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Abstract 


Cellular automata can be applied to modelling the dynamics of spatially extended physical 


systems, and represent an alternative to the classical PDE approach. In this paper a macroscopic 
cellular automata model for simulating the bioremediation of contaminated soils is introduced. 


The choice of macroscopic automata is motivated by the aim to simulate large-scale systems. 


It is suggested that in some cases, where the basic laws of continuum mechanics cannot be 


directly applied without adding phenomenological assumptions, and where the equation system 


is not amenable to analytical solution, direct discrete modelling may represent a convenient 


alternative to the use of continuum models, followed by numerical discretization. This hypothesis 


is empirically tested in the bioremediation case. 


The model describes the bioremediation of contaminated soils, which relies upon the use of 


indigeneous microorganisms to degrade the contaminant: bioremediation models pose particular 


challenges as several physical, chemical and biological phenomena interact in a disordered and 


partially unknown matrix (the soil). The model is hierarchical, and is composed by a fluid 


dynamical layer, a solute description layer and a biological layer. The model has been tested 


in a pilot plant, in the case of contamination by phenol. The values of the phenomenological 


parameters have been determined by the use of genetic algorithms. The model has proven capable 


to carefully describe experimental results in a wide range of experimental conditions. It has also 


been run on a MIMD parallel architecture, achieving a high speed-up. It therefore represents 


an example of application of cellular automata to a real-world problem which has a very high 


social and economic importance, and where progresses in modelling may greatly improve the 


effectiveness of the decontamination interventions. @ 1999-Elsevier Science B.V. All rights 


reserved 
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1. Introduction 


Cellular automata, introduced in the 1950’s by von Neumann to study self- 
reproducing systems [lo], have been later used for modelling complex dynamics and 
physical systems [37,39,40]. In particular, macroscopic phenomena like, e.g. diffusion, 
which are usually described within a continuum approach, have been actively investi- 
gated. Most attempts to apply CA to modelling these physical phenomena have dealt 
with a “microscopic” approach, where the state variables can take only a limited num- 
ber of different discrete values [22,37]; for example, the state of a cell represents the 
presence or absence of a particle with a given momentum at a given point. A similar 
approach has been applied also to modelling percolation phenomena [3]. 


In the microscopic approach, the system is considered as composed of a number of 
discrete particles, which move in the lattice space and interact according to approp~ate 
laws: the laws which rule the system at a macroscopic level are then obtained by 
averaging over a large number of particles. 


This description can be viewed as “more microscopic” than the continuum equations, 
like the diffusion or Navier-Stokes equations, because the basic tokens of the latter 
(concen~ations, pressures, etc.) are themselves the result of an ~derlying discrete 
dynamics, which is directly described in the former approach. This view is close to 
that of molecular dynamics, but it tries to avoid the computational burden using very 
simple basic discrete particles and interaction laws, so that the state variables associated 
to each cell can take only a limited number of discrete values. 


We adopt here a different attitude, considering the cells as portions of space which 
include several pores: it is therefore me~ing~l to assign to each cell a complex state 
space, which is the Cartesian product of different subspaces, which may refer, e.g. to 
the water content, the concentration of a given chemical, the density of a given kind of 
bacteria, etc. While some of these variables are usually considered as continuous, we 
will admit their use, assuring the formal compliance with the CA definition by limiting 
the range of allowed values to a discrete set (as it is always the case when digital 
simulations are performed). However, in order to avoid unnecessary linguistic burdens, 
we will refer to these variables in the usual (i.e. continuous) way, always assuming 
that discretization is performed. 


This kind of model is reminiscent of the so-called lattice Boltzmann models [35]; 
however, our model is macroscopic, and makes use of variables such as water satura- 
tion, concentration of a given chemical, etc., while the applications of lattice Boltzmann 
models to flow in porous media so far developed take a more microscopic approach 
and aim at describing phenomena which take place at the pore level [l]. Macroscopic 
CA models can be regarded as intermediate between classical PDE models and the 
so-called compa~ment models of flow in soils [9], which provide a simpler description 
of the processes which take place in soil, by dividing the space into cells of finite size, 
which are assumed to be in local equilibrium; this latter condition is not required here. 


The use of these “macroscopic” CA models seems promising to simulate large sys- 
tems because they allow one to choose a cell size which is appropriate for the scale 
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of the simulation. Moreover, they avoid the need for a limiting operation, followed 


by the introduction of a discrete approximation. Encouraging examples come from the 


application of this kind of models to landslide and lava flow simulations [6,21]. 


Ultimately, the validity of this approach has to be judged by its usefulness, which 


implies a reasonable ease to develop new models and a good agreement with experi- 


mental data. We tried to verify the effectiveness of this approach in the development 


of a model of the bioremediation of contaminated soils, which is both a challenging 


scientific problem and a very important environmental technology. 


Section 2 contains a short description of bioremediation, while in Section 3 the 


basic features of the model are outlined. The physical reasons for most model choices 


are only sketched, and the reader is referred to [ 15, 17, 191 for a more comprehensive 


discussion of these aspects. 


The model has a three-layer structure, where the first layer describes the fluid dy- 


namical phenomena, the second layer the physico-chemical dynamics of the solutes 


and the third layer describes biomass growth and those phenomena where microorgan- 


isms play a role (e.g. contaminant transformation). The three layers are described in 


Sections 4-6. 


The model has a number of parameters which cannot be (or have not been) experi- 


mentally measured, and which can be estimated by comparing simulation results with 


remediation experiments. This optimization has been performed with genetic algorithms, 


and the particular version of GAS used here is described in Section 7. 


While this paper concentrates on theoretical aspects, it is important to know how the 


model compares with experimental results: the present model has been able to precisely 


describe the experimental data obtained on a pilot plant. The model testing which has 


been performed is limited but meaningful. The major limitations are due to the size of 


the equipment (a pilot plant of about 1 m3) and to the choice of a single contaminant, 


namely phenol (which is most frequently encountered in practice). On the other hand, 


an unusually high number of data has been recorded, which allow a thorough testing 


of the model; moreover, different experimental conditions have been examined, thus 


allowing to test the model in cases which had not been used for parameter optimization. 


