
    [image: SweetStudy (HomeworkMarket.com)]   .cls-1{isolation:isolate;}.cls-2{fill:#001847;}                 





	[image: homework question]



[image: chat] 
     
         
            .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}
        
    
     
         
             
             
             
             
             
        
         
             
             
             
        
    



0


Home.Literature.Help.	Contact Us
	FAQ



Log in / Sign up[image: ]   .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}    


[image: ]  


	[image: ]    


Log in / Sign up

	Post a question
	Home.
	Literature.

Help.




Read attached biology article and answer questions
[image: profile]
lqalyahya59
[image: ] 
     
         
            .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}
        
    
     
         
         
         
         
         
         
         
         
         
    



cancer_stem_cells_and_effect_on_cancer_therapies.pdf

Home>Biology homework help>Read attached biology article and answer questions





REVIEW


Cancer stem cells: a new framework for the design
of tumor therapies


Boyan K. Garvalov & Till Acker


Received: 14 July 2010 /Revised: 27 August 2010 /Accepted: 16 September 2010
# Springer-Verlag 2010


Abstract Modern tumor therapy has achieved considerable
progress, but many tumors remain refractory to treatment or
relapse following initial remission. Recent evidence points
to one possible reason for this limited therapeutic efficiency:
that the design of anticancer agents so far may not have been
aimed at the right target. While conventional tumor therapies
have targeted the main mass of tumor cells, there is now
compelling evidence that tumor initiation and progression are
driven by a subpopulation of tumor cells that possess stem cell
properties and are resistant to traditional cancer treatments—
the cancer stem cells (CSCs). CSCs have been identified in
most types of cancer and can be separated from the rest of the
tumor cells using appropriate markers. CSCs are regulated by
molecular mechanisms and specific, perivascular, and hypox-
ic microenvironments, which largely overlap with those
controlling stem cells from normal tissues. Our improved
understanding of CSC biology has already provided a number
of novel targets and drug discovery platforms for the design of
specific therapies that aim to eradicate the CSC subpopula-
tion. Therapeutic approaches can be targeted either at
eliminating the CSCs themselves or at disrupting the niches
in which CSCs reside. Moreover, the importance of CSCs for
tumor growth, resistance, and progression implies that clinical
trials and preclinical studies of anticancer therapies should


include as a key element an assessment of the abundance and
persistence of CSCs. Thus, CSC research holds great promise
for providing important new impetus to the fields of tumor
biology and clinical oncology.


Keywords Cancer stem cell . Hypoxia .


Microenvironment . Angiogenesis . Antitumor therapy.


Metastasis


The hierarchy model and cancer stem cells (CSCs)


The classical view of tumor formation is based on the
“stochastic” or “clonal evolution” model [1, 2]. It perceives
the tumor as a mass of hyperproliferative cells with similar
potential for driving tumor growth. Tumor heterogeneity
and progression are seen as the result of variations in the
tumor microenvironment and genetic mutations in individ-
ual cells, followed by selection of those that are best
adapted to support the further growth of the tumor (Fig. 1a).
An alternative concept that has been gaining increasing
experimental support is the “hierarchy” or “cancer stem
cell” model [3]. This model posits that tumors are generated
and maintained in a manner similar to the physiological
stem cell system operating in normal tissues, i.e., by cells
with stem cell-like properties, which self-renew and
differentiate into the distinct cellular subtypes of the tumor
(Fig. 1b). The key novel features of this model are that only
a limited population of tumor cells can drive tumor
initiation and maintenance and that the heterogeneity of
tumor cells is the result of differentiation from a stem cell
precursor that sits on top of the tumor’s “differentiation
hierarchy” [4], which may also include some level of
plasticity (Fig. 1b). The CSC model, therefore, extends the
clonal evolution model by proposing that clonal selection


B. K. Garvalov : T. Acker
Institute of Neuropathology, Justus Liebig University,
Giessen, Germany


T. Acker (*)
Institute of Neuropathology,
University Hospital Giessen and Marburg/Justus Liebig University,
Arndtstr. 16,
35392 Giessen, Germany
e-mail: [email protected]


