function x (2)[k]


for m = 2 is given by


x (2)[k]
DTFT←−−→ X (2Ω) =


sin(3Ω)


sin(Ω)
.


The functions x[k] and x (2)[k] and their DTFTs are shown graphically in Fig.


11.13.


11.5.5 Time shifting


The time-shifting operation delays or advances the reference sequence in time.


Given a signal x[k], the time-shifted signal is given by x[k– k0], where k0 is


an integer. If the value of the shift k0 is positive, the reference sequence x[k]
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k
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0 2 4−6 −4


1 11


6 8−2−8
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0 2 4−6 −4


1 11


6 8−2−8


x(2)[k] X (2)(W)


0


7


p 2p−2p −p
W


0 p 2p−2p p


X [W]


0


7


W


(a)


(b)


Fig. 11.13. Time-scaling


property. (a) DTFT pair for a


rectangular sequence x[k ] with a


length of seven samples. (b)


DTFT pair for x (2)[k ] obtained by


interpolating x[k ] by a factor of


m = 2.


is delayed and shifted towards the right-hand side of the k-axis. On the other


hand, if the value of the shift k0 is negative, sequence x[k] advances and is


shifted towards the left-hand side of the k-axis. The DTFT of the time-shifted


sequence x[k– k0] is related to the DTFT of the reference sequence x[k] using


the following time-shifting property.


If


x[k]
DTFT


←−−→ X (Ω)


then


x[k − k0]
DTFT←−−→ e−jk0ΩX (Ω), (11.42)


for integer values of k0.


Example 11.10


Using the time-shifting property, calculate the DTFT of the following sequence:


x[k] =











0.75 (3 ≤ k ≤ 9)
0.5k−12 (12 ≤ k < ∞)
0 elsewhere.


Solution


The DT sequence x[k], plotted in Fig. 11.14, can be expressed as a linear


combination of: (i) a time-shifted gate or rectangular sequence, denoted by


x2[k] in Example 11.6, (ii), as follows:


x2[k] = rect
(


k


2N + 1


)


=
{


1 |k| ≤ N
0 elsewhere,
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x[k]


k


4 6 10 12 14 16 18−4 −2 0 2 8


0.75
1
0.5


0.25
0.125


Fig. 11.14. DT sequence x[k ]


used in Example 11.10.


with N = 3; and (ii) a time-shifted decaying exponential sequence, denoted by
x3[k] in Example 11.6, (iii), as follows:


x3[k] = pku[k],


with decay factor p = 0.5. In terms of x2[k] and x3[k], the expression for x[k]
is given by


x[k] = 0.75x2[k − 6] + x3[k − 12].


Using the linearity and time-shifting properties, the DTFT X (Ω) of x[k] is given


by


X (Ω) = 0.75e−j6ΩX2(Ω) + e−j12ΩX3(Ω).


From the results in Example 11.6, the DTFTs for the sequences x2[k] and x3[k]


are given by


X2(Ω) =
sin(3.5Ω)


sin(0.5Ω)
and X3(Ω) =


1


1 − 0.5e−jΩ
.


Substituting the values of the DTFTs results in the following:


X (Ω) = 0.75e−j6Ω
sin(3.5Ω)


sin(0.5Ω)
+ e−j12Ω


1


1 − 0.5e−jΩ
.


11.5.6 Frequency shifting


In the time-shifting property, we observed the change in the DTFT when the DT


sequence x[k] is shifted in the time domain. The frequency-shifting property


addresses the converse problem of how shifting the DTFT X (Ω) in the frequency


domain affects the sequence x[k] in the time domain.


If


x[k]
DTFT


←−−→ X (Ω)


then


x[k]e jΩ0k
DTFT←−−→ X (Ω− Ω0), (11.43)


for 0 ≤ Ω0 < 2π .


Example 11.11


Using the frequency-shifting property, calculate the DTFT of x[k] =
cos(Ω0k) cos(Ω1k) with (Ω0 + Ω1) < π .
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Solution


Using Table 11.2, the DTFT of cos(Ω0k) is given by


cos(Ω0k)
DTFT


←−−→ π
∞∑


m=−∞
[δ(Ω+ Ω0 − 2mπ ) + δ(Ω− Ω0 − 2mπ )].


Using the frequency-shifting property,


cos (Ω0k)e
jΩ1k DTFT←−−→ π


∞∑


m=−∞
[δ(Ω+ Ω0 − Ω1 − 2mπ )


+ δ(Ω− Ω0 − Ω1 − 2mπ )]


and


cos(Ω0k)e
−jΩ1k DTFT←−−→ π


∞∑


m=−∞
[δ(Ω+ Ω0 + Ω1 − 2mπ )


+ δ(Ω− Ω0 + Ω1 − 2mπ )].


Adding the two DTFT pairs and noting that [exp(jΩ1k) + exp(−jΩ1k)] =
2 cos(Ω1k), we obtain


cos(Ω0k) cos(Ω1k)
DTFT←−−→


π


2


∞∑


m=−∞
[δ(Ω+ Ω0 − Ω1 − 2mπ )


+ δ(Ω− Ω0 − Ω1 − 2mπ )
+ δ(Ω+ Ω0 + Ω1 − 2mπ )
+ δ(Ω− Ω0 + Ω1 − 2mπ )].


The above DTFT can also be obtained by expressing


2 cos(Ω0k) cos(Ω1k) = cos[(Ω0 + Ω1)k] + cos[(Ω0 − Ω1)k]


and calculating the DTFT of the right-hand side of the above expression.


11.5.7 Time differencing


The time differencing in the DT domain is the counterpart of differentiation in


the CT domain. The time-differencing property is stated as follows.


If


x[k]
DTFT←−−→ X (Ω)


then


x[k] − x[k − 1] DTFT←−−→ [1 − e−jΩ]X (Ω). (11.44)


The proof of Eq. (11.44) follows directly from the application of the time-


shifting property.
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Example 11.12


Based on the DTFT of the unit step u[k] and the time-shifting property, calculate


the DTFT of x[k] = δ[k].


Solution


Using Table 11.2, the DTFT of the unit step function is given by


u[k]
DTFT


←−−→ π
∞∑


m=−∞
δ(Ω− 2mπ ) +


1


1 − e−jΩ
.


Applying the time-differencing property yields


u[k] − u[k − 1] DTFT←−−→ (1 − e−jΩ)


[


π


∞∑


m=−∞
δ(Ω− 2mπ ) +


1


1 − e−jΩ


]


,


which reduces to


u[k] − u[k − 1] DTFT←−−→ 1 + π
∞∑


m=−∞
δ(Ω− 2mπ )(1 − e−jΩ)|Ω=2mπ .


Since [1 − exp(−j2mπ )] = 0, the above DTFT pair reduces to


δ[k]
DTFT←−−→ 1.


11.5.8 Differentiation in frequency


If


x[k]
DTFT←−−→ X (Ω)


then


−jkx [k] DTFT←−−→
dX


dΩ
. (11.45)


Example 11.13


Based on the DTFT of the exponential decaying function and the frequency


differentiation property, calculate the DTFT of x[k] = (k + 1)pku[k].


Solution


In Table 11.2, the DTFT of the exponential decaying function is given as


pku[k]
DTFT←−−→


1


1 − pe−jΩ
.


Using the frequency-differentiation property, we obtain


(−jk)pku[k] DTFT←−−→
d


dΩ


[
1


1 − pe−jΩ


]


=
−jpe−jΩ


(1 − pe−jΩ)2


or


kpku[k]
DTFT←−−→ j


d


dΩ


[
1


1 − pe−jΩ


]


=
pe−jΩ


(1 − pe−jΩ)2
.
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Adding the DTFT pairs for pku[k] and kpku[k] yields


(k + 1)pku[k] DTFT←−−→
1


1 − pe−jΩ
+


pe−jΩ


(1 − pe−jΩ)2
=


1


(1 − pe−jΩ)2
.


11.5.9 Time summation


The time summation in the DT domain is the counterpart of integration in the


CT domain. The time-summation property is defined as follows.


If


x[k]
DTFT←−−→ X (Ω)


then


k∑


n=−∞
x[n]


DTFT←−−→
1


(1 − e−jΩ)
X (Ω) + π X (0)


∞∑


m=−∞
δ(Ω− 2πm). (11.46)


Example 11.14


Based on the DTFT of the unit impulse sequence and the time-summation


property, calculate the DTFT of the unit step sequence.


Solution


Using Table 11.2, the DTFT of the unit impulse sequence is given by


δ[k]
DTFT←−−→ 1.


Using the time-summation property, we obtain


k∑


n=−∞
δ[n]


DTFT←−−→
1


1 − e−jΩ
· 1 + π · 1


∞∑


m=−∞
δ(Ω− 2πm),


which yields


u[k]
DTFT←−−→


1


1 − e−jΩ
+ π


∞∑


m=−∞
δ(Ω− 2πm).


11.5.10 Time convolution


In Section 10.5, we showed that the output response of an LTID system is


obtained by convolving the input sequence with the impulse response of the


system. Sometimes the resulting convolution sum is difficult to solve analyti-


cally in the time domain. The convolution property provides us with an alter-


native approach, based on the DTFT, of calculating the output response. Below


we state the convolution property and explain its application in calculating the


output response of an LTID system using an example.


If x1[k] and x2[k] are two DT sequences with the following DTFT pairs:


x1[k]
DTFT←−−→ X1(Ω) and x2[k]


DTFT←−−→ X2(Ω),
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then the time-convolution property states that


x1[k] ∗ x2[k]
DTFT←−−→ X1(Ω)X2(Ω). (11.47)


In other words, the convolution between two DT sequences in the time domain is


equivalent to multiplication of the DTFTs of the two functions in the frequency


domain. Note that the CTFT also has a similar property, as stated in Section


5.4.8.


Equation (11.47) provides us with an alternative technique for calculating the


convolution sum using the DTFT. Expressed in terms of the following DTFT


pairs:


x[k]
DTFT←−−→ X (Ω), h[k] DTFT←−−→ H (Ω), and y[k] DTFT←−−→ Y (Ω) ,


the output sequence y[k] can be expressed in terms of the impulse response


h[k] and the input sequence x[k] as follows:


y[k] = x[k] ∗ h[k] DTFT←−−→ Y (Ω) = X (Ω)H (Ω). (11.48)


In other words, the DTFT of the output sequence is obtained by multiplying


the DTFTs of the input sequence and the impulse response. The procedure for


evaluating the output y[k] of an LTID system in the frequency domain therefore


consists of the following four steps.


(1) Calculate the DTFT X (Ω) of the input signal x[k].


(2) Calculate the DTFT H (Ω) of the impulse response h[k] of the LTID system.


The DTFT H (Ω) is referred to as the transfer function of the LTID system


and provides a meaningful insight into the behavior of the system.


(3) Based on the convolution property, the DTFT of the output y[k] is given


by Y (Ω) = H (Ω)X (Ω).
(4) The output y[k] in the time domain is obtained by calculating the inverse


DTFT of Y (Ω) obtained in step (3).


Since the DTFTs are periodic with periodΩ = 2π , steps (1)–(4) can be applied
only to the frequency range [−π ≤ Ω ≤ π ].


Example 11.15


The exponential decaying sequence x[k] = aku[k], 0 ≤ a ≤ 1, is applied at the
input of an LTID system with the impulse response h[k] = bku[k], 0 ≤ b ≤ 1.
Using the DTFT approach, calculate the output of the system.


Solution


Based on Table 11.2, the DTFTs for the input sequence and the impulse response


are given by


x[k]
DTFT←−−→


1


1 − ae−jΩ
and h[k]


DTFT←−−→
1


1 − be−jΩ
.
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The DTFT Y (Ω) of the output signal is therefore calculated as follows:


y[k] = x[k] ∗ h[k] DTFT←−−→ Y (Ω) =
1


(1 − ae−jΩ)(1 − be−jΩ)
.


The inverse of the DTFT Y (Ω) takes two different forms depending on the


values of a and b:


Y (Ω) =















1


(1 − ae−jΩ)2
a = b


1


(1 − ae−jΩ)(1 − be−jΩ)
a �= b.


We consider the two cases separately.


Case 1 (a = b) The inverse DTFT follows directly from Table 11.2 as follows:


y[k] = (k + 1)aku[k + 1].


Case 2 (a �= b) Using partial fraction expansion, the DTFT Y (Ω) is expressed
as follows:


Y (Ω) =
A


1 − ae−jΩ
+


B


1 − be−jΩ
, (11.49)


where the partial fraction coefficients are given by


A =
1


1 − be−jΩ


∣
∣
∣
∣
ae−jΩ=1


=
a


a − b


and


B =
1


1 − ae−jΩ


∣
∣
∣
∣
be−jΩ=1


= −
b


a − b
.


Substituting the values of A and B in Eq. (11.49) and calculating the inverse


DTFT yields


y[k] =
1


a − b
[ak+1 − bk+1]u[k].


Combining case 1 with case 2, we obtain


y[k] =











(k + 1)aku[k] a = b
1


a − b
[ak+1 − bk+1]u[k] a �= b.


(11.50)


11.5.11 Periodic convolution


The time-convolution property, defined by Eq. (11.35), is used to calculate


the output of convolving aperiodic sequences. In Section 10.6, we defined the
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k


xp[k]


2 30 1 4 5 6 7−2 −1−3−4


1
2


3


1
2


3


1
2


3


2 30 1 4 5 6 7−2 −1−3−4


k


hp[k]


5 5


Fig. 11.15. Periodic sequences


xp[k ] and hp[k ] used in Example


11.16.


periodic, or circular, convolution to convolve periodic sequences. We now show


how the periodic convolution can be calculated using the DTFS.


If x1[k] and x2[k] are two DT periodic sequences with the same fundamental


period K0 and the following DTFS pairs:


x1[k]
DTFS←→ Dx1n and x2[k]


DTFS←→ Dx2n ,


then the periodic convolution property states that


x1[k] ⊗ x2[k]
DTFS←−−→ K0 Dx1n D


x2
n . (11.51)


We illustrate the application of the periodic convolution property by revisiting


Example 10.10.


Example 11.16


In Example 10.10, we calculated the periodic convolution yp[k] of the two


periodic sequences xp[k] and hp[k], defined over one period (K0 = 4) as xp[k] =
k, 0 ≤ k ≤ 3, and hp[k] = 5, 0 ≤ k ≤ 1, in the time domain. Repeat Example
10.10 using the periodic convolution property.


Solution


The periodic sequences xp[k] and hp[k] are shown in Fig. 11.15. In part (i) of


Example 11.9, we calculated the DTFS coefficients of xp[k] as follows:


D
xp
0 =


3


2
, D


xp
1 = −


1


2
[1 − j], Dxp2 = −


1


2
, and D


xp
3 = −


1


2
[1 + j].


Similarly, in part (ii) of Example 11.9 we calculated the DTFS coefficients of


hp[k]:


D
hp
0 =


5


2
, D


hp
1 =


5


4
[1 − j], Dhp2 = 0, and D


hp
3 =


5


4
[1 + j].


Using the periodic convolution property, the DTFS coefficients of yp[k] are


D
yp
0 = K0 D


xp
0 D


hp
0 = 15;


D
yp
1 = K0 D


xp
1 D


hp
1 = j5;


D
yp
2 = K0 D


xp
2 D


hp
2 = 0;


D
yp
3 = K0 D


xp
3 D


hp
3 = −j5.
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Calculating the inverse DTFS, the DT sequence yp[k] is given by


yp[k] =
3∑


n=0
D


yp
n e


−j 2π
4


nk


=
[


15 + j5 · e−j
π
2


k + 0 · e−jπk − j5 · e−j
3π
2


k
]


.


Calculating the values of yp[k] within one period (0 ≤ k0 ≤ 3) yields


k = 0 yp[0] = 15 + j5 − j5 = 15;


k = 1 yp[1] = 15 + j5e−j
π
2 − j5e−j


3π
2 = 15 − 5 − 5 = 5;


k = 2 yp[2] = 15 + j5e−jπ − j5e−j3π = 15 − j5 + j5 = 15;


k = 3 yp[3] = 15 + j5e−j
3π
2 − j5e−j


9π
2 = 15 + 5 + 5 = 25.


The above result is identical to the result obtained in Example 10.10.


Example 11.16 shows how periodic convolution can be calculated using


the DTFS periodic-convolution property. A more computationally efficient


approach of calculating the periodic convolution is based on the dis-


crete Fourier transform (DFT). The theory of DFT will be presented in


Chapter 12.


11.5.12 Frequency convolution


The time-convolution property (see Section 11.5.10) states that the convolution


between two DT sequences in the time domain is equivalent to the multiplication


of the DTFTs of the two sequences in the frequency domain. The converse of


the time-convolution property is also true, and is referred to as the frequency-


convolution property.


If x1[k] and x2[k] are two DT sequences with the following DTFT pairs:


x1[k]
DTFT←−−→ X1(Ω) and x2[k]


DTFT←−−→ X2(Ω),


then the frequency-convolution property states that


x1[k]x2[k]
DTFT←−−→


1


2π


∫


〈2π〉


X1(θ )X2(Ω− θ )dθ. (11.52)


The limits of integration in Eq. (11.52) are given by 〈Ω = 2π〉, which implies
that any range of 2π may be chosen during the integration.


The frequency-convolution property is widely used in digital communica-


tions systems, where it is commonly referred to as the modulation property.
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11.5.13 Parseval’s theorem


If x[k] is an energy signal and x[k]
DTFT


←−−→ X (Ω), the energy of the DT signal
x[k] is given by


Ex =
∞∑


k=−∞
|x[k]|2 =


1


2π


∫


〈2π〉


|X (Ω)|2dΩ. (11.53)


Parseval’s theorem states that the DTFT is a lossless transform as there is no


loss of energy if a signal is transformed to the frequency domain.


Example 11.17


Using Parseval’s theorem, evaluate the following integral:


∫


〈2π〉










sin


(
2N + 1


2
Ω


)


sin


(
1


2
Ω


)










2


dΩ.


Solution


Since


rect


(
k


2N + 1


)


DTFT←−−→
sin


(
2N + 1


2
Ω


)


sin


(
1


2
Ω


) ,


Eq. (11.53) computes the area enclosed by the squared DT sinc function within


one period Ω = 〈2π〉 as follows:


1


2π


∫


〈2π〉










sin


(
2N + 1


2
Ω


)


sin


(
1


2
Ω


)










2


dΩ =
∞∑


k=−∞


∣
∣
∣
∣


rect


[
k


2N + 1


]∣
∣
∣
∣


2


,


where


rect


[
k


2N + 1


]


=
{


1 |k| ≤ N
0 elsewhere.


Simplifying the summation on the right-hand side of this equation yields


∫


〈2π〉










sin


(
2N + 1


2
Ω


)


sin


(
1


2
Ω


)










2


dΩ = 2π (2N + 1).


We have presented several properties in Sections 11.5.1–11.5.12. Table 11.5


lists the properties of the DTFS and Table 11.6 lists the properties of the DTFT.
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Table 11.5. Properties of the DTFS: sequences x [k ], x1[k ], and x2[k ] are periodic with a period of K0


Properties Time domain Frequency domain Comments


x[k] =
∑


n=〈K0〉
Dne


jnΩ0k Dn =
1


K0


∑


k=〈K0〉
x[k]e−jnΩ0k Ω0 = 2π/K0


x1[k] D
x1
n Ω0 = 2π/K0


x1[k] D
x2
n Ω0 = 2π/K0


Periodicity x[k] Dn = Dn+K0
Linearity a1x1[k] + a2x2[k] a1 Dx1n + a2 Dx2n a1, a2 ∈ C


Scaling x (m)[k]


with period mK0


1


m
Dn m = 1, 2, 3, . . .


Time shifting x[k − k0] exp
(


j
2πk0


K0
n


)


Dn k0 ∈ R


Frequency shifting exp


(


j
2πn0


K0
k


)


x[k] Dn−n0 n0 ∈ R


Time differencing x[k] − x[k − 1]
[


1 − exp
(


j
2π


K0
n


)]


Dn


Time summation S =
k∑


m=−∞
x[m]


1


1 − exp
(


j
2π


K0
n


) Dn summation S is


finite only if


D0 = 0
Periodic convolution


∑


n=〈K0〉
x1[n]x2[n − k] K0 Dx1n Dx2n convolution over a


period K0


Frequency


convolution


x1[k]x2[k]
∑


m=〈K0〉
Dx1m D


x2
m−n multiplication in


time domain


Parseval’s relationship
1


K0


∑


k=〈K0〉
|x[k]|2 =


∑


n=〈K0〉
|Dn|2 power of a periodic


sequence


Symmetry properties


DTFS: D−n = D∗n Comments


real and imaginary


components:
{


Re{D−n} = Re{Dn}
Im{D−n} = −Im{Dn}


real component is


even; imaginary


component is odd


Hermitian property x[k] is a real-valued sequence


magnitude and phase spectra:
{


|D−n| = |Dn|
<D−n = − <Dn


magnitude spectrum


is even; phase


spectrum is odd


Real-valued and even


function


x[k] is an even and real-valued


sequence


{


Re{D−n} = Re{Dn}
Im{D−n} = 0


DTFS is real-valued


and even


Real-valued and odd


function


x[k] is an odd and real-valued


sequence


{


Re{D−n} = 0
Im{D−n} = −Im{Dn}


DTFS is imaginary


and odd
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Table 11.6. Properties of the discrete-time Fourier transform (DTFT)


Transformation


properties Time domain Frequency domain Comments


x[k] =
1


2π


∫


〈2π〉


X (Ω)e jkΩdΩ X (Ω) =
∞∑


k=−∞
x[k]e−jΩk


x1[k] X1(�)


x2[k] X2(Ω)


Periodicity x[k] X (Ω) = X (Ω+ 2π )
Linearity a1x1[k] + a2x2[k] a1 X1(Ω) + a2 X2(Ω) a1, a2 ∈ C
Scaling x (m)[k] X (mΩ) m = 1, 2, 3, . . .
Time shifting x[k − k0] exp(− jk0Ω)X (Ω) k0 ∈ R
Frequency shifting exp( jkΩ0)x[k] X (Ω− Ω0) Ω0 ∈ R
Time differencing x[k] − x[k − 1] [1 − exp( jΩ)]X (Ω)


Time summation S =
k∑


m=−∞
x[m]


1


1 − exp( jΩ)
X (Ω) +


π X (0)


∞∑


m=−∞
δ(Ω− 2πm)


provided summation


S is finite


Time convolution x1[k] ∗ x2[k] X1(Ω)X2(Ω)
Periodic convolution x1[k] ⊗ x2[k] X1(Ω)X2(Ω) over period K0


Frequency


convolution


x1[k]x2[k]
1


2π


∫


〈2π〉


X1(θ )X2(Ω− θ )dθ multiplication in time
domain


Parseval’s


relationship


Ex =
∞∑


k=−∞
|x[k]|2=


1


2π


∫


〈2π〉


|X (Ω)|2 dΩ energy in a signal


Symmetry properties


DTFT: X (−Ω) = X∗(Ω)


real and imaginary component:
{


Re{X (−Ω)} = Re{X (Ω)}
Im{X (−Ω)} = −Im{X (Ω)}


real component is


even: imaginary


component is odd


Hermitian property x[k] is a real-valued function


magnitude and phase spectra:
{


|X (−Ω)| = |X (Ω)|
<X (−Ω) = − <X (Ω)


magnitude spectrum


is even; phase


spectrum is odd


Real-valued and


even function


x[k] is even and real-valued


{


Re{X (−Ω)} = Re{X (Ω)}
Im{X (Ω)} = 0 DTFT is real-valued


and even


Real-valued and odd


function


x[k] is odd and real-valued


{


Re{X (−Ω)} = 0
Im{X (−Ω)} = −Im{X (Ω)} DTFT is imaginary


and odd
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11.6 Frequency response of LTID systems


In Chapter 10, we presented two different representations to specify the input–


output relationship of an LTID system. Section 10.1 used a linear, constant-


coefficient difference equation, while Section 10.3 used the impulse response


h[k] to model an LTID system. A third representation for an LTID system is


obtained by calculating the DTFT of the impulse response,


h[k]
DTFT


←−−→ H (Ω).
The DTFT H (Ω) is referred to as the Fourier transfer function of the LTID


system. In conjunction with the linear convolution property, the transfer function


H (Ω) can be used to determine the output response y[k] of the LTID system


due to the input sequence x[k]. In the time domain, the output response y[k] is


given by


y[k] = x[k] ∗ h[k].


Calculating the DTFT of both sides of the equation, we obtain


Y (Ω) = X (Ω)H (Ω) (11.54)


or


H (Ω) =
Y (Ω)


X (Ω)
, (11.55)


where Y (Ω) and X (Ω) are, respectively, the DTFTs of the output response y[k]


and the input signal x[k]. Equation (11.55) provides an alternative definition


for the transfer function as the ratio of the DTFT of the output signal and the


DTFT of the input signal.


Given one representation for an LTID system, it is straightforward to derive


the remaining two representations based on the DTFT and its properties. In the


following, we derive a formula to calculate the transfer function of an LTID


system from its difference equation representation.


Consider an LTID system whose input–output relationship is given by the


following difference equation:


y[k + n] + an−1 y[k + n − 1] + · · · + a0 y[k] = bm x[k + m]
+ bm−1x[k + m − 1] + · · · + b0x[k]. (11.56)


Calculating the DTFT of both sides of the above equation, we obtain


{


e jnΩ + an−1e j(n−1)Ω + · · · + a0
}


Y (Ω) =
{


bme
jmΩ + bm−1e j(m−1)Ω


+ · · · + b0
}


X (Ω),


which reduces to the following transfer function:


H (Ω) =
Y (Ω)


X (Ω)
=


bme
jmΩ + bm−1e j(m−1)Ω + · · · + b0


e jnΩ + an−1e j(n−1)Ω + · · · + a0
. (11.57)


The impulse response h[k] of the LTID system can be obtained by calculating


the inverse DTFT of the transfer function H (Ω).
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h[k]


k


4 6 8−2 0


2


10 122−4


2.5
2.13


1.66
1.260.95


0.710.54 0.4 0.30.230.170.13


Fig. 11.16. Impulse response


h[k ] of the LTID system derived


in Example 11.18.


Example 11.18


The input–output relationship of an LTID system is given by the following


difference equation:


y[k + 2] −
3


4
y[k + 1] +


1


8
y[k] = 2x[k + 2]. (11.58)


Determine the transfer function and the impulse response of the system.


Solution


Calculating the DTFT of Eq. (11.58) yields
{


e j2Ω −
3


4
e jΩ +


1


8


}


Y (Ω) = 2e j2ΩX (Ω),


which results in the following transfer function:


H (Ω) =
2e j2Ω


e j2Ω −
3


4
e jΩ +


1


8


=
2


1 −
3


4
e−jΩ +


1


8
e−j2Ω


=
2


(


1 −
1


2
e−jΩ


) (


1 −
1


4
e−jΩ


) .


To calculate the impulse response of the LTID system, we calculate the partial


fraction of H (Ω) as follows:


H (Ω) =
4


1 −
1


2
e−jΩ


−
2


1 −
1


4
e−jΩ


.


By calculating the inverse DTFT of both sides, the impulse response h[k] is


given by


h[k] = 4
(


1


2


)k


u[k] − 2
(


1


4


)k


u[k],


which is plotted in Fig. 11.16.


11.7 Magnitude and phase spectra


The Fourier transfer function H (Ω) provides a complete description of an LTID


system. In most cases, H (Ω) is a complex function of the angular frequencyΩ.


Therefore, it is difficult to analyze the frequency characteristics of the transfer
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LTID system


H(W)x[k] =
cos(W0k)


H(W0) y[k] = cos(W0k + <H(W0))


Fig. 11.17. Gain and phase


responses of an LTID system.


The LTID system provides a gain


of |H (Ω)| to the magnitude and
a phase change of <H (Ω) to the


phase of the sinusoidal input. function directly from the mathematical expression. By expressing the transfer


function H (Ω) as


H (Ω) = |H (Ω)|e j<H (Ω), (11.59)


the LTID system is analyzed by plotting the magnitude |H (Ω)| and phase
<H (Ω) as functions of frequency Ω. The plot of the magnitude |H (Ω)| with
respect to frequency Ω is referred to as the magnitude spectrum, while the plot


of the phase <H (Ω) with respect to frequency Ω is referred to as the phase


spectrum. Collectively, magnitude and phase spectra are used to analyze the


LTID system.


A second interpretation of the magnitude and phase spectra is obtained by


considering a sinusoidal sequence x[k] = cos(Ω0k) applied at the input of an
LTID system with transfer function H (Ω). The DTFT of the output of the LTID


system is given by


Y (Ω) = ℑ{x[k]}H (Ω)


= π [δ(Ω− Ω0) + δ(Ω+ Ω0)]|H (Ω)|e
j<H (Ω)


= π
[


δ(Ω− Ω0)|H (Ω0)|e
j<H (Ω0) + δ(Ω+ Ω0)|H (−Ω0)|e


j<H (−Ω0)
]


.


Assuming that the impulse response h[k] of the LTID system is real-valued and


then applying the Hermitian symmetry property, we observe that the magnitude


response |H (Ω)| is an even function of Ω while the phase response <H (Ω) is


an odd function of Ω. Mathematically,


|H (−Ω)| = |H (Ω)| and <H (−Ω) = − < H (Ω).


The DTFT Y (Ω) of the output of the LTID system is therefore given by


Y (Ω) = π |H (Ω0)|
[


δ(Ω− Ω0)e
j<H (Ω0) + δ(Ω+ Ω0)e


−j<H (Ω0)
]


.


Calculating the inverse DTFT, the output of the LTID system is given by


y[k] =
1


2
|H (Ω0)|


[


e j(Ω0k+<H (Ω0)) + e−j(Ω0k+<H (Ω0))
]


(11.60a)


or


y[k] = |H (Ω0)| cos(Ω0k+ <H (Ω0)). (11.60b)


Figure 11.17 is a schematic diagram of the gain and phase changes in the sinu-


soidal input caused by an LTID system. Computed at the fundamental frequency


Ω = Ω0 of the sinusoidal input, the magnitude |H (Ω)| of the transfer function


determines the gain introduced by the LTID system, while the phase <H (Ω) at


Ω = Ω0 determines the phase change in the applied sinusoidal sequence. The


magnitude |H (Ω)| and phase <H (Ω) are therefore also referred to as the gain


and phase responses of the LTID system.
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Example 11.19


Plot the magnitude and phase spectra of the LTID system specified in


Example 11.18.


Solution


From Example 11.18, the transfer function of the LTID system is given by


H (Ω) =
2


1 −
3


4
e−jΩ +


1


8
e−j2Ω


.


Using Euler’s formula exp(jΩ) = cosΩ+ j sinΩ and similarly for exp(j2Ω),
yields


H (Ω) =
2


1 −
3


4
cosΩ+


1


8
cos(2Ω) + j


[
3


4
sinΩ−


1


8
sin(2Ω)


] ,


which leads to the following expressions for the magnitude and phase responses:


|H (Ω)| =
2


√
[


1 −
3


4
cosΩ+


1


8
cos(2Ω)


]2


+
[


3


4
sinΩ−


1


8
sin(2Ω)


]2


=
2


√


101


64
−


27


16
cosΩ+


1


4
cos(2Ω)


;


<H (Ω) = < 2− <
{


1 −
3


4
cosΩ+


1


8
cos(2Ω) + j


[
3


4
sinΩ−


1


8
sin(2Ω)


]}


= − tan−1













3


4
sinΩ−


1


8
sin(2Ω)


1 −
3


4
cosΩ+


1


8
cos(2Ω)













.


Figures 11.18(a) and (b) plot the magnitude and phase spectra in the frequency


range Ω = [−π, π ]. Because the DTFT is periodic with period Ω0 = 2π , the
magnitude and phase spectra at other frequencies can be calculated using the


periodicity property. It is observed that the gain |H (Ω)| of the LTID system
has the maximum value of 16/3 at frequency Ω = 0. The gain |H (Ω)| at Ω = 0
is also referred to as the dc component of the impulse response h[k], and is


the sum
∑


h[k] over the duration of the impulse response. As the frequency


increases to π (or decreases to −π ), the gain decreases monotonically and has
a minimum value of 16/15 at Ω = ±π radians/s. For LTID systems, the fre-
quency Ω = ±π radians/s corresponds to the maximum frequency. The trans-
fer function H (Ω) represents a non-uniform amplifier as the lower-frequency


components are amplified at a relatively higher scale than the high-frequency


components.


The phase response <H (Ω) of the LTID system has a value of zero atΩ = 0.
As the frequency increases from zero, the phase decreases to its minimum
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0 p/2 p−p −p/2 p/2 p−p −p/2 0
W


3


16 H(W)
<H(W)


(a) (b)


W


.0.245p


−0.245p


Fig. 11.18. (a) Magnitude


spectrum and (b) phase


spectrum of the LTID system


considered in Example 11.19. The


responses are shown in the


frequency rangeΩ = [−π, π ].


value of –0.245π radians atΩ = 0.37π radians/s. FromΩ = 0.37π radians/s to
Ω = π radians/s, the phase increases and approaches zero at Ω = π radians/s.
For negative frequencies, the phase increases to its maximum value of


0.245 π radians at � = −0.37π radians/s, after which the phase decreases and
approaches zero at Ω = −π radians/s.


It is also observed that the transfer function H (Ω) satisfies the Hermitian


symmetry property stated in Eq. (11.39a). Since the impulse response h[k] is a


real-valued function, the magnitude spectrum |H (Ω)| is an even function of Ω
and is therefore symmetric about the y-axis in Fig. 11.18(a). On the other hand,


the phase spectrum <H (Ω) is an odd function of Ω and is therefore symmetric


about the origin in Fig. 11.18(b). In cases where the impulse response h[k] is a


real-valued function, the plots in the rangeΩ = [0, π ] are sufficient to represent
the frequency response completely. The frequency response within the range


Ω = [−π, 0] can then be obtained using the Hermitian symmetry property.


Example 11.20


Derive and plot the frequency responses of the LTID systems with the following


impulse responses:


(i) h[k] =
sin(πk/6)


πk
; (11.61)


(ii) g[k] = δ[k] −
sin(πk/6)


πk
. (11.62)


Solution


(i) We express h[k] as a sinc function as h [k] =
1


6


sin (πk/6)


πk/6
=


1


6
sinc(k/6).


Using Table 11.2, the transfer function is given by


H (Ω) =
{


1 |Ω| ≤ π/6
0 π/6 < |Ω| ≤ π. (11.63)


The impulse response h[k] and its magnitude spectrum |H (Ω)| are plotted in
Figs. 11.19(a) and (b) within the frequency rangeΩ = [0, π ]. Since the transfer
function H (Ω) is real-valued, the phase spectrum is zero. The transfer function,


Eq. (11.63), or equivalently the impulse response, Eq. (11.61), represents an
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W


stop bandpass band(a) (b)


Fig. 11.19. (a) Impulse response


h[k ] and (b) magnitude


spectrum |H(Ω)| of an ideal
lowpass filter specified in


Example 11.20(i). The phase


response is zero for all


frequencies.


ideal lowpass filter since the low-frequency components in the input sequence,


which lie within the range 0 ≤ Ω ≤ π/6, are passed through the system without
attenuation. On the other hand, the higher-frequency components within the


range π/6 ≤ Ω ≤ π are completely blocked. Lowpass filters are widely used
in digital signal processing and will be considered in more detail in Chapter 14.


(ii) Expressing the impulse response g[k] in terms of the impulse response


h[k] given in part (i), we obtain


g[k] = δ[k] − h[k].


Using the linearity property, the transfer function of g[k] is given by


G(Ω) = 1 − H (Ω).


Substituting the value of H (Ω) from Eq. (11.63) yields


G(Ω) =
{


0 |Ω| ≤ π/6
1 π/6 < |Ω| ≤ π. (11.64)


The impulse response g[k] and its magnitude spectrum |G(Ω)| are plotted in
Figs. 11.20(a) and (b). It is observed that the low-frequency components within


the range 0 ≤ Ω ≤ π/6 are completely blocked from the output, while the high-
frequency components within the range π/6 < Ω ≤ π are passed through the
system without any attenuation. Such a system is referred to as an ideal highpass


filter. Like lowpass filters, the highpass filters are also widely used in digital


signal processing, and will be considered in more detail in Chapter 14.


In the previous example, we considered calculating the magnitude and phase


spectra of an LTID system. The following example illustrates how the spectra


may be used to calculate the output of an LTID system for elementary sinusoidal


sequences.


Example 11.21


A continuous-time audio signal x(t) = 3 cos(1000π t) + 5 cos(2000π t) is sam-
pled at a sampling rate of 8000 samples/s to produce the DT sequence x[k].


Calculate the output signals if the DT signal x[k] is applied at the input of an
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Fig. 11.20. (a) Impulse response


h[k ] and (b) magnitude


spectrum |H (Ω)| of an ideal
highpass filter specified in


Example 11.20(ii). The phase


response is zero for all


frequencies.


LTID systems with the following transfer functions:


(i) H1(Ω) =
2


1 −
3


4
e−jΩ +


1


8
e−j2Ω


; (11.65)


(ii) H2(Ω) =











1 |Ω| ≤
π


6


0
π


6
< |Ω| ≤ π,


(11.66)


(iii) H3(Ω) =











0 |Ω| ≤
π


6


1
π


6
< |Ω| ≤ π.


(11.67)


Solution


The DT sequence x[k] is given by


x[k] = x(kTs) = 3 cos(1000πkTs) + 5 cos(2000πkTs).


Substituting Ts = 1/8000, we obtain


x[k] = 3 cos
(


πk


8


)


+ 5 cos
(


πk


4


)


,


which implies that x[k] consist of two frequency components, Ω1 = π/8 and
Ω2 = π/4. This is also apparent from the DTFT of x[k], given by


X (Ω) = 3π
[


δ
(


Ω−
π


8


)


+ δ
(


Ω+
π


8


)]


+ 5π
[


δ
(


Ω−
π


4


)


+ δ
(


Ω+
π


4


)]


,


which consists of impulses at frequencies Ω1 = ±π/8 and Ω2 = ±π/4.
As the DTFT is 2π -periodic, in the above equation we showed X (Ω) only


in the frequency range −π ≤ Ω ≤ π . This simplifies the analysis, and hence
we will use the same approach to express the DTFTs in the following.


If the transfer function of an LTID system is H (Ω), the DTFT Y (Ω) of the


output sequence is given by


Y (Ω) = H (Ω)X (Ω)


= H (Ω) 3π
[


δ
(


Ω−
π


8


)


+ δ
(


Ω+
π


8


)]


+ 5π
[


δ
(


Ω−
π


4


)


+ δ
(


Ω+
π


4


)]


= 3π
[


δ
(


Ω−
π


8


)


H
(π


8


)


+ δ
(


Ω+
π


8


)


H
(


−
π


8


)]


+ 5π
[


δ
(


Ω−
π


4


)


H
(π


4


)


+ δ
(


Ω+
π


4


)


H
(


−
π


4


)]


.
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The DTFT Y (Ω) is obtained by substituting the values of the transfer function


H(Ω) at frequencies Ω1 = ±π/8 and Ω2 = ±π/4.
(i) For the transfer function in Eq. (11.65), the values of H1(Ω) are given by


Ω = π/8 H1(π/8) = 4.04 − j2.03, |H1(π/8)| = 4.52, < H1(π/8) = −0.465 radians;


Ω = −π/8 H1(−π/8) = 4.04 + j2.03, |H1(−π/8)| = 4.52, < H1(−π/8) = 0.465 radians;


Ω = π/4 H1(π/4) = 2.44 − j2.11, |H1(π/4)| = 3.22, < H1(π/4) = −0.71 radians;


Ω = −π/4 H1(−π/4) = 2.44 + j2.11, |H1(−π/4)| = 3.22, < H1(−π/4) = 0.71 radians.


The DTFT Y1(Ω) of the output sequence is therefore given by


Y1(Ω) = 3π
[


δ
(


Ω−
π


8


)


4.52e−j0.465 + δ
(


Ω+
π


8


)


· 4.52e j0.465
]


+ π5
[


δ
(


Ω−
π


4


)


3.22e−j0.71 + δ
(


Ω+
π


4


)


3.22ej0.71
]


= 13.56π
[


δ
(


Ω−
π


8


)


e−j0.465 + δ
(


Ω+
π


8


)


e j0.465
]


+ 16.10π
[


δ
(


Ω−
π


4


)


e−j0.71 + δ
(


Ω+
π


4


)


ej0.71
]


.


Calculating the inverse DTFT, the output sequence is obtained as


y1[k] = 13.56 cos
(π


8
k − 0.465


)


+ 16.10 cos
(π


4
k − 0.71


)


,


where we have expressed the constant phase in radians. Expressing the constant


phase in degrees yields


y1[k] = 13.56 cos
(π


8
k − 26.67◦


)


+ 16.10 cos
(π


4
k − 40.80◦


)


.


The LTID system H1(Ω) acts like an amplifier as the sinusoidal component


3 cos(πk/8) with fundamental frequency Ω1 = π/8 is amplified by a factor


of 4.52, while the sinusoidal component 3 cos(πk/4) with fundamental fre-


quency Ω1 = π/4 is amplified by a factor of 3.22. The difference in the gains


is also apparent in the magnitude spectrum plotted in Fig. 11.18, where the


low-frequency components have a higher amplification factor than that of the


higher-frequency components.


(ii) For the transfer function in Eq. (11.65), the values of the transfer function


H2(Ω) at frequencies Ω1 = ±π/8 and Ω2 = ±π/4 are given by


Ω = π/8 H2(π/8) = 1, |H2(π/8)| = 1, <H2(π/8) = 0 radians;


Ω = −π/8 H2(−π/8) = 1, |H2(−π/8)| = 1, <H2(−π/8) = 0 radians;


Ω = π/4 H2(π/4) = 0, |H2(π/4)| = 0, <H2(π/4) = 0 radians;


Ω = −π/4 H2(−π/4) = 0, |H2(−π/4)| = 0, <H2(−π/4) = 0 radians.
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The DTFT Y2(Ω) of the output sequence is therefore given by


Y2(Ω) = 3π
[


δ
(


Ω−
π


8


)


· 1 + δ
(


Ω+
π


8


)


· 1
]


+ 5π
[


δ
(


Ω−
π


4


)


· 0 + δ
(


Ω+
π


4


)


· 0
]


= 3π
[


δ
(


Ω−
π


8


)


+ δ
(


Ω+
π


8


)]


.


Calculating the inverse DTFT, the output sequence is obtained as


y2[k] = 3 cos
(π


8
k
)


.


The LTID system H2(Ω) acts like an ideal lowpass filter as the sinusoidal


component 3 cos(πk/8) with low fundamental frequency Ω1 = π/8 is not
attenuated, while the sinusoidal component 3 cos(πk/4) with high fundamental


frequency Ω1 = π/4 is blocked from the output.
(iii) For the transfer function in Eq. (11.67), the values of the transfer


function H3(Ω) at frequencies Ω1 = ± π/8 and Ω2 = ±π/4 are given by
Ω = π/8, H3(π/8) = 0, |H3(π/8)| = 0, <H3(π/8) = 0 radians;
Ω = −π/8, H3(−π/8) = 0, |H3(−π/8)| = 0, <H3(−π/8) = 0 radians;
Ω = π/4, H3(π/4) = 1, |H3(π/4)| = 1, <H3(π/4) = 0 radians;
Ω = −π/4, H3(−π/4) = 1, |H3(−π/4)| = 1, <H3(−π/4) = 0 radians.


The DTFT Y3(Ω) of the output sequence is therefore given by


Y3(Ω) = 3π
[


δ
(


Ω−
π


8


)


· 0 + δ
(


Ω+
π


8


)


· 0
]


+ 5π
[


δ
(


Ω−
π


4


)


· 1 + δ
(


Ω+
π


4


)


· 1
]


= 5π
[


δ
(


Ω−
π


4


)


+ δ
(


Ω−
π


4


)]


.


Calculating the inverse DTFT, the output sequence is obtained as


y3[k] = 5 cos
(π


4
k
)


.


The LTID system H3(Ω) acts like an ideal highpass filter as the sinusoidal com-


ponent 3 cos(πk/8) with lower fundamental frequency Ω1 = π /8 is blocked,
while the sinusoidal component 3 cos(πk/8) with higher fundamental frequency


Ω1 = π/4 is unattenuated in the output sequence.


11.8 Continuous- and discrete-time Fourier transforms


In Chapters 4, 5, and 10, we derived frequency representations for CT and DT


waveforms. In particular, we considered the following four frequency represen-


tations:


(1) CTFT for CT periodic signals;


(2) CTFT for CT aperiodic signals;


(3) DTFT for DT periodic sequences;


(4) DTFT for DT aperiodic sequences.
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In this section, we compare the Fourier transforms for different types of signals.


The CT periodic signals are typically represented by the CTFS,


x̃(t) =
∞∑


n=−∞


Dne
jnω0t ,


where Dn denotes the CTFS coefficients and ω0 is the fundamental frequency


of the CT periodic signal. By exploiting the CTFT pair


e jnω0t
CTFT


←−−→ 2πδ(ω − nω0),


the CTFT for the CT periodic signals is given by


x̃(t)
CTFT←−−→ X (ω) = 2π


∞∑


n=−∞
Dnδ(ω − nω0)


and consists of a train of time-shifted impulse functions. In other words, the


CTFT of CT periodic signals is discrete in nature.


For CT aperiodic signals, the CTFT X (ω) is given by


x(t)
CTFT←−−→ X (ω) =


∞∫


−∞


x(t)e−jωt dt,


which is generally aperiodic and continuous in the frequency domain.


Similar to the CT periodic signal, the frequency representation for a DT


periodic sequence is obtained by using the following DTFS:


x̃[k] =
∑


n=〈K0〉
Dne


jnΩ0k,


where Dn denotes the DTFS coefficients and Ω0 is the fundamental frequency


of the DT periodic signal. We observed that the DTFS is periodic with period


K0 = 2π/Ω0 such that


Dn = Dn+mK0


for −∞ < m < ∞. By exploiting the DTFT pair


e jnΩ0k
DTFT←−−→ 2πδ(Ω− nΩ0),


the DTFT for a DT periodic sequence is given by


x̃[k]
DTFT←−−→ X (Ω) = 2π


∞∑


n=−∞
Dnδ(Ω− nΩ0).


We showed that the DTFT of a DT periodic sequence is discrete as it consists of


several discrete time-shifted impulse functions. In addition, the DTFT of a DT


periodic sequence is itself periodic in the frequency domain, with a fundamental


period Ω0 = 2π .
Finally, the DTFT of a DT aperiodic sequence is given by


X (Ω) =
∞∑


k=−∞
x[k]e−jΩk .
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Table 11.7. Fourier transforms for different types of waveforms


Time domain Frequency domain


x(t): continuous and periodic signals X (Ω): discrete and aperiodic CTFT


1


t


−2T0 −T0 0 T0 2T0


(a)


CTFT
←−−→ w


0 2p
T0


2p
T0


−


x(t): continuous and aperiodic signals X (Ω): Continuous and aperiodic CTFT


0


t


W
− p


W
p


(b)


CTFT←−−→
w


0 W


1


−W


x[k]: discrete and periodic signals X (Ω): discrete and periodic DTFT


k


0 2 4−6 −4 6 8−2−8


(c)


DTFT←−−→ W
0 p−2p 2p−p


x[k]: discrete and aperiodic signals X (Ω): continuous and periodic DTFT


k


0 2 4−6 −4


1 11


6 8−2−8


(d)


DTFT←−−→


0 2p 4p−4p −2p
W
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We observed that the DTFT of a DT aperiodic sequence is continuous as it is


defined for all frequencies Ω. Like the DTFT of a DT periodic sequence, the


DTFT of a DT aperiodic sequence is periodic in the frequency domain, with a


fundamental period Ω0 = 2π .
The aforementioned discussion on the four types of Fourier transforms is


summarized in Table 11.7, where we observe that periodicity in the time


domain corresponds to discreteness in the frequency domain. The CTFT


for the CT periodic signals, illustrated in row (a) of Table 11.7, and the


DTFT for the DT periodic signals, illustrated in row (c), are both dis-


crete in the frequency domain. The converse of the observation is also true,


as discreteness in the time domain corresponds to periodicity in the fre-


quency domain. The converse statement is illustrated in rows (c) and (d),


where periodic and aperiodic DT sequences are considered. The DTFT for


both the periodic and aperiodic DT sequences is periodic with period Ω0 =
2π .


When a signal is both discrete and periodic in the time domain, such as the DT


periodic sequence illustrated in row (c) of Table 11.7, the DTFT is also both


periodic and discrete in the frequency domain. This observation is exploited


in digital signal processing. To compute the DTFT on digital computers, it


is always assumed that the waveform is discrete and periodic, even when the


original waveform is neither discrete nor periodic. Chapter 12 presents the


theory of the discrete Fourier transform (DFT), which is a very powerful tool


for computing the CTFT and DTFT.


11.9 Summary


In this chapter, we presented the frequency representation for DT sequences.


For aperiodic sequences, we derived the DTFS, which is defined as


x̃[k] =
∑


n=〈K0〉
Dne


jnΩ0k,


whereΩ0 is the fundamental frequency, given byΩ0 = 2π/K0, and the discrete-
time Fourier series (DTFS) coefficients Dn , for 1 ≤ n ≤ K0, are given by


Dn =
1


K0


∑


k=〈K0〉
x[k]e−jnΩ0k .


The DTFS coefficients of periodic sequences are themselves periodic with a


period K0 such that


Dn = Dn+mK0 for m ∈ Z .
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Section 11.2 derived the DTFT for an aperiodic sequence x[k] as follows:


DTFT synthesis equation x[k] =
1


2π


∫


〈2π〉


X (Ω)e jkΩdΩ;


DTFT analysis equation X (Ω) =
∞∑


k=−∞
x[k]e−jΩk,


and showed that the DTFT is periodic in the frequency domain with a period


Ω0 = 2π . As such, the frequencies Ω = 0, 2π, 4π, . . . are considered as the
same frequencies and are referred to as the lowest possible frequency for


the DTFT. Similarly, the frequencies Ω = π, 3π, 5π, . . . are the same and are
referred to as the highest possible frequency for the DTFT.


Section 11.3 derived a sufficient condition for the existence of the DTFT for


aperiodic DT sequences as follows:


∞∑


k=−∞
|x2[k]| < ∞.


The periodic DT sequences do not satisfy the above condition for the existence


of the DTFT. Instead the DTFT of a periodic sequence is obtained by calcu-


lating the DTFT of its DTFS representation, which results in the following


DTFT:


X (Ω) = 2π
∞∑


n=−∞
Dnδ


(


Ω−
2nπ


K0


)


,


where Dn are the DTFS coefficients of the periodic sequence x[k].


Section 11.4 covered the properties of the DTFT. In particular, we covered


the following properties.


(1) The periodicity property states that the DTFT of any DT sequence is


periodic with period 2π .


(2) The Hermitian symmetry property states that the DTFT of a real-valued


sequence is Hermitian. In other words, the real component of the DTFT


of a real-valued sequence is even, while the imaginary component is


odd.


(3) The linearity property states that the overall DTFT of a linear combination


of DT sequences is given by the same linear combination of the individual


DTFTs.


(4) The time-scaling property is only applicable for time-expanded (or inter-


polated) sequences. It states that interpolating a sequence in the time


domain compresses its DTFT in the frequency domain.


(5) The time-shifting property states that shifting a sequence in the time


domain towards the right-hand side by an integer constant m is equiv-


alent to multiplying the DTFT of the original sequence by a complex


exponential exp(−jΩm). Similarly, shifting towards the left-hand side by
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integer m is equivalent to multiplying the DTFT of the original sequence


by a complex exponential exp(jΩm).


(6) The frequency-shifting property is the converse of the time-shifting prop-


erty. It states that shifting the DTFT in the frequency domain towards the


right-hand side byΩ0 is equivalent to multiplying the original sequence by


a complex exponential exp(jΩ0m). Similarly, shifting the DTFT towards


the left-hand side by Ω0 is equivalent to multiplying the DTFT of the


original sequence by a complex exponential exp(−jΩ0m).
(7) The frequency-differentiation property states that differentiating the


DTFT with respect to the frequency Ω is equivalent to multiplying the


original sequence by a factor of −jk.
(8) Time differencing is defined as the difference between the original


sequence and its time-shifted version with a shift of one sample towards


the right-hand side. The time-differencing property states that time differ-


encing a signal in the time domain is equivalent to multiplying its DTFT


by a factor of (1 − exp(−jΩm)).
(9) The time-summation property is the converse of the time-differencing


property. The time-summation property states that the DTFT of the run-


ning sum of a sequence is obtained by dividing the DTFT of the original


sequence by a factor of (1 − exp(−jΩm)) and adding DT impulses located
at multiples of 2π .


(10) The time-convolution property states that the convolution of two DT


sequences is equivalent to the multiplication of the DTFTs of the two


sequences in the time domain.


(11) Periodic convolution is an extension of time convolution to periodic


sequences, where only single periods of the two periodic sequences are


convolved. The periodic-convolution property states that the periodic con-


volution in the time domain is equivalent to multiplying the DTFS coef-


ficients of the two periodic sequences by each other in the frequency


domain.


(12) The frequency-convolution property states that periodic convolution of


two DTFTs with period 2π is equivalent to multiplication of their


sequences in the time domain.


The DTFT of the impulse response of an LTID system is referred to as the Fourier


transfer function, which is generally complex-valued. The plot of the magnitude


of the Fourier transfer function with respect to frequencyΩ is referred to as the


magnitude spectrum, while the plot of the phase of the Fourier transfer function


with respect to frequency Ω is referred to as the phase spectrum. Sections 11.6


and 11.7 illustrated how the magnitude and phase spectra provide meaningful


insights into the analysis of the LTID systems. In particular, we covered the ideal


lowpass filter, which blocks all frequency components above a certain cut-off


frequency Ω > Ωc in the applied input sequence. All frequency components


Ω ≤ Ωc are left unattenuated in the output response of an ideal lowpass filter.
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The magnitude spectrum of an ideal lowpass filter is unity within its pass band


(Ω ≤ Ωc) and zero within its stop band (Ωc < Ω ≤ π ).
The converse of the ideal lowpass filter is the ideal highpass filter, which


blocks all frequency components below a certain cut-off frequency Ω > Ωc in


the applied input sequence. All frequency componentsΩ ≥ Ωc are left unatten-
uated in the output response of an ideal highpass filter. The magnitude spectrum


of an ideal highpass filter is unity within the pass band (Ωc ≤ Ω ≤ π ) and zero
within the stop band (0 ≤ Ω < Ωc).


Section 11.8 compared the Fourier representations of CT and DT periodic


and aperiodic waveforms. We showed that the Fourier representations of peri-


odic waveforms are discrete, whereas the Fourier representations of discrete


waveforms are periodic.


Problems


11.1 Determine the DTFS representation for each of the following DT peri-
odic sequences. In each case, plot the magnitude and phase of the DTFS


coefficients.


(i) x[k] = k for 0 ≤ k ≤ 5 and x[k + 6] = x[k];


(ii) x[k] =











1 (0 ≤ k ≤ 2)
0.5 (3 ≤ k ≤ 5)
0 (6 ≤ k ≤ 8)


and x[k + 9] = x[k];


(iii) x[k] = 3 sin
(


2π


7
k +


π


4


)


;


(iv) x[k] = 2e j(
5π
3


k+ π
4 );


(v) x[k] =
∞∑


m=−∞
δ(k − 5m);


(vi) x[k] = cos(10πk/3) cos(2πk/5);
(vii) x[k] = |cos(2πk/3)|.


11.2 Given the following DTFS coefficients, determine the DT periodic
sequence in the time domain:


(i) Dn =











1 (0 ≤ k ≤ 2)
0.5 (3 ≤ k ≤ 5)
0 (6 ≤ k ≤ 8)


and Dn+9 = Dn;


(ii) Dn =















1 − j0.5 (n = −1)
1 (n = 0)
1 + j0.5 (n = 1)
0 (2 ≤ n ≤ 5)


and Dn+7 = Dn;


(iii) Dn = 1 +
3


4
sin


(πn


8


)


(0 ≤ n ≤ 6) and Dn+7 = Dn;


(iv) Dn = (−1)n (0 ≤ n ≤ 7) and Dn+8 = Dn;
(v) Dn = e jnπ/4 (0 ≤ n ≤ 7) and Dn+8 = Dn.
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11.3 Determine if the following DT sequences satisfy the DTFT existence
property:


(i) x[k] − 2;


(ii) x[k] =
{


3 − |k| |k| < 3
0 otherwise;


(iii) x[k] = k3−|k|;
(iv) x[k] = αk cos(ω0k)u[k], |α| < 1;
(v) x[k] = αk sin(ω0k + φ)u[k], |α| < 1;


(vi) x[k] =
sin(πk/5) sin(πk/7)


π2k2
;


(vii) x[k] =
∞∑


m=−∞


δ(k − 5m − 3);


(viii) x[k] =


{


3 − |k| |k| < 3


0 |k| = 3
and x[k + 7] = x[k];


(ix) x[k] = e j(0.2πk+45
◦);


(x) x[k] = k3−ku[k] + e j(0.2πk+45
◦).


11.4 (a) Calculate the DTFT of the DT sequences specified in Problem 11.3.
(b) Calculate the DTFT of the periodic DT sequences specified in


Problem 11.1.


11.5 Given the following transform pair:


x1[k]
DTFT


←−−→ X1(Ω) and x2[k]
DTFT←−−→ X2(Ω) ,


express the DTFT of the following DT sequences in terms of the DTFTs


X1(Ω) and X2(Ω):


(i) (−1)k x1[k];
(ii) (k − 5)2x2[k − 4];


(iii) ke−j4k x1[3 − k];


(iv)


∞∑


m=−∞
[x1[k − 4m] + x2[k − 6m]];


(v) x1[5 − k]x2[7 − k].


11.6 Calculate the DT sequences with the following DTFT representations
defined over the frequency range −π ≤ Ω ≤ π :


(i) X (Ω) =
4e−jΩ


1 − 5e−jΩ + 6e−j2Ω
;


(ii) X (Ω) =
2e−j2Ω


(1 − 4e−jΩ)2(1 − 2e−jΩ)
;


(iii) X (Ω) = 8 sin(7Ω) cos(9Ω);


(iv) X (Ω) =
4e−j4Ω


10 − 6 cosΩ
;


(v) X (Ω) =
{


1 0.25π ≤ |Ω| < 0.75π
0 |Ω| ≤ 0.25π and 0.75π ≤ |Ω| < π.
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11.7 (a) Prove the Hermitian symmetry property, Eq. (11.39a), for a real-
valued DT sequence.


(b) Problem 11.6 lists the DTFTs of several sequences. Applying the


Hermitian property, determine whether these sequences are real-


valued.


11.8 Prove the frequency-differentiation property of the DTFT.


11.9 Prove the time-convolution property of the DTFT.


11.10 Prove the time-shifting property of the DTFT.


11.11 Given the following transfer function:


H (Ω) =
1


(1 − 0.3e−jΩ)(1 − 0.5e−jΩ)(1 − 0.7e−jΩ)
,


(i) determine the impulse response of the LTID system;


(ii) determine the difference equation representation of the LTID


system;


(iii) determine the unit step response of the LTID system by using the


time-convolution property of the DTFT;


(iv) determine the unit step response of the LTID system by convolv-


ing the unit step sequence with the impulse response obtained in


part (i).


11.12 Given the following difference equation:


y[k] + y[k − 1] +
1


4
y[k − 2] = x[k] − x[k − 2],


(i) determine the transfer function representing the LTID system;


(ii) determine the impulse response of the LTID system;


(iii) determine the output of the LTID system for the input x[k] =
(1/2)ku[k] using the time-convolution property;


(iv) determine the output of the LTID system by convolving the input


x[k] = (1/2)ku[k] with the impulse response obtained in part (ii).


11.13 Determine the output response of the LTID systems with the specified
inputs and impulse responses using Fourier transform approach:


(i) x[k] = u[k] and h[k] = 4−|k|;
(ii) x[k] = 2−ku[k] and h[k] = 2ku[−k − 1];


(iii) x[k] = u[k] − u[k − 9] and h[k] = 3ku[−k + 4];
(iv) x[k] = k5−ku[k] and h[k] = 5ku[−k];
(v) x[k] = u[k + 2] − u[−k − 3] and h[k] = u[k − 5] − u[−k − 6].


11.14 Given that the transfer function of an LTID system is given by


H (Ω) =
1


(1 + 3e−jΩ)
,
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determine and sketch the following as a function of frequency Ω over


the range −π ≤ Ω ≤ π :
(i) Re{H (Ω)};


(ii) Im{H (Ω)};
(iii) |H (Ω)|;
(iv) <H (Ω).


11.15 Calculate and plot the magnitude and phase spectra of the LTID systems
specified in Problem 11.13.


11.16 The impulse response of an LTID system is given by


h[k] = 3δ[k + 3] − 2δ[k + 2] + δ[k + 1] + 5δ[k]
− δ[k − 1] − 2δ[k − 2] − 3δ[k − 3] + 4δ[k − 4].


Without explicitly determining the transfer function H (Ω), evaluate the


following using the properties of the DTFT:


(i) H (Ω)|Ω=0;
(ii) H (Ω)|Ω=π ;


(iii) <H (Ω);


(iv)


∫ π


−π
H (Ω)dΩ.


(v) Determine and sketch the DT sequence with the DTFT H (−Ω).
(vi) Determine and sketch the DT sequence with the DTFT Re{H (Ω)}.


11.17 Using Parseval’s theorem, determine the following sum:


∞∑


k=−∞


sin(πk/5) sin(πk/7)


k2
.


11.18 Consider an LTID system with the following impulse response:


h[k] = sinc(3k/4).


Determine the output responses of the LTID system for the following


inputs:


(i) x[k] = cos(11πk/16) cos(3πk/16);
(ii) x[k] = k for 0 ≤ k ≤ 5 and x[k + 6] = x[k];


(iii) x[k] =











1 (0 ≤ k ≤ 2)
0.5 (3 ≤ k ≤ 5)
0 (6 ≤ k ≤ 8)


and x[k + 9] = x[k];


(iv) x[k] =
∞∑


m=−∞
δ(k − 5m);


(v) x[k] = sinc(k/3).


11.19 When the DT sequence


x[k] = 4−ku[k] + 3−ku[k]
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is applied at the input of an LTID system, the output response is given


by


y[k] = 2
(


1


4


)k


u[k] − 4
(


3


4


)k


u[k].


(i) Determine the Fourier transfer function H(Ω) of the LTID system.


(ii) Determine the impulse response h[k] of the LTID system.


(iii) Determine the difference equation representing the LTID


system.


(iv) Determine if the system is causal.


11.20 Repeat Example 11.21 for each of the following signals, assuming that
the sampling rate to discretize the CT signals is 8000 samples/s:


(i) x1(t) = 2 + 3 cos(400π t) + 7 cos(800π t);
(ii) x2(t) = 2 cos(4000π t) + 5 cos(6000π t);


(iii) x3(t) = 5 cos(600π t) + 9 cos(900π t) + 2 cos(3000π t);
(iv) x4(t) = 4 cos(600π t) + 6 cos(12000π t).


11.21 Repeat Example 11.21 for each of the following signals, assuming that
the sampling rate to discretize the CT signals is 22 000 samples/s:


(i) x1(t) = 2 + 3 cos(8000π t) + 7 cos(18 000π t);
(ii) x2(t) = 2 cos(10 000π t) + 5 cos(30 000π t);


(iii) x3(t) = 5 cos(600π t) + 9 cos(900π t) + 2 cos(3000π t);
(iv) x4(t) = 4 cos(28 000π t) + 6 cos(18 000π t).
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C H A P T E R


12 Discrete Fourier transform


In Chapter 11, we introduced the discrete-time Fourier transform (DTFT) that


provides us with an alternative representation for DT sequences. The DTFT


transforms a DT sequence x[k] into a function X (Ω) in the DTFT frequency


domain Ω. The independent variable Ω is continuous and is confined to the


range –π ≤ Ω < π . With the increased use of digital computers and special-


ized hardware in digital signal processing (DSP), interest has focused around


transforms that are suitable for digital computations. Because of the continuous


nature of Ω, direct implementation of the DTFT is not suitable on such digital


devices. This chapter introduces the discrete Fourier transform (DFT), which


can be computed efficiently on digital computers and other DSP boards.


The DFT is an extension of the DTFT for time-limited sequences with an


additional restriction that the frequency Ω is discretized to a finite set of values


given by Ω = 2πr/M , for 0 ≤ r ≤ (M − 1). The number M of the frequency


samples can have any value, but is typically set equal to the length N of the time-


limited sequence x[k]. If M is chosen to be a power of 2, then it is possible to


derive highly efficient implementations of the DFT. These implementations are


collectively referred to as the fast Fourier transform (FFT) and, for an M-point


DFT, have a computational complexity of O(M log2 M). This chapter discusses


a popular FFT implementation and extends the theoretical DTFT results derived


in Chapter 11 to the DFT.


The organization of this chapter is as follows. Section 12.1 motivates the


discussion of the DFT by expressing it as a special case of the continuous-time


Fourier transform (CTFT). The formal definition of the DFT is presented in


Section 12.2, including its matrix-vector representation. Section 12.3 applies the


DFT to estimation of the spectra of both DT and CT signals. Section 12.4 derives


important properties of the DFT, while Section 12.5 uses the DFT as a tool to


convolve two DT sequences in the frequency domain. A fast implementation of


the DFT based on the decimation-in-time algorithm is presented in Section 12.6.


Finally, Section 12.7 concludes the chapter with a summary of the important


concepts.


525
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12.1 Continuous to discrete Fourier transform


In order to motivate the discussion of the DFT, let us assume that we are


interested in computing the CTFT of a CT signal x(t) using a digital computer.


The three main steps involved in the digital computation of the CTFT are


illustrated in Fig. 12.1. The waveforms for the CT signal x(t) and its CTFT


X (ω), shown in Figs. 12.1(a) and (b), are arbitrarily chosen, and hence the


following procedure applies to any CT signal. A brief explanation of each of


the three steps is provided below.


Step 1: Analog-to-digital conversion In order to store a CT signal into a
digital computer, the CT signal is digitized. This is achieved through two pro-


cesses known as sampling and quantization, collectively referred to as analog-


to-digital (A/D) conversion by convention. In this discussion, we only consider


sampling, ignoring the distortion introduced by quantization. The CT signal


x(t) is sampled by multiplying it by an impulse train:


s1(t) =
∞∑


m=−∞


δ(t − mT1), (12.1)


illustrated in Fig. 12.1(c). The sampled waveform is given by


x1(t) = x(t)s1(t) = x(t) ×


∞∑


m=−∞


δ(t − mT1) (12.2)


and is shown in Fig. 12.1(e). Since multiplication in the time domain is equiv-


alent to convolution in the frequency domain, the CTFT X1(ω) of the sampled


signal x1(t) is given by


X1(ω) = ℑ


[


x(t)×


∞∑


m=−∞


δ(t − mT1)


]


=
1


2π


[


X (ω) ∗
2π


T1


∞∑


m=−∞


δ


(


δ −
2mπ


T1


)]


=
1


T1


∞∑


m=−∞


X


(


ω −
2mπ


T1


)


(12.3)


The above result was also derived in Eq. (9.5) of Chapter 9, and is graphically


illustrated in Figs. 12.1(b), (d), and (f), where we note that the spacing between


adjacent replicas of X (ω) in X1(ω) is given by 2π/T1. Since no restriction is


imposed on the bandwidth of the CT signal x(t), limited aliasing may also be


introduced in X1(ω).


To derive the discretized representation of x(t) from Eq. (12.3), sampling is


followed by an additional step (shown in Fig. 12.1(g)), where the CT impulses


are converted to the DT impulses. Equation (12.3) can now be extended to
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w


0
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w


0


W
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W


N
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(a)


(c)


(e)


(d)


(f)


(g) (h)


(i) (j)


(b)


Fig. 12.1. Graphical derivation of the discrete Fourier transform pair. (a) Original CT signal. (b) CTFT of the


original CT signal. (c) Impulse train sampling of CT signal. (d) CTFT of the impulse train in part (c). (e) CT


sampled signal. (f) CTFT of the sampled signal in part (e). (g) DT representation of CT signal in part (a).


(h) DTFT of the DT representation in part (g). (i) Rectangular windowing sequence. (j) DTFT of the


rectangular window. (k) Time-limited sequence representing part (g). (l) DTFT of time-limited sequence in


part (k). (m) Inverse DTFT of frequency-domain impulse train in part (n). (n) Frequency-domain impulse


train. (o) Inverse DTFT of part (p). (p) DTFT representation of CT signal in part (a). (q) Inverse DFT of part


(r). (r) DFT representation of CT signal in part (a).
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Fig. 12.1. (cont.) derive the DTFT of the DT sequence x1[k] as follows:


x1[k] =
∞∑


m=−∞


x(mT1)δ(t − mT1). (12.4)


Calculating the CTFT of both sides of Eq. (12.4) yields


X1(ω) =


∞∑


m=−∞


x(mT1)e
−jωmT1 . (12.5)


Substituting x1[m] = x(mT 1) and Ω = ωT1 in Eq. (12.5) leads to


X1(Ω) = X1(ω)|ω=Ω/T1 =


∞∑


m=−∞


x1[m]e
−jmΩ,
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which is the standard definition of the DTFT introduced in Chapter 11. The


DTFT spectrum X1(Ω) of x1[k] is obtained by changing the frequency axis


ω of the CTFT spectrum X1(ω) according to the relationship Ω = ωT1. The
DTFT spectrum X1(Ω) is illustrated in Fig. 12.1(h).


Step 2: Time limitation The discretized signal x1[k] can possibly be of infi-
nite length. Therefore, it is important to truncate the length of the discretized


signal x1[k] to a finite number of samples. This is achieved by multiplying the


discretized signal by a rectangular window,


w[k] =
{


1 0 ≤ k ≤ (N − 1)


0 elsewhere,
(12.6)


of length N . The DTFT Xw (Ω) of the time-limited signal xw [k] = x1[k]w[k]


is obtained by convolving the DTFT X1(Ω) with the DTFT W (Ω) of the rect-


angular window, which is a sinc function. In terms of X1(Ω), the DTFT Xw (Ω)


of the time-limited signal is given by


Xw (Ω) =
1


2π


[


X1(Ω) ⊗
sin(0.5NΩ)


sin(0.5Ω)
e−j(N−1)/2


]


, (12.7)


which is shown in Fig. 12.1(l) with its time-limited representation xw [k] plotted


in Fig. 12.1(k). Symbol ⊗ in Eq. (12.7) denotes the circular convolution.


Step 3: Frequency sampling The DTFT Xw (Ω) of the time-limited signal
xw [k] is a continuous function of Ω and must be discretized to be stored on a


digital computer. This is achieved by multiplying Xw (Ω) by a frequency-domain


impulse train, whose DTFT is given by


S2(Ω) =
2π


M


∞∑


m=−∞


δ


(


Ω−
2πm


M


)


. (12.8)


The discretized version of the DTFT Xw (Ω) is therefore expressed as follows:


X2(Ω) = Xw (Ω)S2(Ω) =
1


M


[


X1(Ω) ⊗
sin(0.5NΩ)


sin(0.5Ω)
e−j(N−1)/2


]


×
∞∑


m=−∞


δ


(


Ω−
2πm


M


)


. (12.9)


The DTFT X2(Ω) is shown in Fig. 12.1(p), where the number M of frequency


samples within one period (−π ≤ Ω ≤ π ) of X2(Ω) depends upon the funda-


mental frequency Ω2 = 2π/M of the impulse train S2(Ω). Taking the inverse


DTFT of Eq. (12.9), the time-domain representation x2[k] of the frequency-


sampled signal X2(Ω) is given by


x2[k] = [xw [k] ∗ s2[k]] = [x1[k] · w[k]] ∗
∞∑


m=−∞


δ(k − mM), (12.10)


and is shown in Fig. 12.1(o).
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The discretized version of the DTFT Xw (Ω) is referred to as the discrete


Fourier transform (DFT) and is generally represented as a function of the fre-


quency index r corresponding to DTFT frequency Ωr = 2rπ/M , for 0 ≤ r ≤
(M− 1). To derive the expression for the DFT, we substitute Ω = 2rπ/M in


the following definition of the DTFT:


X2(Ω) =


N−1∑


k=0


x2[k]e
−jkΩ, (12.11)


where we have assumed x2[k] to be a time-limited sequence of length N .


Equation (12.11) reduces as follows:


X2(Ωr ) =


N−1∑


k=0


x2[k]e
−j(2πkr/M), (12.12)


for 0 ≤ r ≤ (M−1). Equation (12.12) defines the DFT and can easily be imple-


mented on a digital device since it converts a discrete number N of input samples


in x2[k] to a discrete number M of DFT samples in X2(Ωr ). To illustrate the


discrete nature of the DFT, the DFT X2(Ωr ) is also denoted asX2[r ]. The DFT


spectrum X2[r ] is plotted in Fig. 12.1(r).


Let us now return to the original problem of determining the CTFT X (ω) of


the original CT signal x(t) on a digital device. Given X2[r ] = X2(Ωr ), it is


straightforward to derive the CTFT X (ω) of the original CT signal x(t) by


comparing the CTFT spectrum, shown in Fig. 12.1(b), with the DFT spectrum,


shown in Fig. 12.1(r). We note that one period of the DFT spectrum within the


range −(M − 1)/2 ≤ r ≤ (M − 1)/2 (assuming M to be odd) is a fairly good


approximation of the CTFT spectrum. This observation leads to the following


relationship:


X (ωr ) ≈
MT1


N
X2[r ] =


MT1


N


N−1∑


k=0
x2[k]e


−j(2πkr/M), (12.13)


where the CT frequencies ωr = Ωr/T1 = 2πr/(M × T1) for −(M − 1)/2 ≤
r ≤ (M − 1)/2.


Although Fig. 12.1 illustrates the validity of Eq. (12.13) by showing that the


CTFT X (ω) and the DFT X2[r ] are similar, there are slight variations in the two


spectra. These variations result from aliasing in Step 1 and loss of samples in


Step 2. If the CT signal x(t) is sampled at a sampling rate less than the Nyquist


limit, aliasing between adjacent replicas distorts the signal. A second distortion


is introduced when the sampled sequence x1[k] is multiplied by the rectangular


window w[k] to limit its length to N samples. Some samples of x1[k] are lost in


the process. To eliminate aliasing, the CT signal x(t) should be band-limited,


whereas elimination of the time-limited distortion requires x(t) to be of finite


length. These are contradictory requirements since a CT signal cannot be both


time-limited and band-limited at the same time. As a result, at least one of the
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aforementioned distortions would always be present when approximating the


CTFT with the DFT. This implies that Eq. (12.12) is an approximation for the


CTFT X (ω) that, even at its best, only leads to a near-optimal estimation of the


spectral content of the CT signal.


On the other hand, the DFT representation provides an accurate estimate of


the DTFT of a time-limited sequence x[k] of length N . By comparing the DFT


spectrum, Fig. 12.1(h), with the DFT spectrum, Fig. 12.1(r), the relationship


between the DTFT X2(Ω) and the DFT X2[r ] is derived. Except for a factor of


K/M , we note that X2[r ] provides samples of the DTFT at discrete frequencies


Ωr = 2πr/M , for 0 ≤ r ≤ (M−1). The relationship between the DTFT and
DFT is therefore given by


X2(Ωr ) =
N


M
X2[r ] =


N


M


N−1∑


k=0


x2[k]e
−j(2πkr/M) (12.14)


forΩr = 2πr/M , 0 ≤ r ≤ (M−1). We now proceed with the formal definitions


for the DFT.


12.2 Discrete Fourier transform


Based on our discussion in Section 12.1, the M-point DFT and inverse DFT for a


time-limited sequence x[k], which is non-zero within the limits 0 ≤ k ≤ N − 1,


is given by


Forward DFT X [r ] =


N−1∑


k=0


x[k]e−j(2πkr/M) for 0 ≤ r ≤ M − 1; (12.15)


Inverse DFT x[k] =
1


M


M−1∑


r=0


X [r ]e j(2πkr/M) for 0 ≤ k ≤ N − 1.


(12.16)


Equations (12.15) and (12.16) are also, respectively, known as DFT analysis


and synthesis equations. Equation (12.15) was derived in Section 12.1. By


substituting the expression for X [r ] from Eq. (12.15), the analysis equation,


Eq. (12.16), can be formally proved, and vice versa. The formal proofs of the


DFT pair are left as an exercise for the reader. In Eqs. (12.15) and (12.16), the


length M of the DFT is typically set to be greater or equal to the length N of


the aperiodic sequence x[k]. Unless otherwise stated, we assume M = N in the


discussion that follows. Collectively, the DFT pair is denoted as


x[k]
DFT


←−−→ X [r ]. (12.17)


Examples 12.1 and 12.2 illustrate the steps involved in calculating the DFTs of


aperiodic sequences.
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Fig. 12.2. (a) DT sequence x[k ];


(b) magnitude spectrum and


(c) phase spectrum of its DTFT


X[r ] computed in Example 12.1.


Example 12.1


Calculate the four-point DFT of the aperiodic sequence x[k] of length N = 4,
which is defined as follows:


x[k] =















2 k = 0
3 k = 1


−1 k = 2
1 k = 3.


Solution


Using Eq. (12.15), the four-point DFT of x[k] is given by


X [r ] =
3∑


k=0
x[k]e−j(2πkr/4)


= 2 + 3 × e−j(2πr/4) − 1 × e−j(2π (2)r/4) + 1 × e−j(2π (3)r/4),


for 0 ≤ r ≤ 3. Substituting different values of r , we obtain


r = 0 X [0] = 2 + 3 − 1 + 1 = 5;


r = 1 X [1] = 2 + 3e−j(2π/4) − e−j(2π (2)/4) + e−j(2π (3)/4)


= 2 + 3(−j) − 1(−1) + 1(j) = 3 − 2j;


r = 2 X [2] = 2 + 3e−j(2π (2)/4) − e−j(2π (2)(2)/4) + e−j(2π (3)(2)/4)


= 2 + 3(−1) − 1(1) + 1(−1) = −3;


r = 3 X [3] = 2 + 3e−j(2π (3)/4) − e−j(2π (2)(3)/4) + e−j(2π (3)(3)/4)


= 2 + 3(j) − 1(−1) + 1(−j) = 3 + j2.


The magnitude and phase spectra of the DFT are plotted in Figs. 12.2(b) and


(c), respectively.
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Example 12.2


Calculate the inverse DFT of


X [r ] =















5 r = 0
3 − j2 r = 1


−3 r = 2
3 + j2 r = 3.


Solution


Using Eq. (12.13), the inverse DFT of X [r ] is given by


x[k] =
1


4


3∑


r=0
X [r ]e j(2πkr/4) =


1


4


[


5 + (3 − j2) × e j(2πk/4) − 3 × e j(2π (2)k/4)


+ (3 + j2) × e j(2π (3)k/4)
]


,


for 0 ≤ k ≤ 3. On substituting different values of k, we obtain


x[0] =
1


4
[5 + (3 − j2) − 3 + (3 + j2)] = 2;


x[1] =
1


4


[


5 + (3 − j2)e j(2π/4) − 3e j(2π (2)/4) + (3 + j2)e j(2π (3)/4)
]


=
1


4
[5 + (3 − j2)( j) − 3(−1) + (3 + j2)(−j)] = 3;


x[2] =
1


4


[


5 + (3 − j2)e j(2π (2)/4) − 3e j(2π (2)(2)/4) + (3 + j2)e j(2π (3)(2)/4)
]


=
1


4
[5 + (3 − j2)(−1) − 3(1) + (3 + j2)(−1)] = −1;


x[3] =
1


4


[


5 + (3 − j2)e j(2π (3)/4) − 3e j(2π (2)(3)/4) + (3 + j2)e j(2π (3)(3)/4)
]


=
1


4
[5 + (3 − j2)(−j) − 3(−1) + (3 + j2)( j)] = 1.


Examples 12.1 and 12.2 prove the following DFT pair:


x[k] =















2 k = 0


3 k = 1


−1 k = 2


1 k = 3


DFT
←−−→ X [r ] =















5 r = 0


3 − j2 r = 1


−3 r = 2


3 + j2 r = 3,


where both the DT sequence x[k] and its DFT X [r ] have length N = 4.


Example 12.3


Calculate the N -point DFT of the aperiodic sequence x[k] of length N , which


is defined as follows:


x[k] =


{


1 0 ≤ k ≤ N1 − 1


0 N1 ≤ k ≤ N .
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Fig. 12.3. (a) Gate function x[k ]


in Example 12.3;


(b) magnitude spectrum and


(c) phase spectrum.


Solution


Using Eq. (12.15), the DFT of x[k] is given by


X [r ] =
N−1∑


k=0
x[k]e−j(2πkr/N ) =


N1−1∑


k=0
1 · e−j(2πkr/N )


+
N−1∑


k=N1


0 · e−j(2πkr/N ) =
N1−1∑


k=0
e−j(2πkr/N ),


for 0 ≤ r ≤ (N−1). The right-hand side of this equation represents a GP series,


which can be simplified as follows:


X [r ] =


N1−1∑


k=0


e−j(2πkr/N ) =











N1 r = 0


1 − e−j(2πr N1/N )


1 − e−j(2πr/N )
r 
= 0


=











N1 r = 0


e−j(πr (N1−1)/N )
sin(πr N1/N )


sin(πr/N )
r 
= 0.


Since X [r ] is a complex-valued function, its magnitude and phase components


are given by


r = 0 |X [r ]| = N1 and <X [r ] = 0;


r 
= 0 |X [r ]| =
sin(πr N1/N )


sin(πr/N )


<X [r ] = −
πr (N1 − 1)


N
+ <sin(πr N1/N ) − <sin(πr/N ).


The magnitude and phase spectra for N1 = 7 and length N = 30 are shown in


Figs. 12.3(b) and (c).
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12.2.1 DFT as matrix multiplication


An alternative representation for computing the DFT is obtained by expanding


Eq. (12.15) in terms of the time and frequency indices (k, r ). For N = M , the
resulting equations are expressed as follows:


X [0] = x[0] + x[1] + x[2] + · · · + x[N − 1],
X [1] = x[0] + x[1]e−j(2π/N ) + x[2]e−j(4π/N )


+ · · · + x[N − 1]e−j(2(N−1)π/N ),
X [2] = x[0] + x[1]e−j(4π/N ) + x[2]e−j(8π/N )


+ · · · + x[N − 1]e−j(4(N−1)π/N ),
...


X [N − 1] = x[0] + x[1]e−j(2(N−1)π/N ) + x[2]e−j(4(N−1)π/N )


+ · · · + x[N − 1]e−j(2(N−1)(N−1)π/N ).







































(12.18)


In the matrix-vector format they are given by















X [0]


X [1]


X [2]


.


.


.


X [N − 1]















︸ ︷︷ ︸


DFT vector �X


=















1 1 1 · · · 1


1 e−j(2π/N ) e−j(4π/N ) · · · e−j(2(N−1)π/N )


1 e−j(4π/N ) e−j(8π/N ) · · · e−j(4(N−1)π/N )


.


.


.
.
.
.


.


.


.
. . .


.


.


.


1 e−j(2(N−1)π/N ) e−j(4(N−1)π/N ) · · · e−j(2(N−1)(N−1)π/N )















︸ ︷︷ ︸


DFT matrix F















x[0]


x[1]


x[2]


.


.


.


x[N − 1]















︸ ︷︷ ︸


signal vector �x


.


(12.19)


Equation (12.19) shows that the DFT coefficients X [r ] can be computed by left-


multiplying the DT sequence x[k], arranged in a column vector �x in ascending


order with respect to the time index k, by the DFT matrix F .


Similarly, the expression for the inverse DFT given in Eq. (12.16) can be


expressed as follows:















x[0]


x[1]


x[2]


.


.


.


x[N − 1]















︸ ︷︷ ︸


signal vector x


=
1


N















1 1 1 · · · 1


1 e j(2π/N ) e j(4π/N ) · · · e j(2(N−1)π/N )


1 e j(4π/N ) e j(8π/N ) · · · e j(4(N−1)π/N )


.


.


.
.
.
.


.


.


.
. . .


.


.


.


1 e j(2(N−1)π/N ) e j(4(N−1)π/N ) · · · e j(2(N−1)(N−1)π/N )















︸ ︷︷ ︸


DFT matrix G=F−1















X [0]


X [1]


X [2]


.


.


.


X [N − 1]















︸ ︷︷ ︸


DFT vector X


,


(12.20)


which implies that the DT sequence x[k] can be obtained by left-multiplying


the DFT coefficients X [r ], arranged in a column vector �X in ascending order
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with respect to the DFT coefficient index r , by the inverse DFT matrix G. It is


straightforward to show that G × F = F × G = IN , where IN is the identity
matrix of order N .


Example 12.4 repeats Example 12.1 using the matrix-vector representation


for the DFT.


Example 12.4


Calculate the four-point DFT of the aperiodic signal x[k] considered in


Example 12.1.


Solution


Arranging the values of the DT sequence in the signal vector x , we obtain


x = [2 3 −1 1]T,


where superscript T represents the transpose operation for a vector. Using


Eq. (12.19), we obtain










X [0]


X [1]


X [2]


X [3]










=










1 1 1 1


1 e−j(2π/N ) e−j(4π/N ) e−j(6π/N )


1 e−j(4π/N ) e−j(8π/N ) e−j(12π/N )


1 e−j(6π/N ) e−j(12π/N ) e−j(18π/N )










︸ ︷︷ ︸


DFT matrix: F










x[0]


x[1]


x[2]


x[3]










=










1 1 1 1


1 e−j(2π/4) e−j(4π/4) e−j(6π/4)


1 e−j(4π/4) e−j(8π/4) e−j(12π/4)


1 e−j(6π/4) e−j(12π/4) e−j(18π/4)










︸ ︷︷ ︸


DFT matrix: F










2


3


−1
1










=










5


3 − j2
−3


3 + j2










.


The above values for the DFT coefficients are the same as the ones obtained in


Example 12.1.


Example 12.5


Calculate the inverse DFT of X [r ] considered in Example 12.2.


Solution


Arranging the values of the DFT coefficients in the DFT vector X , we obtain


X = [5 3 − j2 −3 3 + j2]T.
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Using Eq. (12.20), the DFT vector X is given by










x[0]


x[1]


x[2]


x[3]










=
1


4










1 1 1 1


1 e j(2π/N ) e j(4π/N ) e j(6π/N )


1 e j(4π/N ) e j(8π/N ) e j(12π/N )


1 e j(6π/N ) e j(12π/N ) e j(18π/N )



















X [0]


X [1]


X [2]


X [3]











=
1


4










1 1 1 1


1 e j(2π/4) e j(4π/4) e j(6π/4)


1 e j(4π/4) e j(8π/4) e j(12π/4)


1 e j(6π/4) e j(12π/4) e j(18π/4)


















5


3 − j2
−3


3 + j2










=
1


4










8


12


−4
4










=










2


3


−1
1










.