While referring the reader to [ 17, 191 for a more complete analysis, some comparisons 


are reported in Section 8. 


The differences between CA and PDE modelling are discussed in the final Section, 


together with indications for further model improvements. 


2. Soil bioremediation 


Soil pollution is one of the major environmental problems in industrial countries: 


indeed, although present day industrial technologies have achieved high environmental 


standards, so that in many countries ongoing pollution has been largely reduced, soil 


contamination has a long decay constant, and it is therefore necessary to remediate the 


effects of a long period of low environmental care in plant and waste management. 


Different technologies are available, including physical and chemical ones [ 12,311 while 
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the traditional use of landfills is being discouraged in many countries (landfills displace 


the problem in space and time, rather than solving it). 


The use of biotechnological methods, and in particular of the so-called in situ biore- 


mediation techniques [2,30,32], is particularly attractive both economically and envi- 


ronmentally. It is based upon the capability of many microorganisms in the polluted soil 


to degrade organic contaminants. In most cases, indigenous bacteria are used, so that 


bioremediation can be viewed as a way to accelerate and amplify natural phenomena. 


The stimulation of indigenous microorganisms is achieved by providing them appro- 


priate nutrients (e.g. oxygen, phosphorous, nitrogen, etc.), pH, moisture content, etc., 


in order to create in the soil environmental conditions which favour the growth and 


the metabolic activity of those microorganisms which degrade the target contaminant. 


Our model describes the (frequent) case where the nutrients are provided in aqueous 


solution. 


Summarizing, we will introduce a model for the simulation of in situ bioremediation 


processes, using indigeneous bacteria which are stimulated by percolating an aqueous 


nutrient solution through the soil. 


These models may be very useful to improve the quality of today’s bioremediation 


interventions, as they can allow a more reliable forecasting of the field behaviour, 


starting from laboratory and pilot plant data. In a typical bioremediation operation, it 


is necessary in the laboratory to assess whether there are indigeneous microorganisms 


that can degrade the contaminant, to find satisfying conditions for their growth and to 


assure that highly dangerous intermediate metabolites are not produced. After that, it 


is necessary to resort to pilot plant studies, in order to determine the effects of the 


soil matrix, which may profoundly affect the process (let it suffice to consider e.g. 


the bioavailability of pollutants and nutrients). The pilot plant study can be performed 


either on a constructed soil, i.e. a vessel which is filled with soil coming from the 


contaminated site (also called microcosms or mesocosms, depending upon the size) or 


on a small portion of the site, or both. 


The results of the laboratory and pilot plant studies are then used to design the 


full-scale field intervention. This sequence of tests at different scales is typical of many 


areas of chemical engineering, and in most of these areas mathematical models are 


widely used to achieve a proper scale up. In the bioremediation field it is not yet so, 


and in most cases the process choice are based upon experience and heuristics (“black 


magic”) rather than models. This is partly due to the complexity of bioremediation 


models. Our model can be regarded as a contribution to the development of reliable 


models of bioremediation processes, which take into account physical, chemical and 


biological phenomena. 


3. The model 


While there are several models describing multiphase flow in porous media and 


the fate of the solutes (for a review see e.g. [26,33]), few models exist which de- 


scribe the wealth of interacting phenomena which take place in bioremediation (see 
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[8,11,13,14,26,28] and further references cited in the last two). All these models 
make use of a continuum approach, while we adopt a discrete model whose general 
features will now be introduced; further comments on the relationship between the two 
approaches will be postponed to the final section. 


As it was mentioned before, the different phenomena which interact in the system 
can be grouped into three classes; the model has a layered structure which reflects this 
division. 
l The lower layer is the fluid dynamical one, which describes the flow of different 


fluid phases in a porous medium (the soil). The motion of one or more liquid or 
gaseous phases can be completely described at this level. 


l A second layer describes the physical and chemical fate of the solutes, including 
hydrodynamic dispersion, interactions of the solutes with other solutes as well as 
with chemicals which may be present in the soil, and the processes of adsorption 
and desorption to and from the pore walls. The contamination of soil by a chemical 
or a mixture of chemicals can be described at this level. 


l The third layer is the biological one, and it describes the interaction of biomass with 
its environment: the growth of microorganisms which depends upon the availability 
of nutrients, the disappearance and the appearance of chemicals which depends 
upon the metabolic activity, the interaction among different bacterial populations. A 
complete model should take into account also the possible modi~cations of the flow 
pattern which can be caused by huge bacterial growth leading to a reduction of the 
pore space available for the fluids. 
Note that this model can be regarded as “layered” in a specific sense, which differs 


from the one used by [4]. In the present case, there is no hierarchy, like e.g. the one 
which might derive from progressively coarser graining; instead, the fluid dynamical 
layer is regarded as more fundamental as it is a necessary part of every meaningful 
model. For example, if we were to consider the flow of pure water in a sterile porous 
medium composed by water beads, the lower layer would be able to fully describe the 
phenomenon. If we add chemicals, either as solutes in the fluid phases or desorbed from 
the soil, which is still sterile, then a model with layers 1 and 2 would be needed. If we 
relax the sterile soil assumption, then all the three layers are needed. Even in this latter 
case (which is the one involved in all the experiments shown below), the behaviour 
of the variable of an “upper” layer may sometimes be itrelevent, and a simpler model 
suffices to describe the variables of interest (consider e.g. the percolation of a dilute 
aqueous solution, which is described to a very good approximation by layer 1 alone), 


While the above framework is a general one, which should be applicable to any 
bioremediation process, this work describes a specific case, namely that of a phenol 
contaminated soil. The major simplifications of the general model structure, which have 
been applied in this case, are the following: 
l Two-phase pow: Only the flow of a gaseous phase (air) and a liquid phase (aqueous 


solution) has been considered. If the contaminant had been less soluble, a third non- 
aqueous liquid phase might have been present (like it is often the case e.g. in the 
case of hy~~~bon con~mination). 
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l No chemical reactions: There are no indications of relevant chemical reactions taking 


place in the system; anyway, the introduction of these reactions in a CA scheme 


would be straightforward, as they take place within each cell. 


a No predator-prey interactions: The bacterial population has been divided into three 


classes, according to their behaviour with respect to the chosen contaminant. No 


attempt has been made to provide a more detailed description of the different species 


involved and of their mutual interactions. This simplification seems to be of wide 


applicability. 


l No pore clogging: The growth of microorganisms does not appreciably change the 


fluid dynamical properties of the soil. 


