2012 01 - EE4313 Electronic Circuits II Exam #2 Part 1 (70 pts – includes take-home discussion)

Conceptual Amplifier Questions: (20 pts)

Given the diagram below, answer the following questions. You can express some answers in simple equation form such as $R_i // R_1$ or $R_1 + R_2$, etcetera.

16. What type of amplifier is shown above?

17. For DC, what is the total resistance providing negative feedback.

18. How would you calculate the "rule-of-thumb" maximum value of IDS?

19. If C_1 were removed, how would that complicate the design of this circuit?

20. If R₁ and R₂ were both reduced by a factor of 10 (ratio is unchanged), what would this affect?

21. How would removing RD affect AC operation?

22. (4 pts) For AC operation, increasing R_S would accomplish two things, what are they?

24. BONUS: (5 pts) Suppose you determine a specific value of C2 for a particular frequency range and the part is too expensive. You need to lower the required value of C2. What can you change in the circuit?

2012 01 - EE4313 Electronic Circuits II Exam #2 (65 pts) Part 2

Name: Solutions

1. (25 pts) What are the values for A_v, R_{in}, R_{out}, and A_i (i₀/i_i) for the amplifier shown below. R₄= 50kΩ, $R_1 = 100\Omega$, and $R_L = 40k\Omega$. $V_{TN} = 0.8V$, $V_{GS} = 3V$, $V_{DS} = 5V$, $I_{DS} = 1$ mA, and $\lambda = 0.005$.

$$R_{1} = 10001, \text{ and } R_{1} = 40811 \cdot V_{1N} = 0.01, V_{0S} = 3, V_{0S} = 3, V_{0S} = 3, V_{0S} = 3 \times 10^{-3} = 909 \text{ s}$$

$$R_{1} = \frac{R_{10}}{R_{10}} = \frac{R_{10}}{$$

= 223.6Ks

Ai = +1) from formula Shoot

2. (40 Total Points) Given the circuit and parameters below. <u>BEFORE CALCULATING, MAKE SURE</u> IT'S NOT ALREADY GIVEN!!!

For the common source amplifier: V_{DD} = 10V, R_1 =1 M Ω , R_2 =1.5 M Ω , R_D =5 K Ω , R_S = 2K Ω . Kn = 0.01A/V². λ = 0.01 V_{TN} = 1.0V.

For the common collector amplifier: R_4 =60 K Ω , R_3 =40 K Ω , R_C =4 K Ω , R_E =300 Ω , gm = 0.4S, and $\beta o = 100$. $R_5 = 1500\Omega$.

(6 pts) Draw the AC equivalent circuit below this diagram. Calculate and show all equivalent resistances (like $R_1 \parallel R_2$ for example.) $R_i = 5K\Omega$.

- a. (9 pts) For the DC operating point, write the 3 equations relating V_{GS}, V_{DS}, and I_{DS}. State any assumptions. Find V_{DS} and I_{DS} given $V_{GS} = 1.5V$. Neglect channel length modulation.
- (1) 10 = 7000 Ips + VDS

2) 4= V65 +2000 IDS

(5 pts) Find the terminal input impedance of stage 2 [RiB]. (Looking in, just after R3 and R4).

VDS= 1.25 V

RiB =
$$\Gamma_{\pi}$$
 + (B+1) RL \approx Γ_{π} (1+gmRL) Γ_{π} = $\frac{B}{gm}$ = $\frac{100}{0.4}$ = 250 SZ
RL = 300 | 1500 = 250 SZ

c. (5 pts) Find the output impedance? (Looking in, just left of C_5). (Hint: Rth = $R_D \parallel R_B \parallel R_{OUT}$ of stage 1 - you

will need to find ro of stage one.)

RE= 300 52

$$\alpha = \frac{100}{101} = 0.990$$

$$\begin{aligned}
\mathcal{L} &= \underbrace{100}_{101} = 0.990 \\
&= \underbrace{1}_{101} = 0.990 \\
&= \underbrace{1}_{24k} + \underbrace{1}_{5k} + \underbrace{1}_{61k} \\
&= \underbrace{1}_{40.01} \underbrace{(1.25 \times 10^{-3})}_{(0.01)(1.25 \times 10^{-3})} = 81 \text{ Kg}
\end{aligned}$$

$$\begin{aligned}
\mathcal{L} &= \underbrace{1}_{101} = 0.990 \\
&= \underbrace{1}_{10.01} + \underbrace{1}_{101} = 1 + \underbrace{1}_{101} + \underbrace{1}_{101} = 1 + \underbrace{$$

$$= \frac{1}{\frac{1}{5k} + \frac{1}{24k} + \frac{1}{25500}} = 356052 \text{ Auti } = (-5 \times 10^3) \text{ e.}$$

$$Av = (0.9917)(-17.8)(0.99)$$
 3 $Avtz = \frac{100}{101} = 0.99$

e. (5 pts) Find the overall voltage gain. (Hint: You will need
$$A_{vt2}$$
 and R_L)
$$A_V = \left(\frac{600 \text{ k}}{605 \text{ k}}\right) \left(-17.8\right) \left(A_{V+2}\right) \qquad A_{V+2} = \frac{g_m R_L}{1 + g_w R_L} = \frac{\left(0.4\right) (250)}{1 + (0.4)(250)}$$

ROUT = 300/41,46

Rth = RB/SK/Rid Rid= To (1+gm/s) Rs=0

R8=24K12
Rth=24K//SK//81K To= 1+7/05
7705