J Mol Med
DOI 10.1007/s00109-010-0685-3








operates at the level of CSCs. The notion that tumors may
be initiated and maintained by aberrant cells with a stem
cell character can be traced back to the nineteenth century
and has been revived repeatedly ever since [5–7]. However,
direct experimental evidence was first provided in the mid
1990s, when it was shown that acute myeloid leukemia
could be transferred from human patients to immunodefi-
cient mice by a rare population of cells, which carry
markers of normal hematopoietic stem cells and reproduce
the hierarchy of differentiated leukemic cells [8, 9]. These
studies also set the standard by which CSCs are defined and
identified: as those tumor cells that can self-renew and are
capable of re-growing and reconstituting the heterogeneity
of the tumor from which they were isolated.


Based on analogous experimental paradigms, CSCs have
also been identified as a common feature of multiple solid
tumors including lung [10, 11], colon [12–15], stomach
[16], liver [17, 18], breast [19–21], prostate [22], pancreatic
[23, 24], head and neck [25], skin [26], ovarian [27–29],
bladder [30], mesenchymal cancer [31], brain tumors [32–
34], and melanoma [35–37] (Table 1). However, it has also
become evident that there could be differences between
tumor types, with some tumors containing a high propor-
tion of tumorigenic cells and little CSC-dependent hierar-
chy [38–41]. A variety of approaches are employed for the
isolation of CSCs, often based on markers characteristic of
normal stem cells, e.g., CD44, CD133, CD15, or ABC
transporter proteins. Some of these markers may not be
fully specific for CSCs, but in all cases, they provide a
means to substantially enrich CSCs, which are more
tumorigenic than the rest of the tumor cells. Importantly,
CSC markers and signature genes have proven to be
predictive of cancer progression and clinical outcome [21,
30, 37, 42–47]. Furthermore, more aggressive or refractory
cancers contain more CSCs [37, 48], underscoring the
clinical importance of this tumor cell population.


Properties and regulation of CSCs


The realization that CSCs represent a critical population in
many tumors has prompted efforts to understand their
properties in order to therapeutically target them more
efficiently. CSCs share a number of features with normal
stem cells. First of all, both CSCs and nonmalignant stem
cells are defined by their ability to self-renew and
differentiate. In vitro, CSCs are maintained in media
supplemented with growth factors, but without serum
[49]. Culturing under such conditions can also be used as
a means of enriching the CSC population [15, 49, 50]. In
such cultures, the self-renewal capacity of CSCs is typically
measured by their ability to form three-dimensional spheres
[51], similarly to normal neural or mammary stem cells [52,
53]. We have recently shown that the gene expression
signature of CSCs reveals substantial overlaps with genes
that are important for the maintenance of physiological
stem cells [47]. Indeed signaling mechanisms regulating
self-renewal and differentiation appear to be largely shared
between CSCs and stem cells (Fig. 2). The Notch pathway,
which plays an essential role in stem cell maintenance and
differentiation throughout development, is important for
CSC function. Activation of Notch signaling in glioma cells
increases the expression of stem cell markers and enhances
self-renewal [54, 55]. CSCs in medulloblastoma express
high levels of Notch and are sensitive to inhibitors of the
Notch pathway [56]. Similarly, Wnt signaling has a central
function in the control of multi-/pluripotency, proliferation
and differentiation in embryonic and adult stem cells and is
also necessary for CSC self-renewal and tumorigenicity.
The activation of the key Wnt downstream effector β-
catenin (Fig. 2) is enhanced in skin CSCs and, strikingly,
conditional ablation of the β-catenin gene in mouse skin
cancer models led to a loss of CSCs and complete tumor
regression [26]. Another example is the Hedgehog pathway,


Fig. 1 The stochastic and hierarchy (cancer stem cell) models of
tumor development. a According to the stochastic model, tumor cells
have similar proliferative capacity. Genetic mutation and selection of
mutant clones (clonal evolution) confer different tumorigenicity to
tumor cell subpopulations. b In the cancer stem cell model, only CSC
can self-renew and give rise to tumor progenitor cells, which in turn


give rise to more differentiated tumor cells. The resulting tumor
contains a hierarchy of cells, arising through the differentiation of
stem-like cells. The CSCs, but not the differentiated tumor cells, can
reinitiate tumor growth. However, the hierarchy may involve a certain
degree of plasticity with more differentiated cells converting into less
differentiated ones (dotted arrows)
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which is among the key regulators of stem cells from
various tissues and also plays a critical role in CSCs.
Inhibition of Hedgehog signaling suppressed CSC prolifer-
ation and self-renewal and increased apoptosis [57].
Importantly, it was reported that glioblastoma cells remain
viable after hedgehog blockade but are no longer capable of
tumor initiation, indicating that the hedgehog pathway is
required for maintaining the CSC population [58].


