IDEAL Strategy

profileLiz2013

 

 

IDEAL Strategy

Metacognitive skills allow students to become aware of their own learning process and choose among various cognitive strategies that will allow them to be self-regulated learners. One such cognitive skill is modeling for students how to effectively problem solve. You will model this cognitive tool by using the IDEAL problem-solving strategy found in Chapter 6.7 of our textbook.

Bobby is a student in your fifth grade class with autism. Bobby is extremely bright and can fully engage in assignments with much independence, except activities that involve group work. In most instances, he has difficulty working with others and tends to get angry when students don’t listen to him. Often times, you find him in the corner of the room pouting.

  1. Using the IDEAL strategy, develop a possible solution to this problem. Describe your solution and how you employed the IDEAL strategy, clearly listing the five steps.

  2. Reflecting on the IDEAL strategy, did you find the process helpful in solving a particular classroom dilemma? Why or why not? 

Imagine that you have the perfect teaching job (you are teaching the grade level and content that you desire). Describe how you might teach the IDEAL strategy to your own students. Why would doing so be beneficial? What might reasonably go wrong? 

Be sure to use the textbook with at least one other scholarly source to support your responses and include both an introduction and conclusion to your written assignment. Your paper should follow APA formatting guidelines as outlined in the Ashford Writing Center, be double spaced, three pages in length (not including title and reference pages), and written in Times New Roman 12 pt. 

 

 

 

 

 

 

6.7

 Approaches to Teaching Thinking

 

Cognitive approaches to education ask how children become thinkers and how we can make better, more critical, more creative, moreautonomous thinkers of them. These approaches suggest a two-pronged answer to these important questions: First, learners must develop anawareness of themselves as thinkers, learners, and information processors; second, they must develop and practice the approaches andstrategies involved in critical, creative, and effective thinking and problem solving. In other words, the cognitive perspective argues that learnersmust develop metacognitive skills as well as appropriate cognitive strategies. These are the skills involved in learning to learn.

Girl doing work at a desk in class.
Teaching empowers learners not just by giving them importantinformation and skills, but also by fostering in them feelings ofworth and competence. Learning to write can empower this younggirl every bit as much as can learning mathematics or science orart.

As we noted earlier, schools have traditionally devoted the bulk of their formalefforts to teaching specific curriculum content; the learning of cognitivestrategies and the development of metacognitive awareness have been largelyincidental—and sometimes accidental. But the best teachers, suggestsMcGregor (2006), are those whose own metacognitive skills are most highlydeveloped and are reflected in their classroom practice. And the best learnersare those who are most skilled in understanding the meanings of things,making inferences, finding relationships, and monitoring their own progress—in short, those who are most advanced in cognitive and metacognitive skills.These learners possess strategic as well as domain-specific (content)knowledge. Strategic knowledge deals with how to do things: how to solveproblems, how to learn and memorize, how to understand, and perhaps mostimportant, how to monitor, evaluate, and direct these activities as they occur.In other words, strategic knowledge is metacognitive knowledge.

There are various programs designed specifically to foster cognitive skills inlearners. Many of these programs are designed both to make students awareof the existence of cognitive strategies and to teach them to monitor andevaluate their use of these strategies. Such programs advocate a variety ofapproaches to teaching, including group learning (for example, cooperativelearning), individual instruction (for example, teachers' questions designed tofoster specific thinking skills), modeling procedures (for example, a cognitivestrategy is verbalized as it is being executed), reflective learning (activelyreflecting about the effectiveness and direction of learning activities), andvarious programs where learners are trained to use specific strategies. The main objective that these programs share is to develop in learnersmetacognitive knowledge—knowledge that allows children to learn how to learn and that will help them become self-regulated learners.

Teaching Problem Solving

When Sister Marie-Reine raised the cattail root above her head and asked "What is it?" someone could have said "It's a cattail root," and therewould have been no problem.

But nobody in the class knew it was a cattail root. And that, by definition, is a problem—a situation where there is a goal (find out what this is)and no clear and immediate path to the goal.

Problems and problem solving have been extensively investigated by psychologists and educators. Teachers need to know about how studentssolve problems and how problem-solving skills can be developed and improved.