The above values for the DT sequence x[k] are the same as the ones obtained


in Example 12.2.


12.2.2 DFT basis functions


The matrix-vector representation of the DFT derived in Section 12.2.1 can


be used to determine the set of basis functions for the DFT representation.


Expressing Eq. (12.20) in the following format:











x[0]


x[1]


x[2]
...


x[N − 1]













=
1


N
X [0]













1


1


1
...


1













+
1


N
X [1]













1


e j(2π/N )


e j(4π/N )


...


e j(2(N−1)π/N )













+
1


N
X [2]













1


e j(4π/N )


e j(8π/N )


...


e j(4(N−1)π/N )













+ · · ·
1


N
X [N − 1]













1


e j(2(N−1)π/N )


e j(4(N−1)π/N )


...


e j(2(N−1)(N−1)π/N )













, (12.21)


it is clear that the basis functions for the N -point DFT are given by the following


set of N vectors:


Fr =
1


N


[


1 exp


(
j2πr


N


)


exp


(
j4πr


N


)


· · · exp
(


j2(N − 1)πr
N


)]T


,


for 0 ≤ r ≤ (N−1). Equation (12.21) illustrates that the DFT represents a DT


sequence as a linear combination of complex exponentials, which are weighted


by the corresponding DFT coefficients. Such a representation is useful for the


analysis of LTID systems.


As an example, Fig. 12.4 plots the real and imaginary components of the basis


vectors for the eight-point DFT of length N = 8. From Fig. 12.4(a), we observe


that the real components of the basis vectors correspond to a cosine function


sampled at different sampling rates. Similarly, the imaginary components of


the basis vectors correspond to a sine function sampled at different sampling
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Fig. 12.4. Basis vectors for an


eight-point DFT. (a) Real


components; (b) imaginary


components.


rates. This should not be surprising, since Euler’s identity expands a complex


exponential as a complex sum of cosine and sine terms.


We now proceed with the estimation of the spectral content of both DT and


CT signals using the DFT.


12.3 Spectrum analysis using the DFT


In this section, we illustrate how the DFT can be used to estimate the spectral


content of the CT and DT signals. Examples 12.6–12.8 deal with the CT signals,


while Examples 12.9 and 12.10 deal with the DT sequences.
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Example 12.6


Using the DFT, estimate the frequency characteristics of the decaying expo-


nential signal g(t) = exp(−0.5t)u(t). Plot the magnitude and phase spectra.


Solution


Following the procedure outlined in Section 12.1, the three steps involved in


computing the CTFT are listed below.


Step 1: Impulse-train sampling Based on Table 5.1, the CTFT of the decay-
ing exponential is given by


g(t) = e−0.5t u(t) CTFT←−−→ G(ω) =
1


0.5 + jω
.


This CTFT pair implies that the bandwidth of g(t) is infinite. Ideally speak-


ing, the sampling theorem can never be satisfied for the decaying exponential


signal. However, we exploit the fact that the magnitude |G(ω)| of the CTFT


decreases monotonically with higher frequencies and we neglect any frequency


components at which the magnitude falls below a certain threshold η. Selecting


the value of η = 0.01 × |G(ω)|max, the threshold frequency B is given by
∣
∣
∣


1


0.5 + j2π B


∣
∣
∣ ≤ 0.01 × |G(ω)|max.


Since the maximum value of the magnitude |G(ω)| is 2 at ω = 0, the above


expression reduces to
√


0.25 + (2π B)2 ≥ 50,


or B ≥ 7.95 Hz. The Nyquist sampling rate f1 is therefore given by


f1 ≥ 2 × 7.95 = 15.90 samples/s.


Selecting a sampling rate of f1 = 20 samples/s, or a sampling interval T1 =


1/20 = 0.05 s, the DT approximation of the decaying exponential is given by


g[k] = g(kT1) = e
−0.5kT1 u[k] = e−0.025ku[k].


Since there is a discontinuity in the CT signal g(t) at t = 0 with g(0−) = 0 and


g(0+) = 1, the value of g[k] at k = 0 is set to g[0] = 0.5. based on Eq. (1.1).


Step 2: Time-limitation To truncate the length of g[k], we apply a rectangular
window of length N = 201 samples. The truncated sequence is given by


gw [k] = e
−0.025k(u[k] − u[k − 201]) =


{


e−0.025k 0 ≤ k ≤ 200


0 elsewhere.


The subscript w in gw [k] denotes the truncated version of g[k] obtained by


multiplying by the window function w[k]. Note that the truncated sequence


gw [k] is a fairly good approximation of g[k], as the peak magnitude of the


truncated samples is given by 0.0066 and occurs at k = 201. This is only 0.66%


of the peak value of the complex exponential g[k].
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Step 3: DFT computation The DFT of the truncated DT sequence gw [k]
can now be computed directly from Eq. (12.16). M A T L A B provides a built-in


function fft, which has the calling syntax of


>> G = fft(g);


where g is the signal vector containing the values of the DT sequence gw [k]


and G is the computed DFT. Both g and G have a length of N , implying that


an N -point DFT is being taken. The built-in function fft computes the DFT


within the frequency range 0 ≤ r ≤ (N−1). Since the DFT is periodic, we can


obtain the DFT within the frequency range −(N − 1)/2 ≤ r ≤ (N − 1)/2 by


a circular shift of the DFT coefficients. In M A T L A B , this is accomplished by


the fftshift function.


Having computed the DFT, we use Eq. (12.12) to estimate the CTFT of the


original CT decaying exponential signal g(t). The M A T L A B code for comput-


ing the CTFT is as follows:


>> f1 = 20; % set sampling rate


>> t1 = 1/f1; % set sampling interval


>> N = 201; k = 0:N-1; % set length of DT sequence to


% N = 201


>> g = exp(-0.025*k); % compute the DT sequence


>> g(1) = 0.5; % initialize the first sample


>> G = fft(g); % determine the 201-point DFT


>> G = fftshift(G); % shift the DFT coefficients


>> G = t1*G; % scale DFT such that


% DFT = CTFT


>> dw = 2*pi*f1/N; % CTFT frequency resolution


>> w = -pi*f1:dw:pi*f1-dw; % compute CTFT frequencies


>> stem(w,abs(G)); % plot CTFT magnitude spectrum


>> stem(w,angle(G)); % plot CTFT phase spectrum


The resulting plots are shown in Fig. 12.5, where we have limited the frequency


axis to the range −5π ≤ ω ≤ 5π . The magnitude and phase spectra plotted


in Fig. 12.5 are fairly good estimates of the frequency characteristics of the


decaying exponential signal listed in Table 5.3.


In Example 12.6, we used the CTFT G(ω) to determine the appropriate sampling


rate. In most practical situations, however, the CTFTs are not known and one
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0
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(a) (b)


Fig. 12.5. Spectral estimation of


decaying exponential signal


g(t ) = exp(−0.5t )u(t ) using


the DFT in Example 12.6.


(a) Estimated magnitude


spectrum; (b) estimated phase


spectrum.
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is forced to make an intelligent estimate of the bandwidth of the signal. If


the frequency and time characteristics of the signal are not known, a high


sampling rate and a large time window are arbitrarily chosen. In such cases, it


is advised that a number of sampling rates and lengths be tried before finalizing


the estimates.


Example 12.7


Using the DFT, estimate the frequency characteristics of the CT signal h(t) =
2 exp(j18π t) + exp(−j8π t).


Solution


Following the procedure outlined in Section 12.1, the three steps involved in


computing the CTFT are as follows.


Step 1: Impulse-train sampling The CT signal h(t) consists of two com-
plex exponentials with fundamental frequencies of 9 Hz and 4 Hz. The Nyquist


sampling rate f1 is therefore given by


f1 ≥ 2 × 9 = 18 samples/s.


We select a sampling rate of f1 = 32 samples/s, or a sampling interval T1 =
1/32 s. The DT approximation of h(t) is given by


h[k] = h(kT1) = 2e j18πk/32 + e−j8πk/32.


Step 2: Time-limitation The DT sequence h[k] is a periodic signal with fun-
damental period K0 = 32. For periodic signals, it is sufficient to select the
length of the rectangular window equal to the fundamental period. Therefore,


N is set to 32.


Step 3: DFT computation The M A T L A B code for computing the DFT of
the truncated DT sequence is as follows.


>> f1 = 32; % set sampling rate


>> t1 = 1/f1; % set sampling interval


>> N = 32; k = 0:N-1; % set length of DT sequence


>> h = 2*exp(j*18*pi*k/32) + exp(-j*8*pi*k/32);


% compute the DT sequence


>> H = fft(h); % determine the 32-point DFT


>> H = fftshift(H); % shift the DFT coefficients


>> H = t1*H; % scale DFT such that


% DFT = CTFT








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 28, 2007 14:2


542 Part III Discrete-time signals and systems


−30p −20p −10p 0 10p 20p 30p
0


0.5


1


1.5


2


−30p −20p −10p 0 10p 20p 30p


−0.5p


0


0.5p


p


(a) (b)


Fig. 12.6. Spectral estimation of


decaying exponential signal h(t )


= 2 exp(j18π t ) + exp(−j8π t )
using the DFT in Example 12.7.


(a) Estimated magnitude


spectrum; (b) estimated


phase spectrum.


>> dw = 2*pi*f1/N; % CTFT frequency resolution


>> w = -pi*f1:dw:pi*f1-dw; % compute CTFT frequencies


>> stem(w,abs(H)); % plot CTFT magnitude spectrum


>> stem(w,angle(H)); % plot CTFT phase spectrum


The resulting plots are shown in Fig. 12.6, and they have a frequency resolution


of �ω = 2π . We know that the CTFT for h(t) is given by


2e j18π t + e−j8π t CTFT←−−→ 2δ(ω − 18π ) + δ(ω + 8π ).


We observe that the two impulses at ω = −8π and 18π radians/s are accurately


estimated in the magnitude spectrum plotted in Fig. 12.6(a). Also, the relative


amplitude of the two impulses corresponds correctly to the area enclosed by


these impulses in the CTFT for h(t).


The phase spectrum plotted in Fig. 12.6(b) is unreliable except for the two


frequencies ω = −8π and 18π radians/s. At all other frequencies, the magni-


tude |H (ω)| is zero, therefore the phase <H (ω) carries no information. This


is because the phase is computed as the inverse tangent of the ratio between


the imaginary and real components of H (ω). When |H (ω)| is close to zero,


the argument of the inverse tangent is given by ε1/ε2, with ε1and ε2 approach-


ing zero. In such cases, incorrect results are obtained for the phase. The phase


<H (ω) is therefore ignored when |H (ω)| is close to zero.


Example 12.8


Using the DFT, estimate the frequency characteristics of the CT signal x(t) =


2 exp(j19π t).


Solution


The three steps involved in computing the CTFT are as follows.


Step 1: Impulse-train sampling The CT signal x(t) constitutes a complex
exponential with fundamental frequency 9.5 Hz. The Nyquist sampling rate f1


is therefore given by


f1 ≥ 2 × 9.5 = 19 samples/s.
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As in Example 12.7, we select a sampling rate of f1 = 32 samples/s, or a sam-
pling interval T1 = 1/32 s. The DT approximation of h(t) is given by


x[k] = x(kT1) = 2e j19πk/32.


Step 2: Time-limitation As in Example 12.7, we keep the length N of the
rectangular window equal to 32.


Step 3: DFT computation The M A T L A B code for computing the DFT of
the truncated DT sequence is as follows:


>> f1 = 32; % set sampling rate


>> t1 = 1/f1; % set sampling interval


>> N = 32; k = 0:N-1; % set length of DT sequence


% to N = 32


>> x = 2*exp(j*19*pi*k/32); % compute the DT sequence


>> X = fft(x); % determine the 32-point DFT


>> X = fftshift(X); % shift the DFT coefficients


>> X = t1*X; % scale DFT such that


% DFT = CTFT


>> dw = 2*pi*f1/N; % CTFT frequency resolution


>> w = -pi*f1:dw:pi*f1-dw; % compute CTFT frequencies


>> stem(w,abs(X)); % plot CTFT magnitude spectrum


The resulting magnitude spectrum is shown in Fig. 12.7(a), which has a fre-


quency resolution of �ω = 2π radians/s. Comparing with the CTFT for x(t),
which is given by


2e j19π t
CTFT


←−−→ 2δ(ω − 19π ),


we observe that Fig. 12.7(a) provides us with an erroneous result. This error


is attributed to the poor resolution �ω chosen to frequency-sample the CTFT.


Since �ω = 2π , the frequency component of 19π present in x(t) cannot be


displayed accurately at the selected resolution. In such cases, the strength of


the frequency component of 19π radians/s leaks into the adjacent frequencies,


leading to non-zero values at these frequencies. This phenomenon is referred


to as the leakage or picket fence effect.


Figure 12.7(b) plots the magnitude spectrum when the number N of sam-


ples in the discretized sequence is increased to 64. Since fft uses the same


number M of samples to discretize the CTFT, the resolution �ω = 2πT1/M =


π radians/s. The M A T L A B code for estimating the CTFT is as follows:


>> f1 = 32; t1 = 1/f1; % set sampling rate and interval


>> N = 64; k = 0:N-1; % set sequence length to N = 64
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Fig. 12.7. Spectral estimation of


complex exponential signal


x (t ) = 2 exp( j19π t ) using the
DFT in Example 12.8.


(a) Estimated magnitude


spectrum, with a 32-point DFT.


(b) Same as part (a) except that


a 64-point DFT is computed.


>> x = 2*exp(j*19*pi*k/32); % compute the DT sequence


>> X = fft(x); % determine the 64-point DFT


>> X = fftshift(X); % shift the DFT coefficients


>> X = 0.5*t1*X; % scale DFT so DFT = CTFT


>> w = 2*pi*f1/N; % CTFT frequency resolution


>> w = -pi*f1:dw:pi*f1-dw; % compute CTFT frequencies


>> stem(w,abs(X)); % plot CTFT magnitude spectrum


In the above code, we have highlighted the instructions that have been changed


from the original version. In addition to setting the length N to 64 in the above


code, we also note that the magnitude of the CTFT X is now being scaled by


a factor of 0.5 × T1. The additional factor of 0.5 is introduced because we are
now computing the DFT over two consecutive periods of the periodic sequence


x[k]. Doubling the time duration doubles the values of the DFT coefficients,


and therefore a factor of 0.5 is introduced to compensate for the increase.


Figure 12.7(b), obtained using a 64-point DFT, is a better estimate for the


magnitude spectrum of x(t) than Fig. 12.7(a), obtained using a 32-point DFT.


The DFT can also be used to estimate the DTFT of DT sequences. Examples


12.9 and 12.10 compute the DTFT of two aperiodic sequences.


Example 12.9


Using the DFT, calculate the DTFT of the DT decaying exponential sequence


x[k] = 0.6k u[k].


Solution


Estimating the DTFT involves only Steps 2 and 3 outlined in Section 12.1.


Step 2: Time-limitation Applying a rectangular window of length N = 10,
the truncated sequence is given by


xw[k] =
{


0.6k 0 ≤ k ≤ 9


0 elsewhere.
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Table 12.1. Comparison between the DFT and DTFT coefficients in Example 12.9


DTFT frequency,


DFT index, r Ωr = 2πr/N DFT coefficients, X [r ] DTFT coefficients, X (Ω)


−5 −π 0.6212 0.6250
−4 −0.8π 0.6334 + j0.1504 0.6373 + j0.1513
−3 −0.6π 0.6807 + j0.3277 0.6849 + j0.3297
−2 −0.4π 0.8185 + 0.5734 0.8235 + j0.5769
−1 −0.2π 1.3142 + j0.9007 1.3222 + j0.9062


0 0 2.4848 2.5000


1 0.2π 1.3142 − j0.9007 1.3222 − j0.9062
2 0.4π 0.8185 − j0.5734 0.8235 − j0.5769
3 0.6π 0.6807 − j0.3277 0.6849 − j0.3297
4 0.8π 0.6334 − j0.1504 0.6373 − j0.1513


Step 3: DFT computation The M A T L A B code for computing the DFT is as
follows:


>> N = 10; k = 0:N-1; % set sequence length


% to N = 10


>> x = 0.6.ˆk; % compute the DT sequence


>> X = fft(x); % calculate the 10-point DFT


>> X = fftshift(X); % shift the DFT coefficients


>> w = -pi:2*pi/N:pi-2*pi/N; % compute DTFT frequencies


Table 12.1 compares the computed DFT coefficients with the corresponding


DTFT coefficients obtained from the following DTFT pair:


0.6ku[k]
DTFT


←−−→
1


1 − 0.6e−jΩ
.


We observe that the values of the DFT coefficients are fairly close to the DTFT


values.


Example 12.10


Calculate the DTFT of the aperiodic sequence x[k] = [2, 1, 0, 1] for 0 ≤ k ≤


3.


Solution


Using Eq. (12.6), the DFT coefficients are given by


X [r ] = [4, 2, 0, 2] for 0 ≤ r ≤ 3.


Mapping in the DTFT domain, the corresponding DTFT coefficients are given


by


X (Ωr ) = [4, 2, 0, 2] for Ωr = [0, 0.5π, π, 1.5π ] radians/s.
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Fig. 12.8. Spectral estimation of


DT sequences using the DFT in


Example 12.10. (a) Estimated


magnitude spectrum;


(b) estimated phase spectrum.


The dashed lines show the


continuous spectrum obtained


from the DTFT.


If instead the DTFT is to be plotted within the range −π ≤ Ω ≤ π , then the
DTFT coefficients can be rearranged as follows:


X (Ωr ) = [4, 2, 0, 2] for Ωr = [−π, −0.5π, 0, 0.5π ] radians/s.


The magnitude and phase spectra obtained from the DTFT coefficients are


sketched using stem plots in Figs. 12.8(a) and (b). For comparison, we use Eq.


(11.28b) to derive the DTFT for x[k]. The DTFT is given by


X (Ω) =


3∑


k=0


x[k]e−jΩk = 2 + e−jΩ + e−j3Ω.


The actual magnitude and phase spectra based on the above DTFT expression


are plotted in Figs. 12.8(a) and (b) respectively (see dashed lines). Although


the DFT coefficients provide exact values of the DTFT at the discrete fre-


quencies Ωr = [0, 0.5π , π, 1.5π ] radians/s, no information is available on


the characteristics of the magnitude and phase spectra for the intermediate


frequencies. This is a consequence of the low resolution used by the DFT


to discretize the DTFT frequency Ω. Section 12.3.1 introduces the concept


of zero padding, which allows us to improve the resolution used by the


DFT.


12.3.1 Zero padding


To improve the resolution of the frequency axis Ω in the DFT domain, a com-


monly used approach is to append the DT sequences with additional zero-valued


samples. This process is called zero padding, and for an aperiodic sequence x[k]


of length N is defined as follows:


xzp[k] =


{


x[k] 0 ≤ k ≤ N − 1


0 N ≤ k ≤ M − 1.


The zero-padded sequence xzp[k] has an increased length of M . The frequency


resolution �Ω of the zero-padded sequence is improved from 2π/N to 2π/M .
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Fig. 12.9. Spectral estimation of


zero-padded DT sequences


using the DFT in Example 12.11.


(a) Estimated magnitude


spectrum; (b) estimated phase


spectrum.


Example 12.11 illustrates the improvement in the DTFT achieved with the


zero-padding approach.


Example 12.11


Compute the DTFT of the aperiodic sequence x[k] = [2, 1, 0, 1] for 0 ≤ k ≤ 3
by padding 60 zero-valued samples at the end of the sequence.


Solution


The M A T L A B code for computing the DTFT of the zero-padded sequence is


as follows:


>> N = 64; k = 0:N-1; % set sequence length


% to N = 64


>> x = [2 1 0 1 zeros(1,60)]; % zero-padded sequence


>> X = fft(x); % determine the 64-point DFT


>> X = fftshift(X); % shift the DFT coefficients


>> w = -pi:2*pi/N:pi-2*pi/N; % compute DTFT frequencies


>> stem(w,abs(X)); % plot magnitude spectrum


>> stem(w,angle(X)); % plot the phase spectrum


The magnitude and phase spectra of the zero-padded sequence are plotted in


Figs. 12.9(a) and (b), respectively. Compared with Fig. 12.8, we observe that


the estimated spectra in Fig. 12.9 provide an improved resolution and better


estimates for the frequency characteristics of the DT sequence.


12.4 Properties of the DFT


In this section, we present the properties of the M-point DFT. The length of


the DT sequence is assumed to be N ≤ M . For N < M , the DT sequence is


zero-padded with M − N zero-valued samples. The DFT properties presented


below are similar to the corresponding properties for the DTFT discussed in


Chapter 11.
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12.4.1 Periodicity


The M-point DFT of an aperiodic DT sequence with length N (M ≥ N ) is
periodic with period M . In other words,


X [r ] = X [r + M], (12.22)


for 0 ≤ r ≤ M − 1.


12.4.2 Orthogonality


The column vectors Fr of the DFT matrix F , defined in Section 12.2.2, form


the basis vectors of the DFT. These vectors are orthogonal to each other and,


for the M-point DFT, satisfy the following:


FTp F
∗
q =


M∑


m=1


Fp(m, 1)[Fq (m, 1)]
∗ =


{


1/M for p = q


0 for p 
= q,


where the matrix FTp is the transpose of Fp and the matrix F
∗
q is the complex


conjugate of Fq .


12.4.3 Linearity


If x1[k] and x2[k] are two DT sequences with the following M-point DFT pairs:


x1[k]
DFT


←−−→ X1[r ] and x2[k]
DFT


←−−→ X2[r ],


then the linearity property states that


a1x1[k] + a2x2[k]
DFT


←−−→ a1 X1[r ] + a2 X2[r ], (12.23)


for any arbitrary constants a1 and a2, which may be complex-valued.


12.4.4 Hermitian symmetry


The M-point DFT X [r ] of a real-valued aperiodic sequence x[k] is conjugate–


symmetric about r = M/2. Mathematically, the Hermitian symmetry implies


that


X [r ] = X∗[M − r ], (12.24)


where X∗[r ] denotes the complex conjugate of X [r ].


In terms of the magnitude and phase spectra of the DFT X [r ], the Hermitian


symmetry property can be expressed as follows:


|X [M − r ]| = |X [r ]| and <X [M − r ] = −<X [r ], (12.25)


implying that the magnitude spectrum is even and that the phase spectrum is


odd.


The validity of the Hermitian symmetry can be observed in the DFT plotted


for various aperiodic sequences in Examples 12.2–12.11.
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12.4.5 Time shifting


If x[k]
DFT


←−−→ X [r ], then


x[k − k0]
DFT


←−−→ e−j2πk0r/M X [r ] (12.26)


for an M-point DFT and any arbitrary integer k0.


12.4.6 Circular convolution


If x1[k] and x2[k] are two DT sequences with the following M-point DFT pairs:


x1[k]
DFT


←−−→ X1[r ] and x2[k]
DFT


←−−→ X2[r ],


then the circular convolution property states that


x1[k] ⊗ x2[k]
DFT


←−−→ X1[r ]X2[r ] (12.27)


and


x1[k]x2[k]
DFT


←−−→
1


M
[X1[r ] ⊗ X2[r ]], (12.28)


where ⊗ denotes the circular convolution operation. Note that the two sequences


must have the same length in order to compute the circular convolution.


Example 12.12


In Example 10.11, we calculated the circular convolution y[k] of the aperiodic


sequences x[k] = [0, 1, 2, 3] and h[k] = [5, 5, 0, 0] defined over 0 ≤ k ≤ 3.


Recalculate the result of the circular convolution using the DFT convolution


property.


Solution


The four-point DFTs of the aperiodic sequences x[k] and h[k] are given by


X [r ] = [6, −2 + j2, −2, −2 − j2]


and


H [r ] = [10, 5 − j5, 0, 5 + j5]


for 0 ≤ r ≤ 3. Using Eq. (12.27), the four-point DFT of the circular convolu-


tion between x[k] and h[k] is given by


x1[k] ⊗ x2[k]
DFT


←−−→ [60, j20, 0 − j20].


Taking the inverse DFT, we obtain


x1[k] ⊗ x2[k] = [15, 5, 15, 25],


which is identical to the answer obtained in Example 10.11.
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12.4.7 Parseval’s theorem


If x[k]
DFT


←−−→ X [r ], then the energy of the aperiodic sequence x[k] of length


N can be expressed in terms of its M-point DFT as follows:


Ex =
N−1∑


k=0


|x[k]|2 =
1


M


M−1∑


k=0


|X [r ]|2. (12.29)


Parseval’s theorem shows that the DFT preserves the energy of the signal within


a scale factor of M .


12.5 Convolution using the DFT


In Section 10.6.1, we showed that the linear convolution x1[k] ∗ x2[k] between


two time-limited DT sequences x1[k] and x2[k] of lengths K1 and K2, respec-


tively, can be expressed in terms of the circular convolution x1[k] ⊗x2[k]. The


procedure requires zero padding both x1[k] and x2[k] to have individual lengths


of K ≥ (K1 + K2 – 1). It was shown that the result of the circular convolution


of the zero-padded sequences is the same as that of the linear convolution.


Since computationally efficient algorithms are available for computing the


DFT of a finite-duration sequence, the circular convolution property can be


exploited to implement the linear convolution of the two sequences x1[k] and


x2[k] using the following procedure.


(1) Compute the K -point DFTs X1[r ] and X2[r ] of the two time-limited


sequences x1[k] and x2[k]. The value of K is lower bounded by (K1 + K2
– 1), i.e. K ≥ (K1 + K2 – 1).


(2) Compute the product X3[r ] = X1[r ]X2[r ] for 0 ≤ r ≤ K − 1.


(3) Compute the sequence x3[k] as the inverse DFT of X3[r ]. The resulting


sequence x3[k] is the result of the linear convolution between x1[k] and


x2[k].


The above approach is explained in Example 12.13.


Example 12.13


Example 10.13 computed the linear convolution of the following DT sequences:


x[k] =











2 k = 0


−1 |k| = 1


0 otherwise


and h[k] =















2 k = 0


3 |k| = 1


−1 |k| = 2


0 otherwise,


using the circular convolution method outlined in Algorithm 10.4 in


Section 10.6.1. Repeat Example 10.13 using the DFT-based approach described


above.
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Table 12.2. Values of X ′[r ], H ′[r ] and Y [r ] for 0 ≤ r ≤ 6 in Example 12.13


r X ′[r ] H ′[r ] Y [r ]


0 0 6 0


1 0.470 − j0.589 −1.377 − j6.031 −4.199 − j2.024


2 −0.544 − j2.384 −2.223 + j1.070 3.760 + j4.178


3 −3.425 − j1.650 −2.901 − j3.638 3.933 + j17.247


4 −3.425 + j1.650 −2.901 + j3.638 3.933 − j17.247


5 −0.544 + j2.384 −2.223 − j1.070 3.760 − j4.178


6 0.470 + j0.589 −1.377 + j6.031 −4.199 + j2.024


Solution


Step 1 Since the sequences x[k] and h[k] have lengths Kx = 5 and K y = 3,
the value of K ≥ (5 + 3 − 1) = 7. We set K = 7 in this example:


padding (K − Kx ) = 4 additional zeros to x[k], we obtain
x ′[k] = [−1, 2, −1, 0, 0, 0, 0];


padding (K − Kh) = 2 additional zeros to h[k], we obtain
h′[k] = [−1, 3, 2, 3, −1, 0, 0].


The DFTs of x ′[k] are shown in the second column of Table 12.2, where the


values for X ′[r ] have been rounded off to three decimal places. Similarly, the


DFTs of h′[k] are shown in the third column of Table 12.2.


Step 2 The value of Y [r ] = X ′[r ]H ′[r ], for 0 ≤ r ≤ 6, are shown in the fourth
column of Table 12.2.


Step 3 Taking the inverse DFT of Y [r ] yields


y[k] = [0.998 −5 5.001 −1.999 5 −5.002 1.001].


Except for approximation errors caused by the numerical precision of the com-


puter, the above results are the same as those obtained from the direct compu-


tation of the linear convolution included in Example 10.13.


12.5.1 Computational complexity


We now compare the computational complexity of the time-domain and DFT-


based implementations of the linear convolution between the time-limited


sequences x1[k] and x2[k] with lengths K1 and K2, respectively. For simplicity,
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we assume that x1[k] and x2[k] are real-valued sequences with lengths K1 and


K2, respectively.


Time-domain approach This is based on the direct computation of the con-
volution sum


y[k] = x1[k] ∗ x1[k] =
∞∑


m=−∞


x1[m]x2[k − m],


which requires roughly K1 × K2 multiplications and K1 × K2 additions. The


total number of floating point operations (flops) required with the time-domain


approach is therefore given by 2K1 K2.


DFT-based approach Step 1 of the DFT-based approach computes two K =
(K1 + K2 − 1)-point DFTs of the DT sequences x1[k] and x2[k]. In Section


12.6, we show that the total number of flops required to implement a K -point


DFT using fast Fourier transform (FFT) techniques is approximately 5K log2 K .


Therefore, Step 1 of the DFT-based approach requires a total of 10K log2 K


flops.


Step 2 multiplies DFTs for x1[k] and x2[k]. Each DFT has a length of


K = K1 + K2 − 1 points; therefore, a total of K complex multiplications and


K − 1 ≈ K complex additions are required. The total number of computations
required in Step 2 is therefore given by 8K or 8(K1 + K2 – 1) flops.


Step 3 computes one inverse DFT based on the FFT implementation requiring


5K log2 K flops.


The total number of flops required with the DFT-based approach is therefore


given by


15K log2 K + 6K ≈ 15K log2 K flops,


where K = K1 + K2 − 1. Assuming K1 = K2, the DFT-based approach pro-
vides a computational saving of O((log2 K )/K ) in comparison with the direct


computation of the convolution sum in the time domain. Table 12.3 compares


the computational complexity of the two approaches for a few selected values


of K1 and K2. The length K of the DFT should be equal to or greater than


(K1 + K2 − 1) depending on its value. Where (K1 + K2 − 1) is not a power of
2, we have rounded (K1 + K2 − 1) to the next higher integer that is a power of 2.
In the second row, for example, K1 = 32 and K2 = 5, which implies that (K1 +
K2 − 1) = 36. Since the radix-2 FFT algorithm, described in Section 12.6, can
only be implemented for sequences with lengths that are powers of 2, K is set to


64. Based on the DFT-based approach, the number of flops required to compute


the convolution of the two sequences is given by (15 × 64 × log2 (64)) = 5760.
In Table 12.3, we observe that for sequences with lengths greater than 1000 sam-


ples, the DFT-based approach provides significant savings over the direct com-


putation of the circular convolution in the time domain. If x1[k] and x2[k] are


real-valued sequences, significant further savings (about 50%) can be achieved


using the procedures mentioned in Problems 12.18 and 12.19.
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Table 12.3. Comparison of the computational complexities of the


time-domain versus the DFT-based approaches used to compute


the linear convolution


Computational complexity, flops


Length K1 Length K2 Time domain DFT


of x1[k] of x2[k] (2K1 × K2 flops) (15K log2 K flops)


32 5 320 5760


32 32 2048 5760


1000 200 400 000 337 920


1000 1000 2 000 000 337 920


2000 2000 8 000 000 737 280


12.6 Fast Fourier transform


There are several well known techniques including the radix-2, radix-4, split


radix, Winograd, and prime factor algorithms that are used for computing the


DFT. These algorithms are referred to as the fast Fourier transform (FFT) algo-


rithms. In this section, we explain the radix-2 decimation-in-time FFT algo-


rithm.


To provide a general frame of reference, let us consider the computational


complexity of the direct implementation of the K -point DFT for a time-limited


complex-valued sequence x[k] with length K . Based on its definition,


X [r ] =
K−1∑


k=0
x[k]e−j(2πkr/K ), (12.30)


K complex multiplications and K − 1 complex additions are required to com-
pute a single DFT coefficient. Computation of all K DFT coefficients requires


approximately K 2 complex additions and K 2 complex multiplications, where


we have assumed K to be large such that K − 1 ≈ K .
In terms of flops, each complex multiplication requires four scalar multi-


plications and two scalar additions, and each complex addition requires two


scalar additions. Computation of a single DFT coefficient, therefore, requires


8K flops. The total number of scalar operations for computing the complete


DFT is given by 8K 2 flops.


We now proceed with the radix-2 FFT decimation-in-time algorithm. The


radix-2 algorithm is based on the following principle.


Proposition 12.1 For even values of K, the K-point DFT of a complex-valued


sequence x[k] with length K can be computed from the DFT coefficients of two


subsequences: (i) x[2k], containing the even-numbered samples of x[k], and


(ii) x[2k + 1], containing the odd-numbered samples of x[k].
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Proof


Expressing Eq. (12.30) in terms of even- and odd-numbered samples of x[k],


we obtain


X [r ] =
K−1∑


k=0,2,4,...
x[k]e−j(2πkr/K )


︸ ︷︷ ︸


Term I


+
K−1∑


k=1,3,5,...
x[k]e−j(2πkr/K )


︸ ︷︷ ︸


Term II


, (12.31)


for 0 ≤ r ≤ (M − 1). Substituting k = 2m in Term I and k = 2m + 1 in Term II,


Eq. (12.31) can be expressed as follows:


X [r ] =


K/2−1∑


m=0,1,2,...


x[2m]e−j(2π (2m)r/K ) +


K/2−1∑


m=0,1,2,...


x[2m + 1]e−j(2π (2m+1)r/K )


or


X [r ] =


K/2−1∑


m=0,1,2,...


x[2m]e−j2πmr/(K/2)


+ e−j(2πr/K )
K/2−1∑


m=0,1,2,...


x[2m + 1]e−j2πmr/(K/2), (12.32)


where exp[−j2π (2m)r/K ] = exp[−j2πmr/(K/2)]. By expressing g[m] =


x[2m] and h[m] = x[2m + 1], we can rewrite Eq. (12.32) in terms of the DFTs


of g[m] and h[m]:


X [r ] =


K/2−1∑


m=0,1,2,...


g[m]e−j2πmr/(K/2)


︸ ︷︷ ︸


=G[r ]


+ e−j2πr/K
K/2−1∑


m=0,1,2,...


h[m]e−j2πmr/(K/2)


︸ ︷︷ ︸


=H [r ]


(12.33)


or


X [r ] = G[r ] + W rK H [r ], (12.34)


where WK is defined as exp(−j2π/K ). In FFT literature, W
r
K is generally


referred to as the twiddle factor. Note that in Eqs. (12.33) and (12.34), G[r ]


represents the (K/2)-point DFT of g[k], the even-numbered samples of x[k].


Similarly, H [r ] represents the (K/2)-point DFT of h[k], the odd-numbered


samples of x[k]. Equation (12.34) thus proves Proposition 12.1.


Based on Eqs. (12.34), the procedure for determining the K -point DFT can be


summarized by the following steps.


(1) Determine the (K/2)-point DFT G[r ] for 0 ≤ r ≤ (K/2 − 1) of the even-


numbered samples of x[k].
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Fig. 12.10. Flow graph of a


K -point DFT using two


(K/2)-point DFTs for K = 8.


(2) Determine the (K/2)-point DFT H [r ] for 0 ≤ r ≤ (K/2 − 1) of the odd-


numbered samples of x[k].


(3) The K -point DFT coefficients X [r ] for 0 ≤ r ≤ (K − 1) of x[k] are


obtained by combining the K/2 DFT coefficients G[r ] and H [r ] using


Eq. (12.34a). Although the index r varies from zero to K− 1, we only


compute G[r ] and H [r ] over the range 0 ≤ r ≤ (K/2 − 1). Any outside


value can be determined by exploiting the periodicity properties of G[r ]


and H [r ], which state that


G[r ] = G[r + K/2] and H [r ] = H [r + K/2].


Figure 12.10 illustrates the flow graph for the above procedure for K = 8-point


DFT. In comparison with the direct computation of DFT using Eq. (12.30),


Fig. 12.10 computes two (K/2)-point DFTs along with K complex addi-


tions and K complex multiplications. Consequently, (K/2)2 + K complex


additions and (K/2)2 + K complex multiplications are required with the


revised approach. For K > 2, it is easy to verify that (K/2)2 + K < K 2;


therefore, the revised approach provides considerable savings over the direct


approach.


Assuming that K is a power of 2, Proposition 12.1 can be applied on


Eq. (12.34) to compute the (K/2)-point DFTs G[r ] and H [r ] as follows:


G[r ] =


K/4−1∑


ℓ=0,1,2,...


g[2ℓ]e−j(2πℓr/(K/4))


︸ ︷︷ ︸


G ′[r ]


+ W rK/2


K/4−1∑


ℓ=0,1,2,...


g[2ℓ + 1]e−j(2πℓr/(K/4))


︸ ︷︷ ︸


G ′′[r ]


(12.35)


and


H [r ] =


K/4−1∑


ℓ=0,1,2,...


h[2ℓ]e−j(2πℓr/(K/4))


︸ ︷︷ ︸


H ′[r ]


+ W rK/2


K/4−1∑


ℓ=0,1,2,...


h[2ℓ + 1]e−j(2πℓr/(K/4))


︸ ︷︷ ︸


H ′′[r ]


.


(12.36)
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(b) H[r ].


Equation (12.35) expresses the (K/2)-point DFT G[r ] in terms of two (K /4)-


point DFTs of the even- and odd-numbered samples of g[k]. Figure 12.11(a)


illustrates the flow graph for obtaining G[r ] using Eq. (12.35). Similarly, Eq.


(12.36) expresses the (K/2)-point DFT H [r ] in terms of two (K/4)-point DFTs


of the even- and odd-numbered samples of h[k], which can be implemented


using the flow graph shown in Fig. 12.11(b). If K is a power of 2, then the


above process can be continued until we are left with a 2-point DFT. For the


aforementioned example with K = 8, the (K/4)-point DFTs in Fig. 12.11 can
be implemented directly using 2-point DFTs. Using the definition of the DFT,


the top left 2-point DFTs G ′[0] and G ′[1], for example, in Fig. 12.11(a) are


expressed as follows:


G ′[0] = x[0] e−j2πℓr/2
∣
∣
ℓ=0,r=0


+ x[4] e−j2πℓr/2
∣
∣
ℓ=1,r=0


= x[0] + x[4]


(12.37)


and


G ′[1] = x[0] e−j2πℓr/2
∣
∣
ℓ=0,r=1


+ x[4] e−j2πℓr/2
∣
∣
ℓ=1,r=1


= x[0] − x[4].


(12.38)


The flow graphs for Eqs. (12.37) and (12.38) are shown in Fig. 12.12(a). By


following this procedure, the flow diagrams for the remaining 2-point DFTs


required in Fig. 12.11 are derived and are shown in Figs. 12.12(b)–(d). Because


of their shape, the elementary flow graphs shown in Fig. 12.12 are generally


referred to as the butterfly structures.


Combining the individual flow graphs shown in Figs. 12.10, 12.11, and 12.12,


it is straightforward to derive the overall flow graph for the 8-point DFT, which


is shown in Fig. 12.13; in this flow diagram, we have further reduced the number


of operations for an 8-point DFT by noting that


W rK/2 = e
−j2πr/(K/2) = e−j4πr/K = W 2rK ,


and by placing the common terms between the twiddle multipliers of the two
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Fig. 12.12. Flow graphs of


2-point DFTs required for


Fig. 12.11. (a) Top 2-point DFT


G ′[0] and G ′[1] for Fig. 12.11(a).


(b) Bottom 2-point DFT G ′′[0]


and G ′′[1] for Fig 12.11(a).


(c) Top 2-point DFT H ′[0] and


H ′[1] for Fig 12.11(b).


(d) Bottom 2-point DFT H ′′[0]


and H ′′[1] for Fig. 12.11(b). branches, which are originating from the same node, before the source node.


12.6.1 Computational complexity


To derive the computational complexity of the decimation-in-time algorithm,


we generalize the results obtained in Fig. 12.13, where K is set to 8. We


observe that Fig. 12.13 consists of log2 K = 3 stages and that each stage
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requires K = 8 complex multiplications and K = 8 complex additions. For
example, stage 3 in Fig. 12.13 requires multiplications with twiddle factors


W 0K , W
1
K , W


2
K , W


3
K , and four W


4
K s. This is also obvious from Eq. (12.34),


where in order to calculate the K-point DFT from two (K/2)-point DFTs,


we need to perform K complex multiplications (with the twiddle factors)


and approximately K complex additions. Therefore, the decimation-in-time


FFT implementation for a K-point DFT requires a total of K log2 K complex


multiplications and K log2 K complex additions.


Further reduction in the complexity of the decimation-in-time FFT imple-


mentation is obtained by observing that


W
K/2


K = e
−jπ = −1. (12.39)


Note that multiplication by a factor of −1 can be performed by simply revers-
ing the sign bit. It is observed from Fig. 12.13 that each stage contains four


such multiplications (by a factor of W 4K ). In general, for a K-point FFT, K/2


such multiplications exist in each stage. Ignoring these trivial multiplications,


the total number of complex multiplications for all K stages can be reduced to


0.5K log2 K complex multiplications. However, the number of complex addi-


tions stays the same at K log2 K . In other words, the complexity of a K-point


FFT can be expressed as 0.5K log2 K butterfly operations where a butterfly


operation includes one complex multiplication and two complex additions.


Note that each complex multiplication requires a total of six flops (for four


scalar multiplications and two scalar additions), and that each complex addi-


tion requires two flops (for two scalar additions). As each butterfly operation


requires a total of ten flops, the overall complexity of the decimation-in-time


FFT implementation is 5K log2 K flops.


Table 12.4 compares the number of computations for the direct implemen-


tation of Eq. (12.30) and the FFT implementation. As explained above, the


number of scalar operations for the direct implementation is assumed to be 8K 2


flops. whereas the number of scalar operations for the FFT implementation is
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Table 12.4. Complexity of DFT calculation (in flops) with FFT


and direct implementations


Number of flops
Increase in


K FFT (5K log2 K ) direct (8K
2) Speed


32 800 8192 10.2


256 10 240 524 288 51.2


1024 51 200 8 388 608 163.8


8192 532 480 536 870 912 1 008.2


Table 12.5. Data reordering in radix-2 decimation-in-time FFT


implementation


Bit-reversed representation


Original order, x[k] Binary representation binary decimal


x[b2b1b0] x[b0b1b2] xre[k]


x[0] x[000] x[000] x[0]


x[1] x[001] x[100] x[4]


x[2] x[010] x[010] x[2]


x[3] x[011] x[110] x[6]


x[4] x[100] x[001] x[1]


x[5] x[101] x[101] x[5]


x[6] x[110] x[011] x[3]


x[7] x[111] x[111] x[7]


assumed to be 5K log2 K flops. For large values of K , say 8192, Table 12.4


illustrates a speed-up by up to a factor of 1000 with the FFT implementation. For


real-valued sequences, the number of flops can be further reduced by exploit-


ing the symmetry properties of the DFT. Further reduction in the complexity


of the decimation-in-time FFT implementation can be obtained by ignoring


multiplications by the twiddle factor W 0K as W
0
K = 1.


12.6.2 Reordering of the input sequence


In Fig. 12.13, we observe that the input sequence x[k] with length K has been


arranged in an order that is considerably different from the natural order of


occurrence. This arrangement is referred to as the bit-reversed order and is


obtained by expressing the index k in terms of log2 K bits and then reversing


the order of bits such that the most significant bit becomes the least significant


bit, and vice versa. For K = 8, the reordering of the input sequence is illustrated
in Table 12.5.


The function myfft, available in the accompanying CD, implements the


radix-2 decimation-in-time FFT algorithm. Direct computation of the DFT
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coefficients using Eq. (12.16) is also implemented and provided as a second


function, mydft. The reader should confirm that the two functions compute


the same result, with the exception that the implementation of myfft is com-


putationally efficient


As mentioned earlier, M A T L A B also provides a built-in function fft to


compute the DFT of a sequence. Depending on the length of the sequence, the


fft function chooses the most efficient algorithm to compute the DFT. For


example, when the length of the sequence is a power of 2, it uses the radix-2


algorithm. On the other hand, if the length is such that a font method is not


possible, it uses the direct method based on Eq. (12.15).


12.7 Summary


This chapter introduces the discrete Fourier transform (DFT) for time-limited


sequences as an extension of the DTFT where the DTFT frequency Ω is dis-


cretized to a finite set of values Ω = 2πr/M , for 0 ≤ r ≤ (M − 1). The M-
point DFT pair for a causal, aperiodic sequence x[k] of length N is defined as


follows:


DFT analysis equation X [r ] =


N−1∑


k=0


x[k]e−j(2πkr/M) for 0 ≤ r ≤ M − 1;


DFT synthesis equation x[k] =
1


M


M−1∑


r=0


X [r ]e j(2πkr/M) for 0 ≤ k ≤ N − 1.


For M = N , Section 12.2 implements the synthesis and analysis equations of


the DFT in the matrix-vector format as follows:


DFT synthesis equation x = FX;


DFT analysis equation X = F−1x,


where F is defined as the DFT matrix given by


F =













1 1 1 · · · 1


1 e−j(2π/N ) e−j(4π/N ) · · · e−j(2(N−1)π/N )


1 e−j(4π/N ) e−j(8π/N ) · · · e−j(4(N−1)π/N )


...
...


...
. . .


...


1 e−j(2(N−1)π/N ) e−j(4(N−1)π/N ) · · · e−j(2(N−1)(N−1)π/N )













.


The columns (or equivalently the rows) of the DFT matrix define the basis


functions for the DFT.


Section 12.3 used the M-point DFT X [r ] to estimate the CTFT spectrum


X (ω) of an aperiodic signal x(t) using the following relationship:


X (ωr ) ≈
MT1


N
X2[r ],
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where T1 is the sampling interval used to discretize x(t), ωr are the CTFT


frequencies that are given by 2πr/(MT1) for −0.5(M − 1) ≤ r ≤ 0.5(M − 1),
and N is the number of samples obtained from the CT signal. Similarly, the


DFT X [r ] can be used to determine the DTFT X (Ω) of a time-limited sequence


x[k] of length Nas


X (Ωr ) =
N


M
X [r ]


at discrete frequencies Ωr = 2πr/M , for 0 ≤ r ≤ M − 1.


Section 12.4 covered the following properties of the DFT.


(1) The periodicity property states that the M-point DFT of a sequence is


periodic with period M .


(2) The orthogonality property states that the basis functions of the DFTs are


orthogonal to each other.


(3) The linearity property states that the overall DFT of a linear combination


of DT sequences is given by the same linear combination of the individual


DFTs.


(4) The Hermitian symmetry property states that the DFT of a real-valued


sequence is Hermitian. In other words, the real component of the DFT


of a real-valued sequence is even, while the imaginary component is


odd.


(5) The time-shifting property states that shifting a sequence in the time domain


towards the right-hand side by an integer constant m is equivalent to mul-


tiplying the DFT of the original sequence by the complex exponential


exp(−j2πm/M). Similarly, shifting towards the left-hand side by an inte-


ger m is equivalent to multiplying the DTFT of the original sequence by


the complex exponential exp(j2πm/M).


(6) The time-convolution property states that the periodic convolution of two


DT sequences is equivalent to the multiplication of the individual DFTs of


the two sequences in the frequency domain.


(7) Parseval’s theorem states that the energy of a DT sequence is preserved in


the DFT domain.


Section 12.5 used the convolution property to derive alternative procedures


for computing the convolution sum. Depending on the sequence lengths, these


procedures may provide considerable savings over the direct implementation


of the convolution sum.


Section 12.6 covers the decimation-in-time FFT implementation of the DFT.


In deriving the FFT algorithm, we assume that the length N of the sequence


equals the number M of samples in the DFT, i.e. N = M = K . We showed


that if K is a power of 2, then the FFT implementations have a computational


complexity of O(K log2 K ).
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Problems


12.1 Calculate analytically the DFT of the following sequences, with length
0 ≤ k ≤ N − 1:


(i) x[k] =


{


1 k = 0, 3


0 k = 1, 2
with length N = 4;


(ii) x[k] =


{


1 k even


−1 k odd
with length N = 8;


(iii) x[k] = 0.6k with length N = 8;


(iv) x[k] = u[k] − u[k − 8] with length N = 8;


(v) x[k] = cos(ω0k) with ω0 
= 2πm/N , m ∈ Z .


12.2 Calculate the DFT of the time-limited sequences specified in
Examples 12.1(i)–(iv) using the matrix-vector approach.


12.3 Determine the time-limited sequence, with length 0 ≤ k ≤ N − 1, cor-
responding to the following DFTs X [r ], which are defined for the DFT


index 0 ≤ r ≤ N − 1:


(i) X [r ] = [1 + j4, −2 − j3, −2 + j3, 1 − j4] with N = 4;


(ii) X [r ] = [1, 0, 0, 1] with N = 4;


(iii) X [r ] = exp −j(2πk0r/N ), where k0 is a constant;


(iv) X [r ] =


{


0.5N r = k0, N − k0


0 elsewhere
where k0 is a constant;


(v) X [r ]=e−jπr (m−1)/N
sin (πrm/N )


sin(πr/N )
where m ∈ Z and 0 < m < N ;


(vi) X [r ] =
( r


N


)


for 0 ≤ r ≤ N − 1.


12.4 In Problem 11.1, we determined the DTFT representation for each of
the following DT periodic sequences using the DTFS. Using M A T L A B ,


compute the DTFT representation based on the FFT algorithm. Plot the


frequency characteristics and compare the computed results with the ana-


lytical results derived in Chapter 11.


(i) x[k] = k, for 0 ≤ k ≤ 5 and x[k + 6] = x[k];


(ii) x[k] =













1 0 ≤ k ≤ 2


0.5 3 ≤ k ≤ 5


0 6 ≤ k ≤ 8


and x[k + 9] = x[k] ;


(iii) x[k] = 3 sin


(
2π


7
k +


π


4


)


;


(iv) x[k] = 2 exp


(


j
5π


3
k +


π


4


)


;
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(v) x[k] =
∞∑


m=−∞


δ[k − 5m];


(vi) x[k] = cos(10πk/3) cos(2πk/5);


(vii) x[k] = |cos(2πk/3)|.


12.5 (a) Using the FFT algorithm in M A T L A B , determine the DTFT rep-
resentation for the following sequences. Plot the magnitude and phase


spectra in each case.


(i) x[k] = 2;


(ii) x[k] =


{


3 − |k| |k| < 3


0 otherwise;


(iii) x[k] = k3−|k|;


(iv) x[k] = αkcos(ω0k)u[k], |α| < 1;


(v) x[k] = αksin(ω0k + φ)u[k], |α| < 1;


(vi) x[k] =
sin(πk/5) sin(πk/7)


π2k2
;


(vii) x[k] =


∞∑


m=−∞


δ[k − 5m − 3];


(viii) x[k] =


{


3 − |k| |k| < 3


0 |k| = 3
and x[k + 7] = x[k];


(ix) x[k] = ej(0.2πk+45
◦);


(x) x[k] = k3−ku[k] + ej(0.2πk+45
◦).


(b) Compare the obtained results with the analytical results derived in


Problem 11.4(a).


12.6 Using the FFT algorithm in M A T L A B , determine the CTFT represen-
tation for each of the following CT functions. Plot the frequency char-


acteristics and compare the results with the analytical results presented


in Table 5.1.


(i) x(t) = e−2t u(t);


(ii) x(t) = e−4|t |;


(iii) x(t) = t4e−4t u(t);


(iv) x(t) = e−4t cos(10π t)u(t);


(v) x(t) = e−t
2/2.


12.7 Prove the Hermitian property of the DFT.


12.8 Prove the time-shifting property of the DFT.


12.9 Prove the periodic-convolution property of the DFT.


12.10 Prove Parseval’s theorem for the DFT.
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12.11 Without explicitly determining the DFT X [r ] of the time-limited
sequence


x[k] = [6 8 −5 4 16 22 7 8 9 44 2],


compute the following functions of the DFT X [r ]:


(i) X [0];


(ii) X [10];


(iii) X [6];


(iv)


10∑


r=0
X [r ];


(v)


10∑


r=0
|X [r ]|2.


12.12 Without explicitly determining the the time-limited sequence x[k] for
the following DFT:


X [r ] = [12, 8 + j4, −5, 4 + j1, 16, 16, 4−j1, −5, 8 −j4],


compute the following functions of the DFT X [r ]:


(i) x[0];


(ii) x[9];


(iii) x[6];


(iv)


9∑


r=0
x[k];


(v)


9∑


r=0
|x[k]|2;


12.13 Given the DFT pair


x[k]
DFT


←−−→ X [r ],


for a sequence of length N , express the DFT of the following sequences


as a function of X [r ]:


(i) y[k] = x[2k];


(ii) y[k] =


{


x[0.5k] k even


0 elsewhere;


(iii) y[k] = x[N − 1 − k] for 0 ≤ k ≤ N − 1;


(iv) y[k] =


{


x[k] 0 ≤ k ≤ N − 1


0 N ≤ k ≤ 2N − 1;


(v) y[k] = (x[k] − x[k − 2])e j(10πk/N ).


12.14 Compute the linear convolution of the following pair of time-limited
sequences using the DFT-based approach. Be careful with the time


indices of the result of the linear convolution.


(i) x1[k] =


{


k 0 ≤ k ≤ 3


0 otherwise
and x2[k] =


{


2 −1 ≤ k ≤ 2


0 otherwise;


(ii) x1[k] = k for 0 ≤ k ≤ 3 and x2[k] =


{


5 k = 0, 1


0 otherwise;
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(iii) x1[k] =
{


2 0 ≤ k ≤ 2


0 otherwise
and x2[k] =


{


k + 1 0 ≤ k ≤ 4


0 otherwise;


(iv) x1[k] =















−1 k = −1


1 k = 0


2 k = 1


0 otherwise


and x2[k] =















3 k = −1, 2


1 k = 0


−2 k = 1, 3


0 otherwise;


(v) x1[k] =


{


|k| |k| ≤ 2


0 otherwise
and x2[k] =


{


2−k 0 ≤ k ≤ 3


0 otherwise.


12.15 Draw the flow graph for a 6-point DFT by subdividing into three 2-
point DFTs that can be combined to compute X [r ]. Repeat for the


subdivision of two 3-point DFTs. Which flow graph provides more com-


putational savings?


12.16 Draw a flow graph for a 10-point decimation-in-time FFT algorithm
using two DFTs of size 5 in the first stage of the flow graph and five DFTs


of size 2 in the second stage. Compare the computational complexity of


the algorithm with the direct approach based on the definition.


12.17 Assume that K = 33. Draw the flow graph for a K -point decimation-
in-time FFT algorithm consisting of three stages by using radix-3 as


the basic building block. Compare the computational complexity of the


algorithm with the direct approach based on the definition.


12.18 Consider two real-valued N -point sequences x1[k] and x2[k] with DFTs
X1[r ] and X2[r ], respectively. Let p[k] be an N -point complex-valued


sequence such that p[k] = x1[k] + jx2[k] and let the DFT of p[k] be


denoted by P[r ].


(a) Show that the DFTs X1[r ] and X2[r ] can be obtained from the DFT


P[r ].


(b) Assume that N = 2m and that the decimation-in-time FFT algorithm


discussed in Section 12.6 is used to calculate the DFT P[r ]. Estimate


the total number of flops required to calculate the DFTs X1[r ] and


X2[r ] using the procedure in part (a).


12.19 Consider a real-valued N -point sequence x[k], where N is a power of
2. Let x1[k] and x2[k] be two N /2-point real-valued sequences such that


x1[k] = x[2k] and x2[k] = x[2k + 1] for 0 ≤ k ≤ N/2 − 1. Let the N -


point DFT of x[k] be denoted by X [r ] and let the N /2-point DFT of


x1[k] and x2[k] be denoted by X1[r ] and X2[r ], respectively.


(a) Determine X [r ] in terms of X1[r ] and X2[r ].


(b) Estimate the total number of flops required to calculate X [r ] using


the procedure discussed in Problem 12.18.








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 28, 2007 14:3


C H A P T E R


13 The z-transform


In Chapter 11, we introduced two frequency representations, namely the


discrete-time Fourier series (DTFS) and the discrete-time Fourier transform


(DTFT) for DT signals. These frequency representations are exploited to deter-


mine the output response of an LTID system. Unfortunately, the DTFT does


not exist for all signals (e.g., periodic signals). In situations where the DTFT


does not exist, an alternative transform, referred to as the z-transform, may be


used for the analysis of LTID systems. Even for DT sequences for which the


DTFT exists, the z-transforms are always real-valued, rational functions of the


independent variable z provided that the DT sequences are real. In comparison,


the DTFT is generally complex-valued. Therefore, using the z-transform sim-


plifies the algebraic manipulations and leads to flow diagram representations


of the DT systems, a pivotal step needed to fabricate the DT system in silicon.


Finally, the DTFT can only be applied to a stable LTID system for which the


impulse response is absolutely summable. Since the z-transform exists for both


stable and unstable LTID systems, the z-transform can be used to analyze a


broader range of LTID systems.


The difference between the DTFT and the z-transform lies in the choice of


the independent variable used in the transformed domain. The DTFT X (Ω) of a


DT sequence x[k] uses the complex exponentials ejkΩ as its basis function and


maps x[k] in terms of ejkΩ. The z-transform X (z) expresses x[k] in terms of


zk , where the independent variable z is given by z = e(σ+jΩ)k . The z-transform
is, therefore, a generalization of the DTFT, just as the Laplace transform is a


generalization of the CTFT. In this chapter, we introduce the z-transform and


illustrate its applications in the analysis of LTID systems.


This chapter is organized as follows. Section 13.1 defines the bilateral, also


referred to as the two-sided, z-transform and illustrates the steps involved


in its computation through a series of examples. For causal signals, the


bilateral z-transform reduces to the one-sided, or unilateral, z-transform, which


is covered in Section 13.2. Section 13.3 presents inverse methods of calcu-


lating the time-domain representation of the z-transform. The properties of


the z-transform are derived in Section 13.4. Sections 13.5–13.9 cover various
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applications of the z-transform. Section 13.5 applies the z-transform to calculate


the output of an LTID system from the input sequence and the impulse response


of the LTID system. The relationship between the Laplace transform and the


z-transform is discussed in Section 13.6. Stability analysis of the LTID system in


the z-domain is presented in Section 13.7, while graphical techniques to derive


the frequency response from the z-transform are discussed in Section 13.8.


Section 13.9 compares the DTFT and z-transform in calculating the steady state


and transient responses of an LTID system. Section 13.10 introduces important


M A T L A B library functions useful in computing the z-transform and in the


analysis of LTID systems. Finally, the chapter is concluded in Section 13.11


with a summary of important concepts.


13.1 Analytical development


Section 11.1 defines the synthesis and analysis equations of the DTFT pair


x[k]
DTFT←−−→ X (Ω) as follows:


DTFT synthesis equation x[k] =
1


2π


∫


〈2π〉


X (Ω)ejΩkdΩ; (13.1)


DTFT analysis equation X (Ω) =
∞∑


k=−∞
x[k]e−jΩk . (13.2)


To derive the expression for the bilateral z-transform, we calculate the DTFT


of the modified version x[k]e−σk of the DT signal. Based on Eq. (13.2), the


DTFT of the modified signal is given by


ℑ
{


x[k]e−σk
}


=
∞∑


k=−∞
x[k]e−σke−jΩk =


∞∑


k=−∞
x[k]e−(σ+jΩ)k . (13.3)


Substituting eσ+jΩ = z in Eq. (13.3) leads to the following definition for the
bilateral z-transform:


z-analysis equation X (z) = ℑ
{


x[k]e−σk
}


=
∞∑


k=−∞
x[k]z−k . (13.4)


It may be noted that the summation in Eq. (13.4) is absolutely summable only


for selected values of z. For other values of z, the infinite sum in Eq. (13.4)


may not converge to a finite value, and hence X (z) becomes infinite. The region


in the complex z-plane, where summation (13.4) is finite, is referred to as the


region of convergence (ROC) of the z-transform X (z).


By following a similar derivation for the DTFT synthesis equation, Eq. (13.1),


the expression for the inverse z-transform is given by


z-synthesis equation x[k] =
1


2π j


∮


C


X (z)zk−1 dz, (13.5)
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where C is a closed contour traversed in the counterclockwise direction within


the ROC. Solving Eq. (13.5) involves the application of contour integration


techniques and is, therefore, seldom used directly. In Section 13.3, we will


consider alternative approaches based on the look-up table, partial fraction


expansion, and power series expansion to evaluate the inverse z-transform.


Collectively, Eqs. (13.4) and (13.5) form the bilateral z-transform pair, which


is denoted by


x[k]
z←→ X (z) or Z{x[k] } = X (z). (13.6)


To illustrate the steps involved in computing the z-transform, we consider the


following examples.


Example 13.1


Calculate the bilateral z-transform of the exponential sequence x[k] = αku[k].


Solution


Substituting x[k] = αku[k] in Eq. (13.4), we obtain


X (z) =
∞∑


k=−∞
αku[k]z−k =


∞∑


k=0
(αz−1)k


=











1


1 − αz−1
|αz−1| < 1


undefined elsewhere.


In the above expression, if |αz−1| ≥ 1 the bilateral z-transform has an infinite
value. In such cases, we say that the z-transform is not defined. The set of values


of z over which the bilateral z-transform is defined is referred to as the region of


convergence (ROC) associated with the z-transform. In this example, the ROC


for the z-transform pair


αku[k]
z←→


1


1 − αz−1
is given by


ROC:
∣
∣αz−1


∣
∣ < 1 or |z| > |α|.


Figure 13.1 highlights the ROC by shading the appropriate region in the complex


z-plane.


k


31 2 4 5 6 7 8−1 0−2


x[k] = aku[k]1


a


a2
a3 a4


Re{z}


Im{z}


(0,α)


(a) (b)


Fig. 13.1. (a) DT exponential


sequence x[k ] = αk u[k ]; (b) the
ROC, |z| > |α|, associated with
its bilateral z-transform. The ROC


is shown as the shaded area and


lies outside the circle of radius α.
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Example 13.1 derives the bilateral z-transform of the exponential sequence


x[k] = αku[k]:


αku[k]
z←→


1


1 − αz−1
, with ROC |z| > |α|.


Since no restriction is imposed on the magnitude of α, the bilateral


z-transform of the exponential sequence exists for all values of α within the


specified ROC. Recall that the DTFT of an exponential sequence exists only


for α < 1. For α ≥ 1, the exponential sequence is not summable and its DTFT


does not exist. This is an important distinction between the DTFT and the bilat-


eral z-transform. While the DTFT exists for a limited number of absolutely


summable sequences, no such restrictions exist for the z-transform. By associ-


ating an ROC with the bilateral z-transform, we can evaluate the z-transform


for a much larger set of sequences.


Example 13.2


Calculate the bilateral z-transform of the left-hand-sided exponential sequence


x[k] = −αku[−k − 1].


Solution


For the DT sequence x[k] = −αku[−k − 1], Eq. (13.4) reduces to


X (z) =


∞∑


k=−∞
−αku[−k − 1]z−k = −


−1∑


k=−∞
(αz−1)k .


To make the limits of summation positive, we substitute m = −k in the above
equation to obtain


X (z) = −
∞∑


m=1
(α−1z)m =











−
α−1z


1 − α−1z
|α−1z| < 1


undefined elsewhere,


which simplifies to


X (z) =











1


1 − αz−1
|z| < |α|


undefined elsewhere.


The DT sequence x[k] = −αku[−k − 1] and the ROC associated with its
z-transform are illustrated in Fig. 13.2.


In Examples 13.1 and 13.2, we have proved the following z-transform pairs:


αku[k]
z←→


1


1 − αz−1
, with ROC |z| > |α|,
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k


−3−5 −4 −2 −1 0 1 2−7 −6−8


x[k] = −aku[−k −1]


−a−4
−a−3


−a−2
−a−1


(a) (b)


Re{z}
(0, a)


Im{z}Fig. 13.2. (a) Non-causal


function x[k ] = −αku[−k − 1];
(b) its associated ROC,


|z| < |α|, shown as the shaded
area excluding the circle, over


which the bilateral z-transform


exists.


and


−αku[−k − 1] z←→
1


1 − αz−1
, with ROC |z| < |α|.


Although the algebraic expressions for the bilateral z-transforms are the same


for the two functions, the ROCs are different. This implies that a bilateral z-


transform is completely specified only if both the algebraic expression and


the associated ROC are included in its specification.


13.2 Unilateral z-transform


In Section 13.1, we introduced the bilateral z-transform, which may be used to


analyze both causal and non-causal LTID systems. Since most physical systems


in signal processing are causal, a simplified version of the bilateral z-transform


exists in such cases. The simplified bilateral z-transform for causal signals


and systems is referred to as the unilateral z-transform, and it is obtained by


assuming x[k] = 0 for k < 0. The analysis equation, Eq. (13.4), simplifies as
follows:


unilateral z-transform X (z) =
∞∑


k=0
x[k]z−k . (13.7)


Unless explicitly stated, we will, in subsequent discussion, assume the


“unilateral” z-transform when referring to the z-transform. If the bilateral


z-transform is being discussed, we will specifically state this. To clarify further


the differences between the unilateral and bilateral z-transforms, we summarize


the major points.


(1) The unilateral z-transform simplifies the analysis of causal LTID systems.


Since most physical systems are naturally causal, we will mostly use unilat-


eral z-transform in our computations. However, the unilateral z-transform


cannot be used to analyze non-causal systems directly.


(2) For causal signals and systems, the unilateral and bilateral z-transforms are


the same.
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(3) The synthesis equation used for calculating the inverse of the unilateral


z-transform is the same as Eq. (13.5) used for evaluating the inverse of the


bilateral transform.


Example 13.3


Calculate the unilateral z-transform for the following sequences:


(i) unit impulse sequence, x1[k] = δ[k];
(ii) unit step sequence, x2[k] = u[k];


(iii) exponential sequence, x3[k] = αku[k];
(iv) first-order, time-rising, exponential sequence, x4[k] = kαku[k];


(v) time-limited sequence, x5[k] =











1 k = 0, 1
2 k = 2, 5
0 otherwise.


Solution


(i) By definition,


X1(z) =
∞∑


k=0
δ[k]z−k = δ[0]z0 = 1, ROC: entire z-plane.


The z-transform pair for an impulse sequence is given by


δ[k]
z←→ 1, ROC: entire z-plane.


(ii) By definition,


X2(z) =
∞∑


k=0
u[k]z−k =


∞∑


k=0
z−k =











1


1 − z−1
for |z−1| < 1


undefined elsewhere.


The z-transform pair for a unit step sequence is given by


u[k]
z←→


1


1 − z−1
, ROC: |z| > 1.


In the above transform pair, note that the ROC |z−1| < 1 is equivalent to |z| > 1
and consists of the region outside a circle of unit radius in the complex z-plane.


This circle of unit radius, with the origin of the z-plane as the center, is referred


to as the unit circle and plays an important role in the determination of the


stability of an LTID system. We will discuss stability issues in Section 13.7.


(iii) By definition,


X3(z) =
∞∑


k=0
αku[k]z−k =


∞∑


k=0
(αz−1)k =











1


1 − αz−1
for


∣
∣αz−1


∣
∣ < 1


undefined elsewhere.


The z-transform pair for an exponential sequence is therefore given by


αku[k]
z←→


1


1 − αz−1
, ROC: |z| > |α|.
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In the above transform pair, the ROC |αz−1| < 1 is equivalent to |z| > α and
consists of the region outside the circle of radius |z| = α in the complex z-
plane. Example 13.1 derives the bilateral z-transform for the function x3[k] =
αku[k]. Since the function is causal, the bilateral and unilateral z-transforms


are identical.


(iv) By definition,


X (z) =
∞∑


k=0
kαku[k]z−k =


∞∑


k=0
k(αz−1)k .


Using the following result:


∞∑


k=0
kr k =


r


(1 − r )2
, provided |r| < 1,


the above summation reduces to


X (z) =
αz−1


(1 − αz−1)2
, ROC: |αz−1| < 1.


The z-transform pair for a time-rising, complex exponential is given by


kαku[k]
z←→


αz−1


(1 − αz−1)2
or


αz


(z − α)2
, ROC: |z| > |α|.


(v) Since the input sequence x5[k] is zero outside the range 0 ≤ k ≤ 5,
Eq. (13.4) reduces to


X (z)=
∞∑


k=0
x[k]z−k = x[0]+x[1]z−1+x[2]z−2+x[3]z−3+x[4]z−4+x[5]z−5.


Substituting the values of x5[k] for the range 0 ≤ k ≤ 5, we obtain


X (z) = 1 + z−1 + 2 z−2 + 2 z−5 ROC: entire z-plane, except z = 0.


For finite-duration sequences, the ROC is always the entire z-plane except for


the possible exclusion of z = 0 and z = ∞.


13.2.1 Relationship between the DTFT and the z-transform


Comparing Eq. (13.2) with Eq. (13.4), the DTFT can be expressed in terms of


the bilateral z-transform as follows:


X (Ω) =
∞∑


k=−∞
x[k]z−k = X (z)|z=ejΩ . (13.8)


Since, for causal functions, the bilateral and unilateral z-transforms are the


same, Eq. (13.8) is also valid for the unilateral z-transform for causal functions.


Equation (13.8) shows that the DTFT is a special case of the z-transform


with z = ejΩ. The equality z = ejΩ corresponds to the circle of unit radius
(|z| = 1) in the complex z-plane. Equation (13.8) therefore implies that the
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Table 13.1. Unilateral z-transform pairs for several causal DT sequences


DT sequence z-transform with ROC


x[k] =
1


2π j


∮


C


X (z)zk−1dz X (z) =
∞∑


k=−∞
x[k]z−k


(1) Unit impulse


x[k] = δ[k]
1, ROC: entire z-plane


(2) Delayed unit impulse


x[k] = δ[k − k0]
z−k0 ,ROC: entire z-plane, except z = 0


(3) Unit step


x[k] = u[k]


1


1 − z−1
=


z


z − 1
, ROC: |z| > 1


(4) Exponential


x[k] = αku[k]


1


1 − αz−1
=


z


z − α
, ROC: |z| > |α|


(5) Delayed exponential


x[k] = αk−1u[k − 1]


z−1


1 − αz−1
=


1


z − α
, ROC: |z| > |α|


(6) Ramp


x[k] = ku[k]


z−1


(1 − z−1)2
=


z


(z − 1)2
, ROC: |z| > 1


(7) Time-rising exponential


x[k] = kαku[k]


αz−1


(1 − αz−1)2
=


αz


(z − α)2
, ROC: |z| > |α|


(8) Causal cosine


x[k] = cos(Ω0k)u[k]


1 − z−1 cosΩ0
1 − 2z−1 cosΩ0 + z−2


=
z[z − cosΩ0]


z2 − 2z cosΩ0 + 1
, ROC: |z| > 1


(9) Causal sine


x[k] = sin(Ω0k)u[k]


z−1 sinΩ0


1 − 2z−1 cosΩ0 + z−2
=


z sinΩ0


z2 − 2z cosΩ0 + 1
, ROC: |z| > 1


(10) Exponentially modulated cosine


x[k] = αk cos(Ω0k)u[k]


1 − αz−1 cosΩ0
1 − 2αz−1 cosΩ0 + α2z−2


=
z[z − α cosΩ0]


z2 − 2αz cosΩ0 + α2
, ROC: |z| > |α|


(11) Exponentially modulated sine I


x[k] = αk sin(Ω0k)u[k]


αz−1 sinΩ0


1 − 2αz−1 cosΩ0 + α2z−2
=


αz sinΩ0


z2 − 2αz cosΩ0 + α2
, ROC: |z| > α


(12) Exponentially modulated sine II


x[k] = rαk sin(Ω0k + θ )u[k],
with α ∈ R.


A + Bz−1


1 + 2γ z−1 + α2z−2
=


z(Az + B)
z2 + 2γ z + γ 2


, ROC: |z| ≤ |α|(a)


(a) Where r =


√


A2α2 + B2 − 2ABγ
α2 − γ 2


, Ω0 = cos−1
(


−γ
α


)


, and θ = tan−1
(


A
√


α2 − γ 2
B − Aγ


)


.


DTFT is obtained by computing the z-transform along the unit circle in the


complex z-plane.


Table 13.1 lists the z-transforms for several commonly used sequences. Com-


paring Table 13.1 with Table 11.2, we observe that when the sequence is causal


and its DTFT exists, the DTFT can be obtained from the z-transform by sub-


stituting z = ejΩ. Since the substitution z = ejΩ can only be made if the ROC
contains the unit circle, an alternative condition for the existence of the DTFT


is the inclusion of the unit circle within the ROC of the z-transform. If the ROC


of a z-transform does not include the unit circle, we cannot substitute z = ejΩ
and we say that its DTFT cannot be obtained from Eq. (13.8). For example, the


ROC of the unit step function is given by |z| > 1, which does not contain the
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unit circle. Equation (13.8) is, therefore, not valid for the unit step function.


This may also be verified from Table 11.2, where the DTFT of the unit step


function is different from the value obtained by substituting z = ejΩ in its z-
transform. The DTFT of the unit step function in Table 11.2 contains the Dirac


delta functions, which makes the amplitude of the DTFT infinite at certain


frequencies. No Dirac delta functions exist in the z-transform of the unit step


function. Likewise, the ROCs for the z-transforms of the sine and cosine waves


do not contain the unit circle, and Eq. (13.8) is also not valid in these cases.


13.2.2 Region of convergence


As a side note to our discussion, we observe that the z-transform is guaranteed


to exist at all points within the ROC. For example, consider the causal sinusoidal


sequence x[k] = cos(0.2πk)u[k], whose z-transform is given in Table 13.1 as
follows:


X (z) =
1 − cos(Ω0)z−1


1 − cos(Ω0)z−1 + z−2
, ROC: |z| > 1,


with Ω0 = 0.2π . We are interested in calculating the values of its z-transform
at two points z1 = 2 + j0.6 and z2 = 0.8 + j0.6. Since z1 lies within the ROC,
|z| > 1, the value of the z-transform at z1 is given by


X (z) =
1 − cos(0.2π )z−1


1 − cos(0.2π )z−1 + z−2


∣
∣
∣
∣
z=2+j0.6


= 1.39 − j0.05.


However, the point z2 = 0.8 + j0.6 lies outside the ROC, |z| > 1. Therefore,
the z-transform of the causal sinusoidal sequence cannot be computed for z2. In


the following, we list the important properties of the ROC for the z-transform.


(1) The ROC consists of a 2D plane of concentric circles of the form |z| > z0
or |z| < z0. All entries in Table 13.1 have ROCs that are concentric circles.


(2) The ROC does not include any poles of the z-transform.


The poles of a z-transform are defined as the roots of its denominator poly-


nomial. Since the value of the z-transform is infinite at the location of a pole,


the ROC cannot include any pole. Property (2) can be verified for all entries in


Table 13.1. Consider, for example, the unit step function, which has a single


pole at z = 1. The ROC of the z-transform of the unit step function is given by
|z| > 1 and does not include its pole (z = 1).


(3) The ROC of a right-hand-sided sequence (x[k] = 0 for k < k0) is defined
by the region outside a circle. In other words, the ROC of a right-hand-sided


sequence has the form |z| > z0.


Entries (3)–(12) in Table 13.1 are right-hand-sided sequences. Consequently, it


is observed that the ROC for all these sequences is of the form |z| > z0.
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(4) The ROC of a left-hand-sided sequence (x[k] = 0 for k > k0) is defined
by the inside region of a circle. Mathematically, this implies that the ROC


of a left-sided sequence has the form |z| < z0.


In Example 13.2, we computed the ROC for the left-hand-sided exponential


sequence x[k] = −αku[−k − 1] as |z| < α, which satisfies Property (4).


(5) The ROC of a double-sided (or bilateral) sequence, which extends to infinite


values of k in both directions, is confined to a ring with a finite area and


has the form z1 < |z| < z2.


An example of a double-sided sequence is x[k] = βku[k] − αku[−k −
1]. By applying the linearity property, which is formally derived in


Section 13.4.1, it is observed that the z-transform is given by


βku[k] − αku[−k − 1] z←→
1


1 − αz−1
+


1


1 − βz−1
, ROC: β < |z| < α,


which satisfies Property (5).


(6) The ROC of a finite-length sequence (x[k] = 0 for k < k1, k > k2) is the
entire z-plane except for the possible exclusion of the points z = 0 and
z = ∞.


As an example of Property (6), we consider entries (1) and (2) of Table 13.1.


Also, sequence x5[k] defined in Example 13.3 is a finite-length sequence. In


such cases, we note that the ROC consists of the entire z-plane except for the


possible exclusion of z = 0 and z = ∞.


13.3 Inverse z-transform


Evaluating the inverse of z-transform is an important step in the analysis of


LTID systems. There are four commonly used methods to evaluate the inverse


z-transform:


(i) table look-up method;


(ii) inversion formula method;


(iii) partial fraction expansion method;


(iv) power series method.


Evaluating the inverse z-transform using the inversion formula (method (ii))


involves contour integration, which is fairly complex and beyond the scope of


the text. In this section, we cover the remaining three methods in more detail.


13.3.1 Table look-up method


In this method, the z-transform function X (z) is matched with one of the entries


in Table 13.1. As the transform pairs are unique, the inverse transform is readily


obtained from the time-domain entry. For example, if the inverse z-transform
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of the function


X (z) =
1


1 − 0.3z−1
, ROC: |z| > 0.3


is required, we determine that the matching entry in Table 13.1 is given by the


transform pair


αku[k]
z←→


1


1 − αz−1
, ROC: |z| > α.


Substituting α = 0.3, the inverse z-transform of X (z) is given by x[k] =
0.3ku[k]. The scope of the table look-up method is limited to the list of


z-transforms available in Table 13.1.


13.3.2 Inversion formula method


In this method, the inverse z-transform is calculated directly by solving the


complex contour integral specified in the synthesis equation, Eq. (13.5). This


approach involves contour integration, which is beyond the scope of the text.


13.3.3 Partial fraction method


In LTID signals and systems analysis, the z-transform of a function x[k] gen-


erally takes the following rational form:


X (z) =
N (z)


D(z)
=


bm z
m + bm−1zm−1 + · · · + b1z + b0


zn + an−1zn−1 + · · · + a1z + a0
(13.9a)


or alternatively


X (z) =
N ′(z)


D′(z)
= zm−n


bm + bm−1z−1 + · · · + b1z−m+1 + b0z−m


1 + an−1z−1 + · · · + a1z−n+1 + a0z−n
. (13.9b)


Note that the numerator N (z) and denominator D(z) in Eq. (13.9a) are polyno-


mials of the complex function z. In this case, the inverse z-transform of X (z) can


be calculated using the partial fraction expansion method. The method consists


of the following steps.


Step 1 Calculate the roots of the characteristic equation of the rational function
Eq. (13.9a). The characteristic equation is obtained by equating the denominator


D(z) in Eq. (13.9a) to zero, i.e.


D(z) = zn + an−1zn−1 + · · · + a1z + a0 = 0. (13.10)


For an nth-order characteristic equation, there will be n first-order roots.


Depending on the value of the coefficients {bl}, 0 ≤ l ≤ n − 1, roots {pr},
1 ≤ r ≤ n, of the characteristic equation may be real-valued and/or complex-
valued. By expressing D(z) in the factorized form, the z-transform X (z) is


represented as follows:


X (z)


z
≡


N (z)


z(z − p1)(z − p2) · · · (z − pn−1)(z − pn)
. (13.11)
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It may be noted that in Eq. (13.11) we represent X (z)/z, not X (z), in terms of


its poles. The reason for this will become clear after step 3.


Step 2 Using Heaviside’s partial fraction expansion formula, explained in
Appendix D, decompose X (z)/z into a summation of the first- or second-order


fractions. If no roots are repeated, X (z)/z is decomposed:


X (z)


z
=


k0


z
+


k1


z − p1
+


k2


z − p2
+ · · · +


kn−1


z − pn−1
+


kn


z − pn
, (13.12)


where the coefficients {kr}, 0 ≤ r ≤ n, are obtained from the following expres-
sion:


kr =
[


(z − pr )
N (z)


zD(z)


]


z=pr
. (13.13)


It may be noted that Eq. (13.13) appends roots {pr}, 1 ≤ r ≤ n, of the char-
acteristic equation, Eq. (13.10), with an additional root p0 = 0 such that n + 1
partial fraction coefficients are obtained by solving Heaviside’s expression.


If there are repeated roots, X (z) takes a slightly different form (see Appendix


D for more details). It is important to associate separate ROCs with each partial


fraction term in Eq. (13.12). The ROC for each partial fraction term is deter-


mined such that the intersection of these individual ROCs results in the overall


ROC specified for X (z).


Multiplying both sides of Eq. (13.12) by z, we obtain


X (z) ≡ k0 + k1
z


z − p1
+ k2


z


z − p2
+ · · · + kn−1


z


z − pn−1
+ kn


z


z − pn
(13.14a)


or


X (z) ≡ k0 + k1
1


1 − p1z−1
+ k2


1


1 − p2z−1
+ · · · + kn−1


1


1 − pn−1z−1


+ kn
1


1 − pnz−1
. (13.14b)


Step 3 The inverse transform of X (z) can now be calculated by calculating the
inverse transform of each individual partial fraction in Eq. (13.14a) using the


following transform pair (see Table 13.1):


αku[k]
z←→


1


1 − αz−1
=


z


z − α
, ROC: |z| > α,


and is given by


x[k] = k0δ[k] + k1(p1)ku[k] + k2(p2)ku[k] + · · · + kn−1(pn−1)ku[k]
+ kn(pn)ku[k]. (13.14c)


The reason for performing a partial fraction expansion of X (z)/z and not of


X (z) should now be clear. It was done so that the transform pair in Eq. (13.14b)








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 28, 2007 14:3


577 13 The z-transform


can readily be applied to calculate the inverse transform. Otherwise, we would


be missing the factor of z in the numerator of Eq. (13.14a), and application of


Eq. (13.14b) would have been more complicated.


To illustrate the aforementioned procedure (steps (1)–(3)) for evaluating the


inverse z-transform using the partial fraction expansion, we consider the


following example.


Example 13.4


The z-transform of three right-sided functions is given below. Calculate the


inverse z-transform in each case.


(i) X1(z) =
z


z2 − 3z + 2
;


(ii) X2(z) =
1


(z − 0.1)(z − 0.5)(z + 0.2)
;


(iii) X3(z) =
2z(3z + 17)


(z − 1)(z2 − 6z + 25)
.


Solution


(i) The characteristic equation of X1(z) is given by z
2 − 3z + 2 = 0, which has


two roots, at z = 1 and 2. The z-transform X1(z) can therefore be expressed as
follows:


X1(z)


z
=


1


z2 − 3z + 2
≡


k1


z − 1
+


k2


z − 2
.


Using Heaviside’s partial fraction expansion formula, the coefficients of the


partial fractions k1 and k2 are given by


k1 =
[


(z − 1)
1


(z − 1)(z − 2)


]


z=1
=


[
1


z − 2


]


z=1
= −1


and


k2 =
[


(z − 2)
1


(z − 1)(z − 2)


]


z=2
=


[
1


z − 1


]


z=2
= 1.


The partial fraction expansion of X1(z) is therefore given by


X1(z) =
−z


(z − 1)
︸ ︷︷ ︸


ROC:|z|>1


+
z


(z − 2)
︸ ︷︷ ︸


ROC:|z|>2


=
−1


(1 − z−1)
︸ ︷︷ ︸


ROC:|z|>1


+
1


(1 − 2z−1)
︸ ︷︷ ︸


ROC:|z|>2


,


where the ROC is obtained by noting that each term in X1(z) corresponds


to a right-hand-sided sequence. This follows directly from knowing that


x[n] is right-hand-sided; hence, each term in X1(z) should also correspond


to a right-hand sequence. Calculating the inverse z-transform of X1(z), we
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obtain


x1[k] = −u[k] + 2ku[k] = (2k − 1)u[k].


(ii) The characteristic equation of X2(z) has three roots, at z = 0.1, 0.5
and −0.2. Therefore, X2(z)/z can be expressed as follows:


X2(z)


z
=


1


z(z − 0.1)(z − 0.5)(z + 0.2)


=
k0


z
+


k1


z − 0.1
+


k2


z − 0.5
+


k3


z + 0.2
.


The partial fraction coefficients k0, k1, k2, and k3 are given by


k0 =
[


z
1


z(z − 0.1)(z − 0.5)(z + 0.2)


]


z=0
= 100,


k1 =
[


(z − 0.1)
1


z(z − 0.1)(z − 0.5)(z + 0.2)


]


z=0.1
= −


250


3
,


k2 =
[


(z − 0.5)
1


z(z − 0.1)(z − 0.5)(z + 0.2)


]


z=0.5
=


50


7
,


and


k3 =
[


(z + 0.2)
1


z(z − 0.1)(z − 0.5)(z + 0.2)


]


z=−0.2
= −


500


21
.


The partial fraction expansion of X2(z)/z is therefore given by


X2(z)


z
=


100


z
−


250


3


1


(z − 0.1)
+


50


7


1


(z − 0.5)
−


500


21


1


(z + 0.2)
or


X2(z) = 100 −
250


3


1


(1 − 0.1z−1)
+


50


7


1


(1 − 0.5z−1)
−


500


21


1


(1 + 0.2z−1)
.


Using the pairs in Table 13.1 and assuming a right-hand-sided sequence, the


inverse z-transform is given by


x2[k] = 100δ[k] +
{


−
250


3
(0.1)k +


50


7
(0.5)k −


500


21
(0.2)k


}


u[k].


(iii) The characteristic equation of X3(z) has one real-valued root at z = 1
and two complex-conjugate roots at z = 3 ± j4. Combining the complex roots
in a quadratic term, X3(z)/z can be expressed as follows:


X3(z)


z
=


2(3z + 17)
(z − 1)(z2 − 6z + 25)


≡
k1


z − 1
+


k2z + k3
z2 − 6z + 25


.


Using Heaviside’s partial fraction expansion formula, coefficient k1 is given by


k1 =
[


(z − 1)
2(3z + 17)


(z − 1)(z2 − 6z + 25)


]


z=1
= 2.
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To determine the remaining partial fraction coefficients k2 and k3, we expand


2(3z + 17)
(z − 1)(z2 − 6z + 25)


≡
2


z − 1
+


k2z + k3
z2 − 6z + 25


by cross-multiplying and equating the numerators, we obtain


2(3z + 17) ≡ 2(z2 − 6z + 25) + (k2z + k3)(z − 1).


Comparing coefficients of z2 and z yields


coefficients of z2 0 ≡ 2 + k2 ⇒ k2 = −2;
coefficients of z 6 ≡ −12 − k2 + k3 ⇒ k3 = 16.