Apart from these limitations, it should be stressed that the model is very ambitious, as 


it aims at describing a wealth of different interacting phenomena. 


As it was mentioned, we will not try to describe the phenomena which take place 


at the pore level, but will make use of macroscopic cellular automata, where each cell 


comprises several pores. 


We are interested in describing phenomena which occur in a finite region, where 


some very important phenomena happen on the borders, as is the case for the example 


of the upper soil layer in bioremediation by spraying a nutrient solution; the phe- 


nomenon is induced by a flow of nutrients through the system boundaries. While the 


PDE approach has extensively dealt with the study of boundary conditions, most CA 


models involve infinite systems. In order to properly formalize the model for a finite 


region, we will introduce a non-homogeneous cellular automata [41], which represents 


the simpler and more natural approach. Let us notice that one could also describe the 


system within a homogeneous CA formalism, at the expense of a more complicated 


state space and transition function. In the following, we will always consider formally 


infinite automata, and the inhomogeneities of the boundaries will allow us to consider 


phenomena which take place in a finite region. 


The specification of a cellular automaton (CA) involves its topology, its state space 


and its transition function [27]; formally [20,23] a CA is a quadruple A = (G, I’, Q, f), 


where 


l G is the cellular space; usually G c Zd, the set of points with integer coordinates 


in a d-dimensional Euclidean space (in order to deal with finite cellular spaces, one 


sometimes uses toroidal topologies, see e.g. [40]) 


l V defines the set of neighbours of each cell: V = { 51, 52, . . . , (,}, where all the tk’s 


are d-dimensional vectors with integer coordinates; without loss of generality, we will 


consistently adopt the convention that (1 = (0, 0, . . . , 0) always; the neighbourhood of 


cell i, N(i), is N(i) = {i + 51, i + 52,. . . , i + g,} n G = {i, i + 52,. . . , i + g,} n G; the 
number of elements in N(i) will be denoted m(i) < m. 


l Q, the state space, is a discrete set; in the present case, as it has been stressed, we 


will assume that the cardinality of Q can be high, to account for discretized versions 


of variables which are considered continuous like, e.g. contaminant concentration. 


l f is the transition function; let Y = {y ] y: G + Q}; each function y E Y defines a 


possible state assignment in A, and will be called a configuration of A; let y(i) be 
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the state of cell i in configuration y, and let (Pi : Qmci) + Q; vi(y) = cpi({y(k) 1 k E 


N(i)}) be the transition function for the elementary automaton, i.e. a rule which 


determines the state of cell i at time t + 1 from the states of the cells in N(i) at time 


t. Then the overall transition function f : Y --) Y is given by f(y) = {vi(y) 1 i E G}. 


Whenever vi has the same functional form for every i, and N(i) has the same shape 


for every i, the automaton is homogeneous, while we will consider in the following 


also inhomogeneous systems, where inhomogeneities come from the existence of 


boundaries, so that cells belonging to the boundary, or close to it, have a set of 


neighbours which differs from that of the cells in the bulk of the CA. 


Let us also define the notion of quiescent state: a state x of an automaton A is quiescent 


if go(x, x, . . . ,x) = x, which means that if all the cells of the neighbourhood of cell i are 


quiescent at time t, then i will be quiescent at time t + 1. 


In our case the CA will be called Asoil =( G, V, Q, f). 


Themodelisthree-dimensional: G={~I~EZ~~O<Y,QL,; O<r,<L,; O<r,<L,}. 


This simple choice allows one to describe phenomena which take place in a simple 


parallelepipedal geometry, like those which have been used for experimental purposes, 


while obvious modifications would be needed for different geometries. 


G can be partitioned into disjoint regions which reflect the physical conditions of 


the system to be modelled: 


where 


l GUb={YIrEZ3 IO<r,<L,; Odry<L,; r,=L,} is the upper boundary of the sys- 


tem (physically: the upper layer of soil cells); 


0 Glb={rIrEZ3 10<rX<LX; O<r,<L,; r, = 0) is its lower boundary (physically: 


the lower layer of soil cells); 


l G,={r/r~Z3~(O=rx) u(rx=Lx)v(O=r,)v(ry=L,); O<r,<L,} denotes the 


system lateral boundaries (physically: the soil cells which are close to the lateral 


impermeable walls); 


0 Gb={rIrEZ3 IO<r,<L,; 0 <ry XL,; 0 -cr, CL,} is the set of the system’s inter- 


nal cells. 


The neighbourhood V of each cell is composed by itself and by six other cells (up, 


north, east, south, west, down); using relative coordinates: 


The state space Q is the Cartesian product of different subspaces 


Q = Qw x Qcap x Q,ra x Qmph x !&h x Qnrb X &nab X Qrdb 


where Qw is the water content in the cell, QcaP is the “capillary water” substrate, i.e. the 


water which is held by capillary forces (see Section 4), Qgra is the “gravitational water” 


(see Section 4), Qmph accounts for the mass of contaminant adsorbed or precipitated in 
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the cell per unit mass of dry solid, Q@, accounts for the contaminant concentration in 
the cell water, &t, accounts for the concentration of bacteria which are not resistant 
to the con~min~t, Q&b accounts for the concen~atio~ of those bacteria which are 
resistant to the contaminant but are not able to degrade it and Q& refers to those 
bacteria which are able to resist to and to degrade the contaminant. As it has been 
mentioned, it is assumed that each of these variables can take a (large but) finite 
number of discrete non negative values. 