CSC niches


An additional similarity between CSCs and non-transformed
stem cells is their dependence on particular niches—
specialized microenvironments in which the surrounding


cells, extracellular matrix, and soluble factors are critical for
the maintenance of cell stemness. In situ, CSCs have been
found enriched in perivascular regions [59], and similar
findings have been reported for neural stem cells [60–62].
Recent studies have started to shed light on the signaling
mechanisms regulating CSCs in the perivascular niche.
Medulloblastoma CSCs localized in the vicinity of blood
vessels were resistant to radiation, owing to their ability to
activate the PI3K/Akt pathway and undergo a transient, p53-
dependent cell cycle arrest [63]. Intriguingly, the tumor
vasculature in gliomas expresses high levels of endothelial
nitric oxide synthase (eNOS). NO secreted from endothelial
cells can activate a cGMP/PKG dependent pathway leading
to enhanced Notch activity. This in turn leads to an increase
of the CSC pool and its self-renewal capacity [64].


Table 1 Markers used for the identification and isolation of cancer stem cells from different cancers


Cancer type CSC markers % of CSC cells in tumor Efficiency of tumor formationa


(transplanted cells)
Reference


Lung Sca-1+CD45–PECAM–CD34+ 0.008–0.064 ND [11]


CD133+ 0.3–22.0 ND [10]


Colon CD133 1.8–24.5 83% (500) [14, 15]


EpCAMhighCD44+ 0.03–38.0 (mean 5.4) 75% (200) [12]


ALDH1 3.5±1.0 ND (25) [13]


Breast CD44+EpCAM+CD24–Lineage– 0.6–5.0 100% (1,000) [19]


CD44+CD24-ALDH1+ 0.1–1.2 100% (20) [21]


Thy-1+CD24+CD45- 1.0–4.0 80% (50) [20]


Prostate CD44+α2β1
highCD133+ 0.1–0.3 ND [22]


Brain CD133 19–29 100% (100) [33]


CD15 5.6–70.5 100% (1,000) [34]


SP 0.15–1.2 ND [32]


Melanoma ABCB5 1.6–20.4 50% (100,000) [37]


Pancreatic CD44+CD24+EpCAM+ 0.2–0.8 50% (100) [24]


CD133 0.7–3.2 80% (500) [23]


Liver CD90+CD45– 0.7–6.2 50% (5000) [18]


Head and neck CD44 0.1–41.7 50% (5,000) [25]


Skin CD34 13.0–20.0 50% (1,000) [26]


Ovarian CD44+CD117+ 0.1–0.2 100% (100) [29]


CD133+ 0.3–35.0 (median 8.9) 83% (500) [28]


Bladder CD44 3.1–36.3 50% (1,000–3,000) [30]


Mesenchymal SP 0.07–10.5b 55% (100) [31]


Acute myeloid leukemia (AML) CD34++CD38– 0,02–2,00c 100%d (100,000–500,000) [8, 9]


Acute lymphoblastic
leukemia (ALL)


CD34+CD10–/CD34+CD19– 8±4/3±1c 100%d (50,000–200,000) [116]


a The efficiency represents the percentage of immunodeficient mice that form tumors following injection of the number of cells indicated in brackets
b Data presented only for a subset of tumors
c Percentage among mononuclear cells
d Percentage of engraftment


EpCAM epithelial cell adhesion molecule (also called epithelial-specific antigen), Lineage lineage markers: CD2, CD3, CD10, CD16, CD18,
CD31, CD64, and CD140b, SP side population
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Moreover, genetic ablation of eNOS interfered with Notch
activity and repressed tumor formation [64].