The partial fraction expansion of X3(z) can therefore be expressed as follows:


X3(z)


z
=


2


z − 1
+


−2z + 16
z2 − 6z + 25


or


X3(z) = 2
z


z − 1
− 2


z(z − 5 × 0.6)
z2 − 2 × 5 × z × 0.6 + 52


+
5


2


z(5 × 0.8)
z2 − 2 × 5 × z × 0.6 + 52


,


where the final rearrangement makes the three terms in the above expres-


sion consistent with entries (4), (10), and (11) of Table 13.1, with α = 5,
and cos(Ω0) = 0.6 and sin(Ω0) = 0.8. Assuming that the three terms repre-
sent right-hand-sided sequences, the inverse z-transform for each term is given


by


term 1 2
z


z − 1
z−1←−−→ 2u[k];


term 2 − 2
[


z(z − 5 × 0.6)
z2 − 2 × 5 × z × 0.6 + 52


]


z−1←−−→ −2 · cos(cos−1(0.6)k) · 5ku[k];


term 3
5


2


[
z(5 × 0.8)


z2 − 2 × 5 × z × 0.6 + 52


]


z−1←−−→
5


2
· sin(cos−1(0.6)k) · 5ku[k].


Substituting cos−1(0.6) = 0.9273, the three terms are combined as follows:


x3[k] = 2u[k] − 2 · 5k cos(0.9273k)u[k] +
5


2
· 5k sin(0.9273k) u[k],


which can be simplified to


x3[k] =
{


2 + 3.2016 × 5k cos(0.9273 k − 128.7◦)
}


u[k].


The DT sequences x1[k], x2[k], and x3[k] are plotted in Fig. 13.3 for duration


0 ≤ k ≤ 6.
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k
31 2 4 5 6−1 0−2


x1[k]  = (2
k −1)u[k]


1
3


7


15
31


≈ ≈


63


≈


k
31 2 4 5 6−1 0−2


x2[k]


1


0.4
0.23


0.11


k
31 2 4


5 6


−1 0−2


x3[k]


6


76


346
219


≈


−7297


≈≈


≈≈


−49239(a) (b) (c)


Fig. 13.3. DT sequences


obtained in Example 13.4.


13.3.4 Power series method


When X (z) is a rational function of the form in Eq. (13.9), the partial fraction


expansion is a convenient method of calculating the inverse z-transform. At


times, however, it may be difficult to expand X (z) as partial fractions, especially


when X (z) is not a rational function. In such cases, we use the power series


method. Alternatively, we may be interested in determining a few values of x[k]


for k ≥ 0. The power series method is easy to apply since it does not require


the evaluation of the complete inverse z-transform.


In the power series method, the transform X (z) is expanded by long division


as follows:


X (z) =
N (z)


D(z)
= a + bz−1 + cz−2 + dz−3 + · · · . (13.15a)


Taking the inverse z-transform of Eq. (13.15), we obtain


x[k] = aδ[k] + bδ[k − 1] + cδ[k − 2] + dδ[k − 3] + · · · , (13.15b)


which implies that x[0] = a, x[1] = b, x[2] = c, and x[3] = d . Additional


samples of x[k] can be obtained by determining additional terms in the quotient


of Eq. (13.15a). We now illustrate the application of the power series method


with an example.


Example 13.5


Calculate the first four non-zero values of the following right-sided sequences


using the power series approach:


(i) X1(z) =
z


z2 − 3z + 2
;


(ii) X2(z) =
1


(z − 0.1)(z − 0.5)(z + 0.2)
;


(iii) X3(z) =
2z(3z + 17)


(z − 1)(z2 − 6z + 25)
.
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Solution


(i) Using long division, X1(z) can be expressed as follows:


z−1 + 3z−2 + 7z−3 + 15z−4


z2 − 3z + 2
∣
∣
∣
∣


z


z − 3 + 2z−1
3 − 2z−1
3 − 9z−1 + 6z−2


7z−1 − 6z−2
7z−1 − 21z−2 + 14z−3


15z−2 − 14z−3
15z−2 − 45z−3 + 30z−4.


In other words,


X1(z) =
z


z2 − 3z + 2
= 0z0 + z−1 + 3z−2 + 7z−3 + 15z−4 + · · · .


Taking the inverse transform gives the following values for the first five samples


of x1[k]:


x1[0] = 0, x1[1] = 1, x1[2] = 3, x1[3] = 7, x1[4] = 15.


Note that the above values are consistent with Fig. 13.3(a) obtained in Example


13.4 (i).


(ii) Using long division, X2(z) can be expressed as follows:


z−3 + 0.4z−4 + 0.23z−5 + 0.11z−6


z3 − 0.4z2 − 0.07z + 0.01


∣
∣
∣
∣
∣


1


1 − 0.4z−1 − 0.07z−2 + 0.010z−3


0.4z−1 + 0.07z−2 − 0.010z−3


0.4z−1 − 0.16z−2 − 0.028z−3 + 0.0040z−4


0.23z−2 + 0.018z−3 − 0.0040z−4


0.23z−2 − 0.092z−3 − 0.0161z−4 + 0.0023z−5


0.11z−3 + 0.0121z−4 − 0.0023z−5


0.11z−3 + 0.0440 z−4 − 0.0077z−5 + 0.0011z−5.


In other words,


X2(z) =
1


(z − 0.1)(z − 0.5)(z + 0.2)
= 0z0 + 0z−1 + 0z−2 + z−3 + 0.4z−4 + 0.23z−5 + 0.11z−6 + · · · .


Taking the inverse transform gives the following values for the first seven sam-


ples of x2[k]:


x2[0] = 0, x2[1] = 0, x2[2] = 0, x2[3] = 1, x2[4] = 0.4, x2[5] = 0.23, x2[6] = 0.11.


This result is consistent with Fig. 13.3(b) obtained in Example 13.4(ii).
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(iii) Using long division, X3(z) can be expressed as follows:


6z−1 + 76z−2 + 346z−3 + 216z−4


z3 − 7z2 + 31z − 25


∣
∣
∣
∣
∣


6z2 + 34z
6z2 − 42z + 186 − 150z−1


76z − 186 + 150z−1


76z − 532 + 2356z−1 − 1900z−2


346 − 2206z−1 + 1900z−2


346 − 2422z−1 + 10726z−2 − 8650z−3


216z−1 − 8826z−2 + 8650z−3


216z−1 − 1512z−2 + 6696z−3 − 5400z−3.


In other words,


X3(z) =
2z(3z + 17)


(z − 1)(z2 − 6z + 25)
= 0z0 + 6z−1 + 76z−2 + 346z−3 + 216z−4 + · · · .


Taking the inverse transform gives the following values for the first five samples


of x3[k]:


x3[0] = 0, x3[1] = 6, x3[2] = 76, x3[3] = 346, x3[4] = 216.


The result is consistent with Fig. 13.3(c) obtained in Example 13.4(iii).


13.4 Properties of the z-transform


The unilateral and bilateral z-transforms have several interesting properties,


which are used in the analysis of signals and systems. These properties are


similar to the properties of the DTFT, which were covered in Section 11.4. In


this section, we discuss several of these properties, including their proofs and


applications, through a series of examples. A complete list of the properties is


provided in Table 13.2. In most cases, we prove the properties for the unilateral


z-transform. The proof for the bilateral z-transform follows along similar lines


and is not included to avoid repetition.


13.4.1 Linearity


If x1[k] and x2[k] are two DT sequences with the following z-transform pairs:


x1[k]
z←→ X1(z), ROC: R1


and


x2[k]
z←→ X2(z), ROC: R2,


then


a1x1[k] + a2x2[k]
z←→ a1 X1(z) + a2 X2(z), ROC: at least R1 ∩ R2. (13.16)


The linearity property is satisfied by both unilateral and bilateral z-transforms.
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Table 13.2. Properties of the z-transform for transform pairs x[k ]
z←→X(z), ROC: R x ; x[k ]u[k ]


z←→X (c)(z), ROC:
R x ; x1[k ]


z←→X 1(z), ROC: R1; x2[k ]
z←→X 2(z), ROC: R 2


Properties Time domain z-domain ROC


Linearity a1x1[k] + a2x2[k] a1 X1(z) + a2 X2(z) at least R1 ∩ R2
Time scaling x (m)[k]


for m = 1, 2, 3, . . .
X (zm) (Rx )


1/m


Time shifting


(non-causal)


x[k − m] zm X (z)


Time shifting


(causal)


x[k − m]u[k − m] zm X (c)(z) Rx , except for the
possible deletion or


addition of z = 0 or
z = ∞


x[k + m]u[k] zm X (c)(z) − zm
m−1∑


k=0
x[k]z−k


x[k − m]u[k] z−m X (c)(z) + z−m
m∑


k=1
x[−k]zk


Frequency shifting ejΩ0k x[k] X (e−jΩ0 z) Rx


Time differencing x[k] − x[k − 1] (1 − z−1)X (z) Rx , except for the
possible deletion of


the origin


Time accumulation y[k] =
k∑


m=0
x[m] (a)


z


z − 1
X (z) Rx ∩ ( |z| > 1)


z-domain


differentiation


kx[k] −z
dX (z)


dz
Rx


Time convolution x1[k] ∗ x2[k] X1(z)X2(z) at least R1 ∩ R2
Initial-value theorem x[0] = lim


z→∞
X (z) provided x[k] = 0


for k < 0


Final-value theorem x[∞] = lim
k→∞


x[k]= lim
z→1


(z − 1)X (z) provided x[∞] exists


(a) Provided that the sequence y[k] has a finite value for all k.


Proof


Using Eq. (13.7), the z-transform of a1x1[k] + a2x2[k] is calculated as follows:


Z{a1x1[k] + a2x2[k]} =
∞∑


k=0
{a1x1[k] + a2x2[k]} z−k


= a1
∞∑


k=0
x1[k]z


−k


︸ ︷︷ ︸


X1(z)


+ a2
∞∑


k=0
x2[k]z


−k


︸ ︷︷ ︸


X2(z)


,


which proves the algebraic expression, Eq. (13.16). To determine the ROC of


the linear combination, we note that the z-transform X1(z) is finite within the


specified ROC, R1. Similarly, X2(z) is finite within its ROC, R2. Therefore, the


linear combination a1 X1(z) + a2 X2(z) should be finite at least within region R
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that represents the intersection of the two regions, i.e. R = R1 ∩ R2. In certain
cases, due to the interaction between x1[k] and x2[k], which may lead to cance-


lation of certain terms, the overall ROC R may be larger than the intersection


of the two regions. On the other hand, if there is no common region between


R1 and R2, the z-transform of {a1x1[k] + a1x2[k]} does not exist.


13.4.2 Time scaling


As mentioned in Chapter 1, there are two types of scaling in the DT domain:


decimation and interpolation.


13.4.2.1 Decimation


Because of the irreversible nature of the decimation operation, the z-transform


of x[k] and its decimated sequence y[k] = x[mk] are not related to each


other.


13.4.2.2 Interpolation


Section 1.3.2.2 defines the interpolation of x[k] as follows:


x (m)[k] =


{


x [k/m] if k is a multiple of integer m


0 otherwise.


The z-transform of an interpolated sequence is given by the following property.


If x[k]
z←→X (z) with ROC Rx , then the z-transform X (m)(z) of x (m)[k] is given


by


x (m)[k]
z←→ X (m)(z) = X (zm), ROC: (Rx )1/m (13.17)


for 2 ≤ m < ∞. The interpolation property is satisfied by both unilateral and
bilateral z-transforms.


Proof


Z{x (m)[k]} =
∞∑


k=0
x (m)[k]z−k


= x (m)[0] + x (m)[1]z−1+· · · + x (m)[m]z−m + x (m)[m+1]z−(m+1)


+ · · · + x (m)[2m]z−2m + · · · .


Based on Eq. (13.17), the interpolated sequence x (m)[k] is zero everywhere


except when k is a multiple of m. This reduces the above transform as follows:


Z{x (m)[k]} = x (m)[0] + x (m)[m]z−m + x (m)[2m]z−2m + x (m)[3m]z−3m + · · · .
= x[0] + x[1]z−m + x[2]z−2m + x[3]z−3m + · · ·


=
∞∑


k=0
x[k](zm)−k = X (zm).
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Because X (z) is finite-valued within the region z ∈ Rx , X (zm) will have a finite
value when zm ∈ Rx or z ∈ (Rx )1/m .


13.4.3 Time shifting


The time-shifting property for a bilateral z-transform is as follows.


If x[k] bilateral z← → X (z) with ROC Rx , then


x[k − m] bilateral z← → z
−m X (z), (13.18)


with ROC given by Rx except for the possible deletion or addition of z = 0
or z = ∞. The ROC is altered because of the inclusion of the zm or z−m term,
which affects the roots of the denominator D(z) in X (z).


For causal sequences, the time-shifting property is more complicated. For


any causal sequence x[k]u[k] satisfying the DTFT pair


x[k]u[k]
z←→X (z)


and having the ROC Rx , the unilateral z-transform of the following time-shifted


sequences are expressed as follows (for a positive integer m):


(a) x[k − m]u[k − m] z←→ z−m X (z); (13.19)


(b) x[k + m]u[k] z←→ zm X (z) − zm
m−1∑


k=0
x[k]z−k ; (13.20)


(c) x[k − m]u[k] z←→ z−m X (z) + z−m
m∑


k=1
x[−k]zk . (13.21)


In Eqs. (13.19)–(13.21), the ROC of the time-shifted sequences is given by Rx ,


except for the possible deletion or addition of z = 0 or z = ∞.
To illustrate the three time-shifting operations, consider a two-sided sequence


x[k] = α|k| with |α| < 1, as illustrated in Fig. 13.4(a). Figures 13.4(b)–(d) illus-
trate the three time-shifting operations defined above in Eqs. (13.19)–(13.21)


for m = 2.


Proof


We prove Eqs. (13.19)–(13.21) separately.


Equation (13.19)


Z{x[k − m]u[k − m]} =
∞∑


k=0
x[k − m]u[k − m]z−k =


∞∑


k=m
x[k − m]z−k .
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0−2 −1 21 3 4 5−4 −3−5


x[k−2]u[k−2]


k


1


a
a2 a3


(b)


k
0−2 −1 21 3 4 5−4 −3−5


x[k] = a|k| 1


a
a2


a3 a4 a5


a
a2


a3a4a5


(a)


0−2 −1 21 3 4 5−4 −3−5


x[k+2]u[k]


k


a2
a3 a4 a5 a6 a7


(d)


0−2 −1 21 3 4 5−4 −3−5


x[k−2]u[k]


k


1


a
a2 a3


a
a2


(c)


Fig. 13.4. (a) Original DT


sequence x[k ] = α|k | . Parts
(b)–(d) show sequences


obtained by time shifting the


sequence in part (a):


(b) x[k − 2]u[k − 2];
(c) x[k − 2]u[k ];
(d) x[k + 2]u[k ].


Substituting p = k − m, the above summation reduces to


Z{x[k − m]u[k − m]} =
∞∑


p=0
x[p]z−(p+m) = z−m


∞∑


p=0
x[p]z−p, = z−m X (z).


Equation (13.20)


Z{x[k + m]u[k]} =
∞∑


k=0
x[k + m]u[k] z−k =


∞∑


k=0
x[k + m]z−k .


Substituting p = k + m, the above summation reduces to


Z{x[k + m]u[k]} =
∞∑


p=m
x[p]z−(p−m) = zm


∞∑


p=0
x[p]z−p − zm


m−1∑


p=0
x[p]z−p,


= zm X (z) − zm
m−1∑


k=0
x[k]z−k .


Equation (13.21)


Z{x[k − m]u[k]} =
∞∑


k=0
x[k − m]u[k]z−k =


∞∑


k=0
x[k − m]z−k .


Substituting p = k − m, the above summation reduces to


Z{x[k − m]u[k]} =
∞∑


p=−m
x[p]z−(p+m)


= z−m
∞∑


p=0
x[p]z−p + z−m


−1∑


p=−m
x[p]z−p.


= z−m x(z) + z−m
m∑


k=1
x[−k]zk .
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Example 13.6


Consider a non-causal DT sequence x[k] with initial values x[−1] = 11/6 and
x[−2] = 37/36. Express the z-transform of the function


g[k] = (x[k] − 5x[k − 1] + 6x[k − 2])u[k]


in terms of the z-transform Z{x[k]u[k]} = X (z).


Solution


Applying the time-shifting property, Eq. (13.21), the z-transforms of


x[k − 1]u[k] and x[k − 2]u[k] are given by


Z{x[k − 1]u[k]} = z−1 X (z) + z−1x[−1]z = z−1 X (z) +
11


6


and


Z{x[k − 2]u[k]} = z−2 X (z) + z−2x[−1]z + z−2x[−2]z2


= z−2 X (z) +
11


6
z−1 +


37


36
.


Applying the linearity property, the z-transform of g[k] is given by


G(z) = X (z) − 5
[


z−1 X (z) +
11


6


]


+ 6
[


z−2 X (z) +
11


6
z−1 +


37


36


]


=
(


1 − 5z−1 + 6z−2
)


X (z) + 11z−1 − 3.


13.4.4 Time differencing


If x[k]
z←→X (z) with ROC Rx , then the z-transform of the time-difference


sequence x[k] − x[k − 1] is given by


x[k] − x[k − 1] z←→ (1 − z−1)X (z), (13.22)


with the ROC given by Rx except for the possible deletion of z = 0. The time-
differencing property can be proved easily by applying the linearity and time-


shifting properties with m = 1. The time-differencing property is satisfied by
both unilateral and bilateral z-transforms.


Example 13.7


Based on the z-transform pair


u[k]
z←→


1


1 − z−1
, ROC: |z| > 1,


calculate the z-transform of the impulse function x[k] = δ[k] using the time-
differencing property.
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Solution


Using the time-differencing property, the z-transform of u[k] − u[k − 1] is
given by


u[k] − u[k − 1] z←→ (1 − z−1) · Z{u[k]}, ROC: |z| > 1.


Substituting the value of Z{u[k]} = 1/(1 − z−1) and noting that u[k] − u[k −
1] = δ[k], we obtain


δ[k]
z←→ 1.


Since the z-transform of the unit impulse function is finite for all values of z,


the ROC of the aforementioned z-transform pair is the entire z-plane.


13.4.5 z-domain differentiation


If x[k]
z←→ X (z) with ROC Rx , then


kx[k]
z←→ −z


dX (z)


dz
, ROC: Rx . (13.23)


The z-domain differentiation property is satisfied by both unilateral and bilateral


z-transforms.


Proof


By definition,


X (z) =
∞∑


k=0
x[k]z−k .


Differentiating both sides with respect to z yields


dX (z)


dz
=


∞∑


k=0
x[k]


dz−k


dz
=


∞∑


k=0
x[k](−k)z−k−1.


Multiplying both sides by −z, we obtain


−z
dX (z)


dz
=


∞∑


k=0
kx[k]z−k,


which proves Eq. (13.23).


Example 13.8


Given the z-transform pair


αku[k]
z←→


1


1 − αz−1
, ROC: |z| > |α|,


calculate the z-transform of the function kαku[k].
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Solution


We use the frequency-differentiation property,


kαk x[k]
z←→ − z


d


dz


[
1


1 − αz−1


]


,


which reduces to


kαk x[k]
z←→


αz−1


(1 − αz−1)2
ROC: |z| > |α|.


13.4.6 Time convolution


If x1[k] and x2[k] are two arbitrary functions with the following z-transform


pairs:


x1[k]
z←→ X1(z), ROC: R1


and


x2[k]
z←→ X2(z), ROC: R2,


then the convolution property states that


x1[k] ∗ x2[k]
z←→ X1(z)X2(z), ROC: at least R1 ∩ R2. (13.24)


The convolution property is valid for both unilateral and bilateral z-transforms.


The overall ROC of the convolved signals may be larger than the intersection


of regions R1 and R2 because of the possible cancelation of some poles of the


convolved sequences.


Proof


By definition, the convolution of two sequences is given by


x1[k] ∗ x2[k] =
∞∑


m=−∞
x1[m]x2[k − m].


Taking the z-transform of both sides yields


x1[k] ∗ x2[k]
z←→


∞∑


k=−∞


∞∑


m=−∞
x1[m]x2[k − m]z−k .


By interchanging the order of the two summations on the right-hand side of the


transform pair, we obtain


x1[k] ∗ x2[k]
z←→


∞∑


m=−∞
x1[m]


∞∑


k=−∞
x2[k − m]z−k .


Substituting p = k − m in the inner summation leads to


x1[k] ∗ x2[k]
z←→


∞∑


m=−∞
x1[m]


∞∑


p=−∞
x2[p]z


−(p+m)
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or


x1[k] ∗ x2[k]
z←→


∞∑


m=−∞
x1[m] z


−m
∞∑


p=−∞
x2[p]z


−p,


which proves Eq. (13.24).


Like the DTFT convolution property discussed in Chapter 11, the time-


convolution property of the z-transform provides us with an alternative approach


to calculate the output y[k] when a DT sequence x[k] is applied at the input of


an LTID system with the impulse response h[k]. The procedure for calculating


the output y[k] of an LTID system in the complex z-domain consists of the


following four steps.


(1) Calculate the z-transform X (z) of the input sequence x[k]. If the input


sequence and the impulse response are both causal functions, then the


unilateral z-transform is used. If either of the two functions is non-causal,


the bilateral z-transform must be used.


(2) Calculate the z-transform H (z) of the impulse response h[k] of the LTID


system. The z-transform H (z) is referred to as the z-transfer function of


the LTID system and provides a meaningful insight into the behavior of the


system.


(3) Based on the convolution property, the z-transform Y (z) of the resulting


output y[k] is given by the product of the z-transforms of the input signal


and the impulse response of the LTID system. Mathematically, this implies


that Y (z) = X (z)H (z).
(4) Calculate the output response y[k] in the time domain by taking the inverse


z-transform of Y (z) obtained in step (3).


Example 13.9


The exponential decaying sequence x[k] = aku[k], 0 ≤ a ≤ 1, is applied at the
input of an LTID system with the impulse response h[k] = bku[k], 0 ≤ b ≤ 1.
Using the z-transform approach, calculate the output of the system.


Solution


Based on Table 13.1, the z-transforms for the input sequence and the impulse


response are given by


X (z) =
1


1 − az−1
and H (z) =


1


1 − bz−1
.


The z-transform of the output signal is, therefore, calculated as follows:


Y (z) = H (z)X (z) =
1


(1 − az−1)(1 − bz−1)
.
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The inverse of Y (z) takes two different forms depending on the values of a and


b:


Y (z) =















1


(1 − az−1)2
a = b


1


(1 − az−1)(1 − bz−1)
a �= b.


We consider the two cases separately while calculating the inverse z-transform


of Y (z).


Case 1 (a = b) From Table 13.1, we know that


kaku[k]
z←→


az−1


(1 − az−1)2
.


Applying the time-shifting property, we obtain


(k + 1)ak+1u[k + 1] z←→
a


(1 − az−1)2
.


The output response is therefore given by


y[k] = Z−1
{


1


(1 − az−1)2


}


= (k + 1)aku[k + 1],


which is the same as


y[k] = (k + 1) aku[k].


Case 2 (a �= b) Using partial fraction expansion, the function Y (z) is expressed
as follows:


Y (z) =
1


(1 − az−1)(1 − bz−1)
≡


A


1 − az−1
+


B


1 − bz−1
, (13.25)


where the partial fraction coefficients are given by


A =
1


1 − bz−1


∣
∣
∣
∣
az−1=1


=
a


a − b
and


B =
1


1 − az−1


∣
∣
∣
∣
bz−1=1


= −
b


a − b
.


Substituting the values of A and B into Eq. (13.25) and taking the inverse DTFT


yields


y[k] =
a


a − b
× aku[k] −


b


a − b
× bku[k] =


1


a − b
[


ak+1 − bk+1
]


u[k].


Combining case 1 with case 2, we obtain


y[k] =











(k + 1)aku[k] a = b
1


a − b
[


ak+1 − bk+1
]


u[k] a �= b,
(13.26)


which is identical to the result of Example 11.15.
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13.4.7 Time accumulation


If x[k]
z←→X (z) with ROC Rx , then


k∑


m=0
x[m]


z←→
z


z − 1
X (z), ROC: Rx ∩ ( |z| > 1). (13.27)


Proof


To prove the time-accumulation property, we make use of the following con-


volution result:


k∑


m=0
x[m] = x[k] ∗ u[k].


Taking the z-transform of both sides and applying the time-convolution property


yields


k∑


m=0
x[m]


z←→ X (z)Z{u[k]}.


In the above equation, we substitute the z-transform of the unit step function,


u[k]
z←→


1


1 − z−1
, ROC: |z| > 1,


to obtain


k∑


m=0
x[m]


z←→ X (z)
1


1 − z−1
,


which proves Eq. (13.27).


Example 13.10


Given the z-transform pair


u[k]
z←→


1


1 − z−1
, ROC: |z| > 1 ,


calculate the z-transform of the function ku[k] using the time-accumulation


property.


Solution


Note that


ku[k] =
k∑


m=0
u[m] − u[k].


Calculating the z-transform of both sides and applying the time-accumulation


property, we obtain


ku[k]
z←→


z


(z − 1)
1


(1 − z−1)
−


1


1 − z−1
,
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which reduces to


ku[k]
z←→


z−1


(


1 − z−1
)2


,


which can be expressed in the following alternative form:


ku[k]
z←→


z


(z − 1)2
.


Note that the ROC for ku[k] is the same as that for u[k].


13.4.8 Initial- and final-value theorems


If x[k]
z←→ X (z) with ROC Rx , then


initial-value theorem x[0] = lim
z→∞


X (z), provided x[k] = 0 for k < 0;


(13.28)


final-value theorem x[∞] = lim
k→∞


x[k] = lim
z→1


(z − 1)X (z),


provided x[∞]exists. (13.29)


Note that the initial-value theorem is valid only for the unilateral z-transform as


it requires the reference signal x[k] to be zero for k < 0. The final-value theorem,


however, may be used with either the unilateral or bilateral z-transform. It is


possible to get a finite value from Eq. (13.29) even though x[∞] is undefined
or equal to infinity. Readers are advised to check that x[∞] indeed converges
to a finite value before using the final-value theorem. This generally happens if


all poles of (z − 1)X (z) lie inside the unit circle.


Example 13.11


Given the following z-transforms of right-sided sequences, determine the initial


and final values:


(i) X1(z) =
z


z2 − 3z + 2
;


(ii) X2(z) =
1


(z − 0.1)(z − 0.5)(z + 0.2)
;


(iii) X3(z) =
z2(2z − 1.5)


(z − 1)(z − 0.5)2
.


Solution


(i) Using the initial-value theorem,


x1[0] = lim
z→∞


X1(z) = lim
z→∞


[
z


z2 − 3z + 2


]


= lim
z→∞


[
1


z − 3 + 2z−1


]


= 0.


Using the final-value theorem, we obtain


x1[∞] = lim
z→1


(z − 1)X1(z) = lim
z→1


[
z(z − 1)


z2 − 3z + 2


]


= lim
z→∞


[
z


z − 2


]


= −1.
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From Example 13.4 part (i), where we determined x1[k], it can be verified that


x1[0] = 0. However, we obtain x1[∞] = ∞ from the result in Example 13.4,
which is different from the result obtained above using the final-value theorem.


Actually, in this case the final-value theorem cannot be applied as x1[∞] is not
finite. This can be guessed from the fact that (z − 1)X (z) has a pole at z = 2,
which is not inside the unit circle.


(ii) Using the initial-value theorem,


x2[0] = lim
z→∞


X2(z) = lim
z→∞


[
1


(z − 0.1)(z − 0.5)(z + 0.2)


]


= 0.


Using the final-value theorem,


x2[∞] = lim
z→1


(z − 1)X2(z) = lim
z→1


[
(z − 1)


(z − 0.1)(z − 0.5)(z + 0.2)


]


= 0.


From the expression of x2[k] derived in Example 13.4 part (ii), it can be verified


that the above values are indeed correct.


(iii) Using the initial-value theorem,


x3[0] = lim
z→∞


X3(z) = lim
z→∞


[
z2(2z − 1.5)


(z − 1)(z − 0.5)2


]


= lim
z→∞


[
2 − 1.5z−1


(1 − z−1)(1 − 0.5z−1)2


]


= 2.


Using the final-value theorem,


x3[∞] = lim
z→1


(z − 1)X3(z) = lim
z→1


[
(z − 1)z2(2z − 1.5)
(z − 1)(z − 0.5)2


]


= lim
z→1


[
z2(2z − 1.5)
(z − 0.5)2


]


= 2.


By calculating the inverse z-transform of X3(z), we obtain


x3[k] = (2 + k × 2−k)u[k].


Based on the above expression, x3[0] = 2 and x3[∞] = 2, which are indeed
the values obtained using the initial- and final-value theorems.


13.5 Solution of difference equations


An important application of the z-transform is to solve linear, constant-


coefficient difference equations. In Section 10.1, we used a time-domain


approach to obtain the zero-input, zero-state, and overall solutions of differ-


ence equations. In this section, we discuss an alternative approach based on the


z-transform. We illustrate the steps involved in the z-transform-based approach


through Example 13.12.
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Example 13.12


A causal system is represented by the following difference equation:


y[k + 2] − 5y[k + 1] + 6y[k] = 3x[k + 1] + 5x[k]. (13.30)


Calculate the output y[k] for the input x[k] = 2−ku[k] and the initial conditions
y[−1] = 11/6, y[−2] = 37/36.


Solution


Substituting k − 2 for k in Eq. (13.30), we obtain


y[k] − 5y[k − 1] + 6y[k − 2] = 3x[k − 1] + 5x[k − 2]. (13.31)


Note that the input sequence x[k] = 2−ku[k] is causal, hence x[−2] =
x[−1] = 0. Using the time-shifting property, Eq. (13.19), the z-transform of
the right-hand side of Eq. (13.31) is given by


3x[k − 1] + 5x[k − 2] z←→ 3z−1 X (z) + 5z−2 X (z).


Using the z-transform pair,


x[k] = 2−ku[k] = 0.5ku[k] z←→ X (z) =
1


1 − 0.5z−1
,


the z-transform of the right-hand side of Eq. (13.31) is given by


3x[k − 1] + 5x[k − 2] z←→
3z−1


1 − 0.5z−1
+


5z−2


1 − 0.5z−1
=


3z−1 + 5z−1


1 − 0.5z−1
.


The output response is not causal as the initial conditions y[−1] and y[−2] are
not zero. We are interested in determining the causal component y[k]u[k] of


the response y[k]. Let us denote the z-transform of y[k]u[k] by Y (z). Using the


results in Example 13.6, the z-transform of the left-hand side of Eq. (13.31) is


given by


y[k] − 5y[k − 1] + 6y[k − 2] z←→ (1 − 5z−1 + 6z−2)Y (z) + (11z−1 − 3).


Equating the z-transforms of both sides of Eq. (13.31), we obtain


(1 − 5z−1 + 6z−2)Y (z) + (11z−1 − 3) =
3z−1 + 5z−2


1 − 0.5z−1
,


which reduces to


Y (z) =
3 − 11z−1


1 − 5z−1 + 6z−2
+


3z−1 + 5z−2


(1 − 0.5z−1)(1 − 5z−1 + 6z−2)


=
(3 − 11z−1)(1 − 0.5z−1) + 3z−1 + 5z−2


(1 − 0.5z−1)(1 − 5z−1 + 6z−2)


=
3 − 9.5z−1 + 10.5−2


(1 − 0.5z−1)(1 − 2z−1)(1 − 3z−1)
.


Using partial fraction expansion, Y (z) can be expressed as follows:


Y (z) =
26


15
×


1


1 − 0.5z−1
−


7


3
×


1


1 − 2z−1
+


18


5
×


1


1 − 3z−1
.
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Taking the inverse transform, we obtain


y[k] =
[


26


15
× 0.5k −


7


3
× 2k +


26


15
× 3k


]


for k > 0.


The output response is plotted in Fig. 13.5.k
2 30 1 4 5−2 −1


y[k]


3
7


23.5


78.75


254.38


≈ ≈


800.19


≈


1.831.03


Fig. 13.5. Output response of


the LTID system specified in


Example 13.12.


13.6 z-transfer function of LTID systems


In Chapters 10 and 11, we used the impulse response h[k] and Fourier transfer


function H (Ω) to represent an LTID system. An alternative representation for


an LTID system is obtained by taking the z-transform of the impulse response:


h[k]
z←→ H (z).


The DTFT H (z) is referred to as the z-transfer function of the LTID system.


In conjunction with the linear convolution property, Eq. (13.24), the z-transfer


function H (z) may be used to determine the output response y[k] of an LTID


system when an input sequence x[k] is applied at its input. In the time domain,


the output response y[k] is given by


y[k] = x[k] ∗ h[k]. (13.32)


Taking the z-transform of both sides of Eq. (13.32), we obtain


Y (z) = X (z)H (z), (13.33)


where Y (z) and X (z) are, respectively, the z-transforms of the output response


y[k] and the input sequence x[k]. Equation (13.33) provides us with an alter-


native definition for the transfer function as the ratio of the z-transform of the


output response and the z-transform of the input signal. Mathematically, the


transfer function H (z) can be expressed as follows:


H (z) =
Y (z)


X (z)
. (13.34)


The z-transfer function of an LTID system can be obtained from its difference


equation representation, as described in the following.


Consider an LTID system whose input–output relationship is given by the


following difference equation:


y[k + n] + an−1 y[k + n − 1] + · · · + a0 y[k]
= bm x[k + m] + bm−1x[k + m − 1] + · · · + b0x[k]. (13.35)


By taking the z-transform of both sides of the above equation, we obtain
{


zn + an−1zn−1 + · · · + a0z
}


Y (z) =
{


bm z
m + bm−1zm−1 + · · · + b0


}


X (z),
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which reduces to the following transfer function:


H (z) =
Y (z)


X (z)
=


bm z
m + bm−1zm−1 + · · · + b0


zn + an−1zn−1 + · · · + a0
(13.36a)


or alternatively as


H (z) = zm−n
bm + bm−1z−1 + · · · + b0z−m


1 + an−1z−1 + · · · + a0z−n
. (13.36b)


13.6.1 Characteristic equation, poles, and zeros


The z-transfer function plays an important role in the analysis of LTID sys-


tems analysis. In this section, we will define a few key concepts related to the


z-transfer function.


Characteristic equation The characteristic equation for the transfer function,
Eq. (13.36a), is defined as follows:


D(z) = anzn + an−1zn−1 + · · · + a0 = 0. (13.37)


Zeros The zeros of the transfer function H (z) of an LTID system are finite
locations in the complex z-plane, where |H (z)| = 0. For the transfer function,
Eq. (13.36a), the location of the zeros can be obtained by solving the following


equation:


N (z) = bm zm + bm−1zm−1 + · · · + b0 = 0. (13.38)


Since N (z) is an mth-order polynomial, it will have m roots leading to m zeros.


Poles The poles of the transfer function H (z) of an LTID system are defined as
locations in the complex z-plane, where |H (z)| has an infinite value. The poles
corresponding to the transfer function, Eq. (13.36a), can be obtained by solving


the characteristic equation, Eq. (13.37). Since D(z) is an nth-order polynomial,


it will have n roots leading to n poles.


Because D(z) is an nth-order polynomial and N (z) is an mth-order polyno-


mial, the transfer function will have a total of n poles and m zeros. However,


in some cases, the location of a pole may coincide with the location of a zero.


In that case, the pole and zero will cancel each other, and the actual number


of poles and zeros will be reduced. In order to calculate the zeros and poles, a


transfer function is factorized and typically represented as follows:


H (z) =
N (z)


D(z)
=


(z − z1)(z − z2) · · · (z − zm)
(z − p1)(z − p2) · · · (z − pn)


, (13.39a)
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or alternatively as


H (z) = zm−n
(1 − z1z−1)(1 − z2z−1) · · · (1 − zm z−1)
(1 − p1z−1)(1 − p2z−1) · · · (1 − pnz−1)


. (13.39b)


Example 13.13


Determine the poles and zeros of the following LTID systems:


(i) H1(z) =
z


z2 − 3z + 2
;


(ii) H2(z) =
1


(z − 0.1)(z − 0.5)(z + 0.2)
;


(iii) H3(z) =
z2(2z − 1.5)


(z + 0.4)(z − 0.5)2
;


(iv) H4(z) =
z2 + 0.7z + 1.6


(z2 − 1.2z + 1)(z + 0.3)
.


Solution


(i) H1(z) =
z


z2 − 3z + 2
=


z


(z − 1)(z − 2)
.


There is one zero, at z = 0, and two poles, at z = 1 and 2.


(ii) H2(z) =
1


(z − 0.1)(z − 0.5)(z + 0.2)
.


There is no zero, but there are three poles, at z = 0.1, 0.5, and −0.2.


(iii) H3(z) =
z2(2z − 1.5)


(z + 0.4)(z − 0.5)2
.


There are three zeros, at z = 0, 0, and 0.75. There are three poles, at z = −0.4,
0.5, and 0.5.


(iv) H4(z) =
(z − 0.5)(z + 1.2)


((z − 0.6)2 + 0.82)(z + 0.3)


=
(z − 0.5)(z + 1.2)


(z − 0.6 + j0.8)(z − 0.6 − j0.8)(z + 0.3)
.


There are two zeros, at z = 0.5 and −1.2. There are three poles, at z = 0.6 −
j0.8, 0.6 + j0.8, and −0.3.


The poles and zeros of the above four systems are shown in Fig. 13.6. In the


plot, × marks the position of a pole and • marks the position of a zero.


Im{z}


Re{z}
1 2−1−2


1


2


−1


−2


Im{z}


Re{z}
0.5 1−0.5−1


0.5


1


−0.5


−1


Im{z}


Re{z}
0.5 1−0.5−1


0.5


1


−0.5


−1


Im{z}


Re{z}
0.5 1−0.5−1


0.5


1


−0.5


−1


(a)


(b)


(c)


(d)


Fig. 13.6. Pole and zero plots


for transfer functions in Example


13.13. Plot (a) corresponds to


part (i) of Example 13.13; plot


(b) corresponds to part (ii); plot


(c) corresponds to part (iii); and


plot (d) corresponds to part


(iv). Also note that plot (c)


includes double zeros at z = 0
and double poles at z = 0.5.


13.6.2 Determination of impulse response


The impulse response h[k] of an LTID system can be obtained by calculating


the inverse z-transform of the transfer function H (z). Example 13.14 explains


the steps involved in determining the impulse response.
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Example 13.14


The input–output relationship of an LTID system is given by the following


difference equation:


y[k + 2] −
3


4
y[k + 1] +


1


8
y[k] = 2x[k + 2]. (13.40)


Determine the transfer function and the impulse response of the system.


Solution


Substituting m = k + 2, Eq. (13.40) can be written as follows:


y[m] −
3


4
y[m − 1] +


1


8
y[m] = 2x[m].


Calculating the z-transform on both sides of the equation yields


Y (z) −
3


4
z−1Y (z) +


1


8
z−2Y (z) = 2X (z),


which results in the following transfer function:


H (z) =
Y (z)


X (z)
=


2


1 −
3


4
z−1 +


1


8
z−2


.


To calculate the impulse response of the LTID system, consider the partial


fraction expansion of H (z) as


H (z) =
2


(


1 −
1


2
z−1


) (


1 −
1


4
z−1


) ≡
4


1 −
1


2
z−1


−
2


1 −
1


4
z−1


.


By calculating the inverse z-transform of both sides, the impulse response h[k]


is obtained:


h[k] = 4
(


1


2


)k


u[k] − 2
(


1


4


)k


u[k],


which is identical to the result obtained by Fourier technique in Example 11.18.


13.7 Relationship between Laplace and z-transforms


LTID signals and systems can be considered as special cases of LTIC signals


and systems. Therefore, the Laplace transform can also be used to analyze such


signals and systems. In this section, we derive the relationship between the


Laplace and z-transforms.


If a DT sequence x[k] is obtained by sampling a CT signal x(t) with a


sampling interval T , the CT sampled signal xs(t) may be expressed as follows:


xs(t) =
∞∑


k=−∞
x(kT )δ(t − kT ),
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LTID system


H(z)x[k] y[k]


H(e sT)


LTIC system


∑ x(kT )d(t−kT )
∞


k=−∞


∑ y(kT )d(t−kT )
∞


k=−∞


(a)


(b)


Fig. 13.7. Using Laplace


transform techniques to analyze


LTID systems. (a) Reference LTID


system; (b) equivalent LTIC


system with CT input and output


signals.


where x(kT) are the sampled values of x(t) which equals the DT sequence x[k].


Calculating the Laplace transform of xs(t), we obtain


X (s) = L{xs(t)} =
∞∑


k=−∞
x(kT )L{δ(t − kT )} =


∞∑


k=−∞
x(kT )e−kT s .


Comparing X (s) with the z-analysis equation,


X (z) =
∞∑


k=−∞
x[k]z−k,


it is clear that


X (s) = X (z)|z=esT (13.41a)


since x[k] = x(kT ). Equation (13.41a) illustrates the relationship between the
Laplace transform X (s) of a sampled function and the z-transform X (z) of the


DT sequence obtained from the samples. As illustrated in Fig. 13.7, an LTID


system can be analyzed using an equivalent LTIC system. Figure 13.7(a) shows


an LTID system with the z-transfer function H (z) and sequence x[k] applied


at its input. The analysis of the LTID system can be completed in the s-domain


with the LTIC system shown in Fig. 13.7(b). The transfer function of the LTIC


system is given by


H (s) = H (z)|z=esT (13.41b)


and the DT input is transformed to an equivalent CT input of the form


xs(t) =
∞∑


k=−∞
x(kT )δ(t − kT ).


The output in Fig. 13.7(b) can be calculated using CT analysis techniques. The


resulting output y(t) can then be transformed back into the DT domain using


the relationship y[k] = x(t) at t = kT .


Example 13.15


A DT system is represented by the following impulse response function:


h[k] = 0.55u[k]. (13.42)
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(i) Determine the z-transfer function of the system.


(ii) Determine the equivalent Laplace transfer function of the system.


(iii) Using the Laplace domain approach, determine if the system is stable.


sIm


sRe
4 848


j20p


j40p


j20p


j40p


s


Fig. 13.8. Location of poles in


the s-plane for the system in


Example 13.15 with T = 0.1.


Solution


(i) H (z) = Z
{


0.5ku[k]
}


=
1


1 − 0.5z−1
, or


z


z − 0.5
, ROC: |z| > 0.5.


(ii) Using Eq. (13.41b), the Laplace transfer function is given by


H (s) = H (z)|z=esT =
esT


esT − 0.5
, (13.43)


where T is the sampling interval.


(iii) A causal LTIC system is stable if all the poles corresponding to the


Laplace transfer function lie in the left-hand half of the s-plane. Therefore, we


will first calculate the pole locations in the s-plane, and then determine if the


system is stable. The poles of the transfer function, Eq (13.43), are calculated


from the characteristic equation as follows:


esT − 0.5 = 0 ⇒ esT = 0.5 ⇒ e(sT ±j2πm) = 0.5,


where m = 0, 1, 2, . . . Solving for the roots of this equation yields


s =
1


T
[ln 0.5 ± j2πm] ≈


1


T
[−0.693 ± j2πm].


It is observed that an LTID system has an infinite number of poles in the


s-domain. The locations of these poles for T = 0.1 are shown in Fig. 13.8. It
is clear that these poles would lie in the left-half of the s-plane, irrespective of


the value of the sampling interval T . The LTID system is, therefore, causal and


stable.


Alternatively, the stability of the LTID system can be determined from its


impulse response by noting that


∞∑


k=−∞
|h[k]| =


∞∑


k=−∞
0.5k = 2 < ∞,


which satisfies the BIBO stability requirement derived in Chapter 10.


13.8 Stabilty analysis in the z-domain


In Example 13.15, the stability of an LTID system was determined by trans-


forming its z-transfer function H (z) to the Laplace transfer function H (s) of an


equivalent LTIC system and observing if the poles of H (s) lie in the left-half


s-plane. In this section, we derive a z-domain condition to check the stability


of a system directly from its z-transfer function.
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Consider a pole z = pz of an LTID system with the z-transfer function given
by H (z). Based on Eq. (13.41b), the location of the corresponding s-domain


pole, s = ps , of its equivalent LTIC system H (esT ) is related to the location of
the z-domain pole, z = pz , of H (z) by the following relationship:


pz = eps T or pz = eRe{ps T }.e j Im{ps T }, (13.44)


where ps T is decomposed into real and imaginary components as Re{ps T } +
j Im{ps T }.


We consider two different cases. Case 1 refers to a stable system, which is


not necessarily causal, while case 2 refers to a stable and causal system.


Case 1 Stable (not necessarily causal) LTID system The LTIC stability
condition for a stable system H (s) is that the ROC of H (s) must contain the


vertical imaginary jω-axis in the complex s-plane. Since the ROC cannot contain


any pole, in terms of the pole s = ps T , this implies that Re{ps T } �= 0 such
that no pole exists on the imaginary jω-axis. Substituting Re{ps T } �= 0 into


Eq. (13.44) and calculating its magnitude yields


|pz| =
∣
∣eRe{ps T }


∣
∣


︸ ︷︷ ︸


term I �=1 if Re{psT}�=0


×
∣
∣ej Im{ps T }


∣
∣


︸ ︷︷ ︸


term II=1


�= 1, (13.45)


which implies that an LTID system H (z) is stable if there is no pole on the unit


circle of the z-plane. In terms of the ROC, it implies that the ROC must contain


the unit circle for the system to be stable. The above condition does not assume


the system to be causal, which is considered next.


Case 2 Stable and causal LTID system The LTIC stability condition for
a stable and causal system H (s) is that all poles of H (s) must lie in the left-


half of the complex s-plane. In terms of the pole s = ps T , this implies that


Re{ps T } < 0. Substituting Re{ps T } < 0 into Eq. (13.44) and taking the mag-


nitude yields


|pz| =
∣
∣eRe{ps T }


∣
∣


︸ ︷︷ ︸


term I<1 if Re {psT} < 0


×
∣
∣ej Im{ps T }


∣
∣


︸ ︷︷ ︸


term II=1


< 1. (13.46)


Equation (13.46) states that an LTID system H(z) is stable if all poles lie within


the unit circle. Alternatively, the requirement for a causal and stable LTID


system is stated as follows.


An LTID system will be absolutely BIBO stable and causal if and only if the


ROC occupies the region outside and inclusive of the unit circle. In other words,


the ROC for a stable and causal system is given by |z| > z0, with z0 < 1.


Example 13.16


Consider the LTID systems in Example 13.13. Considering various possibilities


of the ROC, determine if the systems are absolutely BIBO state.


Determine if the systems are absolutely BIBO stable.
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Solution


(i) Since


H1(z) =
z


z2 − 3z + 2
=


z


(z − 1)(z − 2)
,


there are two poles of the LTID system, at z = 1 and 2. Since one pole lies on
the unit circle, the ROC cannot contain the unit circle. The LTID system H1(z)


is therefore not absolutely BIBO stable.


(ii) Since


H2(z) =
1


(z − 0.1)(z − 0.5)(z + 0.2)
,


there are three poles, at z = 0.1, 0.5, and −0.2. There are three choices for the
ROC, which are given by


ROC 1: |z| < 0.1. Such an implementation of the LTID system is not abso-
lutely stable since the ROC does not contain the unit circle.


ROC 2: 0.1 < |z| < 0.2. Such an implementation is not absolutely stable
since the ROC does not contain the unit circle.


ROC 3: 0.2 < |z| < 0.5. Such an implementation is not absolutely stable
since the ROC does not contain the unit circle.


ROC 4: |z| > 0.5. Such an implementation is absolutely stable since the
ROC contains the unit circle.


(iii) Since


H3(z) =
z2(2z − 1.5)


(z + 0.4)(z − 0.5)2
,


there are three poles, at z = −0.4, 0.5, and 0.5. There are three choices for the
ROC, which are given by


ROC 1: |z| < 0.4. Such an implementation of the LTID system is not abso-
lutely stable since the ROC does not contain the unit circle.


ROC 2: 0.4 < |z| < 0.5. Such an implementation of the LTID system is not
absolutely stable since the ROC does not contain the unit circle.


ROC 3: |z| > 0.5. Such an implementation of the LTID system is absolutely
stable since the ROC contains the unit circle.


(iv) Since


H4(z) =
z2 + 0.7z + 1.6


(z2 − 1.2z + 1)(z + 0.3)
=


(z − 0.5)(z + 1.2)
(z − 0.6 + j0.8)(z − 0.6 − j0.8)(z + 0.3)


,


there are three poles, at z = 0.6 − j0.8, 0.6 + j0.8, and −0.3. The three choices
of the ROC are given by


ROC 1: |z| < 0.3. Such an implementation of the LTID system is not abso-
lutely stable since the ROC does not contain the unit circle.
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ROC 2: 0.3 < |z| < |0.6 ± j0.8| or 0.3 < |z| < 1. Such an implementation
of the LTID system is not absolutely stable since the ROC does not contain


the unit circle.


ROC 3: |z| > |0.6 ± j0.8| or |z| > 1. Such an implementation of the LTID
system is not absolutely stable since the ROC does not contain the unit


circle.


13.8.1 Marginal stability


Equation (13.46) can be used to determine if a causal LTID system is absolutely


stable. An absolutely stable and causal system has all poles inside the unit circle


in the complex z-plane. On the contrary, if a causal system has one or more


poles outside the unit circle then the system will not be absolutely stable. The


impulse response of such a system includes a growing exponential function,


making the system unstable. An intermediate case arises when a causal system


has unrepeated poles on the unit circle and the remaining poles are inside the


circle in the complex z-plane. Such a system is referred to as a marginally


stable system. The condition for marginally stable and causal system is stated


below.


A causal system with M unrepeated poles pm = am + jbm, 1 ≤ m ≤ M, on the
unit circle (such that |pm | = 1) and all the remaining poles inside the unit
circle in the z-plane is stable for all bounded input signals that do not include


complex exponential terms of the form {exp(jΩmk)}, withΩm = tan−1(bm/am),
for 1 ≤ m ≤ M. If any of the poles on the unit circle are repeated then the LTID
system is unstable.


The following example demonstrates that a marginally stable system becomes


unstable if the input signal includes a complex exponential exp(jΩm) with


frequency Ωm = tan−1(bm/am) corresponding to the location of the pole at
pm = am + jbm on the unit circle in the complex z-plane.


Example 13.17


A causal LTID system with transfer function given by


H (z) =
1


z2 − z + 1
=


1


(z − 0.5 − j(
√


3/2))(z − 0.5 + j(
√


3/2))


is a marginally stable system because of two unrepeated poles, at z = 0.5 ±
j0.866, on the unit circle. We will demonstrate the marginal stability by calcu-


lating the output for the following bounded input sequences:


(i) x1[k] = u[k];
(ii) x2[k] = sin(πk/3)u[k].
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Solution


(i) Taking the z-transform of the input sequence, we obtain


X1(z) =
z


z − 1
.


Applying the convolution property, the z-transform Y1(z) of the output response


is given by


Y1(z) = H (z)X1(z) =
z


(z − 1)(z2 − z + 1)
=


z−2


(1 − z−1)(1 − z−1 + z−2)
.


Taking the partial fraction expansion of Y1(z) yields


Y1(z) =
1


1 − z−1
−


1


1 − z−1 + z−2
.


Using entries (3) and (12) of Table 13.1 (see Problem 13.5), we obtain


u[k]
z←→


1


1 − z−1


and


2
√


3
sin


(
πk


3
+


π


6


)


u[k]
z←→


1


1 − z−1 + z−2
.


Using the linearity property, the output y1[k] is given by


y1[k] =
[


1 −
2


√
3


sin


(
πk


3
+


π


6


)]


u[k].


Note that the output response contains a unit step function and a sinusoidal term


and is, therefore, bounded.


(ii) Taking the z-transform of the input sequence, we obtain


X2(z) =
(
√


3/2)z−1


1 − z−1 + z−2
.


Applying the convolution property, the z-transform Y2(z) of the output response


is given by


Y2(z) = H (z)X2(z) =
(
√


3/2)z−1


1 − z−1 + z−2
·


z−2


1 − z−1 + z−2
=


(
√


3/2)z−3


(1 − z−1 + z−2)2
.


Using the frequency-differentiation property (see Problem 13.6), it can be


shown that the following is a z-transform pair:
[


2


3
sin


(π


3
k
)


−
k


√
3


sin
(π


3
k +


π


6


)
]


u[k]
z←→ =


(
√


3/2)z−3


(1 − z−1 + z−2)2
.


Therefore, the output response is given by


y2[k] =
[


2


3
sin


(π


3
k
)


−
k


√
3


sin
(π


3
k +


π


6


)
]


u[k].


Note that the output is a growing sinusoid function because of the k/
√


3 scaling


factor. Therefore, as k increases, the |y2[k]| increases without bound, leading
to an unstable situation.
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Table 13.3. Discrete frequencies corresponding to a few selected points along the unit circle in the z-domain


z-coordinates 1 + j0
1


√
2


+ j
1


√
2


0 + j1 −
1


√
2


+ j
1


√
2


−1 + j0 −
1


√
2


− j
1


√
2


0 − j1
1


√
2


− j
1


√
2


Frequency, Ω 0 π/4 π/2 3π/4 π 5π /4 3π/2 7π /4


In this example, we observe that the output response for the first input signal


x1[k] = u[k] is bounded. On the other hand, the output produced by the second
input, x2[k] = sin(πk/3)u[k], is unbounded. Note that the second input is a
sinusoidal sequence, which contains two complex exponentials:


sin


(
πk


3


)


u[k] =
1


2j


[


ejπk/3 − e−jπk/3
]


,


with discrete frequencies Ωm = ±π/3. Since the frequencies of the complex
exponentials are the same as the value of tan−1(bm/am) = tan−1(±


√
3/4) =


±π/3, determined from the poles, at z = 0.5 ± j
√


3/2, on the unit circle, the


output response is unbounded. This is consistent with the marginal stability


condition mentioned above.


13.9 Frequency-response calculation in the z-domain


Based on Eq. (13.8), the DTFT transfer function is related to the z-transfer


function by the following relationship:


H (Ω) =
∞∑


k=−∞
h[k]z−k = H (z)|z=ejΩ , (13.47)


which may be used to derive the DTFT transfer function from the z-transfer


function. Equation (13.47) has wider implications, as we discuss in the follow-


ing.


(1) Taking the magnitude of both sides of the relationship z = exp(jΩ) gives
|z| = 1; therefore, Eq. (13.47) is only valid if the ROC of the z-transfer
function contains the unit circle. Otherwise, the substitution z = exp(jΩ)
cannot be made and the DTFT transfer function does not exist.


(2) Equation (13.47) can also be used to compute the magnitude and phase


spectra of the LTID system by evaluating the z-transfer function at dif-


ferent frequencies (0 ≤ Ω ≤ 2π ) along the unit circle. The correspon-
dence between the discrete frequency Ω and the z-coordinates is shown in


Fig. 13.9. A selected subset of the discrete frequencies along the unit circle


is shown in Table 13.3.


The computation of the magnitude and phase spectra from the z-transfer


function is illustrated in the following example.
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Im{z}


Re{z}


( ) ⇒ W = 3p1
42


,−
1


2
( ) ⇒ W = p1


4


p


2


2
, 1


2


( ) ⇒ W = 5p1
42


,− −
1


2 ( ) ⇒ W =
7p1


42
, −


1


2


(−1, 0) ⇒ W = p


(1, 0) ⇒ W = 0


 ⇒ W =


3p


2
 ⇒ W =


(0, −1)


(0, 1)


Fig. 13.9. Determination of the


magnitude and phase spectra


from the z-transfer function.


0 0p/2 p−p −p/2 p/2 p−p −p/2
W


3


16


W


.0.245p


−0.245p


H(W)
<H(W)


(a) (b)


Fig. 13.10. (a) Magnitude


spectrum and (b) phase


spectrum of the LTID system


considered in Example 13.18.


The responses are shown in the


frequency rangeΩ = [−π, π ].


Example 13.18


Consider the system with z-transfer function given by


H (z) =
2z2


z2 − (3/4)z + (1/8)
=


2


1 − (3/4)z−1 + (1/8)z−2
.


Calculate and plot the amplitude and phase spectra of the system.


Solution


The DTFT transfer function is given by


H (Ω) = H (z)|z=ejΩ =
2


1 − (3/4)e−jΩ + (1/8)e−j2Ω
.


The magnitude spectrum |H (Ω)| and the phase spectrum <H (Ω) are plotted in
Fig. 13.10, which are identical to the spectra shown in Fig. 11.18.


13.10 DTFT and the z-transform


In Chapter 11 and in this chapter, we presented two different frequency-domain


approaches to analyze DT signals and systems. The DTFT-based approach,


introduced in Chapter 11, uses the real frequency Ω, whereas the z-transform-


based approach uses the complex frequency σ + jΩ. The output response of








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 28, 2007 14:3


608 Part III Discrete-time signals and systems


an LTID system can be computed using the convolution property of either the


DTFT or the z-transform. In addition, the frequency-domain approach offers


insight about the system characteristics, which is not readily available from the


time-domain approach. However, an important issue is to determine which of


the two transforms should be used to analyze the LTID system. Both approaches


have their own advantages. Depending upon the application under considera-


tion, the appropriate transform should be selected.


Example 13.19


Consider an LTID system represented by the unit impulse response h[k] =
0.8ku[k]. Calculate the overall output and steady state output of the LTID system


for the input sequence x[k] = cos(πk/3)u[k].


Solution


z-transform method Using Table 13.1, the z-transforms of the impulse
response h[k] and the input x[k] are given by


H (z) =
1


1 − 0.8z−1


and


X (z) =
1 − z−1 cos(π/3)


1 − 2z−1 cos(π/3) + z−2
=


1 − 0.5z−1


1 − z−1 + z−2
.


Using the convolution property, the z-transform of the output response is given


by


Y (z) = H (z)X (z) =
1 − 0.5z−1


(1 − 0.8z−1)(1 − z−1 + z−2)
.


By partial fraction expansion, the above expression becomes


Y (z) =
2


7
×


1


1 − 0.8z−1
+


5


7
×


1 + 0.5z−1


1 − z−1 + z−2


=
2


7
×


1


1 − 0.8z−1
+


5


7
×


1 − 0.5z−1


1 − z−1 + z−2
+


5


7
×


z−1


1 − z−1 + z−2
.


Taking the inverse z-transform, the output response is given by


y[k] =
2


7
× 0.8ku[k] +


5


7
× cos


(
πk


3


)


u[k] +
10


7
√


3
× sin


(
πk


3


)


u[k]


=
[


0.287(0.8)k + 1.091 cos
(


πk


3
− 0.857r


) ]


u[k]


where the superscript r indicates that the angle is expressed in radians.


The steady state output yss[k] is computed by neglecting the transient term


(0.8)k , which decays to zero with time. The steady state output response is,
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therefore, given by


yss[k] = 1.091 cos
(


πk


3
− 0.857r


)


u[k].


DTFT method As in the CT case, the calculation of the actual output is
difficult using the DTFT. However, the steady state value of the output can be


easily calculated using DTFT. We have


H (Ω) =
1


1 − 0.8e−jΩ
.


The value of the DTFT transfer function atΩ = π/3, the fundamental frequency
of the sinusoidal input, is given by


H (Ω)|Ω=π/3 =
1


1 − 0.8e−j(π/3)
= 0.714 − j0.285 = 1.091e−j0.857,


implying that |H (Ω)| = 1.091 and <H (Ω) = −0.857 radians. Therefore, the
steady state output response is given by


yss[k] = |H (Ω)| × cos
(


πk


3
+ <H (Ω)


)


u[k]


= 1.091 cos
(


πk


3
− 0.857r


)


u[k].


Example 13.19 shows that the z-transform is a more convenient tool for tran-


sient analysis. For the steady state analysis, the z-transform does not offer much


advantage over the DTFT. In signal processing applications, such as audio,


image and video processing, the transients are generally ignored. In such appli-


cations, the DTFT is sufficient to analyze the steady state response. On the


other hand, the transient analysis is important for applications such as control


systems and process control. This is precisely the reason for the widespread use


of the z-transform in digital control and system design, whereas the DTFT is


preferred in signal processing applications.


13.11 Experiments with M A T L A B


M A T L A B provides several M-files for working with z-transforms. In this sec-


tion, we explore five important functions, residuez, residue, tf2zp,
zp2tf, andzplane. To illustrate the application of these M-files, we consider
the following linear, constant-coefficient difference equation representation:


an y[k] + an−1 y[k − 1] + · · · + a0 y[k − n] = bm x[k] + bm−1x[k − 1] + · · ·
+ b0x[k − m],


for modeling the relationship between the input sequence x[k] and output


response y[k] of an LTID system. The above equation is a more general case


of Eq. (13.35), where an was set to 1. Recall that Section 10.9 covered the
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M A T L A B file filter used to compute the output response y[k] from spec-
ified sample values of the input sequence x[k] and the ancillary conditions. In


this section, we focus on the z-transfer function representation,


H (z) =
Y (z)


X (z)
=


bm + bm−1z−1 + · · · + b0z−m


an + an−1z−1 + · · · + a0z−n
, (13.48)


which can also be factorized as follows:


H (z) =
Y (z)


X (z)
= K


(1 − z0z−1)(1 − z1z−1) · · · (1 − zM z−1)
(1 − p0z−1)(1 − p1z−1) · · · (1 − pN z−1)


. (13.49)


Since M A T L A B assumes that the numerator and denominator of the z-transfer


function are expressed in increasing powers of z−1, we prefer the aforemen-


tioned format for the z-transfer function.


13.11.1 Partial fraction expansion


To calculate the partial fraction expansion of a rational z-transfer function,


M A T L A B provides the residuez function, which has the following syntax:


>> [R,P,K] = residuez(B,A);


In terms of the transfer function in Eq. (13.48), the input variables B and A are
defined as follows:


A = [an an−1 . . . a0] and B = [bm bm−1 . . . b0].


The output parameter R returns the values of the partial fraction coefficients,
P returns the location of the poles, while K contains the direct term in the row
vector.


Example 13.20


To illustrate the usage of the built-in function residuez, let us calculate the
partial fraction expansion of the z-transfer function,


H (z) =
2z(3z + 17)


(z − 1)(z2 − 6z + 25)
,


considered in Example 13.4(iii).


Solution


Expressing the z-transfer function in increasing powers of z−1 yields


H (z) =
6z−1 + 34z−2


1 − 7z−1 + 31z−2 − 25z−3
.
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The M A T L A B code to determine the partial fraction expansion is given below.


The explanation follows each instruction in the form of comments.


>> B = [0; 6; 34; 0]; % Coeff. of the numerator N(z)
>> A = [1; -7; 31; -25]; % Coeff. of the denominator D(z)
>> [R,P,K] = residuez(B,A) % Calc. partial fraction expansion


The returned values are given by


R = [-1.0000-1.2500j, -1.0000+1.2500j, 2.0000]


P = [3.0000+4.0000j, 3.0000-4.0000j, 1.0000] and K=[].


The transfer function H (z) can therefore be expressed as follows:


H (z) =
−1 − j1.25


1 − (3 + j4)z−1
+


−1 + j1.25
1 − (3 − j4)z−1


+
2


1 − z−1
.


Alternative partial fraction expansion Sometimes, it is desirable to perform
the partial fraction in terms of the polynomials of z, instead of the polynomials


of z−1. In such cases, the M A T L A B function residue is used. We solve
Example 13.20 in terms of the alternative expression for the transfer function,


H (z)


z
=


6z + 34
z3 − 7z2 + 31z − 25


.


The M A T L A B code to determine the partial fraction expansion of the alternative


expression is given below. As before, the explanation follows each instruction


in the form of comments.


>> B = [0; 0; 6; 34]; % Coeff. of the numerator N(z)
>> A = [1; -7; 31; -25]; % Coeff. of the D(z)
>> [R,P,K] = residue(B,A) % Calc. partial fraction expansion


The returned values are given by


R = [-1.0000-1.2500j, -1.0000+1.2500j, 2.0000]


P = [3.0000+4.0000j, 3.0000-4.0000j, 1.0000] and K = [].


The transfer function H (z) can therefore be expressed as follows:


H (z)


z
=


−1 − j1.25
z − (3 + j4)


+
−1 + j1.25
z − (3 − j4)


+
2


z − 1
,


which is the same as result obtained in Example 13.4(iii).


13.11.2 Computing poles and zeros from the z-transfer function


M A T L A B provides the built-in function tf2zp to calculate the location of the
poles and zeros from the z-transfer function. Another function zplane can be
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used to plot the poles and zeros in the complex z-plane. In terms of Eq. (13.48),


the syntaxes for these functions are given by


>> [Z,P,K] = tf2zp(B,A); % Calculate poles and zeros


>> zplane(Z,P); % plot poles and zeros,


where the input variables B and A are defined as follows:


A = [an an−1 . . . a0] and B = [bm bm−1 . . . b0].


They are obtained from the transfer function given in Eq. (13.48). The vector


Z contains the location of the zeros, vector P contains the location of the poles,
while K returns a scalar providing the gain of the numerator.


Example 13.21


For the z-transfer function


H (z) =
2z(3z + 17)


(z − 1)(z2 − 6z + 25)
,


compute the poles and zeros and give a sketch of their locations in the complex


z-plane.


Solution


The M A T L A B code to determine the location of zeros and poles is listed below.


The explanation follows each instruction in the form of comments.


>> B = [0, 6, 34, 0]; % Coefficients of the numerator N(z)
>> A = [1, -7, 31, -25]; % Coefficients of the denominator D(z)
>> [Z,P,K] = tf2zp(B,A) % Calculate poles and zeros
>> zplane(Z,P) % plot poles and zeros


The returned values are given by


Z = [0, -5.6667],


P = [3.0000+4.0000j 3.0000-4.0000j 1.0000] and K = 6.


The transfer function H (z) can therefore be expressed as follows:


H (z) = 6
z(z + 5.6667)


(z − (3 + j4))(z − (3 − j4))(z − 1)


= 6
z−1(1 + 5.6667z−1)


(1 − (3 + j4)z−1)(1 − (3 − j4)z−1)(1 − z−1)
.


The pole–zero plot for H (z) is shown in Fig. 13.11.
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4Fig. 13.11. Location of poles and


zeros obtained in Example 13.21


using MATLAB


13.11.3 Computing the z-transfer function from poles and zeros


M A T L A B provides the built-in function zp2tf to calculate the z-transfer
function from poles and zeros. In terms of Eq. (13.49), the syntax for zp2tf
is given by


>> [B,A] = zp2tf(Z,P,K); % Calculate poles and zeros


where vector Z contains the location of the zeros, vector P contains the location
of the poles, andK is a scalar providing the gain of the numerator. The numerator
coefficients are returned in B and the denominator coefficients in A.


Example 13.22


Consider the poles and zeros calculated in Example 13.21. Using the values of


the poles and, zeros and the gain factor, determine the transfer function H (z).


Solution


The M A T L A B code to determine the coefficients of the transfer function is


listed below. The explanation follows each instruction in the form of comments.


>> Z = [0; -5.666667]; % Zeros in a column vector


>> P = [3+4 * j; 3-4 * j; 1]; % Poles in a column vector


>> K = 6; % Gain of the numerator


>> [B,A] = zp2tf(Z,P,K); % Calculate poles and zeros


The returned values are given by


B = [0 6 34 0] and A = [1 -7 31 -25],


which implies that the transfer function is given by


H (z) =
6z2 + 34z


z3 − 7z2 + 31z − 25
.
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The aforementioned expression is identical to the transfer function specified in


Example 13.21.


13.12 Summary


In this chapter, we defined the bilateral z-transform for DT sequences as follows:


z-analysis equation X (z) = ℑ
{


x[k]e−σk
}


=
∞∑


k=−∞
x[k]z−k .


z-synthesis equation x[k] =
1


2π j


∮


C


X (z)zk−1dz.


Unlike the DTFT, which requires the DT sequences to be absolutely summable


for the DTFT to exist, the z-transform exists for a much larger set of DT


sequences. Associated with the bilateral z-transform is a region of convergence


(ROC) in the complex z-plane over which the z-transform is defined.


For causal sequences, the bilateral z-transform simplifies to the unilateral


z-transform, defined in Section 13.2 as follows:


unilateral z-transform X (z) =
∞∑


k=0
x[k]z−k .


Section 13.3 introduced the look-up table, the partial fraction expansion, and


the power-series-based approaches for determining the inverse z-transform of


a rational function.


Section 13.4 presented the properties of the z-transform, which are summa-


rized in the following.


(1) The linearity property states that the overall z-transform of a linear com-


bination of DT sequences is given by the same linear combination of the


individual z-transforms.


(2) The time-scaling property is only applicable for time-expanded (or inter-


polated) sequences. The time-scaling property states that interpolating a


sequence in the time domain compresses its z-transform in the complex


z-domain.


(3) The time-shifting property states that shifting a sequence in the time domain


towards the right-hand side by an integer constant m is equivalent to mul-


tiplying the z-transform of the original sequence by a complex term z−m .


Similarly, shifting towards the left-hand side by integer m is equivalent to


multiplying the z-transform of the original sequence with a complex term


zm .


(4) Time differencing is defined as the difference between an original sequence


and its time-shifted version with a shift of one sample towards the right-


hand side. The time-differencing property states that time-differencing a


signal in the time domain is equivalent to multiplying its DTFT by a factor


of (1 − z−1).
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(5) The z-domain-differentiation property states that differentiating the z-


transform with respect to z and then multiplying with the variable −z
is equivalent to multiplying the original sequence by a factor of k.


(6) The time-convolution property states that the convolution of two DT


sequences is equivalent to the multiplication of the z-transforms of the


two sequences in the z-domain.


(7) The time-accumulation property is the converse of the time-differencing


property. The accumulation property states that the z-transform of the run-


ning sum of a sequence is obtained by multiplying the z-transform of the


original sequence by a factor of z/(z − 1).
(8) The initial- and final-value theorems can be used to determine the initial


value at k = 0 and final value at k → ∞ directly from the z-transform of
a DT sequence.


Section 13.5 covered the application of the z-transform in solving finite-


difference equations and showed how the z-transfer function can be obtained


from a difference equation of the following form:


H (z) =
Y (z)


X (z)
=


bm + bm−1z−1 + · · · + b0z−m


an + an−1z−1 + · · · + a0z−n
.


Section 13.6 defined the characteristic equation, poles, and zeros of an LTID


system from the above rational expression of the z-transfer function. The char-


acteristic equation for the transfer function is based on the denominator D(z)


of the z-transfer function H (z) and is defined as follows:


D(z) = anzn + an−1zn−1 + · · · + a0 = 0.


The roots of the characteristic equation define the poles of the LTID system as


locations in the complex z-plane, where |H (z)| has an infinite value. Similarly,
the zeros of the transfer function H (z) of an LTID system are finite locations


in the complex z-plane where |H (z)| approaches zero. If N (z) is the numerator
of H (z), the zeros can be obtained by calculating the roots of the following


equation:


N (z) = bm zm + bm−1zm−1 + · · · + b0 = 0.


Sections 13.7 and 13.8 exploited the relationship between the z-transfer function


H (z) of an LTID system and the Laplace transfer function H (s) of an equivalent


LTIC system to derive the stability conditions for a causal and stable LTID


system.


Section 13.9 showed how the magnitude and phase spectra can be obtained


directly from the z-transform, while Section 13.10 compared the z-transfer-


function-based analysis techniques with those based on the DTFT transfer


function. We showed that the z-transform is a more convenient tool for transient


analysis, while the DTFT is more appropriate for steady state analysis.


Finally, Section 13.11 illustrated some M A T L A B library functions used to


analyze the LTID systems in the complex z-domain.
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Problems


13.1 Calculate the bilateral z-transform of the following non-causal functions:
(i) x1[k] = 0.5k+1u[k + 5];


(ii) x2[k] = (k + 2)0.5|k|;
(iii) x3[k] = |k + 2| × 0.5|k+2|;
(iv) x4[k] = 3k+1 cos


(π


3
k −


π


4


)


u[−k + 5].


13.2 Calculate the unilateral z-transform of the following causal functions:


(i) x1[k] =











1 k = 10, 11
2 k = 12, 15
0 otherwise;


(ii) x2[k] = 3−k+2u[k] +
4∑


m=1
mδ[k − m];


(iii) x3[k] = sin
(


πk


5
+


π


3


)


u[k];


(iv) x4[k] = 2−k sin
(


πk


5
+


π


3


)


u[k];


(v) x5[k] = ku[k].


13.3 Using the partial fraction method, calculate the inverse z-transform of the
following DT causal sequences:


(i) X1(z) =
z


z2 − 0.9z + 0.2
;


(ii) X2(z) =
z


z2 − 2.1z + 0.2
;


(iii) X3(z) =
z2 + 2


(z − 0.3)(z + 0.4)(z − 0.7)
;


(iv) X4(z) =
z2 + 2


(z − 0.3)(z + 0.4)2
;


(v) X5(z) =
4z−1


1 − 5z−1 + 6z−2
;


(vi) X6(z) =
4z−2


10 − 6(z1 + z−1)
;


(vii) X7(z) =
2z−2


(1 − 4z−1)2(1 − 2z−1)
.


13.4 Using the power series expansion method, calculate the inverse
z-transform of the DT causal sequences in Problem 13.3 for the first


five non-zero values.


13.5 (a) Prove entry (12) of Table 13.1. (b) Using the proved result, derive the
following z-transform pair used in Example 13.17(i):


2
√


3
sin


(
πk


3
+


π


6


)


u[k]
z←→


1


1 − z−1 + z−2
.
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13.6 (a) Using the z-domain-differentiation property and pairs (9) and (12)
in Table 13.1, show that


(i) k sin(Ω0k)u[k]
z←→


z(z2 − 1) sinΩ0
(z2 − 2z cosΩ0 + 1)2


, ROC: |z| > 1;


(ii) k sin(Ω0k + θ )u[k]
z←→


z[sin(Ω0+θ )z2−2z sin θ − sin(Ω0 − θ )]
(z2 − 2z cosΩ0 + 1)2


,


ROC: |z| > 1.
(b) Using the above result, or otherwise, prove the following z-transform


pair used in Example 13.17 (ii):


[
2


3
sin


(π


3
k
)


−
k


√
3


sin
(π


3
k +


π


6


)
]


u[k]
z←−−→


(
√


3/2)z


(z2 − z + 1)2


=
(
√


3/2)z−3


(1 − z−1 + z−2)2
, ROC: |z| > 1.


13.7 Using the time-shifting property and the results in Example 13.3(v),
calculate the z-transform of the following function:


g[k] =











1 k = 10, 11
2 k = 12, 15
0 otherwise.


13.8 Prove the initial-value theorem stated in Section 13.4.8.


13.9 Prove the final-value theorem stated in Section 13.4.8.


13.10 Determine the z-transform of the following sequences using the specified
property:


(i) x[k] = (5/6)ku[k − 6], based on the z-transform pair (4) in Table
13.1 and the time-shifting property;


(ii) x[k] = k(2/9)ku[k], based on the z-transform pair (4) in Table 13.1
and the z-domain differentiation property;


(iii) x[k] = ku(k), based on the z-transform pair (3) in Table 13.1 and
the accumulation property;


(iv) x[k] = ek sin(k)u[k], based on the z-transform pair (4) in Table 13.1
and the linearity property.


13.11 By selecting different ROCs, calculate four possible impulse responses
of the transfer function


H (z) =
1 − z−1


(1 − 0.5z−1)(1 − 0.75z−1)(1 − 1.25z−1)
.


Determine the impulse response of the system that is stable. Is it causal?


Why or why not?


13.12 You are given the unit impulse response of an LTID system,


h[k] = 5−ku[k].
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(i) Determine the impulse response hinv[k] of the inverse system that


satisfies the property


hinv[k] ∗ h[k] = δ[k].


(ii) Using any method, obtain the output y[k] of the original system


h[k] for each of the following inputs: (a) x1[k] = u[k]; (b) x2[k] =


5δ[k − 4] − 2δ[k + 4]; and (c) x3[k] = e
(k+2)u[−k + 2].


13.13 You are hired by a signal processing firm and you are hoping to impress
them with the skills that you have acquired in this course. The firm asks


you to design an LTID system that has the property that if the input is


given by


x[k] = (1/3)k u[k] − (1/4)k−1 u[k],


the output is given by


y[k] = (1/4)k u[k].


(i) Determine the z-transfer function of the LTID system.


(ii) Determine the impulse response of the LTID system.


(iii) Determine the difference-equation representation of the LTID sys-


tem.


13.14 The transfer function of a physically realizable system is as follows:


H (z) =
1


(1 − 0.3z−1)(1 − 0.5z−1)(1 − 0.7z−1)
.


(i) Determine the impulse response of the LTID system.


(ii) Determine the difference-equation representation of the LTID sys-


tem.


(iii) Determine the unit step response of the LTID system by using the


time-convolution property of the z-transform.


(iv) Determine the unit step response of the LTID system by convolv-


ing the unit step sequence with the impulse response obtained in


part (i).


13.15 Given the difference equation


y[k] + y[k − 1] +
1


4
y[k − 2] = x[k] − x[k − 2],


(i) determine the transfer function representing the LTID system;


(ii) determine the impulse response of the LTID system;


(iii) determine the output of the LTID system to the input x[k] =


(1/2)ku[k] using the time-convolution property;


(iv) determine the output of the LTID system by convolving the input


x[k] = (1/2)ku[k] with the impulse response obtained in part (ii).
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13.16 Determine the output response of the following LTID systems with the
specified inputs and impulse responses:


(i) x[k] = u[k + 2] − u[−k − 3] and h[k] = u[k − 5] − u[k − 6];
(ii) x[k] = u[k] = u[k − 9] and h[k] = 3−ku[k − 4];


(iii) x[k] = 2−ku[k] and h[k] = k(u[k] − u[k − 4]);
(iv) x[k] = u[k] and h[k] = 4−|k|;
(v) x[k] = 2−ku[k] and h[k] = 2ku[−k − 1].


13.17 When the DT sequence


x[k] = (1/4)k u[k] + (1/3)ku[k]


is applied at the input of a causal LTID system, the output response is


given by


y[k] = 2 (1/4)k u[k] − 4 (3/4)k u[k].


(i) Determine the z-transfer function H(z) of the LTID system.


(ii) Determine the impulse response h[k] of the LTID system.


(iii) Determine the difference-equation representation of the LTID sys-


tem.


13.18 Consider an LTIC system with the following transfer function:


H (s) =
esT


esT − 0.3
.


Calculate the output response y(t) of the LTIC system for the following


input sequence:


f (t) =
∞∑


k=0
(0.2)kT δ(t − kT ).


13.19 Plot the poles and zeros of the following LTID systems. Assuming that
the systems are causal, determine if the systems are BIBO stable.


(i) H (z) =
z − 2


(z − 0.6 + j0.8)(z2 + 0.25)
;


(ii) H (z) =
(z − 2)(z − 1)


(z2 − 2.5z + 1)(z2 + 0.25)
;


(iii) H (z) =
z − 0.2


(z + 0.1)(z2 + 4)
;


(iv) H (z) = z−1 − 2z−2 + z−3;


(v) H (z) =
(z2 + 2.5z + 0.9 + j0.15)z


z3 + (1.8 + j0.3)z2 + (0.6 + j0.6)z − 0.2 + j0.3
;


(vi) H (z) =
z3 − 1.2z2 + 2.5z + 0.8


z6 + 0.3z5 + 0.23z4 + 0.209z3 + 0.1066z2 − 0.04162z − 0.07134
.
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13.20 Consider an LTID system with the following transfer function:


H (z) =
z


z + 0.1
.


(i) Using M A T L A B , calculate the frequency response H (ejΩ) forΩ =
[−π :π/20:π ]. Plot the amplitude and phase spectra.


(ii) If the DT signal x[k] = 5 cos(πk/10) is passed through the system,
what will be the steady state output of the system?


13.21 (a) Using M A T L A B , determine the poles and zeros of the z-transfer
functions specified in Problem 13.19. (b) Plot the location of poles and


zeros in the complex z-plane using M A T L A B .


13.22 (a) Using M A T L A B , determine the partial fraction expansion of the
z-transfer functions specified in Problem 13.19. (b) From the par-


tial fraction expansion, calculate the impulse response function of the


systems.


13.23 Assume that the functions in Problem 13.3 are z-transfer functions of
some causal LTID systems. (a) Using M A T L A B , determine the impulse


responses of these systems. (b) Plot the impulse responses.








C H A P T E R


14 Digital filters


A digital filter is defined as a system that transforms a sequence, applied at


the input of the filter, by changing its frequency characteristics in a predefined


manner. A convenient classification of digital filters is obtained by specifying the


shape of their magnitude and phase spectra in the frequency domain. Based on


the magnitude response, digital filters are classified in four important categories:


lowpass, highpass, bandpass, and bandstop. A lowpass filter removes the higher-


frequency components from an input sequence and is widely used to smooth out


any sharp changes present in the sequence. An example of lowpass filtering is the


elimination of the hissing noise present in magnetic audio cassettes. Since the


background hissing noise contains higher-frequency components than the music


itself, a lowpass filter removes the hissing noise. A highpass filter eliminates the


lower-frequency components and tends to emphasize sharp transitions in the


input sequence. An application of highpass filtering is the detection of edges of


different objects present in still images. While eliminating the smooth regions,


represented by low frequencies, within each object, a highpass filter retains


the boundaries between the objects. A bandpass filter allows a selected range


of frequencies, referred to as the pass band, within the input sequence to be


preserved at the output of the filter. All frequencies outside the pass band are


eliminated from the input sequence. Bandpass filters are used, for example,


in detecting the dual-tone multifrequency (DTMF) signals in digital telephone


systems. As shown in Fig. 14.1, each DTMF key is represented by a pair of


frequencies. At the receiver, a bank of bandpass filters, each tuned to one of the


seven frequencies specified in Fig. 14.1, is used to determine the pressed key


by isolating the pair of frequencies present in the transmitted signal. Bandstop


filters are the converse of bandpass filters and allow all frequencies, except those


in a specified stop band, to be retained at the output. An application of bandstop


filters is to eliminate narrow-band noise, seen as bright and dark blotches in


digital videos.


This chapter focuses on digital filters and introduces the basic filtering


concepts and implementations useful in the design of digital filters. Sec-


tion 14.1 describes four categories of frequency-selective filters, based on the
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magnitude characteristics of the transfer function H (Ω). A second classifica-


tion of digital filters is made on the basis of the length of the impulse response


h[k] and is covered in Section 14.2. Yet another classification of digital filters


is made on the basis of the linearity of the phase <H (Ω), which is presented


in Section 14.3. The impulse response of the ideal frequency-selective filters,


considered in Section 14.1, is infinite, which makes them physically unreal-


izable. Section 14.4 describes realizable implementations of the ideal filters,


which are causal. Sections 14.5–14.7 cover physical implementations of digital


filters using special-purpose hardware confined to delays, adders, and scalar


multipliers. During the actual implementation of digital filters in software or


hardware, the filter coefficients can only be represented with finite precision.


The impact of finite-precision arithmetic on the performance of digital filters


is covered in Section 14.8. Important M A T L A B library functions used in the


analysis of digital filters are presented in Section 14.9. Finally, Section 14.9


concludes the chapter with summary of the important concepts.


2ABC 3DEF1697 Hz


4GHI 5JKL 6MNO770 Hz


7PQRS 8TUVW 9WXYZ852 Hz


1477 Hz1336 Hz1209 Hz


7PQRS 8TUVW 9WXYZ941 Hz


Fig. 14.1. Dual-tone


multifrequency (DTMF) signals


used in digital telephone


systems.


14.1 Filter classification


A digital filter is often classified on the basis of the magnitude and phase spectra


derived from its transfer function. In this section, we consider a classification


based on the shape of the magnitude spectrum of the filter. In the case of ideal


filters, the shape of the magnitude spectrum is rectangular with a sharp transition


between the range of frequencies passed and the range of frequencies blocked


by the filter. The range of frequencies passed by the filter is referred to as the


pass band of the filter, while the range of blocked frequencies is referred to as


the stop band.


14.1.1 Ideal lowpass filter


The transfer function Hilp(Ω) of an ideal lowpass filter, with a cut-off frequency


of Ωc, is given by


Hilp(Ω) =
{


1 |Ω| ≤ Ωc
0 Ωc < |Ω| ≤ π,


(14.1a)


which has a pass band of |Ω| ≤ Ωc and a stop band ofΩc ≤ |Ω| ≤ π . Since the


frequencyΩ = π is the highest frequency present in the DTFT, the lowpass filter


removes the higher frequencies in the range of Ωc < |Ω| ≤ π . The magnitude


response of the lowpass filter is shown in Fig. 14.2(a). It is observed that the


lowpass filter has a unity gain in the pass band and zero gain in the stop band.


Sometimes, a lowpass filter has a pass band gain different from unity. If the


gain is greater than one, the pass band signal is amplified, if the gain is less than


one, the pass band signal is attenuated.
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W
0


Hilp(W)


Wc−Wc p−p


0 Wc1 Wc2−Wc1−Wc2 p−p
W


Hibp(W)


0 Wc1 Wc2−Wc1−Wc2 p−p
W


Hibs(W)


Hihp(W)


0 Wc−Wc p−p
W


(a) (b)


(c) (d)


1


1


1


1


Fig. 14.2. Magnitude response of ideal filters. (a) Lowpass filter; (b) highpass filter; (c) bandpass filter;


(d) bandstop filter.


The impulse response hilp[k] of the ideal lowpass filter is obtained by calcu-


lating the inverse DTFT of Eq. (14.1a) and is given by


hilp[k] =
sin(kΩc)


kπ
=
Ωc


π
sinc


(


kΩc


π


)


. (14.1b)


14.1.2 Ideal highpass filter


The transfer function Hihp(Ω) of an ideal highpass filter, with a cut-off frequency


of Ωc, is given by


Hihp(Ω) =
{


0 |Ω| < Ωc
1 Ωc ≤ |Ω| ≤ π,


(14.2a)


which has a pass band of Ωc ≤ |Ω| ≤ π and a stop band of |Ω| < Ωc. From


the magnitude response of the highpass filter shown in Fig. 14.2(b), it is clear


that the highpass filter blocks the lower frequencies |Ω| < Ωc, while the higher


frequencies Ωc ≤ |Ω| ≤ π are passed with a unity gain.


The transfer function Hihp(Ω) of an ideal highpass filter is related to the


transfer function Hilp(Ω) of an ideal lowpass filter as follows:


Hihp(Ω) = 1 − Hilp(Ω), (14.2b)


provided that the cut-off frequenciesΩc of both filters are the same. Calculating


the inverse DTFT of Eq. (14.2b), the impulse response hihp[k] of the ideal


highpass filter is obtained:


hihp[k] = δ[k] − hilp[k]. (14.3a)
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Substituting the expression for hilp[k] given in Eq. (14.1b) into the above equa-


tion, the impulse response hihp[k] can be expressed as follows:


hihp[k] = δ[k] − hilp[k] = δ[k] −
Ωc


π
sinc


(


kΩc


π


)


. (14.3b)


14.1.3 Ideal bandpass filter


The transfer function Hibp(Ω) of an ideal bandpass filter, with cut-off frequencies


of Ωc1 and Ωc2, is given by


Hibp(Ω) =
{


1 Ωc1 ≤ |Ω| ≤ Ωc2


0 Ωc1 < |Ω| and Ωc2 < |Ω|≤ π,
(14.4a)


which has a pass band of Ωc1 ≤ |Ω| ≤ Ωc2 and a stop band of |Ω| ≤ Ωc1 and


Ωc2 ≤ |Ω| ≤ π . The magnitude response of the ideal bandpass filter is shown


in Fig. 14.2(c).