The IDEAL Problem-Solving Strategy

Smiling boy student learning at desk.
There are many different strategies for solving problems. Smilingendearingly so that someone will help you is not a bad approach.

There are, of course, many different ways to solve problems. Some, like packingup a cattail root and shipping it to some vague university address, are timeconsuming and uncertain. Others, like asking an authority, are clever and effective.And some, like consulting an online encyclopedia or using a search engine, are notonly effective, but encourage important information-finding and problem-solvingskills.

Bransford and Stein (1993) suggest a simple, five-step strategy for general problemsolving, the basic elements of which can be explained and taught in schools. Thestrategy, memorable because of its IDEAL acronym, is defined by these five steps:

    • Identify problems and opportunities

    • Define goals and represent the problem

    • Explore possible strategies

    • Anticipate outcomes and Act

    • Look back and Learn

Identifying Problems

Problems in mathematics and science textbooks are often very straightforward:Find the area of a rectangle whose sides are 24 by 10; calculate what Joe'saverage speed needs to be if he is to go 115 miles, in exactly 10 hours.

But problems in real life are seldom written out in black and white. Many of the problems that students face are not simple, textbook- orteacher-given problems. What song to sing for the year-end concert, on which science fair project to embark, what topic to select for a historyessay, and on and on: These are real life, day-to-day problems that need to be identified before they can be attacked.

Defining Goals and Representing the Problem

Having identified the problem, the first line of attack involves defining it and finding ways to represent it. To define a problem is to specify whatthe final goal is. Representing a problem involves focusing on its important aspects and perhaps illustrating it graphically or in writing. Forexample, consider the following problem:

Suppose that one day you walk from Pascal to Shell River. You leave at 8:00 a.m., stop five times to rest, each time for 20 minutes, fish off thebridge for one hour at lunchtime, and finally arrive at Shell River at 4:00 p.m. You spend the night in Shell River and return to Pascal the nextday, following exactly the same route. Again you leave at 8:00 a.m., but this time you don't stop and you reach Pascal by noon. Is it true that atsome point on your return trip you will be at a place at exactly the same time you were at that place the day before? (Lefrançois, 2001, p. 414)

First, focusing on the important aspects of this problem requires that you eliminate information that is extraneous and distracting. That youstopped to rest or fish, where you did so, and for how long, is information that is unnecessary to the solution. All you need to know to solve theproblem is that you left both places at exactly the same time—although on different days—and that you followed exactly the same route.

This problem, like many others, might be represented with a diagram or chart, with a map, with a visual image, or perhaps even with a formula.Another useful way of representing the problem would be to change the time scale. Imagine, if you will, that both events take place on thesame day. Say you leave Pascal for Shell River at 8:00 and I leave Shell River for Pascal, also at 8:00 on the same day, and we follow the sameroad. There is little doubt that we will meet—that is, that we will be at the same place at the same time. If you go more slowly than I do, we'llsimply meet at a different place. Thus, the answer to the question is yes; we are simply "meeting" on different days.

Exploring Strategies: Algorithms and Heuristics

Photo of glider in the air.
Using analogic reasoning, it is entirely possible that Leonardo daVinci imagined a solution very much like this one in his attempt toinvent a "flying machine."

Some problems can be solved from memory; for others, we know the rulesand procedures that will lead to a solution. But for some, we need to exploredifferent strategies, try different approaches.

Scientists differentiate between two classes of problem-solving strategies. Onthe one hand are algorithms—strategies that pretty well guarantee a correctsolution. The rules that allow you to divide 20 by 5, to add 2 and 2, or tofigure out how much money you'll have left after you take your significantother to a movie, are algorithms. Similarly, the rules that allow you torecognize parts of speech or to predict correctly the effects of mixing variousbarnyard chemicals and igniting them are algorithms. One of theresponsibilities of schools is to teach students as many useful algorithms aspossible.