Importantly, the perinecrotic hypoxic micronenviron-
ment was identified as a second niche where CSCs are
concentrated, as we have recently demonstrated [47] again
in analogy to normal stem cells [65]. Low oxygen levels
(hypoxia) drive tumor progression by triggering a set of
adaptive transcriptional responses that regulate tumor
angiogenesis, metabolism, motility, and survival [66].
These cellular responses are primarily controlled by the
transcription factor system of the hypoxia-inducible factors
(HIFs). Interestingly, several reports have identified critical
stem cell regulators such as Oct4 [67], c-myc [68], and
Notch [69] as direct or indirect HIF targets. Importantly,
several studies by us and others have directly demonstrated


that the CSC phenotype is also promoted by hypoxia and
that the HIFs provide an intriguing link between the well-
established function of hypoxia in tumor growth and stem
cell biology. Hypoxia enhances the self-renewal of CSCs
[47, 70, 71], while HIF knockdown blocks this effect and
reduces CSC-mediated tumor growth [47, 72–74]. Interest-
ingly, HIF-2α, but not HIF-1α, is highly expressed and
strongly upregulated by hypoxia in glioma CSCs [72],
enhances the expression of a set of CSC marker genes [47],
and promotes tumor growth [70]. Taken together these
findings underscore a critical role for the perivascular and
the hypoxic niche in the maintenance and regulation of
CSCs. The identity of the regulatory cellular components
and molecular signals within these niches is one of the
crucial open questions of CSC research.


Fig. 2 Principal pathways regulating CSCs. The scheme depicts the
main components and clinically relevant targets involved in pathways
that have been shown to control CSCs. The Notch pathway (orange)
is activated by binding of transmembrane ligands such as Delta/Delta-
like proteins or Jagged to the membrane receptor Notch. This induces
cleavage of Notch by γ-secretase, releasing the Notch intracellular
domain (NICD), which translocates to the nucleus and activates
transcription in complex with cofactors of the CSL family. Different
growth factors (e.g., EGF, FGF, PDGF) can activate receptor tyrosine
kinases (RTKs, green) that subsequently promote the activity of
phosphatidylinositol-3-kinase (PI3K), Akt and mammalian target of
rapamycin (mTOR), among others, leading to enhanced protein
translation, cell growth, and proliferation. Binding of Hedgehog (Hh,
cyan) ligands to the receptor Patched (PTCH) relieves an inhibition of
Smoothened (SMO), triggering a cascade that leads to the transloca-
tion of glioma-associated oncogene homologue (Gli) into the nucleus
and transcription of target genes. The Wnt pathway (yellow) is
initiated by binding of Wnt ligands to a complex of the Frizzled (Fz)


and lipoprotein receptor-related protein (LRP) receptors. This sets off
a series of signaling steps leading to stabilization of β-catenin, which
can proceed to activate gene expression together with the TCF/LEF
transcription factors. Endogenous Wnt inhibitors like Dickkopf
proteins (DKK) and secreted Frizzled-related proteins (SFRPs)
regulate the pathway and could be explored as tools for its
pharmacological blockade. Specific factors in the CSC niches also
play critical roles in regulating CSC self-renewal and differentiation.
For example, NO produced by endothelial nitric oxide synthase
(eNOS, red) can stimulate the production of cyclic guanosine
monophosphate (cGMP) and activate protein kinase G (PKG),
resulting in enhanced Notch signaling. Low oxygen tension in the
hypoxic CSC niche suppresses the activity of prolyl hydroxylase
domain-containing proteins (PHDs, blue), leading to stabilization of
hypoxia-inducible factors (HIFs) and the transcription of HIF target
genes. Notably, the HIF pathway interacts with other pathways, such
as Notch [69], allowing for an intricate oxygen dependent crosstalk
between CSC pathways
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CSCs have enhanced chemo-/radioresistance
and metastatic potential