The transfer function Hibp(Ω) is expressed in terms of the transfer functions


of two ideal lowpass filters:


Hibp(Ω) = Hilp1(Ω)


∣


∣


∣


cut-off freq=Ωc2
− Hilp2(Ω)


∣


∣


∣


cut-off freq=Ωc1
. (14.4b)


Calculating the inverse DTFT of Eq. (14.4a), the impulse response hibp[k] of


the ideal bandpass filter can be expressed as follows:


hibp[k] = hilp1[k]
∣


∣


Ωc=Ωc2
− hilp2[k]


∣


∣


Ωc=Ωc1
. (14.4c)


Substituting the expression for hilp[k] given in Eq. (14.1b) into the above equa-


tion, the impulse response hibp[k] of the ideal bandpass filter can be expressed


as follows:


hibp[k] =
Ωc2


π
sinc


(


kΩc2


π


)


−
Ωc1


π
sinc


(


kΩc1


π


)


. (14.4d)


Equation. (14.4b) shows that a bandpass filter can be formed by a parallel


configuration of two lowpass filters. The first lowpass filter in the parallel con-


figuration should have a cut-off frequency of Ωc2, while the second lowpass


filter has a cut-off frequency of Ωc1. Other configurations of bandpass filters


are also possible, such as a series combination of a lowpass and a highpass


filter.


14.1.4 Ideal bandstop filter


The transfer function Hibs(Ω) of an ideal bandstop filter, with cut-off frequencies


Ωc1 and Ωc2, is given by


Hibs(Ω) =


{


0 Ωc1 ≤ |Ω| ≤ Ωc2


1 |Ω| < Ωc1 and Ωc2 < |Ω| ≤ π,
(14.5a)


which has a pass band of |Ω| < Ωc1 and Ωc2 < |Ω| ≤ π and a stop band of


Ωc1 ≤ |Ω| ≤ Ωc2. The magnitude response of the ideal bandstop filter is shown


in Fig. 14.2(d).
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Table 14.1. Impulse response of ideal lowpass, highpass, bandpass, and bandstop


filters in terms of normalized cut-off frequencies, Ωn = Ωc/π
The pass-band gain is assumed to be unity. For bandpass and bandstop filters, there


are two cut-off frequencies, and Ωn2 > Ωn1


Filter Normalized cut-


Type off frequency Ideal filter impulse response


Lowpass Ωn hilp[k] = Ωn sinc[kΩn]
Highpass Ωn hilp[k] = δ[k] − Ωn sinc[kΩn]
Bandpass Ωn1,Ωn2 hibp[k] = Ωn2 sinc[kΩn2] − Ωn1 sinc[kΩn1]
Bandstop Ωn1,Ωn2 hibs[k] = δ[k] − Ωn2 sinc[kΩn2] + Ωn1 sinc[kΩn1]


The transfer function Hibs(Ω) of an ideal bandstop filter is related to the


transfer function Hibp(Ω) of an ideal bandpass filter by


Hibs(Ω) = 1 − Hibp(Ω), (14.5b)


provided that the the cut-off frequenciesΩc1 andΩc2 of both filters are the same.


Calculating the inverse DTFT of Eq. (14.5b), the impulse response hibs[k] of


the ideal bandstop filter is obtained:


hibs[k] = δ[k] − hibp[k]
∣


∣


Ωc=Ωc2,Ωc1


= δ[k] = hilp1[k]
∣


∣


Ωc=Ωc2
− hilp2[k]


∣


∣


Ωc=Ωc1
(14.6)


= δ[k] −
Ωc2


π
sinc


(


kΩc2


π


)


−
Ωc1


π
sinc


(


kΩc1


π


)


.


Equation (14.6) shows that a bandstop filter can be formed by a parallel con-


figuration of two lowpass filters having cut-off frequencies Ωc2 and Ωc1.


The impulse responses of the four types of frequency-selective ideal filters


discussed above are summarized in Table 14.1 in terms of the normalized cut-


off frequencies. It is observed that the impulse responses primarily include one


or two sinc functions and that all four types of ideal filters are non-causal.


14.2 FIR and IIR filters


A second classification of digital filters is made on the length of their impulse


response h[k]. The length (or width) of a digital filter is the number N of samples


k beyond which the impulse response h[k] is zero in both directions along the


k-axis. A filter of length N is also referred to as an N -tap filter.


A finite impulse response (FIR) filter is defined as a filter whose length N


is finite. On the other hand, if the length N of the filter is infinite, the filter is


called an infinite impulse response (IIR) filter. Below, we provide examples of


FIR and IIR filters with length N specified in the parentheses.
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h[k] = 0.6k u[k]


k


1


0.6
0.36


0 1 2 3 4 5−4 −3 −2 −1−5


> 3


≤ 3


0


1 −
3


|k|


|k|
h[k] =


|k|


k


0 1 2 3 4 5−4 −3 −2 −1−5


1


0.67


0.33


0.67


0.33


(a) (b)


Fig. 14.3. (a) FIR filter; (b) IIR


filter.


FIR filters


Triangular sequence h[k] =











1 −
|k|
3


|k| ≤ 3
0 elsewhere


(N = 5);


shifted impulse sequence h[k] = 0.1δ[k − 2] + δ[k] + 0.2δ[k − 2]


(N = 5);


exponentially decaying triangular sequence h[k] =


5
∑


m=−5


0.4|k|δ[k − m]


(N = 11);


decaying impulses h[k] =


10 000
∑


m=0


1


m + 1
δ[k − m] (N = 10 001).


IIR filters


Causal decaying exponential h[k] = 0.6ku[k] (N = ∞);


causal decaying sinusoidal h[k] = 0.5k sin(0.2πk)u[k] (N = ∞).


Other examples of IIR filters include non-causal ideal filters as shown in


Table 14.1.


Figure 14.3(a) plots the triangular sequence with length N = 5 as an example


of the FIR filter. Likewise, Fig. 14.3(b) plots the causal decaying exponential


sequence with infinite length as an example of the IIR filter. An important


consequence of a finite-length impulse response h[k] is observed during the


determination of the output response of an FIR filter resulting from a finite-


length input sequence. Since the output response is obtained by the convolution


of the impulse response and the input sequence, the output of an FIR filter is


finite in length if the input sequence itself is finite in length. On the other hand,


an IIR filter produces an output response that is always infinite in length.


A second consequence of the finite length of the FIR filters is observed in the


stability characteristics of such filters. Recall that an LTID system with impulse


response function h[k] is BIBO stable if


∞
∑


k=−∞


|h[k]| < ∞.








627 14 Digital filters


Since the FIR filter is non-zero for only a limited number of samples k, the


stability criterion is always satisfied by an FIR filter. As IIR filters contain an


infinite number of impulse functions, even if the amplitudes of the constituent


impulse functions are finite, the summation
∑


h[k] in an IIR filter may not be


finite. In other words, it is not guaranteed that an IIR filter will always be stable.


Therefore, care should be taken when designing IIR filters so that the filter is


stable.


The implementation cost, typically measured by the number of delay ele-


ments used, is another important criterion in the design of filters. IIR filters are


implemented using a feedback loop, in which the number of delay elements is


determined by the order of the IIR filter. The number of delay elements used in


FIR filters depends on its length, and so the implementation cost of such filters


increases with the number of filter taps. An FIR filter with a large number of


taps may therefore be computationally infeasible.


14.3 Phase of a digital filter


In Section 14.1, we introduced ideal frequency-selective filters as having rect-


angular magnitude response with sharp transitions between the pass band and


stop band. The phase of ideal filters is assumed to be zero at all frequencies. An


ideal filter is physically unrealizable because of the sharp transitions between


the pass bands and stop bands and also because of the zero phase. In this sec-


tion, we illustrate the effect of the phase on the performance of digital filters.


In particular, we show that distortionless transmission within the pass band can


be achieved by using a filter having a linear phase within the pass band.


Consider the following sinusoidal sequence:


x[k] = A1 cos(Ω1k) + A2 cos(Ω2k) + A3 cos(Ω3k),


consisting of three tone frequencies Ω1 < Ω2 < Ω3 applied at the input of a


physically realizable lowpass filter with the frequency response H (Ω) illustrated


in Fig. 14.4. The magnitude spectrum |H (Ω)| of the filter is shown by a solid
line, while the phase spectrum <H (Ω) is shown by a dashed line. The filter


has a cut-off frequency Ωc, such that Ω2 < Ωc < Ω3, and the cut-off frequency


lies within the transition band. Based on the frequency response H (Ω) shown


0


H(W)


−W3


stop
band pass band


w


stop
band


transition


band


transition


band


−W2 −W1 W1 W2 W3 p−p
Fig. 14.4. Physically realizable


lowpass filter with transition


bands and non-zero phase.








628 Part III Discrete-time signals and systems


in Fig. 14.4, the magnitudes and phases of the transfer function at the tone


frequencies are given by


frequency Ω = ±Ω1 |H (Ω)| = 1, <H (Ω) = ∓m1Ω1;
frequency Ω = ±Ω2 |H (Ω)| = 1, <H (Ω) = ∓m2Ω2;
frequency Ω = ±Ω3 |H (Ω)| = 0, <H (Ω) = ∓m3Ω3;


where m1, m2, and m3 are the slopes of the phase response at Ω = Ω1,Ω2 and
Ω3, respectively.


Using the convolution property, the DTFT of the output of the filter is given


by


Y (Ω) = A1π [δ(Ω−Ω1)ejm1Ω + δ(Ω−Ω1)e−jm1Ω]
+ A2π [δ(Ω+Ω2)ejm2Ω + δ(Ω−Ω2)e−jm2Ω]
+ A3π [δ(Ω+Ω3) + δ(Ω−Ω3)] · 0.


Taking the inverse DTFT of the above equation, we obtain


y[k] = A1 cos(Ω1(k − m1)) + A2 cos(Ω2(k − m2)).


For m1 �= m2, the input tones A1 cos(Ω1k) and A2 cos(Ω2k) are delayed une-
qually and the output sequence y[k] is a distorted version of the sinusoidal


components present within the pass band of the filter. To retain the shape of the


pass-band components, each sinusoidal term A1 cos(Ω1k) and A2 cos(Ω2k) in


y[k] should be delayed equally, i.e. m1 = m2. In signal processing, the following
two types of delays are defined:


phase delay dp = −φ(Ω)/Ω;


roup delay dg = −
dφ(Ω)


dΩ
;


where φ(Ω) is the phase of the filter transfer function, i.e. φ(ω) = � H (ω).
In other words, the phase delay (dp) is defined as the phase divided by the


frequency, whereas the group delay (dg) is defined as the derivative of the phase


with respect to frequency. From the above definitions, it is observed that the


delay of a filter will be constant if the phase φ(Ω) of the filter is a linear function


of frequency. A filter is said to have a linear phase response if it satisfies the


following relationships.


φ(Ω) = −αΩ, or φ(Ω) = −αΩ+ β.


The first condition ensures that the filter has constant phase and group delay,


whereas the second condition ensures only constant group delay. Although it is


desirable to have both constant group and phase delays, a constant group delay


is generally sufficient in many applications.


Based on the above discussion, the conditions for distortionless filtering,


where the pass-band components are retained precisely at the filter output, are


enlisted as follows.
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(1) The pass-band gain of the filter should be the same for all frequency com-


ponents present in the input signal that lie within the pass-band of the


filter.


(2) The phase <H (Ω) of the filter should be linear for all input frequency


components that lie within the pass band of the filter.


(3) The stop-band gain of the filter should be zero within the stop band of the


filter.


Conditions (1)–(3) are valid for distortionless transmission within the pass bands


of both FIR and IIR filters and are checked by plotting the magnitude and phase


spectra of the filters. For FIR filters, the linear phase condition (condition (2))


can also be checked directly from the impulse response h[k] as explained


next.


14.3.1 Linear-phase FIR filters


Consider an FIR filter with impulse response h[k], which is non-zero within


the range 0 ≤ k ≤ N − 1. The z-transform of the FIR filter is expressed as


follows:


H (z) =


N−1
∑


k=0


h[k]z−k = h[0] + h[1] z−1 + h[2] z−2 + · · · + h[N − 1] z−(N−1).


(14.7)


The following proposition provides sufficient conditions for the phase linearity


of an FIR filter.


Proposition 14.1 If the impulse response function of an N-tap filter, with


z-transfer function given by Eq. (14.7), satisfies either of the following


relationships:


symmetrical impulse response h[k] = h[N − 1 − k]; (14.8a)


antisymmetrical impulse response h[k] = −h[N − 1 − k], (14.8b)


then the frequency response function can be represented as follows:


H (Ω) = G(Ω)ej(−αΩ+β), (14.9)


where G(Ω) is a real-valued function ofΩ, α = (N − 1)/2, and β is a constant


that can be either zero or π/2. Depending on the symmetry/anti-symmetry and


even/odd length of h[k], the FIR filters can be divided into four types: type 1,


type 2, type 3 and type 4. Table 14.2 defines these four types of filters and the


corresponding G(Ω) and β values. It is observed that type 1 and type 2 filters


have constant phase and group delays, whereas type 3 and type 4 filters only


have constant group delay.
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Table 14.2. Linear-phase FIR filter types and the corresponding G(Ω) and β values


The coefficients a[k ] and b[k ] in column 4 are defined as follows: a[0] = h[(N − 1)/2], a[k ] = 2h[(N − 1)/
2 − k ], b[k ] = 2h[N /2 − k ]


Type of FIR filter Length, N Symmetry G(Ω) β


Type 1 odd h[k] = h[N − 1 − k]
(N−1)/2


∑


k=0
a[k] cos(Ωk) 0


Type 2 even h[k] = h[N − 1 − k]
N/2
∑


k=1
b[k] cos[Ω(k − 0.5)] 0


Type 3 odd h[k] = −h[N − 1 − k]
(N−1)/2


∑


k=1
a[k] sin(Ωk) π/2


Type 4 even h[k] = −h[N − 1 − k]
N/2
∑


k=1
b[k] sin[Ω(k − 0.5)] π/2


Proof


We prove Proposition 14.1 for a type 1 filters. The proof for type 2, type 3, and


type 4 filters follows along the same lines.


By substituting z = exp(jΩ) in Eq. (14.7), we get


H (Ω) = h[0] + h[1] e−jΩ + · · · + h[N − 2] e−j(N−2)Ω + h[N − 1] e−j(N−1)Ω.


Taking exp(j(N − 1)Ω/2) common from the left-hand side of the above equa-
tion yields


H (Ω) = e−j(N−1)Ω/2
[


h[0] e j(N−1)Ω/2 + h[1] e j(N−3)Ω/2


+ · · · + h[N − 2] e−j(N−3)Ω/2 + h[N − 1] e−j(N−1)Ω/2
]


. (14.10)


We now pair the first term with the last term, the second term with the second


last term, and so on for the remaining terms. Note that for a type 1 filter, N has an


odd value and h[k] = h[N – 1 – k]. By pairing terms in Eq. (14.10), we obtain


H (Ω) = e−j(N−1)Ω/2
[(


h[0] e j(N−1)Ω/2 + h[N − 1] e−j(N−1)Ω/2
)


+
(


h[1] e j(N−3)Ω/2 + h[N − 2]e−j(N−3)Ω/2
)


+ · · ·


+
(


h


[


N −1
2


−1
]


e jΩ + h
[


N −1
2


+1
]


e−jΩ
)


+ h
[


N − 1
2


]]


.


Because h[k] = h[N − 1 − k], the above equation reduces as follows:


H (Ω) = e−j(N−1)Ω/2
[


2h[0] cos


(


(N − 1)Ω
2


)


+ 2h[1] cos
(


(N − 3)Ω
2


)


+ · · · + 2h
[


N − 1
2


− 1
]


cos(Ω) + h
[


N − 1
2


]]


= e−j(N−1)Ω/2
{


h


[


N − 1
2


]


+
(N−3)/2
∑


k=0
2h[k] cos


[


Ω


(


N − 1
2


− k
)]


}


.
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Table 14.3. Examples of FIR filters with linear and non-linear phase


Number Phase


of taps, N z-transfer function, H (z) (linear or non-linear) Phase value


4 1 − 2z−1 + 2z−2 − z−3 type 4, linear −1.5Ω+ π/2
3 1 − z−2 type 3, linear −Ω+ π/2
3 1 + 2z−1 + 2z−2 non-linear
4 1 + 2z−1 + 2z−2 + z−3 type 2, linear −1.5Ω
4 1 + 2z−1 − 2z−2 + z−3 non-linear
5 1 + 2z−1 + 3z−2 + 2z−3 + z−4 type 1, linear −2Ω
5 1 + 2z−1 + 3z−2 + 2z−3 − z−4 non-linear


Substituting m = (N−1)
2


− k in the above equation, we obtain


H (Ω) = e−jN−1)Ω/2
{


h


[


N − 1
2


]


+
(N−1)/2
∑


m−1
2h


[


N − 1
2


− m
]


cos(mΩ)


}


= e−j(N−1)Ω/2
{


h


[


N − 1
2


]


+
(N−1)/2
∑


k=1
2h


[


N − 1
2


− k
]


cos(kΩ)


}


= e−j(N−1)Ω/2
{


(N−1)/2
∑


k=0
a[k] cos(kΩ)


}


,


where a[0] = h[(N − 1)/2] and a[k] = 2h[(N − 1)/2 − k]. It is observed that
the derived H (Ω) matches with Eq. (14.9), with α = (N − 1)/2 and G(Ω) given
in Table 14.2.


Example 14.1


Determine if the FIR filters specified in column 2 of Table 14.3 have linear


phase or not. Also determine the value of the phase.


Solution


The phase linearity can be determined using the conditions given in Eq. (14.8).


The third column of Table 14.3 shows whether a filter is linear phase and the


type of linear-phase filter. The phase function, i.e. (−αΩ+ β) in Eq. (14.9), is
shown in the fourth column.


To confirm the results of the last two entries of Table 14.3, Fig. 14.5 plots


the magnitude and phase spectra of the FIR filter specified in the second to last


row of Table 14.3. The phase plot in Fig. 14.5(b) confirms that the FIR filter


has a linear phase. Since a phase of π is the same as that of −π , the sharp
transitions at Ω = ±0.5π are not discontinuities but correspond to the same
value. The magnitude spectrum illustrates non-uniform gains within the pass


band and stop bands, implying that the FIR filter is not an ideal lowpass filter


despite having a linear phase.
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W
0 p−p −0.5p 0.5p


H (W)
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W
0 p−p −0.5p 0.5p


< H(W)−p


−0.5p


0


0.5p


(a) (b)


Fig. 14.5. Example of an FIR


filter H(z) = 1 + 2z−1 +
3z−2 + 2z−3 + z−4 with linear
phase. (a) Magnitude spectrum;


(b) phase spectrum.


W
0 p−p −0.5p 0.5p


H(W)
7


W
0 p−p −0.5p 0.5p


< H(W)−p


−0.5p


0


0.5p


(a) (b)


Fig. 14.6. Example of an FIR


filter H(z) = 1 + 2z−1 +
3z−2 + 2z−3 − z−4) with
non-linear phase. (a) Magnitude


spectrum; (b) phase spectrum.


Likewise, Fig. 14.6 plots the magnitude and phase spectra of the FIR filter


specified in the last row of Table 14.3. The phase plot shown in Fig. 14.6(b)


confirms that the FIR filter has a non-linear phase.


14.4 Ideal versus non-ideal filters


Table 14.1 shows the impulse response of four types of frequency-selective


ideal filters. It is observed that the ideal impulse responses are non-zero for


k < 0. Therefore, these ideal filters are non-causal and hence physically non-


realizable. It is, however, possible to realize a non-causal filter by applying an


appropriate delay. To elaborate, let us consider the transfer function of an ideal


lowpass filter shown in Eq. (14.1a) in a slightly different form as follows:


Hilp(Ω) =
{


e−jmΩ |Ω| ≤ Ωc
0 Ωc < |Ω| ≤ π,


(14.11)


where a linear-phase component of exp(−jmΩ), is included within the pass


band. The variable m is a constant that corresponds to the delay of the filter.


The impulse response hilp[k] of the ideal lowpass filter is obtained by taking


the inverse DTFT of Eq. (14.11), and is given by


hilp[k] =
sin((k − m)Ωc)


(k − m)π
=
Ωc


π
sinc


(


(k − m)Ωc


π


)


. (14.12)


Figure 14.7 plots the impulse response hlp[k]. As illustrated in Fig. 14.7, the


impulse response hlp[k] of the ideal lowpass filter has an infinite length and is


still non-causal. The ideal lowpass filter is therefore not physically realizable,


irrespective of the value of delay m. Since the magnitude of the impulse response


decays in both directions from its origin, k = m, a simple method to derive a
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hilp[k]


k


m


m +


m+2


p
Wc


Ωc


π−
Ωc


π


m−2


m


Fig. 14.7. Impulse response of


an ideal lowpass filter with a


cut-off frequency ofΩc and


delay m.


causal implementation of the ideal lowpass filter is to truncate its impulse


response on either side of its origin. We consider two such implementations:


FIR implementation I


h1[k] =

















Ωc


π
sinc


(


(k − m)Ωc
π


)


m − 70 ≤ k ≤ m + 70


0 elsewhere;


(14.13a)


FIR implementation II


h2[k] =

















Ωc


π
sinc


(


(k − m)Ωc


π


)


m − 10 ≤ k ≤ m + 10


0 elsewhere.


(14.13b)


The length of the truncated FIR approximation is 141 in Eq. (14.13a) and 21 in


Eq. (14.13b). The magnitude spectra for the two implementations are shown in


Fig. 14.8. Compared with the ideal lowpass filter, we observe three significant


changes in the causal implementations.


(1) The gain within the pass band of the causal implementations is no


longer constant but includes several oscillating ripples, referred to as the


pass-band ripples. The distortion caused by the pass-band ripples is sig-


nificantly higher when the truncated length is small. Compared with Eq.


(14.13a) with a truncated length of 141, Eq. (14.13b) has a length of 21


and results in a higher ripple distortion.


W
0 p


H1(W)


H2(W)


−p −0.5p


Fig. 14.8. Magnitude spectrum


of FIR implementations h1[k ]


and h2[k ] obtained by


truncating the impulse response


h ilp[k ] of an ideal lowpass filter.
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H(W)


Wp Ws


1−dp


1+dp


pass band stop bandtransition 


band


W


0 p


ds


Fig. 14.9. Specifications of a


practical lowpass filter with three


modifications from an ideal


lowpass filter. First, a pass-band


ripple of δp is included about the


unity pass-band gain. Then a


stop-band ripple of δs is


included. Finally, a transition


band ofΩs −Ωp allows for
smooth transition between the


stop and pass bands.


(2) Unlike the ideal lowpass filter, the FIR implementations have a significant


transition band between the pass band and the stop band. The width of


the transition band depends upon the length of the FIR implementations.


The smaller the truncated length, the larger the width of the transition


region.


(3) The gain within the stop band of the causal implementations is no longer


zero but contains ripples, referred to as the stop-band ripple. As in the pass


band, the distortion produced by the stop-band ripples is higher when the


truncated length is smaller.


Since ideal filters are not physically realizable, a practical implementation of


these filters is obtained by allowing acceptable variations in the magnitude


response within the pass band and stop band. In addition, a transition band is


included between the pass band and the stop band so that the magnitude response


of the filter can drop off smoothly. Figure 14.9 specifies the magnitude response


of a practical lowpass filter with the following characteristics:


pass band (1 − δp) ≤ |H (Ω)| ≤ (1 + δp) for |Ω| ≤ Ωp;
transition band Ωp < |Ω| ≤ Ωs;


stop band 0 ≤ |H (Ω)| ≤ δs for Ωs ≤ |Ω| ≤ π.


The objective of a good design is to obtain a filter with limited ripples within


the pass band and stop band, narrow transition bandwidth, and a linear phase


at a reasonable implementation cost. Such an objective is self-contradictory.


For example, a smaller transition band requires a relatively longer FIR filter or,


alternatively, a higher-order IIR filter. In the case of FIR filters, the complexity


of the filter is directly proportional to its length. Keeping the transition band


small therefore results in a higher cost. Likewise, for IIR filters, the complexity


depends upon the order of the filter. Increasing the order of the IIR filter to


reduce the transition bandwidth increases the implementation cost. The design
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Table 14.4. Impulse response of a 21-tap FIR filter


k 0, 20 1, 19 2, 18 3, 17 4, 16 5, 15 6, 14 7, 13 8, 12 9, 11 10


h[k] −0.0014 0.0015 0.0066 0.0081 −0.0059 −0.0330 −0.0411 0.121 0.1320 0.2619 0.3183


process generally involves some trade-offs between the desired characteristics


of the specified digital filter. We will revisit this issue in Chapters 15 and 16,


where we introduce several design techniques for the FIR and IIR filters.


Examples 14.2 and 14.3 consider the FIR and IIR filters.


Example 14.2


Calculate the transfer function of a causal DT FIR filter whose impulse response


h[k] is specified in Table 14.4. Determine and plot the magnitude spectrum of


the FIR filter. What are the values of the stop-band ripple δs and the transition


bandwidth?


Solution


The impulse response of the FIR filter is plotted in Fig. 14.10(a). To determine


the frequency characteristics of the filter, we determine the z-transfer function


of the FIR filter:


H (z) =
20


∑


k=0
h[k]z−k .


h[k]


k
7


5 6


8 9 10 11 12


15


13


14 16


17 18 19200 2 3


4
W


0 p−p −0.5p 0.5p


H(W)
1


1


(a) (b)


W


0 p−p −0.5p 0.5p


20 × log10( |H(W)| )0


−40


−60


−20


W
0 p−p −0.5p 0.5p


< H(W)−p


−0.5p


0


0.5p


(c) (d)


Fig. 14.10. FIR filter in Example


14.2. (a) Impulse response h[k ];


(b) magnitude spectrum


|H(Ω)|; (c) phase spectrum
<H(Ω); (d) magnitude spectrum


|H(Ω)| in decibels.
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Substituting z = exp(jΩ), the Fourier transfer function of the FIR filter is given
by


H (Ω) =
20


∑


k=0
h[k]e−jkΩ,


which is used to plot the magnitude and phase spectra of the FIR filter in


Figs. 14.10(b) and (c). It is observed that the gain of the filter is close to


unity at low frequencies (Ω ≈ 0), while the gain is zero at high frequencies


(Ω ≈ π ). Therefore, the impulse response h[k] represents a lowpass filter. Also,


Fig. 14.10(c) illustrates that the phase of the FIR is piecewise linear.


Without knowing the exact values of the pass and stop bands, it is difficult


to determine the exact values of the stop-band ripple δ2 and the transition


bandwidth. An intelligent guess can be made by looking at the Bode plot of


the FIR filter. Recall that the Bode plot is the same as the magnitude spectrum


except that the magnitude |H (Ω)| of the filter is expressed in decibels (dB) as


follows:


gain in dB = 20 log10(|H (Ω)|).


From the Bode plot shown in Fig. 14.10(d), we observe that the maximum value


of |H (Ω)| within the stop band is approximately –52 dB. Expressed on a linear


scale, the stop-band ripple δ2 is given by


δs (dB) = 20 log10(δ2) = −52 ⇒ δs = 10
−2.6 = 0.0025.


Figure 14.10(d) also provides approximate estimations of the pass band and


stop band as follows:


pass band (0 ≤ |Ωp| ≤ 0.5) and stop band (1.5 ≤ |Ωs| ≤ π ).


The transition band is therefore given by 0.5 < |Ω| < 1.5.


Example 14.3


The transfer function of a DT IIR filter is given by


H (z) =
0.12z


z2 − 1.2z + 0.32
.


Determine and sketch the impulse response h[k] of the filter. Determine and


plot the magnitude response of the IIR filter.


Solution


The characteristic equation of H (z) is given by z2 − 1.2z + 0.32 = 0, which


has two roots, at z = 0.8 and 0.4. The z-transfer function H (z) can therefore


be expressed as follows:


H (z)


z
=


0.12


z2 − 1.2z + 0.32
≡


k1


z − 0.8
+


k2


z − 0.4
.
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h[k]


k
75 6 8 9 1011 12 1513 14 16 171819200 2 3 4
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<H(W)−p


−0.5p
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Fig. 14.11. IIR filter in Example


14.3. (a) Impulse response h[k ];


(b) magnitude spectrum


|H(Ω)|; (c) phase spectrum
<H(Ω); (d) magnitude spectrum


|H(Ω)| in decibels.


Using Heaviside’s partial fraction formula the coefficients of the partial fractions


k1 and k2 are given by


k1 =
[


(z − 0.8)
0.12


(z − 0.8)(z − 0.4)


]


z=0.8
=


[


0.12


z − 0.4


]


z=0.8
= 0.3


and


k2 =
[


(z − 0.4)
0.12


(z − 0.8)(z − 0.4)


]


z=0.4
=


[


0.12


z − 0.8


]


z=0.4
= −0.3.


The partial fraction expansion of H (z) is therefore given by


H (z) =
0.3z


z − 0.8
+


−0.3z
z − 0.4


Taking the inverse z-transform of H (z) yields


h[k] = 0.3[(0.8)k − (0.4)k]u[k].


which is plotted in Fig. 14.11(a). Note that the IIR filter has infinite length, as


expected.


The Fourier transfer function of the IIR filter is obtained by substituting


z = exp(jΩ):


H (Ω) =
0.12e−jΩ


1 − 1.2e−jΩ + 0.32e−j2Ω
.


The magnitude spectrum of the IIR filter is plotted in Figs. 14.11(b) and (d).


Since the gain of the filter is unity at low frequencies (around Ω ≈ 0) and


close to zero at high frequencies (around Ω ≈ π ), the impulse response h[k]
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represents a lowpass filter. Figure 14.11(c) illustrates that the phase of the IIR


filter is non-linear; therefore, the IIR filter introduces distortion within the pass


band.


14.5 Filter realization


In the preceding chapters, we presented several different techniques to calculate


the output of a DT system. In the time domain, the output response y[k] can be


determined from its input x[k] either by solving a linear, constant-coefficient,


difference equation of the following form:


a0 y[k] + a1 y[k − 1] + · · · + aN y[k − N ]
= b0x[k] + b1x[k − 1] + · · · + bM x[k − M]


or, alternatively, by calculating the convolution sum between the input x[k] and


the impulse response h[k]. The convolution sum is given by


y[k] = x[k] ∗ h[k] =
∞


∑


m=−∞


x[m]h[k − m].


In the frequency domain, the convolution property is used to express the con-


volution sum in terms of the transfer function H (Ω) and the CTFT X (Ω) of the


input as follows:


Y (Ω) = X (Ω)H (Ω),


from which the output y[k] can be determined by calculating the inverse CTFT


of Y (Ω). On digital computers and specialized DSP boards, the output of a dig-


ital filter is generally obtained by iteratively evaluating the recurrence formula,


y[k] = −
1


a0
(+a1 y[k − 1] + · · · + aN y[k − N ])


+
1


a0
(b0x[k] + b1x[k − 1] + · · · + bM x[k − M]),


z−1x[k] x[k−1]


x1[k] x1[k]+x2[k]


x2[k]


+


x[k] ax[k]
a


(a)


(b)


(c)


Fig. 14.12. Fundamental


elements for building digital


implementations for FIR and IIR


filters. (a) Unit delay element;


(b) adder; (c) constant-


coefficient multiplier.


derived from the difference equation. Implementing the recurrence formula


requires delaying the samples of the input and output sequences, multiplying


the sample values with constant coefficients, and adding the resulting prod-


ucts. In other words, we require three mathematical operations, shift or delay,


multiplication, and addition, to solve a difference equation iteratively. In the fol-


lowing, we introduce the schematic representation of these three fundamental


operations.


14.5.1 Shift or delay operator


On digital computers and specialized DSP boards, the shift operation is


implemented using a cascaded combination of delay elements. The schematic
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representation of a unit delay element is illustrated in Fig. 14.12(a), where the


transfer function of the block is given by H (z) = z−1. The impulse response
h[k] of the unit delay element is given by h[k] = δ[k – 1]. The output is there-


fore given by x[k] ∗ δ[k − 1] = x[k − 1]. If a delay of more than one sample


is required, several unit delay elements may be cascaded together in a series


configuration.


14.5.2 Adder


On digital devices, adders are typically implemented using combinational or


sequential circuits consisting of registers and logic gates. The schematic repre-


sentation of an adder is illustrated in Fig. 14.12(b), where the input sequences


x1[k] and x2[k] produce an output x1[k] + x2[k].


14.5.3 Multiplication by a constant


On digital devices, multipliers are typically implemented using sequential cir-


cuits consisting of registers, shift delays, and logic gates. The schematic rep-


resentation of a constant multiplier is shown in Fig. 14.12(c), where the input


sequence x[k] is multiplied with a constant a, producing an output ax[k].


In the following sections, we sketch signal flow graphs for efficient implemen-


tations of both FIR and IIR digital filters using the aforementioned elements,


referred to as the fundamental elements. By manipulating the signal flow graphs,


we present several different but equivalent structures for the same transfer func-


tion. We also demonstrate the effect of finite-precision arithmetic on the gain–


frequency characteristics of digital filters, and provide several design tips to


alleviate the problems arising from finite-precision arithmetic.


14.6 FIR filters


A causal FIR filter, of finite length N and having non-zero values in the range


0 ≤ k ≤ (N − 1), is represented by the following transfer function:


H (z) =


N−1
∑


k=0


h[k]z−k = h[0] + h[1]z−1 + h[2]z−2 + · · · + h[N − 1]z−(N−1)


(14.14)


or, alternatively by a difference equation obtained by solving the convolution


sum:


y[k] =


N−1
∑


m=0


h[k]x[k − m]


= h[0]x[k] + h[1]x[k − 1] + · · · + h[N − 1]x[k − (N − 1)]. (14.15)
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y[k]


Fig. 14.13. Direct form for


causal FIR filters of length N .


There are several flow graph representations of the FIR filter. In the following,


we discuss some of them.


14.6.1 Direct form


The flow graph for direct form is achieved by implementing Eq. (14.15) directly.


In direct form, the constant multipliers are the same as the coefficients of the


difference equation, Eq. (14.15). The direct form of the flow graph for a causal


FIR filter is shown in Fig. 14.13. Since the cost of implementation of a filter is


directly proportional to the number of fundamental elements used, we include


a count of these elements for each flow graph. The number of the fundamental


elements used in Fig. 14.13 is shown in the second row of Table 14.5.


The flow graph for the direct form resembles a tapped delay line used fre-


quently in communication systems for channel equalization. The filter shown


in Fig. 14.13 is therefore referred to as a tapped delay line filter or sometimes


as a transversal filter.


14.6.2 Cascaded form


The flow graph for the cascaded form is achieved by expressing Eq. (14.14) in


terms of a product of quadratic terms:


H (z) = h[0]
⌈ N+12 ⌉∏


n=1


(1 + b1nz
−1 + b2nz


−2). (14.16)


Factorizing H (z) in terms of quadratic terms ensures coefficients b1n and b2n


to be real-valued provided that the impulse response h[k] is also real-valued.


Had linear factors been considered in Eq. (14.16) there would be no guarantee


for the coefficients of the linear factors to be real-valued, even with real-valued


h[k]. The upper limit ⌈(N − 1)/2⌉ in the summation in Eq. (14.16) represents


a ceiling operation, which equals (N − 1)/2 if N is odd. If N is even, the upper


limit equals N/2 with b2n = 0 for the last product term.


The flow graph of the cascaded form is achieved by considering ⌈(N − 1)/2⌉


substructures and cascading the substructures together in a series configuration.


The resulting flow graph is shown in Fig. 14.14. The number of fundamental


elements used in Fig. 14.14 is shown in the third row of Table 14.5.
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Table 14.5. Number of elements required to implement different types


of FIR filter structures


Structure two-input address Unit delays Constant multipliers


Direct form N − 1 N − 1 N
Cascaded form N − 1 N − 1 N
Linear phase N − 1 N − 1 N/2 (N even)


filters (N + 1)/2(N odd)


b11


b21 b22


b12+


+


+


+


b1(N−1)/2


b2(N−1)/2


+


+][kx y[k]


z−1 z−1 z−1


z−1z−1z−1


Fig. 14.14. Cascaded form for


causal FIR filters of length N .


14.6.3 Linear-phase FIR filters


As proved in Proposition 14.1, an N -tap linear phase FIR filter satisfies the


following symmetry condition:


h[k] = h[N − 1 − k] or h[k] = −h[N − 1 − k].


For the symmetry condition h[k] = h[N − 1 − k], we show that the condition
can be used to reduce the number of constant multipliers. The derivation for the


antisymmetry condition, h[k] = −h[N − 1 − k], follows along similar lines.
If the length N of the filter is even, Eq. (14.14) is rearranged as follows:


H (z) = h[0]
(


1 + z−(N−1)
)


+ h[1]
(


z−1 + z−(N−2)
)


+ · · · + h
[


N


2
− 1


]


(


z−(N/2−1) + z−(N/2)
)


.


On the other hand, if the length N of the filter is odd, Eq. (14.14) is rearranged


as follows:


H (z) = h[0]
(


1 + z−(N−1)
)


+ h[1]
(


z−1 + z−(N−2)
)


+ · · · + h
[


N − 1
2


− 1
]


(


z−((N−1)/2−1) + z−((N−1)/2+1)
)


+ h
[


N − 1
2


]


z−(N−1)/2.


Using the above equations, the flow graphs of the linear-phase FIR filter satis-


fying the symmetry condition is shown in Fig. 14.15. Both even and odd values


of length N are considered. The numbers of fundamental elements required are


shown in the fourth row of Table 14.5. It is observed that the number of constant
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[
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Fig. 14.15. Flow graphs for


linear-phase FIR filters.


(a) Length N is odd; (b) length


N is even.


multipliers is roughly half that required in direct form or cascaded form. The


number of unit delay and addition elements, however, stays the same.


14.6.4 Transposed forms


Alternative flow graphs for implementations in Sections 14.6.1–14.6.3 can be


realized by applying the transpose operation. Transposition of a flow graph


is achieved by (i) interchanging the role of the input and output; (ii) revers-


ing the directions of all branches within a flow graph; and (iii) replacing the


source nodes by adders, and vice versa. Note that the number of fundamental


elements required to implement a filter does not change if the transposed form


is used for implementation. We explain the principle of transposition with an


example.


Example 14.4


Implement direct form and cascaded configurations of the flow graph for the


FIR filter with transfer function given by


H (z) = −0.3 − 0.4z−1 + 1.4z−2 − 0.4z−3 − 0.8z−4.
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z−1 z−1 z−1 z−1x[k]


−0.3


+
−0.4


+ + +
1.4 −0.4 −0.8


y[k]


z−1


z−1


z−1


z−1


3.5633
+


+


1.7868


−2.23
+


+


1.4924


x[k] y[k]
−0.3


(a) (b)


Fig. 14.16. (a) Direct form I and


(b) cascaded configurations for


the FIR filter in Example 14.4.


Using transposition, derive an alternative configuration from the cascaded


implementation.


Solution


The flow graph for the direct form is shown in Fig. 14.16(a). For the cascaded


configuration, we factorize H (z) as follows:


H (z) = −0.3 (1 + 2.9595z−1)(1 + 0.6038z−1)(1 − (1.1150 − j0.4992)z−1)
×(1 − (1.1150 + j0.0.4992)z−1).


Expressing H (z) as a product of quadratic terms, we obtain


H (z) = −0.3(1 + 3.5633z−1 + 1.7868z−2)(1 − 2.23z−1 + 1.4924z−2),


which has the flow graph illustrated in Fig. 14.16(b).


The alternative configuration for the cascaded form, obtained by applying


the transposition principle, is shown in Fig. 14.17 using two steps. Step 1


interchanges the role of the input and output, reverses the directions of all


branches, and replaces the source nodes with adders. Similarly, the adders are


replaced by source nodes. The resulting configuration is shown in Fig. 14.17(a),


where the input is on the right-hand side of the flow graph and the output is on


the left-hand side. Figure 14.17(b) is a reordered version of Fig. 14.17(a) with


the input and output, rearranged to the standard right-hand and left-hand sides,


respectively.


y[k] x[k]
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Fig. 14.17. Transpose


configurations of flow graph in


Fig. 14.16(b).
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Table 14.6. Number of elements required to implement different types of IIR filter


structures


M and N are, respectively, the degree of the numerator and denominator


polynomials in H(z), as shown in Eq. (14.17)


Structure Unit delays Two-input adders Constant multipliers


Direct form I M + N M + N M + N + 1
Direct form II max(M, N ) M + N M + N + 1
Cascaded form max(M, N ) M + N M + N + 1
Parallel form max(M, N ) M + N (M ≥ N ) M + N + 1 (M ≥ N )


2N (M < N ) 2N + 1 (M < N )


Finally, it should be noted that H (z) does not represent a linear-phase FIR


filter. As such, the linear-phase configuration cannot be derived for this filter.


The direct form and cascaded implementations of the FIR filters can be extended


to the IIR filters, which are discussed in Section 14.7.


14.7 IIR filters


The transfer function of an IIR filter is given by


H (z) =
b0 + b1z−1 + · · · + bM z−M


1 + a1z−1 + · · · + aN z−N
, (14.17)


where the coefficient a0 of the constant term in the denominator is normalized


to one. Based on Eq. (14.17), an IIR filter can alternatively be modeled by the


linear, constant-coefficient difference equation given by


y[k] + a1 y[k − 1] + · · · + aN y[k − N ]
= b0x[k] + b1x[k − 1] + · · · + bM x[k − M]. (14.18)


There are four major architectures to implement the IIR filters, which are con-


sidered in the following.


14.7.1 Direct form I


To derive the IIR realization of the transfer function, Eq. (14.17), we implement


the numerator and denominator functions, defined as follows:


numerator N (z) = b0 + b1z−1 + · · · + bM z−M ;
denominator D(z) = 1 + a1z−1 + · · · + aN z−N ,


separately. The resulting flow graph is shown in Fig. 14.18, where the first


structure represents N (z) and the second structure represents D(z). The numbers


of fundamental elements required in direct form I are shown in the second row


of Table 14.6.
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Fig. 14.19. Direct form I


realization for the IIR filter in


Example 14.5.


Example 14.5


Implement the direct form I realization of an IIR filter with the following transfer


function:


H (z) =
z3 − 2z2 + z


z3 − 0.1z2 − 0.07z − 0.065
. (14.19)


Solution


The transfer function H (z) can be represented as follows:


H (z) =
1 − 2z−1 + z−2


1 − 0.1z−1 − 0.07z−2 − 0.065z−3
,


with the difference equation given by


y[k] = x[k] − 2x[k − 1] + x[k − 2] − {−0.1y[k − 1]
− 0.07y[k − 2] − 0.065y[k − 3]}


= x[k] − 2x[k − 1] + x[k − 2] + 0.1y[k − 1]
+ 0.07y[k − 2] + 0.065y[k − 3].


The flow graph using direct form I is illustrated in Fig. 14.19.
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Fig. 14.20. Direct form II for IIR


filters where degrees of the


numerator (M ) and


denominator (N ) are assumed


to be the same.


14.7.2 Direct form II


Direct form II is realized by noting that the order of structures N (z) and D(z) can


be interchanged as for any two systems in a series combination. The resulting


flow graph is shown in Fig. 14.20(a). Since nodes α and α′ have the same


polarity, these nodes can be merged by replacing the top two delay elements


by one delay element. Similarly, nodes β and β ′ can be merged, and so on for


the rest of the adjacent nodes below the delays in structures D(z) and N (z).


The resulting flow diagram is referred to as direct form II and is illustrated in


Fig. 14.20(b). The number of fundamental elements required in direct form II


is shown in the third row of Table 14.6.


A flow graph that requires the minimum number of delay elements, multi-


pliers, and adders to implement a filter is referred to as a canonical structure.


It can be shown that the implementation complexity of an arbitrary IIR filter


with a numerator of degree M and a denominator of degree N cannot be less


than the complexity of the flow graph for direct form II shown in Fig. 14.20(b).


Therefore, direct form II with the flow graph shown in Fig. 14.20(b), is a canon-


ical architecture. On the other hand, direct form II with the flow graph shown


in Fig. 14.20(a) is a non-canonical architecture.
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Fig. 14.21. Direct form II


architecture for the IIR filter in


Example 14.6.


Example 14.6


Implement the filter in Example 14.5 using the direct form II realization.


Solution


The flow graph for direct form II realization is shown in Fig. 14.21.


14.7.3 Cascaded form


The flow graph for the cascaded form is achieved by expressing the numerator


and denominator polynomials in Eq. (14.17) in terms of a product of quadratic


terms:


H (z) = b0


⌈ M2 ⌉∏


m=1


(1 + b1m z
−1 + b2m z


−2)


⌈ N2 ⌉∏


n=1


(1 + a1nz
−1 + a2nz


−2)


. (14.20)


Factorizing H (z) in terms of quadratic terms ensures coefficients b1n and b2n


to be real-valued provided that the impulse response h[k] is also real-valued.
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Fig. 14.23. Cascaded form


architecture for the IIR filter in


Example 14.7.


In general, the quadratic terms may be coupled together in the following


form:


H (z) = b0
(1 + b11z−1 + b21z−2)
(1 + a11z−1 + a21z−2)


×
(1 + b12z−1 + b22z−2)
(1 + a12z−1 + a22z−2)


× · · · ×
(1 + b1q z−1 + b2q z−2)
(1 + a1q z−1 + a2q z−2)


× Q(z), (14.21)


where q = min(⌈N/2⌉, ⌈(M/2⌉), and Q(z) represents the uncoupled terms
arising from unequal values of degree N and M . The first q quadratic terms in


Eq. (14.21) are implemented using a cascaded configuration of the direct form


II realization, while Q(z) may be implemented in either direct form I or direct


form II realization. The flow graph for Eq. (14.21) is shown in Fig. 14.22. The


numbers of fundamental elements required in cascaded form are shown in the


fourth row of Table 14.6.


Example 14.7


Implement the filter in Example 14.5 using the cascaded form.


Solution


The transfer function H (z) is expressed as follows:


H (z) =
1 − 2z−1 + z−2


1 − 0.1z−1 − 0.07z−2 − 0.065z−3


=
(1 − z−1)(1 − z−1)


(1 − 0.5z−1)[1 − (−0.2 + j0.3)z−1][1 − (−0.2 − j0.3)z−1]
.


Note that if the filter is implemented using only first-order filters, the filter


coefficients will be complex. In order to avoid complex values for the filter


coefficients, the complex roots are combined into a quadratic term as follows:


H (z) =
1 − 2z−1 + z−2


1 + 0.4z−1 + 0.13z−2
×


1


1 + 0.5z−1
. (14.22)


The flow diagram for Eq. (14.22) is shown in Fig. 14.23, where we have omitted


scalar multiplications where the multiplier is unity.
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Table 14.7. Comparison of the number of fundamental elements in flow graphs


obtained from different forms for the IIR filter implemented in Examples 14.4–14.7


Number of


Form unit delays scalar multipliers dual-input adders


Direct form I 5 4 5


Direct form II 3 4 5


Cascaded form 3 4 5


Parallel form 3 6 5


14.7.4 Parallel form


In this form, IIR filters are implemented as a parallel combination of first- and/or


second-order filters. To derive the parallel realization, the transfer function H (z)


is expressed in terms of its partial fractions:


H (z) ≡ Q(z) +
k1


1 − p1z−1
+


k2


1 − p2z−1
+ · · · +


kN


1 − pN z−1
, (14.23)


where k1, k2, . . . , kN are partial fraction coefficients, obtained from Heaviside’s


formula, and p1, p2, . . . , pN are the poles of H (z). To prevent complex-valued


coefficients, Eq. (14.23) is expressed in terms of quadratic terms as follows:


H (z) = Q(z) +
⌊ N+12 ⌋
∑


n=1


b1n + b2nz−1
1 + a1nz−1 + a2nz−2


. (14.24)


If the degree N of the denominator in H (z) is odd, a2n = b2n = 0 (for n =
⌈N/2⌉). The parallel form of the IIR filter is illustrated in Fig. 14.24. The


number of fundamental elements required in the parallel form are shown in


the fifth row of Table 14.6. Note that the parallel architecture has the same


complexity as the direct form II and cascade architectures when N = M . If the


numerator and the denominator are not of the same degree, a larger number of


scalar multipliers and two-input adders are required.


Example 14.8


Implement the IIR filter in Example 14.5 using the parallel form.


Solution


Using partial fraction expansion, the transfer function H (z) is expressed as


follows:


H (z) ≡
k1


1 − 0.5z−1
+


k21 + k22z
−1


1 + 0.4z−1 + 0.13z−2
,


where the partial fraction coefficients are determined as k1 = 0.431, k21 =


0.569, and k22 = −1.8879. Figure 14.25 shows the parallel form of the IIR


filter.
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Example 14.8.


In Table 14.7, we compare the different realizations of the IIR filter specified in


Example 14.5. Trivial scalar multiplications, where the scalar multiplier is unity,


are ignored. The cascaded form yields the minimum number of fundamental


elements used. This, however, is valid only for Example 14.5 and is not true in


general.


14.7.5 Transposed forms


As was the case for FIR filters, alternative flow graphs for the implementations


in Sections 14.7.1–14.7.4 can be realized by applying the transpose operation.
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14.7.6 Choice of structures


The direct form II, cascaded and parallel forms are referred to as canonical


structures and have roughly the same implementation complexity. The actual


complexity of each form of realization depends on the transfer function under


consideration. Table 14.7 compares the four structures in terms of the number


of unit delays, scalar multipliers, and dual-input adders for the filter consid-


ered in Examples 14.4–14.7. It is observed that the direct form I requires the


largest number of delay elements. The direct form II, cascaded, and parallel


structures require an identical number of delay elements and adders. However,


the cascaded form needs to implement the lowest number of multipliers. This


is because there are two multipliers that perform multiplication by a factor of


one. These unity multipliers need not be implemented. The parallel structure


requires the largest number of multipliers.


Irrespective of the arithmetic complexity, all of these realizations should


provide identical outputs for the same input. As we shall see in the following


section, the filter coefficients are implemented using finite precision. The impact


of finite-precision arithmetic on the performance of digital filters is the focus of


our discussion in Section 14.8. The following are some empirical observations


that should be kept in mind when choosing a particular realization.


(i) When the poles of the transfer function lie close to each other or close to


the unit circle in the complex z-plane, direct form realizations, with filter


coefficients represented using finite precision, produce large deviations


from the output of an exact filter.


(ii) The order in which the first- and second-order systems are implemented


in cascaded forms affects the output of the filter in finite-precision imple-


mentations. Changing the order may reduce the deviation from the output


of an exact filter.


(iii) Pairing of complex poles and zeros is important for all cascaded and


parallel realizations.


(iv) In cascaded realizations, scalar multipliers between different systems may


be required to prevent the partial fraction coefficients from becoming too


large or too small.


14.8 Finite precision effect


Figure 14.26 illustrates the processing of analog signals with digital systems.


The analog signal y(t) produced by such a system contains distortions from


several sources, including


(i) analog-to-digital conversion (ADC) noise;


(ii) finite-precision approximation of filter coefficients;
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Fig. 14.26. Processing of analog


signals with digital filters
(iii) round-off errors;


(iv) register overflow.


These effects are considered in the following.


14.8.1 Analog-to-digital conversion (ADC) noise


The process of encoding the analog signal x(t) into a DT signal x[k], quantized


to a fixed number of bits, involves discarding the higher resolution information


of the analog signal. The resulting distortion is referred to as the analog-to-


digital (ADC) noise. The amount of ADC noise is inversely proportional to the


number of bits used in the quantization process. For example, assume that the


true value of a sample is given by 0.875 364 573 894 562 234 5. If the sample


is quantized by a 3-bit uniform quantizer with a peak-to-peak range of ±1 V,
the sample value would be quantized to 0.9375, leading to an ADC noise of


−0.062 135 426 105 44. If instead an 8-bit uniform quantizer is used, the sample
value would be approximated to 0.878 906 25 with an ADC noise of −0.003
541 676 105 44. The ADC noise can, therefore, be reduced by using a higher-


resolution quantizer with a larger number of reconstruction levels, but it can


never be eliminated. The ADC noise causes the analog signal y(t), recovered


from the processed digital sequence y[k], to deviate from the output signal


produced by a completely analog system, which is equivalent to the schematic


representation of Fig. 14.26.


A second error introduced by the quantizer is referred to as the saturation


noise, which occurs when the input signal x(t) exceeds the peak-to-peak operat-


ing range for which the quantizer is designed. Since the range of the saturation


noise is unlimited, the saturation noise is more objectionable than the ADC


noise.


14.8.2 Finite-precision approximation of filter coefficients


The filter coefficients designed from a given specification are analog and have


infinite precision. When the filter coefficients are represented using a finite


number of bits, quantization noise is introduced. As a result, the characteristics


of the digital filter may change considerably from the design specifications.


A common standard used for representing floating point numbers on a digital


computer is the IEEE 754 floating point standard, which uses 32 bits in the


single-precision mode. The representation for the 32-bit IEEE standard is shown
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Table 14.8. Representation used in the 32-bit IEEE 754 floating point single-precision standard


31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0


s exponent significand


(1bit) (8 bits) (23 bits)


Table 14.9. IEEE 754 floating point representation for the decimal number for −0.75ten


31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0


1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


s exponent significand


in Table 14.8, where a single-precision, floating point number in IEEE 754


standard is represented in scientific notation as follows:


(−1)s × (1 + 0.significand) × 2(exponent−127). (14.25)


Note that the s-bit represents the sign of the floating point. The s-bit is set to


unity for negative numbers and to zero for positive numbers. The significand


specifies the decimal fraction, while the exponent represents the power in terms


of 2. As an example, consider the IEEE 754 binary representation of the decimal


number −0.75, represented by −0.75ten. The binary representation of −0.75ten
is given by


−0.75ten = −0.11two,


which in scientific notation is represented by


−0.75ten = −1.1two × 2−1.


Comparing with Eq. (14.25), the values of the exponent and significand are


given by


0.significand = 0.1two and exponent = 126 or 011 111 10two.


The single-precision representation for −0.75ten is specified in Table 14.9.
To derive the resolution of the 32-bit single-precision arithmetic, we calculate


the two smallest numbers that can be represented by Eq. (14.25). The smallest


number is given by


(−1)1 × (1 + 0.111 111 11two) × 2–127


= −1 × 1.996 093 75 × 2−127 = −1.173 198 463 418 338 × 10−38.


The next smallest number represented by the 32-bit single-precision arithmetic


is


(−1)1 × (1 + 0.111 111 10two) × 2−127


= −1 × 1.992 187 50 × 2−127 = −1.170 902 576 014 388 × 10−38.
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The resolution of the 32-bit single-precision arithmetic is therefore the differ-


ence of these numbers:


−1.173 198 463 418 338 × 10−38 − (−1.170 902 576 014 388 × 10−38)
= −2.295 887 403 950 041 × 10−41.


If the hardware allows for IEEE 754 single precision, then the quantization error


is proportional to −2.295 887 403 950 041 × 10−41. Generally, specialized DSP
boards are restricted to a smaller number of bits than the IEEE 32-bit single-


precision representation.


The addition of quantization noise into the filter is a non-linear process. The


detailed analysis of the effect of the quantization noise on the performance


of the filter is beyond the scope of this text. In the following, Example 14.9


illustrates the effect of finite-precision arithmetic on the magnitude response of


a 21-tap FIR filter.


14.8.3 Round-off errors


Because of the limited resolution of DSP boards, the output response of a filter


cannot be accurately represented. In the 32-bit signed IEEE 754 floating point


standard, the resolution of each sample of the output response is restricted


to 2.295 887 403 950 041 × 10−41. The distortion due to rounding off sample
values to the resolution allowed by the DSP board is less damaging than the


finite-precision representation of the filter coefficients. In the latter case, the


distortion is substantially magnified. Still, the round-off errors in the sample


values should be considered in the analysis of a filter performance.


14.8.4 Arithmetic overflow


Arithmetic overflow occurs during multiplication, division, or addition, when


the final answer falls outside the range of the DSP board. For example, the


dynamic range of the 32-bit signed IEEE 754 floating point standard is restricted


to a maximum value of 2.0ten × 1038 and a minimum value of −2.0ten × 1038. If
the result of any mathematical operation between the two floating point numbers


falls outside this range, then an overflow occurs.


Example 14.9


Consider the 21-tap FIR filter with impulse response as shown in Table 14.10,


where each coefficient is represented by 14 decimal digits. The FIR filter is


implemented on a DSP board, which uses finite-precision arithmetic given by


(−1)s × (0 + 0.significand),


where the significand represents the decimal fraction of the number and is


limited to a fixed number of bits. There are no bits allocated for the exponent.








655 14 Digital filters


Table 14.10. Finite impulse response


h[k ] of the 21-tap FIR filter specified in


Example 14.9


k h[k]


10 0.318 348 783 765 15


9,11 0.261 850 185 125 51


8,12 0.132 021 415 468 16


7,13 0.012 135 562 150 39


6,14 −0.041 086 983 052 48
5,15 −0.032 969 416 668 68
4,16 −0.005 898 263 640 95
3,17 0.008 055 858 168 72


2,18 0.006 608 361 295 03


1,19 0.001 494 396 943 68


0, 20 −0.001 385 507 671 95


Table 14.11. Impulse response of the FIR filter in Example 14.9 with 4-bit and 8-bit finite precisions


h[k]


k Exact 8-bit binary representation 4-bit precision 8-bit precision


10 0.318 348 783 765 15 0.010 100 01 0.3125 0.316 406 25


9, 11 0.261 850 185 125 51 0.010 000 11 0.25 0.261 718 75


8, 12 0.132 021 415 468 16 0.001 000 01 0.125 0.128 906 25


7, 13 0.012 135 562 150 39 0.000 000 11 0 0.011 718 75


6, 14 −0.041 086 983 052 48 −0.000 010 10 0 −0.039 062 5
5, 15 −0.032 969 416 668 68 −0.000 010 00 0 −0.031 25
4, 16 −0.005 898 263 640 95 −0.000 000 01 0 −0.003 906 25
3, 17 0.008 055 858 168 72 0.000 000 10 0 0.007 812 5


2, 18 0.006 608 361 295 03 0.000 000 01 0 0.003 906 25


1, 19 0.001 494 396 943 68 0.000 000 00 0 0


0, 20 −0.001 385 507 671 95 0.000 000 00 0 0


Calculate the filter coefficients with the significand restricted to a total of 7 bits


and where 1 bit is allocated for the sign. Plot the magnitude response of the


filter. Repeat for a 3-bit significand with 1 bit allocated for the sign.


Solution


The filter coefficients with the 4-bit and 8-bit finite-precision arithmetic are


shown in Table 14.11. We illustrate how we derived the result for the filter


coefficient h[10] = 0.318 348 783 765 15. The remaining entries can be derived
by following the procedure specified for h[10].
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Fig. 14.27. Frequency


characteristics of the filter with


quantized coefficients in


Example 14.9.


The binary representation for h[10] = 0.318 348 783 765 15 is given by


0.31834878376515ten = 0.010 100 010 111 111 1 . . .two.


For 4-bit precision, the finite-precision representation of h[10] is given by


(−1)0 × (0 + 0.0101)two = 2−2 + 2−4 = 0.3125.


For 8-bit precision, the finite-precision representation of h[10] is given by


(−1)0 × (0 + 0.010 100 01)two = 2−2 + 2−4 + 2−8 = 0.316 406 25.


In deriving the above values, the finite-precision representations are truncated to


the available number of bits. Alternatively, the numerical values can be rounded


off to the nearest available level in each representation. The latter reduces the


quantization noise.


In Table 14.7, we observe that several filter coefficients are reduced to zero.


With 8-bit precision, the values of h[0], h[1], h[19], and h[20] are all represented


by zero. With 4-bit precision, a total of 16 values within the ranges 0 ≤ k ≤ 7


and 13 ≤ k ≤ 20 are reduced to zero. In other words, the FIR filter becomes a


17-tap filter with 8-bit precision and a 5-tap filter with 4-bit precision.


A comparison of the frequency characteristics for the three filters, with coef-


ficients listed in Table 14.11, is shown in Fig. 14.27. Noticeable differences in


the magnitude spectrum are observed in the three implementations. The width


of the transition band increases substantially for the FIR filter represented with


4-bit precision. The stop-band ripple also increases with the finite-precision


filters. The original filter has a minimum attenuation of 50 dB in the stop band.


The minimum attenuation is decreased to 40 dB with 8-bit finite precision and


to 20 dB with 4-bit precision. In fact, it is difficult to describe the 4-bit finite-


precision filter as a lowpass filter since the higher-frequency components pass


through the system with comparatively little attenuation.


Increasing the number of bits used in the finite-precision representation gen-


erally improves the approximation of the original filter characteristics. However,


the increase in precision also increases the implementation cost.
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14.9 M A T L A B examples


In Chapter 13, we introduced a M A T L A B M-file residuez for the partial
fraction expansion of a given rational function. Similarly, the M-file tf2zp
was introduced to calculate the location of poles and zeros for a given transfer


function. These M-files can also be used to derive the cascaded and parallel


forms of the transfer function. We illustrate the application of these M-files by


deriving the cascaded and parallel forms for the transfer function,


H (z) =
z3 − 2z2 + z


z3 − 0.1z2 − 0.07z − 0.065
=


1 − 2z−1 + z−2


1 − 0.1z−1 − 0.07z−2 − 0.065z−3
,


considered in Example 14.5.


14.9.1 Parallel form


The M A T L A B code to determine the partial fraction expansion is given below.


The explanation follows each instruction in the form of comments.


>> B = [1 −2 1 0]; % Coefficients of the
% numerator of H(z)


>> A = [1 −0.1 -0.07 −0.065]; % Coefficients of the
% denominator of H(z)


>> [R, P, K] = residuez(B, A); % Calculate partial


% fraction expansion


The returned values are given by


R = [0.4310 0.2845+3.3362j 0.2845−3.3362j]
P = [0.5000 −0.2000+0.3000j −0.2000−0.3000j] and K = 0.


The transfer function H (z) can therefore be expressed as follows:


H (z) =
0.4310


1 − 0.5z−1
+


0.2845 + j3.3362
1 − (−0.2 + j0.3)z−1


+
0.2845 − j3.3362


1 − (−0.2 − j0.3)z−1
.


To eliminate complex-valued coefficients, we combine the complex poles as


follows:


H (z) =
0.4310


1 − 0.5z−1
+


0.5690 − 1.8879z−1


1 + 0.4z−1 + 0.13z−2
.


The partial fraction expansion is then implemented using the parallel form as


shown in Fig. 14.25.
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14.9.2 Series form


The M A T L A B code to determine the poles and zeros of H(z) is given by


>> B = [0 1 −2 1]; % The numerator of H(z)
>> A = [1 −0.1 −0.07 −0.065]; % The denominator of H(z)
>> [Z, P, K] = tf2zp(B, A); % Calculate poles and


% zeros


The locations of the poles and zeros are given by


Z = [0 1 1]


P = [0.5000 −0.2000+0.3000j −0.2000−0.3000j] and K = 1.


The transfer function H (z) can therefore be expressed as follows:


H (z) = 1
(1 − 0z−1)(1 − 1z−1)(1 − 1z−1)


(1 − 0.5z−1)(1 − (−0.2 + j0.3)z−1)(1 − (−0.2 − j0.3)z−1)


=
(1 − z−1)2


(1 − 0.5z−1)(1 − (−0.2 + j0.3)z−1)(1 − (−0.2 − j0.3)z−1)
.


Combining the complex roots in the denominator, the cascaded configuration


is given by


H (z) =
1 − z−1


1 − 0.5z−1
×


1 − z−1


1 + 0.4z−1 + 0.13z−2
.


The cascaded configuration is then implemented using the series form as shown


in Fig. 14.23.


14.10 Summary


Chapter 14 defined digital filters as systems used to transform the frequency


characteristics of the DT sequences, applied at the input of the filter, in a prede-


fined manner. Based on the magnitude spectrum |H (Ω)|, Section 14.1 classifies
filters in four different categories. A lowpass filter removes the higher-frequency


components above a cut-off frequencyΩc from an input sequence, while retain-


ing the lower-frequency components Ω ≤ Ωc. A highpass filter is the converse


of the lowpass filter and removes the lower-frequency components below a cut-


off frequencyΩc from an input sequence, while retaining the higher-frequency


components Ω ≥ Ωc. A bandpass filter retains a selected range of frequency
components between the lower cut-off frequency Ωc1 and the upper cut-off


frequency Ωc2 of the filter. A bandstop filter is the converse of the bandpass


filter, which rejects the frequency components between the lower cut-off fre-


quencyΩc1 and the upper cut-off frequencyΩc2 of the filter. All other frequency


components are retained at the output of the bandstop filter.


Section 14.2 introduces a second classification of digital filters based on the


length of the impulse response h[k] of the digital filter. Finite impulse response
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(FIR) filters have a finite length impulse response, while the length of infinite


impulse response (IIR) filters is infinite. The ideal frequency-selective filters,


introduced in Section 14.1, are not practically realizable because of constant


gains within the pass band and stop band, the sharp transitions between the


pass band and the stop band, and because of the zero phase. Sections 14.3 and


14.4 explore practical realizations of the ideal filter obtained by allowing some


variations in the pass-band and stop-band gains, introducing a linear-phase


within the pass band, and by leaving some transitional bandwidth between


the pass band and the stop band. The transition bandwidth allows the filter


characteristics to change gradually. Section 14.3 also proved the following


sufficient condition for ensuring a linear phase for FIR filters. If the impulse


response function of an N -tap filter, with z-transfer function given by Eq. (14.7),


satisfies either of the following relationships:


symmetrical impulse response h[k] = h[N − 1 − k];
antisymmetrical impulse response h[k] = −h[N − 1 − k],


then the phase <H (Ω) of the filter is linearly proportional to the frequency.


When implementing digital filters on digital computers or specialized DSP


boards, the output of a digital filter is obtained by solving the following recursive


formula:


y[k] = −
1


a0
(a1 y[k − 1] + · · · + aN y[k − N ])


+
1


a0
(b0x[k] + b1x[k − 1] + · · · + bM x[k − M]).


Based on the aforementioned formula, Sections 14.5–14.7 derived physical real-


izations of digital filters using three fundamental elements: a two-input adder,


a scalar multiplier, and a unit delay. For FIR filters, direct form, series form,


and parallel forms are derived in Section 14.6. The series form is obtained by


factorizing the transfer function in terms of a product of quadratic polynomials


and then cascading the transfer function for the individual quadratic polynomi-


als. The parallel form is obtained by partial fraction expansion of the transfer


function. Section 14.7 derived similar realizations for IIR filters. For both FIR


and IIR filters, alternative flow diagrams are obtained by applying the transpose


operation. Transposition of a flow graph is achieved by (i) interchanging the


role of the input and output; (ii) reversing the directions of all branches within


a flow graph; and (iii) replacing the source nodes with adders and the adders


with source nodes.


Direct form II, the series form, and the cascaded form are defined as canon-


ical representations since there forms, in general, use the minimal number of


fundamental elements, whereas direct form I is referred to as a non-canonical


representation. Irrespective of the arithmetic complexity, all of these realizations


provide identical outputs for the same input sequence.
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During the actual realization of digital filters in software or hardware, the


filter coefficients are implemented with finite precision. Section 14.8 discussed


the impact of finite-precision arithmetic on the performance of digital fil-


ters. It is observed that the effect of finite-precision arithmetic varies from


one realization of the filter to another. We list in the following some empir-


ical observations that should be kept in mind while choosing a particular


realization.


(i) When the poles of the transfer function lie close to each other or close to


the unit circle in the complex z-plane, direct form realizations, with filter


coefficients represented using finite precision, produce large deviations


from the output of an exact filter.


(ii) The order in which the first- and second-order systems are implemented


in cascaded forms affects the output of the filter in finite-precision imple-


mentations. Changing the order may reduce the deviation from the output


of an exact filter.


(iii) Pairing of complex poles and zeros is important for all cascaded and


parallel realizations.


(iv) In cascaded realizations, scalar multipliers between different systems may


be required to prevent the partial fraction coefficients from becoming too


large or too small.


Section 14.9 presented two M A T L A B functions, residuez and tf2zp, for
deriving the physical realizations of digital filters.


Problems


14.1 Determine if the filters represented by the following transfer functions are


(a) FIR or IIR, and (b) causal or non-causal. If a filter is FIR, determine


if its phase is linear.


(i) H (z) = 0.7 + 0.2z−1 + 0.8z−2;


(ii) H (z) =
1


3
(z + 1 + z−1)


(iii) H (z) =
0.7 + 0.2z−1 + 0.8z−2


1 + 0.5z−1 − 0.24z−2
;


(iv) H (z) =
1 − 0.1z−1 − 0.06z−2


1 + 0.2z−1
.


14.2 Consider two filters with transfer functions given by


H1(z) = 1 + 2z−1 + 3z−2 + 2z−3 + z−4 and
H2(z) = 1 + 2z−1 + 3z−2 + 2z−3 − z−4.
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x[k]


1.0


+
2.0


+ + +
0.4 0.2 0.1


y[k]


z−1z−1z−1z−1
Fig. P14.5. The FIR system for


Problem 14.5.


(i) Determine and plot the frequency characteristics of the filters.


(ii) If the sequence x[k] cos(0.5k) + cos(k) is applied at the input of
filter H1(z), determine the output of the filter from the frequency


characteristics obtained in (i).


(iii) Repeat (ii) for filter H2(z). What advantage do you see with the


linear-phase filter?


14.3 Consider a digital filter with impulse response given by


h[k] =
{


1/3 −1 ≤ k ≤ 1
0 otherwise.


(i) Calculate the transfer function of the filter.


(ii) Sketch the amplitude and phase responses of the filter with respect


to frequency.


(iii) How will you classify this filter – lowpass, bandpass, bandstop, or


highpass?


(iv) Does it have a linear phase?


14.4 Consider a digital filter with transfer function given by


H (z) =
0.7 + 0.2z−1 + 0.8z−2


1 + 0.5z−1 − 0.24z−2
.


(i) Plot the impulse response and the frequency characteristics of the


filter.


(ii) From the frequency characteristics, determine the maximum magni-


tude of the pass-band and stop-band ripples and the transition band-


width.


14.5 Given the flow graph in Fig. P14.5, calculate the transfer function and the


impulse response of the LTI system of the realization. From the transfer


function, calculate the magnitude and phase spectra for the filter.


14.6 The flow graph of Fig. P14.5 can be implemented by using only three


scalar multipliers. Sketch the flow graph which uses three scalar multipli-


ers without increasing the number of delay elements or two-input adders.


14.7 Repeat Problem 14.5 for the flow graph shown in Fig. P14.7.


14.8 Draw the flow graphs for (i) the direct form and (ii) the cascaded form


for an FIR filter with a transfer function given by


H (z) = 0.4 − 0.8z−1 + 0.4z−2.
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x[k] y[k]


+


+


+


+
0.7


0.2


0.8


z−1


z−1


−0.5


0.24


Fig. P14.7. The IIR system for


Problem 14.7.


14.9 Using the principle of transposition for the flow graphs, derive two alter-


native representations for the FIR filter specified in Problem 14.8.


14.10 Draw the linear-phase flow graph for the FIR filter specified in Problem


14.8.


14.11 The transfer function of an IIR filter is given by


H (z) = (1 − 0.25z−1)8.


Draw the flow graphs based on the following forms: (i) cascade of eight


first-order FIR systems; (ii) cascade of four second-order FIR systems;


(iii) cascade of two third-order FIR systems and one second-order FIR


system; (iv) cascade of two fourth-order FIR systems; (v) cascade of one


sixth-order FIR system and one second-order FIR system. Compare the


computational complexity of each realization.


14.12 The transfer function of an IIR filter, with impulse response given by


h[k] = 0.5k sin
(


π


4
k


)


u[k],


is given by the following expression:


H (z) =
0.5z sin


(


π


4


)


z2 − 2 × 0.5 cos
(


π


4


)


z + 0.25
≈


0.3536z


z2 − 0.7071z + 0.25
.


Draw the flow graphs for (i) direct form I, (ii) direct form II, (iii) the


cascaded form, and (iv) the parallel form realizations of the IIR filter.


14.13 Using the principle of transposition for the flow graphs, derive four


alternative flow graph representations for the IIR filter specified in


Problem 14.12.


14.14 The transfer function of a digital system is given by


H (z) =
1 − 0.8z−1 + 0.15z−2


1 − 0.7z−1 − 0.18z−2
.


Draw the flow graphs for (i) direct form I, (ii) direct form II, (iii) the


cascaded form, and (iv) the parallel form realizations of the IIR filter.
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14.15 Using the principle of transposition for the flow graphs, derive four alter-


native flow graph representations for the IIR filter specified in Problem


14.14.


14.16 An allpass filter has a constant gain for all frequencies, i.e. |H (Ω)| = 1.
(i) Show that the transfer functions


H1(z) =
α1 + z−1


1 + α1z−1
and H2(z) =


α1α2 + α1z−1 + z−2


1 + α1z−1 + α2z−2


represent allpass filters.


(ii) Sketch the flow graph for the first-order allpass filter H1(z), which


uses a single scalar multiplier.


(iii) Sketch the flow graph for the second-order allpass filter H2(z) with


only two scalar multipliers. There is no restriction on the number


of unit delay elements or two-input adders in each case.


14.17 The impulse response of an LTID system is given by


h[k] =
{


αk 0 ≤ k ≤ 9


0 elsewhere.


(i) Draw the flow graph for the above LTID system with no feedback


paths.


(ii) The z-transfer function for the above impulse response is given by


H (z) =
1 − α10z−10


1 − αz−1
.


Draw the flow graph of the IIR system specified by this transfer


function.


(iii) Compare the two implementations with respect to the number of


delays, scalar multipliers and two-input adders.


14.18 Implement the filter with transfer function given by


H (z) = 0.4 − 0.8z−1 + 0.4z−2


with finite-precision arithmetic given by


(−1)s × (0 + 0.significand),


where the significand represents the decimal fraction of the coefficients


and is limited to 3 bits with 1 bit allocated for the sign. Compare the


magnitude response of the original filter with the magnitude response of


the filter implemented with finite-precision representation.
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14.19 Repeat Problem 14.14 for the following transfer function:


H (z) =
1 − 0.8z−1 + 0.15z−2


1 − 0.7z−1 − 0.18z−2
.


14.20 Repeat Problem 14.14 for the following transfer function:


H (z) =
0.5z sin


(


π


4


)


z2 − cos
(


π


4


)


z + 0.25
.
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C H A P T E R


15 FIR filter design


In Chapter 14, we defined frequency-selective filters as systems that modify


the frequency components of the input signals in a predefined manner. Further


classification of frequency-selective filters is based on the length N of their
impulse responses h[k]. If the length N of the impulse response of a frequency-
selective filter is finite, the filter is referred to as a finite impulse response (FIR)


filter. If the length N is infinite, the frequency-selective filter is referred to as
an infinite impulse response (IIR) filter. In this chapter, we consider the design


of frequency-selective FIR filters.


The design of digital filters involves three distinct stages. Stage 1 describes


the desired specifications of the frequency characteristics of the filter. Based


on the specified frequency characteristics, stage 2 derives the transfer function


H (z), or the impulse response h[k], of the filter. Finally, stage 3 develops the
canonical realization of the filter using one of the several forms presented in


Chapter 14. While deriving the impulse response h[k] of an FIR filter in stage 2,
the following two conditions must also be satisfied.


(1) Causality condition. This implies that the impulse response h[k] of an FIR
filter is zero for k < 0. This will ensure a causal, and hence a physically
realizable, filter.


(2) Linear-phase condition. This implies that the impulse response h[k] of
an FIR filter of length N is symmetrical or anti-symmetrical, i.e. h[k] =
±h[N − 1 − k]. The linear-phase condition ensures that no distortion is
introduced in the input frequency components lying within the pass band


of the FIR filter.


Generally, FIR filters are designed directly from the impulse response of an


ideal lowpass filter. Section 15.1 describes the windowing approach, where an


appropriate window function w[k] is used to truncate the impulse response of
an ideal lowpass filter to a finite length N . The specifications of the FIR filter,
along with the characteristics of the window function, are used to calculate


the length N of the FIR filter. Sections 15.2 and 15.4 extend the windowing
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approach to the design of highpass, bandpass, and bandstop FIR filters. The FIR


filter design techniques, based on the windowing function, can result in several


alternative designs, all of which satisfy the given specifications. Section 15.5


presents the Parks–McClellan method, which recursively computes the opti-


mal filter for a given length N . Section 15.6 presents several library functions
available in M A T L A B to design FIR filters. Finally, the chapter is concluded in


Section 15.7.


15.1 Lowpass filter design using windowing method


In Section 14.1, it was shown that the impulse response of an ideal lowpass


filter is a sinc function, and therefore that an ideal lowpass filter is non-causal


and IIR. In Section 14.4, it was shown that a causal lowpass FIR filter can


be obtained by delaying the ideal impulse response by m time units (see Fig.


15.1a) and truncating the impulse response. To generate an N-tap FIR filter, the


truncation of the ideal impulse response is performed as follows:


hlp[k] =











hilp[k] =
Ωc


π
sinc


(
(k − m)Ωc


π


)


0 ≤ k ≤ N − 1


0 elsewhere;


(15.1)


where the value of m in Eq. (15.1) is selected to be (N − 1)/2. This approach
of designing an FIR filter is referred to as the windowing method, and is shown


in Fig. 15.1. Note that the impulse response hlp[k] of the resulting FIR filter is
non-zero only within the range 0 ≤ k ≤ N–1. In addition, the impulse response
hlp[k] is symmetrical about k = (N − 1)/2, i.e.


h[k] = h[N − 1 − k], (15.2)


and satisfies the linear-phase condition given in Eq. (14.8a). If N is an odd-
valued integer, the resulting FIR filter is a type 1 linear-phase filter with an


integer delay m. On the other hand, if N is an even-valued integer, the resulting
FIR filter is a type 2 linear-phase filter with a fractional delay m.


Truncating the impulse response of an ideal lowpass filter affects the fre-


quency characteristics of the ideal lowpass filter. In addition to introducing


ripples within the pass and stop bands, the truncation leads to a transition band


between the pass band and the stop band. In the following subsection, we ana-


lyze the effect of truncating the impulse response hlp[k] of the ideal lowpass
filter with a rectangular window of length N .


15.1.1 Rectangular window


The rectangular window of length N , centered at k = (N − 1)/2, is defined as
follows:


wrect [k] =


{


1 0 ≤ k ≤ N − 1
0 otherwise,


(15.3)
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hilp[k]


k
m m+2


Wc/π


Wc hlp[k]


m−p/Wc m+p/Wc


m−2


m m+2m−2


0 p


Hilp(W)


−p −0.5p 0.5p
W


Wc−Wc


k W
0 p


Hlp(W)


−p −0.5p 0.5p


0 p


Wrect(W)


−p −0.5p 0.5p


N


W
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k


m


1


0 N−1


(a) (b)


(c) (d)


(e) ( f )


1


1


m−p/Wc m+p/Wc


p


Fig. 15.1. Windowing operation to derive a truncated FIR filter from an ideal lowpass filter. The left-hand


column (plots (a), (c), and (e)) represents the windowing operation in the time domain, and the right-hand


column (plots (b), (d), and (f)) represents the windowing operation in the frequency domain. (a) Impulse


response h ilp[k ] of an ideal lowpass filter. (b) Magnitude spectrum |H ilp(Ω)| of an ideal lowpass filter.
(c) Rectangular window wrect[k ]. (d) DTFT Wrect(Ω) of the rectangular window. (e) Impulse response


h lp[k ] = h ilp[k ]wrect[k ] of the truncated lowpass filter. (f) Magnitude spectrum
|H lp(Ω)| = |(1/2π )H ilp(Ω) ∗ Wrect(Ω)| of the truncated lowpass filter.


where we have assumed that the length N of the windowing function is odd.
Taking the DTFT of Eq. (15.3) results in the following frequency characteristics


for the rectangular window:


Wrect (Ω) = e−j(N−1)Ω/2 ×
sin(NΩ/2)


sin(Ω/2)
. (15.4)


The rectangular window wrect[k] and its magnitude spectrum |Wrect(Ω)| are
illustrated in Figs. 15.1(c) and (d), respectively. The narrow lobe, centered at


Ω = 0, in Wrect(Ω) is referred to as the main lobe, while the lobes on each side
of the main lobe are referred to as the side lobes of the rectangular window.
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Truncating the impulse response hilp[k] of the ideal lowpass filter to length
N is the same as multiplying the impulse response hilp[k] by the rectangular
window in the time domain. The truncation operation is, therefore, modeled as


follows:


hlp[k] = hilp[k]wrect[k], (15.5)


with m = (N − 1)/2. The result of the truncation step is illustrated in Fig.
15.1(e). Since multiplication in the time domain is equivalent to convolution in


the frequency domain, the transfer function of the truncated FIR filter is given


by


Hlp(Ω) =
1


2π
[Wrect(Ω) ∗ Hilp(Ω)] =


1


2π


∫


〈2π〉


Hilp(θ )Wrect(θ − Ω) dθ, (15.6)


which results in the magnitude spectrum shown in Fig. 15.1(f). Comparing the


magnitude spectrum |Hilp(Ω)| of the ideal lowpass filter with the magnitude
spectrum |Hlp(Ω)| of the truncated lowpass filter, we note three major differ-
ences. First, there are significant ripples within the pass band of the truncated


lowpass filter. Secondly, the magnitude spectrum of the truncated lowpass fil-


ter does not change abruptly in between the pass band and stop band. In fact,


a transition band of finite width appears. Thirdly, there are additional ripples


within the stop band of the truncated lowpass filter. The appearance of ripples in


the pass band and stop band is referred to as the Gibbs phenomenon. In order to
reduce the ripples and eliminate the transition band, the DTFT Wrect(Ω) should
be a narrow impulse function. This would imply that the length N of the win-
dowing function is very large, increasing the implementation complexity of the


truncated lowpass filter.


In Fig. 15.1(c), we observe that the rectangular window has abrupt truncations


outside the range 0 ≤ k ≤ N − 1. The pass-band and stop-band ripples, as well
as the transition band, can be decreased by selecting alternative windows that


taper smoothly to zero from the peak value of 1 at k = (N − 1)/2. Section
15.1.2 discusses several alternatives to the rectangular window.


15.1.2 Commonly used windows


There are a number of alternatives to the rectangular window. A few popular


choices are defined in the following.


Bartlett (triangular) window


wbart[k] =



















2k


N − 1
0 ≤ k ≤ (N − 1)/2


2 −
2k


N − 1
(N − 1)/2 < k ≤ N − 1


0 otherwise.


(15.7)
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2


N−1
k


N−10


Blackman


Hamming


Hanning


Bartlett


rectangular


1
w[k]Fig. 15.2. Commonly used


windows of length N .


Generalized Hamming window For 0 < α < 1,


wgene[k] =











α − (1 − α) cos
[


2πk


N − 1


]


0 ≤ k ≤ N − 1


0 otherwise.


(15.8)


Hamming window


whamm[k] =











0.54 − 0.46 cos


[
2πk


N − 1


]


0 ≤ k ≤ N − 1


0 otherwise.


(15.9)


Hanning window


whann[k] =











0.5 − 0.5 cos


[
2πk


N − 1


]


0 ≤ k ≤ (N − 1)


0 otherwise.


(15.10)


Blackman window


wblac[k] =











0.42 − 0.5 cos


[
2πk


N − 1


]


+ 0.08 cos


[
4πk


N − 1


]


0 ≤ k ≤ N − 1


0 otherwise.


(15.11)


The shapes of the windows are shown in Fig. 15.2, where, for convenience of


illustration, continuous plots are used. In reality, the windows are a function of


the DT variable k. It may be noted that the Hamming and Hanning windows are
special cases of the generalized Hamming window. For the Hamming window,


variable α in Eq. (15.8) of the generalized Hamming window equals 0.54.


Similarly, for the Hanning window, variable α in Eq. (15.8) equals 0.5.


The DTFTs of the aforementioned windows are shown in Fig. 15.3, where


the vertical axis represents the magnitude of the DTFTs based on the decibel


(dB) scale. The two important parameters used in the FIR filter design are (i) the


width of the main lobes of the DTFT of the windows; (ii) the relative strength


of the highest value side lobe with respect to the main lobe. The width of the


main lobe is defined as the distance between the nearest zero crossings of the


main lobe, while the relative side lobe strength is defined as the difference in


dB between the magnitudes of the highest value side lobe and the main lobe.
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Fig. 15.3. DTFTs of commonly


used windows with length


N = 75. (a) Rectangular
window; (b) Bartlett window;


(c) Hanning window;


(d) Hamming window;


(e) Blackman window.
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Table 15.1. Comparison of the properties of the commonly used windows


Kaiser window(b)


Window


Width of


main lobe


Peak side lobe


amplitude(a) (dB)


Max. stop/pass-band


error 20log10(δ) β transition width


Rectangular 4π /N −13.3 −21 0 1.81π /(N − 1)
Bartlett 8π /(N− 1) −26.5 −25 1.33 2.37π /(N − 1)
Hanning 8π /(N− 1) −31.4 −44 3.86 5.01π /(N − 1)
Hamming 8π /(N− 1) −42.6 −53 4.86 6.27π /(N − 1)
Blackman 12π /(N− 1) −58.0 −74 7.04 9.19π /(N − 1)


aThe peak side lobe magnitude in column 3 is relative to the magnitude of the main lobe.
bThe last two columns for the Kaiser window are explained in Section 15.1.5.


The second and third columns of Table 15.1 compare these two parameters for


the commonly used windows as a function of the length N of the window. The
fourth column of Table 15.1 quantifies the maximum difference between the


magnitude spectra within the pass and stop bands of the ideal lowpass filter and


the causal FIR filter obtained from the windowing method. In other words, it


provides an upper bound on the values of the ripples in the pass and stop bands


of the causal FIR filter. For example, the maximum pass- and stop-band error of


–21dB for the rectangular window implies that the pass- and stop-band ripples


are confined to –21dB in the FIR filter obtained with the rectangular window.


In filter design, we prefer to minimize the transition band and reduce the


strength of the ripples. These are conflicting requirements, as we see next.


To minimize the transition band in the FIR filter, the main lobe width of the


windows should be as small as possible. To reduce the pass-band and stop-


band ripples in the FIR filter, the area enclosed by the side lobes (in other


words, the relative strength of the side lobes) of the windows should be small.


Table 15.1 illustrates that these two requirements are contradictory. The rect-


angular window has the smallest width main lobe, but the relative strength of


its highest side lobe with respect to the main lobe is the largest. As a result,


for the rectangular window, the transition bandwidth is small, but the ripple


magnitude is large. On the contrary, the relative strength of the side lobe for the


Blackman window is the smallest, but the width of its main lobe is the largest.


In other words, for the Blackman window, the transition bandwidth is large, but


the ripple magnitude is small.


In the following example, we illustrate the effect of the rectangular and


Hamming windows on the frequency characteristics of an ideal lowpass filter


truncated with these windows.