The main features of the dete~inistic transition function f : &’ -+ Q, i.e. the law 
which determines the state of a cell at time t + 1 from the state of its neighbouring 
cells at time t, are described in Sections 4-6. 


Updating is synchronous; if Xi(t) E Q is the state of cell i at time t, and N(i) 
denotes the neighbourhood of cell i, then for each i E G and each time t > 0: Xi(t + 


1) = “fxX_ift)h j EN(i). 
In order to describe the boundaries of the experimental vessel, boundary cells are 


given a neighbourhood different from the bulk cells (due to the intersection of G and V) 
and also a different transition function; for example, the upper layer can take an inflow 
of water from the outside, while the lower layer describes the collecting apparatus at 
the bottom of the pilot plant, and the lateral boundary cells do not allow lateral flux 
through the impermeable walls. More details can be found in [17]. 


4. The fluid dynamical layer 


Let us consider what happens when water sa~tion SW (which is defined as the 
ratio of volume of water to the volume of voids) increases, in the case where water 
is the wetting phase. When SW is low, a minimum quantity of water surrounds the 
grains of soil, there are no connected paths and water is therefore immobile. As water 
saturation increases, it covers the pore walls, until connected paths are formed, so that 
water can Aow; in this condition, water is mainly influenced by its micr~nviro~ent 
(surface forces, etc.). If water saturation increases further, the water motion is easier 
and gravitational effects become important. 


The main phenomenological assumption of the fluid dynamical model, which is 
based upon several experimental studies of imbibition and drainage [5], is therefore 
that different kinds of water can be identified in a single cell: 
l immobile (or irreducible) water, which cannot flow 
l capillary water (also called diffusion water), which can flow unaffected by gravity 
l gravitational water, which can flow more rapidly under the action of gravity. 
Moreover, as in some cases macroscopic fissures can be found, these can also be 
described in a way similar to gravitational water, but with a faster flow rate. 


An important problem concerns the way how the overall water (the only physically 
measurable quantity) is divided into the three kinds of water: from the above qualitative 
description, the rule is induced that all the water is regarded as immobile until a certain 
threshold is met. Above this level, water is capillary until a second threshold is found. 
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Cdl: i-l 


Cell: i 


Cell: i+ 1 


n IRR DIFF /I- Z-ILL 


Fig. 1. IRR indicates irreducible (or immobile) water, DIFF refers to diffusional (or capillary) water, TRAS 


to transport (or gravitational) water and FSR to fissural water. 


Above this latter threshold, water is considered gravitational (if appropriate, part of the 


water can be regarded as fissural). 


The relationship among the different kinds of water is described in Fig. 1. 


In the following, unless otherwise stated, fissures will not be taken into account. 


According to the model, the motion of capillary water tends to equalize its value 


in neighbouring cells. This equalization is achieved with a CA rule which distributes 


the excess water of a given cell among those of its neighbours whose water content 


is smaller than the local average water content. The procedure for capillary water is 


shown below. 


Procedure new_capillary_water_flow (...) 


/* “0” is the central cell */ 


/* “1” ) “2”,... are the other cells in the neighbourhood *I 


/* “w[i]” is the capillary water content of the i-cell */ 


/* “max_w[i]” is the maximum quantity of capillary water 


content (of the i-cell) */ 
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/* “new_outfc[i]” is the capihary water flow toward the i-cell */ 


I’* Individuation of the neighbou~ng cells (the so-called “eliminated cells”) */ 
for i from 1 to 6 do: 


eliminated[i] :=I FALSE 


do: 
new-control := FALSE 
sum-w := w[O] 
count := 1 


for i from 1 to 6: 
if NOT e~iminated[i] 


snm_w := sum-w + w[i] 
count := count + 1 


average-w := sum-w/count 


for i from 1 to 6 do: 
if (w[i] >average_w) AND (NOT eliminated[i]) 


new-control := TRUE 
eliminated[i] := TRUE 


until new_control = TRUE 
/* Computing the values of the outflows toward the not eliminated cells */ 


for i from 1 to 6 do: 
if NOT eliminated[i] 


new_outfc[i] := average-w-w[i] 


else 
new_outfc[i] := 0 


f* Correction of the outflow computed values according to the clock performed 
by the constant capsate */ 


for i from 1 to 6 do: 
new_outfc[i] := new_outfc[i]/cap_rate 


/* Correction of the outflow computed values according to the ratio of the 
capillary water inside the cells to the maximum quantity of capillary water */ 


I* See Fig. 3 for a representation of sigma function *f 


for i from 1 to 6 do: 
new_outfc[i] := new_outfc[i] * sigma(w[i]/max_w[i]) 
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Fig. 2. The algorithm for capillary water (in a ho-dimensional case, with Ni = 5). 


Let us illustrate the main features of the algorithm; first of all, for each cell, a 
maximum quantity of transmissible water is computed as follows. 


Let I$ denote the neighbourhood of cell i, which is composed by A$ cells, and let 
qi denote the capillary water in cell i; an average (q)i between all the cells of the 


neighbourhood is first computed: 


The neighbouring cells whose water content is higher than such average are identified 
and discarded. Let y(t) be the subset of I$ composed by the A$‘) cells which have 
not been eliminated: 


#l) = {k; qR d (4)i). 


Then the average between the remaining cells is computed: 


(q)!l’=l c q. 
1 N,U) J’ 


1 ,E r”’ 


The process is iterated until no more cells are found which are higher than the average 
(so that 5 @+‘) - V”‘). the value of this latter average is attributed to the central cell - i , 
and to all the cells which have “survived”, as shown in Fig. 2. 