A common property of CSCs with major therapeutic
significance is their enhanced resistance to standard anti-
tumor treatments such as chemo- and radiotherapy [23,
63, 75–79]. Irradiation or chemotherapy in vivo enriches
the fraction of cells expressing CSC markers, which also
have an enhanced self-renewal capacity and tumorigenic-
ity compared to the tumor bulk [23, 75, 77]. In addition,
sorted CSC cells from different types of tumors survive
such treatments in culture much better than unsorted or
negative cells [75, 76, 78]. This is due to a combination of
factors, including the high expression of ABC drug
pumps, relative quiescence, resistance to oxidative DNA
damage, and enhanced DNA repair capacity [37, 75]. The
increased resistance of CSCs, combined with the ability of
only a very small number of CSCs to reinitiate tumor
growth [21, 33] is thought to be a major reason for cancer
persistence and relapse after treatment. If CSCs are
required for the initiation and growth of primary tumors,
as posited in the hierarchy model, it is natural to assume
that metastasis formation may also depend on CSCs. This
is an issue of major clinical relevance since metastases are
responsible for 90% of cancer related deaths, and indeed
the involvement of CSCs in tumor dissemination has
received experimental support in recent years. CSCs from
mammary carcinoma have a phenotype similar to that of
cells which have undergone epithelial–mesenchymal tran-
sition, a process that plays a key role in tumor cell
invasion and metastasis [80]. In addition, the early
disseminating cells in the bone marrow of breast cancer
patients have a CSC phenotype [81]. In pancreatic cancer
CSCs are found at the invasive tumor front and determine
the metastatic potential of the tumor [23]. Furthermore, a
subpopulation of CD26+ colorectal CSCs possesses
exclusive metastatic ability and is predictive of distant
metastasis in colon cancer patients, in addition to exhibit-
ing enhanced chemoresistance [82]. Taken together, these
findings indicate that CSCs may be at the heart of the two
key problems in tumor treatment—resistance to therapy
and metastasis.


Consequences for cancer research and development
of anticancer drug design platforms


The CSC paradigm has brought a fundamental shift in
our understanding of cancer biology. It prompts a re-
assessment of cancer as not simply a proliferative but
also a differentiation disorder, in which tumor cells with
aberrant stem cell characteristics that differentiate into
abnormal progeny play a central role. From a technical


point of view, the discovery of CSCs has stimulated the
development of better defined and more physiologically
relevant experimental models. Our knowledge about
CSCs questions the utility of long established cancer
cell lines and culture systems, as well as standard
subcutaneous tumor transplantations, as reliable tools
for the study of tumor behavior. Established tumor cell
lines have provided an easily tractable system to
characterize many basic properties of CSCs, in particular
when cultured under stem cell conditions [18, 47, 83,
84]. However, primary, low passage tumor cells isolated
from tumor biopsies, continuously grown in non-
differentiating conditions are both closer to the original
tumors and maintain a subpopulation with characteristic
CSC properties [49, 50, 85]. In addition, orthotopic, rather
than subcutaneous tumor transplantation is the method of
choice for assaying the defining property of CSCs, tumor
propagation [19, 33].


The CSC model has a major impact on the focus of
antitumor therapies, since it highlights the importance of
eliminating the small but crucial and resilient subpopulation
of CSCs (Fig. 3). In general, traditional strategies for drug
design, which focus on the tumor bulk, have not proven to
be suitable for the discovery of agents that eliminate CSCs.
As discussed above, a hallmark of CSCs is the elevated
resistance to classical chemo- and radiotherapy. Novel bulk
tumor-targeted agents such as imatinib are also often
ineffective against the CSC pool [86–88]. Conventional
approaches for anticancer drug discovery target prolifer-
ation, rather than self-renewal or differentiation. Standard
end points include overall survival and proliferation in
two-dimensional cell culture, as well as tumor size,
metastasis and survival in vivo, predominantly in
subcutaneous xenograft models. These parameters mostly
reflect the behavior of the tumor bulk and are poor
indicators of the drug’s efficacy against the CSC
component. Therefore, to improve the clinical relevance
of traditional drug screening analyses, it is important to
complement them with an evaluation of treatment impact
on CSCs. The influence of different agents on CSCs can
be experimentally assessed using a number of established
assays, such as analysis of CSC markers, signature
genes, self-renewal assays (e.g. sphere formation [51]),
and tumorigenicity assays in orthotopic xenotransplanta-
tion models. Monitoring of the effect of anti-tumor
treatments on the CSC pool should additionally be
included as an important element in preclinical studies
and clinical trials. CSCs can be assessed using biomarkers,
e.g. surface markers (Table 1) or specific genetic signa-
tures [47, 89]. The clinical relevance of CSCs for tumor
growth and therapy responses underlines the necessity to
develop new criteria and platforms for the design and
assessment of CSC-targeted therapies.
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Novel, CSC-based drugs and drug targets