Example 15.1


Calculate the impulse response of an ideal DT lowpass filter with radian cut-


off frequency Ωc = 1. From the ideal filter, design two 21-tap FIR filters with
Ωc = 1 using the rectangular and Hamming windows.
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Fig. 15.4. Impulse response of


FIR filters obtained by truncating


the impulse response of the


ideal lowpass filter with (a) a


rectangular window and (b) a


Hamming window.


Solution


Substituting Ωc = 1 in Eq. (14.12), the impulse response of an ideal lowpass
filter is given by


hilp[k] =
sin(k − m)
(k − m)π


=
1


π
sinc


(
k − m


π


)


, (15.12)


where m = (N − 1)/2 = 10. The expressions for the rectangular and Hamming
windows with 21 taps are as follows:


rectangular window wrect[k] =
{


1 0 ≤ k ≤ 20
0 otherwise;


(15.13)


Hamming window whamm[k] =













0.54 − 0.46 cos


(
2πk


20


)


0 ≤ k ≤ 20


0 otherwise.


(15.14)


The FIR filters are obtained by multiplying the impulse response of the ideal


lowpass filter by the expressions for the rectangular and Hamming windows.


The resulting impulse responses are as follows:


rectangular window hrect[k] =













1


π
sinc


(
k − 10


π


)


0 ≤ k ≤ 20


0 otherwise;
(15.15)


Hamming window hhamm[k]


=











1


π
sinc


(
(k − 10)


π


) (


0.54 − 0.46 cos


[
2πk


20


])


0 ≤ k ≤ 20


0 otherwise.


(15.16)


The impulse responses for FIR filters obtained by truncating the ideal lowpass


filter impulse response with the rectangular and Hamming windows are shown in


Fig. 15.4. Although the two impulse responses have the same value at k = 10,
the impulse response hhamm[k], shown in Fig. 15.4(b), decays more rapidly
as we move away from the central point (k = 10) and is different from the
impulse response hrect[k], shown in Fig. 15.4(a). Typically, the pass-band gain
of the truncated FIR filters, obtained from the ideal lowpass filters using the


windowing method, is not unity, as desired. To prove this, we calculate the value
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Fig. 15.5. Magnitude spectra of the FIR filters obtained by truncating the impulse response of the ideal


lowpass filter with the rectangular and Hamming windows. The magnitude spectrum of the FIR filter


obtained from the rectangular window is plotted as a solid line, and the magnitude spectrum of the FIR


filter obtained from the Hamming window is plotted as a dashed line. (a) Plotted using a linear scale for


the gain. (b) Plotted using a dB scale for the gain.


of Hlp(0) by substituting Ω = 0 in the DTFT Hlp(Ω):


Hlp(0) =
∞∑


k=−∞
hlp[k]e


−jΩk


∣
∣
∣
∣
∣
Ω=0


=
∞∑


k=−∞
hlp[k]. (15.17)


Equation (15.17) can therefore be used to calculate the pass-band gain atΩ = 0.
Using the values of the samples plotted in Figs. 15.4(a) and (b), the values of


the gain of the two truncated filters at Ω = 0 are given by


rectangular window Hrect(0) =
∞∑


k=−∞
hrect[k] = 0.9754;


Hamming window Hhamm(0) =
∞∑


k=−∞
hhamm[k] = 0.9982.


To ensure a unity gain in the pass band, the impulse response corresponding


to the rectangular window in Eq. (15.15) is normalized by a factor of 0.9754.


Similarly, the impulse response corresponding to the Hamming window is nor-


malized by a factor of 0.9982. The resulting magnitude spectra of the two


normalized FIR filters are shown in Fig. 15.5, where the gains of the filter are


plotted on a linear scale in Fig. 15.5(a) and on a logarithmic scale in Fig. 15.5(b).


It is observed that the dc gain, defined as the gain of the filter atΩ = 0, for both
filters is unity. The rectangular window results in higher pass-band and stop-


band ripples. However, the rectangular window provides a smaller transition


band than the Hamming window.


From Fig. 15.5(b), we quantify the gain in the stop band for the FIR filter


obtained using the Hamming window and compare its value with the stop-band


gain for the FIR filter obtained using the rectangular window. The maximum


gain in |Hhamm(Ω)| is less than −50 dB in the stop band (Ω > 0.49π ). Equiv-
alently, we can also say that the minimum attenuation in the stop band of the


Hamming window is greater than 50 dB. The maximum gain in |Hhamm(Ω)|,
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Fig. 15.6. Desired specifications


of a lowpass filter.


obtained from the rectangular window, is about −22 dB forΩ > 0.37π . In other
words, the Hamming window attenuates the higher-frequency components of


the input signals more strongly than the rectangular window. As discussed ear-


lier, this improvement in the stop-band attenuation is at the expense of a higher


transitional bandwidth in the truncated FIR filter obtained from the Hamming


window.


15.1.3 Design of FIR lowpass filters


We now list the main steps involved in the design of FIR filters using the


windowing method. The design specifications for a lowpass filter are illustrated


in Fig. 15.6 and are given by


pass band (0 ≤ Ω ≤ Ωp) (1 − δp) ≤ |Hlp(Ω)| ≤ (1 − δp);


stop band (Ωs < Ω ≤ π ) 0 ≤ |Hlp(Ω)| ≤ δs.


Expressed in decibels (dB), 20 log10(δp) is referred to as the pass-band ripple


or the peak approximation error within the pass band. Similarly, 20 log10(δs) is


referred to as the stop-band ripple or the peak approximation error in the stop


band. The stop-band ripple can also be expressed in terms of the stop-band


attenuation as −20 log10(δs) dB.


For digital filters, the pass and stop bands are generally specified in the DT


frequency Ω domain, which is limited to the range 0 ≤ Ω ≤ 2π . A DT system


may also be used to process a CT signal. The schematic representation of such


a system was shown in Fig. 9.1. In such cases, it is possible that the pass and


stop bands of the overall system are specified in the CT frequency ω domain


and we are required to compute the transfer function of the DT system shown as


the central block in Fig. 9.1. We assume that the sampling frequency f0 used in
the analog to digital (A/D) converter is known. The following nine steps design


an FIR filter using the windowing method.
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Step 1 Calculate the normalized cut-off frequency of the filter based on the
following expressions:


DT frequency Ω specifications


cut-off frequency, Ωc = 0.5(Ωp + Ωs);


normalized cut-off frequency, Ωn = Ωc/π ;


CT frequency ω (or f ) specifications


cut-off frequency, ωc = 0.5(ωp + ωs) or fc = 0.5( fp + fs);


normalized cut-off frequency, Ωn = ωc0.5ω0
�= fc


0.5 f0
.


Note that the for CT specifications, ωp and ωs denote the pass-band and stop-


band edge frequencies in radians/s, and fp and fs denote the pass-band and stop-
band edge frequencies in Hz, respectively. The above frequency normalization


scales the DT frequency range [0, π ] to [0, 1]. For CT, the frequency range


[0, 0.5ω0] (in radians/s) or [0, 0.5 f0] (in Hz) is scaled to [0, 1]. The normalized
cut-off frequency Ωn can have a value in the range [0, 1].


Step 2 The impulse response of an ideal lowpass filter is given by


hilp[k] =
sin((k − m)Ωc)


(k − m)π
=
Ωc


π
sinc


(
(k − m)Ωc


π


)


= Ωn sinc((k − m)Ωn),


where Ωc = πΩn and m = (N − 1)/2, where N is the filter length to be cal-
culated in step 6. Note that the DT filter impulse response hilp[k] primarily
depends on the normalized frequency Ωn. If the DT filter is used to process DT


signals obtained using different sampling rates, the CT cut-off frequency will


change depending on the sampling frequency, but the Ωn will remain same.


Step 3 Calculate the minimum attenuation A using A = min(δp, δs) and then
convert it to the dB scale.


Because of the nature of the windowing method and the inherent symmetry in


the window functions, the resulting FIR filter has identical attenuations of A
dB in both the pass and stop bands. If δp > δs, the designed filter will satisfy


the pass-band attenuation requirement and exceed the stop-band attenuation


requirement. Conversely, if δs > δp, then the filter will satisfy the stop-band


attenuation requirement and exceed the pass-band attenuation requirement.


Step 4 Use the first three columns of Table 15.2 to choose the window type
for the specified attenuation A.


In Table 15.2, the attenuation A, specified in the first two columns, is relative
to the pass-band gain. For a given value of A, more than one choice of the
window type is possible. With a minimum attenuation requirement of 20 dB,


for example, any of the four windows may be selected. Although the higher








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 28, 2007 14:9


676 Part III Discrete-time signals and systems


Table 15.2. Selection of the type of window based on the attenuation values


obtained from step 3


Minimum attenuation (A)


dB linear scale Type of window


Transition bandwidth,


�Ωn


≤20 ≤0.1 rectangular 1.8/N
≤40 ≤0.01 Hanning 6.2/N
≤50 ≤0.003 Hamming 6.6/N
≤70 ≤0.000 03 Blackman 11/N


attenuation windows (Hanning, Hamming, or Blackman) reduce the pass- and


stop-band ripples, the transition bands of the resulting FIR filters obtained with


these windows are larger than the transition band of the FIR filter obtained with


the rectangular window.


The first two columns of Table 15.2 are approximated directly from the fourth


column of Table 15.1, which lists the stop-band attenuation. The last column of


Table 15.2 is based on empirical observations.


Step 5 Calculate the normalized transition bandwidth for the FIR filter using
the following expressions:


DT frequency Ω specifications


transition BW, �Ωc = Ωs − Ωp;


normalized transition BW, �Ωn = �Ωc/π ;


CT frequency specifications


transition BW, �ωc = ωs − ωp or � fc = fs − fp;


normalized transition BW, �Ωn =
�ωc


0.5ω0
=


� fc
0.5 f0


.


Step 6 Using the last column of Table 15.2, determine the minimum length
N of the filter for the computed transitional bandwidth �Ωn obtained in step 5
and the window function selected in step 4.


Step 7 Determine the expression w[k] for the window function using the
window type selected in step 4 for length N obtained in step 6. The expression
for the rectangular window is given in Eq. (15.3), while the expressions for the


remaining window functions are specified in Eqs. (15.7)–(15.11).


Step 8 Derive the impulse response hlp[k] of the FIR filter:


hlp[k] = hilp[k]w[k].


If the pass-band gain |Hlp(0)| at Ω = 0, given by
∑


hlp[k], is not equal to one,
we normalize hlp[k] with


∑


hlp[k], where
∑


denotes the summation operation.
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Step 9 Confirm that the impulse response hlp[k] satisfies the initial specifica-
tions by plotting the magnitude spectrum |hlp(k)| of the FIR filter obtained in
step 8.


We illustrate the working of the aforementioned FIR filter design algorithm in


Example 15.2.


Example 15.2


Figure 9.1 is used to process a CT signal with a digital filter. The overall


characteristics of the CT system, modeled with Fig. 9.1, are specified below:


(i) pass-band edge frequency (ωp) = 3π kradians/s (or 1500 Hz);
(ii) stop-band edge frequency (ωs) = 4π kradians/s (or 2000 Hz);


(iii) minimum stop-band attenuation, −20 log10(δs) = 50 dB;
(iv) sampling frequency ( f0) = 8 ksamples/s.


Design the DT system in Fig. 9.1 based on the aforementioned CT specifications.


Solution


Step 1 suggests that the cut-off frequency of the filter is given by


ωc = 0.5(ωp + ωs) = 3.5π kradians/s.


Using ω0 = 2π f0 = 16π × 103, the normalized cut-off frequency is given by


Ωn = ωc/(0.5ω0) =
(


3.5π × 103
)


/
(


0.5 × 2π × 8 × 103
)


= 0.4375.


Based on step 2, the impulse response of the ideal lowpass filter with the


normalized cut-off frequency Ωn = 0.4375 is given by


hilp[k] = 0.4375 sinc(0.4375(k − m))


with m set to (N − 1)/2. The value of N is determined in step 6.
Step 3 determines the minimum attenuation A to be 50 dB.
Step 4 determines the type of window. For the minimum stop-band attenua-


tion of 50 dB, Table 15.2 limits our choice to either the Hamming or Blackman


window. We select the Hamming window because its length N will be lower
than that of the Blackman window.


Step 5 computes the normalized transition bandwidth:


�Ωn = �ωc/(0.5ω0) = (4π − 3π ) × 103/(0.5 × 2π × 8 × 103) = 0.1250.


Step 6 evaluates the length N of the Hamming window:


6.6/N = 0.1250 ⇒ N = 8 × 6.6 = 52.8.


Ceiling off the length of the window to the nearest larger odd integer, we obtain


N = 53.
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Fig. 15.7. Magnitude spectrum


of the FIR filter designed in


Example 15.2.


Step 7 derives the expression for the Hamming window of length N = 53:


whamm[k] =











0.54 − 0.46 cos
[


2πk


52


]


0 ≤ k ≤ 52


0 otherwise.


Step 8 gives the impulse response of the FIR filter:


hlp[k] =











0.4375 sinc(0.4375(k − 26))


{


0.54 − 0.46 cos


[
2πk


52


]}


0 ≤ k ≤ 52


0 otherwise.


Since
∑


hlp[k] = 0.9998 ≈ 1, the impulse response hlp[k] of the FIR filter is not
normalized with


∑


hlp[k]. The magnitude spectrum of the FIR filter is plotted
in Fig. 15.7 using a dB scale. We observe that the pass-band frequency com-


ponents below Ω= 1.5 kHz are passed without any attenuation. The minimum


attenuation in the stop band is also observed to be less than 50 dB.


15.1.4 Kaiser window


As shown in Table 15.1, the minimum stop-band attenuation δ in the FIR


filter obtained using either the rectangular, Bartlett, Hamming, Hanning, or


Blackman window is fixed. In most cases, the selected window surpasses the


required specifications for the attenuation δ. Consider, for example, the design


of an FIR filter with the minimum attenuation specified at 60 dB. Table 15.2


determines that only the Blackman window can be used, and it exceeds the


minimum attenuation requirement by 10 dB. There is no alternative choice


available, and the selection of the Blackman window is an overkill achieved


at the cost of a wider transition band. Several advanced windows, such as


Lanczos, Tukey, Dolph–Chebyshev and Kaiser windows have been proposed,


which provide control over the stop-band ripple δ by means of an additional


parameter characterizing the window. In this section, we introduce the Kaiser


window and outline the steps for designing FIR filters with the Kaiser window.
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Fig. 15.8. Kaiser windows of


length N = 51 for different
values of the shape control


parameter β .


The Kaiser window is based on the zeroth-order Bessel function of the first


kind and is defined as follows:


wkaiser[k] =













I0
[


β


(√


1 − [(k − m) /m]2
)]


I0[β]
−


N − 1
2


≤ k ≤
N − 1


2
0 otherwise,


(15.18)


where m = (N − 1)/2, N is the length of the filter, and I0[·] represents the
zeroth-order Bessel function of the first kind, which can be approximated by


I0[β] ≈ 1 +
∞∑


r=1


[
(β/2)


r !


]2


. (15.19)


The parameter β is referred to as the shape control parameter. By varying β
with respect to the window’s length N , the shape of the Kaiser window can be
adjusted to trade the amplitude of the side lobe for the width of the main lobe


of the DTFT of the Kaiser window. Figure 15.8 illustrates the variations in the


shape of the Kaiser window as β varies from 0 to 20. The length N of the window
is kept constant at 51. From Fig. 15.8, we observe that the Kaiser window can


be used to approximate any of the rectangular, Bartlett, Hamming, Hanning, or


Blackman windows by appropriately selecting the value of β. When β = 0, for


example, the shape of the Kaiser window is identical to the rectangular window.


Similarly, when β = 4.86, the shape of the Kaiser window is almost identical


to the Hamming window. Since the shape of the window also determines the


maximum ripples within the pass and stop bands, parameter β is also referred


to as the ripple control parameter.
We now explain the last two columns included in Table 15.1 As explained


earlier, the Kaiser window can be used to approximate the five basic windows


covered in Section 15.1.2. The second to last column in Table 15.1 specifies the


value of the shape control parameter β for which the Kaiser window approaches


the basic windows. Setting β = 4.86, for example, will cause the shape of


the Kaiser window to be similar to that of the Hamming window. The last


column lists the width of the transition band of the FIR filter obtained by using


the Kaiser window. For β = 4.86, the Kaiser window would approach the


Hamming window. The transition band of the resulting FIR filter obtained by
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truncating the ideal lowpass filter to length N with the Kaiser window is given
by 6.27π/(N − 1). We can explain the remaining entries in the last two columns
of Table 15.1 in a similar fashion.


15.1.5 Lowpass filter design steps using the Kaiser window


The steps involved in designing a lowpass FIR filter using the Kaiser window


are similar to those in the filter design outlined in Section 15.1.3, except for


steps 4, 6, and 7. Below, we only include a brief description of steps 1–3, which


are common to the two algorithms. The steps that are different are explained in


more detail.


Step 1 Calculate the normalized cut-off frequency Ωn of the filter. See step 1
of Section 15.1.3 for details.


Step 2 Determine the expression for the impulse response of an ideal lowpass
filter:


hilp[k] = Ωn sinc(Ωn(k − m)),


where m = (N − 1)/2 and N is the length of the FIR filter, which is calculated
in step 6.


Step 3 Calculate the minimum attenuation A on a dB scale using A = min(δp,
δs).


Step 4 Based on the value of A obtained in step 3, calculate the shape parameter
β from the following:


β =











0 A ≤ 21 dB
0.5842(A − 21)0.4 + 0.0789(A − 21) 21 dB < A < 50 dB
0.1102(A − 8.7) A ≥ 50 dB.


(15.20)


The above expression was derived empirically by J. F. Kaiser, who came up


with the specifications of the Kaiser window.


Step 5 Calculate the normalized transitional bandwidth �Ωn for the FIR filter.
See step 5 of Section 15.1.3 for details.


Step 6 The length N of the Kaiser window is calculated from the following
expression:


N ≥
A − 7.95


2.285π × �Ωn
. (15.21)


Equation (15.21) was also derived by Kaiser from empirical observations. Select


an appropriate value of N and then calculate m = (N − 1)/2.
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Step 7 Determine the Kaiser window by substituting the values of β (obtained
in step 4) and m (obtained in step 6) into Eq. (15.18). Let the determined Kaiser
window be denoted by wkaiser[k] .


Step 8 The impulse response of the FIR filter is given by:


hlp[k] = hilp[k]wkaiser[k]. (15.22)


If the pass-band gain |Hlp(0)| at Ω = 0, given by
∑


hlp[k], is not equal to one,
we normalize hlp[k] with


∑


hlp[k].


Step 9 Confirm that the impulse response hlp[k] satisfies the initial specifica-
tions by plotting the magnitude spectrum |Hlp(Ω)| of the FIR filter obtained in
step 8.


Example 15.3 uses the above algorithm to design an FIR filter using the Kaiser


window.


Example 15.3


Using the Kaiser window, design the FIR filter specified in Example 15.2.


Solution


Following steps 1–3 of Example 15.2, we determine the following values for


the normalized cut-off frequency, impulse response of the ideal lowpass filter,


and minimum attenuation A:


Ωn = 0.4375; hlp[k] = 0.4375 sinc(0.4375(k − m)); A = 50 dB.


The value of m in the impulse response is set to (N − 1)/2.
Step 4 of Section 15.1.5 determines the value of β:


β = 0.1102(A − 8.7) = 4.5513.


Step 5 computes the normalized transition bandwidth:


�Ωn = �ωc/(0.5ω0) = (4π − 3π ) × 103/
(


0.5 × 2π × 8 × 103
)


= 0.1250.


Using Step 6, the length of the Kaiser window is given by


N ≥
A − 7.95


2.285π × �Ωn
=


50 − 7.95


2.285π × 0.125
= 46.8619,


which is rounded off to the closest higher odd number as 47.
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Fig. 15.9. (a) Kaiser window


w[k ] of length N = 46 and
β = 4.5513. (b) Impulse
response h[k ] of the FIR filter


obtained by multiplying the


ideal lowpass filter impulse


response by the Kaiser window


in Example 15.3.


Substituting β = 4.5513 and N = 47 in Eq. (15.22), the expression for the
Kaiser window is given by


wkaiser[k] =













I0
[


4.5513
(√


1 − [(k − 23) /23]2
)]


I0[4.5513]
0 ≤ k ≤ 46


0 otherwise.


The impulse response of the FIR filter is then given by h[k] = hilp[k] wkaiser[k].
Figure 15.9(a) plots the time-domain representation of the Kaiser window of


length N = 47 and shape control parameter β = 4.5513, and Fig. 15.9(b) plots
the impulse response of the FIR filter.


The frequency characteristics of the FIR filter are shown in Fig. 15.10. Since
∑


h[k] = 0.9992 ≈ 1, the impulse response h[k] of the FIR filter is not normal-
ized by


∑


h[k]. It is observed that the FIR filter meets the design specification.
The stop-band attenuation is lower than 50 dB.


By comparing the results of Example 15.3 with those of Example 15.2, we


observe that the FIR filter obtained from the Kaiser window in Example 15.3 has


a smaller length N = 47 than the FIR filter obtained from the Hamming window


|H (W)|20 log10


W


0 p0.75p0.5p0.25p


0


−20


−40


−60


Fig. 15.10. Magnitude response


of the lowpass FIR filter


designed in Example 15.3.








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 28, 2007 14:9


683 15 FIR filter design


in Example 15.2, which has a length of N = 53. Therefore, the Kaiser window
provides an FIR filter with a lower implementational cost. This reduction in


cost is attributed to the flexibility in the Kaiser window of closely meeting the


stop-band attenuation of 50 dB. The stop-band attenuation in the Hamming


window is fixed to 60 dB and cannot be varied.


Example 15.4


Design a lowpass FIR filter based on the following specifications:


(i) cut-off frequency Ωc = 0.3636π radians/s;
(ii) transition width �Ωc = 0.0727π radians/s;


(iii) pass-band ripple 20 log10(1 + δp) ≤ 0.07 dB;
(iv) stop-band attenuation −20 log10(δs) ≥ 40 dB.


Solution


The specifications for the digital filter are specified in the DT frequency Ω


domain.


Step 1 suggests that the normalized cut-off frequency is given by


Ωn = (0.3636π )/π = 0.3636.


Step 2 determines the impulse response of the ideal lowpass filter with the


normalized cut-off frequency Ωn = 0.3636:


hilp[k] = 0.3636 sinc(0.3636(k − m)),


with m set to (N − 1)/2.
Step 3 determines the value of the minimum attenuation A. The pass-band


ripple 20 log10(1 + δp) is limited to 0.07 dB. Expressed on a linear scale, we


obtain δp ≤ 0.0081. Similarly, the stop-band ripple 20 log10(δs) is limited to


−40 dB, which implies δs ≤ 0.01. The value of the minimum attenuation is


therefore given by A = min(0.0081, 0.01) = 0.0081. Expressed in decibels, the
value of the minimum attenuation is −20 log10(A) = 41.83 dB.


Step 4 determines the value of the shape control parameter β from


Eq. (15.20):


β = 0.5842(A − 21)0.4 + 0.0789(A − 21) = 3.6115.


Step 5 computes the normalized transition bandwidth:


�Ωn = �Ωc/π = 0.0727.


Step 6 determines the length of the Kaiser window:


N ≥
A − 7.95


2.285π × �Ωn
=


41.83 − 7.95


2.285π × 0.0727
= 64.92,


which is rounded off to the closest higher odd number as 65.
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Fig. 15.11. Magnitude response


of the lowpass FIR filter


designed in Example 15.4.


Substituting β = 3.6115 and N = 65 in Eq. (15.22), the expression for the
Kaiser window is given by


wkaiser[k] =















I0
[


3.6115
(√


1 − [(k − 32) /32]2
)]


I0 [3.6115]
0 ≤ k ≤ 64


0 otherwise.


The impulse response of the FIR filter is then given by h[k] = hilp[k]wkaiser[k].
The magnitude response of the FIR filter is plotted in Fig. 15.11 using a dB


scale.


15.2 Design of highpass filters using windowing


The windowing method is not restricted to design of lowpass FIR filters; it


can be generalized to design other types of FIR filters. Section 15.2 considers


highpass FIR filters, and Sections 15.3 and 15.4 extend the windowing method


to bandpass and bandstop FIR filters, respectively.


The transfer function of an ideal highpass filter was defined in Section 14.1.2,


and is reproduced here for convenience:


Hihp(Ω) =


{


0 |Ω| < Ωc


1 Ωc ≤ |Ω| ≤ π.
(15.23)


It was shown in Section 14.1.2 that the impulse response of a highpass filter


can be related to the impulse response of a lowpass filter with the same cut-off


frequency, it is given by Eqs. (14.3a) and (14.3b). As shown in Table 14.1, the


impulse response of the ideal highpass filter with a normalized cut-off frequency


Ωn is given by


hihp[k] = δ[k] − Ωn sinc[Ωnk]. (15.24)
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Fig. 15.12. Desired


specifications of a highpass filter.


The filter with this impulse response is non-causal and hence non-realizable. By


applying a delay m, the impulse response of an ideal highpass filter is obtained:


hihp[k] = δ[k − m] − Ωn sinc[Ωn(k − m)]. (15.25)


Given the impulse response of an ideal highpass filter, we can use the windowing


method to design a highpass FIR filter. The specifications for the highpass FIR


filter are illustrated in Fig. 15.12 and are given by


stop band (0 ≤ Ω ≤ Ωs) 0 ≤ |Hhp(Ω)| ≤ δs;


pass band (Ωp < Ω ≤ π ) (1 − δp) ≤ |Hhp(Ω)| ≤ (1 + δp).


The steps involved in the design of a highpass FIR filter are given in the fol-


lowing.


Step 1 Calculate the normalized cut-off frequency Ωn of the filter:


cut-off frequency Ωc = 0.5
(


Ωp + Ωs
)


;


normalized cut-off frequency Ωn = Ωc/π.


Step 2 Determine the expression for the impulse response of an ideal highpass
filter:


hihp[k] = δ[k − m] − Ωn sin[Ωn(k − m)], (15.26)


where Ωc = πΩn and m = (N − 1)/2, where N is the length of the FIR filter.


Step 3 Calculate the minimum attenuation A on a dB scale using A = min(δp,
δs).


Step 4 Calculate the normalized transition band �Ωn for the FIR filter:


transition BW �Ωc = (Ωp − Ωs);


normalized transition BW �Ωn = �Ωc/π.
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Step 5 Design an appropriate window with parameters A and �Ωn using the
procedures mentioned in Section 15.1.3 or Section 15.1.5. Denote this window


by w[k].


Step 6 Derive the impulse response of the FIR filter:


hhp[k] = hihp[k]w[k]. (15.27)


We now derive the condition for the gain |H (π )| to be equal to one. Substituting
Ω = π in the DTFT H (Ω), we obtain


H (π ) =
N−1∑


k=0
h[k]e−jkΩ


∣
∣
∣
∣
∣
Ω=π


=
N−1∑


k=0,2,...
h[k] −


N−1∑


k=1,3,...
h[k]. (15.28)


In other words, the difference between the sum of the even-numbered samples


of h[k] and the sum of the odd-numbered samples of h[k] should equal one. If
not, we calculate the normalized impulse response h′hp[k] = hhp[k]/H (π ).


Step 7 Confirm that the impulse response h[k] satisfies the initial specifications
by plotting the magnitude spectrum |Hhp(Ω)| of the FIR filter obtained in step 6.


We observe that the above algorithm is similar to the design of a lowpass filter,


except that the impulse response of the ideal lowpass filter is replaced by the


impulse response of the ideal highpass filter. Example 15.5 uses the above


algorithm to design a highpass FIR filter using the Kaiser window.


Example 15.5


Design a highpass FIR filter, using the Kaiser window, with the following


specifications:


(i) pass-band edge frequency Ωp = 0.5π radians/s;


(ii) stop-band edge frequency Ωs = 0.125π radians/s;


(iii) pass-band ripple 20 log10(1 + δp) ≤ 0.01 dB;


(iv) stop-band attenuation −20 log10(δs) ≥ 60 dB.


Plot the frequency characteristics of the designed filter.


Solution


The cut-off frequency Ωc of the filter is given by Ωc = 0.5(0.125π + 0.5π ) =


0.3125π . The normalized cut-off frequency Ωn of the filter is Ωc/π = 0.3125.


The impulse response of the ideal high pass filter with a cut-off frequency of


0.3125 is given by


hihp[k] = δ[k − m] − 0.3125 sinc(0.3125(k − m)). (15.29)


To determine the minimum attenuation A, we calculate δp and δs. Since
20 log10(1 + δp) <= 0.01 dB, the pass-band ripple δp should be less than
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Fig. 15.13. Magnitude response


of the highpass FIR filter


designed in Example 15.5.


100.01/20 − 1 = 0.0012, while δs should be less than 10−60/20 − 1 = 0.001. The
minimum attenuation A is therefore given by A = min(0.0012, 0.001) = 0.001,
or 60 dB.


The shape parameter is evaluated from Eq. (15.20) as follows:


β = 0.1102(A − 8.7) = 5.6533.


The transition band �Ωc for the FIR filter is Ωp − Ωs = 0.375π . The nor-
malized transition band �Ωn is therefore given by �Ωc/π = 0.375. Using
�Ωn = 0.375, the length N of the Kaiser window is given by


N ≥
60 − 7.95


2.285π × 0.375
= 19.3354.


Rounding off to the higher closest odd number, we obtain N = 21.
The expression for the Kaiser window is given by


wkaiser[k] =













I0
[


5.6533
(√


1 − [(k − 10) /10]2
)]


I0[5.6533]
0 ≤ k ≤ 20


0 otherwise.


(15.30)


The impulse response of the highpass FIR filter is given by


hhp[k] = hihp[k]wkaiser[k],


where hihp[k] is specified in Eq. (15.29) with m = 10 and wkaiser[k] is given in
Eq. (15.30). The filter gain at Ω = π is given by


Hhp(π ) =
N−1∑


k=0,2,...


hhp[k] −
N−1∑


k=1,3,...


hhp[k] = 1.0002.


As H (π ) ≈ 1, the coefficients of h[k] need not be normalized.
The magnitude response of the highpass FIR filter is plotted in Fig. 15.13,


which verifies that the initial specifications of the filter are satisfied.


In Example 15.5 we designed a highpass FIR filter directly from the given spec-


ifications. An alternative procedure to design a highpass FIR filter is to exploit
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Fig. 15.14. Desired


specifications of a bandpass


filter.


Eq. (14.2b) and implement Hlp(Ω) instead. Based on the frequency character-
istics of the highpass FIR filter illustrated in Fig. 15.12, the specifications of


the Hlp(Ω) in Eq. (14.2b) are given by


pass band (0 ≤ Ω ≤ Ωs) (1 − δs) ≤ |Hlp(Ω)| ≤ (1 + δs);


stop band (Ωp < Ω ≤ π ) 0 ≤ |Hlp(Ω)| ≤ δp.


The impulse response of the lowpass FIR filter ĥlp [k] is then transformed to the
impulse response ĥhp [k] of the highpass FIR filter using the following equation:


ĥhp[k] = δ[k − m] − ĥlp[k].


15.3 Design of bandpass filters using windowing


The design specifications for bandpass filters are specified in Fig. 15.14 and are


given by


stop band I (0 ≤ Ω ≤ Ωs1) 0 ≤ |H (Ω)| ≤ δs1;


stop band II (Ωs2 ≤ Ω ≤ π ) 0 ≤ |H (Ω)| ≤ δs2;


pass band (Ωp1 < Ω ≤ Ωp2) (1 − δp) ≤ |H (Ω)| ≤ (1 + δp),


where we assume that the values of ripples δs1 and δs2 allowed in the two stop


bands are different. The algorithm used to design a bandpass FIR filter using


windowing is similar to the design for the highpass filter described in Section


15.2, except that the impulse response of an ideal bandpass filter is used in


step 2.


The transfer function of an ideal bandpass filter was defined in Section 14.1.3,


and is reproduced here for convenience:


Hibp(Ω) =


{


1 Ωc1 ≤ |Ω| ≤ Ωc2


0 |Ω| < Ωc1 and Ωc2 ≤ |Ω| ≤ π.
(15.31)
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As shown in Table 14.1, the impulse response of the ideal bandpass filter with


normalized cut-off frequencies of Ωn1,Ωn2 (Ωn2 > Ωn1) is given by


hibp[k] = Ωn2 sinc[Ωn2k] − Ωn1 sinc[Ωn1k]. (15.32)


As the filter with this impulse response is non-causal, we apply a delay of m,
and the modified impulse response is obtained:


hibp[k] = Ωn2 sinc[Ωn2(k − m)] − Ωn1 sinc[Ωn1(k − m)]. (15.33)


The steps for designing a bandpass filter using windowing are as follows.


Step 1 Calculate the two normalized cut-off frequencies Ωn1 and Ωn2 of the
bandpass filter:


cut-off frequenciesΩc1 = 0.5(Ωp1 + Ωs1) and Ωc2 = 0.5(Ωp2 + Ωs2);
normalized cut-off frequencies Ωn1 = Ωc1/π and Ωn2 = Ωc2/π.


Step 2 Determine the impulse response of the ideal bandpass filter by substi-
tuting the values of Ωn1 and Ωn2 in Eq. (15.33).


Step 3 Calculate the minimum attenuation A on a dB scale using A = min(δp,
δs1, δs2).


Step 4 Calculate the normalized transition bandwidth �Ωn for the FIR filter:


transitional BW �Ωc1 = (Ωp1 − Ωs1) and �Ωc2 = (Ωs2 − Ωp2);
normalized transition BW �Ωn = min (�Ωc2, �Ωc1) /π.


Step 5 Design an appropriate window with parameters A and �Ωn using the
procedures mentioned in Section 15.1.3 or Section 15.1.5. Denote this window


by w[k].


Step 6 Derive the impulse response of the FIR filter:


hbp[k] = hibp[k]w[k]. (15.34)


Step 7 Confirm that the impulse response hbp[k] satisfies the initial specifica-
tions by plotting the magnitude spectrum |Hbp(Ω)| of the FIR filter obtained in
step 6.


Example 15.6 illustrates the working of the above algorithm by designing a


bandpass FIR filter using the Kaiser window.
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Example 15.6


Design a bandpass FIR filter with the following specifications:


(i) pass-band edge frequencies, Ωp1 = 0.375π and Ωp2 = 0.5π radians/s;
(ii) stop-band edge frequencies, Ωs1 = 0.25π and Ωs2 = 0.625π radians/s;


(iii) stop-band attenuations, δs1 > 50 dB and δs2 > 50 dB.


Plot the gain–frequency characteristics of the designed bandpass filter.


Solution


The cut-off frequencies of the bandpass filter are given by


Ωc1 = 0.5 (0.25π + 0.375π ) = 0.3125π
and


Ωc2 = 0.5 (0.5π + 0.625π ) = 0.5625π.


The normalized cut-off frequencies are given by Ωn1 = Ωc1/π = 0.3125 and
Ωn2 = Ωc2/π = 0.5625. The impulse response of an ideal bandpass filter is
given by


hibp[k] = 0.5625 sinc[0.5625(k − m)] − 0.3125 sinc[0.3125(k − m)].
(15.35)


Since only the stop-band attenuations are specified, and these are both equal to


50 dB, the minimum attenuation A = 50 dB.
The shape parameter β of the Kaiser window is computed to be


β = 0.1102(50 − 8.7) = 4.5513.


The transition bands �Ωc1 and �Ωc2 for the bandpass FIR filter are given by


�Ωc1 = 0.375π − 0.25π = 0.125π
and


�Ωc2 = 0.625π − 0.5π = 0.125π,


which lead to the normalized transition BW of �Ωn = 0.125.
The length N of the Kaiser window is given by


N ≥
50 − 7.95


2.285π × 0.125
= 46.8619.


Rounded to the closest higher odd number, N = 47, and the value of m in Eq.
(15.35) is 23. The expression for the Kaiser window is as follows:


wkaiser[k] =













I0
[


4.5513
(√


1 − [(k − 23)/23]2
)]


I0[4.5513]
0 ≤ k ≤ 46


0 otherwise.


(15.36)
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Fig. 15.15. Magnitude response


of the bandpass FIR filter


designed in Example 15.6.


The impulse response of the bandpass FIR filter is given by


hbp[k] = hibp[k]wkaiser[k].


where hibp[k] is specified in Eq. (15.35) with m = 23 and wkaiser[k] is specified
in Eq. (15.36).


The magnitude spectrum of the bandpass FIR filter is plotted in Fig. 15.15.


It is observed that the bandpass filter satisfies the design specifications.


In Example 15.6, we designed a bandpass FIR filter directly. As for the


highpass FIR filter, an alternative procedure to design a bandpass FIR filter


is to exploit Eq. (14.4e) and implement two lowpass FIR filters with impulse


responses Hlp1(k) and Hlp2(k). The specifications for the two lowpass filters
should be carefully derived such that the pass- and stop-band ripples of the


combined system are limited to values allowed in the original bandpass filter’s


specifications.


15.4 Design of a bandstop filter using windowing


As illustrated in Fig. 15.16, the design specifications for a bandstop filter are


given by


pass band I (0 ≤ Ω ≤ Ωp1) (1 − δp1) ≤ |Hbs(Ω)| ≤ (1 + δp1);


pass band II (Ωp2 ≤ Ω ≤ π ) (1 − δp2) ≤ |Hbs(Ω)| ≤ (1 + δp2);


stop band (Ωs1 < Ω ≤ Ωs2) 0 ≤ |Hbs(Ω)| ≤ δs.


The steps involved in the design of a bandpass FIR filter using windowing are


similar to those specified for the bandpass filter in Section 15.3.


The transfer function of an ideal bandstop filter was defined in Section 14.1.4,


and is reproduced here for convenience:


Hibs(Ω) =


{


0 Ωc1 ≤ |Ω| ≤ Ωc2


1 |Ω| < Ωc1 and Ωc2 < |Ω| ≤ π,
(15.37)
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filter.


As shown in Table 14.1, the impulse response of the ideal bandstop filter with


normalized cut-off frequencies of Ωn1,Ωn2 (Ωn2 > Ωn) is given by


hibs[k] = δ[k] − Ωn2 sinc[Ωn2k] + Ωn1 sinc[Ωn1k]. (15.38)


By applying a delay m, the modified impulse response of an ideal bandpass
filter is obtained:


hibs[k] = δ[k − m] − Ωn2 sinc[Ωn2(k − m)] + Ωn1 sinc[Ωn1(k − m)].
(15.39)


In the following example, we illustrate the steps involved in designing a practical


bandstop filter using the windowing method.


Example 15.7


Design a bandstop FIR filter, using a Kaiser window, with the following speci-


fications:


(i) pass-band edge frequencies, Ωp1 = 0.25π and Ωp2 = 0.625π radians/s;
(ii) stop-band edge frequencies, Ωs1 = 0.375π and Ωs2 = 0.5π radians/s;


(iii) stop-band attenuations, δs1 > 50 dB and δs2 > 50 dB.


Solution


The cut-off frequencies of the bandpass filter are given by


Ωc1 = 0.5 (0.25π + 0.375π ) = 0.3125π
and


Ωc2 = 0.5 (0.5π + 0.625π ) = 0.5625π.


The normalized cut-off frequencies are given by Ωn1 = 0.3125 and Ωn2 =
0.5625. The impulse response of an ideal bandpass filter is given by


hibs[k] = δ[k − m] − 0.5625 sinc[0.5625(k − m)]
+ 0.3125 sinc[0.3125(k − m)]. (15.40)
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The minimum attenuation A = 50 dB. Therefore, The shape parameter β of
the Kaiser window is computed as


β = 0.1102(50 − 8.7) = 4.5513.


The transition bands �Ωc1 and �Ωc2 for the bandpass FIR filter are given by


�Ωc1 = (0.375π − 0.25π ) = 0.125π and �Ωc2
= (0.625π − 0.5π ) = 0.125π,


which leads to the normalized transition BW of �Ωn = 0.125.
The length N of the Kaiser window is given by


N ≥
50 − 7.95


2.285π × 0.125
= 46.8619.


Rounded to the closest higher odd number, N = 47, and the value of m in Eq.
(15.40) is 23.


The expression for the Kaiser window is as follows:


wkaiser[k] =













I0
[


4.5513
(√


1 − [(k − 23) /23]2
)]


I0[4.5513]
0 ≤ k ≤ 46


0 otherwise.


(15.41)


The impulse response of the bandpass FIR filter is given by


hbs[k] = hibs[k]wkaiser[k],


where hibs[k] is specified in Eq. (15.40) with m = 23 and wkaiser[k] is as shown
in Eq. (15.41).


The magnitude response of the bandstop FIR filter is plotted in Fig. 15.17. It


is observed that the bandstop filter satisfies the design specifications.


In the above example, a bandstop FIR filter was designed directly. As for the


highpass and bandpass FIR filters, an alternative design procedure (see Eq. 14.6)


is to express the transfer function of a bandstop FIR filter in terms of the transfer


functions of two lowpass filters as follows:


hibs[k] = δ[k − m] − hilp1[k]|Ωc=Ωc2 + hilp2[k]|Ωc=Ωc1 . (15.42)


The specifications for these two lowpass filters are derived from the given


design specifications of the bandpass filter. As for bandpass FIR filters, the


specifications of the lowpass filters should be carefully assigned such that the


pass- and stop-band ripples of the combined system satisfy the original bandstop


filter’s specifications.


15.5 Optimal FIR filters


Designing an FIR filter using the windowing approach is simple but suffers


from one severe limitation. The minimum attenuation obtained in the stop
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Fig. 15.17. Magnitude response


of the bandstop FIR filter


designed in Example 15.7.


band of the FIR filter is fixed for the elementary window types covered in


Section 15.1.2. The Kaiser window, introduced in Section 15.1.4, provides some


flexibility in controlling the stop-band attenuation by introducing an additional


design parameter β. However, there is no guarantee that the FIR filter, designed


with either the elementary windows or the Kaiser window, is optimal. In this


section, we introduce a computational optimization procedure for the design


of FIR filters. The procedure is commonly referred to as the Parks–McClellan


algorithm, which iteratively minimizes the absolute value of the error:


ε(Ω) = W (Ω) [Hd(Ω) − H (Ω)], (15.42)


where Hd(Ω) is the transfer function of the desired or ideal filter, whose fre-
quency characteristics are to be approximated, H (Ω) is the transfer function
of the approximated FIR filter, and W (Ω) is a weighting function introduced
to emphasize the relative importance of various frequency components of the


filter. For a lowpass filter, for example, a logical way to select the values of the


weighting function is to set


lowpass filter W (Ω) =











1/δp 0 ≤ Ω ≤ Ωp


0 Ωp < Ω < Ωs


1/δs Ωs ≤ Ω ≤ π.


(15.43)


Equation (15.43) implies that if the condition for the pass-band ripple is more


stringent (i.e. smaller) than the condition for the stop-band ripple, the weighting


function allocates a higher weight to the pass band than to the stop band, and


vice versa. Zero weight is associated with the transition band, which means


that the weighting function does not care about the characteristics of the FIR


filter in the transition band as long as the filter’s gain changes steadily between


the pass and stop bands. Scaling Eq. (15.43) with δs, the normalized weighting


function is given by


lowpass filter W (Ω) =











δs/δp 0 ≤ Ω ≤ Ωp


0 Ωp < Ω < Ωs


1 Ωs ≤ Ω ≤ π.


(15.44)
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The weighting function for highpass, bandpass, and bandstop filters can be


derived in a similar fashion. Given a weighting function, the Parks–McClellan


algorithm seeks to solve the following optimization problem:


min


{h[k]}


[


max


Ω ∈ S
|ε(Ω)|


]


, (15.45)


where S is defined as a set of discrete frequencies chosen within the pass and
stop bands. For a lowpass filter, the set of frequencies that can be included in S
should lie in the following range:


lowpass filter S =
[


0 ≤ Ω ≤ Ωp
]


∪ [Ωs ≤ Ω ≤ π ] (15.46)


Similarly, the sets S of discrete frequencies are carefully selected over the pass
and stop bands for other types of filters.


Because Eq. (15.45) minimizes a cost function, which is the maximum of the


error ε(Ω), Eq. (15.45) is also referred to as the minimax optimization problem.


The goal in solving Eq. (15.45) is to determine the set of coefficients for the


impulse response h[k] of the optimal FIR filter of length N .
It was shown in Proposition 14.1 (see Section 14.3.1) that if the filter coe-


fficients of an FIR filter are symmetric or anti-symmetric, the phase response


of the filter is a linear function of frequency, and the transfer function can be


expressed as follows:


H (Ω) = G(Ω)ej(β−αΩ), (15.47)


where α = (N − 1)/2, β is a constant, and G(Ω) is a real-valued function. Table
14.2 shows the values of β and G(Ω) for four types of linear-phase FIR filters.


The Parks–McClellan algorithm exploits Proposition 14.1 to solve the mini-


max optimization problem, as explained in the following. For various types of


linear-phase FIR filter, G(Ω) is a summation of a finite number of sinusoidal
terms of the form cos(Ωk) or sin(Ωk), which themselves can be expressed as
polynomials of cos(Ω). For example, cos(Ωk) can be expressed as a kth-order
polynomial of cos(Ω), which, for k = 2 and 3, can be expressed as follows:


cos (2Ω) = 2 cos2(Ω− 1);


cos (3Ω) = 4 cos3(Ω) − cos(Ω).


It is observed from Table 14.2 that the function G(Ω) can be expressed as a sum
of several higher-order terms cos(Ωk) or sin(Ωk). Therefore, G(Ω) can also be
expressed as a polynomial of cos(Ω). It can be shown that the error function ε(Ω)


in Eq. (15.42), corresponding to linear-phase FIR filters, can also be expressed


as a polynomial of cos(Ω). Parks and McClellan applied the alternation theorem


from the theory of polynomial approximation to solve the minimax optimization


problem. For convenience, we first express the alternation theorem in the context


of polynomial approximation, and later we show its adaptation to the minimax


optimization problem.
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15.5.1 Alternation theorem


Let S be a compact subset on the real axis x and let D(x) be a desired function
of x which is continuous on S. Let D(x) be approximated by P(x), an Lth-order
polynomial of x , which is given by


P(x) =
L∑


m=0
cm x


m . (15.48a)


Define the approximation error ε(x) and the amplitude of the maximum error
value εmax on S as follows:


ε(x) = W (x)[D(x) − P(x)] : (15.48b)
εmax = arg max


x∈S
|ε(x)|. (15.48c)


A necessary and sufficient condition for P(x) to be the unique Lth-order poly-
nomial minimizing εmax is that ε(x) exhibits at least L + 2 alternations. In other
words, there must exist L + 2 values of x , {x1 < x2 < · · · xL+2} ∈ S such that
ε(xm) = −ε(xm+1) = ±εmax.


Note that the minimax optimization problem for optimal filter design fits


very well in the framework of the alternation theorem. In the filter design


problem, S is the subset of DT frequencies, D(x) is the desired filter response,
P(x) is the approximated filter response, and εmax is the maximum deviation
between the desired and approximated filter response. Therefore, the FIR filters


obtained using minimax optimization is also expected to exhibit alternations in


its frequency response. However, note that G(Ω) is a polynomial of cos(Ω) and
not ofΩ. This issue can be addressed by using the mapping function x = cos(Ω).
In this case, the frequency spaceΩ = [0, π ] can be mapped to x = [−1, 1], and
the optimization problem can be reformulated around x to calculate the optimal
filter coefficients. It can be shown that the alternation in the frequency response


of the optimal filters is still applicable.


Based on the above discussion, the alternation theorem can be restated for


the minimax optimization problem as follows. Consider the following minimax


optimization problem:


{h[k], 0 ≤
min


k ≤ (N − 1)}


[


max
Ω∈S


|ε(Ω)|


]


; (15.49a)


ε(Ω) = W (Ω)






Hd (Ω) − G(Ω)e


−jΩ(N−1/2)ejφ
︸ ︷︷ ︸


H (Ω)






 . (15.49b)


where S is a set of discrete extremal frequencies chosen within the pass and stop
bands, W (Ω) is a positive weighting function, Hd(Ω) is the transfer function of
the ideal filter with a unity gain within the pass band and a zero gain within the


stop band, and G(Ω) is a polynomial of cos(Ω) with degree L , which is uniquely
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specified by the impulse response h[k]. Let εmax max denote the maximum value
of the error |ε(Ω)|. The polynomial G(Ω), which best approximates Hd(Ω)
(i.e. minimizes εmax), produces the error function ε(Ω) that must satisfy the


following property. There should be at least L + 2 discrete frequencies {Ω1 <
Ω2 < · · · < ΩL+2} ∈ S at which the maximum and minimum peak values of
the error alternate, i.e. ε(Ωm+1) = −ε(Ωm) = εmax.


Before presenting some examples of the application of the alternation theo-


rem, we briefly comment on the degree L of the error function ε(Ω) in the FIR
filters. The value of L is determined by evaluating the highest power of cos(Ω)
in the G(Ω) function of the filters. For the four types of FIR filters with length
N , the value of L is specified as follows:


type I FIR filters L =
N − 1


2
;


type II FIR filters L =
N − 2


2
;


type III FIR filters L =
N − 3


2
;


type IV FIR filters L =
N − 2


2
.


The alternation theorem states that the minimum number of alternations for the


optimal FIR filter should be at least L + 2. The actual number of alternations
in an optimal FIR may, however, exceed the minimum number specified by the


alternation theorem. An optimally designed lowpass or highpass filter can have


up to L + 3 alternations, while an optimal bandpass or bandstop filter can have
up to L + 5 alternations.


Example 15.8


The magnitude spectra of two lowpass FIR filters with lengths N = 13 and
20 are, respectively, shown in Figs. 15.18(a) and (b), where the filter gain


within the pass and stop bands is enclosed within a frame box. Determine if the


two filters satisfy the alternation theorem.


Solution


Figure 15.18(a) shows the frequency response of a type I FIR filter with


length N = 13. The degree L of cos(Ω) in the polynomial ε(Ω) is given
by L = (13 − 1)/2 = 6. Based on the alternation theorem, there should be at
least L + 2 = 8 alternations in polynomial ε(Ω). Note that the absolute value
of error |ε(Ω)| is the difference |H (Ω) −Hd(Ω)|, where Hd(Ω) has a unity gain
within the pass band and zero gain within the stop band. Therefore, counting the


number of alternations in ε(Ω) is the same as counting the number of alterna-


tions in H (Ω) with respect to the pass- and stop-band ripples. From Fig. 15.18
we observe that there are indeed eight alternations (shown by × symbols) in


H (Ω). One of these alternations occurs at the pass-band edge frequency Ωp,
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Fig. 15.18. Magnitude spectrum


of lowpass FIR filters. (a) Type I


FIR filter of length N = 13.
(b) Type II FIR filter of length


N = 20.


and two of these alternations occur at the stop-band edge frequencies Ωs and


π . In other words, Fig. 15.18(a) satisfies the alternation theorem.


Figure 15.18(b) shows the frequency response of a type II FIR filter with


length N = 20. The degree L of cos(Ω) in polynomial ε(Ω) is given by
L = (20 − 2)/2 = 9. Based on the alternation theorem, there should be at least
L + 2 = 11 alternations in polynomial ε(Ω). In Fig. 15.18(b), we observe 12
alternations in H (Ω), which exceed the minimum required number of alterna-
tions. Therefore, Fig. 15.18(b) satisfies the alternation theorem.


15.5.2 Parks–McClellan algorithm


In this section we present steps of the Parks–McClellan algorithm for designing


optimal filters. In this discussion, we will consider only type I filters. Algorithms


for other types of filters can be obtained in the same manner. To derive the


Parks–McClellan algorithm, the approximated error function in Eq. (15.49b) is


expressed as follows:


G(Ω) +
ε(Ω)


W (Ω)
≈ Hd(Ω). (15.50)


For type I filters, we obtain G(Ω) from Table 14.2 as follows:


G(Ω) = h


[
N − 1


2


]


+ 2


(N−1)/2∑


k=1


h


[
N − 1


2
− k


]


cos(Ωk).


Since we are interested in calculating (N − 1)/2 + 1, or L + 1, coefficients
of h[k] in G(Ω) and the value of the maximum error εmax, we pick L + 2
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discrete frequencies {Ω1 < Ω2 < · · · < ΩL+2} ∈ S, and solve Eq. (15.50) at the
selected frequencies. Assuming that the selected frequencies are the extremal


frequencies at which the maximum error changes between its peak value of


±εmax, Eq. (15.50) reduces to


G(Ωm) +
1


W (Ωm)
(−1)mεmax = Hd(Ωm). (15.51)


for 1 ≤ m ≤ (L + 2). The resulting set of (L + 2) simultaneous equations is as
follows:













1 cos
(


Ω1
)


· · · cos
(


LΩ1
)


−1/W (Ω0)
1 cos


(


Ω2
)


· · · cos
(


LΩ2
)


−1/W (Ω2)
.
.
.


.


.


.
. . .


.


.


.
.
.
.


1 cos
(


ΩL+1
)


· · · cos
(


LΩL+1
)


(−1)L+1 /W (ΩL+1)
1 cos


(


ΩL+2
)


· · · cos
(


LΩL+2
)


(−1)L+2 /W
(


ΩL+2
)













︸ ︷︷ ︸


�(cos(kΩ))














h
[


N−1
2


]


2h
[


N−1
2


− 1
]


.


.


.


2h[0]
εmax














=













Hd
(


Ω1
)


Hd
(


Ω2
)


.


.


.


Hd
(


ΩL+1
)


Hd
(


ΩL+2
)













.


(15.52)


Once the extremal frequencies {Ω1 < Ω2 < · · · < ΩL+2} are known, Eq.


(15.52) can be used to solve for the coefficients of the FIR filter. The extremal


frequencies are computed using the Remez algorithm, which is based on Eq.


(15.52) (though it does not solve the simultaneous equations explicitly) and


consists of the following steps.


Initialization: pick {Ω1 < Ω2 < · · · < ΩL+2} ∈ S evenly over the pass and
stop bands.


Given: transfer function Hd(Ω) of the ideal filter and the weighting function
W (Ω).


Step 1 Solve Eq. (15.52) to calculate εmax. To compute εmax, we do not need to
solve the complete set of simultaneous equations given in Eq. (15.52). Instead


the following expression, obtained from Eq. (15.52) is solved:


εmax =
(−1)L+3


|� (cos (kΩ))|


∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣


1 cos (Ω1) · · · cos (LΩ1) Hd (Ω1)
1 cos (Ω2) · · · cos (LΩ2) Hd (Ω2)
...


...
. . .


...
...


1 cos (ΩL+1) · · · cos (LΩL+1) Hd (ΩL+1)
1 cos (ΩL+2) · · · cos (LΩL+2) Hd (ΩL+2)


∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣


,


(15.53)


where |�(·)| denotes the determinant of the matrix �(·).


Step 2 Substituting the value of εmax determined in step 1, compute the values
of G(Ωm) at discrete frequencies {Ω1 < Ω2 < · · · < ΩL+2} using Eq. (15.51).
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Step 3 Using the values of G(Ωm) computed in step 2, sketch a line plot of
G(Ω) as a function ofΩby interpolating intermediate values of G(Ω). Generally,
G(Ω) is interpolated over a large grid of discrete frequencies within S.


Step 4 Using the line plot of G(Ω) obtained in step 3, sketch the line plot of
ε(Ω) as a function of Ω using the following expression:


ε(Ω) = W (Ω)[Hd(Ω) − G(Ω)],


derived from Eq. (15.50).


Step 5 Update the L + 2 extremal frequencies {Ω1 < Ω2 < · · · < ΩL+2} ∈ S
by determining the L + 2 maxima and minima in ε(Ω) plotted in step 4.


Step 6 Check if the L + 2 maxima and minima observed in step 5 have the
same value. If they do, then the alternation theorem is satisfied and the updated


frequencies {Ω1 < Ω2 < · · · < ΩL+2} can be used to solve Eq. (15.52) for the


filter coefficients. If not, then go back to step 1 and repeat steps 1–6.


The Parks–McClellan algorithm, highlighted in the aforementioned discus-


sion, designs a lowpass FIR filter. Extension to other types of FIR filters is


straightforward, provided that the required filter can be expressed in terms of


a lowpass filter. Equation (15.24) illustrates how the design of a highpass filter


can be transformed to the design of a lowpass filter. Similarly, Eqs. (15.32) and


(15.38), respectively, provide transformations for bandpass and bandstop filters.


Once the specifications of the required filter are expressed in terms of a low-


pass filter, the impulse response of the optimal lowpass FIR filter is computed


using the Parks–McClellan algorithm. The impulse response of the required FIR


filter is then calculated from the impulse response of the optimal lowpass FIR


filter.


15.6 M A T L A B examples


The design algorithms covered in this chapter are incorporated as library func-


tions in most signal processing software packages. In this section, we introduce


several M-files available in M A T L A B for the design of FIR filters. In par-


ticular, we cover rectwin, bartlett, hann, hamming, and blackman


functions, which are used to implement the elementary windows covered in


Section 15.1. In addition, we consider the fir1 function to derive the impulse


response of the FIR filter. The kaiser function used to design FIR filters


using the Kaiser window and the firpm function used to implement the Parks–


McClellan algorithm are also presented in this section. In each case, we write


the M A T L A B code for the design of the FIR filter specified in Example 15.2.
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For convenience, the specifications of the lowpass filter in Example 15.2 are


given by


pass-band edge frequency (ωp) = 3π kradians/s,
stop-band edge frequency (ωs) = 4π kradians/s,
maximum allowable pass-band ripple − 20 log10(δp) = 25 dB,


i.e. δp = 0.0562,
minimum stop-band attenuation −20 log10(δs) = 50 dB,


i.e. δs = 0.0032,
sampling frequency ( f0) = 8 ksamples/s.


Example 15.9


Design the lowpass FIR filter considered in Example 15.2 using the rectangular,


Bartlett, Hanning, Hamming, and Blackman windows. Sketch and compare the


magnitude response of the resulting FIR filters.


Solution


As shown in Example 15.2, the values of the normalized cut-off frequency


and the normalized transition bandwidth for the lowpass filter are given by


Ωn = 0.4375 and �Ωn = 0.125, respectively.
Since the minimum stop-band attenuation is 50 dB, only the Hamming and


Blackman windows may be used for the filter design. The value of length N of
the FIR filters for the two windows is given by


Hamming window 6.6
/


N = 0.1250 ⇒ N = 6.6/0.125 = 52.8;
Blackman window 11


/


N = 0.1250 ⇒ N = 11/0.125 = 88.


M A T L A B provides the fir1 function to derive the impulse response of the


FIR filter. The syntax for the fir1 function is given by


fir coeff. = fir1(order, norm cut off, type,window);


where the input argument order denotes the order of the FIR filter. For


an FIR filter of length N , the order is given by N – 1. The input argument
norm cut off specifies the normalized cut-off frequency of the FIR filter.


Its value should lie between zero and one. The input argument type specifies


the type of the FIR filter. Two possible choices for type are ’low’ for the


lowpass FIR filter and ’high’ for the highpass FIR filter. Finally, the input


argument window accepts coefficients w[k] of the window type being used
in the FIR filter design. Any of the elementary windows covered in Section
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15.1 can be used by naming the appropriate window function. The syntaxes for


various types of length-N window functions are as follows:


>> win coeff = rectwin(N); % rectangular window
>> win coeff = bartlett(N); % bartlett window
>> win coeff = hann(N); % hanning window
>> win coeff = hamming(N); % hamming window
>> win coeff = blackman(N); % blackman window


For Example 15.2, the M A T L A B code for the design of the FIR filter using the


Hamming window is given by


% lowpass filter design using Hamming window


>> wn = 0.4375; % Normalized cut-off
% frequency


>> N = 53; % Hamming Window
>> h hamm = fir1 (N-1,wn, ’low’,hamming(N));


% Impulse response of


% the LPF


>> w = 0:0.001*pi:pi; % discrete frequencies
% for response


>> H hamm = freqz(h hamm,1,w); % transfer function
>> plot(w,20*log10(abs(H hamm))); % magnitude response


>> axis([0 pi -120 20]); % set axis


>> title(’FIR filter using Hamming window’)


>> grid on


The magnitude response of the FIR filter obtained with the Hamming window


is shown in Fig. 15.19(a). Note that the magnitude response satisfies the filter


specifications.


The M A T L A B code for the design of the FIR filter using the Blackman


window is similar, except for a few minor changes, which are shown below.


% lowpass filter design using Blackman window


>> wn = 0.4375; % Normalized cut-off
% frequency


>> N = 88; % Blackman Window size
>> h black = fir1(N-1,wn, ’low’,blackman(N));


% Impulse response of


% the LPF


>> w = 0:0.001*pi:pi; % discrete frequencies
% for response
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Fig. 15.19. FIR filter design for


Example 15.9 using MATLAB.


(a) Hamming window


(b) Blackman window.


>> H black = freqz(h black,1,w); % transfer function
>> plot(w,20*log10(abs(H black))); % magnitude response


>> axis([0 pi -120 20]); % set axis


>> title(’FIR filter using Blackman window’);


>> grid on


The magnitude response of the FIR filter obtained with the Blackman window is


shown in Fig. 15.19(b). On comparing with Fig. 15.19(a), we note that the stop-


band attenuation in Fig. 15.19(b) is higher. The improvement in the stop-band


attenuation is the result of the shape of the Blackman window.


Although the above example uses only the Hamming and Blackman windows,


any of the elementary windows covered in Section 15.1 can be used by speci-


fying the appropriate window coefficients in the fir1 function.


Example 15.10


Design the lowpass FIR filter considered in Example 15.3 using the Kaiser


window. Sketch and compare the magnitude response of the resulting FIR filter


with those of the FIR filters obtained in Example 15.3.


Solution


As shown in Example 15.3, the normalized cut-off frequencyΩn = 0.4375 and
the normalized transition bandwidth �Ωn = 0.1250. The design parameters for
the Kaiser window were calculated as β = 4.5513 and N = 47.


The MATLAB code for the design of the FIR filter using the Kaiser window


is similar to the MATLAB code in Example 15.9. The major difference is in the


fir1 instruction, where the window argument is now replaced by the kaiser
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FIR filter using Kaiser windowFig. 15.20. FIR filter design for


Example 15.10 with the Kaiser


window using MATLAB.


function. A Kaiser window of length N and shape parameter β can be generated
by the following instruction:


Win = kaiser(N, beta)


The M A T L A B code is given by


% lowpass filter design using Kaiser window


>> wn = 0.4375; % Normalized Cutoff
% frequency


>> N = 47; % Kaiser Window length
>> beta = 4.5513; % Kaiser Shape control


% parameter


>> h kaiser = fir1(N-1,wn, ’low’,kaiser(N,beta));
% Impulse response of


% the LPF


>> w = 0:0.001*pi:pi; % discrete frequencies
% for response


>> H kaiser = freqz(h kaiser,1,w); % transfer function
>> plot(w,20*log10(abs(H kaiser))); % magnitude response


>> axis([0 pi -120 20]); % set axis


>> title(’FIR filter using Kaiser window’);


>> grid on


The magnitude response of the FIR filter obtained with the Kaiser window is


shown in Fig. 15.20. Compared with Figs. 15.19(a) and (b), we note that the


minimum stop-band attenuation in Fig. 15.20 is exactly 50 dB. Being able to


provide the exact specified attenuation, the Kaiser window is able to reduce


the length of the lowpass FIR filter to 47. Among the three filters, the FIR
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filter obtained from the Kaiser window is therefore the least expensive from the


implementation perspective.


For the design of optimal filters, M A T L A B has incorporated the firpm func-


tion, which has the following syntax:


fir coefficients = firpm(order,range norm cut off,
f response,wmatrix);


where the input argumentorder denotes the order of the FIR filter. The second


input argument rang norm cut off is a vector that specifies the edges of


the normalized cut-off frequency of the FIR filter. All elements of this vector


should have a value between zero and one. For a lowpass filter, the elements of


the rang norm cut off vector are given by


rang norm cut off = [0, pass band cut off, stop band cut off,
1];


The third input argument f response specifies the four gains of the FIR


filter at the four frequencies specified in the rang norm cut off vector. For


a lowpass filter, the value of the f response vector is given by


f response =[1, 1, 0, 0];


Finally, the fourth input argument wmatrix specifies the weight matrix. Since


wmatrix has one entry per band, it is half the length ofrang norm cut off


and f response vectors.


Example 15.11 illustrates the design of an optimal FIR filter using thefirpm


function.


Example 15.11


Examples 15.9 and 15.10 designed an FIR filter using rectangular. Ham-


ming, and Kaiser windows with a given set of design specifications. It was


shown in Example 15.10 that an FIR filter of length 47, designed using a


Kaiser window, satisfies the design specifications. Design the optimal FIR filter


of length 47 using the Parks–McClellan algorithm and compare the magni-


tude frequency response with that of the FIR filter obtained using the Kaiser


window.


Solution


The values of the normalized pass- and stop-band edge frequencies are given


by


normalized pass-band edge frequency Ωp = (3π × 103)/(0.5 × 2π × 8 × 103)
= 0.375;


normalized stop-band edge frequency Ωs = (4π × 103)/(0.5 × 2π × 8 × 103)
= 0.5.
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Fig. 15.21. Optimal FIR filter


designed in Example 15.11 using


M A T L A B. (a) Optimal FIR filter of


length N = 47. (b) FIR filter of
length N = 47 using the Kaiser
window.


The M A T L A B code for the design of the optimal FIR filter is similar to the


M A T L A B code in Example 15.8, except for the use of the firpm function,


which replaces the fir1 function:


% optimal lowpass filter design using Parks-McClellan


% algorithm


>> sz = 47; % Length of FIR filter
>> range norm cut off = [0, 0.375, 0.5, 1];


% normalized cut-off


% frequencies


>> f response = [1, 1, 0, 0]; % gains at the cut-off
% frequencies


>> wmatrix = [0.0032/0.0562, 1]; % weight matrix
>> h optimal = firpm(sz-1, range norm cut off,f response,


wmatrix); % Impulse response of


% the optimal LPF


% FIR filter


>> w = 0:0.001*pi:pi; % discrete frequencies
>> H optimal = freqz(h optimal,1,w);% transfer function
>> plot(w,20*log10(abs(H optimal)));% magnitude response


>> axis([0 pi -120 20]); % set axis


>> title(’optimal FIR filter’);


>> grid on


The magnitude response of the optimal FIR filter obtained from the above code


is shown in Fig. 15.21(a). Comparing Fig. 15.21(a) with the magnitude response


of the FIR filter obtained from the Kaiser window shown in Fig. 15.21(b), the


following differences are noted.
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Fig. 15.22. Same as Fig. 15.21


except the frequency responses


are plotted on a linear scale.


(1) The stop-band ripples in Fig. 15.21(a) have a uniform peak value of roughly


70 dB, which is about 20 dB less than the maximum stop-band ripple


value in Fig. 15.21(b). The stop-band attenuation of the optimal FIR fil-


ter is therefore higher than that for the filter obtained from the Kaiser


window.


(2) As illustrated in Fig. 15.22(a), where the magnitude response of the optimal


FIR filter is plotted on a linear scale, there are noticeable pass-band ripples


in the magnitude response of the optimal FIR filter. Figure 15.22(b) plots


the magnitude response of the FIR filter obtained from the Kaiser window,


where the pass-band ripples are negligible. The improvement in the stop-


band attenuation of the optimal FIR filter can therefore be attributed to the


pass-band ripples that the optimal filter has incorporated. The optimal FIR


filter distributes the distortion between the pass and stop bands. The FIR


filter obtained from the Kaiser window has most distortion concentrated in


the stop band, which leads to higher ripples (or lesser attenuation) within


its stop band.


(3) Finally, we observe that the transition bands in the two FIR filters are


roughly of the same width.


15.7 Summary


This chapter presented techniques for designing causal FIR filters. The ideal


frequency-selective filters presented in Chapter 14 are physically unrealizable


because of strict constraints on the pass- and stop-band gains of the filter and


also because of a sharp transition between the pass and stop bands. Practi-


cal implementations of the ideal filters are obtained by allowing acceptable
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variations (or ripples) within the pass and stop bands. In addition, a transition


band is included between the pass and stop bands so that the filter gain can drop


off smoothly.


Section 15.1 introduced the windowing approach used to design FIR filters


from the ideal frequency-selective filters. The windowing approach truncates


the impulse response h[k] of an ideal filter, with a linear-phase component of
exp(−jmΩ), to a finite length N within the range 0 ≤ k ≤ (N − 1). The value
of m in the phase component is selected to be (N − 1)/2 such that the filter
coefficients in the causal FIR filter are symmetrical with respect to m. Common
elementary windows used to design FIR filters are the rectangular, Bartlett,


Hamming, Hanning, and Blackman windows. The selection of type of window


depends upon the maximum value of the pass- and stop-band ripples. The length


N of the window is determined from the allowable width of the transition
band.


The minimum stop-band attenuation in the FIR filter obtained from the ele-


mentary windows is fixed. In most cases, the selected window surpasses the


given specification on the stop-band attenuation and the resulting FIR filter is


therefore of higher computational complexity than required. Section 15.2 intro-


duced the Kaiser window, which provides control over the stop-band attenuation


by including an additional design parameter, referred to as the shape control


parameter β. The order of the FIR filter designed by the Kaiser window is sig-


nificantly smaller than those of the FIR filters obtained using the elementary


window functions.


The FIR design techniques covered in Sections 15.1 and 15.2 are applicable to


all types of frequency-selective filters such as the lowpass, highpass, bandpass,


and bandstop filters. Common convention, however, is to express the transfer


functions of the highpass, bandpass, and bandstop filters in terms of the transfer


function of the lowpass filter. Using the resulting relationships, the design of any


type of filter can be reduced to the design of one or more lowpass filters. Section


15.3 covered design techniques for highpass FIR filters. We covered design


algorithms using the original highpass filter specifications as well as techniques


that transform the problem of designing a highpass FIR filter to designing


a lowpass FIR filter. Similarly, Section 15.4 presented design techniques for


bandpass FIR filters, while Section 15.5 designed bandstop FIR filters.


The windowing approaches produce a suboptimal design. Section 15.5 intro-


duced a computational procedure based on the Parks–McClellan algorithm that


exploits the inherent structure, expressed in Proposition 14.1 for the linear-


phase FIR filters. The Parks–McClellan algorithm computes the best FIR filter


of length N that minimizes the maximum absolute difference between the trans-
fer function Hd(Ω) of the ideal filter and the transfer function H (Ω) of the cor-
responding FIR filter. Mathematically, the Parks–McClellan algorithm solves


the minimax optimization problem, which finds the set of filter coefficients


that minimizes the maximum error between the desired frequency response and


the actual frequency response. According to Proposition 14.1, the frequency
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response of a linear-phase filter can be expressed as a polynomial of cos(Ω).


It can also be shown that error ε(Ω) between the desired and actual frequency


response is also a polynomial of cos(Ω). The Parks–McClellan algorithm uses


the alternation theorem, which provides the following condition for the optimal


design of H (Ω).
The transfer function H (Ω), which best approximates Hd(Ω) in the minimax


sense, produces an error function ε(Ω) with at least L + 2 discrete extremal
frequencies {Ω1 < Ω2 < · · · < ΩL+2} ∈ S in ε(Ω) that alternate between the
maximum and minimum peak values of the error, i.e. ε(Ωm+1) = −ε(Ωm) =


εmax, where εmax is the maximum value of error |ε(Ω)|.


The Parks–McClellan algorithm is available as a library function in most


signal processing packages. Section 15.7 covered the firpm function used


to design optimal FIR filters in M A T L A B using the Parks–McClellan algo-


rithm. In addition, we introduced other library functions including rectwin,


bartlett, hann, hamming, blackman, and kaiser functions used to


implement the elementary windows covered in Sections 15.1 and 15.2. The


fir1 function used to derive the impulse response of an FIR filter is also


covered.


Problems


15.1 The ideal DT differentiator is commonly used to differentiate a CT signal
directly from its samples. The transfer function of a DT differentiator is


given by


Hdiff (Ω) = jΩ e−jmΩ 0 ≤ |Ω| ≤ π .


Determine the impulse response hdiff[k] of the ideal differentiator.


15.2 A system with the block schematic shown in Fig. 9.1 is used to process a
CT signal with a digital filter. The A/D converter has a sampling rate of


8000 samples/s. Design the ideal digital filter if the overall transfer func-


tion of Fig. 9.1 represents an ideal lowpass filter with a cut-off frequency


of 2 kHz. Repeat for the sampling rates of 16 000 samples/s and 44 100


samples/s.


15.3 Calculate the amplitude of the 5-tap (N = 5) rectangular, Hanning, Ham-
ming, and Blackman windows. Sketch the window functions.


15.4 The specifications for a lowpass filter are given as follows:


pass-band edge frequency = 0.25π ;


stop-band edge frequency = 0.55π ;


minimum stop-band attenuation = 35 dB.
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Determine which of the elementary windows mentioned in Table 15.2


would satisfy these specifications. For the permissible choices, deter-


mine the lengths N of the windows that meet the width requirement for
the transition band.


15.5 Repeat Problem 15.4 for the Kaiser window.


15.6 Determine the impulse response of an ideal discrete-time lowpass filter
with a cut-off frequency ofΩc = 1 radian/s. Using a rectangular window,
truncate the length N of the ideal filter to 51. Plot the impulse response
and amplitude frequency characteristics of the FIR filter.


15.7 Repeat Problem 15.6 for the Hamming window and compare the result-
ing FIR filter with the FIR filter obtained from the rectangular window


in that problem.


15.8 Design the digital FIR filter, shown as the central block and labeled as
the DT system in Fig. 9.1, if the specifications of the overall system are


given as follows (the overall CT system is a lowpass filter):


pass-band edge frequency = 10.025 kHz;
width of the transition band = 1 kHz;
minimum stop-band attenuation = 45 dB;
sampling rate = 44.1 ksamples/s.


(a) Determine the possible types of windows that may be used.


(b) Assuming that the Hamming window is used to design the FIR filter,


plot the impulse response h[k] of the resulting FIR filter.
(c) Plot the amplitude–frequency characteristics of the FIR filter on both


absolute and logarithmic scales.


15.9 Repeat Problem 15.8 for a Kaiser window.


15.10 Using the Kaiser window, design a highpass FIR filter based on the
following specifications:


pass-band edge frequency = 0.64π ;
width of the transition band = 0.3π ;
maximum pass-band ripple <0.002;


maximum stop-band ripple <0.005.


Use M A T L A B to confirm that the designed FIR filter satisfies the given


specifications:


15.11 Using the Kaiser window, design a bandpass FIR filter based on the
following specifications:


pass-band edge frequencies = 0.4π and 0.6π ;
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stop-band edge frequencies = 0.2π and 0.8π ;
maximum pass-band ripple <0.02;


maximum stop-band ripple <0.009.


Use M A T L A B to confirm that the designed bandpass FIR filter satisfies


the given specifications.


15.12 Using the Kaiser window, design a bandstop FIR filter based on the
following specifications:


stop-band edge frequencies = 0.3π and 0.7π ;
pass-band edge frequencies = 0.4π and 0.6π ;
maximum pass-band ripple <0.05;


maximum stop-band ripple <0.05.


Use M A T L A B to confirm that the designed bandstop FIR filter satisfies


the given specifications.


15.13 Equation (15.44) defines the expression for the normalized weighting
function used in the design of a lowpass filter using the Parks–McClellan


algorithm Derive the expressions for the normalized weighting functions


for highpass, bandpass, and bandstop filters.


15.14 For a type I FIR filter of length N , show that the degree L of the error
function ε(Ω) defined in Eq. (15.42) is given by (N − 1)/2.


15.15 Repeat Problem 15.14 for a type II FIR filter of length N by showing
that the degree L of the error function ε(Ω) = Ŵ(cos(Ω)) defined in Eq.
(15.42) is given by (N − 2)/2.


15.16 Repeat Problem 15.14 for a type III FIR filter of length N by showing
that the degree L of the error function ε(Ω) defined in Eq. (15.42) is
given by (N − 3)/2.


15.17 Repeat Problem 15.14 for a type IV FIR filter of length N by showing
that the degree L of the error function ε(Ω) defined in Eq. (15.42) is
given by (N − 2)/2.


15.18 Truncate the impulse response of an ideal bandstop FIR filter with edge
frequencies of 0.25π and 0.75π with a 20-tap rectangular window filter.


Plot the magnitude response of the resulting FIR filter and compare the


frequency characteristics with a 40-tap FIR filter.


15.19 Using M A T L A B , determine the impulse response of the FIR filters
designed in Problems 15.4 and 15.5. Sketch the magnitude response and


ensure that the FIR filters satisfy the given specifications. Comment on


the complexity and frequency characteristics of the designed filters.
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15.20 Using M A T L A B , determine the impulse response of the optimal FIR
filter for the specifications provided in Problem 15.4. You may use the


Kaiser window to determine the length of the optimal FIR filter. Sketch


the magnitude response of the optimal FIR filter and compare its fre-


quency characteristics with those of the FIR filters plotted in Problem


15.18.


15.21 Show that the alternation theorem is satisfied for the magnitude response
of the optimal FIR filter designed in Problem 15.20.


15.22 Using the fir1 function in M A T L A B , design a 41-tap lowpass filter
with a normalized cut-off frequency of Ωn = 0.55 using (i) rectangular;
(ii) Hamming; (iii) Blackman; and (iv) Kaiser (with β = 4) windows.
Plot the amplitude–frequency characteristics for the four filters. For each


plot, determine (i) the maximum pass-band ripple; (ii) the peak side lobe


gain; and (iii) the transition bandwidth. Assume that the transition band


is a band where the filter gain drops from –2 dB to –20 dB.


15.23 Using the fir1 function in M A T L A B , design a 45-tap linear-phase
bandpass FIR filter with pass-band edge frequencies of 0.45π and 0.65π ,


stop-band edge frequencies of 0.15π and 0.9π , maximum pass-band


attenuation of 0.1 dB, and minimum stop-band attenuation of 40 dB.


Use the Kaiser window for your design and sketch the frequency char-


acteristics of the resulting filter.


15.24 The fir2 function in M A T L A B is used to design FIR filters with
arbitrary frequency characteristics. Using fir2, design a 95-tap FIR


filter with the following frequency characteristics:


|H (Ω)| =















0.85 0 ≤ |Ωn| ≤ 0.15


0.55 0.20 ≤ |Ωn| ≤ 0.45


1 0.55 ≤ |Ωn| ≤ 0.75


0.5 0.78 ≤ |Ωn| ≤ 1,


where Ωn is the normalized DT frequency. Use M A T L A B to confirm


that the designed FIR filter satisfies the given specifications.
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C H A P T E R


16 IIR filter design


Based on the length of the impulse response h[k], Chapter 14 classified digital
(or “discrete-time”) filters into two categories: finite impulse response (FIR)


filters and infinite impulse response (IIR) filters. The design techniques for


the FIR filter, with an impulse response h[k] of finite length, were covered in
Chapter 15. In this chapter, we present design methodologies of the IIR fil-


ters. A common technique used to design IIR filters is based on mapping the


DT frequency specifications H (Ω) of the IIR filters in the Ω domain to the
CT frequency specifications H (ω) specified in the ω domain. Based on the
transformed specifications, a CT filter is designed, which is then transformed


back into the original DT frequency Ω domain to obtain the transfer func-


tion of the required IIR filter. In this chapter, we present two different DT to


CT frequency transformations. The first method is referred to as the impulse


invariance transformation, which provides a linear transformation between the


DT and CT frequency domains. At times, the impulse invariance transforma-


tion suffers from aliasing, which may lead to deviations from the original DT


specifications. An alternative to the impulse invariance transformation is the


bilinear transformation, which is a non-linear mapping between the CT and DT


frequency domains. The bilinear transformation eliminates aliasing to a large


extent.


A classical problem in the design of digital filters is the selection between


FIR and IIR filters. While both types of filters can be used to satisfy a given set


of specifications, the order N of IIR filters is in general much lower than that of
FIR filters. As a consequence of the lower order N , the IIR filters have reduced
implementation complexity and less propagation delay when compared with


FIR filters designed for the same specifications. However, IIR filters are imple-


mented using feedback loops, resulting in transfer functions with a significant


number of poles. IIR filters are, therefore, susceptible to instability issues when


realized on finite-precision DSP boards. In addition, IIR filters have a non-linear


phase, whereas FIR filters can be designed with a linear phase. An appropriate


digital filter type is selected based on the requirement of a given application.


713
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The organization of this chapter is as follows. IIR filter design principles are


introduced in Section 16.1. Sections 16.2 and 16.3 present design principles


of lowpass IIR filters based on the frequency transformation methods. In Sec-


tion 16.2, we introduce the impulse invariance transformation, and in Section


16.3 we present the bilinear transformation. The analytical design procedure is


illustrated through a series of examples. We also provide the M A T L A B code,


which can also be used in the design of IIR filters. Section 16.4 covers the design


techniques for bandpass, bandstop, and highpass filters. Finally, Section 16.5


compares the frequency characteristics of IIR filters with those of FIR filters


designed for the same specifications. Section 16.6 presents a summary of the


important concepts covered in the chapter.


16.1 IIR filter design principles


As specified in Chapter 14, the transfer function of an IIR filter is given by


H(z) =
b0 + b1z−1 + · · · + bM z−M


1 + a1z−1 + · · · + aN z−N
, (16.1)


where br , for 0 ≤ r ≤ M , and ar , for 0 ≤ r ≤ N , are known as the filter coeffi-
cients. In Eq. (16.1), we have also normalized the coefficient a0 (corresponding
to r = 0) in the denominator to unity. Based on Eq. (16.1), the IIR filter can
alternatively be modeled by the following linear, constant-coefficient difference


equation:


y[k] + a1 y[k − 1] + · · · + aN y[k − N ] = b0x[k] + b1x[k − 1]


+ · · · + bM x[k − M]. (16.2)


The objective of the IIR filter design is to calculate a set of filter coefficients br ,
for 0 ≤ r ≤ M , and ar , for 1 ≤ r ≤ N , such that the frequency characteristics
of the IIR filter match the design specifications. IIR filter design can, therefore,


be viewed as a mathematical optimization problem.


A popular method used to design an IIR filter is based on converting its desired


frequency specifications H (Ω) into the CT frequency domain. Using the CT
design techniques for the Butterworth, Chebyshev, or elliptic filters covered in


Chapter 6, the transfer function H (s) of the analog filter is determined. The z-
transfer function H (z) of the desired IIR filter is then obtained by transforming
H (s) back into the DT domain. Such transformation approaches yield closed-
form transfer functions for the IIR filters.


A number of transformations have been proposed to convert the transfer


function H (s) of the CT (or analog) filter into the z-transfer function H (z) of
the IIR filter such that the frequency characteristics of the CT filter in the s-plane


are preserved for the IIR filter in the z-plane. These transformations include the


following methods:
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(a) finite-difference discretization of differential equations;


(b) mapping poles and zeros from the s-plane to the z-plane;


(c) impulse invariance method;


(d) bilinear transformation.


The finite-difference discretization of differential equations is a straightforward


method to derive difference equation representations for digital filters. First,


the s-transfer functions, obtained by using the CT filter design techniques, are


used to calculate the input–output relationship of the equivalent CT filter. These


relationships are generally in the form of linear, constant-coefficient differential


equations, and are discretized to obtain difference equations that represent the


input–output relationships of the designed DT filters.


In the second method, referred to as the matched z-transform technique, the


s-plane poles and zeros of a designed CT filter are mapped to the z-plane. The


s-plane poles and zeros are then used to derive the transfer function H (z) of the
digital IIR filter.


The impulse invariance method samples the impulse response h(t) of an
LTIC system to derive the impulse response h[k] of the corresponding LTID
system. Finally, the bilinear transformation provides a one-to-one, non-linear


mapping from the s-plane to the z-plane. The impulse invariance and bilin-


ear transformations are the focus of this chapter. In Section 16.2, we cover


the impulse invariance method followed by the bilinear transformation, in


Section 16.3.


16.2 Impulse invariance


To derive the impulse invariance transformation, we approximate the impulse


response h(t) of a CT filter with its sampled representation,


h(t) ≈
∞∑


n=−∞


h(t)δ(t − nT ) =
∞∑


n=−∞


h(nT )δ(t − nT ), (16.3)


obtained by sampling h(t) with an impulse train
∑


δ(t – nT). Clearly, the
approximation in Eq. (16.3) improves as the sampling interval T → 0. The DT
impulse response h[k] of the equivalent IIR filter is obtained from the samples
h(kT) and is given by


h[k] = h(kT ) =
∞∑


n=−∞


h(nT )δ(k − n). (16.4)


Comparing the expressions for the Laplace transform of Eq. (16.3) given by


Laplace transform H (s) =
∞∑


n=−∞


h(nT )e−nT s (16.5)
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Fig. 16.1. Impulse invariance


transformation from the s-plane


(a) to the z-plane (b).


and the z-transform of Eq. (16.4) given by


z-transform H (z) =
∞∑


k=−∞


h(nT )z−n, (16.6)


we note that the two expressions are equal provided


z = eTs . (16.7)


In terms of real and imaginary components of s = σ + jω, Eq. (16.7) can be
expressed as follows:


z = eσ T e jωT . (16.8)


Equation (16.7) provides a mapping between the DT variable z and the CT
variable s. The mapping, commonly referred to as the impulse invariance trans-
formation, is illustrated in Fig. 16.1, where we observe that the s-plane region


Re{s} = σ < 0 and |Im{s}| = |ω| < π/T,


shown as the shaded region, in Fig. 16.1(a) maps into the interior of the unit


circle |z| < 1 shown in Fig 16.1(b). Equations (16.7) and (16.8) can also be
used to derive the following observations.


Right-half s-plane Re{s} > 0 Taking the absolute value of Eq. (16.8) yields


|z| = |eσ T | · |e jωT | = |eσ T |. (16.9)


In the right-half s-plane, Re{s} = σ > 0, resulting in |z| > 1. Therefore, the
right-half s-plane is mapped to the exterior of the unit circle.


Origin s = 0 Substituting s = 0 into Eq. (16.7) yields z = 1. The origin s = 0
in the s-plane is therefore mapped to the coordinate (1, 0) in the z-plane.


Imaginary axis Re{s} = 0 Taking the absolute value of Eq. (16.8) and substi-


tuting Re{s} = σ = 0 yields |z| = 1. The imaginary axis Re{s}= 0 is therefore
mapped on to the unit circle |z| = 1.
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Left-half s-plane Re{s }< 0 Substituting Re{s}= σ < 0 in Eq. (16.9) yields
|z| < 1. Therefore, we observe that the left-half s-plane is mapped to the interior
of the unit circle. We now show that the mapping z = esT is not a unique
one-to-one mapping and that different strips of width 2π/T are mapped into
the same region within the unit circle |z| < 1.