Unfortunately, most of life's problems don't lend themselves to solution byalgorithm. They are more vague, their solutions less definite. Often theyrequire a tolerance of ambiguity, a sort of fuzzy logic that admits exceptionsand uncertainty. These problems need to be attacked with heuristics ratherthan algorithms. Heuristics are approaches or guidelines that lead to asolution that is not necessarily the correct solution but that is something like abest educated guess. Common heuristics include trial and error, wheredifferent resolutions are attempted until a correct—or at least satisfactory—solution is encountered; means-end analysis, where the problemsolver assesses the final goal, compares it with the present situations, and determines what is required to eliminate the difference between thedesired goal and the present situation; and analogic reasoning, where an attempt is made to solve the problem by means of comparison orsimile. As an example, when Leonardo da Vinci was faced with the problem of developing a flying machine, he looked at the structure andmovements of birds' wings. And while this analogy presented important solutions for some of the problems involved (for example, in terms ofthe ideal shape of flying machine wings), it presented a poorer solution for others (for example, his early belief that a flying machine wouldhave wings that moved like a bird's). He later realized that an analogy to a bird gliding, rather than beating its wings, was more likely to lead toa functional flying machine.

Anticipating Outcomes and Acting

To anticipate an outcome is, in effect, to generate a hypothesis. Hypotheses are educated guesses that can be tested. And the "act" part of thisstep in the IDEAL approach to problems is precisely what allows the problem-solver to test the usefulness of the hypothesis. In science, the"act" part might involve gathering information, perhaps by conducting an experiment that allows the hypothesis to be refuted or supported. Inday-to-day problem solving, anticipating might involve imagining what the consequences of one's actions will be.

Looking Back and Learning

The final step in the IDEAL model underlines the usefulness of reflecting on one's problem-solving behavior as well as on one's solutions. It'simportant to evaluate the appropriateness of each and by so doing, learn things that might be useful in the future. Looking back and learning isa fundamental part of "learning how to learn."

Reciprocal Teaching

One program designed to teach students how to think and understand, specifically with respect to what they read, is Palincsar and Brown's(1984) reciprocal teaching. In reciprocal teaching, students are taught four cognitive strategies for increasing reading comprehension: generatingquestions, summarizing, attempting to clarify word meanings and confusing text, and predicting what will happen next. In the early stages,teachers use direct instruction to help students with each of these strategies, by modeling and illustrating them with various examples ofwritten text.

As students systematically practice these strategies, they assume increasing responsibility for helping each other with hints, feedback, additionalmodeling, and explanations—hence, the label reciprocal teaching. They are encouraged to ask questions, comment on each other's predictions,ask for clarification, and help clear up misunderstandings. Gradually, teachers do less and less of the work as students do more. Eventually, theprocedure becomes somewhat like a cooperative instructional approach as one student asks questions, a second answers, a third comments onthe answer, another elaborates, and so on. Table 6.2 provides an illustration of reciprocal teaching.

Table 6.2: Reciprocal Teaching
Student-student–Teacher-Student DialogueFeatures of ReciprocalTeaching Illustrated
Students work in groups of four or five. The goal is the development of reading comprehensionskills.)Small group
Teacher: Who's our first leader today?Teacher begins process
Sam: MeStudent acts as leader

Teacher: Okay, Sam. The story we're going to read is called George Is Okay. Do you want to make aprediction, Sam?

Sam: Yeah. Hmm, George Is "Okay" . . . I think the story's about an accident.

Teacher: Interesting prediction. Being "Okay" could mean not being hurt in an accident.

Students make predictions

Jane: I predict it's going to be about a kid, George, who people don't like to begin with, but they doin the end.

Teacher: Why do you make that prediction, Jane?

Jane: Because we've been talking about what to do about bullying and, well, that's what made methink, it would fit with the title.

And more predictions

Thomas: It could mean, like maybe George is good at something, not an accident or bullying oranything but maybe good at some sport or video game or something.

Clarifying meanings

Allysa: Can I summarize the predictions? Okay. I . . . the predictions are that it's gonna be aboutsomebody—George—in an accident, or about being good at something, or about one of the anti-bullying strategies we talked about.

Summarize

Teacher: Okay. We have some interesting predictions. And reasonable too. Now what do we need tofind out when we read the story?

Sam: Who George is. We need to know who George is. And what happened to him.

Thomas: And we need to know why he's okay 'cause it could mean different things. That's what wedon't know.

Teacher acts as a facilitator

Sam: I think that's a good point.

Teacher: Now, the story's on page 28. Has everybody turned to that page? Okay, everybody read thefirst two paragraphs. (Students read silently.)