Our growing knowledge of the biology of CSCs and the
application of improved drug discovery approaches, as
discussed above, have provided a number of targets for the
design of CSC depleting agents. In principle, two types of
approaches targeting CSCs can be envisaged: eliminating
the CSCs themselves by either killing or differentiating
them, and disrupting the CSC niches (Fig. 3). One group of
targets derives from pathways that are crucial in regulating
CSC self-renewal mechanisms (see Fig. 2 and Table 2). For
example, inhibition of Hedgehog signaling with cyclop-
amine, an antagonist of the Hedgehog co-receptor SMO,
killed CSCs in chronic myeloid leukemia and impaired the
growth of imatinib resistant mouse and human CML cells
[90]. A similar inhibitory effect of cyclopamine was
observed in glioma, where it synergized with the standard
chemotherapeutic temozolomide to suppress tumor growth
[57]. Likewise, blockade of Notch signaling by inhibitors of
γ-secretase, the protease required for Notch cleavage and
activation, depleted CSCs in medulloblastoma and glioma,
blocked tumor engraftment and growth and prolonged
survival [56, 91]. Furthermore, administration of neutraliz-
ing antibodies against the Notch ligand DLL4 reduced CSC
frequency and tumor growth [92]. Wnt signaling may
provide a further avenue for targeting CSCs, as it has been
found to be required for CSC self-renewal and tumor
growth in different cancers, including CML and squamous
cell carcinoma [26, 93]. Additional signaling molecules,
enriched or activated in CSCs, whose suppression inhibits
tumor growth and increases survival in mouse models


include the NF-κB pathway [94, 95], IL-6 receptors [96],
IL-3 receptor α (CD123) [97], integrin α6 [98], TGF-β,
and LIF [99, 100]. The PI3K/Akt/PTEN/mTOR signaling
axis (Fig. 2) is deregulated in many tumors, and in some
settings, it can be used to preferentially target CSCs. CSCs
have an increased sensitivity to Akt inhibition [101].
Additonally, inhibition of mTOR by rapamycin in a mouse
model of PTEN-deficient leukemia depleted the CSC
population and blocked the development of the disease
[102]. In many of the above cases, the effect of the inhibitors
may not depend on direct killing of CSCs but rather on
promoting their differentiation into cells that no longer support
tumor growth. For instance, skin tumor regression following
ablation of Wnt signaling is accompanied by extensive
terminal differentiation [26]. Similarly, activation of bone
morphogenetic protein (BMP)-dependent signaling by
BMP4 induced pronounced differentiation of glioblastoma
cells, depleting the CSC pool and markedly attenuating
tumorigenicity in a xenograft model [103]. Glioma CSC
differentiation induced by retinoic acid sensitized the CSCs
to therapy, impaired the secretion of angiogenic cytokines,
inhibited motility, and reduced CSC tumorigenicity [104].
The identification of characteristic CSC surface markers
(Table 1) provides further targets for the design of antibody-
based antitumor agents (Table 2) that would either activate
the body’s immune system against CSCs or would be
coupled to cytotoxic agents [105]. In addition to candidate-
based approaches for antitumor drug discovery, recent
developments of suitable cell culture systems and in vitro
assays have allowed high-throughput screens that produced
promising leads against CSCs [85, 106].