The algorithm here described is not limited to the case of capillary water, and 
can be applied to describe several processes where a conserved quantity tends to a 
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0 


0 W/P 1 


Fig. 3. The dependence of the capillary Row rate coefficient k Cap upon the fraction of capillary water present 
in the cell (capillary water/m~im~ capillary water) (sigma function). 


homogeneous eq~lib~~ dis~bution, It has already been applied to describe l~dslide 
d~~ics, lava flow and heat diffusion [6,21,29]. It has also been shown that in some 
cases this algorithm provides a good approximation to the solution of the heat diffusion 
equation [29]. 


The quantity computed according to the previous algorithm is the maximum (capil- 
lary) water which can flow from the central cell; however, if we let all this water flow 
at once, we would implicitly fix the clock of the CA so to match the time constant of 
the capillary water flow, and we would thus loose the possibility to describe the actual 
system kinetics. Therefore, at each CA time step, only a fraction k,, of the excess 
water so computed actually flows: kinetic parameters of this kind allow the desc~ption 
of phenomena which have di~erent time constants (e.g. capillary water flow is slower 
than gravi~tional water flow). 


It is well known [7] that the flow rate of a given phase depends upon its sa~ation 
level. Based on phenomenological considerations and experimental data about the so- 
called relative permeability curves, the dependence of the flow rate coefficient upon 
saturation has been assumed to be S-shaped, and it has been approximated by a three 
straight line shape like that depicted in Fig. 3. 


The gravitational water simulates the water fall from the superior cell to the inferior 
cell under the action of gravity (or, more generally, a flow driven by a difference in 
hy~ulic head), A coefficient of relative permeability for each cell is calculated: the 
flow of water to the inferior cell is propo~ional to the smaller of the two pe~eabilities 
and in each case cannot be higher than the receptivity (i.e. the quantity of water that 
a cell can accept) of the inferior cell. 
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The procedure is listed below. 


143 


Procedure new-ve~ical_~~tationalflow (. . .) 


/* “0” is the central cell */ 
/* “6” is the inferior cell */ 
/* “tot_w[i]” is the total water content of the i-cell */ 
/* “por[i]” is the porosity of the i-cell */ 
/* “‘perm[i]” is the permeability of the i-cell */ 
/* “gw[i]” is the ~avitational water content of the i-cell */ 


f* The correction of the outflow computed values according to the clock is 
performed by the constant grav_rate */ 


perm[O] := sigma(tot_w[O]/por[O]) 
perm[6] := sigma(tot_w[6]/por[6]) 
if perm[O] < perm[6] 


permmin := perm[O] 
else 
permmin := perm[6] 
maxflow := permmin * gw[O] 
if max_fiow -K receptivity[6] 


new_outfg[6] := receptivity[6] / gravrate 
else 


new_outfg[6] := max_flow ,/ gravrate 


. . . . . . . . . . . . 


For the same reasons just discussed for capillary water, also the gravitational flow 
rate constant depends upon saturation in a way similar to that of Fig. 3 (a S-shaped 
function with different parameters - see Fig. 3). 


The procedure for fissural water flow will not be given here, as the examples de- 
scribed later refer to the case without fissures; it can be found in [ 171. 


5. The dynamics of chemicals 


The behaviour of the different chemicals which are transported by the aqueous phase 
(i.e. nutrients, contaminants, others) is described at this level. Solutes are transported by 
the water flowing in the system. However, there are also interactions with the pore walls 
and with the water which was already present in the cell. The adsorption/desorption 
process has been modelled by first-order kinetic equations, where the adsorption (re- 
spectively, deso~tion} rate to (from) the pore waits is propo~ional to the contamin~t 
bulk concentration (adsorbed concentration). 
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Uncontaminated water 


Fig. 4. The two kinds of water used to describe the contamination phase. 


It should also be recalled that immobile water can play a key role in contamination 
and remediation. Let us describe only the contamination phase, where an aqueous 
contaminant solution percolates through the soil (actually, in the test apparatus, the 
amount of water used for contamination was smaller than the overall immobile water 
of the soil): according to the spirit of the CA approach, only two kinds of water 
are considered, ~o~ta~in~t~~ water and not c~~ta~~~~te~ water (Fig. 4). In order to 
describe the kind of experiments performed, it has been assumed that only contaminated 
water flows from one cell to another (of course, if it were necessary to describe different 
phenomena, like the flow of pure water through a contaminated soil, this simplification 
should be avoided). It is assumed that, as time passes, the contamination front advances 
within the cell, so that a larger portion of water becomes contaminated; mass balance is 
assured by determining the contaminant concentration as the ratio between the quantity 
of contaminant and the quantity of contaminated water in the cell. 


The procedure for contamination is listed below. 


Procedure new~olute_con~entmtions (. . .) 


/* “‘0” is the central cell */ 
/* “‘tot_w[i]” is the total water content of the i-cell */ 


I , 
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* “soil[i]” is the soil mass of the i-cell */ 


* “cont_w[i]” is the contaminated water of the i-cell */ 


/* “ph_w[i]” is the phenol mass in the water of the i-cell */ 


/* “ph_s[i]” is the phenol mass in the soil of the i-cell */ 


: 


* “c_ph_w[i]” is the phenol concentration in the water of the i-cell */ 


* “c_ph_s[i]” is the phenol concentration in the soil of the i-cell */ 


/* alpha (beta) is the rate of the disappearance of phenol in the water 


(in the soil) */ 


/* w_cont is the rate of the water contamination *J 


. . . . . 


flow_to_soil := alpha*c_ph_w[O] 


flow-from-soil := beta*c-ph_s[O] 


ph_w[O] := ph_w[O]-flow-to_soil+flow_from_soil 


ph_s[O] := ph_s[O]+flow_to_soil-flow-from-soil 


cont_w[O] := cont_w[O]+w_cont*(ph_w[O]/cont_w[O])*( 1-(cont_w[O]/tot_w [0]) 


c_ph_w[O] := ph_w[O]/cont_w[O] 


c_ph_s[O] := ph_s[O]/soil[O] 


. . . . . . . 