Consider the set of points s = σ0 + j2kπ/T , with k = 0, ±1, ±2, . . . , in the
s-plane. Substituting s = σ0 + j2kπ/T in Eq. (16.7) yields


z = eT (σ0+j2kπ/T ) = eσ0T e j2kπ = eσ0T . (16.10)


In other words, the set of points s = σ0 + j2kπ/T are all mapped to the same
point z = exp(σ0T ) in the z-plane. Equation (16.8) is, therefore, not a unique,
one-to-one mapping, and different strips of width 2π/T in the left-half s-plane
are mapped to the same region within the interior of the unit circle.


We now illustrate the procedure used to obtain an equivalent H (z) from an
impulse response h(t) through Examples 16.1 and 16.2.


Example 16.1


Use the impulse invariance method to convert the s-transfer function


H (s) =
1


s + α
into the z-transfer function of an equivalent LTID system.


Solution


Calculating the inverse Laplace transform of H (s) yields


h(t) = e−αt u(t).


Using impulse train sampling with a sampling interval of T , the impulse
response of the LTID system is given by


h(kT ) = e−αkT u(kT ) or h[k] = e−αkT u[k].


The z-transfer function of the equivalent LTID system is given by


H (z) = z{h[k]} =
1


1 − e−αT z−1
, ROC : |z| > e−αT .


Figure 16.2 compares the impulse response h(t) and transfer function H (s)
of the LTIC system with the impulse response h[k] and transfer function
H (z) of the equivalent LTID system obtained using the impulse invariance
method. A sampling period of T = 0.1 s and α = 0.5 are used. Comparing
the CT impulse response h(t), plotted in Fig. 16.2(a), with the DT impulse
response h[k], plotted in Fig. 16.2(c), we observe that h[k] is a sampled ver-
sion of h(t), and the shapes of the impulse responses are fairly similar to each
other.
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Fig. 16.2. Impulse invariance


method used for transforming


analog filters to digital filters in


Example 16.1. (a) Impulse


response h(t ) and


(b) magnitude spectrum H(ω) of


the analog filter. (c) Impulse


response h[k ] and


(d) magnitude spectrum H (Ω)


of the transformed digital filter.


Comparing the magnitude spectrum |H (ω)| of the LTIC system with the
magnitude spectrum |H (Ω)| of the LTID system plotted in Figs. 16.2(b) and (d),
respectively, we observe two major differences. First, the magnitude spectrum


|H (Ω)| is periodic with a period of 2π . Secondly, the magnitude spectrum
|H (Ω)| is scaled by a factor of 1/T in comparison with |H (ω)|. In order to
obtain a DT filter with a DC amplitude gain of the same value as that of the CT


filter, we multiply the sampled impulse response h[k] by a factor of T :


h[k] = Th(kT ) = T e−αkT u(k). (16.11)


Alternatively, the following transform pair can be used for the impulse invari-


ance transformation:


1


s + α
impulse invariance


←− −→
T


1 − e−αT z−1
or


zT


z − e−αT
. (16.12)


Example 16.2 illustrates the application of Eq. (16.12) in transforming a But-


terworth lowpass filter into a digital lowpass filter.


Example 16.2


Consider the following Butterworth filter:


H (s) =
81.6475


s2 + 12.7786s + 81.6475
.


Use the impulse invariance transformation to derive the transfer function of the


equivalent digital filter.
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Solution


Expressing the transfer function of the CT filter as follows:


H (s) = 12.7786
6.3894


(s + 6.3893)2 + 6.38942
, (16.13)


and Calculating the inverse Laplace transform, the impulse response of the CT


filter is given by


h(t) = 12.7786e−6.3893t sin(6.3894t)u(t). (16.14)


Using Eq. (16.11) to derive the impulse response of the DT filter, we obtain


h[k] = Th(kT ) = 12.7786T e−6.3893kT sin(6.3894kT )u(kT ) (16.15)


or


h[k] = 12.7786T e−6.3893 kT sin(6.3894kT )u[k]. (16.16)


Calculating the z-transform of Eq. (16.16), the transfer function of the DT filter


is given by (see Problem 16.2)


H (z) =
12.7786T e−6.3893 T sin(6.3894T )z


z2 − 2z e−6.3893T cos(6.3894T )z + e−2×6.3893T
. (16.17)


Alternative solution Equation (16.17) can also be derived by using the


impulse invariance transformation specified in Eq. (16.12). Using partial frac-


tion expansion, H (s) is expressed as follows:


H (s) =
12.7786


2j


[
1


s + 6.3893 − j6.3894
−


1


s + 6.3893 + j6.3894


]


,


(16.18)


which is then transformed using Eq. (16.12) in the z-domain:


H (z) =
12.7786


2j


[
zT


z − e−(6.3893−j6.3894)T
−


zT


z − e−(6.3893+j6.3894)T


]


.


It is straightforward to show that the above expression reduces to Eq. (16.17).


Selection of the sampling interval To choose an appropriate sampling interval


T , we need to analyze the magnitude spectrum of h(t). Substituting s = jω in
Eq. (16.13), we obtain


H (ω) = 12.7786
6.3894


(jω + 6.3893)2 + 6.38942
=


81.6489


(81.6489 − ω2) + j12.7788ω
,


(16.19)


which leads to the following magnitude spectrum:


|H (ω)| =
81.6489


√


(81.6489 − ω2)2 + 163.2977ω2
. (16.20)
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Table 16.1. DT filters obtained in Example 16.2


for different values of the sampling interval T


The magnitude spectra of these transfer functions


are plotted in Figs. 16.3(b)–(e)


T H (z)


0.1 H (z) =
0.4023z


z2 − 0.8475z + 0.2786


0.0348 H (z) =
0.0785z


z2 − 1.5619z + 0.6410


0.01 H (z) =
0.0077z


z2 − 1.8724z + 0.8800


0.001 H (z) =
8.113 × 10−5z


z2 − 1.9872z + 0.9873


The peak value of the magnitude spectrum |H (ω)| occurs at ω = 0, with a
value |H (0)| = 1. Also, the magnitude spectrum |H (ω)| is a monotonically
decreasing function with respect to ω. Assuming that the maximum frequency


present in the function h(t) is approximated as ωmax such that |H (ω)| ≤ 0.01
for |ω| ≥ ωmax, it can be shown that ωmax = 90.4 radians/s. Using the Nyquist
sampling rate, the sampling interval is therefore given by


T ≤
1


2 fmax
=


2π


2ωmax
= 0.348 s.


Table 16.1 compares the transfer function of the transformed DT filters obtained


by substituting different values of the sampling intervals T into Eq. (16.17).
The amplitude gain responses of the DT filters for different values of T = 0.1,
0.0348, 0.01, and 0.001 are given in Table 16.1. A comparison of the magnitude


spectra of the four transfer functions is illustrated in Fig. 16.3. We make the


following observations.


(1) Although the shapes of the magnitude spectra (Figs. 16.3(b)–(d)) of the


digital filters appear to be different, they are all valid representations of the


magnitude spectrum of the analog filter (Fig. 16.3(a)). Substituting s = jω
and z = e jΩ into Eq. (16.7) yields


Ω = ωT .


The 3 dB frequency Ω0 of the digital implementations therefore


depends upon the sampling interval T . Based on the 3 dB frequency
ω0 = 9.03 radians/s, the values of Ω0 are given by 0.2874π radians/s for


T = 0.1 s, by 0.1π radians/s for T = 0.0348 s, by 0.0287π radians/s for
T = 0.01 s, and by 0.0029π radians/s for T = 0.001 s.
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Fig. 16.3. Impulse invariance


transformation used to derive


digital representations of the


analog filter specified in Example


16.2. Magnitude spectra of


(a) the analog filter with transfer


function H(s ); (b) the digital


filter with sampling interval


T = 0.1 s; (c) the digital filter
with T = 0.0348 s; (d) the
digital filter with T = 0.01 s;
(e) the digital filter with


T = 0.001 s.


(2) Among the digital implementations, Fig. 16.3(b) results in the highest


gain (i.e. lowest attenuation) at the stop-band frequencyΩ = ±π radians/s.
Since the sampling interval (T =0.1 s) is greater than the Nyquist bound
(T = 0.0348 s), Fig. 16.3(b) suffers from aliasing, which increases the gain
within the pass band. In using impulse invariance transformation, it is crit-


ical that the effects of the aliasing be considered within the stop band.


16.2.1 Impulse invariance transformation using M A T L A B


M A T L A B provides a library function impinvar to transform CT transfer


functions into the DT domain using the impulse variance method. We illustrate


the application of impinvar for Example 16.2 with the sampling interval T
set to 0.1 s. The M A T L A B code for the transformation is as follows:


>> num = [0 0 81.6475]; % numerator of CT filter


>> den = [1 12.7786 81.6475]; % denominator of CT filter


>> T = 0.1;


>> Fs = 1/T; % sampling rate


>> [numz,denz] = impinvar (num,den,Fs);


% numerator & denominator


% of DT filter
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The above M A T L A B code results in the following values for the coefficients


of H (z):


numz = [0 0.4023 0] and denumz = [1 -0.8475 0.2786],


which correspond to the following transfer function:


H (z) =
0.4023z


z2 − 0.8475z + 0.2786
.


The above expression is the same as the one obtained analytically, and it is


included in row 1 of Table 16.1.


16.2.2 Look-up table


Examples 16.1 and 16.2 present direct methods to compute the impulse response


h[k], or correspondingly the transfer function H (z), of the DT filter by sampling
the impulse response h(t) of an analog filter. The process can be simplified
further in cases where the transfer function H (s) of the analog filter is a rational
function. In such cases, the transfer function H (s) can be expressed in terms of
partial fractions as follows:


H (s) =
N∑


r=1


kr
s + αr


, (16.21)


where kr is the coefficient of the r th partial fraction. Applying the impulse
invariance transformation, Eq. (16.12), the transfer function H (z) of the digital
filter is given by


H (z) =
N∑


r=1


kr z


z − e−αr T
. (16.22)


Table 16.2 lists a number of commonly occurring s-domain terms and the


equivalent representation in the z-domain. We now list the steps involved in


the design of digital IIR filters using the impulse invariance transformation.


16.2.3 IIR filter design using impulse invariance transformation


The steps involved in designing IIR filters using the impulse invariance trans-


formation are as follows.


Step 1 Using Ω = ωT , transform the specifications of the digital filter from
the DT frequency Ω domain to the CT frequency ω domain. For convenience,


we choose T = 1.


Step 2 Using the analog filter techniques (see Chapter 7), design an analog


filter H (s) based on the transformed specifications obtained in step 1.


Step 3 Using the impulse invariance transformation specified in Eq. (16.12),


1


s + α
impulse invariance


←− −→
T


1 − e−αT z−1
or


zT


z − e−αT
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Table 16.2. Analog to-digital transformation using impulse invariance method


CT domain DT domain


H (s) h(t) h[k] H (z)


1 δ(t) T δ[k] T


1


s
u(t) Tu[k]


T


1 − z−1
=


T z


z − 1


1


s2
tu(t) kT2u[k]


T 2z−1


(1 − z−1)2
=


T 2z


(z − 1)2


1


s + α
e−αt u(t) T e−αkT u[k]


T


(1 − e−αT z−1)
=


T z


(z − e−αT )


1


(s + α)2
te−αt u(t) kT 2e−αkT u[k]


T 2e−αT z−1


(1 − e−αT z−1)2
=


T 2e−αT z


(z − e−αT )2


s + α
(s + α)2 + β2


e−αt cos(βt)u(t) T e−αkT cos(βkT )u[k]
T z[z − e−αT cos(βT )]


z2 − 2e−αT cos(βT )z + e−2αT


β


(s + α)2 + β2
e−αt sin(βt)u(t) T e−αkT sin(βkT )u[k]


T ze−αT sin(βT )


z2 − 2e−αT cos(βT )z + e−2αT


or the look-up table approach, derive the z-transfer function H (z) from the
s-transfer function H (s).


Step 4 Confirm that the z-transfer function H (z) obtained in step 3 satisfies the
design specifications by plotting the magnitude spectrum |H (Ω)|. If the design
specifications are not satisfied, increase the order N of the analog filter designed
in step 2 and repeat steps 2–4.


We now illustrate the application of the above algorithm in Example 16.3.


Example 16.3


Design a lowpass IIR filter with the following specifications:


pass band (0 ≤ |Ω| ≤ 0.25π radians/s) 0.8 ≤ |H (Ω)| ≤ 1;


stop band (0.75π ≤ |Ω| ≤ π radians/s) |H (Ω)| ≤ 0.20.


Solution


Choosing the sampling interval T = 1, step 1 transforms the given specifications
of the DT filter into the corresponding specifications for the CT filter:


pass band (0 ≤ |ω| ≤ 0.25π radians/s) 0.8 ≤ |H (ω)| ≤ 1;


stop band (|ω| > 0.75π radians/s) |H (ω)| ≤ 0.20.
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Step 2 designs the analog filter based on the transformed specifications. We use


the Butterworth filter, whose design procedure is outlined in Section 7.3.1.1.


Design of the analog Butterworth filter To determine the order N of the filter,
we calculate the gain terms:


Gp =
1


(1 − δp)2
− 1 = 0.5625


and


Gs =
1


(δs)2
− 1 = 24.


The order N of the filter is therefore given by


N =
1


2
×


ln(Gp/Gs)


ln(ωp/ωs)
=


1


2
×


ln(0.5625/24)


ln(0.25π/0.75π )
= 1.7083.


Using Table 7.2, the transfer function for the normalized Butterworth filter of


order N = 2 is given by


H (S) =
1


S2 + 1.414S + 1
.


Equation (7.32) determines the cut-off frequency ωc of the Butterworth filter


from the stop-band constraint as follows:


ωc =
ωs


(Gs)0.5/N
=


0.75π


240.25
= 0.3389π radians/s.


The transfer function H (s) of the required analog lowpass filter is given by


H (s) = H (S)|S=s/ωc =
1


S2 + 1.414S + 1


∣
∣
∣
∣


S=s/0.3389π


=
1.1332


s2 + 1.5055s + 1.1332
,


which can be expressed as follows:


H (s) = 1.5053
0.7528


(s + 0.7528)2 + 0.75282
.


Using Table 16.2, step 3 derives the z-transfer function as follows:


H (z) = 1.5053
ze−0.7528 sin(0.7528)


z2 − 2e−0.7528 cos(0.7528)z + e−2(0.7528)
,


which simplifies to


H (z) = 1.5053
0.3220z


z2 − 0.6875z + 0.2219
.


Step 4 computes the magnitude spectrum by substituting z = exp(jΩ). The
resulting plot is shown in Fig. 16.4(a), where we observe that the magnitude


spectrum satisfies the pass-band requirements, though the dc gain of the filter


is not equal to unity. The stop band requirement is not satisfied, however, as the
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Fig. 16.4. Design of the IIR filter


specified in Example 16.3 based


on the analog Butterworth filter


of order (a) N = 2; (b) N = 3;
(c) N = 4. The impulse
invariance transformation is


used to convert the Butterworth


filter to a digital filter. Aliasing


introduced by the impulse


invariance transformation results


in a considerably higher order


(N = 4) Butterworth filter to
meet the design specifications.


gain |H (Ω)| of the filter is greater than 0.20 at the stop-band corner frequency of
0.75π radians/s. The above procedure is repeated for a Butterworth filter of order


N = 3.


Iteration 2 for Butterworth filter of order N = 3 The transfer function for
the normalized Butterworth filter of order N = 3 is obtained from Table 7.2 as
follows:


H (S) =
1


(S + 1)(S2 + S + 1)
.


The cut-off frequency ωc of the Butterworth filter is obtained from the stop-band


constraint:


ωc =
ωs


(Gs)0.5/N
=


0.75π


241/6
= 0.4416π radians/s.


The transfer function H (s) of the required analog lowpass filter is given by


H (s) = H (S)|S=s/ωc =
1


(S + 1)(S2 + S + 1)


∣
∣
∣
∣


S=s/0.4416π


=
2.6702


s3 + 2.7747s2 + 3.8494s + 2.6702
.


Expanding H (s) in terms of partial fractions and using Table 16.2, we can derive
the z-transfer function of the equivalent digital filter as follows:


H (z) =
0.4695z2 + 0.1907z


z3 − 0.6106z2 + 0.3398z − 0.0624
.


The above derivation is left as an exercise for the reader in Problem 16.3(a).


Figure 16.4(b) plots the magnitude spectrum |H (Ω)| of the third-order filter.
We observe that the attenuation is increased at the stop-band corner frequency of
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0.75π radians/s, but that it is still greater than the specified value. We therefore


repeat the above procedure for a Butterworth filter of order N = 4.


Iteration 3 for Butterworth filter of order N = 4 The transfer function for
the normalized Butterworth filter of order N = 4 is obtained from Table 7.2 as
follows:


H (S) =
1


(s2 + 0.7654s + 1)(s2 + 1.8478s + 1)
.


The cut-off frequency ωc of the Butterworth filter is obtained from the stop-band


constraint:


ωc =
ωs


(Gs)0.5/N
=


0.75π


241/8
= 0.5041π radians/s.


The transfer function H (s) of the required analog lowpass filter is given by


H (s) = H (S)|S=s/ωc =
1


(s2 + 0.7654s + 1)(s2 + 1.8478s + 1)


∣
∣
∣
∣


S=s/0.5041π
,


which reduces to


H (s) =
6.2902


s4 + 4.1383s3 + 8.5630s2 + 10.3791s + 6.2902
.


Problem 16.3(b) derives the z-transfer function of the equivalent digital filter


as follows:


H (z) =
0.3298z3 + 0.4274z2 + 0.0427z


z4 − 0.4978z3 + 0.3958z2 − 0.1197z + 0.0159
.


Figure 16.4(c) plots the magnitude spectrum |H (Ω)| of the fourth-order filter.
We observe that both pass-band and stop-band requirements are satisfied by the


Butterworth filter of order N = 4.


Impulse invariance transformation using M AT L A B Starting with the ana-


log Butterworth filter, the IIR filters in Example 16.3 can also be designed


using the M A T L A B function impinvar. The syntax to call the function is


given by


[numz,denumz] = impinvar(nums,denums,fs)
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where num and denum specify the coefficients of the numerator and denomi-


nator of the analog filter and fs is the sampling rate in samples/s. For Example


16.3, the M A T L A B code is given by


>> fs = 1; % fs = 1/T = 1


>> nums = [1.1332]; % numerator of CT filter


>> denums = [1 1.5055 1.1332]; % denominator of CT filter


>> [numz,denumz] = impinvar (nums,denums,fs);


% coefficients of the DT


% filter


which returns the following values:


numz = 0.4848 and denumz = [1.0000 -0.6876 0.2219].


The transfer function of the second-order IIR filter is given by


H (z) =
0.4848z


z2 − 0.6875z + 0.2219
,


which yields the same expression as the one derived in Example 16.3.


For the third-order Butterworth filter, the M A T L A B code for the impulse


invariance transformation is given by


>> fs = 1; % fs = 1/T = 1


>> nums = [2.6702]; % numerator of the CT filter


>> denums = [1 2.7747 3.8494 2.6702];


% denominator of the CT filter


>> [numz,denumz] = impinvar (nums,denums,fs);


% coeffs of the DT filter


which returns the following values:


numz = [0 0.4695 0.1907] and denumz = [1.0000 -0.6106


0.3398 -0.0624].


The transfer function of the third-order IIR filter is given by


H (z) =
0.4695z2 + 0.1907z


z3 − 0.6106z2 + 0.3398z − 0.0624
.
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Similarly, the M A T L A B code for transforming the fourth-order Butterworth


filter is given by


>> fs = 1; % fs = 1/T = 1


>> nums = [6.2902]; % numerator of the CT filter


>> denums = [1 4.1383 8.5603 10.3791 6.2902];


% denominator of CT filter


>> [numz,denumz] = impinvar (nums,denums,fs);


% coefficients of the DT filter


which returns the following values:


numz = [0 0.3298 0.4276 0.0428]


denumz = [1 -0.4977 0.3961 -0.1197 0.0159].


The transfer function of the fourth-order IIR filter is given by


H (z) =
0.3298z3 + 0.4276z2 + 0.0428z


z4 − 0.4977z3 + 0.3958z2 − 0.1197z + 0.0159
.


The above expression is similar to the one obtained in Example 16.3 for the


fourth-order Butterworth filter.


16.2.4 Limitations of impulse invariance method


As illustrated in Example 16.3, the impulse invariance method introduces alias-


ing while transforming an analog filter to a digital filter. Since the analog fil-


ter is not band-limited, the impulse invariance transformation would always


introduce aliasing in the digital domain. Therefore, a higher-order DT filter is


generally required to satisfy the design constraints. Section 16.3 introduces a


second transformation, known as the bilinear transformation, to eliminate the


effect of aliasing.


16.3 Bilinear transformation


The bilinear transformation provides a one-to-one mapping from the s-plane to


the z-plane. The mapping equation is given by


s = k
z − 1
z + 1


, (16.23)


where k is the normalization constant given by 2/T , where T is the sampling
interval. To derive the frequency characteristics of the bilinear transformation,


we substitute z = exp(jΩ) and s = jω in Eq. (16.23). The resulting expression
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transformation between CT


frequency ω and DT


frequencyΩ.


is given by


ω = k tan
Ω


2
or Ω = 2 tan−1


ω


k
, (16.24)


which is plotted in Fig. 16.5. We observe that the transformation is highly


non-linear since the positive CT frequencies within the range ω = [0, ∞] are
mapped to the DT frequenciesΩ = [0, π ]. Similarly, the negative CT frequen-


cies ω = [−∞, 0] are mapped to the DT frequencies Ω = [−π, 0]. This non-


linear mapping is known as frequency warping, and is illustrated in Fig. 16.6,


where an analog lowpass filter is transformed into a digital lowpass filter using


Eq. (16.24) with k = 1. Since the CT frequency range [−∞, ∞] in Fig. 16.5
is mapped on to the DT frequency range [−π , π ], there is no overlap between


adjacent replicas constituting the magnitude response of the digital filter. Fre-


quency warping, therefore, eliminates the undesirable effects of aliasing from


the transformed digital filter. We now show how different regions of the s-plane


are mapped onto the z-plane.
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P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 28, 2007 14:11


730 Part III Discrete-time signals and systems


16.3.1 Mapping between the s-plane and the z-plane


For k = 1, Eq. (16.23) can be represented in the following form:


z =
1 + s
1 − s


. (16.25)


Substituting s = σ + jω into Eq. (16.25), we obtain


z =
1 + σ + jω
1 − σ − jω


, (16.26)


with an absolute value given by


|z| =


√


(1 + σ )2 + ω2


(1 − σ )2 + ω2
. (16.27)


By substituting different values of s = σ + jω corresponding to the right-half,
left-half, and imaginary axes of the s-plane in Eq. (16.27), we derive the fol-


lowing observations.


Left-half s-plane (σ < 0) For σ < 0, we observe that the value of the


denominator (1 − σ )2 + ω2 in Eq. (16.27) exceeds the value of the numerator
(1 + σ )2 + ω2, resulting in |z| < 1. In other words, the bilinear transformation
maps the left-half of the s-plane to the interior of the unit circle within the


z-plane.


Right-half s-plane (Ω < 0) For σ > 0, the value of the numerator (1 + σ )2 +
ω2 in Eq. (16.27) exceeds the value of the denominator (1 − σ )2 + ω2, resulting
in |z| > 1. Consequently, the bilinear transformation maps the right-half of the
s-plane to the exterior of the unit circle within the z-plane.


Imaginary axis (σ = 0) For σ = 0, the denominator and numerator in Eq.
(16.27) are equal, resulting in |z| = 1. The bilinear transformation maps the
imaginary axis of the s-plane onto the unit circle within the z-plane.


Note that the mapping in Eq. (16.25) is a one-to-one mapping, which means


that no two points in the s-plane will map to the same point in the z-plane, and


vice versa.


16.3.2 IIR filter design using bilinear transformation


The steps involved in designing IIR filters using the bilinear transformation are


as follows.


Step 1 Using Eq. (16.24), ω = k tan(Ω/2), transform the specifications of the
digital filter from the DT frequency (Ω) domain to the CT frequency (ω) domain.


For convenience, we choose k = 1.
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Step 2 Using the analog filter design techniques, design an analog filter H (s)
based on the transformed specifications obtained in step 1.


Step 3 Using the bilinear transformation s = (z − 1)/(z + 1) (obtained by rear-
ranging Eq. (16.25) to express z in terms of s), derive the z-transfer function
H (z) from the s-transfer function H (s).


Step 4 Confirm that the z-transfer function H (z) obtained in step 3 satisfies the
design specifications by plotting the magnitude spectrum |H (Ω)|. If the design
specifications are not satisfied, increase the order N of the analog filter designed
in step 2 and repeat from step 2.


We now illustrate the application of the above algorithm in Example 16.4.


Example 16.4


Repeat Example 16.3 using the bilinear transformation.


Solution


Choosing k = 1 (sampling interval T = 2), step 1 transforms the pass-band and
stop-band corner frequencies into the CT frequency domain:


pass-band corner frequency ωp = tan(0.5Ωp) = tan(0.5 × 0.25π )
= 0.4142 radians/s;


stop-band corner frequency ωs = tan(0.5Ωs) = tan(0.5 × 0.75π )
= 2.4142 radians/s.


The transformed specifications of the CT filter are given by


pass-band (0 ≤ |ω| ≤ 0.4142 radians/s) 0.8 ≤ |H (ω)| ≤ 1;


stop-band (|ω| > 2.4142 radians/s) |H (ω)| ≤ 0.20.


Step 2 designs the analog filter based on the transformed specifications. As in


Example 16.3, we use the Butterworth filter. The gain terms for the filter stay


the same as in Example 16.3:


Gp =
1


(1 − δp)2
− 1 = 0.5625


and


Gs =
1


(δs)2
− 1 = 24


The order N of the filter is given by


N =
1


2
×


ln(Gp/Gs)


ln(ωp/ωs)
=


1


2
×


ln(0.5625/24)


ln(0.4142/2.4142)
= 1.0646,
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Fig. 16.7. Magnitude response


|H(Ω)| of the lowpass filter
designed in Example 16.4 using


the bilinear transformation.


which is rounded up to N = 2. Using Table 7.2, the transfer function for the
normalized Butterworth filter of order N = 2 is given by


H (S) =
1


S2 + 1.414S + 1
.


Using Eq. (7.31) to determine the cut-off frequency ωc of the Butterworth filter,


we obtain


ωc =
ωs


(Gs)0.5/N
=


2.4142


240.25
= 1.0907 radians/s.


The transfer function H (s) of the required analog lowpass filter is given by


H (s) = H (S)|S=s/ωc =
1


S2 + 1.414S + 1


∣
∣
∣
∣


S=s/1.0907


=
1.1897


s2 + 1.5421s + 1.1897
.


Step 3 derives the z-transfer function of the digital filter using the bilinear


transformation:


H (z) = H (s)|s=(z−1)/(z+1)


=
1.1897(z + 1)2


(z − 1)2 + 1.5421(z − 1)(z + 1) + 1.1897(z + 1)2
,


which simplifies to


H (z) =
0.3188z2 + 0.6375z + 0.3188


z2 + 0.1017z + 0.1734
.


Step 4 computes the magnitude spectrum by substituting z = exp(jΩ). The
resulting plot is shown in Fig. 16.7, where we observe that the magnitude


spectrum satisfies the specified pass-band and stop-band requirements.


Bilinear transformation using M AT L A B The bilinear function is pro-


vided in M A T L A B to transform a CT filter to a DT filter using the bilinear


transformation. The syntax for calling the bilinear function is similar to


that of the impinvar function and is given by


[numz,denumz] = bilinear(nums,denums,fs)
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wherenums anddenums specify the coefficients of the numerator and denom-


inator of the analog filter and fs is the sampling rate in samples/s. For


Example 16.4, the M A T L A B code is given by


>> fs = 0.5; % fs = 1/T = k/2 = 0.5


>> nums = [1.1897]; % numerator of the CT filter


>> denums = [1 1.5421 1.1897]; % denominator of CT filter


>> [numz,denumz] = bilinear (nums,denums,fs);


% coefficients of DT filter


which returns the values


numz = [0.3188 0.6376 0.3188];


denumz = [1.0000 0.1017 0.1735],


which are the same as the coefficients obtained in Example 16.4.


Filter design using M AT L A B Several additional functions are provided in


M A T L A B for directly determining the transfer function of the digital filters. The


buttord and butter functions, introduced in Chapter 7, can also be used to


compute IIR filters in the digital domain. The buttord function computes the


order N and cut-off frequency wn of the Butterworth filter, and the butter
function computes the coefficients of the numerator and denominator of the


z-transfer function of the Butterworth filter. For lowpass filters, the calling


syntaxes for the buttord and butter functions are given by


buttord function: [N, wn] = buttord(wp, ws, rp, rs);


butter function: [numz, denumz] = butter(N, wn),


where N is the order of the lowest-order digital Butterworth filter that loses no


more than rp dB in the pass band and has at least rs dB of attenuation in the


stop band. The frequencies wp and ws are the pass-band and stop-band edge


frequencies, normalized between zero and unity, where unity corresponds to


π radians/s. Similarly, wn is the normalized cut-off frequency for the Butter-


worth filter. The matrix numz contains the coefficients of the numerator, while


matrix denumz contains the coefficients of the denominator of the transfer


function of the Butterworth filter.


For Example 16.4, the M A T L A B code is given by


>> [N,wn] = buttord(0.25,0.75,20*log10(0.8),20*log10


(0.20));


>> [numz,denumz] = butter(N,wn);


which results in the following coefficients:


numz = [0.3188 0.6376 0.3188];


denumz = [1.0000 0.1017 0.1735],


which are identical to those obtained analytically in Example 16.4.
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16.4 Designing highpass, bandpass, and bandstop IIR filters


In the following examples, we design the highpass, bandpass, and bandstop IIR


filters.


Example 16.5


Example 15.5 designed a highpass FIR filter for the following specifications:


(i) pass-band edge frequency Ωp = 0.5π radians/s;
(ii) stop-band edge frequency Ωs = 0.125π radians/s;


(iii) pass-band ripple ≤ 0.01 dB;


(iv) stop-band attenuation ≥ 60 dB.


Design an IIR filter with the same specifications.


Solution


Choosing k = 1 (sampling interval T = 2), step 1 transforms the pass-band and
stop-band corner frequencies into the CT frequency domain:


pass-band corner frequency ωp = tan(0.5Ωp) = tan(0.25π ) = 1 radian/s;
stop-band corner frequency ωs = tan(0.5Ωs) = tan(0.0625π ) = 0.1989 radians/s.


Step 2 designs the analog filter based on the transformed specifications. In


Chapter 7, we presented the design methodology for deriving the transfer


function of the analog highpass filter analytically. Here, we use M A T L A B


to calculate the analog elliptic filter based on the above specifications:


>> wp = 1; ws = 0.1989; Rp = 0.01; Rs = 60 ;


>> [N,wn] = ellipord (wp,ws,Rp,Rs, ’s’);


% Order and cut off frequency


% of the analog elliptic filter


>> [nums,denums]=ellip (N,Rp,Rs,wn,’high’,’s’);


% Tx function of the analog


% elliptic filter


which yields the following transfer function for the analog filter:


H (s) =
0.9988s4 + 0.0542s2 + 0.000373


s4 + 1.872s3 + 1.824s2 + 1.04s + 0.3732
.


Step 3 derives the z-transfer function of the digital filter using the bilinear trans-


formation. This is achieved by using the bilinear function in M A T L A B.


>> [numz,denumz] = bilinear(nums,denums,0.5) % DT Filter


The resulting filter is given by


H (z) =
0.1725z4 − 0.6539z3 + 0.9638z2 − 0.6539z + 0.1725


z4 − 0.6829z3 + 0.7518z2 − 0.138z + 0.0468
.
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Fig. 16.8. Magnitude response


of the DT highpass filter


designed in Example 16.5.


Figure 16.8 shows the amplitude gain response of the designed filter. We observe


that the pass-band and stop-band specifications are both satisfied.


Example 16.6


Example 15.6 designed a bandpass FIR filter with the following specifications:


(i) pass-band edge frequencies, Ωp1 = 0.375π and Ωp2 = 0.5π radians/s;
(ii) stop-band edge frequencies, Ωs1 = 0.25π and Ωs2 = 0.625π radians/s;


(iii) stop-band attenuations, δ s1 > 50 dB and δ s2 > 50 dB.


Design an IIR filter with the same specifications.


Solution


Choosing k = 1 (sampling interval T = 2), step 1 transforms the pass-band and
stop-band corner frequencies into the CT frequency domain:


pass-band corner frequency I ωp1 = tan(0.5Ωp1) = tan(0.1875π ) = 0.6682 radians/s;
pass-band corner frequency II ωp2 = tan(0.5Ωp2) = tan(0.25π ) = 1 radian/s;
stop-band corner frequency I ωs1 = tan(0.5Ωs1) = tan(0.125π ) = 0.4142 radians/s;
stop-band corner frequency II ωs2 = tan(0.5Ωs2) = tan(0.3125π ) = 1.4966 radians/s.


Step 2 designs an analog filter for the aforementioned specifications. We can


either use the analytical techniques developed in Chapter 7 or use the M A T L A B


program. In the following, we calculate the analog elliptic filter for the given


specifications using M A T L A B . Since the pass-band ripple is not specified, we


assume that it is given by 0.03 dB. The M A T L A B code is given by


>> wp = [0.6682 1]; ws = [0.4142 1.4966];


>> Rp = 0.03; Rs = 50;


>> [N, wn] = ellipord(wp,ws,Rp,Rs,’s’);


>> [nums,denums] = ellip(N,Rp,Rs,wn,’s’);


which results in an eighth-order elliptic filter with the following transfer


function:


H (s) =
0.001(3.164s8 + 30.27s6 + 57.02s4 + 13.51s2 + 0.6308)


s8 + 0.7555s7 + 3.07s6 + 1.634s5 + 3.229s4 + 1.092s3 + 1.371s2 + 0.2254s + 0.1994
.


Step 3 derives the z-transfer function of the digital filter using the bilinear trans-


formation. This is achieved by using the bilinear function in M A T L A B .
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Fig. 16.9. Amplitude gain


response of the DT bandpass


filter designed in Example 16.6.


>> [numz,denumz]=bilinear(nums,denums,0.5) % DT Filter


The resulting filter is given by


H (z) =
0.001


(


8.317z8 − 6.94z7 + 4.236z6 − 5.952z5 + 13.52z4 − 5.952z3 + 4.236z2 − 6.94z + 8.317
)


z8 − 1.389z7 + 3.714z6 − 3.356z5 + 4.685z4 − 2.693z3 + 2.397z2 − 0.7107z + 0.4106
.


Figure 16.9 shows the amplitude gain response of the designed filter, which


illustrates that the pass-band and stop-band specifications are both satisfied.


Example 16.7


Example 15.7 designed a bandstop FIR filter with the following specifications:


(i) pass-band edge frequencies, Ωp1 = 0.25π and Ωp2 = 0.625π radians/s;
(ii) stop-band edge frequencies, Ωs1 = 0.375π and Ωs2 = 0.5π radians/s;


(iii) stop-band attenuations, δ s1 > 50 db and δ s2 > 50 dB.


Design an IIR filter with the same specifications.


Solution


Choosing k = 1 (sampling interval T = 2), step 1 transforms the pass-band and
stop-band corner frequencies into the CT frequency domain:


pass-band corner frequency I ωp1 = tan(0.5Ωp1) = tan(0.125π ) = 0.4142 radians/s;
pass-band corner frequency II ωp2 = tan(0.5Ωp2) = tan(0.3125π ) = 1.4966 radians/s;
stop-band corner frequency I ωs1 = tan(0.375Ωs1) = tan(0.1875π ) = 0.6682 radians/s;
stop-band corner frequency ωs2 = tan(0.5Ωs2) = tan(0.25π ) = 1 radian/s.


Step 2 designs an analog filter for the aforementioned specifications. In the fol-


lowing, we use M A T L A B to derive the analog elliptic filter for the transformed


specifications and an assumed pass-band ripple of 0.03 dB:


>> wp = [0.4142 1.4966]; ws = [0.6682 1];


>> Rp = 0.03; Rs = 50;


>> [N,wn] = ellipord(wp,ws,Rp,Rs,’s’);


>> [nums,denums] = ellip(N,Rp,Rs,wn,’stop’,’s’);


The resulting elliptic filter is of the eighth order and has the following transfer


function:


H (s) =
0.9966s8 + 2.8s6 + 2.854s4 + 1.25s2 + 0.1987


s8 + 2.137s7 + 5.15s6 + 5.926s5 + 6.747s4 + 3.96s3 + 2.3s2 + 0.6377s + 0.1994
.


Step 3 derives the z-transfer function of the digital filter using the bilinear


function.
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Fig. 16.10. Magnitude response


of the DT bandstop filter


designed in Example 16.7.


>> [numz,denumz]=bilinear(nums,denums,0.5); % DT Filter


The resulting DT filter is given by


H (z) =
0.2887z8 − 0.4484z7 + 1.363z6 − 1.372z5 + 2.149z4 − 1.372z3 + 1.363z2 − 0.4484z + 0.2887


z8 − 1.096z7 + 1.977z6 − 1.519z5 + 1.78z4 − 0.8638z3 + 0.6172z2 − 0.1739z + 0.09751
.


Figure 16.10 shows the magnitude response of the designed bandstop filter. We


observe that both the pass-band and stop-band specifications are satisfied by


the bandstop filter.


16.5 IIR and FIR filters


A classical problem in the design of digital filters is the selection between FIR


and IIR filters since both types of filters can be used to satisfy a given set of


specifications. In this section, we compare IIR and FIR filters with respect to


three criteria: stability, implementation complexity, and delay.


16.5.1 Stability


Stability is a major concern in the design of filters. When designing digital


filters, care must be taken to ensure that the designed filters are absolutely


BIBO stable to prevent infinite outputs. Recall that an LTID system is stable if


its poles lie inside the unit circle in the z-plane. Since the only poles in FIR filters


lie at the origin (z = 0), FIR filters are always BIBO stable. On the other hand,
IIR filters have non-trivial poles because of the feedback loops and therefore


may run into stability issues.


Use of finite-precision DSP boards places a severe limitation on the type of


IIR filters that can be used. Even if the designed IIR filter is stable, quantization


of the filter coefficients can adversely affect its stability. To illustrate the effect


of quantization on the stability of the filter, consider the following four filters.


(1) Lowpass filter (arbitrary):


H (z) =
0.001(3.5747z7 − 13.649z6 + 20.9446z5 − 10.7188z4 − 10.7188z3 + 20.9446z2 − 13.649z + 3.5747)


z7 − 5.9664z6 + 15.5383z5 − 22.8594z4 + 20.49z3 − 11.1881z2 + 3.4416z − 0.46
.


(2) Highpass filter (Example 16.5):


H (z) =
0.1725z4 − 0.6539z3 + 0.9638z2 − 0.6539z + 0.1725


z4 − 0.6829z3 + 0.7518z2 − 0.138z + 0.0468
.
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Table 16.3. Pole locations for lowpass IIR filter specified as item


(1) in the list of filters in Section 16.5.1 before and after coefficient


quantization


Before quantization After aquantization


0.906248860 + j0.374726030 1.052267965 + j0.282343949
0.906248860 − j0.374726030 1.052267965 − j0.282343949
0.868476456 + j0.325406471 0.884886889 + j0.435649276
0.868476456 − j0.325406471 0.884886889 − j0.435649276
0.816276165 + j0.206545545 0.720252455 + j0.304944386
0.816276165 − j0.206545545 0.720252455 − j0.304944386
0.784371333 0.651185382


(3) Bandpass filter (Example 16.6):


H (z) =
0.001(8.317z8 − 6.94z7 + 4.236z6 − 5.952z5 + 13.52z4 − 5.952z3 + 4.236z2 − 6.94z + 8.317)


z8 − 1.389z7 + 3.714z6 − 3.356z5 + 4.685z4 − 2.693z3 + 2.397z2 − 0.7107z + 0.4106
.


(4) Bandstop filter (Example 16.7):


H (z) =
0.2887z8 − 0.4484z7 + 1.363z6 − 1.372z5 + 2.149z4 − 1.372z3 + 1.363z2 − 0.4484z + 0.2887


z8 − 1.096z7 + 1.977z6 − 1.519z5 + 1.78z4 − 0.8638z3 + 0.6172z2 − 0.1739z + 0.09751
.


The poles and zeros of the four filters are plotted separately in Figs. 16.11(a)–


(d). Since in all cases the poles lie within the unit circle, the four filters are


absolutely BIBO stable when they are implemented with full precision.


Now, let us consider the effect of quantization on the stability of the lowpass


filter. Although most digital systems use binary arithmetic, we will use decimal


arithmetic for simplicity and assume that the coefficients of the lowpass filter


(item (1) above) are implemented up to an accuracy of three decimal places


leading to the following approximated transfer function:


Ĥ (z) =
0.001(4z7 − 14z6 + 21z5 − 11z4 − 11z3 + 21z2 − 14z + 4)


z7 − 5.966z6 + 15.538z5 − 22.859z4 + 20.494z3 − 11.188z2 + 3.442z − 0.46
.


Although the filters H (z) and Ĥ (z) look similar, they are not identical. The
location of poles can be found by calculating the roots of the characteristic


equations of H (z) and Ĥ (z), and these are listed in Table 16.3. The pole–zero
locations are shown in Fig. 16.12. It is observed that the two poles in H (z),
which lie close to (but inside) the unit circle, moved outside the unit circle after


coefficient quantization. Therefore, although Ĥ (z) behaves as a lowpass filter
after quantization, the filter is no longer absolutely BIBO stable.


Different implementations of IIR filters can be compared to determine relative


stability by observing how close the poles lie to the unit circle. The highpass


filter, the with pole–zero plot shown in Fig. 16.11(b), has four poles, which are


well inside the unit circle. The pole–zero plot of the bandpass filter is shown


in Fig. 16.11(c). Four of the eight poles in the bandpass filter are close to the


unit circle, which reduces its relative stability. The bandstop filter has eight
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Fig. 16.11. Locations of the


poles and zeros for IIR filters.


(a) Lowpass (specified as item 1


in Section 16.5.1); (b) highpass


(Example 16.5); (c) bandpass


(Example 16.6); (d) bandstop


(Example 16.7).


poles, which are plotted in Fig. 16.11(d)). Four of its poles are well inside the


unit circle, while the remaining four are somewhat close to the unit circle. On a


relative scale, the highpass filter provides a better resilience against quantization


among the latter three filters. The bandpass and bandstop filters are sensitive to


stability issues after quantization.


16.5.2 Implementation complexity


In this section, we compare the implementation complexity of the FIR fil-


ters designed in Examples 15.5–15.7 with that of the IIR filters designed in


Examples 16.5–16.7. Table 16.4 provides a list of the number of adders, mul-


tipliers, and unit delay elements required in each case. For IIR filters, we use
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Table 16.4. Implementation complexity of FIR and IIR filters


Note that N corresponds to the order of a DT filter


Number of two-input


adders


Number of scalar


multipliers Unit delay elements


Highpass filter FIR (N = 20) 21 10 20
(Examples 15.5/16.5) IIR (N = 4) 8 9 4


Bandpass filter FIR (N = 46) 47 24 46
(Examples 15.6/16.6) IIR (N = 8) 16 17 8


Bandstop filter FIR (N = 46) 47 24 46
(Examples 15.7/16.7) IIR (N = 8) 16 17 8
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Fig. 16.12. Locations of the


poles and zeros of the lowpass


filter specified as item 1 in


section 16.5.1 (a) Before


quantization; (b) after


quantization of coefficients.


the direct form II realizations, while the IIR filters are implemented using the


linear implementation (see Section 14.6.3).


It is observed in Table 16.4 that the complexity of IIR filters is significantly


lower than that for the corresponding FIR filters. For example, the highpass FIR


filter requires 21 additions, 10 scalar multiplications, and 20 unit delays. On the


other hand, the highpass IIR filter requires only 8 additions, 9 multiplications,


and 7 unit delays. The difference is more conspicuous for the bandpass and


bandstop filters, where the orders of the FIR filters are much larger than the


corresponding orders of the IIR filters.


In summary, for applications such as image and video processing, where


a smaller-order FIR filter can satisfy the design specifications, FIR filters are


generally chosen. In other applications, such as acoustics, a filter with a long


impulse response in the range of 2000 samples is required. In such cases, the


FIR filter provides a large implementation complexity compared with that for


an IIR filter designed with the same specifications. Between these two extremes,
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there are a large number of applications where an appropriate filter (FIR or IIR)


is chosen based on implementation cost and robustness.


16.5.3 Delay


The propagation delay between the time an input signal is applied and the time


when the output appears is another important factor in filter selection. Because


of the larger number of implementation elements, the FIR filters generally have


a larger delay than the IIR filters.


16.6 Summary


This chapter presented transformation techniques, namely the impulse invari-


ance and bilinear transformations, used to design IIR filters. These transforma-


tion techniques are based on converting the frequency specifications H (Ω) of
IIR filters from the DT frequency Ω domain into the CT frequency specifica-


tions H (ω). Based on the CT frequency specifications, a CT filter with transfer
function H (s) is designed, which is then transformed back into the original DT
frequency Ω domain to obtain the transfer function H (z) of the required IIR
filter. Section 16.2 introduced the impulse invariance transformation used to


design lowpass filters. The impulse invariance method uses a linear expression,


Ω = ωT,


where T is the sampling interval, to convert DT specifications to the CT domain.
Because of the sampling process, the impulse invariance method suffers from


aliasing when transforming the analog filter H (s) to the digital filter H (z). A
consequence of aliasing is that the order N of the designed filter H (z) is much
higher than the optimal design. To prevent aliasing, Section 16.3 presented


the bilinear transformation, which transforms the DT specifications to the CT


frequency domain using the following expression:


ω = k tan(Ω/2) or Ω = 2 tan−1(ω/k).


The transfer function H (s) of the CT filter is then transformed into the z-domain
using the following transformation:


s =
1


k


z − 1
z + 1


,


in which k is generally set to unity. Section 16.4 extended the design techniques
to highpass, bandpass, and bandstop filters.


A comparison of IIR and FIR filters was presented in Section 16.5. We


demonstrated that the order of the FIR filter is generally higher than that for IIR
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filters for the same design specifications. Therefore, the implementation cost of


IIR filters is generally lower than for FIR filters. In addition, IIR filters generally


have a lower delay. However, a major limitation in the use of IIR filters is the


stability. Because IIR filters are implemented using feedback loops, they have


non-zero poles. Care should be taken in designing IIR filters by ensuring that


the poles are well inside the unit circle; this achieves good relative stability. FIR


filters have trivial poles (at z = 0) and are always stable.
Another approach taken to design IIR filters is referred to as the direct design


method, which derives the filter recursively using a least-squares method. Unlike


the analog prototyping method, the direct design method is not constrained to


the standard lowpass, highpass, bandpass or bandstop configurations. Filters


with an arbitrary, perhaps multiband, frequency response are also possible. In


M A T L A B the yulewalk function designs IIR digital filters by performing a


least-squares fit in the time domain. For more details on FIR filter design using


direct design method, refer to refs. [1] and [2].†


Problems


16.1 Using the impulse invariance transformation and a sampling interval of


T = 0.1 s, convert the following analog transfer functions to their equiv-
alent digital transfer functions:


(a) H (s) =
s + 2


(s + 4)(s2 + 4s + 3)
;


(b) H (s) =
s2 + 9s + 20


(s + 2)(s2 + 4s + 3)
;


(c) H (s) =
s3 + s2 + 6s + 14


(s2 + s + 1)(s2 + 2s + 5)
.


16.2 Derive the following z-transform pair used in Example 16.2:


12.7786T e−6.3893 kT sin(6.3894kT )u[k]


Z
←→


12.7786T e−6.3893 T sin(6.3894T )z


z2 − 2ze−6.3893 T cos(6.3894T )z + e−2×6.3893 T
.


16.3 (a) Use the impulse invariance method to show that the analog transfer


function given by


H (s) =
2.6702


s3 + 2.7747s2 + 3.8494s + 2.6702


† [1] B. Friedlander and B. Porat, the modified Yule–Walker method of ARMA spectral


estimation, IEEE Transactions on Aerospace Electronic Systems (1984), AES-20(2), 158–173.
[2] L. B. Jackson, Digital Filters and Signal Processing, 3rd edn. Kluwer Academic Publishers
(1996), Chap. 10, pp. 345–355.
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results in the following z-transfer function:


H (z) =
0.4695z2 + 0.1907z


z3 − 0.6106z2 + 0.3398z − 0.0624
as stated in Example 16.3 for the third-order Butterworth filter.


(b) Use the impulse invariance method to show that the analog transfer


function given by


H (s) =
6.2902


s4 + 4.1383s3 + 8.5630s2 + 10.3791s + 6.2902
results in the following z-transfer function:


H (z) =
0.3298z3 + 0.4274z2 + 0.0427z


z4 − 0.4978z3 + 0.3958z2 − 0.1197z + 0.0159
as stated in Example 16.3 for the fourth-order Butterworth filter.


16.4 Using the impulse invariance transformation, design a lowpass IIR But-


terworth filter based on the following specifications:


pass-band edge frequency = 0.64π ;
width of transition band = 0.3π ;
maximum pass-band ripple <0.002;


maximum stop-band ripple <0.005.


16.5 Repeat Problem 16.4 for a highpass IIR Butterworth filter.


16.6 Figure 9.1 shows a schematic for processing CT signals using DT sys-


tems. The overall system should have the CT frequency characteristics as


follows:


overall CT system is a lowpass filter;


pass-band edge frequency = 3π kradians/s;
width of the transition band = 4π kradians/s;
minimum stop-band attenuation >50 dB


maximum pass-band attenuation <0.03 dB


sampling rate = 8 ksamples/s,


Design a digital IIR filter that will provide the above characteristics using


the following steps.


(a) Derive the DT specifications from the CT specifications using the


impulse invariance transformation with T = 1/8 × 10−3 s.
(b) Design the digital IIR filter using a CT elliptic filter and the bilinear


transformation.


16.7 Repeat Problem 16.1 for the bilinear transformation.


16.8 Design a lowpass IIR Butterworth filter specified in Problem 16.4 using


the bilinear transformation.
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16.9 Design a highpass IIR Butterworth filter specified in Problem 16.5 using


the bilinear transformation.


16.10 Using the bilinear transformation, design a highpass IIR filter based on


the following specifications:


pass-band edge frequency = 0.64π ;
width of transition band = 0.3π ;
maximum pass-band ripple <0.002;


maximum stop-band ripple <0.005.


16.11 Using the bilinear transformation, design a bandpass IIR filter based on


the following specifications.


pass-band edge frequencies = 0.4π and 0.6π ;
stop-band edge frequencies = 0.2π and 0.8π ;
maximum pass-band ripple <0.02;


maximum stop-band ripple <0.009.


16.12 Using the bilinear transformation, design a bandstop IIR filter based on


the following specifications:


pass-band edge frequencies = 0.3π and 0.7π ;
stop-band edge frequencies = 0.4π and 0.6π ;
maximum pass-band ripple <0.05;


maximum stop-band ripple <0.05.


16.13 Consider the lowpass filter design, using the bilinear transformation and


analog Butterworth filter in Example 16.4. Repeat the IIR filter design


using (i) Chebyshev Type 1 and (ii) Chebyshev Type 2 CT filters. Plot


the frequency characteristics of the designed DT filter.


16.14 Consider the highpass filter design using the bilinear transformation


and analog elliptical filter in Example 16.5. Repeat the IIR filter design


using (i) Chebyshev Type 1 and (ii) Chebyshev Type 2 CT filters. Plot


the frequency characteristics of the designed DT filter.


16.15 Consider the bandpass filter design using the bilinear transformation


and analog elliptical filter in Example 16.6. Repeat the IIR filter design


using (i) Chebyshev Type 1 and (ii) Chebyshev Type 2 CT filters. Plot


the frequency characteristics of the designed DT filter.


16.16 Consider the bandstop filter design using the bilinear transformation and


analog elliptical filter in Example 16.7. Repeat the IIR filter design using


(i) Butterworth and (ii) Chebyshev Type 2 CT filters. Plot the frequency


characteristics of the designed DT filter.


16.17 Quantize the coefficients of the bandpass filters obtained in Problem


16.15 with a resolution of three decimal points. Are the filters with


quantized coefficients stable?








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 28, 2007 14:11


745 16 IIR filter design


16.18 Quantize the coefficients of the bandstop filters obtained in Problem


16.16 with a resolution of three decimal points. Are the filter with quan-


tized coefficients stable?


16.19 Repeat Problem 16.18 with a resolution of one decimal point.


16.20 By plotting the poles of the highpass filter obtained in Problem 16.10,


determine if the filter is absolutely stable. Quantize the coefficients of


the filter with a resolution of three decimal points. Are the filter with


quantized coefficients stable?


16.21 By plotting the poles of the bandpass filter obtained in Problem 16.11,


determine if the filter is absolutely stable. Quantize the coefficients of


the filter with three decimal points accuracy. Is the filter with quantized


coefficients stable?


16.22 By plotting the poles of the bandstop filter obtained in Problem 16.12,


determine if the filter is absolutely stable. Quantize the coefficients of


the filter with three decimal points accuracy. Is the filter with quantized


coefficients stable?


16.23 Compare the implementation complexity of the highpass FIR filter


designed in Example 15.5 and the IIR filters designed in Problem 16.14.


16.24 Compare the implementation complexity of the bandpass FIR filter


designed in Example 15.6 and the IIR filters designed in Problem 16.15.


16.25 Compare the implementation complexity of the bandstop FIR filter


designed in Example 15.7 and the IIR filters designed in Problem 16.16.


16.26 Using the M A T L A B , filter design function, confirm the transfer func-


tions derived in Problems 16.10–16.16.
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C H A P T E R


17 Applications of digital signal
processing


With the increasing availability of digital computers and specialized digital


hardware, digital signal processing offers a cost-effective alternative to many


traditional analog signal processing applications. The digital approach is par-


ticularly attractive due to its adaptability and immunity to variations in the


operating conditions. Since the operation of digital systems does not depend


upon the exact value of the input signals or the constituent digital components,


digital signal processing allows precise replication where the same operation


can be repeated a large number of times, if required. In contrast, analog signal


processing suffers from deviations caused by degradation in the performance


of the analog components and changes in the operating conditions. Digital


implementations are also adaptable to changes in the specifications of the


system. By modifying the software, different specifications can be implemented


by the same digital hardware. An analog system, on the other hand, has to be


redesigned every time the specifications of the system change.


This chapter reviews elementary applications of digital signal processing


in the field of spectral estimation, audio and musical signal processing, and


image processing. Our aim is to motivate readers to explore the use of digital


signal processing in applications of interest to them. Section 17.1 introduces


spectral estimation, in which the spectral content of a non-stationary signal is


estimated from a limited number of signal realizations. Sections 17.2, 17.3, and


17.4 consider audio signal processing, including spectral estimation, filtering,


and compression of audio signals. As an example of multidimensional signal


processing, we consider digital image processing in Sections 17.5, 17.6, and


17.7. Finally, Section 17.8 concludes the chapter with a summary of important


concepts.


17.1 Spectral estimation


Estimating the frequency content of a signal, commonly referred to as spec-


tral analysis or spectral estimation, is an important step in signal processing


746
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Fig. 17.1. DFT used to estimate


the frequency content of


stationary and non-stationary


signals in Example 17.1.


(a) Magnitude sepctrum of


x1[k ]. (b) Enlarged version of


part (a) in the frequency range


−0.05π ≤ Ω ≤ 0.05π .
(c) Magnitude spectrum of


x2[k ]. (d) Enlarged version of


part (c) in the frequency range


−0.2π ≤ Ω ≤ 0.2π .


applications. For most signals of interest, the discrete Fourier transform (DFT)


provides a convenient approach for spectral estimation. Example 17.1 highlights


the DFT-based approach for two test signals.


Example 17.1


Using the DTFT, estimate the spectral content of the following DT signals:


(a) x1[k] = cos(0.01πk) + 2 cos(0.015πk);


(b) x2[k] = cos(0.0001πk
2),


from observations made over the interval 0 ≤ k ≤ 1000.


Solution


(a) The magnitude spectrum of x1[k] based on the DFT is plotted over the


frequency range −π ≤ Ω ≤ π in Fig. 17.1(a) with the magnified version


shown in Fig. 17.1(b), where the frequency range −0.05π ≤ Ω ≤ 0.05π


is enhanced. By looking at the peak values in Fig. 17.1(b), it is clear that


the frequencies Ω1 = 0.01π and Ω2 = 0.015π radians/s are the dominant


frequencies in the signal. On a relative scale, the frequency componentΩ2 =


0.015π has a higher strength compared with the frequency component


Ω1 = 0.01π .


(b) The magnitude spectrum of x2[k] based on the DFT over the frequency


range −π ≤ Ω ≤ π is plotted in Fig. 17.1(c), with the magnified version


shown in Fig. 17.1(d), where the frequency range −0.2π ≤ Ω ≤ 0.2π is


enhanced. From the subplots, it seems that all frequencies within the range


−0.2π ≤ Ω ≤ 0.2π are fairly significant in x2[k]. To confirm the validity


of our estimation, let us calculate the instantaneous frequency of the signal.
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Note that the phase of x2[k] is given by θ0 = 0.0001πk2. By differentiating
the phase θ0 with respect to k, the instantaneous frequency is obtained as


ω0 = 0.0002πk. The instantaneous frequency ω0 is a function of time k,
and increases proportionately as k increases. However, this time-varying


nature of the frequency is not obvious from the magnitude spectrum shown


in Fig. 17.1(c). Since the DFT averages the frequency components over all


time k, the DFT provides a misleading result in this case.


Example 17.1 shows that the DFT magnitude spectrum based approach is


convenient for estimating the spectral content of a stationary signal comprising


sinusoidal components with fixed frequencies. However, it may provide mis-


leading results for non-stationary signals, where the instantaneous frequency


changes with time. In other words, it is difficult to visualize the time evolution


of frequency in the DFT magnitude spectrum. The short-time Fourier transform


is defined in Section 17.1.1 to address this limitation of DFT.


17.1.1 Short-time Fourier transform


In order to estimate the time evolution of the frequency components present in


a signal, the short-time Fourier transform (STFT) parses the signal into smaller


segments. The DFT of each segment is calculated separately and plotted as a


function of time k. The STFT is therefore a function of both frequency Ω and


time k. Mathematically, the STFT of a DT signal x[k] is defined as follows:


Xs(Ω, b) =
∞∑


k=−∞


x[k]g∗[k − b]e−jΩk, (17.1)


where the subscript s in Xs(Ω, b) denotes the STFT and b indicates the amount


of shift in the time-localized window g[k] along the time axis. Typical windows


used to calculate the STFT are rectangular, Hanning, Hamming, Blackman, and


Kaiser windows. Compared to the rectangular window, the tapered windows,


such as Hanning and Blackman, reduce the amount of ripple and are generally


preferred.


In most cases, the time shift b is selected such that successive STFTs are taken


over adjacent samples of x[k] and there is some overlap of samples between


successive STFTs. As discussed earlier, the STFT is a function of two variables:


the frequency Ω and the central location of the window. It is typically plotted


as an image plot, known as a spectrogram, with frequency Ω varying along


the y-axis and the time (i.e. the center of the window function) varying along


the x-axis. The intensity values of the image plot show the relative strength of


various frequency components in the original signal.


Example 17.2


Plot the spectrogram of the signal x2[k] = cos(0.0001πk
2) for duration


k = [0, 39 999].
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Solution


In order to calculate the STFT, let us choose the Hanning window function of


length Nw = 901 samples to parse the data sequence of length Ns = 40 000.
Further assume that the overlap No between two consecutive windows to be


No = 600 samples. The total number of complete windows is given by


M =
⌊


Ns − No
Nw − No


⌋


= 130. (17.2)


The p = 0 window is centered at sample k = 450; the p = 1 window is centered
at 450 + (901 − 600) = 751; the p = 2 window is centered at 750 + (901 −
600) = 1052. In general, a window p is centered at


k =
Nw − 1


2
+ p(Nw − No) = 450 + 301p (17.3)


for 0 ≤ p ≤ 129. To obtain improved resolution in the frequency domain and to


use the FFT algorithm efficiently, we zero-pad each time-windowed signal by


123 zero samples to make the total length of each segment equal 1024, which


is a power of 2.


Note that the DFT of each zero-padded time-windowed signal will have a


total of 1024 coefficients in the frequency domain. As the signal is real, the


DFT coefficients will satisfy the Hermitian symmetry property. In other words,


the amplitude spectrum is even-symmetric and we can ignore the second half


of the spectrum which corresponds to the negative frequencies. So, we choose


the first 513 coefficients out of a total of 1024 DFT coefficients corresponding


to each windowed signal. The spectrogram is therefore a 2D matrix of size 513


× 130 samples. Each of the 130 columns will represent the amplitude spectrum


of the signal at the time instant given by Eq. (17.3). Each row contains the


amplitude of the 513 DFT coefficients. Note that the first coefficient (r = 0)


represents frequency Ω = 0 and the last (r = 512) coefficient represents fre-


quency Ω = π , with the intermediate frequencies given by


Ωr =
r


512
× π (17.4)


for 0 ≤ r ≤ 512. The resulting spectrogram is shown in Fig. 17.2, where the


black intensity points represent lower magnitudes and the light intensity points


represent higher magnitudes. Note that the spectrogram is wrapped around the


frequency range [0, π ]. Figure 17.2 illustrates that the frequency of the chirp


signal increases linearly with time.


In Example 17.2, we selected values for the window length and the overlap


period on an ad hoc basis. The choice of the window size is important as it


provides a trade-off between the resolution obtained in the frequency domain


and the localization in the time domain. A larger window allows us to observe


a signal for a longer period of time before we calculate the DFT. As a result, it


provides a higher frequency resolution in the spectrogram. On the other hand, a


shorter time window provides a better localization in time but a poor frequency
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Fig. 17.2. Spectrogram of


the chirp signal


x2[k ] = cos(0.0001πk2)
from Example 17.2.


resolution. A longer window, therefore, generates a narrow-band spectrogram


while a shorter window generates a wide-band spectrogram. Similarly, the over-


lap chosen between two consecutive windows provides continuity and reduces


sharp transitions in the spectrogram.


17.1.2 Spectrogram computation using M A T L A B


In M A T L A B , the signal processing toolbox includes the function specgram


for calculating the spectrogram of a signal. The spectrogram in Example 17.2


is computed using the following code:


>> k = [0:39999];


>> x2= cos(0.0001*pi*k.*k) ;


>> Fs = 1;


>> Nwind = 901; Nfft = 1024; Noverlap = 600;


>> [spgram, F, T] = specgram(x2, Nfft, Fs, hanning(Nwind),


Noverlap);


>> imagesc([0 length(x2)/Fs], 2*pi*F,


20*log10(abs(spgram) + eps));


>> colormap(gray)


The M A T L A B functionimagesc displays the spectrogram using a color map.


We can set the color map to gray using the last command in the code.


17.1.3 Random signals


The signals that we have studied so far are referred to as deterministic signals.


Such signals can be specified by unique mathematical expressions, allowing us


to calculate them precisely for all time. A second category consists of signals


that cannot be predicted precisely in advance, which are collectively referred


to as random or stochastic signals. Individual values of stochastic signals carry
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little information, and therefore statistical averages such as mean, autocor-


relation, and power spectral density are commonly used to specify stochastic


signals. We start by defining the statistical mean and autocorrelation commonly


used to define a stochastic signal. If x[k], x[k1], x[k2] are discrete random vari-


ables taking on values from the set {xm, −∞ ≤ m ≤ ∞} at times k, k1, and k2,
respectively, the mean and autocorrelation functions are defined as follows:


mean E{x[k]} =


∞
∑


m=−∞


xm P[x[k] = xm]; (17.5)


autocorrelation Rxx [k1, k2] = E{x[k1]x[k2]}


=


∞
∑


m=−∞


∞
∑


n=−∞


xm xn P[x[k1] = xm ; x[k2] = xn].


(17.6)


In Eqs. (17.5) and (17.6), the operator E denotes the expectation and P[x[k] =


xm] is the probability that x[k] takes on the value xm . Likewise, P[x[k1] =


xm ; x[k2] = xn] refers to the joint probability for random signals x[k1] and x[k2]


observed at time instants k1 and k2. Estimating the mean and autocorrelation of


a stochastic signal is difficult in general. In many applications, random signals


satisfy the following two properties.


(1) The mean E{x[k]} is constant and independent of time.


(2) The autocorrelation E{x[k1]x[k2]} depends upon the duration between the


observation instants k1 and k2. In other words, the autocorrelation is inde-


pendent of the observation instants and is only determined by the duration


between the two observations.


Such signals are referred to as wide-sense stationary (WSS) random signals.


Sometimes, these are referred to as weak-sense stationary or second-order sta-


tionary random signals. Mathematically, the aforementioned two properties of


the WSS signals can be expressed as follows:


mean E{x[k]} = µx ; (17.7)


autocorrelation Rxx [k1, k2] = Rxx [k1 − k2] = Rxx [m]. (17.8)


The DTFT of the autocorrelation Rxx [m] of a WSS signal is referred to as the


power spectral density, which is defined as follows:


power spectral density Sxx (Ω) =


∞
∑


m=−∞


Rxx [m]e
−jΩm . (17.9)


Equations (17.8) and (17.9) are widely used to estimate the spectral content


of WSS signals, and the equations require the probability density functions


to estimate the spectral content, which is generally not known in most signal


processing applications. In the following, we present a method, based on the


periodogram, to estimate the spectral content of stochastic signals from a finite


number of observations.
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17.1.4 Periodogram


The periodogram method is similar to the spectrogram method and exploits the


STFT for spectrum estimation using a window function g[k] of length Nw and


centered at k = b. The time-windowed sequence ub[k], centered at k = b, is
given by


ub[k] = x
[


k + b −
⌊


Nw


2


⌋]


g[k], 0 ≤ k ≤ (Nw − 1) . (17.10)


The DFT of ub[k] is given by


Ub(Ω) =


Nw−1
∑


k=0


ub[k]e
−jΩk . (17.11)


The periodogram method estimates the power spectrum Pxx (Ω) using the fol-


lowing equation:


P̂xx (Ω) =
1


µ2
|Ub(Ω)|


2 , (17.12)


where µ is referred to as the norm of the window function g[k] and is calculated


as follows:


µ =


√


∑


k


g2[k]. (17.13)


While computing the STFT, different window functions attenuate the original


samples of the signal x[k] by different amounts. Inclusion of a scaling factor


of 1/µ2 in Eq. (17.12) reduces the bias introduced by a particular window


function.


If g[k] is a rectangular window, the estimate of the power spectrum Pxx (Ω)


computed with Eq. (17.12) is called the periodogram. For all other windows,


the estimate is referred to as the modified periodogram.


In its current form, Eq. (17.11) calculates the Nw-point DFT that produces


DTFT values for a set of equally spaced Nw frequency points within the range


Ω = [0, 2π ]. As for the spectrogram, we can zero-pad the time-windowed


sequence and increase the DFT length to obtain a denser plot in the frequency


domain.


17.1.5 Average periodogram


To estimate the power spectrum, Eq. (17.12) uses a single window with duration


of 0 ≤ k ≤ (Nw−1) within the input signal x[k]. Improved results are obtained


if several estimates from different locations of the signal are obtained and


the resulting values are averaged. Starting from duration 0 ≤ k ≤ (Nw−1),


the first iteration computes the periodogram from x[k] within the specified


duration. In the second iteration, the window is moved forward by (Nw – No)


samples such that there is an overlap of No between successive windows. The
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new location of the window is given by (Nw − No − 1) ≤ k ≤ (2Nw − No−
2) for the second iteration, which is used to compute the periodogram for the


second duration. The process is repeated until the entire signal is parsed and


the average value of the periodogram is selected as the estimate of the power


spectrum. This method, based on averaging the values of the power spectrum


obtained from different periodograms, is referred to as the Welch estimate of the


periodogram.


In the signal processing toolbox of M A T L A B , the built-in function psd


estimates the power spectrum of a signal using the periodogram approach. The


following example illustrates the use of the psd function.


Example 17.3


Estimate the power spectral density of the following signal:


x[k] = 3 cos(0.2πk) + 2 cos(0.3πk) + r [k], (17.14)


where r [k] is a white noise with Gaussian distribution with a variance of 4.


Solution


Note that the signal x[k] includes a deterministic component consisting of


the two sinusoids and a random component. The following code generates a


realization of x[k] and estimates the power spectrum:


>> k = [0:6000];


>> x = 3*cos(0.2*pi*k) + 2*cos(0.4*pi*k) +


2*randn(size(k));


>> Fs = 2 ; nwind = length(x);


>> nfft = length(x); noverlap = 0 ;


>> [PxxNoAvg, F] = psd(x, nfft, Fs, rectwin(nwind),


>> noverlap); Fs = 2; nwind=301;


>> nfft = 512; noverlap = floor(4*nwind/5) ;


>> [PxxWelch, F] = psd(x, nfft, Fs,


hanning(nwind),noverlap);


The random component r [k] is generated using the M A T L A B functionrandn.


As the variance of the random component is 4, we multiply randn by the


standard deviation, which equals 2. Figure 17.3 shows the first 201 samples of


an example of x[k]. Over different simulations, the signal x[k] may have slight


variations due to the presence of the random component.


The M A T L A B code computes the power spectrum in two ways. The first


estimate PxxNoAvg represents the power spectrum obtained by calculating


the DFT of the entire signal. Note that there is no averaging in this case. The


second estimate, PxxWelch, represents the power spectrum obtained by the


Welch method, where the signal is parsed into shorter sequences with a Hanning
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Fig. 17.3. Estimating the power


spectrum of a random signal


using the periodogram


approach. (a) Original random


signal. (b) Power spectrum


obtained from periodogram with


no averaging. (c) Power


spectrum obtained from


periodogram with overlap and


averaging based on the Welch


method.
window of size 301. Two consecutive windows have an overlap of 240 samples,


resulting in a total of 94 data windows. Each of these sequences is zero-padded


with 211 zero-valued samples and the DFT is calculated. The averaged power


spectrum is then obtained by averaging all 94 power spectra.


The resulting power spectra are shown in Figs. 17.3(b) and (c). Although both


spectra exhibit peaks atΩ = 0.2π and 0.4π the estimatePxxNoAvg contains a
substantial amount of noise. Since the estimate PxxWelch averages the power


spectrum, most of the noise is canceled out. However, averaging also reduces


the magnitudes of peaks at Ω = 0.2π and 0.4π in PxxWelch. In the latter
case, the peaks are not as pronounced as the peaks in PxxNoAvg.


17.2 Digital audio


Since the 1980s, digital audio has become a very popular multimedia format


for several applications, including the audio CD, teleconferencing, and digital


movies. With the enormous growth of the World Wide Web (WWW), audio


processing techniques such as filtering, equalization, noise suppression, com-


pression, and synthesis are being used increasingly. In this section, we focus


on three aspects of audio processing: spectrum estimation, audio filtering, and


audio compression. We start by discussing how audio is stored in files and


played back in M A T L A B .


17.2.1 Digital audio fundamentals


Sound is a physical phenomenon induced by vibrations of physical matter, such


as the excitation of a violin string, clapping of hands, and movement of our vocal


tract. The vibrations in the matter are transferred to the surrounding air resulting
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Fig. 17.4. Waveform of a digital


audio signal stored in the


testaudio1.wav file.


in the propagation of pressure waves. The human auditory system processes


the air waves and uses the information contained in the pressure variations to


extract audio information from the wave. It is possible to process sound waves


directly, as in a microphone, which converts sound to electrical signals that


are amplified and played back using a loudspeaker. The term audio refers to


electronically recorded or reproduced sound, while digital audio is obtained by


the sampling and quantization of an analog audio signal. The waveform of an


audio signal is shown in Fig. 17.4.


An audio signal is described using two properties. The first property is pitch,


which describes the shrillness of sound. Pitch is directly related to the fre-


quency of the audio signal and the two terms are used interchangeably. The


second property is the loudness, which measures the amplitude or intensity


of the audio signal using the decibel (dB) scale. Generally, the audible inten-


sity of an audio signal varies between 0 and 140 dB, where 0 dB represents


the lower threshold of hearing, below which a human auditory system is inca-


pable of hearing any sound. Typical office environments have an ambient audio


level of about 70 dB. Audio above 120 dB is very loud and is injurious to


humans.


Sound generated from physical phenomena contains frequency in the range


0–10 GHz. Since the human auditory system is only intelligible to sound fre-


quencies between 20 Hz and 20 kHz, most audio signals record sound within


this audible range and neglect any higher-frequency components. For example,


the digital audio stored on an audio compact disc is obtained by filtering the


CT audio by a lowpass filter with a cut-off frequency of 20 kHz, and the fil-


tered signal is sampled using a sampling rate of 44.1 ksamples/s. The number


of quantization levels used to produce digital audio depends upon the appli-


cation and may vary from 4096 levels obtained with a 12-bit quantizer, to 65


536 levels with a 16-bit quantizer, to 4 million levels with a 24-bit quantizer.


Higher numbers of quantization levels result in lower distortion and more pre-


cise reproduction of the original sound.


17.2.2 Formats for storing digital audio


Digital audio is available in a wide variety of formats, such as the au, wav, and


mp3 formats. Both au and wav formats store audio in the uncompressed form,


while mp3 compresses audio using Layer 3 of the MPEG-1 audio compression
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standard. In this section, we will focus on the au and wav formats. Typically,


a digital audio file stored in the au format has an .au extension, while digital


audio stored in the wav format has a .wav extension.


M A T L A B provides a number of library functions to read and write audio


files stored in the au and wav formats. For the au format, M A T L A B provides the


auread and auwrite functions to read and write an audio file, respectively.


Likewise, the wavread and wavwrite functions are available to read and


write an audio file in the wav format. The following code reads the audio file


“testaudio1.wav” using the wavread function. There are three output


arguments to the wavread function. The first argument x is an array where


the audio signal is restored. For mono (single-channel) audio signals, x is a


1D vector. For stereo (dual-channel) signals, x is a 2D array corresponding to


the number of signals played by the two speakers. The second argument Fs


represents the sampling rate, while nbit represents the number of bits per


sample.


>> %Reading the input audio file


>> infile = ’f:\ MATLAB\signal\ % audio file
>> testaudio1.wav’;


>> [x, Fs, nbit] = wavread(infile); % x = signal


% Fs = sampling rate


% nbit = number of


% bits per sample


The above M A T L A B program will produce a 1D array x with dimension


26 079 × 1. In other words, the audio signal is a mono signal and contains 26 079
samples. The sampling rate is 22.05 ksamples/s and the signal is quantized using


an 8-bit quantizer. The waveform of the audio signal stored in the testaudio1.wav


file is shown in Fig. 17.4. To play the audio signal stored inx, we use thesound


or soundsc function available in M A T L A B as follows:


>> sound(x,Fs);


The soundsc function normalizes the entries of vector x so that the sound is


played as loud as possible without clipping. The mean value is also removed.


After playing the vector x obtained from testaudio1.wav, you should


recognize that the file contains the spoken word “audio.” Relating the word


“audio” to Fig. 17.4, we observe that the waveform has three distinct segments.


The first segment represents the syllable “au,” the second segment represents


the syllable “di,” and the last segment represents “o.” Some silent intervals,


represented by near-zero-amplitude waveforms, are also observed in the plot.


17.2.3 Spectral analysis of speech signals


In Section 17.1, we presented techniques for estimating the spectral content


of a nonstationary signal. Audio signals such as speech, music, and ambient
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Fig. 17.5. Spectrograms of the


speech signal recorded in


testaudio1.wav.


(a) Narrow-band spectrogram;


(b) wide-band spectrogram.


sound are examples of non-stationary signals. Therefore, the techniques pre-


sented in Section 17.1 can also be used to estimate the spectral content of audio


signals.


To calculate the spectrogram of the audio signal stored in testaudio1.wav, we


use the following M A T L A B code:


>> %Reading the input audio file


>> infile = ’testaudio1.wav’; % audio file


>> [x, Fs, nbit] = wavread(infile); % x = signal


% Fs = sampling rate


% nbit = number of


% bits per sample


>> nfft = 1024; nwind = 1024; noverlap = 768;


>> [spgram,F,T] = specgram(x, nfft,Fs,hanning(nwind),


noverlap);


>> spgramdB = 20*log10 (abs (spgram) + eps);


>> imagesc([0 length (x)/Fs], 2*pi*F, spgrandB);


>> colormap(gray)


The above code calculates the spectrogram using a window size of 1024, shown


in Fig. 17.5(a). As the window size is a power of 2, we choose to calculate the


DFT without any zero padding. For the audio signal testaudio1.wav, the


sampling rate of the signal is given by 22 050 samples/s. A window size of


1024 samples therefore corresponds to a duration of 1024/22 050 = 0.0461 s.
Hence, the time resolution of the spectrogram is limited to 46 ms.


The frequency resolution in the spectrogram plotted in Fig. 17.5(a) is obtained


by dividing the sampling frequency by the total number of samples in the fre-


quency domain, which gives 22 050/1024 = 21.53 Hz. During the computation
of the spectrogram, it is possible to trade-off time resolution for the frequency


resolution, and vice versa. To improve the time resolution of the spectrogram


in Fig. 17.5(a), we decrease the window size to 256 with an overlap of 128


samples between two successive windows:
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>> %Reading the input audio file


>> infile = ’testaudio1.wav’; % audio file


>> [x, Fs, nbit] = wavread(infile); % x = signal


% Fs = sampling rate


% nbit = number of


% bits per sample


>> nfft = 256; nwind = 256; noverlap = 128;


>> [spgram,F,T] = specgram(x,nfft, Fs,hanning(nwind),


noverlap);


>> spgramdB = 20*log10 (abs (spgram) + eps);


>> imagesc([0 length (x)/Fs], 2*pi*F, spgrandB);


>> colormap(gray)


The resulting spectrogram is shown in Fig. 17.5(b). Choosing a window size of


256 samples improves the time resolution to 11.6 ms. However, the frequency


resolution is reduced to 22 050/256 = 86.13 Hz. Comparing the two histograms
in Fig. 17.5, we observe that the time resolution of Fig. 17.5(b) is better than that


of Fig. 17.5(a). However, the improvement in the time resolution is obtained at


the cost of the frequency resolution. Clearly, Fig. 17.5(b) has a relatively lower


frequency resolution compared with that of Fig. 17.5(a). Therefore, Fig. 17.5(a),


with a better frequency resolution, is considered a narrow-band spectrogram,


whereas Fig. 17.5(b), with a lower frequency resolution, is considered a wide-


band spectrogram.


17.2.4 Power spectrum


Using the techniques discussed in Section 17.1.5, the power spectrum of the


speech signal stored in vector x obtained from the testaudio1.wav file can


be computed using the psd function available in M A T L A B as follows:


>> nwind=512; nfft = 512; noverlap = floor(3*nwind/4) ;


>> [Pxx, F] = psd(x, nfft, Fs, hanning(nwind),noverlap);


>> plot(F,10*log10(Pxx));


The resulting power spectrum is shown in Fig. 17.6, where we observe that


most of the energy of the signal is concentrated in the frequency band 0–2 kHz.


17.2.5 Spectral analysis of music signals


In this section, we analyze the spectral content of the music signal stored in


testaudio2.wav using the spectrogram and periodogram methods. The
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Fig. 17.6. Power spectrum of the


speech signal stored in the


testaudio1.wav file.


music signal is read using the following M A T L A B code and the resulting


time-varying waveform of the music signal is plotted in Fig. 17.7(a):


>> %Reading the input audio file


>> infile = ’testaudio2.wav’; % audio file


>> [x, Fs, nbit] = wavread(infile); % Fs = sampling rate,


% nbit = # bits/sample


>> plot(1/Fs*[0:length(x)-1],x);


>> nfft=1024; nwind=1024; noverlap=512;


>> [spgram, F, T] = specgram(x, nfft,Fs,hanning(nwind)


noverlap);


>> imagesc([0 length(x)/Fs], F/1000, 20*log10


(abs(spgram) + eps));


>> colormap(gray)


>> [Pxx, F] = psd(x,nfft,Fs, hanning(nwind),noverlap);


>> plot(F,10*log10(Pxx));


The resulting spectrogram is shown in Fig. 17.7(b), where the horizontal axis


represents time and the vertical axis represents frequency. As the speech signal


is real-valued, the spectrum is plotted for the positive frequencies only. Since


the bright intensity regions represent higher energy, it can be seen that the signal


has most energy at the lower frequencies.


The average periodogram of the music signal is plotted in Fig. 17.7(c). It is


observed that the peak power of about 6.5 dB occurs at 100 Hz and that the


power decreases as the frequency is increased.


17.3 Audio filtering


Frequency-selective filtering emphasizes certain frequency components by


attenuating the remaining frequency components present in a signal. Four types


of digital filters, namely lowpass, highpass, bandpass, and bandstop filters, were


covered in Chapters 14–16. In this section, we process audio signals using these


digital filters.
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Fig. 17.7. Frequency analysis of


the music signal stored in the


testaudio2.wav file.


(a) Time representation;


(b) spectrogram; (c) power


spectrum of the music signal.


Example 17.4


Consider the audio signal stored in the bell.wav file, which was sampled


at a sampling rate of 22 050 samples/s and quantized using an 8-bit quantizer.


The power spectral density, shown in Fig. 17.8(b), illustrates that the signal


has frequency components across the entire 0–11 025 Hz frequency range.


We now process the audio signal with the lowpass, highpass, and bandpass


filters.


Lowpass filtering A lowpass FIR filter with a cut-off frequency of 3 kHz and


order 64 is designed using the fir1M A T L A B library function. The following


M A T L A B code designs the lowpass filter:


>> filtLow = fir1(64,3000/ % Filter: Order = 64


(Fs/2)); % cutoff = 3kHz


>> w = 0:0.001*pi:pi; % discrete frequencies for


% spectrum


>> HLpf = freqz(filtLow,1,w); % transfer function


>> plot(w*Fs/(2*pi),20*log10 % magnitude spectrum


(abs(HLpf) + eps));


By default, the fir1 function uses the Hamming window. Since the fir1


function accepts normalized frequencies, the cut-off frequency is normalized


with half the sampling frequency. The magnitude spectrum of the resulting


lowpass filter is shown in Fig. 17.9(a).
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Fig. 17.8. Audio signal stored in


the bell.wav file. (a) Time


representation; (b) power


spectrum.


To derive the output of the lowpass filter when the audio signal stored in


bell.wav is applied at the input of the filter, the following M A T L A B code


is used:


>> xLpf = filter(filtLow,1,x); % Lowpass filtered audio


% signal


To hear the resulting audio signal and plot its power spectrum, we use the


following M A T L A B code:


>> sound(xLpf,Fs); % Play filtered sound


>> nfft=1024; nwind=1024; noverlap=512;


>> [Pxx, F] = psd(xLpf,nfft,Fs, hanning(nwind),noverlap);


>> plot(F,10*log10(Pxx));


Listening to the lowpass filtered sound, we observe that the sound is less shrill


with a lower pitch. This is also apparent from the power spectrum shown in Fig.


17.9(b), where we observe that the frequency components above 3 kHz have


a much lower magnitude than the corresponding frequency components of the


original bell sound.
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Fig. 17.9. Lowpass filtering of


the audio signal stored in the


bell.wav file. (a) Frequency


characteristics of a 64-tap FIR


lowpass filter designed using a


Hamming window with a cut-off


frequency of 3000 Hz.


(b) Power spectrum of the


filtered signal.
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Fig. 17.10. Bandpass filtering of


the audio signal stored in the


bell.wav file. (a) Frequency


characteristics of a 64-tap FIR


bandpass filter designed using a


Hamming window with cut-off


frequencies of 2000 and


5000 Hz. (b) Power spectrum of


the filtered signal.


Bandpass filtering As was the case for the lowpass filter, we design the band-


pass filter using the fir1 command. The M A T L A B code is given below.


>> fBp = fir1(64,[2000 %Filter: order = 64


5000]/(Fs/2)); % cutoff = [2 5]kHz


>> w = 0:0.001*pi:pi; % discrete frequencies for


% spectrum


>> HBpf = freqz(fBp,1,w); % transfer function


>> plot(w*Fs/(2*pi),20*log


10(abs(HBpf) + eps)); % magnitude spectrum


The magnitude spectrum of the bandpass filter is plotted in Fig. 17.10(a), which


filters the bell sound using the following M A T L A B code:


>> xBpf = filter(fBp,1,x); % Bandpass filtered audio


% signal


>> sound(xBpf,Fs); % Play filtered sound


>> nfft=1024; nwind=1024; noverlap=512;


>> [Pxx, F] = psd(xBpf,nfft, Fs,hanning(nwind),noverlap);


>> plot(F,10*log10(Pxx + eps));


The power spectrum of the resulting bandpass signal is plotted in Fig. 17.10(b).


We see that the frequency components within the pass band of [2000 5000] Hz


are retained in the filtered signal. The remaining frequency components are


attenuated by the bandpass filter.


Highpass filtering The highpass filter with a cut-off frequency of 4 kHz is


designed using the following M A T L A B code:


>> fHp = fir1(64,4000/(Fs/2),’high’);


% Filter: order = 64


% cutoff = 4kHz


>> w = 0:0.001*pi:pi; % discrete frequencies for


% spectrum
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Fig. 17.11. Highpass filtering of


the audio signal stored in the


bell.wav file. (a) Frequency


characteristics of a 64-tap FIR


highpass filter, with cut-off


frequency of 4000 Hz, designed


using a Hamming window.


(b) Power spectrum of the


filtered signal.


>> HHpf = freqz(fHp,1,w); % transfer function


>> plot(w*Fs/(2*pi),20*log10 % magnitude spectrum


(abs(HHpf) + eps));


The magnitude spectrum of the highpass filter is plotted in Fig. 17.11(a), which


filters the bell sound using the following code:


>> xHpf = filter(fHp,1,x); % Highpass filtered audio


% signal


>> sound(xHpf,Fs) % play the sound


>> nfft=1024; nwind=1024; noverlap=512;


>> [Pxx, F] = psd(xHpf,nfft, Fs,hanning(nwind),noverlap);


>> plot(F,10*log10(Pxx + eps));


The power spectrum of the highpass filtered signal is shown in Fig. 17.11(b),


where we observe that the frequency components below 4 kHz are strongly


attenuated. The higher frequency components are left unattenuated. The obser-


vation is confirmed on playing the filtered sound, which sounds shriller, with a


higher pitch than the original bell sound.


Example 17.4 demonstrates the effects of lowpass, bandpass, and highpass


filtering on an audio signal. The following example uses a bandstop filter to


eliminate noise from a noisy signal.


Example 17.5


Consider the audio signal stored in the testaudio3.wav file with the time-


domain representation shown in Fig. 17.12(a). The audio signal is sampled at


a sampling rate of 22 050 samples/s. Using the average periodogram method


discussed in Section 17.1.5, the power spectral density of the audio signal


is estimated and plotted in Fig. 17.12(b). From the power spectral density


plot, we observe that there is a sharp peak at 8 kHz, which is identified as


noise corrupting the audio signal. The noise can be heard if we play the audio


signal.