Fig. 3 Comparison of conven-
tional and CSC-based anticancer
therapies. a Conventional thera-
pies (brown flash) target the
tumor bulk but are inefficient
against CSCs (red), which can
subsequently regrow the tumor. b
CSC-based anticancer therapies
are aimed at eliminating CSCs.
One approach is either direct
killing of CSCs or their differen-
tiation into non-CSCs (orange
flashes) that can be combinatori-
ally targeted by standard treat-
ments. Another strategy entails
the disruption of CSC niches,
such as hypoxic regions or peri-
vascular regions, or niche-derived
signals (blue flashes), which are
required for CSC maintenance.
Both approaches are additionally
combined with conventional anti-
cancer agents (brown flash) to
destroy bulk tumor cells. Blood
vessels are depicted in pink
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CSC niche targeting and combinatorial therapeutic
approaches


Since CSCs carry the genetic mutations characteristic of the
tumors they generate [107, 108], they may also exhibit a
similar degree of genetic instability and mutation rate as the
tumor bulk. Thus, therapies that exclusively target CSCs
could run into the same problems that have overshadowed
the design of anticancer drugs for decades: emergence of
drug resistance and selection of increasingly refractory cell
clones. One approach for circumventing these problems is
presented by the dependence of CSCs on specific niches.
Since the niches are primarily generated by non-mutated
cells or cell-independent factors such as hypoxia, they may
represent a more stable target for the elimination of CSCs.
As discussed above, CSCs in solid tumors are enriched
around blood vessels and depend on signals derived from
them. Therefore, antiangiogenic therapies can be seen as a


promising strategy for depleting both the CSCs (by
compromising their niche) and the tumor bulk (by
depriving it from nutrients and oxygen). A number of
antiangiogenic agents are approved or in clinical trials [109]
(Table 2) and new targets are continuously being uncov-
ered. For example, we have recently identified the VEGFR
trafficking machinery as an additional target for inhibition
of angiogenesis in tumors [110]. However, the antiangio-
genic therapies that are currently available bring only
limited benefits [111]. One explanation for this may be
that by shrinking the tumor vasculature and blood supply,
such agents stimulate the expansion of the other type of
niche that has been described for CSCs—the hypoxic one
[47]. This suggests that an additional important approach
for targeting CSCs would involve the suppression of
hypoxia-triggered signaling mechanisms. Substantial efforts
are currently aimed at developing anticancer agents that
target the HIF pathway [112]. Moreover, several known


Table 2 A selection of potential cancer stem cell inhibitors in (pre)clinical studies or approved for clinical use


Target/pathway Agent (Developer) Status Cancer indications References


Hedgehog


SMO antagonists GDC-0449 (Genentech/Curis) Phase I/II Solid tumors [117–119]


Cyclopamine Phase I Basal cell carcinoma [120]


Other IPI-926 (Infinity) Phase I Advanced/metastatic solid tumors [121]


BMS-833923/XL-139
(Bristol-Myers-Squibb/Exelixis)


Phase I Skin, solid tumors [122]


Notch


γ-Secretase inhibitors MK-0752 (Merck) Phase I Breast, pancreatic, brain cancer [123]


R4733 (Roche) Phase I/II Solid tumors [124]


PF-03084014 (Pfizer) Phase I Advanced cancer, leukemia [125]


DLL inhibitors anti-DLL4 mAbs Preclinical Solid tumors [126, 127]


Wnt


Inhibitors TCF/β-catenin inhibitors Preclinical Colon cancer [128–131]


Antibodies Wnt-2 mAb Preclinical Melanoma, non-small cell lung cancer [132, 133]


EpCAM


Antibodies Adecatumumab (Micromet) Phase II Metastatic breast cancer [134]


Edrecolomab Phase II-III Colon cancer [135, 136]


Catumaxomab (Trion/Fresenius) Approved Malignant ascites [137]


Angiogenesis


VEGF Bevacizumab (Genentech/Roche) Approved colon, non-small-cell lung cancer, breast cancer [138]


VEGF receptors Sorafenib (Bayer) Approved Renal carcinoma, hepatocellular carcinoma [139]


Sunitinib (Pfizer) Approved Renal carcinoma, gastrointestinal stromal tumors [140]


Hypoxia/HIF


PHD activators KRH102053 Preclinical Solid tumors [141]


HIF synthesis/activity PX-478 (Oncothyreon) Phase I Advanced solid tumors, lymphoma [142]


Topotecan (GlaxoSmithKline) Approved Ovarian, lung, cervical cancer [143]


Digoxin (GlaxoSmithKline) Approved Cardiac conditions [144]


Phase I-II Breast, lung cancer


FK228 (Gloucester) Phase II Solid tumors, lymphoma, [145]