The introduction of chemical reactions is straightforward, as these reactions take 


place within each cell and do not involve transport among neighbours. In the present 


version of the model we limited to monitor the disappearance of phenol, without 


providing a quantitative description of the degradation path and of the intermediate 


metabolites. 


6. Biological phenomena 


In environmental microbiology one is usually faced with microbial consortia, com- 


posed by different species, instead of pure cultures which are typical of the laboratory 


or engineered bioreactors. Determining the different bacterial strains and their rela- 


tive proportion would require long tests; moreover, these proportions undergo major 


changes in time, and microorganisms grown in laboratory conditions (like in plate 


counting techniques) may lead to results which differ from those which are found 


in situ [34]. Therefore, it is necessary to resort to a more lumped description. While 


most existing models limit to one single kind of bacteria, whose parameters represent 


the collective behaviour of the consortium, we considered three kinds of microorgan- 


isms: those which are able to degrade the contaminant, those which are able to survive 
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in the presence of the contaminant, but not to degrade it, and those which are killed 


by the contaminant. 


The time evolution of these different populations can be at least roughly estimated, 


from an experimental viewpoint, using plate counting techniques (although these may 


underestimate the real number of bacteria sometimes even by two orders of magnitude 


[31]) on selected culture media: for example, the degrading population is estimated 


by using the medium where the chosen contaminant is the only carbon source, the 


resistant population is estimated by using a medium where the contaminant has been 


added, etc. (see [5] for further details). 


The evolution of degrading bacteria in each cell is ruled by the following law: 


Bd(t + l)=Bd(l)(l +KNd) - PdBd(tj2 +&d(t) 
F(t) 


A + F(t) 
- &dBd(t)F(T), (6.1) 


where &j(t) is the concentration of degrading bacteria at time t, F is the contaminant 


concentration in the soil, c1 and A are the coefficients of the Monod growth term 


(Monod kinetics has been supposed to be appropriate for phenol metabolization in 


the concentration ranges which have been experimentally investigated, see also [38]), 


/$j is the coefficient of the generic death term for bacteria, &d is the coefficient 


of the birth term, &d is the coefficient of the death term caused by contaminant 


(the chosen contaminant, phenol, has long been used for disinfection purposes). When 


contamination by phenol is simulated, the phenol-related death term is immediately 


active, while the Monod growth term does not immediately become active, because 


the bacteria need some time to activate the appropriate metabolic pathway (like e.g. 


in substrate induced enzyme synthesis). This delay is modelled by a “clock”, so that 


the coefficient of the Monod term takes its nonzero value only after a suitable time 


interval has elapsed since the appearance of phenol in the cell. Similar remarks apply 


to the role of water: when the soil is very dry, only a few “survival forms” resist for 


a long time, but when water is added the bacterial population starts to grow. This is 


also modelled by a “clock” operating on the birth rate term. 


The disappearance of contaminant in a cell, due to bacterial metabolism, is 


F(t + 1) = F(t) - d&(t) F(t) 
A + F(t)' 


where u’ is the phenol consumption rate (~‘>a, as not all the carbon coming from 


phenol is used to produce new biomass). 


The law for the phenol-resistant (but not degrading) bacteria is similar to that of 


Eq. (6.1) without the Monod term: 


&(t + 1) =&(t)(l + KNr) - /$h(# - K~r&(t)F(t). (6.3) 


The form of the equation for the non-resistant bacteria B,(t) is similar to that of the 


resistant but not degrading ones B,(t), the only difference being that the phenol-related 


death term is larger (Z& <<Km) so to lead to an almost vanishing final concentration 


in the case of high contamination. 
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The effect of nutrients has been modelled as an influence upon the kinetic parameters 


of the growth equation. For example, as the phenol degradation pathway is aerobic, it 


is assumed that the coefficient of the Monod growth term CY. be a growing function of 


the available oxygen concentration. 


As far as bacterial motion is concerned, although it is known that bacteria can 


sometimes move along with the fluid flow, either as individuals or colonies (see [26] 


for a review), and that more complicated behaviours have also been observed, like 


e.g. chemotaxis, which implies a selective movement towards the regions of higher 


concentration of a given chemical, we took an “Occam razor” approach and choose to 


try to keep the model complexity at a minimum level, compatible with experimental 


data: therefore bacteria are assumed to be immobile, bound to the pore walls. Bacterial 


transport in the aqueous phase is supposed to be negligible. 


7. Optimization methods 


As there are in the model some parameters which cannot be directly measured or 


derived from first principles, it is necessary to estimate them by comparing simulation 


results and experimental data and applying a suitable optimization method. 


In this work we resorted to the well known genetic algorithms [24,25], as they are 


not bound to get stuck in local minima like, e.g. gradient descent techniques and do 


not require that the cost function to be minimized possess any peculiar property (like 


continuity, differentiability, etc.). The parameters are coded in binary form, so that 


each set of parameter values represents an individual, and a random initial population 


is generated. The genetic algorithm then tries to produce new generations of individ- 


uals of higher fitness, i.e. able to give a closer agreement between simulations and 


experiments, by applying the classical genetic operators (i.e. selection, crossover and 


point mutation). In this work the selection probability is proportional to the fitness f 
of each individual, which measures the “goodness” of the simulation performed with 


those parameter values, and is defined as follows. Let S and 0 be two M-dimensional 


vectors whose components are the values, at M time steps, obtained in the simulation 


(S vector) and in the pilot plant experiment (0 vector). The fitness function is then 


defined as the (normalized) square of the euclidean distance between these two vectors: 


f = II0 - sl12/llol12. 
The crossover operator which has been used is the classical single point crossover, 


while point mutation is introduced by mutating the value of each single bit with a 


fixed probability (mutations are independent of each other). 