To suppress the noise, we use a bandstop filter of order 128 with a stop band


that ranges from 7800–8200 Hz. The order of the bandstop filter is chosen


arbitrarily in this example. In more sophisticated applications, the order is
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Fig. 17.12. Noise-corrupted


signal stored in the


testaudio3.wav file.


(a) Time representation;


(b) power spectrum.


computed from the amount of attenuation required within the stop band. Using


M A T L A B , the transfer function of the bandpass filter is computed as follows:


>> wc =[7800 8200]/11025; % Normalized cutoff


% frequency


>> fBs = fir1(128,wc,’stop’); % order-128 filter, 129 tap


>> w = 0:0.001*pi:pi; % discrete frequencies


% for spectrum


>> HBs = freqz(fBs,1,w); % transfer function


>> plot(w*Fs/(2*pi),20*log10 (abs(HBs)));


% magnitude spectrum


The magnitude spectrum of the resulting bandstop filter is plotted in Fig.


17.13(a), which shows strong attenuation at 8 kHz. The gain at the remain-


ing frequencies is close to unity. The noisy signal is filtered with the bandstop


filter and the power spectral density of the filtered signal is calculated using the


following M A T L A B code:


>> xBsf = filter(fBs,1,x); % Bandstop filtered audio


% signal


>> nfft=1024; nwind=1024; noverlap=512;


>> [Pxx, F] = psd (xBsf,nfft,Fs,hanning (nwind),noverlap);


>> plot(F,10*log10(Pxx));


The power spectral density of the filtered output is shown in Fig. 17.13(b),


which shows a strong attenuation in the noise impulse present at 8 kHz. On


playing the filtered signal, we observe that the effects of the noise have been
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Fig. 17.13. Bandstop filtering to


eliminate noise from the noise


corrupted signal shown in Fig.


17.12. (a) Frequency


characteristics of a 129-tap FIR


bandstop filter, with cut-off


frequencies of [7800 8200] Hz,


designed using a Hamming


windor. (b) Power spectrum of


the filtered signal.
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Fig. 17.14. Bandstop filtering to


eliminate noise from the


noise-corrupted signal shown in


Fig. 17.12. (a) Frequency


characteristics of a 201-tap FIR


bandstop filter, with cut-off


frequencies of [7800 8200] Hz,


designed using a Hamming


window. (b) Power spectrum of


the filtered signal.


reduced, but not completely eliminated. Therefore, we increase the order of the


bandstop FIR filter to 200. Using the above code with the order set to 200, we


compute the impulse response of the 201-tap bandstop FIR filter. The magnitude


spectrum of the filter is plotted in Fig. 17.14(a). The power spectral density of


the filtered signal obtained from the 201-tap bandstop filter is shown in Fig.


17.14(b). On playing the filtered signal, we observe that the noise component


has been successfully suppressed. However, the suppression of noise is at the


cost of eliminating certain frequency components which neighbor the frequency


of the impulse noise.


17.4 Digital audio compression


Audio data in the raw format requires a large number of bits for repre-


sentation. For example, the CD-quality stereo audio requires a data rate of


176.4 kbytes/s for transmission or storage. This data rate is not supported by


many networks, including the internet, hence real-time audio applications can-


not be supported if the audio data are transmitted in the raw format. Similarly,


storing at a data rate of 176.4 kbytes/s requires a large storage capacity, even to


save a five-minute session. Compressing audio is therefore imperative for real-


time audio transmission or for storing an audio session of meaningful length.


Audio compression is defined as the process through which digital audio can


be represented by a lower number of bits. Most compression techniques can be


classified into two categories, namely lossy compression and lossless compres-


sion. While lossless techniques are ideal as they allow perfect reconstruction


of audio, they limit the amount of compression that can be achieved. Lossy


techniques exploit the psychoacoustic characteristics of the human auditory


system and achieve higher compression by eliminating audio components that


are not audible to humans. In this section, we present the basic principles of


audio compression. Example 17.6 emphasizes the need for audio compression.


Example 17.6


(a) A stereo (dual-channel) audio signal is to be transmitted through a 56 kbps


network in real time. If the sampling rate of the digital audio signal is


22.05 ksamples/s, what is the maximum average number of bits that can be


used to represent an audio sample?
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(b) If the quantizer uses 8 bits/sample for each channel, what is the maximum


allowable sampling rate such that the audio signal can be transmitted over


a 56 kbps network?


(c) Calculate the compression ratio required to transmit the stereo audio signal


through a 56 kbps channel if the sampling rate is given by 22.05 ksamples/s


and the quantizer uses 8 bits/sample.


Solution


(a) Assuming that the quantizer uses n bits to represent each sample,


number of bits produced per second = n bits/sample × 22 050 samples/s
× 2 channels = 44 100n bps


Equating this with the transmission rate of 56 kbps, we obtain


n = 56 000/44 100 = 1.27 bits/sample.


(b) Assuming that the sampling rate is given by fs samples/s,


number of bits produced per second = 8 bits/sample × fs samples/s
× 2 channels = 16 fs bits/s.


Equating this with the transmission rate of 56 kbps, we obtain


fs = 56 000/16 = 3500 samples/s.


(c) To determine the compression ratio, we first calculate the number of bits


produced per second:


number of bits produced per second = 8 bits/sample × 22 050 samples/s
× 2 channels = 352 800 samples/s.


The compression ratio is therefore given by


compression ratio =
number of bits per second in the raw data


number of bits per second in the compressed data


=
352 800


5600
= 6.3.


Example 17.6 demonstrates that digital audio can be transmitted over a low-


capacity transmission channel in real time using three different approaches.


The first approach reduces the number of bits used to represent each sample.


This approach is not useful as it reduces the number of quantization levels


such that considerable distortion is introduced into the transmitted audio. The


second approach uses a low sampling rate, which is not practical as the sampling


rate is dependent on the maximum frequency present in the audio signal. The


maximum frequency of the audio signal can be reduced by lowpass filtering,


but this will again introduce distortion. The third approach compresses the raw


audio data. Compression of digital audio is achieved by eliminating redundancy
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present in a signal. There are primarily three types of redundancies present in


an audio signal that may be exploited.


Statistical redundancy In most audio signals, samples with lower magnitudes


have a higher probability of occurrence than samples with higher magnitude. In


such cases, an entropy coding scheme, such as the Huffman code, can be used


to allocate fewer bits to frequently occurring values and a higher number of


bits to the other values. This reduces the bit rate for representing audio signals


when compared with a coding scheme with an equal number of bits allocated


per sample.


Temporal redundancy Neighboring audio samples typically have a strong


correlation between themselves such that the value of a sample can be predicted


with fairly high accuracy from the last few sample values. Predictive coding


schemes exploit this temporal redundancy by subtracting the predicted value


from the actual sample value. The resulting difference signal is then compressed


using an entropy based coding scheme, such as the dictionary or Huffman codes.


Psychoacoustics redundancy There are many idiosyncrasies in the human


auditory system. For example, the sensitivity of the human auditory system is


maximum for frequencies within the 2000–4000 Hz band and the sensitivity


decreases above or below this band. In addition, a strong frequency component


masks the neighboring weaker frequency components. The unequal frequency


sensitivity and masking properties are exploited to compress the audio.


In the following section, we present a simplified audio compression technique,


known as the differential pulse-code modulation (DPCM) technique. To achieve


compression, the DPCM reduces the temporal redundancy present in an audio


signal.


17.4.1 Differential pulse-code modulation


Most audio signals encoded with pulse-code modulation (PCM) exhibit a strong


correlation between neighboring samples. This is especially true if the signal is


sampled above the Nyquist sampling rate. Figure 17.15 plots 30 samples of an


audio signal stored in the chord.wav file. We observe that the neighboring


samples are correlated such that their values are fairly close to each other. In


DPCM, an audio sample s[k] is predicted from the past samples. An M-order


predictor calculates the predicted value of an audio sample at time instant k


using the following equation:


ŝ[k] =
M


∑


m=1
αms[k − m], (17.15)


where s[k – m] is the value of the audio sample at time instant k − m and αm
are the predictor coefficients. The DPCM encoder quantizes the prediction
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Fig. 17.15. Selected samples


(sample 700 to 730) of the


audio signal stored in the


chord.wav file. The


neighboring samples exhibit a


strong correlation between


themselves.


error as follows:


e[k] = s[k] −
M


∑


m=1
αms[k − m], (17.16)


which is followed by a lossless entropy coding scheme. The DPCM decoder


takes the inverse of the above steps in the reverse order. Since the actual sample


values s[k − m] are not accessible at the decoder, the decoder uses the recon-
structed values. In order to use the same prediction model at the encoder and


decoder, Eq. (17.16) is modified as follows:


e[k] = s[k] −
M


∑


m=1
αms


′[k − m], (17.17)


where s ′[k − m] is the reconstructed value of the audio sample s[k − m]. The
values of the predictor coefficients αm are usually estimated based on a max-


imum likelihood (ML) estimator. Alternatively, a universal prediction model


may be used where the predictor coefficients are kept constant for different audio


signals. Examples of the universal prediction models include the following:


first-order prediction model ŝ[k] = 0.97s ′[k − 1]; (17.18)
second-order prediction model ŝ[k] = 1.8s ′[k − 1] − 0.84s ′[k − 2]; (17.19)
third-order prediction model ŝ[k] = 1.2s ′[k − 1] + 0.5s ′[k − 2]


− 0.78s ′[k − 3]. (17.20)
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Fig. 17.16. Schematic of


differential pulse-code


modulator used for lossy


compression. (a) DPCM encoder


used to compress a signal;


(b) DPCM decoder used to


reconstruct a signal. The


difference e[k ] between the


original input signal s [k ] and its


predicted value ŝ [k ]is quantized


and transmitted to the receiver.
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The block diagrams of DPCM encoding and decoding systems are shown in


Fig. 17.16. Example 17.7 illustrates various steps of the DPCM coding.


Example 17.7


Assume that the first four samples of a digital audio sequence are given by [70,


75, 80, 82]. The audio samples are encoded using DPCM with the first-order


predictor defined in Eq. (17.18). The error samples obtained by subtracting the


predicted sample values from the actual audio sample values are divided by a


quantization factor of 2 and then rounded to the nearest integer. Determine the


values of the reconstructed signal.


Solution


In DPCM, the first sample value is encoded independent of other samples in


the sequence. In this example, we assume that the first audio sample, at k = 0,
with a value of 70 is encoded without any quantization error. In other words,


e[0] = ê[0] = 0 and the reconstructed sample value s ′[0] = 70.
At k = 1, the predicted sample, the associated error, and the quantized error


are given by


predicted value ŝ[1] = 0.97 × 70 = 67.9;
error e[1] = 75 − 67.9 = 7.1;
quantized error ê[1] = round(7.1/2) = 4.


The reconstructed value of the sample at k = 1 is therefore given by


s ′[1] = 0.97 × 70 + 4 × 2 = 75.9.


At k = 2, the predicted sample, the associated error, and the quantized error
are given by


predicted value ŝ[2] = 0.97 × 75.9 = 73.623;
error e[2] = 80 − 73.623 = 6.377;
quantized error ê[2] = round(6.377/2) = 3.


The reconstructed value of the sample at k = 2 is therefore given by


s ′[2] = 0.97 × 75.9 + 3 × 2 = 79.623.


At k = 3, the predicted sample, the associated error, and the quantized error
are given by


predicted value ŝ[3] = 0.97 × 79.623 = 77.2343;
error e[3] = 82 − 77.2343 = 4.7657;
quantized error ê[3] = round(4.7657/2) = 2.
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Table 17.1. Various steps of DPCM coding for Example 17.7


Time index, k


0 1 2 3


Original signal, s[k] 70 75 80 82


Error signal, e[k] 0 75 − 67.9 = 7.1 80 − 3.6 = 6.4 82 − 7.2 = 4.8
Quantized error signal, ê[k] 0 7.1/2 = 4 6.4/2 = 3 4.8/2 = 2
Reconstructed error 0 4 ×2 = 8 3 ×2 = 6 2 ×2 = 4
Reconstructed signal, s ′[k] 70 67.9 + 8 = 75.9 73.6 + 6 = 79.6 77.2 + 4 = 81.2
Reconstruction error 0 −0.9 0.4 0.8
Predicted signal for next sample 70 × 0.97 = 67.9 75.9 × 0.97 = 73.6 79.6 × 0.97 = 77.2 81.2 × 0.97 = 78.8


The reconstructed value of the sample at k = 2 is therefore given by


s ′[3] = 77.2343 + 2 × 2 = 81.2343.


The values of the audio samples reconstructed from DPCM are given by


[70, 75.9, 79.623, 81.2343],


which implies that the following distortion is introduced by DPCM:


[0, −0.9, 0.377, 0.7657].


The above steps are summarized in Table 17.1. The third row contains the


quantized values of the error signal, which is compressed with a lossless scheme


and transmitted to the receiver.


17.4.2 Audio compression standards


The DPCM compression scheme, as described in Section 17.4.1, is a primitive


audio compression method that provides a low compression ratio. Several more


efficient compression techniques have been developed since the 1980s. In order


to achieve compatibility between the compressed bit streams, several audio


compression standards have been developed by the International Organiza-


tion for Standardization (ISO) and the International Telecommunication Union


(ITU). These audio compression standards can be broadly classified into two


categories: the low-bit-rate audio coders for telephony, such as G.711, G.722,


and G.729 developed by the ITU, and the general-purpose high-fidelity audio


coders, such as the moving pictures expert group (MPEG) audio standards,


developed by the ISO and included in MPEG-1, MPEG-2, and MPEG-4.


The ISO standards are generic audio compression standards designed for


general-purpose audio. These standards provide a trade-off between compres-


sion ratio and quality. For example, the MPEG-1 audio algorithm has three lay-


ers. Layer 1 is the simplest algorithm and provides moderate compression. Layer


2 has moderate complexity and provides a higher compression than Layer 1.
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Layer 3 has the highest complexity and provides the best performance. Note


that the MPEG-1 Layer 3 standard is also referred to as the MP3 standard.


In addition to the ITU G.7xx and ISO MPEG standards, a few other standards


have been developed. For example, Dolby Laboratories have developed multi-


channel high-fidelity audio coding standards such as AC-2 and AC-3 coders.


The AC-3 standard has been adopted in the standard and high-definition digital


television standard in North America. Readers are referred to more advanced


texts for details on audio compression standards.


17.5 Digital images


Digital images have become a part of our daily lives. In this section, we present


a brief overview of digital images and the techniques used to represent them.


17.5.1 Image fundamentals


A still monochrome image is defined in terms of its intensity or brightness i


as a function of the spatial coordinates (x , y). A still image is, therefore, a 2D


function i(x , y). For analog images, coordinates (x , y) have a continuous value.


A discrete image i[m, n] is obtained by sampling the intensity i(x , y) along a


rectangular grid M = [m�x, n�y] with resolutions of �x along the horizontal
axis and �y along the vertical axis. Each discrete point [m�x, n�y] along the


rectangular grid is referred to as a picture element, or pixel. A digital image


i[m, n] is an extension of the discrete image, where the intensity i is quantized


by a uniform quantizer. The number of quantization levels varies from one


application to another and depends upon the precision required. Most digital


images are quantized using an 8-bit quantizer, leading to 128 quantization levels.


Medical images require higher precision and are quantized using a 12- or 16-bit


quantizer. Color images are further extensions of discrete images, where the


intensities of the three primary colors are measured at each pixel. Color images


are therefore represented in terms of three components r [m, n], g[m, n], and


b[m, n], where intensities are denoted by r [m, n] for red, g[m, n] for green,


and b[m, n] for blue.


As an example of still images, the back cover of this book illustrates a 450 ×
366 pixel test image, referred to as “train,” using three different quantization


levels. The first figure shows the train image in the black and white (BW) format,


where a single bit is used to represent each pixel. Bit 0 represents the lowest


intensity (black), while bit 1 represents the highest intensity (white). The total


number of bits used to represent the BW image is given by 1 bit/pixel × (450 ×
366) pixels = 164 700 bits. To provide more details, the second figure uses 8-bit
quantization for each pixel, leading to a total number of 8 bit/pixel × (450 ×
366) pixels = 1 317 600 bits. The third figure shows the train image in the color
format, where each pixel is represented in terms of the intensities of the three
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primary colors. The color representation of the train image requires 8 bit/color ×
3 color/pixel × (450 × 366) pixels = 3 952 800 bits.


A final extension of discrete images is obtained by measuring the color


intensities r [m, n], g[m, n], and b[m, n] at discrete time k. Exploiting the


persistence of vision and showing continuously recorded images at a uniform


rate provides the impression of a video. A digital video is therefore defined


in terms of the three color components r [m, n, k], g[m, n, k], and b[m, n, k].


In this section, we limit ourselves to 8-bit, monochrome, still images i[m, n].


However, the techniques are generalizable to color images and videos.


17.5.2 Sampling of coordinates


Chapter 9 defined the Nyquist rate as the minimum sampling rate that can be


used to sample a time-varying CT signal without introducing any distortion


during reconstruction. For a baseband signal, the Nyquist rate is twice the


maximum frequency present in the signal. For analog images, the principle


can be extended to the spatial coordinates (x , y) in two dimensions to obtain


a discrete image. The minimum sampling rates are given by the Nyquist rates


and are computed from the maximum frequencies in the two directions.


17.5.3 Image formats


Like digital audio, images are available in a wide variety of formats, including


pgm, ppm, gif, jpg, and tiff. In each format, a digital image is stored as a 1D


stream of numbers. The difference in the format lies in the manner in which the


image data is compressed before storage. The portable graymap (PGM) format


is used for storage of gray-level images, where raw data is stored without


compression in the ASCII or binary representations. A few bytes of header


information included before the image data describe the format of the file, the


representation (ASCII or binary) used and the number of rows and columns


in the image. The portable pixmap (PPM) format is an extension of the PGM


format for color images, where the intensities of the three primary colors are


stored for each pixel.


The graphical interface (GIF) format uses a compression algorithm to reduce


the size of the data file. It is limited to 8-bit (256) color images and hence is


suitable for images with a few distinctive colors. It supports interlacing and


simple animation, and it can also support grayscale images using a gray palette.


The joint photograph expert group (JPEG) format uses transform-based com-


pression and provides the user with the capability of setting the desired com-


pression ratio.


The tagged image file (TIFF) format supports different types of images,


including monochrome, grayscale, 8-bit and 24-bit RGB images that are tagged.


The images can be stored with or without compression.
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M A T L A B provides two library functions imread and imwrite, respec-


tively, to read and write images. These functions can read and write the image


files in several different formats. The following code shows the syntax for call-


ing these functions:


>> x = imread(’rini.jpg’); % x is a 2-D “uint” type array


>> size(x); % displays the size of the image


>> imshow(x); % displays the image


>> xd = double(x); % xd is the image array


% with double precision


>> xmax = max(max(xd))


>> x-bright=uint8(xd*2); % increases brightness of image


>> imwrite(x-bright,’rini-bright. jpg’,’jpg’,


’Quality’,80) ;


The above code loads the Rini test image from the rini.jpg file and displays


the image in Fig. 17.17(a) using the imshow function. The imread function


used in the code returns an array stored as unsigned integers with 8-bit precision.


To carry out any arithmetic operation on the image, we need to convert the data to


other data types. The instruction double changes the data type from unsigned


integer to double. The instruction max determines the maximum gray level


present in the image, and for the Rini image the value of xmax is given by 124.


As xmax has a low value, the image has low brightness, as observed in Fig.


17.17(a). A possible way to improve the brightness of the image is to increase


the intensity level of the whole image linearly. In an 8-bit image, the maximum


gray level is 255. Therefore, we scale up the gray values by a factor of 2, which


is achieved by multiplying the intensity by a factor of 2. This is followed by


the conversion of the gray values to the uint8 type. The brightened image


represented by the matrix x-bright is shown in Fig. 17.17(b). The last line


of the M A T L A B code stores the brightened image in the JPEG format with


filename rini-bright.jpg using the imwrite function. Note that the


JPEG format compresses the gray image based on the specified quality factor,


which is a number between 0 and 100. A high value for the quality factor implies


higher quality with low compression, while a low value of the quality factor


implies lower quality with high compression. Using a quality factor of 80, the


processed rini image is compressed to a file size of 27 kbytes. Compared with


the original rini.jpg file, which has a size of 180 kbytes, this implies a


compression ratio of 6.66.


17.5.4 Spectral analysis of images


Like real audio signals, natural images are non-stationary signals. The fre-


quency content of the images is estimated by extending the 1D spectral analysis


techniques, presented in Section 17.1, to two dimensions. Here, we discuss the


average periodogram approach to calculate the power spectrum of a 2D image.
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(a) (b)


Fig. 17.17. Rini test image loaded


from the rini.jpg file.


(a) Original and (b) brightened


versions.


Step 1 Parse the input image into smaller 2D segments by applying a 2D


window g[m, n]. Depending upon the application, the parsed segments may or


may not have overlapping pixels.


Step 2 Compute the 2D DFT I (Ωm ,Ωn) of each image segment i(m, n), which


is used to estimate the power spectrum based on the following expression:


P̂I (Ω) =
1


µ2
|I (Ωm,Ωn)|2 , (17.21)


where µ is the norm of the 2D window function defined as follows:


µ =
√


∑


m


∑


n


g2[m, n]. (17.22)


Step 3 The average power spectrum is obtained by averaging the waveforms


obtained in step 2.


We illustrate the steps involved in computing the power spectrum with the


following example.


Example 17.8


Consider the synthetic image, referred to as the sinusoidal grating, defined by


the following equation:


i(x, y) = 127 cos[2π (4x + 2y)]. (17.23)
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Discretizing the analog image with a sampling rate of 20 samples/spatial unit


in each direction, the DT image is given by


i[m, n] = 127 cos[2π (4m + 2n)/20] (17.24)


for 0 ≤ m, n ≤ 255. Compute the power spectrum of the DT image using the


average periodogram approach.


Solution


We plot the DT image modeled in Eq. (17.24) using the following M A T L A B


code:


>> m = [0:1:255]; % x-coordinates


>> n = [0:1:255]; % y-coordinates


>> [mgrid, ngrid] =


meshgrid(m,n); % determine the 2D meshgrid


>> I = 127*cos(2*pi*(4*mgrid + 2*ngrid)/20);


% pixel intensities


>> imagesc(I); % sketch image


>> axis image;


>> colormap (gray);


The resulting image is shown in Fig. 17.18(a). The power spectrum is calculated


using the 2D Bartlett window of size (64 × 64) pixels, an overlap of (48 × 48)


pixels between adjacent windows, and a (256 × 256)-point DFT for each parsed


subimage. The M A T L A B code used to compute the power spectrum is given


by


>> m = [0:1:255]; % x-coordinates


>> n = [0:1:255]; % y-coordinates


>> [mgrid, ngrid] % determine the


= meshgrid(m,n); % 2D meshgrid


>> I = 127*cos(2*pi*(4*mgrid + 2*ngrid)/20);


% pixel intensities


% 2D Bartlett window


>> x = bartlett(64);


>> for i = 1:64


zx(i,:) = x’ ;


zy(:,i) = x ;


>> end


>> bartlett2D = zx .* zy;


>> mesh(bartlett2D) % displaying 2D


% Bartlett window
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(a) (b)


Fig. 17.18. (a) Synthetic


sinusoidal grating. (b) Power


spectrum of the synthetic


sinusoidal grating.


% calculate power spectrum


>> P = zeros(256,256);


>> for (i = 1:64:255)


for (j = 1:64:255)


Isub = I(i:i+63,j:j+63). *bartlett2D;


P = P + fft2(Isub,256,256);


end


end


% mesh plot with x and y-axis scaled by pi


>> mesh([1:128]*2/256,[1:128]*2/256,


abs(P(1:128,1:128)/max(max(P))). ˆ2);


Figure 17.18(b) illustrates a sharp peak at the horizontal frequencyΩx = 0.4π
and at the vertical frequency Ωy = 0.2π . This observation is consistent with
the mathematical model, Eq. (17.23), used to construct the synthetic image.


Unlike the earlier power spectrum plots, we use a linear scale along the z-axis


in Fig. 17.18(b).


The above M A T L A B code is modified to construct the power spectrum of a


real test image, referred to as the Lena image. The test image has dimensions


of 512 × 512 pixels and is illustrated in Fig. 17.19(a) along with its power
spectrum in Fig. 17.19(b). In computing the power spectrum, a 2D Bartlett


window of dimension 128 × 128 with an overlap of 96 × 96 pixels, and a (256 ×
256)-point DFT is used. The dB scale is used along the z-axis to plot the


power spectrum. Real images typically include most frequencies and hence the


power spectrum in Fig. 17.19(b) exhibits an almost uniform distribution over


all frequencies in the horizontal and vertical directions.
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(a) (b)


Fig. 17.19. (a) Original


(512 × 512) pixel Lena image.
(b) Power spectrum of the Lena


image.


17.6 Image filtering


Real images consist of a combination of smooth regions and active regions


with edges. In smooth regions, the intensity values of the pixels do not change


significantly. Therefore, the smooth regions represent lower-frequency com-


ponents in the 2D frequency space. On the other hand, the intensity values in


the active regions change significantly over edges. The active regions represent


higher-frequency components. Extracting the low- and high-frequency compo-


nents from a real image has important applications in image processing. In this


section, we introduce frequency-selective filtering in two dimensions.


The mathematical model for filtering a 2D image g[m, n] by a filter with an


impulse response h[m, n] is given by


y[m, n] = g[m, n] ∗ h[m, n] =
∞


∑


q=−∞


∞
∑


r=−∞


g[m − q, n − r ]h[q, r ], (17.25)


where y[m, n] is the output response of the filter and ∗ denotes the convolution


operation. Alternatively, the filtering can be performed in the frequency domain


using the following equation:


Y (Ωx ,Ωy) = G(Ωx ,Ωy)H (Ωx ,Ωy), (17.26)


where G(Ωx ,Ωy) is the Fourier transform of the input image, H (Ωx ,Ωy) is the


2D transfer function of the filter, and Y (Ωx ,Ωy) is the Fourier transform of the


resulting output. Like 1D filters, 2D filters can be broadly classified into four


categories: lowpass, bandpass, highpass, and bandstop filters. Some examples


of these filters are given in the following.
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(a) (b)


Fig. 17.20. (a) Ayantika image


corrupted with high-frequency


noise. The noise appears as


vertical and horizontal lines in


the image. (b) Power spectrum


of the Ayantika image.


17.6.1 Lowpass filtering


Lowpass filtering is widely used in many image processing applications. Some


applications include reducing high-frequency noise that is corrupting an image,


band-limiting the frequency component of an image prior to decimation, and


smoothing the rough edges of an image. In Example 17.9 we provide an example


of lowpass filtering in the spatial domain.


Example 17.9


Figure 17.20(a) shows a noise-corrupted image, referred to as Ayantika. Show


that:


(a) the image has high-frequency noise by plotting the power spectrum;


(b) the lowpass filter with the following impulse response:


h[m, n] =
1


64























1 2 3 2 1


2 3 4 3 2


3 4 5 4 3


2 3 4 3 2


1 2 3 2 1























(17.27)


eliminates the high-frequency noise from the image.


Solution


The M A T L A B code used to plot the power spectrum is given by


>> I = imread(’ayantika.tif’);


>> I = double(I);


>> I = I - mean(mean(I));
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% 2D Bartlett window


>> x = bartlett(32);


>> for i = 1:32


zx(i,:) = x’;


zy(:,i) = x;


>> end


>> bartlett2D = zx .* zy;


>> n = 0;


% calculate power spectrum


>> P = zeros(256,256);


>> for (i = 1:16:320)


for (j = 1:16:288)


Isub = I(i:i+31,j:j+31).*bartlett2D;


P = P + fftshift(fft2(Isub,256,256));


n = n + 1;


end


>> end


>> Pabs = (abs(P)/n).ˆ2;


>> mesh([-128:127]*2/256,[-128:127]*2/256,Pabs/


max(max(Pabs)));


The resulting power spectrum is shown in Fig. 17.20(b), where we see peaks at


frequencies [Ωx , Ωy] given by [0, 0], [0, ±0.5π ], and [±0.5π , 0]. The peak at
[0, 0] corresponds to the dc gain, whereas the remaining peaks are because of


the additive noise that has corrupted the image. We now attempt to eliminate


the noise with a lowpass filter.


Figure 17.21(a) shows the magnitude spectrum of the filter with the impulse


response specified in Eq. (17.27). We use the following M A T L A B code to plot


the magnitude spectrum:


>> h = 1/64*[1 2 3 2 1; 2 3 4 3 2; 3 4 5 4 3; 2 3 4 3 2; 1


2 3 2 1];


>> H = fftshift(fft2(h,256,256));


% magnitude spectrum with 256-pt fft


% 2D mesh plot with frequency axis normalized to pi


>> mesh([-128: 127]*2*1/256, [-128:127]*2*1/256, abs(H));


Since the filter provides a higher gain at the lower frequencies and lower gain


at higher frequencies, it is clear that Fig. 17.21(a) corresponds to a lowpass


filter. Note that the gain at frequencies [0, ±0.5π ] and [±0.5π , 0] is zero,
therefore the lowpass filter would eliminate the additive noise. The filter2
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(a) (b)


Fig. 17.21. (a) Magnitude


spectrum of lowpass filter used


in Example 17.9. (b) Output of


the lowpass filter.


function is used to compute the output of the lowpass filter using the following


code:


>> Y = filter2(h,I);


>> imagesc(Y);


>> axis image; colormap (gray);


The resulting output is plotted in Fig. 17.21(b). It is observed that the horizontal


and vertical strips have been suppressed by the lowpass filter. However, the low-


pass filter also suppresses some high-frequency components other than noise.


Therefore, the quality of the filtered image degrades marginally, as observed


at the edges. The image in Fig. 17.20(a) has crisp edges, whereas the edges in


Fig. 17.21(b) are somewhat blurred.


17.6.2 Highpass filtering


Highpass filtering is used to detect the edges or suppress the low-frequency


noise in an image. At times, highpass filters are also used to sharpen the edges


of an image. Example 17.10 illustrates one application of highpass filtering.


Example 17.10


Consider the pepper image shown in Fig. 17.22(a). Show that the filter with the


impulse response


h[m, n] =
1


9








−1 −1 −1
−1 8 −1
−1 −1 −1





 (17.28)


extracts the edges of the image.
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(a)


(c)


(b)
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Fig. 17.22. (a) Original 512 ×
512 pixels peppers image.


(b) Magnitude response of the


highpass filter with impulse


response shown in Eq. (17.28).


(c) Output of the highpass filter.


Solution


The following M A T L A B code is used to plot the magnitude spectrum:


>> h = 1/9*[-1 -1 -1; -1 8 -1; -1 -1 -1];


% magnitude spectrum with 256-point fft


>> H = fftshift(fft2(h,256,256));


% 2D mesh plot with frequency axis normalized to pi


>> mesh([-128:127]*2*1/256, [-128:127]*2*1/256, abs(H));


The magnitude frequency response of the filter is shown in Fig. 17.22(b). Since


the gain of the filter is almost zero at low frequencies and unity at higher


frequencies, Eq. (17.28) models a highpass filter. The output of the highpass


filter is obtained using the following code:


>> I = imread(’peppers.tif’);


>> Y = filter2(h,I);


>> imagesc(Y);


>> axis image


Figure 17.22(c) shows the output of the highpass filter. From the image plot, it is


clear that the highpass filter extracts the edges, eliminating the smooth regions


(low-frequency components) of the image.
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17.7 Image compression


Raw data from digital images requires large disk space for storage. Image


compression reduces the amount of data needed to represent an image. As in


audio compression, image compression techniques are grouped into lossless and


lossy categories. With lossless compression, exact reconstruction of the original


image is possible. However, the amount of compression that can be achieved


with lossless compression is limited. Lossy compression introduces controlled


distortion to increase the compression ratio. The redundancies exploited during


image compression are classified into the following categories.


Statistical redundancy The values of pixels in natural images have a non-


uniform probability distribution of occurrences such that some values occur


more frequently than others. Some compression can be achieved by allocat-


ing fewer bits to represent pixels that occur more frequently and more bits to


represent pixels that occur less frequently.


Spatial redundancy In real images, the value of a pixel is highly correlated to


its neighboring pixels. Image compression exploits such spatial redundancy to


compress the image.


Psychovisual redundancy The human visual system (HVS) is less sensitive


to certain features within an image. For example, slight variations in the pixel


intensities within a uniform region cannot be perceived by the HVS. Image


compression exploits such psychovisual redundancy to remove features from


the image whose presence or absence is inconceivable to the HVS.


17.7.1 Predictive coding


Predictive coding exploits spatial redundancy to compress an image. Instead of


encoding the original pixels, predictive-coding schemes calculate the difference


between the actual pixel values and the estimated pixel values predicted from the


neighboring pixels. The resulting difference or error image is instead encoded.


Since the difference image has lower correlation than the original image, more


compression is achieved by encoding the difference image. Predictive coding


may use a universal model or a localized model derived from the reference


image. Examples of universal predictive models are listed below:


first-order prediction î[m, n] = i[m, n − 1]; (17.29)
î[m, n] = i[m − 1, n]; (17.30)


second-order prediction î[m, n] = 0.48i[m, n − 1] + 0.48i[m − 1, n]
(17.31)


third-order prediction î[m, n] = 0.33i[m, n − 1] + 0.33i[m − 1, n]
+ 0.33i[m − 1, n − 1]. (17.32)
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Predictive compression techniques can be considered as an extension of DPCM


in two dimensions. Example 17.11 illustrates the use of the third-order predictive


model in compressing still images.


Example 17.11


Consider the Sanjukta image shown in Fig. 17.23(a). The first 4 × 4 pixels of
the image are given by


i[m, n] =














156 157 154 149


156 159 159 155


153 158 160 159


149 154 157 156














. (17.33)


Using the predictors in Eqs. (17.30) and (17.31) for the first row and column,


respectively, and the predictor in Eq. (17.32) to predict the remaining values,


calculate the error in the reconstructed image. In your calculations, assume that


the quantizer divides the difference image by a quantization factor Q = 3 and
rounds to the nearest integer before quantization.


Solution


Using zero boundary conditions, the predicted sample value, the prediction


error, the quantized error, and the reconstructed sample value at m = 0, n = 0
are given by


predicted value î[0, 0] = 0;
error e[0, 0] = i[0, 0] − ŝ[0, 0] = 156;
quantized error ê[0, 0] = round(156/3) = 52.
reconstructed value i ′[0, 0] = î[0, 0] + 3 × ê[0, 0] = 0 + 3 × 52 = 156.


For spatial location m = 0, n = 1, the predicted sample value, the prediction
error, the quantized error, and the reconstructed sample value are given by


predicted value î[0, 1] = i ′[0, 0] = 156;
error e[0, 1] = i[0, 1] − î[0, 1] = 157 − 156 = 1;
quantized error ê[0, 1] = round(1/3) = 0;
reconstructed value i ′[0, 1] = î[0, 1] + 3 × ê[0, 1] = 156.


For spatial location m = 0, n = 2, the predicted sample, the prediction error,
the quantized error, and the reconstructed sample value are given by


predicted value î[0, 2] = i ′[0, 1] = 156;
error e[0, 2] = i[0, 2] − î[0, 2] = 154 − 156 = −2;
quantized error ê[0, 2] = round(−2/3) = −1;
reconstructed value i ′[0, 2] = î[0, 2] + 3 × ê[0, 2] = 156 − 3 = 153.
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For spatial location m = 0, n = 3, the predicted sample value, the prediction
error, the quantized error, and the reconstructed sample value are given by


predicted value î[0, 3] = i ′[0, 2] = 153;
error e[0, 3] = i[0, 3] − î[0, 3] = 149 − 153 = −4;
quantized error ê[0, 3] = round(−4/3) = −1;
reconstructed value i ′[0, 3] = î[0, 3] + 3 × ê[0, 3] = 153 − 3 = 150.


For spatial location m = 1, n = 0, the predicted sample value, the prediction
error, the quantized error, and the reconstructed sample value are given by


predicted value î[1, 0] = i ′[0, 0] = 156;
error e[1, 0] = i[1, 0] − î[1, 0] = 156 − 156 = 0;
quantized error ê[1, 0] = round(0/3) = 0;
reconstructed value i ′[1, 0] = î[1, 0] + 3 × ê[1, 0] = 156 + 0 = 156.


For spatial location m = 1, n = 1, the predicted sample value, the prediction
error, the quantized error, and the reconstructed sample value are given by


predicted value î[1, 1] = 0.33(i ′[1, 0] + i ′[0, 1] + i ′[0, 0])
= 0.33 × 468 = 154.44;


error e[1, 1] = i[1, 1] − î[1, 1] = 159 − 154.44 = 4.56;
quantized error ê[1, 1] = round(4.56/3) = 2;
reconstructed value i ′[1, 1] = î[1, 1] + 3 × ê[1, 1] = 154.44 + 6 = 160.44.


For spatial location m = 1, n = 2, the predicted sample value, the prediction
error, the quantized error, and the reconstructed sample value are given by


predicted value î[1, 2] = 0.33(i ′[1, 1] + i ′[0, 2] + i ′[0, 1])
= 0.33 × 469.44 = 154.92;


error e[1, 2] = i[1, 2] − î[1, 2] = 159 − 154.92 = 4.08;
quantized error ê[1, 2] = round(4.08/3) = 1;
reconstructed value i ′[1, 2] = î[1, 2] + 3 × ê[1, 2] = 154.92 + 3 = 157.92.


For spatial location m = 1, n = 3, the predicted sample value, the prediction
error, the quantized error, and the reconstructed sample value are given by


predicted value î[1, 3] = 0.33(i ′[1, 2] + i ′[0, 3] + i ′[0, 2])
= 0.33 × 460.92 = 152.10;


error e[1, 3] = i[1, 3] − î[1, 3] = 155 − 152.10 = 2.90;
quantized error ê[1, 3] = round(2.90/3) = 1;
reconstructed value i ′[1, 3] = î[1, 3] + 3 × ê[1, 3] = 152.10 + 3 = 155.10.








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 28, 2007 14:13


785 17 Applications of digital signal processing


Similarly, the pixel values at other locations can be calculated using the above


procedure. The computed values are as follows:


i ′[m, n] =














156 156 153 150


156 160.4 157.9 155.1


153 157.9 160.2 159.2


150 155.1 156.2 156.9














.


Subtracting the aforementioned values from the original values given in Eq.


(17.33) gives the following values for the error image:


ê[m, n] =














0 1 1 −1
0 −1.4 1.1 −0.1
0 0.1 −0.2 −0.2


−1 −1.1 0.8 −0.9














.


In image compression, the mean square error (MSE) is typically used to measure


the quantitative quality of a compressed image i ′[m, n]. The MSE is defined as


follows


MSE =
1


M N


M−1
∑


m=0


N−1
∑


m=0
[i[m, n] − i ′[m, n]],


where i[m, n] is the pixel intensity of the original image having (M × N )
dimensions. For Example 17.11, the MSE is given by 0.6206.


In DPCM, the first pixel is referred to as the reference pixel and is typically


encoded directly with e[0, 0] = 0. The remaining pixels are encoded using
the error image, which is typically divided by a quantization factor Q before


encoding. To achieve quantization, the entire dynamic range of the error image


is divided into 2B intervals and each interval is represented by B bits. Typi-


cally, B is kept small to achieve a large compression ratio. Figure 17.23 shows


two reconstructed Sanjukta test images processed at two different compres-


sion ratios. Figure 17.23(b) is compressed with a quantization factor Q = 5
and B = 4. Similarly, Fig. 17.23(c) is compressed with a quantization factor
Q = 16 and B = 2. Higher compression introduces more distortion in Fig.
17.23(c), which is illustrated by the lower subjective quality of Fig. 17.23(c)


when compared with that of Fig. 17.23(b). The superior quality of Fig. 17.23(b)


can also be quantified by computing the MSE. Figure 17.23(b) has a reconstruc-


tion MSE of 6, while Fig. 17.23(c) has a MSE of 44. If required, the quantized


error values can be further encoded using a variable-length code or an entropy


code to achieve more compression.


17.7.2 Image compression standards


DPCM provides moderate compression. Several techniques, such as transform


coding, arithmetic coding, and object-based techniques, have been developed


to achieve performances superior to DPCM. In addition, several image com-


pression standards have been developed by the International Organization for
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(a) (b)


(c)


(e)


(d)


Fig. 17.23. Subjective quality of two DPCM encoded images. (a) Sanjukta image. (b) Reconstructed image


after DPCM compression with a quantization factor Q of 5 and a 4-bit quantizer. (c) Same as (b) except the


quality factor Q is set to 16 and a 2-bit quantizer is used. (d) Difference between the original image and


reconstructed image shown in (b). (e) Difference between the original image and the reconstructed image


shown in (c). The MSE associated with image (b) is 6, while the MSE associated with image (c) is 44.
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Standardization (ISO) and the International Telecommunication Union (ITU)


to ensure compatibility between different compressed bit streams. A popular


ISO image compression standard is referred to as the JPEG standard, selected


as an acronym for the Joint Photographic Experts Group, the ISO subcommittee


responsible for developing the standard.


The JPEG standard algorithm encodes both gray level and color images.


In this standard, an image is decorrelated using the discrete cosine transform


(DCT). The DCT coefficients are quantized and the quantized coefficients are


encoded using a combination of run length and Huffman coding. The size of


the compressed bit stream is varied by changing the quality factor Q, which


has a value between 1 and 100. The highest quality representation is obtained


using a quality factor of 100, and the lowest quality representation is obtained


using quality factor of 1. A high quality factor ensures superior perceived qual-


ity, but the compression is limited. Conversely, a low quality factor increases


compression, but at the expense of quality.


The image processing toolbox in M A T L A B includes a simplified version of


the JPEG encoder and decoder, which allows images to be encoded at different


quality factors Q. If x is a 2D array containing the gray values of a test image,


the following command:


>> imwrite(x,’test-70.jpg’,’jpg’,’Quality’, 70);


creates the JPEG compressed image “test-70.jpg” with a quality factor of 70.


The following example illustrates the compression performance of the JPEG


encoder and decoder.


Example 17.12


Consider the 8-bit Sanjukta image shown in Fig. 17.23(a). Using the imwrite


command, generate different compressed JPEG images with quality factors


100, 50, 25, 10, and 5. Determine the compression ratio in each case and plot


the reconstructed images.


Solution


The following M A T L A B code creates compressed images with different quality


factors:


>> x = imread(’sanjukta-gray.tif’);


>> imwrite(x,’sanjukta-100.jpg’,’jpg’,’Quality’, 100) ;


>> imwrite(x,’sanjukta-50.jpg’,’jpg’,’Quality’, 50) ;


>> imwrite(x,’sanjukta-25.jpg’,’jpg’,’Quality’, 25) ;


>> imwrite(x,’sanjukta-10.jpg’,’jpg’,’Quality’, 10) ;


>> imwrite(x,’sanjukta-5.jpg’,’jpg’,’Quality’, 5) ;


The raw image has 126 672 pixels, with each pixel represented using 8 bits.


Therefore, the uncompressed image size is 126 672 bytes or 126.7 kbytes. The


sizes of the compressed files determined from the compressed files and their


respective compression ratio are provided in Table 17.2. Table 17.2 illustrates
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(a) (b)


(c) (d)


(e) (f)


Fig. 17.24. Subjective quality of JPEG compressed images using different quality factors. (a) Original


image; (b) quality factor 100; (c) quality factor 50; (d) quality factor 25; (e) quality factor 10; (f) quality


factor 5.


788
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Table 17.2. Comparison of JPEG compression performance for sanjukta gray image


Quality factor, Q Name of the compressed file Size of the file (kbytes) Compression ratio MSE


100 sanjukta-100 41.7 3 0.05


50 sanjukta-50 11.1 11 12.34


25 sanjukta-25 4.8 26 18.98


10 sanjukta-10 2.9 43 36.69


5 sanjukta-5 2.3 54 76.05


that decreasing the quality factor increases the compression ratio at the cost of


the reconstruction quality, apparent from the increase in MSE.


To provide a subjective comparison, the reconstructed images are shown in


Fig. 17.24. We observe that the perceived quality of the reconstructed images


degrades with the decrease in the quality factor. In other words, there is a


trade-off between quality and size of the compressed file.


17.8 Summary


This chapter presented applications of digital signal processing in audio and


image processing. Digital signals, including audio, images, and video, are ran-


dom in nature. Section 17.2 presented an overview of spectral analysis methods


for random signals based on the short-time Fourier transform, spectrogram, and


periodogram. Section 17.3 covered fundamentals of audio signals, their storage


format, and spectral analysis of audio signals. Filtering of audio signals was


covered in Section 17.3, and principles of audio compression were presented


in Section 17.4.


Section 17.5 extended digital signal processing to 2D signals. In particular,


we introduced digital images, their storage format, and the spectral analysis


of image signals. Section 17.6 covers 2D filtering, including the application


of lowpass filters to eliminate high-frequency noise and highpass filters for


edge detection. In each case, we presented examples of image filtering through


M A T L A B . Section 17.7 introduced principles of image compression including


the 2D differential pulse-code modulation (DPCM) and the Joint Photographic


Expert Group (JPEG) standard. Using M A T L A B , we compared the perfor-


mance of JPEG at different compression ratios.


Problems


17.1 Consider the following deterministic signal:


x1[k] = 2 sin(0.2πk) + 3 cos(0.5πk).


Using a DFT magnitude spectrum, estimate the spectral content of


x[k] for the following cases: (a) a 20-point DFT and a sample size
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of 0 ≤ k ≤ 19; (b) a 32-point DFT and a sample size of 0 ≤ k ≤ 31; (c)


a 64-point DFT and a sample size of 0 ≤ k ≤ 31; (d) a 128-point DFT


and a sample size of 0 ≤ k ≤ 31; and (e) a 128-point DFT and a sample


size of 0 ≤ k ≤ 63. Comment on the leakage effect in each case.


17.2 Calculate and plot the amplitude spectra of the following DT signals:


(i) x1[k] = cos(0.25πk), 0 ≤ k ≤ 2000;


(ii) x2[k] = cos(2.5 × 10
−4πk2, 0 ≤ k ≤ 2000;


(iii) x3[k] = cos(2.5 × 10
−7πk3), 0 ≤ k ≤ 11000.


Comment on the spectral content of the signals.


17.3 Calculate and plot the spectrograms of the three signals considered in


Problem 17.2. Compare the results with those obtained in Problem 17.2.


17.4 Using M A T L A B , estimate the power spectral density of the following


signal:


x[k] = 2 cos(0.4πk + θ1) + 4 cos(0.8πk + θ2),


where θ1 and θ2 are independent random variables with uniform distri-


bution between [0, π ]. Use a sample realization of x[k] with 10 000


samples, the Bartlett window with length 1024, an overlap of 600 sam-


ples, and the average Welch approach.


17.5 Determine the frequency content of the audio signal “chord.wav”,


provided in the accompanying CD using (i) a spectrogram and (ii) an


average periodogram.


17.6 Consider the “testaudio4.wav” file provided in the accompanying


CD. Load the audio signal using the wavread function available in


M A T L A B .


(a) What is the sampling rate used to discretize the signal? What is the


total number of samples stored in the file?


(b) How many bits are used to represent each sample?


(c) Is the audio signal stored in the mono or stereo format?


(d) Estimate the power spectrum of the signal


17.7 Repeat Problem 17.6 for “testaudio3.wav” provided in the accom-


panying CD.


17.8 Repeat Problem 17.6 for “bell.wav” provided in the accompanying


CD.


17.9 Repeat Problem 17.6 for “test44k.wav” provided in the accompa-


nying CD.


17.10 Repeat Example 17.7 for the following audio samples:


x1[k] = [66, 67, 68, 69] and x2[k] = [66, 72, 61, 56].
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Show that the reconstruction error is greater for the second case, where


the neighboring audio samples are less correlated.


17.11 Consider the “girl.jpg” file provided in the accompanying CD. Read


the image using the imread function available in M A T L A B .


(a) What are the dimensions of the image stored in the “girl.jpg”


file?


(b) What are the maximum and minimum values of the intensity of the


pixels stored in the file?


(c) Sketch the image using the imagesc function available in


M A T L A B .


(d) Calculate and plot the 2D power spectrum of the image to illustrate


the dominant spatial frequency components of the image.


17.12 Consider the 2D filter defined by the following impulse response:


h[m, n] =
1


16














1 1 1 1


1 1 1 1


1 1 1 1


1 1 1 1














.


(a) Show that h[m, n] is a lowpass filter by sketching its magnitude


spectrum using the mesh plot.


(b) Assume that the image stored in “girl.jpg” is applied at the


input of the filter h[m, n]. Determine and sketch the output image.


(c) Calculate the 2D power spectrum of the filtered image. Comparing


this with the result of Problem 17.11 (d), highlight how the high-


frequency components have been attenuated in the filtered image.


17.13 Repeat Problem 17.12 for the 2D filter with the following impulse


response:


h[m, n] =
1


3.2764























0 0 0.0221 0 0


0 0.1563 0.3907 0.1563 0


0.0221 0.3907 1 0.3907 0.0221


0 0.1563 0.3907 0.1563 0


0 0 0.0221 0 0























.


17.14 Consider the 2D filter defined by the following impulse response:


h[m, n] =
1


9








−1 −1 −1
−1 8 −1
−1 −1 −1





 .


(a) Show that h[m, n] is a highpass filter by sketching its magnitude


spectrum using the mesh plot.


(b) Assume that the image stored in “girl.jpg” is applied at the


input of the filter h[m, n]. Determine and sketch the output image.
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Show that the highpass filtering leads to the detection of edges in


the image.


(c) Calculate the 2D power spectrum of the filtered image. Comparing


this with the result of Problem 17.11 (d), highlight how the low-


frequency components have been attenuated in the filtered image.


17.15 Repeat Problem 17.14 for the 2D filter with the following impulse


response:


h[m, n] =
1


6.21























0 0 −0.0442 0 0
0 −0.3126 −0.7815 −0.3126 0


−0.0442 −0.7815 4.5532 −0.7815 −0.0442
0 −0.3126 −0.7815 −0.3126 0
0 0 −0.0442 0 0























.


17.16 Repeat Example 17.11 for the following selections of (4 × 4) pixels:


i1[m, n] =














156 157 158 159


150 151 151 150


153 155 154 156


155 154 157 156














and


i2[m, n] =














156 177 148 189


160 171 181 150


123 125 174 196


175 164 147 156














.


Show that the reconstruction error is greater for the second case, where


the neighboring pixels are less correlated.


17.17 Compress the image stored in the file “lena.tif” in the accompanying


CD using the JPEG standard with quality factors set to 80, 60, 40, 20,


and 10. Determine the compression ratio for different quality factors


and show that the subjective quality deteriorates as the quality factor is


decreased. Compute the mean square error for the compressed images.
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A.1 Trigonometric identities


e±jt = cos t ± j sin t


cos t =
1


2
[ejt + e−jt ]


sin t =
1


2j
[ejt − e−jt ]


cos
(


t ±
π


2


)


= ∓ sin t


sin
(


t ±
π


2


)


= ± cos t


sin 2t = 2 sin t cos t


cos2 t + sin2 t = 1


cos2 t − sin2 t = cos 2t


cos2 t =
1


2
(1 + cos 2t)


sin2 t =
1


2
(1 − cos 2t)


cos3 t =
1


4
(3 cos t + cos 3t)


sin3 t =
1


4
(3 sin t − sin 3t)


cos(t ± θ ) = cos t cos θ ∓ sin t sin θ


sin(t ± θ ) = sin t cos θ ± cos t sin θ


tan (t ± θ ) =
tan t ± tan θ


1 ∓ tan t tan θ


sin t sin θ =
1


2
[cos(t − θ ) − cos(t + θ )]


cos t cos θ =
1


2
[cos(t + θ ) + cos(t − θ )]


793








P1: RPU/XXX P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 28, 2007 13:22


794 Appendix A


sin t cos θ =
1


2
[sin(t + θ ) + sin(t − θ )]


a cos t + b sin t = C cos(t + θ ), C =
√


a2 + b2, θ = tan−1(−b/a)


a cos(mt) + b sin(mt) =
√


a2 + b2 cos(mt − θ ), θ = tan−1
b


a


a cos(mt) + b sin(mt) =
√


a2 + b2 sin(mt + φ), φ = tan−1
a


b


A.2 Power series


ln(1 + t) = t −
t2


2
+


t3


3
−


t4


4
+ · · ·


et = 1 + t +
t2


2 !
+


t3


3 !
+


t4


4 !
+ · · ·


sin t = t −
t3


3 !
+


t5


5 !
−


t7


7 !
+ · · ·


cos t = 1 −
t2


2 !
+


t4


4 !
−


t6


6 !
+ · · ·


tan t = t +
t3


3
+


2t5


15
+


17t7


315
+ · · ·


sin−1 t = t +
1


2


t3


3
+


1.3


2.4


t5


5
+ · · ·


A.3 Series summation


Arithmetic series
n


∑


n=1
[a + (n − 1)d] =


N


2
[2a + (N − 1)d]


n
∑


n=1
n = 1 + 2 + · · · + N =


N (N + 1)
2


Geometric series
N


∑


n=0
arn =


a(1 − r N+1)
1 − r


N−1
∑


n=0
exp


[


j
2πkn


N


]


=
{


0 1 ≤ k ≤ (N − 1)
N k = 0,


∞
∑


n=0


rn =
1


1 − r
, |r | < 1


∞
∑


n=0


nrn =
r


(1 − r )2
, |r | < 1
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The geometric progression (GP) series sum of the form


S =
N


∑


n=0
arn = a + ar + ar2 + · · · + ar N


is used frequently in this text while dealing with the discrete-time signals. Note


that the factor r can be real, imaginary, or complex.


A.4 Limits and differential calculus


lim
t→∞


t−α ln t = 0, Re(α) > 0


lim
t→0


tα ln t = 0, Re(α) > 0


L’Hôpital’s Rule:


If lim
t→a


x(t) = lim
t→a


y(t) = 0 or lim
t→a


x(t) = lim
t→a


y(t) = ∞, and lim
t→a


x ′(t)


y′(t)
has a


finite value, then lim
t→a


x(t)


y(t)
= lim


t→a


x ′(t)


y′(t)
d


dt


{


1


g(t)


}


= −
1


g2(t)


dg(t)


dt


d


dt


{


h(t)


g(t)


}


=
1


g2(t)


[


g(t)
dh(t)


dt
− h(t)


dg(t)


dt


]


A.5 Indefinite integrals


∫


u dv = uv −
∫


v du
∫


f (t)g(t) dt = f (t)
∫


g(t)dt −
∫ [


d f


dt


∫


g(t)dt


]


dt


∫


cos at dt =
1


a
sin at + C, a �= 0


∫


sin at dt = −
1


a
cos at + C, a �= 0


∫


cos2 at dt =
t


2
+


sin 2at


4a
+ C, a �= 0


∫


sin2 at dt =
t


2
−


sin 2at


4a
+ C, a �= 0


∫


t cos at dt =
1


a2
(cos at + at sin at) + C, a �= 0


∫


t sin at dt =
1


a2
(sin at − at cos at) + C, a �= 0
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∫


t2 cos at dt =
1


a3
(2at cos at − 2 sin at + a2t2 sin at) + C, a �= 0


∫


t2 sin at dt =
1


a3
(2at sin at − 2 cos at − a2t2 cos at) + C, a �= 0


∫


cos at cos bt dt =
sin(a − b)t


2(a − b)
+


sin(a + b)t


2(a + b)
+ C, a2 �= b2


∫


sin at sin bt dt =
sin(a − b)t


2(a − b)
−


sin(a + b)t


2(a + b)
+ C, a2 �= b2


∫


sin at cos bt dt = −


[


cos(a − b)t


2(a − b)
+


cos(a + b)t


2(a + b)


]


+ C, a2 �= b2


∫


sin−1 at dt = t sin−1 at +
1


a


√


1 − a2t2 + C, a �= 0


∫


cos−1 at dt = t cos−1 at −
1


a


√


1 − a2t2 + C, a �= 0


∫


eat dt =
1


a
eat + C, a �= 0


∫


bat dt =
bat


a ln b
+ C, a �= 0, b > 0, b �= 1


∫


teat dt =
eat


a2
(at − 1) + C, a �= 0


∫


t2eat dt =
eat


a3
(a2t2 − 2at + 2) + C, a �= 0


∫


tneat dt =
1


a
tneat −


n


a


∫


tn−1eat dt, a �= 0


∫


tnbat dt =
tnbat


a ln b
−


n


a ln b


∫


tn−1bat dt, a �= 0, b > 0, b �= 1


∫


eat sin bt dt =
eat


a2 + b2
(a sin bt − b cos bt) + C


∫


eat cos bt dt =
eat


a2 + b2
(a cos bt + b sin bt) + C


∫


tn ln at dt =
tn+1


n + 1
ln at −


tn+1


(n + 1)2
+ C, n �= −1


∫ 1


t2 + a2
dt =


1


a
tan−1


(


t


a


)


+ C, a �= 0


∫ t


t2 + a2
dt =


1


2
ln(t2 + a2) + C
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Appendix B Introduction to the
complex-number system


In this appendix, we introduce some elementary concepts that define complex


numbers. In presenting the material, it is anticipated that most readers have


some prior exposure to complex numbers, so the information presented here


serves primarily as a review. The appendix is organized as follows. In Section


B.1, we review the definition of real numbers and then survey their arithmetic


properties, including some basic operations like addition, subtraction, multipli-


cation, and division. Section B.2 extends the arithmetic operations to complex


numbers, and Section B.3 introduces its geometric structure using the 2D Carte-


sian representation. Section B.4 presents an alternative representation, referred


to as the polar representation for complex numbers. Section B.5 concludes the


appendix.


B.1 Real-number system


A real-number system ℜ is a set of all real numbers, which is defined in terms of


two basic operations: addition and multiplication. For two arbitrarily selected


real numbers a, b ∈ ℜ, these basic operations are given by


addition s1 = a + b; (B.1)


multiplication m1 = a × b, (B.2)


such that s1, m1 ∈ ℜ. The remaining arithmetic operations, for example, sub-
traction and division, are expressed in terms of Eqs (B.1) and (B.2) as follows:


subtraction s2 = a − b = a + (−b); (B.3)


division m2 = a/b = a × (1/b), (B.4)


such that s2, m2 ∈ ℜ. The real number −b is referred to as the additive inverse
of b since b + (−b) = 0. Likewise, the real number 1/b is referred to as the
multiplicative inverse of b since b × (1/b) = 1. For ℜ to represent a complete
set of real numbers, it must satisfy the following properties.


797
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� � � � �−� −� −� −�


−∞ ∞
Fig. B.1. Representation of a


real-number system using a 1D


straight line.


(i) The addition of two real numbers a, b ∈ ℜ produces a unique real number
s1 ∈ ℜ.


(ii) Subtracting a real number a ∈ ℜ from another real number b ∈ ℜ produces
a unique real number s2 ∈ ℜ.


(iii) Multiplication of two real numbers a, b ∈ ℜproduces a unique real number
m1 ∈ ℜ.


(iv) Dividing a real number a ∈ ℜ by another real number b ∈ ℜ, b �= 0, pro-
duces a unique real number m2 ∈ ℜ.


Frequently, a real-number system is modeled graphically using a 1D straight


line, as illustrated in Fig. B.1. Each point on the line represents a real number.


The 1D line is packed with real numbers such that an uncountable number of


real numbers exists between two arbitrarily selected points on the line.


B.2 Complex-number system


Let j be the root of the equation x2 + 1 = 0, such that j =
√


−1. In terms of j,
a complex number x is defined as


x = a + jb, such that x ∈ C, (B.5)


where a and b represent two real numbers, a, b ∈ ℜ, and C denote a set of
all possible complex numbers. Equation (B.5) is referred to as the rectangular


or Cartesian representation of the complex number x . From Eq. (B.5), it is
straightforward to deduce the following:


(i) The real component of the complex number x is a. This is denoted by
ℜ(x) = a.


(ii) The imaginary component of the complex number x is b. This is denoted
by ℑ(x) = b.


In the following, we define the basic arithmetic operations between two complex


numbers. In our definitions, we use the following two operands: x1 = a1 + jb1
and x2 = a2 + jb2, with x1, x2 ∈ C and a1, a2, b1, b2 ∈ ℜ.


B.2.1 Addition


Addition of two complex numbers is defined as follows:


x1 + x2 = (a1 + jb1) + (a2 + jb2)
= (a1 + a2) + j(b1 + b2). (B.6)
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In other words, when adding two complex numbers the real and imaginary


components are added separately.


B.2.2 Subtraction


The definition of subtraction follows the same lines as that for addition. Sub-


tracting a complex number x2 from x1 is defined as follows:


x1 − x2 = (a1 + jb1) − (a2 + jb2)
= (a1 − a2) + j(b1 − b2).


(B.7)


As for addition, the real and imaginary components are subtracted separately.


B.2.3 Multiplication


Multiplication of two complex numbers x1 and x2 is defined as follows:


x1x2 = (a1 + jb1)(a2 + jb2)
= a1a2 + jb1a2 + ja1b2 + j2b1b2
= (a1a2 − b1b2) + j(b1a2 + a1b2), (B.8)


where the final expression is obtained by noting that j2 = −1.


B.2.4 Complex conjugation


From Eq. (B.8), it is easy to deduce that


(a1 + jb1)(a1 − jb1) = (a1)2 + (b1)2. (B.9)


In other words, the imaginary component is eliminated. The complex number


x∗1 = a1 − jb1 is referred to as the complex conjugate of x1 = a1 + jb1, and
vice versa. Equation (B.9) leads to the definition of the modulus or magnitude


of a complex number, which is discussed next.


B.2.5 Modulus


The modulus (or magnitude) of a complex number x1 = a1 + jb1 is defined as
follows:


|x1| =
√


x1x∗1 =
√


(a1)2 + (b1)2. (B.10)


B.2.6 Division


Dividing two complex numbers is more complicated. To divide x1 by x2, we
multiply both the numerator and denominator by the complex conjugate of x2
and expand the numerator and denominator separately using the definition of
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multiplication from Section B.2.3; i.e.


x1
x2


=
a1 + jb1
a2 + jb2


=
(a1 + jb1)
(a2 + jb2)


·
(a2 − jb2)
(a2 − jb2)


=
a1a2 + b1b2


a22 + b22
+ j


a2b1 − a1b2
a22 + b22


, (B.11)


where the final expression is obtained by noting that j2 = −1. We illustrate
these concepts with an example.


Example B.1


Two complex numbers are given by x = 5 + j7 and y = 2 − j4. Calculate
(i) ℜ(x), ℑ(x), ℜ(y), ℑ(y); (ii) x + y; (iii) x − y; (iv) xy; (v) x∗, y∗; (vi) |x |,
|y|; and (vii) x/y.


Solution


(1) The real and imaginary components of the complex number x are ℜ(x) =
5 and ℑ(x) = 7. Likewise, the real and imaginary components of y are
ℜ(y) = 2 and ℑ(y) = −4.


(2) Adding x and y yields


x + y = (5 + j7) + (2 − j4) = (5 + 2) + j(7 − 4) = 7 + j3.


Since addition is commutative, the order of the operands does not matter,


i.e. x + y = y + x .
(3) Subtracting y from x yields


x − y = (5 + j7) − (2 − j4) = (5 − 2) + j(7 − (−4)) = 3 + j11.


Subtraction is not commutative. In fact, x − y = −(y − x).
(4) Multiplication of x and y is performed as follows:


xy = (5 + j7)(2 − j4) = 10 + j14 − j20 − j228
= (10 + 28) + j(14 − 20) = 38 − j6.


Multiplication is commutative, therefore xy = yx.
(5) The complex conjugate of the complex number x = 5 + j7 is x∗ = 5 − j7.


Likewise, the complex conjugate of y = 2 − j4 is y∗ = 2 + j4.
(6) The modulus of x = 5 + j7 is given by |x | =


√
52 + 72 =


√
74. Likewise,


the modulus of y = 2 − j4 is |y| =
√


22 + (−4)2 =
√


20.


(7) Dividing x by y yields


x


y
= 5 + j7


2 − j4 =
(5 + j7)
(2 − j4) ·


(2 + j4)
(2 + j4)


= (5)(2) − (7)(4)
22 + 42 + j


(7)(2) + (5)(4)
22 + 42 = −


18


20
+ j 34


20
.
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B.3 Graphical interpertation of complex numbers


Any complex number x = a + jb can be associated with an ordered pair of real
numbers (a, b), i.e.


x = (a + jb) ←→ (a, b). (B.12)


The ordered pair of numbers (a, b) is represented by a point in the Cartesian
coordinate system as shown in Fig. B.2(a), in which the horizontal axis rep-


resents the real component ℜ of the complex number and the vertical axis


represents the imaginary component ℑ of the complex number. Alternatively,
the complex number x can be associated with a vector 
r originating from the
coordinate (0, 0) and extending to the point (a, b). The rules for vector addi-
tion and subtraction can be used to add and subtract complex numbers, and


vice versa. Since the two representations are equivalent, it is common to map a


complex number to a vector.


a


b (a, b)
ℑ


ℜ


(a)


rx = a


ry = b
ℑ


ℜθ


r


(b)


Fig. B.2. Graphical


representations for a complex


number x = a + jb.
(a) Cartesian representation;


(b) polar representation.


Similar to the rectangular and polar representations of a vector, there are two


alternative and equivalent representations for complex numbers. The rectangu-


lar representation was introduced in Section B.2. The polar representation is


derived in Section B.4 by using Fig. B.2(b) and applying the geometric proper-


ties associated with vectors. Here, we define the notation used in the derivation


of the polar representation. The length or magnitude of the vector 
r , shown in
Fig. B.2(b), is denoted by |
r |, or simply r . The angle that the vector 
r makes
with the positive horizontal axis is denoted by θ . The projection of the vector



r onto the horizontal axis is denoted by rx , while the projection on the vertical
axis is denoted by ry . In terms of r and θ , the two projections are given by


rx = r cos θ and ry = r sin θ. (B.13)
Using Pythagoras’s theorem, it is straightforward to prove that the length or


magnitude r of vector 
r is given by
r =


√


r2x + r2y , (B.14)
and the angle θ that the vector makes with the horizontal axis is given by


θ = tan−1(ry/rx ). (B.15)


B.4 Polar representation of complex numbers


To derive the polar representation of a complex number, we base our discussion


on Euler’s formula:†


ejθ = cos θ + j sin θ. (B.16)
The polar representation of a complex number x = a + jb is then defined as


x = rejθ , (B.17)
† Euler’s formula is named after Leonhard Euler (1707–1783), a prolific eighteenth century Swiss


mathematician and physicist.
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where r represents the magnitude or length of the vector 
r obtained by mapping
the complex number x onto the Cartesian plane. The length r and angle θ
associated with vector 
r are obtained from Eqs (B.14) and (B.15) with rx = a
and ry = b. We demonstrate the conversion of a complex number from one
representation to another with a series of examples.


Example B.2


Converting rectangular format into polar format Consider a complex num-
ber x = 2 + j4. Clearly, x is represented in the rectangular format. To derive its
equivalent polar format, we map the complex number into the Cartesian plane


and calculate the parameters r and θ . Using Eqs (B.14) and (B.15), we obtain


r =
√


22 + 42 =
√


20


and


θ = tan−1(4/2) = 0.35π radians.
The polar representation of x = 2 + j4 is x =


√
20e j0.35π .


Example B.3


Converting polar format into rectangular format Consider a complex num-
ber in the polar format x = 4ejπ/3. The rectangular representation of x is derived
using Eq. (B.13) as


a = rx = 4 cos
(π


3


)


= 2


and


b = ry = 4 sin
(π


3


)


= 2
√


3.


The rectangular representation of x = 4ejπ/3 is x = 2 + j2
√


3.


In terms of polar representations, the basic arithmetic operations between two


complex numbers x1 = r1ejθ1 and x2 = r2ejθ2 are defined as follows.


B.4.1 Addition


Addition of two complex numbers in polar format:


x1 + x2 = r1ejθ1 + r2ejθ2 = (r1 cos θ1 + jr1 sin θ1) + (r2 cos θ2 + jr2 sin θ2)
= (r1 cos θ1 + r2 cos θ2) + j (r1 sin θ1 + r2 sin θ2)


=
√


(r1 cos θ1 + r2 cos θ2)2 + (r1 sin θ1 + r2 sin θ2)2


× exp
[


j tan−1
(


r1 sin θ1 + r2 sin θ2
r1 cos θ1 + r2 cos θ2


)]


=
√


r21 + r22 + 2r1r2 cos(θ1 − θ2)


× exp
[


j tan−1
(


r1 sin θ1 + r2 sin θ2
r1 cos θ1 + r2 cos θ2


)]


. (B.18)
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B.4.2 Subtraction


Subtraction of two complex numbers in polar format:


x1 − x2 = r1ejθ1 − r2ejθ2


= (r1 cos θ1 − r2 cos θ2) + j (r1 sin θ1 − r2 sin θ2)


=
√


(r1 cos θ1 − r2 cos θ2)2 + (r1 sin θ1 − r2 sin θ2)2


× exp
[


j tan−1
(


r1 sin θ1 − r2 sin θ2
r1 cos θ1 − r2 cos θ2


)]


=
√


r21 + r22 − 2r1r2 cos(θ1 − θ2)


× exp
[


j tan−1
(


r1 sin θ1 − r2 sin θ2
r1 cos θ1 − r2 cos θ2


)]


. (B.19)


B.4.3 Multiplication


Multiplication of two complex numbers x1 and x2 in polar format:


x1x2 = r1ejθ1 · r2ejθ2


= r1r2ej(θ1+θ2). (B.20)


B.4.4 Complex conjugation


The complex conjugate of complex number x1 is given by


x∗1 = r1e
−jθ1 . (B.21)


B.4.5 Modulus


The modulus (or magnitude) of a complex number x1 = r1ejθ1 is |x1| = r1.


B.4.6 Division


Dividing two complex numbers in polar format:


x1
x2


=
r1ejθ1


r2ejθ2
=


r1
r2


ej(θ1−θ2). (B.22)


Before we end this section, we note that both rectangular and polar formats


have their advantages. It is easier to add or subtract complex numbers in the


rectangular format. Multiplication and division are, however, simpler in the


polar representation. We illustrate the concepts discussed in Section B.4 with


the following example.


Example B.4


Consider the two complex numbers


x = 5 + j7 =
√


74ej0.3026π
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and


y = 2 − j4 =
√


20e−j0.3524π .


Repeat Example B.1 but by selecting one of the two formats (rectangular or


polar) for which the arithmetic operation is computationally simpler.


Solution


(1) The real and imaginary components of the complex number x are obtained
from the rectangular format, i.e. ℜ(x) = 5 and ℑ(x) = 7. Likewise, for y
the components are ℜ(y) = 2 and ℑ(y) = −4.


(2) Addition of x and y is performed in the rectangular format as follows:


x + y = (5 + j7) + (2 − j4)
= (5 + 2) + j(7 − 4)
= 7 − j3.


If polar format is required, we can express the above answer for (x + y) in
the polar format as x + y =


√
58ej tan


−1(−3/7) = 7.62e−j0.13π .
(3) Subtraction is also performed in the rectangular format as follows:


x − y = (5 + j7) − (2 − j4)
= (5 − 2) + j(7 − (−4))
= 3 − j11.


Converting the above answer into polar form, we obtain x − y =√
130ej tan


−1(−11/3) = 11.40e−j0.415π .
(4) Multiplication of x and y is performed in the polar format as follows:


xy =
√


74ej0.3026π ·
√


20e−j0.3524π


=
√


1480e−j0.0498π .


The rectangular format is xy =
√


1480(cos(0.0498π ) + j sin(−0.0498π ))
= 38 − j6.


(5) In rectangular format, the complex conjugate of the complex number x =
5 + j7 is x∗ = 5 − j7. Likewise, the complex conjugate of y = 2 − j4 is
y∗ = 2 + j4 in rectangular format. The complex conjugates in polar format
are x∗ =


√
74e−j0.3026π and y∗ =


√
20ej0.3524π .


(6) The moduli of x and y are obtained directly from the polar format as
|x | =


√
74 and |y| =


√
20.


(7) Dividing x by y is performed in polar format, yielding


x


y
=


√
74ej0.3026π√


20e−j0.3524π
=


√
3.7ej0.655π ,


which, in rectangular format, is
√


3.7 (cos(0.655π ) + j sin(0.655π )) =
−0.9 + j1.7.
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B.5 Summary


Complex numbers in rectangular and polar formats were reviewed. Basic arith-


metic operations such as addition, subtraction, multiplication, division, and


complex conjugation were illustrated in both rectangular and polar domains.


Problems


B.1 Calculate the polar representations for (a) 1; (b) j; (c) − 1; (d) −j; (e) 3 +
j4; (f) 8 − j6; and (g) 12 + j4.


B.2 Calculate the rectangular representations for (a) 11 exp(j2π );
(b) 125 exp(jπ/2); (c) 72 exp(−jπ ); (d) 125 exp(jπ/8); (e) 25.47
exp(−j3π/4); and (f) 0.85 exp(−jπ/4).


B.3 Consider the complex function


g(t) =
2 + j3t
1 + j2t


.


Plot the magnitude and phase of the function g(t) each as a function of the
independent variable t .


B.4 Determine and sketch the roots of the equation ex + 10 = 0 in the Cartesian
plane. [Hint: The polar representation for −10 = eln(10)+j(2m+1)π .]


B.5 Prove the following identities:


(i) cos θ =
ejθ + e−jθ


2
;


(ii) sin θ =
ejθ − e−jθ


2j
;


(iii) ejmπ = (−1)m and ej(2mπ+θ ) = ejθ ;


(iv) cos θ = 1 −
θ2


2 !
+


θ4


4 !
−


θ6


6 !
+ · · · ;


(v) sin θ = θ −
θ3


3 !
+


θ5


5 !
−


θ7


7 !
+ · · · .
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Appendix C Linear constant-coefficient
differential equations


It was shown in Chapters 2 and 3 that linear constant-coefficient differential


equations play an important role in LTIC systems analysis. In this appendix,


we review a direct method for solving differential equations of the form


n
∑


k=0
ak


dk y(t)


dtk
=


m
∑


k=0
bk


dk x(t)


dtk
, (C.1)


where the aks and bks are constants, and the derivatives


y(t),
dy(t)


dt
,


d2 y(t)


dt2
, . . . ,


dn−1 y(t)


dtn−1
(C.2)


of the output signal y(t) are known at a given time instant, say t = t0. We will
use the compact notation ẏ(t)to denote the first derivative of y(t) with respect to
t . Therefore, ẏ(t) = dy/dt, ÿ(t) = dy2/dt2, and similarly for the higher-order
derivatives. In the context of LTIC systems, the differential equation, Eq. (C.1),


provides a linear relationship between the input signal x(t) and the output y(t).
The values of the derivatives of y(t), Eq. (C.2), for such LTIC systems are
typically specified at t0 = 0 and are referred to as the initial conditions. The
highest derivative in Eq. (C.1) denotes the order of the differential equation.


Equation (C.1) is therefore either of order n or m.
The method discussed in this appendix is direct, in the sense that it solves Eq.


(C.1) in the time domain and does not require calculation of any transforms. The


direct approach expresses the output y(t) described by a differential equation
as the sum of two components:


(i) zero-input response yzi(t) associated with the initial conditions;
(ii) zero-state response yzs(t) associated with the applied input x(t).


The zero-input response yzi(t) is the component of the output y(t) of the sys-
tem when the input is set to zero. The zero-input response describes the manner


in which the system dissipates any energy or memory of the past as specified


by the initial conditions. The zero-state response yzs(t) is the component of the
output y(t) of the system with initial conditions set to zero. It describes the


806
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behavior of the system forced by the input. In the following, we outline the


procedure to evaluate the zero-input and zero-state responses.


C.1 Zero-input response


The zero-input response yzi(t) is the output of the system when the input is
zero. Hence, yzi(t) is the solution to the following homogeneous differential
equation:


n
∑


k=0
ak


dk y(t)


dtk
= 0, (C.3)


with known initial conditions


y(t),
dy(t)


dt
,


d2 y(t)


dt2
, . . . ,


dn y(t)


dtn
at t = 0. (C.4)


To determine the zero-input response yzi(t), assume that the zero-input
response is given by yzi(t) = Aest , substitute yzi(t) in the homogeneous dif-
ferential equation, Eq. (C.3), and solve the resulting equation. We illustrate the


procedure for calculating the homogeneous solution by considering an example.


Example C.1


Consider a CT system modeled by the following differential equation:


d2 y


dt2
+ 5


dy


dt
+ 4y(t) = 3x(t). (C.5)


Compute the zero-input response of the system for initial conditions y(0) = 2
and ẏ(0) = −5.


Solution


Substituting yzi(t) = Aest in the homogeneous equation


d2 y


dt2
+ 5


dy


dt
+ 4y(t) = 0, (C.6)


obtained by setting input x(t) = 0, yields


Aest (s2 + 5s + 4) = 0. (C.7)


Ignoring the trivial solution, i.e. assuming Aest �= 0, Eq. (C.7) reduces to the


following quadratic equation, referred to as the characteristic equation, in s:


s2 + 5s + 4 = 0, (C.8)


which has two roots at s = −1, −4. The zero-input solution is given by


yzi(t) = A0e
−t + A1e


−4t , (C.9)
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where A0 and A1 are constants to be determined from the given initial condi-
tions. Substituting the initial conditions in Eq. (C.9) yields


A0 + A1 = 2,
−A0 − 4A1 = −5, (C.10)


which has solution A0 = 1 and A1 = 1. The zero-input response for Eq. (C.5)
is therefore given by


yzi(t) = e−t + e−4t . (C.11)


C.1.1 Repeated roots


The form of the zero-input response changes slightly when the characteristic


equation has repeated roots. If a root s = a is repeated J times, then we include J
distinct terms in the zero-input response associated with aby using the following
J functions:


eat , teat , t2eat , . . . , t J−1eat . (C.12)


The zero-input response of an LTIC system is then given by


yzi(t) = A0eat + A1teat + A2t2eat + · · · + AJ−1t J−1eat . (C.13)


The procedure for calculating the homogeneous solution for differential


equations with repeated roots is illustrated in Example C.2.


Example C.2


Consider a CT system modeled by the following differential equation:


d3 y


dt2
+ 4


d2 y


dt2
+ 5


dy


dt
+ 2y(t) = x(t). (C.14)


Compute the zero-input response of the system for initial conditions y(0) = 4,
ẏ(0) = −5, ÿ(0) = 9.


Solution


By substituting yzi(t) = Aest in the homogeneous representation for Eq. (C.14),
we obtain the following characteristic equation:


s3 + 4s2 + 5s + 2 = 0, (C.15)


which has three roots at s = −1, −2, −2. The zero-input solution is therefore
given by


yzi(t) = A0e−t + A1e−2t + A2te−2t , (C.16)
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where A0, A1, and A2 are constants determined from the given initial conditions.
Substituting the initial conditions into Eq. (C.16) yields


A0 + A1 = 4,
−A0 + A1 − 2A2 = −5, (C.17)
A0 − 2A1 + 4A2 = 9,


which has solution A0 = 1, A1 = 2, and A2 = 3. The zero-input response for
Eq. (C.14) is therefore given by


yzi(t) = e−t + 2e−2t + 3te−2t . (C.18)


C.1.2 Complex roots


Solving a characteristic equation may give rise to complex roots of the form


s = a + jb. Typically, a homogeneous differential equation, Eq. (C.3), with real
coefficients, has complex roots in conjugate pairs. In other words, if s = a + jb
is a root of the characteristic equation obtained from Eq. (C.3) then s = a − jb
must also be a root of the characteristic equation. For such complex roots, the


zero-input response can be modified to the following form:


yzi(t) = A0eat cos(bt) + A1eat sin(bt). (C.19)


Example C.3


Compute the zero-input response of a system represented by the following


differential equation:


d4 y


dt4
+ 2


d2 y


dt2
+ 1 = x(t), (C.20)


with initial conditions y(0) = 2, ẏ(0) = 2, ÿ(0) = 0, ÿ(0) = −4.


Solution


Substituting yzi(t) = Aest in the homogeneous representation for Eq. (C.20)
results in the following characteristic equation:


s4 + 2s2 + 1 = 0. (C.21)


The roots of the characteristic equation are given by s = j, j, −j, and −j. Note
that the roots are not only complex but also repeated. The zero-input solution


is given by


yzi(t) = A0 cos(t) + A1t cos(t) + A2 sin(t) + A3t sin(t), (C.22)
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where A0, A1, A2, and A3 are constants. To calculate these constants, we sub-
stitute the following initial conditions:


A0 = 2,
A1 + A2 = 2,


−A0 + 2A3 = 0,
−3A1 − A2 = −4,


(C.23)


which has solution A0 = 2, A1 = 1, A2 = 1, and A3 = 1. The zero-input
response for the system in Eq. (C.20) is therefore given by


yzi(t) = 2 cos(t) + t cos(t) + sin(t) + t sin(t). (C.24)


C.2 Zero-state response


The zero-state response yzs(t) depends upon the input signal x(t) subject to
zero initial conditions. The zero-state response consists of two components:


(i) the homogeneous component y(h)zs (t) and (ii) the particular component y
(p)
zs (t).


The homogeneous component is obtained by following the procedure used to


solve for the zero-input response but with zero initial conditions. The particular


component of the zero-state response is obtained from a look-up table such as


Table C.1. For example, if the input signal is x(t) = K e−at , then the partic-
ular component of the zero-state response is assumed to be y(p)zs (t) = Ce−at .
The constant C is determined such that yzi(t) satisfies the system’s differential
equation. The procedure for computing the zero-state response is illustrated in


Example C.4.


Example C.4


Consider the system specified by the differential equation given in


Example C.1:


d2 y


dt2
+ 5


dy


dt
+ 4y(t) = 3x(t). (C.25)


Compute the zero-state response of the system for the input signal x(t) =
cos tu(t).


Solution


The homogeneous and particular components of the zero-state response yzi(t)
are solved separately in three steps as follows.


Step 1 Compute the homogeneous component y(h)zs (t) The solution for the
homogeneous component is similar to the zero-input response of the system.


Using the result of Eq. (C.9), the homogeneous component of the zero-input
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Table C.1. Zero-state response corresponding to common input signals


Particular component of the


Input zero-state response


Impulse function, K δ(t) Cδ(t)
Unit step function, Ku(t) Cu(t)
Exponential, Ke−at Ce−at


Sinusoidal, A cos(ω0t + φ) C0 cos(ω0t) + C1sin(ω0t)


response is given by


y(h)zs (t) = B0e
−t + B1e−4t , (C.26)


where B0 and B1 are constants.


Step 2 Determine the particular component y(p)zs (t) The particular com-
ponent is obtained by consulting Table C.1. For the input signal x(t) =
cos t u(t), the particular component of the zero-state response is of the form
y(p)zs (t) = C0 cos t + C1 sin t for t > 0. Substituting the particular component in
Eq. (C.25) yields


(−5C0 + 3C1) sin t + (3C0 + 5C1) cos t = 3 cos t. (C.27)


Equating the cosine and sine terms on the left- and right-hand sides of the


equation, we obtain the following simultaneous equations:


−5C0 + 3C1 = 0,
3C0 + 5C1 = 3, (C.28)


with solution C0 = 9/34 and C1 = 15/34. The particular component y(p)zs (t) of
the zero-state response is given by


y(p)zs (t) =
9


34
cos t +


15


34
sin t for t > 0. (C.29)


Step 3 Determine the zero-state response from yzs(t) = y(h)zs (t) + y
(p)
zs (t).


The zero-state response is the sum of the homogeneous and particular com-


ponents, and is given by


yzs(t) = (B0e−t + B1e−4t ) +
9


34
cos t +


15


34
sin t, (C.30)


where B0 and B1 are obtained by inserting zero initial conditions, y(0) = 0 and
ẏ(0) = 0. This leads to the following simultaneous equations:


B0 + B1 = −
9


34
,


B0 + 4B1 =
15


34
,


(C.31)
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with solution B0 = −1/2 and B1 = 4/17. The zero-state response of Eq. (C.25)
is


yzs(t) = −
1


2
e−t +


4


17
e−4t +


9


34
cos t +


15


34
sin t. (C.32)


This approach for finding the particular component of the zero-state response


is modified when the input is of the same form as one of the terms in the homo-


geneous component of the zero-state response. We illustrate with an example


where we outline the modified procedure for calculating the particular compo-


nent of the zero-state response.


Example C.5


Repeat Example C.4 for the input signal x(t) = 2e−t .


Solution


The homogeneous component for the zero-state response is given by Eq. (C.26):


y(h)zs (t) = B0e
−t + B1e−4t ,


where B0 and B1 are constants. The input signal x(t) = 2e−t . Based on
Table C.1, the particular component is of the form y(p)zs (t) = Ce−t , which is
similar to the first term in the homogeneous component. In such a scenario, we


assume a particular component that is different from the first term of the homo-


geneous component. To achieve this, we multiply the particular component by


the lowest power of t that will make the particular component different from the
first term of the homogeneous component. The particular component, in this


example, is therefore given by y(p)zs (t) = Cte−t . In order to evaluate the value of
constant C , we substitute the particular component in the system’s differential
equation and solve for C ; it is found that C = 3. The overall zero-state response
is therefore given by


yzs(t) = B0e−t + B1e−4t + 3te−t , (C.33)


where the values of B0 and B1 are computed using zero initial conditions. The
resulting simultaneous equations are given by


B0 + B1 = 0,
B0 + 4B1 = −3,


(C.34)


which has solution B0 = 1 and B1 = −1. The overall zero-state response is
given by


yzs(t) = e−t − e−4t + 3te−t .
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C.3 Complete response


The complete response of an LTIC system is the sum of the homogeneous and


particular components. The procedure for calculating the complete response


consists of the following steps.


(1) Compute the zero-input response yzi(t) of the system using the given initial
conditions.


(2) Compute the zero-state response yzs(t) of the system using zero initial
conditions and the input signal. The zero-state response is obtained by


determining its homogeneous and particular components.


(3) Add the zero-input and zero-state responses of the systems to get the com-


plete response.


Example C.6


Calculate the output of an LTIC system represented by the following differential


equation:


d2 y


dt2
+ 5


dy


dt
+ 4y(t) = 3x(t), (C.35)


for the input signal x(t) = cos t u(t) and the initial conditions y(0) = 2 and
ẏ(0) = −5.


Solution


The zero-input response was calculated in Example C.1 and is given by


Eq. (C.11), repeated below:


yzi(t) = e−t + e−4t . (C.36)


The zero-state response was calculated in Example C.4 and is given by


Eq. (C.32), repeated below:


yzs(t) = −
1


2
e−t +


4


17
e−4t +


9


34
cos t +


15


34
sin t. (C.37)


The complete response is the sum of Eqs (C.36) and (C.37) and is given by


y(t) =
1


2
e−t +


21


17
e−4t +


9


34
cos t +


15


34
sin t (C.38)


for t ≥ 0.
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An alternative approach to convolution, used in calculating the output response


of a linear time-invariant (LTI) system, is to calculate the product of appropri-


ately selected transforms of the convolving signals and then evaluate the inverse


transform of the product. In most cases, the transform-based approach is more


convenient as it leads to a closed-form solution. It is therefore important to


develop methods to compute the inverse of a specified transform to determine


the output response of the LTI system in the time domain. For transforms that


can be expressed as a rational function of two polynomials, the partial fraction


expansion simplifies the evaluation of the inverse transform by expressing the


rational function as a summation of simpler terms whose inverse is obtained


from a look-up table. This appendix focuses on the partial fraction expansion


of a rational function. The partial fraction expansion techniques for the four


transforms, namely the Laplace transform, the continuous-time Fourier trans-


form (CTFT), the z-transform, and the discrete-time Fourier transform (DTFT),


covered in the text are presented separately in Sections D.1–D.4.