Teacher: That was an interesting prediction, Jane. About bullying.

Sam: But it might be the reverse. Right? I mean, I thought George might be the one being bullied.But he could be the guy who tries to stop the bullying.

Jane: And I think he might use that mediator strategy we talked about.

Students encourage eachother

Sam: Should we make more predictions? Like what do you think is going to happen? What kinds ofquestions can we ask?

Allysa: It depends on what "is okay" really means.

Ask questions

Sam: Look at the last sentence.

Allysa: Yeah. That makes sense . . . the last sentence of the paragraph is where George says theyshould invite the new kid to try out for the football team. So maybe the new kid will make the team.

Teacher: Good hint, Sam, because the last sentence often tells you what's coming up next.

Give each other hints,comment on predictions,clarify meanings

Sam: Maybe Allysa could be the next leader.

Allysa: Okay. Let's summarize what we know and make some predictions before we read some more.

Take turns leading andteaching each other—hencereciprocal teaching


Cognitive Apprenticeship

Another of several programs designed to teach cognitive strategies is cognitive apprenticeship (Collins, 2006). This model views the learner asan apprentice in much the same sense as novices who are apprenticed to experts to learn new trades and skills. In the cognitive sphere, theexperts are parents, siblings, other peers or adults, and most important, teachers. Within this model, the role of the teacher is less about fillingthe learner's mind with information, facts, figures, procedures, and so on than about presenting examples, inviting students to explore, andproviding guidance and encouragement. This model suggests that teachers need to develop a variety of cognitive strategies so that theirstudents are equipped to explore, organize, discover, and learn on their own.

The Methods of Cognitive Apprenticeship

Cognitive apprenticeship advocates the use of a number of specific techniques designed to clarify the role of the teacher (expert) and thelearner (apprentice) (Farnham-Diggory, 1992). These include the following:

Cognitive modeling

In its simplest sense, cognitive modeling involves having teachers show learners how some intellectual activity can be accomplished. The objectis not so much for learners to simply copy the expert's performance, but rather to help learners learn how to learn. If an expert is to show anovice how to perform a cognitive task, it's necessary for the steps and procedures involved in the task to be made explicit and evident—amongother things, by describing how specific cognitive strategies, such as rehearsal or organization, are being used and by using different forms of"thinking out loud."

Coaching

Coaching involves guiding specific aspects of the student's performance. Just as a cognitive apprenticeship approach uses modeling todemonstrate the performance of cognitive tasks, coaching, too, is aimed at guiding the learner's cognitive behavior. Teachers might use any of avariety of techniques designed to teach thinking (to develop cognitive and metacognitive strategies).

Scaffolding involves providing support so that students can accomplish tasks that would otherwise be too difficult for them. This concept isdiscussed in Chapter 2 in connection with Vygotsky's zone of proximal development. Recall that scaffolding is defined in terms of the varioustypes of support that teachers need to provide for children if they are to learn. Scaffolding often takes the form of directions, suggestions, andother forms of verbal assistance and is most effective when it involves tasks within the child's zone of proximal development—that is, tasks thatthe child is initially incapable of performing but that can be accomplished with the support and guidance of others.

Wood, Bruner, and Ross (1976) describe six techniques that can be used in scaffolding. These are summarized and illustrated in Table 6.3.

Table 6.3: Some Scaffolding Techniques
TechniqueDescriptionExample
RecruitmentGaining the child's attention andfocusing it on the requirements of thetaskOkay, what we want to do is calculate the area of this right-angle trianglewhen we know the length of all its sides. How many square inches (cm)does it contain?
Reduction indegrees offreedomReducing the tasks to manageablesubtasksRemember how to find the area of a rectangle? Can you make thistriangle into a rectangle?
DirectionmaintenanceKeeping the learner on track andmotivatedWhy don't you draw out the triangle, make it into a rectangle, andmeasure each of the sides? Maybe try another triangle and see if it's thesame.
MarkingcriticalfeaturesDrawing attention to the most relevantaspects of the taskHow many identical right-angle triangles do you need to make arectangle? Why don't you draw a triangle on the corner of this piece ofpaper and cut three or four out and make squares with them? Do youalways need the same number of triangles?
FrustrationcontrolEasing frustration associated withdifficulties the child might experienceThis is sometimes a hard problem even for eighth graders. You're doingreally well.
DemonstrationImitating the child's attempts, butmodifying them slightly so that they aremore appropriate and can then beimitated in turn by the childHere, let me cut out two triangles exactly the same and, here, let memake a square. Now what's the area of this square? And . . . that's it . . .exactly half. And . . . right! That is the formula, you genius!