In order to prevent the risk of premature convergence to a suboptimal solution 


which may affect genetic search, competition for reproduction is limited to subsets 


of the whole population. For this purpose, the individuals are regarded as distributed 


in space, interacting at each time step only with their neighbours and not with distant 


individuals. More precisely, the individuals are arranged on a two-dimensional lattice 


(with wrap around, thus giving rise to a toroidal topology); at each step an individual 
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is chosen (either in a probabilistic way or in a sequential deterministic way) and 
its neighbourhood is isolated from the remaining population: selection, crossover and 
mutation will only act on the selected zone. The children strings that will have been 
generated from the genetic operators will come in conflict only with the individuals 
of the subpopulation and (if fairly strong) they will replace a part of it; after this, a 
new individual will be chosen, and the same procedure will be applied, a.s.o. A more 
precise description of the algorithm is given below, while further details can be found 
in 1191. 


Procedure genetic (. . .) 
I * “tag.x”, “tag.y” are the central coordinates of the new subset of the 


population *f 
i* “nei~bours[i]” is the i-individual of the neighborhood *I 
/* “‘random(x,y)” return a integer value between x and y */ 
I* "n_identi fy(. . . ),’ individuate the neighbouring individuals *I 
/* “end_criterion(. . .)” checks the condition of end program */ 
. . . . . . . . . . ..*...*..*... 
control:=FALSE 
do: 


tag_x:=random(O,XMax) 
tag_y:=random(O,YMax) 
neighbours:=n_identify(population) 
genetic_action(tag~, tag-y, neighbors) 
con~ol:=end-c~te~on(population) 


until control = TRUE 
. . . . . . . . . . . . . . . . . . . . . . . 
End. 
Procedure genetic_action(. . .) 
i* “mate 1” “‘mate2” are the two new children strings *I 
I* ‘“objet&e” is the position of the competitor string of the two new 


strings *I 
/* “neighbours[i]” is the i-individual of the neighbourhood */ 
/* “selectf.. .).’ returns an individual, selected proportionally to its fitness */ 
/* “select-bad (. . .>,, returns an individual, selected in inverse ratio to its 


fitness *I 
/* “cross(. . .)” effects the single point crossover */ 
/* “calculate_fitness(. . .)” return the fitness of an individual */ 
/* ‘“wimrer(. . .),, select a winner string, proportionally to its fitness */ 


. . . . . . . . . . . . . . . . . . . . . . . 


matel:=select(neighbours) 
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mate2:=select(neighbours) 


cross(mate1, mate2) 


matel:=mutation(matel ) 


mate2:=mutation(mate2) 


fit[ l]:=calculate_fitness(matel ) 


fit[2]:=calculate_fitness(mate2) 


objective:=select_bad(neighbours) 


fit[3]:=calculatefitness(neighbours[objective]) 


neighbours[objective]:=wimrer(fit, matel, mate2, neighbours[objective]) 


. . . . . . . . . . . . . . . . . . . . . . . 


End. 


The layered structure of the model also allows one to optimize subsets of parameters 


in different phases: in this way a large search space can be broken in more manageable 


portions. We first simulated the fluid dynamical layer alone, thus optimizing the values 


of the relevant parameters, then those of the contamination experiments, so to calibrate 


the parameters of the second layer, and finally those of the bioremediation experiments. 


In this way, at each stage a limited number of parameters was involved, and the length 


of the corresponding chromosome remained manageable. Further details can be found 


in [17,18]. 


8. Comparison with experimental results 


Several experiments have been performed on pilot scale constructed soils, i.e. on two 


twin vessels of about 1 m3, filled with soil, which came from an industrial site which 


had been contaminated by phenol for several years, and which had already undergone 


a successful field scale bioremediation intervention. Two kinds of experiments have 


been performed, the first referring to the contamination process and the second to 


the (engineered) bioremediation process. In the first kind of experiments, an aqueous 


phenol solution was percolated through the soil, while in the subsequent bioremediation 


phase an aqueous nutrient solution was percolated in order to stimulate the activity of 


indigeneous bacteria. Further details can be found in [5]. 


The two twin pilot plants were contaminated in two slightly different ways, i.e. in 


a case with an instantaneous flooding from the upper side of the container, and in the 


other case with a slower flow generated by a spraying system (in this case the same 


amount of water was provided in about 45 min). 


The bioremediation experiments were based on the use of a nutrient solution which 


was sprayed on the soil, while field operations are usually performed in a closed loop, 


where percolated water is collected by wells, added with oxygen and nutrients and 


re-injected in the field, the tests were performed in an open loop way to ease model 
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Fig. 5. Total percolated water (MRI, flooding). 
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Fig. 6. Total percolated water (MRI, fiocding). 


validation. In order to assess the role of nutrients, while one container was sprayed 
with a nutrient-rich solution, the other was sprayed with water only. 


Fig. 5 shows a comparison of model and experimental results concerning the total 
percolated water on a long time scale (in the contamination experiment). Fig. 6 shows 
a similar comparison on a short time scale: it can be seen in both cases that the two 
differ at most by a few per cent. As integrals tend to smooth differences, in order to 
provide a more demanding test, the flows are shown in Fig. 7, where it can be seen 
that the model predictions are accurate. Fig. 8 reproduces the short time data for the 
case of contamination by rain. 
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Fig. 7. Flow of percolated water in MRl (flooding) 
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Fig. 8. Total percolated water (ME, rain). The simulation refers to the 3D model with ponds. 


While the above data all refer to contamination experiments, it is interesting to note 


that the model proved able to describe also the percolation dynamics in the bioreme- 


diation phase (Fig. 9), where the amount of water added every day was much smaller 


than that of the contamination phase, without fnrther parameter modification. 