17-AAG Phase I-II Solid tumors, leukemia [146]
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anticancer drugs that target regulators of HIF function have
been shown to suppress HIF levels or activity [112]
(Table 2). In principle, such agents could also play a two-
fold role as both suppressors of bulk tumor growth and as
inhibitors of CSCs, by targeting the hypoxic CSC niche. It
should be noted, however, that most efforts so far have
been focused on the more widely expressed and better
studied member of the family, HIF-1α, whereas recent
studies by us and others indicate that it is rather the second
member of the family, HIF-2α, which plays a key role in
the maintenance of CSCs [47, 72]. Future studies will need
to address the activity of currently available agents
targeting hypoxia signaling on CSCs, and to attempt
designing specific HIF-2α inhibitors that block its function
in CSC maintenance.


In designing future anticancer therapeutic strategies that
include CSC eradication as a key element, it should be kept
in mind that the approaches described above are unlikely to
be successful when applied individually. In many cases, it
may be essential to combine CSC-specific agents with
traditional bulk tumor-targeting treatments (see Fig. 3).
CSC depletion alone will be expected to halt tumor growth
but will not necessarily reduce the size of preexisting
tumors, which could impose a substantial clinical burden on
the patient and should also be targeted, using traditional
strategies. Similarly, drugs that cause CSC differentiation
rather than death will require the elimination of the
differentiated tumor cells as an additional step. The efficient
eradication of CSCs themselves may require the combined
ablation of CSCs and their niches. Furthermore, approaches
that center on the CSC niche as a target will need to take
into account the existence of different, even opposing
(perivascular and hypoxic) niches and target them simulta-
neously. Lastly, it has to be kept in mind that CSC targeting
treatments may also deplete normal stem cells due to the
molecular and functional similarities between CSCs and
stem cells. However, recent studies have highlighted crucial
differences between CSCs and stem cells that could be
exploited for CSC specific treatments [72].


Conclusion and perspective


Based on our current knowledge, CSCs are likely to be a
key driving force of most types of cancer. It is, therefore,
justified to include the evaluation of CSC abundance and
persistence as a critical element in future preclinical studies
and clinical trials of antitumor therapies. The CSC markers
that have been identified so far will greatly facilitate such
analyses, but it is important to further improve our
knowledge of additional markers with optimal specificity
and sensitivity. The assessment of CSCs in solid tumors
will be further aided if blood CSC biomarkers for solid


tumors become available, obviating the need for invasive
tumor biopsies. Basic research into the properties of CSCs
needs to further elucidate the mechanisms regulating the
origin and maintenance of CSCs and to delineate differ-
ences between CSCs and normal stem cells that could be
exploited for specific CSC targeting with minimal side
effects. The inclusion of CSC analyses in clinical studies of
anticancer treatments will aid our understanding about the
extent to which conclusions obtained in murine or tissue
culture models, e.g. related to the radio- and chemo-
resistance of CSCs, can be transferred to human patients.
The functional assays used to assess CSCs should also be
better standardized for specific tumor types. Additionally,
some general issues in the CSC field remain to be clarified,
related for instance to the origin of CSCs, their proliferative
capacity, their abundance, their precise molecular charac-
terization, or the extent to which differentiation and
dedifferentiation occur within the tumor cell hierarchy
[105, 113–115]. Overall, CSCs are likely to have a more
variable and unstable character than physiological stem
cells, just like tumors are more variable and unstable than
healthy tissues. Furthermore, the differentiation hierarchy
may not necessarily be unidirectional, as suggested by a
recent in vitro study on melanoma showing that cells with
CSC properties could be generated not only by self renewal
but also by dedifferentiation from more differentiated
progeny [79]. This would have direct therapeutic con-
sequences, as CSC-based therapies would have to be
administered chronically rather than as fast acting magic
bullets to eradicate CSCs. It is also clear that the discovery
of efficient drugs against CSCs will require specially
tailored assays and screening platforms that rest upon our
improved understanding of CSC characteristics. The com-
bination of all these approaches has already started to yield
a number of promising anticancer drug candidates. This
new line of research holds great promise for significant
improvements in the treatment of cancer by focusing on a
novel and crucial type of target—the cancer stem cells.
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