D.1 Laplace transform


Consider a function X (s) of the form


X (s) =
N (s)


D(s)
=


bmsm + bm−1sm−1 + · · · + b1s + b0
ansn + an−1sn−1 + · · · + a1s + a0


, (D.1)


where the numerator N (s) is a polynomial of degree m and the denominator
D(s) is a polynomial of degree n. If m ≥ n, we can divide N (s) by D(s) and
express X (s) in an alternative form as follows:


X (s) =
m−n
∑


ℓ=0


αℓs
ℓ+


N1(s)


D(s)
. (D.2)


814
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If m < n, there is no summation term in Eq. (D.2) and N1(s) = N (s). The partial
fraction expansion represents the rational fraction N1(s)/D(s) as a summation
of simpler terms.


The first step in obtaining the partial fraction expansion is to factorize the


denominator polynomial and express the function X (s) as follows:


N1(s)


D(s)
=


N1(s)


(s − p1)(s − p2) · · · (s − pn)
, (D.3)


where p1, p2, . . . , pn are the n roots of the characteristic equation,


D(s) = ansn + an−1sn−1 + · · · + a1s + a0 = 0. (D.4)


If X (s) represent the transfer function of an LTIC system, then the roots p1,
p2, . . . , pn of the characteristic equation are the poles of the system. The partial
fraction expansion expresses Eq. (D.3) as the following summation:


N1(s)


D(s)
=


k1
s − p1


+
k2


s − p2
+ · · · +


kn
s − pn


, (D.5)


where kr , for 1 ≤ r ≤ n, is referred to as the coefficient (also known as the
residue) of the r th partial fraction. Depending on the nature of the poles, different
procedures are used to compute the partial fraction coefficients kr . We consider
two cases in the following sections.


D.1.1 First-order poles The poles p1, p2, . . . , pn are of the first order if they
are not repeated. In such cases, the value of the r th partial fraction coefficients
kr can be calculated from the Heaviside formula:†


kr =


[


(s − pr )
N1(s)


D(s)


]


s=pr


. (D.6)


We illustrate the application of the formula with four examples.


Example D.1


For the function


X (s) =
4s2 + 20s − 2


s3 + 3s2 − 6s − 8
, (D.7)


(i) calculate the partial fraction expansion;


(ii) based on your answer to (i), calculate the inverse Laplace transform of


X (s).


† This formula is named after Oliver Heaviside (1850–1925), an English electrical engineer,


mathematician, and physicist, who developed techniques for applying the Laplace transforms to


the solution of differential equations.
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Solution


(i) The characteristic equation of X (s) is given by


s3 + 3s2 − 6s − 8 = 0,


which has roots at s = −1, 2, and −4. The partial fraction expansion of X (s)
is therefore given by


X (s) =
4s2 + 20s − 2


s3 + 3s2 − 6s − 8
≡


k1
s + 1


+
k2


s − 2
+


k3
s + 4


.


Using the Heaviside formula, the residues kr are given by


k1 =
4s2 + 20s − 2


(s − 2)(s + 4)


∣


∣


∣


∣


s=−1


=
4 − 20 − 2


−9
= 2,


k2 =
4s2 + 20s − 2


(s + 1)(s + 4)


∣


∣


∣


∣


s=2


=
16 + 40 − 2


3 × 6
= 3,


and


k3 =
4s2 + 20s − 2


(s + 1)(s − 2)


∣


∣


∣


∣


s=−4


=
64 − 80 − 2


(−3) × (−6)
=


−18


18
= −1.


Substituting the values of the partial fraction coefficients k1, k2, and k3, we
obtain


X (s) =
2


s + 1
+


3


s − 2
−


1


s + 4
. (D.8)


(ii) Assuming the function x(t) to be causal or right-sided, we use Table 6.1
to determine the inverse Laplace transform x(t) of the X (s) as follows:


x (t) =
(


2e−t + 3e2t − e−4t
)


u(t) . (D.9)


Example D.2


For the function


X (s) =
6s2 + 11s + 26


s3 + 4s2 + 13s
, (D.10)


(i) calculate the partial fraction expansion;


(ii) based on your answer to (i), calculate the inverse Laplace transform of


X (s).


Solution


(i) The characteristic equation of X (s) is given by


s3 + 4s2 + 13s = 0,
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which has roots at s = 0, −2 + j3, and −2 −j3. The partial fraction expansion
of X (s) is therefore given by


X (s) =
6s2 + 11s + 26
s3 + 4s2 + 13s


≡
k1
s


+
k2


s + 2 + j3
+


k3
s + 2 − j3


. (D.11)


Note that in this case, there are two complex-conjugate poles at s = −2 ±j3.
Using the Heaviside formula, the residues kr are given by


k1 =


[


s
6s2 + 11s + 26


s(s + 2 + j3)(s + 2 − j3)


]


s=0


= 2,


k2 =


[


(s + 2 + j3)
6s2 + 11s + 26


s(s + 2 + j3)(s + 2 − j3)


]


s=−2−j3


= 2 − j
5


6
,


and


k3 =


[


(s + 2 + j3)
6s2 + 11s + 26


s(s + 2 + j3)(s + 2 − j3)


]


s=−2+j3


= 2 + j
5


6
.


Substituting the values of the partial fraction coefficients k1, k2, and k3, we
obtain


X (s) =
2


s
+


2 − j 5
6


s + 2 + j3
+


2 + j 5
6


s + 2 − j3
. (D.12)


(ii) Assuming the function x(t) to be causal or right-sided, we use Table 6.1
to determine the inverse Laplace transform x(t) of the X (s) as follows:


x(t) =


[


2 +


(


2 − j
5


6


)


e−(2+j3)t +


(


2 + j
5


6


)


e−(2−j3)t
]


u(t)


=


[


2 + e−2t
{(


2 − j
5


6


)


e−j3t +


(


2 + j
5


6


)


ej3t
}]


u(t)


=


[


2 + e−2t
{


2
(


e j3t + e−j3t
)


+
j5


6


(


ej3t − e−j3t
)


}]


u(t)


=


[


2 + e−2t
{


4 cos(3t) −
5


3
sin(3t)


}]


u(t)


=


[


2 + 4e−2t cos(3t) −
5


3
e−2t sin(3t)


]


u(t). (D.13)


In Example D.2, the complex-valued poles of the Laplace transform X (s) occur
in conjugate pairs. This is true, in general, for any polynomial with real-valued


coefficients. Although the Heaviside formula may be used to determine the


values of the partial fraction residues corresponding to the complex poles, the


procedure is often complicated due to complex algebra. Below, we present


another procedure, which expresses such complex-valued and conjugate poles


in terms of a quadratic term in the partial fraction expansion.
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Example D.3


Repeat Example D.2 by expressing the complex-valued poles as a quadratic


term.


Solution


(i) Combining the complex-valued terms in Eq. (D.11),


X (s) =
6s2 + 11s + 26
s3 + 4s2 + 13s


=
k1
s


+
k2


s + 2 + j3
+


k3
s + 2 − j3


,


=
k1
s


+
(k2 + k3) s + 2 (k2 + k3)


(s + 2)2 − ( j3)2
.


Since k2 and k3 are constants, their linear combinations can be replaced with
other constants. Substituting k2 + k3 = A1 and k2 + k3 = A2, we obtain


X (s) =
6s2 + 11s + 26
s3 + 4s2 + 13s


≡
k1
s


+
A1s + A2


s2 + 4s + 13
. (D.14)


It may be noted that the above expression could have been obtained directly by


factorizing the denominator,


s3 + 4s2 + 13s = s(s2 + 4s + 13),


and writing the partial fraction expansion of X (s) in terms of two terms, one
with a linear polynomial s in the denominator and the other with a quadratic
polynomial (s2 + 4s + 13).


The partial fraction coefficient k1 of the linear polynomial denominator is
obtained using the Heaviside formula as follows:


k1 =


[


s
6s2 + 11s + 26


s(s2 + 4s + 13)


]


s=0


= 2.


In order to calculate the remaining coefficients A1 and A2, we substitute k1 = 2
in Eq. (D.14). Cross-multiplying and equating the numerators in Eq. (D.5), we


obtain


6s2 + 11s + 26 = 2(s2 + 4s + 13) + (A1s + A2) s


or


(A1 + 2)s
2 + (A2 + 8)s + 26 = 6s


2 + 11s + 26.


Equating the coefficients of the polynomials of the same degree on both sides


of the above equation, we obtain:


coefficient of s2 (A1 + 2) = 6, A1 = 4;


coefficient of s (A2 + 8) = 11, A2 = 3.
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Substituting the values of the partial fraction coefficients k1, A1, and A2 in Eq.
(D.14) yields


X (s) =
2


s
+


4s + 3
(s + 2)2 + 9


. (D.15)


(ii) The Laplace transform X (s) is rearranged:


X (s) =
2


s
+


4(s + 2)
(s + 2)2 + 9


−
5


3


3


(s + 2)2 + 9
,


such that the second and third terms are in the same form as entries (13) and


(14) in Table 6.1. Taking the inverse transform gives the following transform


pairs:


x(t) =
[


2 + 4e−2t cos(3t) −
5


3
e−2t sin(3t)


]


u(t). (D.16)


Note that the inverse Laplace transform x(t) obtained in Eq. (D.13) is identical
to the answer obtained in Example D.2. The procedure followed in Example D.3


avoids complex numbers and is preferable. In cases where the roots of the char-


acteristic equations are complex-valued, we will express the Laplace transform


directly in terms of partial fraction terms with quadratic denominators.


Example D.4


For the function


H (s) =
2s3 + 10s2 + 8s − 18


s3 + 3s2 − 6s − 8
, (D.17)


(i) calculate the partial fraction expansion;


(ii) based on your answer to (i), calculate the inverse Laplace transform of


X (s).


Solution


(i) Since the degree of both the numerator and denominator polynomials is


3, we divide the numerator polynomial by the denominator polynomial and


express H (s) as follows:


H (s) = 2 +
4s2 + 20s − 2


s3 + 3s2 − 6s − 8
︸ ︷︷ ︸


X (s)


.


The second term in H (s) is the same as the rational fraction X (s) specified in
Example D.1. Using the results of Example D.1, the partial fraction expansion


of H (s) is given by


H (s) = 2 +
2


s + 1
+


3


s − 2
−


1


s + 4
. (D.18)
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(ii) Assuming that the inverse Laplace transform x(t) is right-sided, we use
Table 6.1 to determine the inverse Laplace transform x(t) of the X (s):


h(t) = 2δ(t) + (2e−t + 3e2t − e−4t )u(t). (D.19)


D.1.2 Higher-order poles The residues in a partial fraction can be calculated
using the Heaviside formula in Eq. (D.4) when the poles are not repeated.


However, when there are multiple poles at the same location, Eq. (D.4) cannot


be directly used to calculate the coefficients corresponding to the fractions at


multiple pole locations. To illustrate the partial fraction expansion for repeated


poles, consider a Laplace transform X1(s) with r− 1 unrepeated poles at s =
p1, p2, . . . , pr−1 and q repeated poles at s = pr . To be consistent with the
rational fraction expression in Eq. (D.1), r − 1 + q = n. The Laplace transform
X1(s) can be expressed as follows:


N1(s)


D(s)
=


N1(s)


(s − p1)(s − p2) · · · (s − pr−1)(s − pr )q
. (D.20)


The partial fraction expansion of the above rational function is given by


N1(s)


D(s)
=


k1
s − p1


+
k2


s − p2
+ · · ·


kr−1
s − pr−1


+
kr,1


s − pr
+


kr,2
(s − pr )2


+ · · · +
kr,q


(s − pr )q
. (D.21)


The coefficients k1, k2, k3, . . . and kr−1 corresponding to the unrepeated roots
can be calculated using the Heaviside formula, Eq. (D.6). The last coefficient


kr,q can also be calculated using Eq. (D.6) as follows:


kr,q =
[


(s − pr )q
N1(s)


D(s)


]


s=pr
. (D.22)


However, the coefficients kr,m for 1 ≤ m ≤ (q−1), corresponding to the
repeated poles, cannot be calculated using Eq. (D.6). Instead, these coefficients


are calculated using the following formula


kr,m =
1


(q − m)!


[
dq−m


dsq−m
(s − pr )


q N1(s)


D(s)


]


s=pr


for 1 ≤ m ≤ (q − 1).


(D.23)


Example D.5


For the function


X (s) =
s3 + 10s2 + 27s + 20


(s + 1)(s + 2)3
, (D.24)


(i) calculate the partial fraction expansion;


(ii) based on your answer to (i), calculate the inverse Laplace transform of


X (s).
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Solution


(i) The partial fraction expansion of Eq. (D.24) is given by


X (s) =
s3 + 10s2 + 27s + 20


(s + 1)(s + 2)3
≡


k1
s + 1


+
k2,1


s + 2
+


k2,2
(s + 2)2


+
k2,3


(s + 2)3
.


The partial fraction coefficient k1is calculated using the Heaviside formula,
Eq. (D.6), as follows:


k1 =
s3 + 10s2 + 27s + 20


(s + 2)3


∣


∣


∣


∣


s=−1


=
2


1
= 2.


The partial fraction coefficient kr,3 is calculated using Eq. (D.22) as follows:


k2,3 =
s3 + 10s2 + 27s + 20


s + 1


∣


∣


∣


∣


s=−2


=
−8 + 40 − 54 + 20


−1
= 2.


The remaining partial fraction coefficients are calculated using Eq. (D.22) as


follows:


k2,2 =


{
1


(3 − 2)!


d


ds


[
s3 + 10s2 + 27s + 20


s + 1


]}


s=−2


=


{
1


(s + 1)2


[


(s + 1)
d


ds
(s3 + 10s2 + 27s + 20)


−(s3 + 10s2 + 27s + 20)
d


ds
(s + 1)


]}


s=−2


=


{
1


(s + 1)2
[(s + 1)(3s2 + 20s + 27) − (s3 + 10s2 + 27s + 20)]


}


s=−2


=


{
1


(s + 1)2
[2s3 + 13s2 + 20s + 7]


}


s=−2


= 3


and


k2,1 =


{
1


(3 − 1)!


d2


ds2


[
s3 + 10s2 + 27s + 20


s + 1


]}


s=−2


=


{
1


2


d


ds


[
2s3 + 13s2 + 20s + 7


(s + 1)2


]}


s=−2


=
1


2


{
1


(s + 1)4


[


(s + 1)2
d


ds
(2s3 + 13s2 + 20s + 7)


−(2s3 + 13s2 + 20s + 7)
d


ds
(s + 1)2


]}


s=−2


=
1


2















1


(s + 1)4
︸ ︷︷ ︸


=1





(s + 1)2
︸ ︷︷ ︸


=1


(6s2 + 26s + 20)
︸ ︷︷ ︸


=−8


− (2s3 + 13s2 + 20s + 7)
︸ ︷︷ ︸


=3


(2s + 2)
︸ ︷︷ ︸


=−2

















s=−2


=
1


2
{−8 + 6} = −1.
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Therefore, the partial fraction expansion for X (s) is given by


X (s) =
2


s + 1
−


1


s + 2
+


3


(s + 2)2
+


2


(s + 2)3
. (D.25)


(ii) Assuming that the inverse Laplace transform x(t) is right-sided, we use
Table 6.1 to determine the inverse Laplace transform x(t) of the X (s):


x(t) = (2e−t − e−2t + 3te−2t + t2e−2t )u(t)
= [2e−t + (t2 + 3t − 1)e−2t ]u(t). (D.26)


D.2 Continuous-time Fourier transform


The partial fraction expansion method, described above, may also be applied


to decompose the CTFT functions to a summation of simpler terms. Consider


the following rational function for CTFT:


X (ω) =
N (ω)


D(ω)
=


bm( jω)
m + bm−1( jω)m−1 + · · · + b1( jω) + b0


an( jω)
n + an−1( jω)n−1 + · · · + a1( jω) + a0


, (D.27)


where the numerator N (ω) is a polynomial of degree m and the denominator
D(ω) is a polynomial of degree n. If m ≥ n, we can divide N (ω) by D(ω) and
express X (ω) as follows:


X (ω) =
m−n
∑


ℓ=0


αℓ( jω)
−ℓ +


N1(ω)


D(ω)
︸ ︷︷ ︸


X1(ω)


. (D.28)


The procedure for decomposing X1(ω) in simpler terms remains the same as
that discussed for the Laplace transform, except that the expansion is now made


with respect to (jω). For example, if the denominator polynomial D(ω) has n
first-order, non-repeated roots, p1, p2, . . . , pn , such that


X1(ω) =
N1(ω)


D(ω)
=


N1(ω)


( jω − p1)( jω − p2) · · · ( jω − pn)
, (D.29)


the function X1(ω) may be decomposed as follows:


N1(ω)


D(ω)
=


k1
jω − p1


+
k2


jω − p2
+ · · · +


kn
jω − pn


, (D.30)


where the partial fraction coefficients kr are calculated using the Heaviside
formula:


kr =


[


( jω − pr )
N1(ω)


D(ω)


]


jω=pr


. (D.31)


Using the CTFT pair


e−at u(t)
CTFT
←→


1


a + jω
,
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the inverse CTFT of Eq. (D.30) is given by


x1(t) = (k1ep1t + k2ep2t + · · · + knepn t )u(t). (D.32)


Similarly, the complex roots and repeated roots may be expanded in partial


fractions by following the procedure outlined for the Laplace transform.


Example D.6


Using the partial fraction method, calculate the inverse CTFT of the following


function:


X (ω) =
2( jω) + 7


( jω)3 + 10( jω)2 + 31( jω) + 30
. (D.33)


Solution


The characteristic equation of X (ω) is given by


(jω)3 + 10(jω)2 + 31(jω) + 30 = 0,


which has roots at jω = −2, −3, and −5. The partial fraction expansion of
X (ω) is therefore given by


X (ω) =
2( jω) + 7


( jω + 2)( jω + 3)( jω + 5)
≡


k1
jω + 2


+
k2


jω + 3
+


k3
jω + 5


.


The partial fraction coefficients are calculated using the Heaviside formula:


k1 =


[


( jω + 2)
2( jω) + 7


( jω + 2)( jω + 3)( jω + 5)


]


jω=−2


= 1,


k2 =


[


( jω + 3)
2( jω) + 7


( jω + 2)( jω + 3)( jω + 5)


]


jω=−3


= −
1


2
,


and


k3 =


[


( jω + 5)
2( jω) + 7


( jω + 2)( jω + 3)( jω + 5)


]


jω=−5


= −
1


2
.


Therefore, the partial fraction expansion of X (ω) is given by


X (ω) =
1


jω + 2
−


1


2


1


( jω + 3)
−


1


2


1


( jω + 5)
. (D.34)


Using Table 5.2, the inverse DTFT x(t) of X (ω) is given by


x(t) =


[


e−2t −
1


2
e−3t −


1


2
e−5t


]


u(t). (D.35)
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Example D.7


Using the partial fraction method, calculate the inverse CTFT of the following


function:


X (ω) =
4( jω)2 + 20( jω) + 19


( jω)3 + 5( jω)2 + 8( jω) + 4
. (D.36)


Solution


The characteristic equation of X (ω) is given by


( jω)3 + 5( jω)2 + 8( jω) + 4 = 0,


which has roots at jω = −1, −2, and −2. The partial fraction expansion of
X (ω) is therefore given by


X (ω) =
4( jω)2 + 20( jω) + 19


( jω)3 + 5( jω)2 + 8( jω) + 4
≡


k1
( jω + 1)


+
k2,1


( jω + 2)
+


k2,2
( jω + 2)2


.


The partial fraction coefficients k1 and k2,2 are calculated using the Heaviside
formula:


k1 =


[


( jω + 1)
4( jω)2 + 20( jω) + 19


( jω + 1)( jω + 2)2


]


jω=−1


= 3


and


k2,2 =


[


( jω + 2)2
4( jω)2 + 20( jω) + 19


( jω + 1) ( jω + 2)2


]


jω=−2


= 5.


The remaining partial fraction coefficient is calculated using Eq. (D.23):


k2,1 =
1


(2 − 1)!


[
d


d( jω)


4( jω)2 + 20( jω) + 19


( jω + 1)


]


jω=−2


, (D.37)


where the differentiation is with respect to jω. To simplify the notation for


differentiation, we substitute s = jω in Eq. (D.37) to obtain:


k2,1 =
1


(2 − 1)!


[
d


ds


4s2 + 20s + 19


(s + 1)


]


s=−2


=


[
(s + 1)(8s + 20) − (4s2 + 20s + 19)


(s + 1)2


]


s=−2


= 1.


The partial fraction expansion of X (ω) is therefore given by


X (ω) =
4( jω)2 + 20( jω) + 19


( jω)3 + 5( jω)2 + 8( jω) + 4
=


3


( jω + 1)
+


1


( jω + 2)
+


5


( jω + 2)2
.


(D.38)


Using Table 5.2, the inverse CTFT x(t) of X (ω) is given by


x(t) = [3e−t + e−2t + 5te−2t ]u(t). (D.39)
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D.3 Discrete-time Fourier transform


To illustrate the partial fraction expansion of the DTFT, consider the following


rational function:


X (Ω) =
N (Ω)


D (Ω)
=


bmejmΩ + bm−1ej(m−1)Ω + · · · + b1ejΩ + b0
anejnΩ + an−1ej(n−1)Ω + · · · + a1ejΩ + a0


, (D.40)


where the numerator N (Ω) is a polynomial of degree m and the denominator
D(Ω) is a polynomial of degree n. An alternative representation for Eq. (D.40)
is obtained by dividing both the numerator and the denominator by ejnΩ as


follows:


X (Ω) =
N (Ω)


D(Ω)
= ej(m−n)Ω ·


bm + bm−1e−jΩ + · · · + b1e−j(m−1)Ω + b0e−jmΩ


an + an−1e−jΩ + · · · + a1e−j(n−1)Ω + a0e−jnΩ
︸ ︷︷ ︸


X ′ (ω)


.


(D.41)


We need to express Eq. (D.41) in simpler terms using the partial fraction expan-


sion with respect to e−jΩ. To simplify the factorization process, we substitute


z = ejΩ:


X (z) = z(m−n) ·
bm + bm−1z−1 + · · · + b1z−(m−1) + b0z−m


an + an−1z−1 + · · · + a1z−(n−1) + a0z−n
. (D.42)


The process for the partial fraction expansion of Eq. (D.41) is the same as for


the CTFT and Laplace transform, except that the expansion is performed with


respect to z−1. Below we illustrate the process with an example.


Example D.8


Using the partial fraction method, calculate the inverse CTFT of the following


function:


X (Ω) =
N (Ω)


D(Ω)
=


2ej2Ω − 5ejΩ


ej2Ω − (4/9)ejΩ + (1/27)
. (D.43)


Solution


Dividing both the numerator and the denominator of Eq. (D.43) by ej2Ω yields


X (Ω) =
2 − 5e−jΩ


1 − (4/9)e−jΩ + (1/27)e−2jΩ
.


Substitute z = ejΩ in the above equation to obtain


X (z) =
2 − 5z−1


1 − (4/9)z−1 + (1/27)z−2
,


with the characteristic equation


1 −
4


9
z−1 +


1


27
z−2 = 0 or z2 −


4


9
z +


1


27
= 0,
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which has two poles at z = 1/3 and 1/9. The partial fraction expansion of X (z)
is therefore given by


X (z) =
2 − 5z−1


(1 − (1/3)z−1)(1 − (1/9)z−1)
≡


k1
1 − (1/3)z−1


+
k2


1 − (1/9)z−1
.


Using the Heaviside formula, the partial fraction coefficients are given by


k1 =


[


(1 − (1/3)z−1)
2 − 5z−1


(1 − (1/3)z−1)(1 − (1/9)z−1)


]


z−1=3


= −
39


2


and


k2 =


[


(1 − (1/9)z−1)
2 − 5z−1


(1 − (1/3)z−1)(1 − (1/9)z−1)


]


z−1=9


=
43


2
.


The partial fraction expansion of Eq. (D.43) is given by


X (z) = −
39


2


1


1 − (1/3)z−1
+


43


2


1


1 − (1/9)z−1
.


We substitute z = ejΩ = z to express the above equation in terms of the discrete
frequency Ω as follows:


X (Ω) = −
39


2


1


1 − (1/3)e−jΩ
+


43


2


1


1 − (1/9)e−jΩ
.


Using Table 11.2, the inverse DTFT x[k] of X (ejΩ) is given by


x(t) =


[


−
39


2


(
1


3


)k


+
43


2


(
1


9


)k
]


u[k]. (D.44)


D.4 The z-transform


The partial fraction expansion method can also be applied to evaluate the inverse


transform of the z functions. Consider a z function of the following form:


X (z) =
N (z)


D(z)
=


bm zm + bm−1zm−1 + · · · + b1z + b0
anzn + an−1zn−1 + · · · + a1z + a0


(D.45)


or


X (z) =
N (z)


D(z)
= zm−n


bm + bm−1z−1 + · · · + b1z−(m−1) + b0z−m


an + an−1z−1 + · · · + a1z−(n−1) + a0z−n
. (D.46)


Either of the two forms, Eq. (D.45) or Eq. (D.46), may be used to calculate


the partial fraction expansion and eventually the inverse z-transform. If we use


the format specified in Eq. (D.45), the partial fraction of the function X (z)/z is
performed with respect to z. As illustrated in Example D.9, the partial fraction
of X (z)/z leads to expansion terms for which the inverse z-transform is readily
available in Table 13.1. If instead Eq. (D.46) is used, the partial fraction of the


function X (z) is performed with respect to z−1. We illustrate the procedure for
both formats in Examples D.9 and D.10.
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Example D.9


Using Eq. (D.45) for the partial fraction expansion, calculate the inverse


z-transform of the following function:


X (z) =
z2 − 3z


z3 − z2 + 0.17z + 0.028
. (D.47)


Solution


The transform X (z) is expressed in the following form:


X (z)


z
=


z − 3
z3 − z2 + 0.17z + 0.028


, (D.48)


which has poles at z = −0.1, 0.4, and 0.7. The partial fraction expansion of
Eq. (D.48) is given by


X (z)


z
=


z − 3
z3 − z2 + 0.17z + 0.028


≡
k1


z + 0.1
+


k2
z − 0.4


+
k3


z − 0.7
.


The partial fraction coefficients are calculated using the Heaviside formula:


k1 =


[


(z + 0.1)
z − 3


(z + 0.1)(z − 0.4)(z − 0.7)


]


z=−0.1


= −
31


4
,


k2 =


[


(z − 0.4)
z − 3


(z + 0.1)(z − 0.4)(z − 0.7)


]


z=0.4


=
52


3
,


and


k3 =


[


(z − 0.7)
z − 3


(z + 0.1)(z − 0.4)(z − 0.7)


]


z=0.7


= −
115


12
.


The partial fraction expansion is given by


X (z)


z
= −


31


4


1


(z + 0.1)
+


52


3


1


(z − 0.4)
−


115


12


1


(z − 0.7)


or


X (z) = −
31


4


z


(z + 0.1)
+


52


3


z


(z − 0.4)
−


115


12


z


(z − 0.7)
.


Assuming a right-sided sequence, the inverse z-transform x[k] of the X (z) is
given by


x[k] =


[


−
31


4
(−0.1)k +


52


3
(0.4)k −


115


12
(0.7)k


]


u [k] .


Example D.10


Using Eq. (D.46) for the partial fraction expansion, calculate the inverse z-


transform of the following function:


X (z) =
z2 − 3z


z3 − z2 + 0.17z + 0.028
.
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Solution


The transform X (z) is expressed in the following form:


X (z) =
z−1 − 3z−2


1 − z−1 + 0.17z−2 + 0.028z−3
, (D.49)


which has poles at z = −0.1, 0.4, and 0.7. The partial fraction expansion of
Eq. (D.49) is given by


X (z) =
z−1 − 3z−2


1 − z−1 + 0.17z−2 + 0.028z−3


≡
k1


1 + 0.1z−1
+


k2
1 − 0.4z−1


+
k3


1 − 0.7z−1
.


The partial fraction coefficients are calculated using the Heaviside formula:


k1 =


[


(1 + 0.1z−1)
z−1 − 3z−2


(1 + 0.1z−1)(1 − 0.4z−1)(1 − 0.7z−1)


]


z−1=−10


= −
31


4
,


k2 =


[


(1 − 0.4z−1)
z−1 − 3z−2


(1 + 0.1z−1)(1 − 0.4z−1)(1 − 0.7z−1)


]


z−1=10/4


=
52


3
,


and


k3 =


[


(1 − 0.7z−1)
z−1 − 3z−2


(1 + 0.1z−1)(1 − 0.4z−1)(1 − 0.7z−1)


]


z−1=10/7


= −
115


12
.


The partial fraction expansion is given by


X (z) = −
31


4


k1
(1 + 0.1z−1)


+
52


3


k2
(1 − 0.4z−1)


−
115


12


k3
(1 − 0.7z−1)


.


Assuming a right-sided sequence, the inverse z-transform x[k] of the X (z) is
given by


x [k] =


[


−
31


4
(−0.1)k +


52


3
(0.4)k −


115


12
(0.7)k


]


u[k] .
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Appendix E Introduction to M A T L A B


E.1 Introduction


M A T L A B , an abbreviation for the term “MATrix LABoratory,” is a powerful


computing environment for numerical calculations and multidimensional visu-


alization. It has become a de facto industry standard for developing engineering
applications for several reasons. First, M A T L A B reduces programming to data


processing abstraction. Instead of becoming bogged down with the intrinsic


details of programming, as required with other high-level languages, it allows


the user to focus on the theoretical concepts. Developing code in M A T L A B


takes a fraction of the time necessary with other programming languages. Sec-


ondly, it provides a rich collection of library functions, referred to as toolboxes,


in virtually every field of engineering. The user can access the library functions


to build the required application. Thirdly, it supports multidimensional visual-


ization that allows experimental data to be rendered graphically in a compre-


hensible format.


In this appendix we provide a brief introduction to M A T L A B . Our intention


is to introduce the basic capabilities of M A T L A B so that the reader can start


working on the problems contained in this text. In the following discussion,


M A T L A B commands and results are shown in “Courier” font with the com-


mands preceded by the >> prompt. Results returned by M A T L A B in response


to the typed commands are also shown in the “Courier” font but are not
preceded by the >> prompt.


Starting a MA T L A B session


M A T L A B is available on a variety of computing platforms. On an IBM com-


patible PC, a M A T L A B session can be initiated by selecting the M A T L A B


program or double clicking on its icon. In an X-window system, M A T L A B


is invoked by typing the complete path to the executable file of M A T L A B at


the shell prompt. Before using M A T L A B , it is recommended that you cre-


ate a subdirectory named 〈matlab〉 (all lower case letters for case-sensitive


829
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operating systems) in your home directory. Any file placed in this subdirectory


can be accessed from within the M A T L A B environment without specifying the


complete path of the file.


M A T L A B includes a comprehensive combination of demos to illustrate the


offered features and capabilities to its users. In order to explore the demo, just


type demo at the command line of the M A T L A B environment indicated by the


>> prompt:


>> demo


This will open the M A T L A B demo window. Follow the interactive options by


clicking on the features that interest you. In most cases, the M A T L A B code


used to generate the demo is also included for illustration.


Help in M A T L A B


M A T L A B provides a useful built-in help facility. You can access help either


from the command line or by clicking on the graphical “Help” menu. On the


command line, the format for obtaining help on a particular M A T L A B function


is to type help followed by the name of the function. For example, to learn


more about the plot function, type the following instruction in the M A T L A B


command window:


>> help plot


If the name of the function is not known beforehand, you can use the lookfor


command followed by a keyword that identifies the function being searched,


to enlist the available M A T L A B functions with the specified keyword. For


example, all M A T L A B functions with the keyword “Fourier” can be listed by


typing the following command:


>> lookfor Fourier


On execution of the above command, M A T L A B returns the following list,


specifying the names of the functions and a brief comment on their capabilities:


FFT Discrete Fourier transform.


FFT2 Two-dimensional discrete Fourier Transform.


FFTN N-dimensional discrete Fourier Transform.


IFFT Inverse discrete Fourier transform.


IFFT2 Two-dimensional inverse discrete Fourier trans-


form.


IFFTN N-dimensional inverse discrete Fourier transform.


XFOURIER Graphics demo of Fourier series expansion.


DFTMTX Discrete Fourier transform matrix.
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E.2 Entering data into M A T L A B


Data can be entered in the M A T L A B as a scalar quantity, a row or column vector,


and a multidimensional array. In each case, both real and complex numbers can


be entered. As required in other high-level languages, there is no need to declare


the type of a variable before assigning data to it. For example, variable a can


be assigned the value (6 + j8) by typing the following command:


>> a = 6 + j*8


On the execution of the above command, M A T L A B returns the following


answer:


a = 6.0000 + 8.0000i


In the above command, we did not allocate any value to j, yet M A T L A B


recognized it as a complex operator with value j2 = 1. There is a whole range
of special words that are used by M A T L A B either as the name of functions or


variables. These include pi, i, j, Inf, NaN, sin, cos, tan, exp, and rem.


Type help elfun to list the names that are used by M A T L A B to specify the


built-in functions and variables. The value of any of these special words can be


changed by assigning a new value to it. For example,


>> sin = 1


allocates the value of 1 to the variable sin. The M A T L A B definition of


the trigonometric sine is overwritten by our command. To check the cur-


rent status of the runtime environment of M A T L A B , type whos at the


prompt:


>> whos


M A T L A B returns the following answer:


Name Size Bytes Class


a 1x1 16 double array (complex)


sin 1x1 8 double array


Grand total is 2 elements using 24 bytes


Alternatively, the command who can also be used to list the name of defined


variables in the M A T L A B runtime environment. The command who does not


provide additional details such as the size and class of each variable. In the


preceding discussions, we overwrote the sin function and allocated a value of


1 to it. Consequently, we cannot access the M A T L A B built-in function sin


to evaluate the sine of an angle. To clear our definition of sin, we can use the


following command:


>> clear sin
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The original definition ofsin is restored in the M A T L A B environment. Typing


>> sin(pi/6)


calls up the built-in sin function with π /6 as the input argument. Recall


that the variable pi is a built-in variable that has been assigned the value


of 3.141 596 25. M A T L A B returns


ans =


0.5000


after execution of the sin command. For additional information on the sin


function, type help sin. To allocate the returned value of sin(pi/6)to


variable x, for example, type


>> x = sin(pi/6)


which returns


x =


0.5000


In the above examples, M A T L A B displays the result of each instruction. The


display can be suppressed by inserting a semicolon at the end of each instruction.


For example, the command


>> x = sin(pi/6);


initializes x = 0.5000 without displaying the end result.


Most common arithmetic operations are available in M A T L A B . These


include + (add), − (subtract), ∗ (multiply), / (divide), ∧ (power), .∗ (array
multiplication), and ./ (array division). For complex numbers, in addition to


the aforementioned operators, M A T L A B provides a collection of library func-


tions that can be used to perform more complex operations. These are illustrated


through the following example, where a brief explanation of each instruction is


included as a comment. In M A T L A B , the segment of line after the % sign on the


same line are treated as comments and ignored during execution. The returned


value is enclosed in parentheses and is also included with the explanation.


>> x = 2.3 - 4.7*i; % Initializes x as a complex


% variable.


>> x magn = abs(x); % magnitude of x, (5.2326)


>> x phas = angle(x); % phase of x in radians/s, (1.1157)


>> x real = real(x); % Real component of x, (2.3)


>> x imag = imag(x); % Imaginary component of x,(-4.7)


>> x conj = conj(x); % Complex conjugate of x,


% (2.3 + 4.7i)
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M A T L A B also provides a set of functions for decimal numbers. If applied to


integers, these functions do not make any changes. On the other hand, if these


functions are applied to complex numbers, each operation is performed individ-


ually on the real and imaginary component. Below we provide a selected list.


>> x = 2.3 - 4.7*i; % Initializes x as a complex


% variable


>> x round = round(x); % rounds to nearest


% integer, (2 – 5i)


>> x fix = fix(x) % rounds to nearest integer


% towards zero, (2 – 4i)


>> x floor = floor(x) % rounds down (towards negative


% infinity), (2 – 5i)


>> x ceil = ceil(x) % rounds up (towards positive


% infinity) (3 – 4i)


We now consider initialization of multidimensional arrays through a series of


examples.


Example E.1


Consider the two row vectors


f =
[


1, 4, −2, (3 − 2i)
]


and


g =
[


−3, (5 + 7i), 6, 2
]


.


Perform the following mathematical operations in M A T L A B on vectors f and
g:


(i) addition, r1 = f + g;
(ii) dot product, r2 = f · g;


(iii) mean, r3 =
1


4


4
∑


k=1
f (k);


(iv) average energy, r4 =
1


4


4
∑


k=1
| f (k)|2;


(v) variance, r5 =
1


4


4
∑


k=1
| f (k) − r3|2, where r3 is defined in (iii).


Solution


The M A T L A B code to solve part (i) is given below with comments following


the % sign:
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>> f = [1 4 -2 3-2*i]; % initialize f


>> g = [-3 5+7*i 6 2]; % initialize g


>> r1 = f + g % Calculate the sum of f and g


% The result is displayed due


% to the absence of a


% semicolon at the end of the


% instruction


results in the following value for r1:


r1 =


-2.0000 9.0000+7.0000i 4.0000 5.0000-2.0000i


which can be confirmed by direct addition of vectors f and g.
(ii) To compute part (ii), we use the M A T L A B function dot as follows:


>> r2 = dot(f,g) % dot returns dot product btw f and g


which returns


r2 =


11.0000+32.0000i


An alternative approach to compute the dot product is to multiply the row vector


f by the conjugate transpose of g. The transpose is needed to make the two


vectors conformable for multiplication. You may verify that the instruction


>> r2 = g*f’; % alternative expression for calculating


% the dot product. Operator ’ denotes


% complex-conjugate transpose


returns the same value as above.


(iii) The instruction for part (iii) is as follows:


>> r3 = sum(f)/length(f) % sum(f) adds all row entries


% of vector f length(f)


% returns no. of entries in f


which returns


r3 =


1.5000 − 0.5000i


(iv) The instruction for part (iv) is as follows:


>> r4 = sum(f.*conj(f))/length(f)


% Operation f.*g does an element by


% element multiplication of vectors f


% and g. Operation conj(f) takes complex


% conjugate of each entry in f
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which returns


r4 =


8.5000


(v) To compute part (v), we can modify the code in part (iv) by preceding it


with the following instruction:


>> f zero mean = f – mean(f);% mean(f) computes the


% average value of f


>> r5 = sum(f zero mean.*conj(f zero mean))/length


(f zero mean)


which returns


r5 =


6


As a final note to our introduction on vectors, the second element of vector f


can be accessed by the instruction


>> f(2)


which returns


ans =


4


A range of elements within a vector can be accessed by specifying the integer


index numbers of the elements. To access elements 1 and 2 of row vector f, for


example, we can type the instruction


>> f(1:1:2);


Similarly, the odd number elements in f can be accessed by the instruction


>> x = f(1:2:length(f));


where we have assigned the returned value to a new variable x. Code


1:2:length(f) is referred to as a range-generating statement that generates


a row vector. The first element of the row vector is specified by the left-most


number (1 in our example). The next element in the row vector is obtained by


adding the middle element (2 in our example) to the first element and proceed-


ing all the way till the limit (length(f)) is reached. The middle element (2 in


our example) specifies the increment, while the third element (length(f))


is the ending index. If the increment is missing, M A T L A B assigns a default


value of 1 to it. As another example, the range-generating statement 1:11 pro-


duces the row vector [1 2 3 4 5 6 7 8 9 10 11]. Further, the start-


ing index, increment, or ending index can also be real-valued numbers. The


range-generating statement [0.1:0.1:0.9] produces the row vector [0.1


0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9].
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Example E.2


Initialize the following matrix:


A =
[


2 4 −1 0
5 2 3 9


]


and take the pseudo-inverse of A, defined as A+ = (AT A)−1 AT with T denoting
the conjugate transpose operation.


Solution


The following M A T L A B code initializes matrix A:


>> A = [2 4 -1 0;5 2 3 9]; % The semicolon inside square


% parenthesis separates


% adjacent rows of a matrix


An alternative but longer set of instructions for the initialization of A is as
follows:


>> A(1,1)=2; A(1,2)=4; A(1,3)=-1; A(1,4)=0;


>> A(2,1)=5; A(2,2)=2; A(2,3)=-3; A(2,4)=9;


To calculate the pseudo-inverse of A, the following instruction may be used:


>> Ainverse = inv(A’*A)*A’; % Function inv calculates


% inverse of a matrix


% while ’ denotes conjugate


% transpose


which returns a warning that the matrix is singular. From linear algebra, we


know that the inverse of a matrix only exits if it is non-singular, hence the


pseudo-inverse does not exist for the above choice of A.


Example E.3


Initialize the following discrete-time function:


f [k] = 2∗ cos
(


π


15
∗k


)


for 0 ≤ k ≤ 30.


Solution


As in other high-level languages, we can use a for statement to initialize the


function f . The code is given by
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for k = 0:1:30,


f(k+1) = 2*cos(pi/15*k); % In MATLAB, the index of a


% vector or a matrix must


end % not be zero.


In M A T L A B , the index of a vector or matrix cannot be zero. Therefore, we use


two row vectors k and f to store the DT function. The row vector k specifies


the time indices at which function f is evaluated, while f contains the value


of the DT function at the corresponding time index stored in k. The above


initialization can also be performed in M A T L A B more quickly and in a much


more compact way.


clear % user-defined variables are cleared


k = 0:30; % k is a row vector of dimensions 1x30


f = 2*cos(5*k) % f has the same dimensions as k


returns the following answer:


f =


Columns 1 through 7


2.0000 0.5673 -1.6781 -1.5194 0.8162 1.9824 0.3085


Columns 8 through 14


-1.8074 -1.3339 1.0506 1.9299 0.0443 -1.9048 -1.1249


Columns 15 through 21


1.2666 1.8435 -0.2208 -1.9688 -0.8961 1.4603 1.7246


Columns 22 through 28


-0.4819 -1.9980 -0.6516 1.6284 1.5754 -0.7346 -1.9922


Columns 29 through 31


-0.3956 1.7677 1.3985


In terms of execution time, implementation 2 is more efficient than the first


implementation. Since M A T L A B is an interpretive language, loops take a long


time to be executed. An efficient M A T L A B code avoids loops and, if possible,


replaces them with matrix or vector multiplications.


Example E.4


Initialize the following DT function:


g[k] = f [k] for 0 ≤ k ≤ 6.


Solution


In the above example, it has been assumed that the matrix f has been initialized
as per Example E.3. The following M A T L A B code will initialize row vector


g:


>> g = f(1:7);
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If missing, a default value of 1 is assumed as the increment in the range-


generating statement(1:7). Therefore,g(1:7) is equivalent tog(1:1:7).


E.3 Control statements


M A T L A B supports several other loop statements (while, switch, etc.) as


well as theif-else statement. In functionality, these statements are similar to


their counterparts in C but the syntax is slightly different. In the following, we


provide examples for some of the loop and conditional statements by providing


analogy with the C code. Readers who are unfamiliar with C can skip the C


instructions and study the explanatory comments that follow.


Example E.5


Consider the following set of instructions in C:


int X[2][2] ={ {2, 5},{4,6} }; /* initialize matrix X */


int Y[2][2] ={ {1, 5},{6,-2} }; /* initialize matrix Y */


int Z[2][2]; /* declare Z */


for (m = 1; m <= 2; m++) {


Z[m][n] = X[m][n] + Y[m][n];


/* Z = X + Y */


}


Write down the equivalent M A T L A B code for the above instructions. Can the


M A T L A B code be simplified?


Solution


Implementation 1 Following a step-by-step conversion of the C code into
M A T L A B yields


>> X = [2 5; 4 6] % X is initialized


>> Y = [1 5; 6 -2] % Y is initialized


>> for m = 1:2,


for n = 1:2,


Z(m,n) = X(m,n)+Y(m,n);


end


end


Implementation 2 Thefor loops in M A T L A B can be replaced by thewhile
statement as follows:


>> X = [2 5; 4 6] % X is initialized


>> Y = [1 5; 6 -2] % Y is initialized


>> m = 1;


>> while (m < 3),
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n = 1;


while (n < 3),


Z(m,n) = X(m,n)+Y(m,n);


n = n + 1;


end


m = m + 1;


end


Implementation 3 We can avoid the twofor orwhile loops by performing
a direct sum of matrices X and Y as follows:


>> X = [2 5; 4 6] % X is initialized


>> Y = [1 5; 6 -2] % Y is initialized


>> Z = X + Y;


Compared with the first two implementations, the third implementation is


cleaner and faster.


Example E.6


Consider the following set of instructions in C:


int a = 15; /* initialize scalar a */


int x; /* declare x */


if (a > 0)


x = 5; /* initialize x to 5 if a > 0*/


else


x = 100; /* initialize x to 5 if a <= 0 */


Write down the equivalent M A T L A B code.


Solution


Following a step-by-step conversion, we obtain the following equivalent set of


instructions in M A T L A B :


>> a = 15;


>> if a > 0,


x = 5;


else,


x = 100


end


While using the conditional statements, relational operators such as equal to,


not equal to, or less than are generally required in the code. M A T L A B provides


six basic relational operators which are defined in Table E.1.
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Table E.1. Relational operations available in


M A T L A B


Relational operator Definition


< less than


> greater than


== equal to
∼= not equal to


<= less than or equal to


>= greater than or equal to


E.4 Elementary matrix operations


M A T L A B provides several built-in functions to manipulate matrices. In the


following, we provide a brief description of some of the important matrix oper-


ations. Consider the instruction


>> f = exp(0.05*[1:30]); % Initialize row vector f


which initializes the row vector f according to the following definition:


f [k] = e0.05k for 1 ≤ k ≤ 30.


The following M A T L A B instructions provide examples of basic arithmetic


operations performed on a row or column vector. Comments against each


instruction provide a brief description of the instruction, with the value returned


by M A T L A B enclosed in parenthesis:


>> f max = max(f); % Maximum value in f (4.4817)


>> f min = min(f); % Minimum value in f (1.0513)


>> f sum = sum(f); % Sum of all entries in f (71.3891)


>> f prod = prod(f); % Product of entries in


f (1.2513e+10)


>> f mean = mean(f); % Mean of entries in f (2.3796)


>> f var = var(f); % Variance of entries in f (1.0578)


>> f size = size(f); % Dimensions of f ([1 30])


>> f length = length(f); % Length of f (30)


>> fprintf(‘\nThe min value of all matrix elements =


%f\n’, f min); % Prints the variable f min


The fprintf instruction at the end of the code is used to print the value of


the variable f min onto the screen. It returns


The min value of all matrix elements = 1.051300


The aforementioned instructions can alternatively be used for matrices and


higher dimensional arrays. The syntax stays the same, but the result may be








P1: NIG/KTL P2: RPU/XXX QC: RPU/XXX T1: RPU


CUUK852-Mandal & Asif May 28, 2007 14:18


841 E Introduction to M A T L A B


different. For matrices, for example, the specified operation is performed on


each column of the matrix and a row vector is returned as the answer. For


example, consider the matrix F initialized by the following instruction:


>> F = magic(5); % magic(N) returns an (N x N) matrix


% with entries between 1 through


% N∧2 having equal row, column, and


% diagonal sums


For matrix F, the values indicated in the comments are returned:


>> F max = max(F); % Maximum value along each column


% [23 24 25 21 22]


>> F min = min(F); % Minimum value along each column


% [ 4 5 1 2 3]


>> F sum = sum(F); % Sum of entries along each column


% [65 65 65 65 65]


>> F prod = prod(F); % Product of entries along each


% column


% [172040 155520 43225 94080 142560]


>> F mean = mean(F); % Mean of entries along each column


% [13 13 13 13 13]


>> F var = var(F); % Variance of entries along each


% column


% [52.5 65.0 90.0 65.0 52.5]


>> F size = size(F); % Dimensions of F; [5 5]


>> F length


= length(F); % Returns number of rows in F (5)


For completeness, we also include a list of some basic matrix operations, some


of which were introduced in Section E.1:


>> X = [2 5; 4 6]; % Initailize (2 x 2) matrix X


>> Y = [1 5; 6 -2]; % Initailize (2 x 2) matrix Y


>> Zsum = X + Y; % Adds matrices of equal dimensions.


% Returns [3 10; 10 4]


>> Zdif = X - Y; % Subtracts matrices of equal


% dimensions;


% Returns [1 0; -2 8]


>> Zprod = X*Y; % Multiplies matrices conformable for


% multiplication; Returns


% [32 0; 40 8].
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>> Ztran = X’; % Calculates transpose of X


% Returns [2 4; 5 6]


>> Zinv = inv(X); % Inverts X


% Returns [-0.75 0.62; 0.50 -0.25]


>> Zarraymul = X.*Y; % Element by element multiplication


% Returns [2 25; 24 -12]


>> Zarraydiv = X./Y; % Element by element division


% Returns [2 1; 0.6667 -3]


>> Zpower1 = X.∧2; % Each element is raised to power


% by 2


% Returns [4 25; 26 36]


>> Zpower2 = X.∧Y; % Each element in X is raised to


% power by its corresponding


% element in Y


% Returns [2 3125; 4096 0.028]


E.5 Plotting functions


M A T L A B supports multidimensional visualization that allows experimental


data to be rendered graphically in a comprehensible format. In this section, we


will focus on 2D plots for continuous-time and discrete-time variables. Readers


should check the demo for more advanced graphics including 3D plots.


Example E.7


Plot the following function:


f [k] = 2 cos(0.5k)


as a function of k for the range −20 ≤ k ≤ 20.


Solution


The following set of M A T L A B instructions will generate and plot the function:


>> k = -20:20; % Initializes k as a (1 x 41)


% row vector


>> f = 2*cos(0.5*k); % Initializes f as cos(0.5k)


>> figure(1); % selects figure 1 where plot


% is drawn


>> plot(k,f); grid on; % CT plot of f (ordinate)


% versus k (abscissa)


% Grid is turned on


>> xlabel(‘k’); % Sets label of X-axis to k


>> ylabel(‘f[k]’); % Sets label of Y-axis to f[k]


>> axis([-25 25 -3 3]) % Plot is viewed in the range


% given by
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Fig. E.1. Plots of


f [k ] = 2 cos(0.5k) versus k in
the range −20 ≤ k ≤ 20.
(a) CT plot; (b) stem DT plot.


% [x-min x-max y-min y-max]


>> print -dtiff plot.tiff % Saves figure in the file


% “plot.tiff” in


% the TIFF format


These instructions produce a continuous plot cosine wave, as shown in


Fig. E.1. It is also possible to construct a discrete-time plot using the stem


function:


>> figure(2)


>> stem(k,f,‘filled’); % DT plot; option ‘filled’


% fills the circles at the


% top of vertical bars


>> xlabel(‘k’); % Sets label of X-axis to k


>> ylabel(‘f[k]’); % Sets label of Y-axis to f[k]


>> axis([-25 25 -3 3])


>> print -dtiff plot2.tiff


Both plot and stem functions have a variety of options available, which may


be selected to change the appearance of the figures. The reader is encouraged


to explore these options by seeking help on these functions in M A T L A B . In


addition, there are several other 2D graphical functions in M A T L A B . These


include semilogx, semilogy, loglog, bar, hist, polar, stairs,


rose, errorbar, compass, and pie.
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Fig. E.2. Multiple plots sketched


in the same window for Example


E.8.


Plotting multiple graphs in one figure


M A T L A B provides the function subplot to sketch multiple graphs in one


figure. We demonstrate the application of the subplot function through an exam-


ple.


Example E.8


Plot the following functions over the specified range in one figure:


(a) f1[k] = sin(0.1πk) for −5 ≤ k ≤ 5;
(b) f2[k] = 2−k for −7 ≤ k ≤ 7;


(c) f3[k] =


{


1 (0 ≤ k ≤ 4)
3 (5 ≤ k ≤ 9) ;


(d) f4[k] =


{


k (0 ≤ k ≤ 5)
0 (6 ≤ k ≤ 9).


Solution


The following set of M A T L A B instructions plots the four functions illustrated


in Fig. E.2.
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>> % Part (a)


>> figure(5) % Select figure 5 for plots


>> clf % Clear figure 5


>> k = [-5:5]; % k = [-5 -4 ...0 ...4 5]


>> f1 = sin(0.1*pi*k); % Calculate function f1


>> subplot(2,2,1); % Divides fig 5 into (m = 2)


% vertical and (n = 2)


% horizontal sub-figures.


% The last argument (p = 1)


% accesses sub-figures


% (1 <= p <= m*n).


>> stem(k,f1,‘filled’);


grid on; % DT plot of f1 versus k


>> xlabel(‘k’) ; % Label of X-axis


>> ylabel(‘f1[k]’) % Label of Y-axis


>> % Part (b)


>> k = [-7:7]; % k overwritten to


% [-7 -6 ...0 ...6 7]


>> f2 = 2. ∧ (-k) ; % Calculate function f2


>> subplot(2,2,2); % Select p = 2 sub-figure


>> stem(k,f2,‘filled’);


grid on; % DT plot of f2 versus k


>> xlabel(‘k’); % Label of X-axis


>> ylabel(‘f2[k]’); % Label of Y-axis


>> % Part (c)


>> k = [0:9]; % k overwritten to


[0 1 ...8 9]


>> f3 = [1 1 1 1 1 3 3 3 3 3]; % Calculate function f3


>> subplot(2,2,3); % Select p = 3 sub-figure


>> stem(k,f3,’filled’);


grid on; % DT plot of f3 versus k


>> xlabel(‘k’); % Label of X-axis


>> ylabel(‘f3[k]’); % Label of Y-axis


>> % Part (d)


>> k = [0:9];


>> f4 = [0 1 2 3 4 5 0 0 0 0]; % Calculate function f4


>> subplot(2,2,4); % Select p = 4 sub-figure


>> stem(k,f4, ‘filled’);


grid; % DT plot of f2 versus k


>> xlabel(‘k’); % Label of X-axis


>> ylabel(‘f4[k]’); % Label of Y-axis


>> print -dtiff plot.tiff; % Save the figure as a


% TIFF file
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E.6 Creating M A T L A B functions


In the preceding examples, we have used M A T L A B in an interactive mode


with each instruction individually typed at the command prompt. M A T L A B


allows for the creation of M-files, where instructions can be stored in a file.


An M-file can be of two types, called scripts and functions. A script is a list of
M A T L A B instructions that are saved in file with a . m extension. The script


file can access the variables defined in the M A T L A B workspace. Likewise,


all variables declared in the script are accessible to the workspace. For exam-


ple, the instructions to solve part (a) of Example E.8 can be stored in a file


myfirstplot.m as follows:


% Content of script myfirstplot.m


% Part (a)


figure(5) % Select figure 5 for plots


clf % Clear figure 5


k = [-5:5]; % k = [-5 -4 ...0 ...4 5]


f1 = sin(0.1*pi*k); % Calculate function f1


subplot(2,2,1); % Divides fig 5 into (m = 2) vertical


% and (n = 2) horizontal sub-figures


% The last argument (p = 1) accesses


% sub-figures (1 <= p <= m*n)


stem(k,f1,‘filled’);


grid on; % DT plot of f1 versus k


xlabel(‘k’); % Label of X-axis


ylabel(‘f1[k]’) % Label of Y-axis


To executemyfirstplot.m, simply type the name of the M-file (myfirst-


plot in this case) at the command prompt. By executing the function whos,


you can determine that all variables defined in myfirstplot.m are part of


the M A T L A B workspace.


A function in M A T L A B is a special type of script file that can accept input


arguments and return output arguments. Variables declared within a function are


local to the function. Likewise, none of the variables defined in the M A T L A B


working environment are accessible by the function unless these variables are


explicitly passed as an input argument to the function. A function file must


follow a specific format. The first line defines the function by specifying a


name for the function and indicates the number of input and output arguments.


Immediately following the definition, lines that begin with a comment symbol


(%) are printed when help is requested on the function. As an example, we


modify script myfirstplot.m into a function in the following.
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function [f1] = myfirstplot(k)


% USAGE: [f1] = myfirstplot(k)


% Plots f1 = sin(0.1*pi*k) as a function of k in subplot


% (2,2,1) where k = row vector containing the indices


% where f1 is to be defined f1 is the output row vector


figure(5) % Select figure 5 for plots


clf % Clear figure 5


f1 = sin(0.1*pi*k); % Calculate function f1


subplot(2,2,1); % Divides fig 5 into (m = 2) vertical


% and (n = 2) horizontal sub-figures


% The last argument (p = 1) accesses


% sub-figures. (1 <= p <= m*n)


stem(k,f1,‘filled’);


grid on; % DT plot of f1 versus k


xlabel(‘k’) ; % Label of X-axis


ylabel(‘f1[k]’) % Label of Y-axis


end


Once a function has been created, it must be saved in a file whose name is


same as the defined name of the function. In our example, the aforementioned


function must be saved in a file myfirstplot.m. The calling format for a


function is the same as one would use to access a M A T L A B built-in function.


To access myfirstplot, the following instructions must be typed at the


M A T L A B prompt:


>> m = [-5:5]; % Define the input argument


>> [y] = myfirstplot(m); % Output value is returned to y


% with subplot plotted in


% figure 5


E.7 Summary


In this appendix, a working introduction to M A T L A B is provided. The intent


is to introduce the basic capabilities of M A T L A B to the reader. M A T L A B


supports hundreds of built-in functions from linear algebra, numerical analysis,


polynomial algebra, and numerical optimization. These built-in functions are


supported in both the student and full version of M A T L A B , and do not require


any toolboxes. A list of built-in functions is available on the Mathworks website


(www.mathworks.com). Readers are encouraged to visit the website and explore


M A T L A B in more detail.
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Appendix F About the CD


This book is accompanied by a CD that includes material for supplementary


reading, M A T L A B code used in the text, and data used in different simulations.


The organization of the CD is shown in Table F.1.


In Table F.1, we have assumed that the CD drive is mapped to the shortcut


“CD.” Check the appropriate shortcut to the CD drive on your computer. For


example, if the CD drive is mapped to the shortcut “F,” replace “CD” in the


aforementioned paths to the folders with “F” such that the path to the interactive


programs is specified by F:\InteractEnv. The other two folders can be found in a
similar way. In the following we provide additional information on each folder.


F.1 Interactive environment


The “InteractEnv” folder contains three interactive learning objects used to


explain the operations of convolution integral, convolution sum, and digital


filtering. While the first two learning objects developed to explain convolution


integral and sum are based on Macromedia Flash, the third learning object uses


a graphical interface environment based on M A T L A B .


F.1.1 Convolution


Convolution is an important signal processing operation, which is extensively


used to compute the output of linear time-invariant systems. The graphical


approach to solve the convolution integral in the CT domain was presented in


Section 3.5. Likewise, the steps involved in computing the convolution sum in


the DT domain were explained in Section 10.5. To help understand the two


convolution operations, the CD includes two Shockwave Flash animations, one


each for the convolution integral and convolution sum.


The learning object for the convolution integral convolves the following CT


signal:


x(t) = u(t + 0.5) − u(t − 1) with h(t) = u(t + 0.5) − u(t + 1)


848
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Table F.1. Organization of the CD


Folder Comments


CD:\ InteractEnv contains interactive programs explaining important
concepts such as the convolution integral, the


convolution sum, and digital filtering


CD:\Data contains selected audio clips and images used in M A T L A B
simulations


CD:\ M A T L A B Codes contains M A T L A B functions used in the text


Table F.2. Values of the sequence y [k ]


k −5 −4 −3 −2 −1 0 1 2
y[k] 8 12 14 15 15 7 3 1


and describes the graphical approach to derive the output of the LTIC system. By


analytical computation, it is straightforward to derive the following expression


for the output:


y(t) =











t + 1 −1 ≤ t < 0.5
−t + 2 0.5 ≤ t < 2


0 otherwise.


The learning object for the convolution sum uses the following DT sequences:


x[k] = u[k + 2] − u[k − 3] with h[k] = 2−k(u[k + 3] − u[k − 1])


and describes the graphical approach to derive the output of the LTID system.


All non-zero values of the output sequence y[k] are specified in Table F.2.
In order to run the two animations, you should open a web browser, such as


Netscape or Internet Explorer (IE), with the Flash Player incorporated within


the browser. If the Flash Player is not incorporated, it can be downloaded and


installed from http:/www.macro.media.com, which is the official website of


Macromedia. In the following, we highlight the procedure for the convolution


integral through a series of steps.


Step 1 Open the internet browser (Netscape or IE) by selecting the program


from the task bar. Within the browser, select the “File” option from the extreme


top left menu and click on the “Open” option. This opens a dialog box, where


you can provide the complete path to the convolution integral animation and


choose a file. Browse to the convolution animation and select it. In our case,


the path to the animation for the convolution integral is given by


CD:\InteractEnv\convolution\ConvolutionIntegral.swf


where CD specifies the drive name to the CD-ROM. After the execution of step


1, a frame similar to that in Fig. F.1 would be displayed on the computer screen.
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Fig. F.1. Initial Flash window for


convolution integral.


Step 2 The frame displayed in step 1 has three subwindows. The top subwindow


on the left-hand side plots the figures graphically, while the top subwindow on


the right displays different steps involved in computing the convolution integral.


The step being executed is highlighted, with the explanation included in the


bottom subwindow. To interact with the animation, three options are available.


Clicking on the “previous step” option moves the animation back by one frame,


showing the result of the previous step. Clicking on the “next step” moves the


animation forward by one frame, while clicking on the “reset” option initializes


the animation to the start.


Step 3 Play the animation according to your speed and try to understand all


operations performed to compute the result of the convolution integral. Once


the animation has been completely played, a frame similar to that in Fig. F.2


would appear on the computer screen.


The procedure for running the convolution sum animation is identical to that


of the convolution integral. Once this animation has been completely played, a


frame similar to that in Fig. F.3 would appear on the computer screen.


F.1.2 Digital audio filtering


To explain digital filtering, the CD provides a set of M A T L A B programs used to


create a digital audio filtering interactive environment (DAFIE). The programs
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Fig. F.2. Final frame for the


learning object explaining the


convolution integral operation.


are available in the following folder:


CD:\InteractEnv\filter


where CD specifies the drive name to the CD-ROM. DAFIE is a graphical user


interface (GUI), which may be used to select an audio file, read the signal,


and manipulate the signal in different ways. The following four functions are


primarily used to create the interactive environment:


dafie.m % main program for generating DAFIE


localbutton.m % function that selects the operation


% using local buttons


designfilter.m % designs filters based on the specs


% provided by the user


openfile.m % opens a dialog box to select an input


% audio file


The main program dafie uses the built-in M A T L A B function uicontrol
to create the user interface. When the main program dafie is run, an inter-
active window is created. A snapshot of the window is shown in Fig. F.4. The


interactive window consists of three subwindows: Command, Comments, and


Graphics. The Command subwindow controls the environment through a series


of buttons. A brief description on the functionality of each button is as follows.
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Fig. F.3. Final frame for the


learning object explaining the


convolution sum operation.


Read File: Loads the input signal from a sound file stored in the wav


format.


Plot Signal: Plots the loaded signal in the Graphics window.


Play Signal: Plays the audio signal. The user must have a sound card and


speakers to hear the audio.


Signal Spectrum: Computes the power spectrum of the audio signal and


displays it in the Graphics subwindow. The power spectrum is calculated


by parsing the audio signal in segments. Each segment has a length of


1024 samples with an overlap of 512 in between the neighboring seg-


ments. Section 17.2.3 explains the steps involved in computing the power


spectrum of a signal.


Design Filter: Designs a DT filter and displays the coefficients of the fil-


ter. If the selected filter is of the FIR type, then the impulse response


h[k] of the filter is plotted in the Graphics window. If the selected filter
is of the IIR type, then the coefficients of the numerator and denomi-


nator of the transfer function of the filter are displayed using the stem


plot. DAFIE provides the option of selecting one of the Bartlett, Ham-


ming, Hanning, Blackman, or Kaiser windows in designing the FIR fil-


ter with the number of taps limited to 201. For IIR filters, the choices


are limited to the Butterworth or Chebyshev type II filter with a stop-


band attenuation of at least 50 dB and pass-band ripples limited to a


maximum level of 2 dB. The number of taps is ignored for the IIR


filters.
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Fig. F.4. The DAFIE environment


for digital audio filtering.


Freq Response: Calculates and plots the magnitude spectrum of the


designed filter. The magnitude spectrum is displayed in the Graphics win-


dow.


Apply Filter: Filters the input signal and plots the resulting output signal as


a function of time.


Play Filt Signal: Plays the output (filtered) signal as audio.


Filt Sig Spectrum: Computes the power spectrum of the output signal and


displays it in the Graphics window.


Save Output: Stores the output signal as audio in the file 〈output.wav〉
in the working directory. If you choose this command, ensure that you


have write permission to the current working directory.


Exit Dafie: Exits the DAFIE, ending the program.


F.2 Data


The Data folder in the CD contains two subfolders. These subfolders contain


different audio clips and images used in the text. The audio clips are stored


in the wav format with the .wav extension. The images are stored in the TIFF


(also referred to as the TIF) format, where the image data is stored without any


distortions. A list of the audio clips and images included in the CD is provided


in the following.


Audio clips (CD:\Data\audio)


bell.wav % Audio sampled at 22.05 kHz and


% quantized to 8-bits


test44k.wav % Audio sampled at 44.1 kHz and


% quantized to 8-bits
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noisy audio1.wav % Audio signal corrupted with


% narrowband noise


noisy audio2.wav % Audio signal corrupted with


% wideband noise


Gray images (CD:\Data\image)


{ayantika.tif, lena.tif, % Images used in this book


rini.jpg, sanjukta.tif,


train.jpg}


{castle.jpg, eiffel.jpg, % Other images given for


girl.jpg, sounio.jpg} % solving problems


Note that images with tif/tiff extension include no distortion. On the other hand,


images with jpg extension are compressed using JPEG codec.


Color images (CD:\Data\image\color)


{castle, eiffel, gardern, girl, % Selected color images


lena, sanjukta, sounio, % in JPG/TIFF format


stadium, train}


F.3 M A T L A B codes


The CD includes the M A T L A B codes used in various examples in the text. In


the following, we provide a listing of the names of the functions arranged in


terms of their inclusion in different chapters.


Chapter 1
Example 01 23.m % plots several CT functions using


% subplot and plot


Example 01 24.m % plots several DT sequences using


% subplot and stem


Chapter 3
Example 03 12.m % solves first order differential


% equation


Example 03 13.m % solves second order differential


% equation


myfunc1.m % defines a first order differential


% equation


myfunc2.m % computes vector of derivatives
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Chapter 5
bodeplot.m % plots BODE plot of a transfer


% function in section 5.10.2


myctft.m % calculates CTFT of a function in


% section 5.10.1


myinvctft.m % calculates inverse CTFT of a function


% in section 5.10.1


section 5 10 1.m % calculates CTFT of a function in


% section 5.10.1


Chapter 7
Example 07 5.m % calculates and plots frequency


% response of Butterworth filter


Example 03 7.m % calculates and plots frequency


% response of Chebyshev I filter


Example 07 8.m % calculates and plots frequency


% response of Chebyshev II filter


Example 03 9.m % calculates and plots frequency


% response of elliptic filter


Example 03 10.m % designs highpass filter and plots


% frequency response


Example 07 11.m % designs bandpass filter and plots


% frequency response


Example 03 12.m % designs bandstop filter and plots


% frequency response


Chapter 8
ImmuneSystem1.mdl % Simulink model for stable immune


% system


ImmuneSystem2.mdl % Simulink model for unstable immune


% system


Chapter 10


Example 10 17.m % calculates system output using direct


% method in Example 10.17


Example 10 18.m % calculates system output using direct


% method in Example 10.18


Example 10 19.m % calculates system output using conv


% function in Example 10.19
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Chapter 12


Example 12 6.m % calculates freq. charac. of decaying


% exponential function using dft


Example 12 7.m % calculates freq. charac. of two


% complex exponential functions


% using dft


Example 12 8.m % calculates frequency characteristics


% using N=32


Example 12 8 N64.m % calculates frequency characteristics


% using N=64


Example 12 9.m % calculates dft of a decaying


% exponential function


Example 12 11.m % calculates DTFT of an aperiodic


% sequence


mydft.m % calculates dft using direct


% calculation


myfft.m % calculates dft using radix-2 fft


% method


tfft.m % test program to compare mydft and


% myfft functions


Chapter 13


Example 13 20.m % calculates partial fraction


% coeffs of H(z)=B(z)/A(z)


Example 13 21.m % calculates poles and zeros and plots


% them in the z-plane


Example 13 22.m % calculates transfer function of a


% system from its poles and zeros


Chapter 14


section14 9 1.m % calculates the partial fraction


% coefficients in section 14.9.1


section14 9 2.m % calculates the zeros and poles of a


% transfer function in section 14.9.2


Chapter 15


Example 15 9.m % designs lowpass FIR filter using


% Hamming/Blackman windows


Example 15 10.m % designs lowpass FIR filter using


% Kaiser window


Example 15 11.m % designs lowpass FIR filter using


% Parks-McClellan algorithm
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Chapter 16
Example 16 2.m % converts a CT filter to DT using


% impulse invariance method


Example 16 3.m % converts a CT filter to DT using


% impulse invariance method


Example 16 4.m % converts a CT filter to DT using


% bilinear transformation


Example 16 5.m % designs highpass IIR filter using


% CT elliptic filter and bilinear


% transform


Example 16 6.m % designs bandpass IIR filter using


% CT elliptic filter and bilinear


% transform


Example 16 7.m % designs bandstop IIR filter using


% CT elliptic filter and bilinear


% transform


Chapter 17
Example 17 2.m % calculates spectrogram of a DT signal


Example 17 3.m % calculates power spectral density


% using Welch method


Example 17 4.m % filters (lowpass, bandpass,highpass)


% an audio signal


Example 17 5.m % bandstop filters an audio signal


Example 17 8.m % calculates 2-D spectrum of a grating


% image


Example 17 9.m % spectral analysis and lowpass


% filtering of an image


Example 17 10.m % highpass filters an image


Example 17 11.m % predictive coding of an image


Example 17 12.m % JPEG compression of an image with


% different quality factors


Section 17 2 3.m % calculates power spectral density of


% an audio signal


Section 17 2 5.m % calculates power spectral density of


% a music signal


Section 17 5 3.m % reads and manipulates an image


Appendix E


Example E 7.m % plots a CT and a DT function


Example E 8.m % plots several functions in one figure
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Adder, 571


Additivity property, 73, 76


Aliasing, 402


Alternation theorem, 619


Amplitude modulation, 66–67


Amplitude response, 167–169, 170–171, 172


Amplitude spectrum, 167–169, 170–171, 172


Analog signals, 6


Analog to digital (A/D) conversion, 649, 393,


526


Aperiodic signals, 9, 193, 475


Approximate bandwidth, 322


Arithmetic overflow, 586


Audio, 756


formats, 757


spectral analysis, 758


filtering, 761


compression, 767, 772


Autocorrelation function, 750, 753


Bandpass filter, 557, 612, 737


Bandstop filter, 558, 615, 738


Bandwidth, 322, 413, 539


approximate, 418


transition, 601


Baseband signal, 393


Bilateral Laplace transform, 261, 262–266


Bilateral z-transform, 567


Bilinear transformation, 730–735


Binary code, 412


Bit, 9, 71, 415


Block diagram, 62–63, 76, 307–311, 382, 385


Block diagram representation, 63, 307–311


Bode plots, 245–246, 250–251, 568


Bounded-input bounded-output (BIBO)


stability, 88–90, 128–130, 298–305,


452, 601–606, 739–741


Break frequency, see corner frequency
Butterworth filter, 321, 328–338, 364, 720


Butterfly computation, 556


Carrier, 67, 369


Causal signal, 31, 266


Causal system, 84–85, 93, 127, 136, 204, 591


CCD camera, 415


Characteristic equation, 107, 110, 273, 294,


346, 597


Characteristic roots, 294–295


Charge coupled device (CCD), 3–5


Circular reflection, 442


Compact disc (CD), 413


Complex frequency, 28–31, 261, 306


Complex frequency plane, 250, 271


Complex numbers, 3–5, 799–807


arithmetical operations of, 800


graphical interpretation, 803


polar representation, 803


set of, 218


Continuous-time filter, 320–364


Continuous-time FT to DTFT, 526


Continuous-time system, 6–8, 84


forced response of, 107


frequency response of, 203, 351


Laplace-transform analysis of, 285–286


natural response of, 106


realization of, 307


stability of, 88, 128, 298–305


time-domain analysis of, 116–124


transfer function of, 181, 229, 237–239,


285


zero-input response of, 106–112


zero-state response of, 106–112


Control system, 306, 368


stability considerations in, 458


Convolution, 116–127, 430–451


circular (or periodic), 431, 439, 500


graphical, 118–125, 850


properties of, 125–127, 448


Convolution property


of DTFT, 498, 502


of DFT, 549
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of DTFS, 504


of z-transform, 589


Convolution sum


graphical procedure of, 432


properties of, 448


sliding tape method of, 436


Corner (break) frequency, 332


Cut-off frequency, 321, 556


normalized, 600


Damping ratio, 69, 377


Decibel, 246, 595


Decimation (downsampling), 41, 584


Decimation-in-time algorithm, 553


Decomposition property, 182, 193


Delay element, 14–571


Demodulation of AM, 371–374


DFT, see discrete Fourier transform
Difference equation, 63, 70–72, 423, 455


iterative solution of, 423


linear, 431


z-transform solution of, 594–595


Differential equation, 63, 64–67


time-domain solution of, 106–111, 131–135


classical solution of, 108, 808


Laplace transform solution of, 288–293


Digital audio, 756


filtering, 761, 852


Digital communication, 20, 70


Digital filters, 555–560


advantages of, 555


nonrecursive, 559, 591–630


recursive, 559, 715–744


Digital signals, 8


Digital to analog (D/A) conversion, 393


Dirac, Paul Adrien, 32


Dirichlet conditions, 178


Discrete Fourier transform (DFT), 525–560,


531


properties of, 547–551


Discrete Fourier transform


as matrix multiplication, 535


basis functions of, 537


spectrum analysis using, 538


computational complexity of, 551


Discrete-time Fourier series (DTFS), 465–475


spectrum, 483


Discrete-time Fourier transform, 475–482


existence of, 484


of periodic functions, 485


equations, 477


existence of, 482


properties of, 491–505


spectrum, 483


Table, 481


Discrete-time processing, 393


Discrete-time signals, 6, 30, 34


Discrete-time sinusoid, 27


Discrete-time systems, 62–63, 69–72, 393


forced response of, 424


frequency response of, 506


natural response of, 424


realization of, 570–584


stability of, 601–605


time-domain analysis of, 422–460


transfer function of, 499, 596


z-transform analysis of, 594–609


zero-input response of, 424


zero-state response of, 424


Distortionless transmission, 560


Downsampling (decimation), 41


DPCM, 769


DTFT, see Discrete-time Fourier transform
Dual tone multifrequency (DTMF), 555


Duality property, 226


Dynamic systems, 83


Energy signals, 17–20


Envelop detector, 374


Euler formula, 11, 803


Even function, 21–24


Everlasting exponential, 28–31


Exponential Fourier series, 163–179


Fast Fourier transform (FFT), 553–558


radix-2 algorithm, 553–556


bit-reversal for, 558


Feedback systems, 308


Fidelity, 412


Filter realization


direct form, 572


cascaded form, 572


linear phase form, 573


parallel form, 581


transposed form, 573


Filters, 322–367, 555–744


allpass, 260, 304–305


analog, see continuous-time filter
bandpass, 322, 357–361, 557, 612–615, 737


bandstop, 322–323, 361–364, 558,


615–617, 738


butterworth, 321, 328–338, 351, 720–730,


733–735


causal, 565, 592


chebyshev, 321, 338–349, 351


digital, 555


elliptic, 321, 349–352, 716, 736–738


FIR, 559


frequency transformation in, 352–364


group delay of, 561


highpass, 321–322, 353–357, 556, 609–612,


736
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Filters (cont.)
ideal, 321–324, 556–558


IIR, 559


linear phase, 562, 591


lowpass, 321, 327–352, 556, 591–608


non-ideal, 565


phase delay of , 561


realization, 570


recursive, 86, 338


passband of, 321, 511, 556–558


stopband of, 321, 511, 556–558,


567


Final value theorem, 287–288, 593


Finite impulse response, 559


Finite precision representation, 585


FIR, see finite impulse response
FIR filters


linear phase, 562


Type 1–4, 562


optimal, 618


Forced response, 107, 424


Fourier, Jean-Baptiste-Joseph, 152


Fourier integral, 196


Fourier series, 141–182


dirichlet conditions for, 178


exponential, 163–176


Symmetry conditions in, 156–158


trigonometric, 153–163


Fourier spectra


of CTFT, 197, 205–208


of discrete-time Fourier series, 471


of exponential CTFS, 167–169


of DTFT, 478–479


Fourier transform


continuous-time, 193–251


discrete-time, 475–517


duality property of, 226–227


existence of, 231–233, 482


frequency-convolution property of, 227–230


frequency-shifting property of, 222–223


linearity, 216–219, 492


numerical computation of, 247–250


properties of, 491–505


scaling property of, 219–220, 493


short-time, 750


table of, 217, 481


time convolution property of, 227–230,


498


time differentiation property of, 224–225


time integration property of, 225


time shifting property of, 221–222, 493


Frequency division multiplexing (FDM),


369


Frequency-differentiation property


of DTFT, 497


of z-transform, 588


Frequency-domain analysis


of continuous-time systems, 227–230,


237–246


of discrete-time systems, 498–502,


506–514


Frequency resolution, 542, 751, 759


Frequency response, 245, 506, 606, 629


Frequency sampling, 529


Frequency shifting property


of CTFT, 222–223


of DTFT, 495


of DTFS, 504


Frequency spectrum, 245, 471, 483


Fundamental frequency, 10


Gate function, 25, 208


Generalized function, 255


Gibbs phenomenon, 158, 593


Hamming window, 594


Hanning (Von Hann) window, 594


Harmonic frequency, 13


Heaviside, Oliver, 817


Heaviside formula, 210, 817


Hermitian Symmetry Property


of DFT, 548


of DTFS, 504


of DTFT, 491


Highpass filter, 556, 782


design methods, 609, 706


Homogeneity property, 73


Ideal filter, 321–324, 556–559


IIR, see infinite impulse response
Image, 773


formats, 774


spectral analysis, 775


filtering, 779


compression, 784


Impulse function, 32–34, 426


Impulse invariance method, 717–730


Impulse response, 98, 103, 113–116, 427,


556


of ideal filters, 559, 565, 597, 600


Infinite impulse response, 559


Initial conditions, 64, 423, 594


Initial value theorem, 287–288, 593


Instantaneous frequency, 750


Instantaneous (memoriless) systems, 83–84,


127


Integration table, 797–798


Interpolation, 41–43, 399, 584


zero-order hold, 407


Inverse discrete Fourier transform, 531


Inverse Fourier transform, 209–210, 477


Inverse Laplace transform, 273–276
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Inverse z-transform, 574


partial fraction method, 575


power series method, 580


JPEG format, 421


Laplace, Pierre-Simon, 262


Laplace transform, 261–311


bilateral, 262–266


existence, 271


frequency-convolution property of,


284–287


frequency-shifting property of,


280–281


inverse, 273–276


linearity property of, 276–278


region of convergence, 271, 295–298


scaling property of, 278–279


table of, 270


time convolution property of, 284–287


time differentiation property of,


281–282


time integration property of, 282–284


time shifting property of, 279–280


unilateral, 266–269


Leakage, 543


Left half plane (LHP), 301


Legendre polynomials, 185


L’Hopital’s rule, 797


Linear phase, 562, 591


Linear system, 73–79


Linear time-invariant system, 103–137,


423


Linearity property


of DTFT, 492, 505


of DTFS, 492, 504


of DFT, 549


of z-transform, 582


Lower sidebands, 371


Lowpass filter, 556, 780


designh methods, 599, 605


Magnitude response, 508, 557


Magnitude spectrum, 471, 483


Main lobe, 595


Marginally stable system, 302–303,


604


MATLAB, 831


control statements, 840


elementary operations, 842


plotting functions, 844


user interface, 853


Maximally flat response, 324


Mean, 753


Mean square error, 788


Memoryless system, 83–84, 127, 452


Minmax optimization, 620


Modulation, 66–67, 70–72, 369–373


MP3 player, 421


Multiplexing, frequency-division, 369


Multipliers , 14–571


Natural frequencies, 95, 344


Natural response, 107, 424


Noncausal signals, 31


Noncausal system, 84–85, 93, 127, 136


Nyquist sampling rate, 247, 397


Odd function, 21–24


Operators, differential, 106


Orthogonal signal set, 142–149


Orthogonal vector set, 142


Orthogonality


in complex signals, 143


property, 465


Orthonormal set, 144, 465


Parks-McClellan algorithm, 621


Parseval’s theorem


for discrete Fourier transform, 550


for Fourier series, 170–171, 184


for Fourier transform, 230–231, 253


for discrete-time Fourier series, 504


for discrete-time Fourier transform, 503


Partial fraction expansion


for CTFT, 209–211, 824


for DTFT, 500, 816, 827


for Laplace transform, 273, 816–824


for z-transform, 575, 828–830


Passband of a filter, 320, 321–323, 556


Period of a CT signal, 9–15


Period of a DT signal, 9–15


Periodic reflection, 442


Periodic signal, continuous-time, 9–15


Periodic signal, discrete-time, 9–15


Periodicity property


of DTFT, DTFS, 491


of DFT, 548


Periodogram, 754


Phase response, 245–246, 351, 508


Phase spectrum, 245–246, 351, 471, 483


Picket fence effect, 543


Picture element (pixel), 415


Polar plot, 803


Power spectral density, 753


Poles, 294–295, 597, 612


first-order, 817


higher-order, 822


Power Series, 796


Power signals, 17–20


Probabilistic signals, 20–21


Pulse code modulation (PCM), 412
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Quantization, 410–413


uniform/nonuniform, 410


error, 411


Random signals, 20–21, 752


spectral analysis, 758, 775


Rectangular window, 593


Recursive filter, 657


Region of convergence, 263–266, 295–298,


573


Right half plane (PHP), 301


Ripple Control parameter, 604


Ripples, 593


Round-off errors, 586


Sampling rate (frequency), 247


Sampling, 393


interval, 395


rate, 395, 397


impulse-train, 395


pulse-train, 405


bandpass, 418


sawtooth wave, 419


theorem, 247, 397


Scaling property, 126, 173–174, 219–220,


278–279, 493


Series summation, 796


Shape control parameter, 604


Shift operator, 571


Sidebands, 371


Sidelobes, 177, 595


Short-time FT, 750


Signals, 3


analog, 8–9


aperiodic, 9–15


continuous-time, 6–8


digital, 8–9


discrete-time, 6–8


energy, 16–20


energy of, 16


essential bandwidth of, 322


periodic, 9–15


power, 16–20


power of, 16


orthogonal representation of, 142–149


Signum (sign) function, sgn(t), 25–27


Sinc function, 27–28


Sinusoids, continuous-time, 10–11, 27,


29–30


Sinusoids, discrete-time, 11–12, 27


Spectral estimation, 748


Spectral folding, see aliasing
Spectrogram, 752


Spectrum


magnitude, 167–169, 170–171


phase, 245–246, 351


Stability, 88–90


analysis, 601, 453, 739


bounded-input, bounded-output (BIBO),


88–90, 128–130, 298–305, 601


marginal, 302–304, 604


Steady-state response, 107, 109, 137, 608


Stopband, 320, 321–323, 556


attenuation, 601


Superposition principle, 73, 113


Symmetry conditions in Fourier series,


169–170


Systems


block-diagram of, 63, 307–311


causal, 84–85, 93, 127, 452


characteristic equation of, 107, 273, 294,


346, 575


classification of, 72–90


continuous-time, 73


control, 306, 368


discrete-time, 73, 422


dynamic, 83–84


feedback, 308


finite memory, 84


frequency response of, 245, 506, 606, 629


invertible, 130–131, 454


linear, 73–79


LTIC, 103


LTID, 422


marginally stable, 302–303, 604


memoryless, 83–84, 127, 452


overdamped, 376


realization of


response to sinusoid input, 150–152,


239–240


stability, 88–90, 128, 298–305, 452


time-domain analysis of, 103–137


time-invariance, 79–83


transform analysis of, 180–182, 237–246,


305–307


underdamped, 376


unstable, 88–90, 128, 298–305


Time-differencing property


of DTFT, 496


of DTFS, 504


of z-transform, 587


Time-differentiation property


of CTFS, 174


of CTFT, 224–225


of Laplace transform, 281–282


Time-domain analysis


of continuous-time systems, 118–126


of discrete-time systems, 422–460


Time integration property, 174, 225, 282–284


Time-invariant system, 79–83


Time inversion, 172
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Time reversal property, 172


Time scaling property


of CTFS, 173


of CTFT, 219–220


of Laplace transform, 278–279


of DTFT, 493


of DTFS, 504


of z-transform, 584


Time shifting, 35–39


Time shifting property


of CTFS, 171


of CTFT, 221–222


of DFT, 549


of DTFS, 504


of DTFT, 493


of Laplace transform, 279–280


of z-transform, 585


Time-summation property


of DTFT, 498


of DTFS, 504


of z-transform, 592


Transfer function, 181, 237–239, 285, 556, 596


Transition bandwidth, 567, 595, 601


normalized, 601


Trigonometric Fourier series, 153–162


Trigonometric identities, 795


Underdamped system, 376


Unilateral Laplace transform, 266–272


Unilateral z-transform, 579


Unit impulse function, 32–35


Unit impulse response of a system, 113–116


Unstable system, 88–90, 128–130, 298–305,


453, 602


Upsampling (interpolation), 41–44, 493


Vectors, 142


Width property of convolution, 126, 449


Window function


Bartlett/triangular, 594


Blackman, 594


Hamming, 594


Hanning, 594


Kaiser, 595, 603


rectangular, 593


Zero-input response, 106–111, 424,


809


Zero-order hold, 407


Zero-padding, 546


Zero-state response, 106–111, 424, 812


Zeros, 294–295, 597


z-transform, 565


bilateral, 567


convolution property, 589


inverse, 574


shifting property of, 585


linearity property of, 582


region of convergence of, 573


Table of, 572


Unilateral, 569
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