Also for the phenomena described by the other two layers, the simulation proved able 


to match very closely the experimental results. While a detailed comparison is provided 


in [17,19], to which the interested reader is referred, the major accomplishments have 


been: 


l a precise description of the outflow of phenol with drainage water, in different 


conditions (flooding vs. rain, different initial values of soil saturation) 


l a behaviour of phenol in soil which matches the main observed experimental features, 


i.e. (i) phenol density decreases with increasing depth, at each time, and (ii) it has 


a faster decay rate in the upper soil layers; the combined effect of the two leads 
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Fig. 9. Total percolated water in bioremediation (MRI ), 


to an almost simultaneous disappearance of phenol in all the soil layers (a precise 


quantitative comparison between model and experimental results was not allowed 


by the latter’s high variability in different points) 


a behaviour of the concentration of bacterial populations which closely follows the 


one observed experimentally, under different conditions including water introduction 


in a dry soil, contamination by phenol and remediation by a nutrient solution. 


Conclusions 


The agreement between experimental data and simulation results is remarkable, tak- 


ing into account the complexity of the system under study and the fact that the phe- 


nomena are fully non stationary. This agreement provides an a posteriori test of the 


validity of the cellular automata approach. 


Let us come back to the comparison of CAs and PDEs. In continuum models, a 


macroscopic approach is also taken; it is assumed [7] that a representative volume 


element exists, which is small enough (with respect to the scale length of the phenom- 


ena of interest) to allow a meaningful limiting operation AV + 0, yet large enough to 


comprise several pores so to allow the use of average quantities which vary smoothly 


in space. The water content of a cell at a given point would then be the average of 


the water content on a number of neighbouring pores, and it would therefore be a 


smoothly varying quantity. 


The PDEs are obtained by performing mass and momentum balance on a volume 


element AV for a small time At, and then letting both AV and At tend to zero. 


Constitutive equations are also used, like e.g. Darcy law or its multiphase analogous. 


If it were possible to integrate the Navier-Stokes equation this would not have been 
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necessary, but the disordered nature of soil and the lack of information on its internal 


structure makes it necessary to resort to empirical laws. 


The major difference with respect to the discrete approach described in this paper 


lies in the limiting operation. This has of course the advantage of eliminating any 


dependence on the space scale (provided that the conditions for a REV are fulfilled) 


and on the shape of the cell. If analytical solutions could be found, the advantage of 


the continuum approach would be overwhelming. However, for systems as complex 


as those which are considered here, this is not the case, so that, in the continuum 


approach, a limit for d V, At -+ 0 is followed by a discretization with finite time and 


volume increments. It is likely that these combined operations do not provide any 


particular advantage with respect to discrete modelling, in the case of soil remediation. 


Here, we have only provided empirical arguments in favour of this hypothesis, and 


further investigation would be needed to assess its validity and to better understand 


which phenomena lend themselves to such a discrete approach. 


Moreover, there is a subtle difference between CA-based and PDE-based modelling: 


when using a CA model, one is free to adopt phenomenological assumptions which 


may be well suited for the case, but uncommon in PDE modelling. Let us consider, 


e.g. the case of the bacterial clocks, which are mentioned in Section 6, like the phe- 


nol clock: the coefficient of the Monod growth term for degrading bacteria, related 


to contaminant concentration, is nonvanishing only after a certain time has elapsed 


since the appearance of phenol (even for a bacterial flora which is already adapted 


to the contaminant). This behaviour is well known to biologists as “lag phase”. In a 


PDE system, this could be simulated by introducing a discontinuous coefficient (e.g. a 


Heaviside function), or approximating it with some S-shaped steep function. In both 


cases, numerical instabilities might arise, so that modellers tend to avoid these terms 


(which are absent in the existing models, reviewed in [ 11,261). While they may not be 


necessary under some operating conditions, they are needed to describe some transient 


phenomena which have been observed. 


The presence of modifiable parameters, although it may be disturbing, it basically 


unavoidable in this kind of macroscopic models of complex interacting phenomena. Let 


us also recall that the testing has been very demanding, involving different experimental 


settings and conditions, so that we think that the good results achieved are not just “a 


matter of fitting”. During model development we often could not achieve a satisfactory 


performance until we identified the dominating physical phenomena: for example, be- 


fore understanding the crucial role of immobile water on the fate of the contaminant, it 


had not been possible to provide good results for the phenol concentration in drainage 


water, no matter which adsorptionjdesorption coefficients were chosen. 


Let us also remark that the model described here has been implemented on a MIMD 


parallel computer, achieving a very high efficiency (80-90% with up to 32 processors) 


[16]. This result proved that this class of models can be efficiently run on parallel 


hardware. 


Let us recall that the model described here is well suited for the case which has 


been also experimentally investigated, namely contamination by phenol, while further 
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terms should be introduced to deal with a wider set of cases; some of them are listed 
below. 
l It is necessary to consider different soil types. 
l It is necessary to consider different contaminant types. In particular, hydrocarbons 


can give rise to a three phase case (air, water, oil) and the model needs to be 
modified accordingly. 


a The bacterial equations are fairly classical, and better models of bacterial dynamics 
might improve the overall model. 


l In some cases bacterial growth can alter the fluid dynamical properties (pore clog- 
ging), and this phenomenon is not yet present in the model. 


l Mobile bacteria (including, if necessary, ehemotaxis) could be introduced. 
All these model improvements can be inserted in the framework presented here. The 
major issue which is still open concerns the accuracy of the scaling of the model to the 
field, which of course requires expensive large scale measurements. The tests which 
have been performed, albeit on a limited scale, are however very stringent, and have 
provided a thorough testing set. We believe that these results, which show how even 
such a complex phenomenon can be precisefy described by a model, can facilitate the 
diffusion of model based techniques in the sector of in situ bioremediation, which is 
still largely dominated by a highly empirical approach. 
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