Based on Wood, Bruner, & Ross (1976).

Fading

In a sense, fading is the complement of scaffolding. Scaffolding involves providing support and guidance so that learners can perform taskswithin the zone of proximal development (by definition, tasks that require the support and assistance of others). In contrast, fading involvesremoving supports as the learner becomes capable of performing a given task without assistance—in other words, as the task moves fromVygotsky's zone of proximal growth to within the sphere of the learner's acquired competence. Fading assures that students eventually assumeresponsibility for solving problems and for learning.

Articulation

Articulation involves verbalizing ideas or putting them into words. As a cognitive apprenticeship technique, articulation encourages learners toput their conclusions, descriptions, and the principles they have discovered into words. Deliberate verbalization forces students to think moreclearly about their cognitive processes and is frequently an important technique in programs designed to foster the development of cognitivestrategies.

Reflection

Closely related to articulation, reflection also requires that the learner think about and verbalize the execution and results of cognitive tasks. Butwhen reflecting, learners are encouraged to think more abstractly and perhaps to compare their cognitive activity with a conceptual model, orsometimes with an actual physical model.

Exploration

Exploration is the final step in the cognitive apprenticeship instructional process—as in most instructional approaches. It involves generalizingabout what has been learned or accomplished, and it is analogous to what is called transfer or generalization.

Promoting Cognitive Skills in Your Classroom

Two things seem clear at this point: First, our attempts to teach students how to think and how to learn are not always as deliberate and asfocused as they might be; and second, systematic programs can significantly improve learning and thinking for a variety of individuals and inmany different contexts.

The foregoing should not be taken to suggest that teachers who do not use systematic programs for teaching their students thinking/learningskills are failing to meet their responsibilities. As Billing (2007) points out, there are a wide variety of strategies and approaches that teacherscan use to promote cognitive skills, even if these aren't always entirely systematic—strategies that include various kinds of questioning and avariety of problems, exercises, and examples designed to encourage learners to analyze, match, encode, and otherwise become aware of andimprove their information processing. Following a detailed review of the literature on developing some of the key cognitive skills that learnersneed and, perhaps more important, being able to transfer these skills from one situation to another, Billing presents a number of principlesimportant for teaching. These are summarized in Table 6.4., with reference to chapters in this text that are especially relevant to eachrecommendation.

Table 6.4: Key Recommendations for Increasing the Transferability of Cognitive Skills
  1. Pay particular attention to student motivation, which is critical in determining how well students learn. (Chapter 8)
  1. Teach/develop specific learning/thinking strategies; that is, teach learners how to reason and how to monitor their reasoningprocesses. (Chapters 6, 7)
  1. Teach principles and concepts rather than simply memorizable facts. (Chapter 6)
  1. Pair abstract principles and rules with concrete examples. (Chapter 6)
  1. Arrange for learning to occur in a social context to stimulate production of explanations and abstraction of principles. (Chapters 3,8)
  1. Provide feedback so that learners understand the applicability or inapplicability of their generalizations as well as theappropriateness of their strategies. (Chapters 5, 10)
  1. Arrange for cooperative learning. (Chapter 8)
  1. Point out similarities and differences among problems. (Chapter 6)
  1. Provide a large variety of different, meaningful examples. (Chapter 6)
    1. Encourage learners to learn by discovering for themselves relationships, rules, and principles. (Chapter 6)

It would clearly be premature to suggest that teachers should now begin using this or that program for this or that purpose; although, it is notat all premature to repeat the claim of many education critics that the schools have not always done much to teach thinking and learning skills.The contemporary cognitive sciences are based on the assumption that much more can be done. They have also begun to show us how.

 

    • 8 years ago
    • 15
    Answer(1)

    Purchase the answer to view it

    blurred-text
    • attachment
      ideal_strategy_metacognitive_skills.edited_33237.docx
    Bids(1)